GRUPPENDETERMINANT

de la motion de caractère [4] ... Boarbaki [1]. Note historique.

par

Michel WALDSCHMIDT

Soit C un groupe fini d'ordre g , C[(X), cm] l'anneau des

INTRODUCTION.

"... De 1896 à 1910 s'est développée, entre les mains de Frobenius, Burnside et I. Schur, une théorie voisine de celle des algèbres, la théorie de la représentation linéaire des groupes (limitée au début aux représentations de groupes finis). Elle tire son origine de remarques de Dedekind: celui-ci, avant même la publication de son travail sur les algèbres, avait, vers 1880, rencontré au cours de ses recherches sur les bases normales d'extensions galoisiennes, le' Gruppendeterminant':: $\det(\mathbf{x}_{st-1}) \quad \text{où } (\mathbf{x}_s)_{s \in G} \quad \text{est une suite d'indéterminées dont l'ensemble d'indices est un groupe fini G (en d'autres termes la norme de l'élément générique de l'algèbre du groupe G relativement à sa représentation régulière); et il avait observé que, lorsque G est abélien, ce polynôme se décompose en facteurs linéaires (ce qui généralisait une identité démontrée longtemps auparavant pour les déterminants "circulants" qui correspondent aux groupes cycliques G). Au cours de sa très intéressante$

correspondance avec Frobenius [2], Dedekind, en 1896, attire son attention sur cette propriété, son lien avec la théorie des caractères des groupes abéliens, et quelques résultats analogues sur des groupes non commutatifs particuliers, qu'il avait obtenus en 1886; quelques mois plus tard, Frobenius résolvait complètement le problème de la décomposition du "Gruppendeterminant" en facteurs irréductibles [5], grâce à sa brillante généralisation de la notion de caractère [4]..." Bourbaki [1], Note historique.

I. - DECOMPOSITION DU GRUPPENDETERMINANT EN FACTEURS IRREDUCTIBLES

Soit G un groupe fini d'ordre g , $\mathbb{C}\left[\left(X_{s}\right)_{s \in G}\right]$ l'anneau des polynômes sur $\mathbb C$ à g indéterminées indexées par $\bar G$. On définit la matrice du groupe G par :

$$A_{G} = \left[\begin{array}{c} X \\ st^{-1} \end{array} \right]_{ \begin{array}{c} s \in G \\ t \in G \end{array}} \in M_{g} \quad \left(\begin{array}{c} \mathbb{C} \left[\left(X_{s} \right)_{s \in G} \right] \end{array} \right) ,$$

où s est l'indice de ligne et t l'indice de colonne. Le déterminant de A_G,

$$\Delta_{\mathbf{G}}^{\mathsf{I}} = \Delta_{\mathbf{G}}^{\mathsf{I}} (\mathbf{X}_{\mathbf{S}}^{\mathsf{I}})$$
 quieveb teets 0101 & 0231 ed

(déterminant du groupe G) est un polynôme en $(X_s)_{s \in G}$.

THEOREME. (Frobenius [5]). - Soit G un groupe fini, g son ordre, r le nombre de classes de conjugaison, ρ_n ($1 \le n \le r$) les représentations irréductibles de G ([7]), f_n le degré de ρ_n et χ_n son caractère.

Soit A_n l'ensemble des éléments (a) = $(a_1, ..., a_{f_n})$ de \mathbb{N}^{f_n} qui vérifient : f_n at seminary and a groups of a state of a seminary i=1 is a seminary i=1 of i=1 and i=1 and

On pose

(1)
$$S_{k,n} = \sum_{s_1,\dots,s_k \in G} \chi_n(s_1 \dots s_k) X_{s_1} \dots X_{s_k}$$

$$1 \leq n \leq r, \ 1 \leq k \leq f_n$$

(2)
$$\Phi_{n} = (-1)^{f} n \sum_{(a) \in A_{n}} \frac{f_{n}}{||} \frac{s_{k, n}^{a_{k}}}{(-k)^{a_{k}} a_{k}!}, \quad 1 \le n \le r.$$

Pour tout n = 1, ..., r, Φ_n est un polynôme homogène irréductible et le déterminant de G vérifie :

(3)
$$\Delta_{G} = \frac{r}{\prod_{n=1}^{r}} \Phi_{n}^{f_{n}}.$$

II. - <u>UN EXEMPLE D'APPLICATION</u> : <u>LIEN AVEC LE REGULATEUR</u> p-ADIQUE

1. - Soit K une extension galoisienne réelle finie de $\mathbb Q$, de groupe de Galois G . Soit p un nombre premier, ε une unité de Minkowski de K ([3]), soit $\sigma_0 \in G$ et

$$R_{p} = \det[\operatorname{Log} \sigma \tau^{-1} \varepsilon] \begin{pmatrix} \sigma \neq \sigma \\ \tau \neq \tau \end{pmatrix}$$

le régulateur p-adique de K.

$$P(X_s)_{s \in G} = \frac{\Delta_G}{\sum X_s} = \det \begin{bmatrix} 1 & X_{s_1} s_0^{-1} & \dots & X_{s_{g-1}} s_0^{-1} \\ 1 & X_e & \dots & X_{s_{g-1}} s_1^{-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{s_1} s_{g-1}^{-1} & \dots & X_e \end{bmatrix},$$

où e est l'élément neutre de G . Si on développe $P(\text{Log s }\epsilon)_{s\in G}$ par rapport à la première colonne, la relation :

$$\Sigma$$
 Log s $\varepsilon = 0$ s $\in G$

montre que tous les cofacteurs sont égaux à R , d'où :

$$R_p = \frac{1}{g} P(Log s \epsilon)_{s \in G}$$

2. - Dans le cas où G est abélien de groupe de caractères ${\mathfrak K}$, on retrouve la relation :

elte elddaub
$$R_p = \frac{1}{g} \frac{1}{\chi \in \mathcal{H}} \sum_{s \in G} \chi(s) \text{ Log } s \varepsilon$$
, where $\chi \neq \chi_o$

que Hasse ([6]) utilise pour donner une formule explicite du nombre de classes d'idéaux de K, et qui permet de calculer le rang p-adique du groupe des unités de K ([3]).

III. - CARACTERES GENERALISES [4]

Soit ρ une représentation irréductible d'un groupe G fini, χ son caractère, f son degré. Pour tout entier $k \ge 1$, on définit une fonction $\chi(s_1,\ldots,s_k)$ sur G^k à valeur dans C par la formule de récurrence :

(4)
$$\chi(s, s_1, ..., s_k) = \chi(s).\chi(s_1, ..., s_k) - \sum_{i=1}^{k} \chi(s_1, ..., s_i, ..., s_k)$$
.

Ainsi

$$\chi(s_1, s_2) = \chi(s_1)\chi(s_2) - \chi(s_1s_2) .$$

On aura alors, en désignant par e l'élément neutre de G :

$$\chi(e, s_1, \dots, s_k) = (f-k) \chi(s_1, \dots, s_k)$$

 $\chi(s_1, \dots, s_k) = 0$ si $k > f$.

PROPOSITION. - Soit Φ_n le polynôme défini par la relation (2) . On a :

(5)
$$\Phi_{n} = (-1)^{n} \times \left\{ \sum_{1,\dots,s_{f_{n}} \in G} \chi_{n}(s_{1},\dots,s_{f_{n}}) \times \sum_{1,\dots,s_{f_{n}} \in G} \chi_{n}(s_{1},\dots,s_{f_{n}}) \right\} \times \left\{ \sum_{n=1}^{n} \chi_{n}(s_{n},\dots,s_{f_{n}}) \times \sum_{n=1}^{n} \chi_{n}(s_{n},\dots,s_{f_{n}}) \times \sum_{n=1}^{n} \chi_{n}(s_{n},\dots,s_{f_{n}}) \right\} \times \left\{ \sum_{n=1}^{n} \chi_{n}(s_{n},\dots,s_{f_{n}}) \times \sum_{n=1}^{n} \chi_{n}($$

<u>Démonstration.</u> D'après (4), $(-1)^f \chi(s_1, \ldots, s_f)$ est somme de f! produits. D'autre part, pour chaque permutation des f symboles (s_1, \ldots, s_f) , il y a a_i cycles de i symboles avec

$$\begin{array}{c}
f \\
\Sigma \\
i=1
\end{array}$$

$$i = f .$$

$$O > e^{(a + go, I)} = f .$$

Enfin on peut effectuer le produit

$$(-1)^{a_1 + \dots + a_f} S_{1, n}^{a_1} \dots S_{f, n}^{a_f}$$

de

$$\frac{f!}{\frac{f}{||} i^{a} a_{i}!}$$
 manières.

D'où:

IV. - PRINCIPE DE LA DEMONSTRATION DU THEOREME

1. - LEMME 1. - Soient $X = (X_s)_{s \in G}$ et $Y = (Y_s)_{s \in G}$ deux systèmes de g indéterminées sur \mathbb{C} . On pose :

(6)
$$X * Y = \left(\sum_{tu=s} X_t Y_u\right)_{s \in G}$$
.

On a alors:

(7)
$$A_{G}(X * Y) = A_{G}(X) \cdot A_{G}(Y) , \quad A_{G}(Y)$$

 $\underline{\text{et il existe une décomposition de}} \ \ \underline{}^{\Delta}_{G} \ \ \underline{\text{en facteurs irréductibles}} \ \ \underline{\Phi} \ \ \underline{\text{tels que}}$

EX X and divise pas, acc

(8)
$$\Phi(X \times Y) = \Phi(X) \cdot \Phi(Y) \cdot$$

En effet, la relation (7) montre que $\Phi(X \times Y)$ est le produit d'une fonction $\Lambda(X)$ ne dépendant que des variables X par une fonction M(Y) ne dépendant que des variables Y. Soit $\epsilon = \begin{pmatrix} \delta \\ s,e \end{pmatrix}_{s \in G}$ où

$$\delta_{s,e} = \begin{cases} 1 & \text{si } s = e \\ 0 & \text{si } s \neq e \end{cases}$$
 e élément neutre de G .

On a:

$$\Phi(X) = \Lambda(X) M(\varepsilon)$$

et
$$\Phi(Y) = M(Y) \Lambda(\epsilon)$$
.

Comme $A_G(\epsilon) = 1$ (coefficient de X_e^g), on peut choisir $\Phi(\epsilon) = 1$, d'où $\Lambda(\epsilon)$ $M(\epsilon) = 1$.

Remarques

- l La relation (X * Y) * Z = X * (Y * Z) permet de généraliser le lemme l de façon évidente.
- 2 On définira $\boldsymbol{X}^{\mbox{\scriptsize \#}\, n}$, pour n entier positif, par la relation de récurrence :

$$X^{\times n} = X^{\times n-1} \times X , \quad X^{\times 1} = X .$$

2. - LEMME 2. - <u>Diviseurs de</u> Δ_C <u>du premier degré</u>.

- 1. <u>Il existe une représentation irréductible de</u> G <u>de degré</u> 1
 <u>et de caractère</u> s → a(s).
 - 2. P^2 ne divise pas Δ_G

Preuve. 1. La relation

(8)
$$P(X * Y) = P(X) \cdot P(Y)$$

montre que l'on a a(st) = a(s)a(t) et a(e) = 1

2. Le changement de variable $Y_s = \chi(s) X_s$ nous ramène au cas où $P = \sum X_s$. Or $\frac{\Delta_G}{\sum X_s}$ ne dépend que de $X_s - X_t$, donc $(\sum_{s \in G} X_s)^2$ ne divise pas Δ_G .

3. - Nous considérons dans toute la suite un diviseur Φ de Δ_G , irréductible, homogène, de degré f, tel que :

(8)
$$\Phi(X * Y) = \Phi(X) \cdot \Phi(Y) .$$

Soit $\psi(s)$ le coefficient de X_e^{f-1} dans $\frac{\partial \Phi}{\partial X_e}$, pour tout $s \in G$.

LEMME 3. - La fonction ψ détermine complètement le polynôme Φ:

$$\Phi(X) = (-1)^f \sum_{i=1}^{\infty} \frac{(-1)^{a_i} S_i^{a_i}}{a_i a_i!}$$

où la somme du second membre est étendue à l'ensemble des familles <u>d'entiers naturels</u> (a_1, \dots, a_f) <u>tels que</u> $\sum_{i=1}^{f} i a_i = f$, <u>et où</u>

<u>Preuve.</u> Soit $\epsilon = (\delta_{s,e})_{s \in G}$. Pour une indéterminée u , $\Phi(X+u \epsilon)$ est un polynôme en $\, u$. Soit $(u+u_1)$... $(u+u_f)$ sa décomposition dans une clôture algébrique K de $\mathbb{C}(X_s)_{s \in G}$. Le coefficient de u^{f-l} dans $\Phi(X+u\epsilon)$ est $\sum_{s \in G} \psi(s) X_{s}.$

A tout polynôme $P(T) = a(t+t_1)...(t+t_n) \in K(u)[t]$ on associe un système de h indéterminées :

$$P(X) = a(X + t_1 \epsilon) * ... * (X + t_n \epsilon).$$

On aura alors:

$$\Phi(P(X)) = \frac{n}{|\cdot|} \quad a \quad \Phi(X+t_i \epsilon)$$

$$= \frac{n}{|\cdot|} \quad a \quad \frac{f}{|\cdot|} \quad (t_i+u_j) = \frac{f}{|\cdot|} \quad P(u_j).$$

En particulier, pour $P(t) = t^{n}+u$, on obtient :

$$\Phi(X^{\times n} + u \epsilon) = \frac{f}{| | (u + u^n_j)}.$$

Le produit $u_1 \dots u_f$ se calcule à partir des fonctions S_1, \dots, S_f

$$u_{1}...u_{f} = (-1)^{f}$$

$$\frac{f}{\sum_{i=1}^{f} i a_{i} = f}$$

$$i = 1$$

$$\frac{f}{\sum_{i=1}^{g} i a_{i} = f}$$

$$i = 1$$

$$\sum_{i=1}^{g} a_{i} a_{i} = f$$

d'où le lemme 3.

4. - LEMME 4. -
$$\Phi^f$$
 divise Δ_G et Φ^{f+1} ne divise pas Δ_G .

<u>Démonstration</u>. Le cas f = 1 résulte du lemme 2. Nous allons examiner le cas f = 2; la démonstration générale suit les mêmes principes et est exposée en détail dans [5].

Cas
$$f = 2$$
. On a: $2\Phi = S_1^2 - S_2$.

Soit ℓ l'entier positif tel que Φ^ℓ divise Δ_G et $\Phi^{\ell+1}$ ne divise pas Δ_G . La relation :

$$\psi(s_1, s_2, s_3) = 0$$
 $\forall (s_1, s_2, s_3) \in G^3$

s'écrit aussi:

(9)
$$\psi(s_1) \psi(s_2) \psi(s_3) - \psi(s_1) \psi(s_2 s_3) - \psi(s_2) \psi(s_1 s_3) - \psi(s_3) \psi(s_1, s_2) + \psi(s_1 s_2 s_3) + \psi(s_1 s_3 s_2) = 0$$

Soit $t \in G$. On effectue la somme des relations (9) correspondant aux couples $(s_2, s_3) \in G^2$ tels que $s_2 s_3 = t$. D'où :

$$\frac{g}{\ell} \psi(s) \psi(t) - g \psi(s) \psi(t) - \frac{g}{\ell} \psi(st) - \frac{g}{\ell} \psi(st) + g \psi(st) + \frac{g}{\ell} \psi(s) \psi(t) = 0 .$$

D'où, pour f = 2

$$(\frac{g}{\ell} - \frac{g}{f}) [\psi(s) \psi(t) - 2\psi(s t)] = 0 .$$

Si $\ell \neq f$, alors : $\psi(s) \psi(t) = 2 \psi(s \, t)$, $\forall (s, \, t) \in G^2$, et $S_1^2 = 2 \, S_2$, d'où $4 \, \Phi = S_1^2$ ce qui contredit l'irréductibilité de Φ . Donc $\ell = 2$.

5. - LEMME 5. - La fonction ψ : G \rightarrow C est une fonction centrale:

$$\psi(st) = \psi(ts)$$

pour tout $s, t \in G$.

Soit
$$a \in G$$
 et $Y^{(a)} = (Y_a \delta_{s,a})_{s \in G}$, où:

$$\delta_{s,a} = \begin{cases} 1 & \text{si } s = a \\ 0 & \text{si } s \neq a \end{cases}$$

On a, d'après (8),

$$Y_{a}^{f} \Phi(X_{sa^{-1}})_{s \in G} = \Phi(Y^{(a)}) \Phi(X_{s})_{s \in G}$$
,
 $Y_{a} \Phi(X_{a^{-1}s})_{s \in G} = \Phi(Y^{(a)}) \Phi(X_{s})_{s \in G}$.

Donc:

$$\Phi(X_{st})_{s \in G} = \Phi(X_{ts})_{s \in G}$$
, $\forall t \in G$ et $\forall s, t \in G$.

6. - LEMME 6. - y est un caractère irréductible de degré f de G.

Le principe de la démonstration ([4] et[5]) que nous ne reproduisons pas, est le suivant :

Soient \mathcal{C}_0 ,..., \mathcal{C}_{r-1} les classes de conjugaisons de G . Comme $\psi(s)$ ne dépend que de la classe de s , d'après le lemme s , on définit :

$$\psi_{\alpha} = \psi(s)$$
 pour $s \in \mathcal{C}_{\alpha}$.

Soit h_{α} le nombre d'éléments de \mathcal{C}_{α} et $h_{\alpha\beta\gamma}$ le nombre de triplets $(s_1,s_2,s_3)\in G^3$ tels que :

$$s_1 \in \mathcal{C}_{\alpha}$$
 , $s_2 \in \mathcal{C}_{\beta}$, $s_3 \in \mathcal{C}_{\gamma}$, $s_1 s_2 s_3 = e$.

On établit alors la relation :

$$h_{\alpha} h_{\beta} \psi_{\alpha} \psi_{\beta} = f \sum_{\gamma=0}^{r-1} h_{\alpha\beta\gamma} \psi_{\gamma}$$

pour tout
$$(\alpha, \beta)$$
, $0 \le \alpha \le r-1$ $0 \le \beta \le r-1$.

D'après [5], il s'ensuit que 🕴 est un caractère irréductible de G.

7. - Fin de la démonstration du théorème.

La relation Σ $f_n^2 = g$ ([7] §. 2. 4) et les lemmes 4, 5 et 6 établissent la décomposition :

(3)
$$\Delta_{G} = \frac{r}{\prod_{n=1}^{r}} \Phi_{n}^{f}$$

 $Y_a \Phi(X_a I_a)_{s \in G} = \Phi(Y_a) \Phi(X_s)_{s \in G}$

Data Dal BIBLIOGRAPHIE

- [1] N. BOURBAKI. Eléments de Mathématiques. Livre II (Algèbre); ch. 8 (Modules et Anneaux semi-simples).
- [2] R. DEDEKIND. Gesammelte Mathematische Werke. Aus Briefen am Frobenius. t. II, p. 414-442.
- [3] J. FRESNEL. Rang p-adique du groupe des unités d'un corps de nombres. Sém. Théorie des Nombres de Bordeaux, 1968-1969, exposé n°9.
- [4] G. FROBENIUS. Über Gruppencharaktere. Berliner Sitzungs berichte (1896) p. 985-1021, gesammelte Abhandlungen Band III, p. 1-37.
- [5] G. FROBENIUS. Über Primfactoren der Gruppendeterminante.

 Berliner Sitzungsber. (1896) p. 1343-1382. Gesammelte
 Abhandlungen Band III p. 38-77.
- [6] H. HASSE. Über die Klassenzahl Abelscher Zahlkörper. Berlin;
 Academie Verlag, 1952.
- [7] J. P. SERRE. Représentations linéaires des groupes finis. Hermann (1967). Coll. Méthodes.

. . .

U. E. R. de Mathématiques et d'Informatique Université de Bordeaux I - 351, cours de la Libération 33405 TALENCE