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Abstract

Let a be an algebraic number of degree d > 3 having at most one real conjugate
and let K be the algebraic number field Q(«). For any unit € of K such that
Q(ae) = K, we consider the irreducible polynomial f.(X) € Z[X] such that
fo(ag) = 0. Let F.(X,Y) =Y4f.(X/Y) € Z[X,Y] be the associated binary
form. For each positive integer m, we exhibit an effectively computable bound
for the solutions (z,y,e) of the diophantine equation |F.(z,y)| < m.
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1 The main theorem

Let a be an algebraic number of degree d > 3 over Q. Denote by K the
algebraic number field Q(«), by f € Z[X] the irreducible polynomial of « over
Z, by Z}; the unit group of K. For any unit € € Z} such that Q(asg) = K,
we denote by f.(X) € Z[X] the irreducible polynomial of ae over Z (unique
if we require the leading coefficient to be > 0) and by F.(X,Y) € Z[X,Y] the
irreducible binary form associated to f.(X) via the condition F.(X,1) = f.(X).

A particular case of Corollary 3.6 of [1] (dealing with Thue-Mahler equations,
though Thue equations are involved in this paper), is the following one.

Theorem 1. Let m be a rational positive integer. Then the set £, where
£={(z,y.) € Z* x Z | 2y #0, Q(ac) = K and |F.(z,y)| < m},
is finite.

The proof in [I], involving Schmidt’s subspace theorem, allows to give an
effectively computable upper bound for the number of elements of £ as a function
of m, d and the absolute logarithmic height h(a) of o (whose definition will be



reminded below), but does not allow to give a bound for the heights of the
elements of £. The main result of this paper gives an effectively computable
upper bound for the solutions in the particular case where the algebraic number
field K has at most one real embedding into C.

Theorem 2. Suppose that the algebraic number field K has at most one
real embedding. Then there exists an effectively computable constant k1 > 0,
depending only on «, such that, for all m > 2, each solution (x,y,c) € Z? x Zy
of the Thue inequality |F.(z,y)] < m with xy # 0 and Q(ae) = K satisfies

max{lal, [yl, ")} < mm

The conclusion of Theorem |Z| can be stated with the use of the norm N q,
since Ny¢/q(X —agY) = ag ' FL(X,Y): for (z,y,¢) € Z* x Z} with vy # 0 and
Q(ae) = K, one has

Nk /q(e — agy)| > ko max{|z|, |y|, e(@)}"s

with two effectively computable positive constants kg and kg depending only on
Q.

If the algebraic number field K has a unique real embedding into C, the
degree d of K is odd and K has (d — 1)/2 pairs of complex embeddings. In the
particular case d = 3, namely for a cubic field K, the hypothesis that there is
only one real embedding boils down to requiring that the unit rank of K be 1,
and this particular case of Theorem Was obtained in [2].

When K has no real embedding, namely when K is totally imaginary, the
degree d of K is even and K has d/2 pairs of complex embeddings. It looks like
the totally imaginary case of Theorem [2is not trivial and requires a diophantine
argument. Only the case of a Thue equation is elementary (and not a family of
such equations).

Lemma 3. Let F(X,Y) € Z[X,Y] be a binary form of degree d with integer
coefficients and without a real root, (so F' is a product over R of definite positive
quadratic forms). Then there exists an effectively computable constant k4 such
that, for each m > 0, each solution (x,y) € Z* of the Thue inequality

|F(z,y)| <m

satisfies

max{|z|, |y|} < rngm'/*.

Proof. Write

F(X,Y) = ag

=

(X —a;Y)(X —ajY),

<.
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where n = d/2, where aq is the leading coefficient of F(X,1), while a; and @;
(j =1,...,n) are the roots of F(X,1). Since

|z —ajyl = [ — gyl = [Im(ay)] - [yl

where Im(z) is the imaginary part (z —Z)/2i of the complex number z, we have
[yl < msm!/? with ng = Jao| 7/ T [tm(ay)| /.
j=1

If

< .
ol < 2 (max o] ) bl

the proof of Lemma [3| is complete. Otherwise, we have |z — ajy| > |z|/2 for

j=1,...,n, and we get
N
O
|ao|

which concludes the proof. O

The hypothesis that there is at most one real embedding will play an essential
role in the proof of Theorem [2| However, a significant part of the proof is valid
without this hypothesis, and we plan to pursue our work on the subject.

Example. Let D > 2, c € {1,—1} and let K = Q(f) with § = (1+4)v D* +c.
It is a result of Stender [4] that
2 Lo
a=c=D*+DO+ 0

is the fundamental unit of K. Notice that §* = —4(D* + ¢) and |¢| > 1. The
minimal polynomial of ¢ is

f(X) = X* —4D*X? + (8D* +2¢)X? + 4cD*X + 1
with
FX) = (X —e1)(X —e2)(X —e3)(X —e4)

where €1, €2, €3, €4 are the conjugates of a = £1. Since X*f(—c/X) = f(X),
we can choose €3 = —csfl and g4 = —6551. For n € Z, define f,(X), an, by,
cn by

X' 4 a, X340, X2t e X+ 1= (X —eP)(X —ef)(X —5)(X —£F)

and
fa(X) = (X =l (X —ep™)(X — ey (X —ef™),

so that
(X)) =X* 4 a, 1 X3+ b1 X2+ e X + 1.



Using once more the relation X*f(—c/X) = f(X), we deduce
tn=0a_p=(—c)"a, and b_, =b,
for n € Z. The sequence (a,)necz satisfies the linear recurrence equation
Unia —4D%an 3 + (8D + 2¢)an 0 + 4cD?ap 1 + ay =0
with the initial conditions a_; = 4¢D?, a9 = —4, a1 = —4D?, ay = 4c. The
sequence (¢, )nez is given by ¢, = a_, for n € Z, while the sequence (b,)nez

satisfies the linear recurrence equation

bn+6 - (8D4 + QC)bn+5 — (16CD4 + l)bn+4
—(16D* — 4¢)byy 3 — (16¢D* + 1)byy 0 — (8D* 4 2¢)bp 41 + by = 0,

with the initial conditions

by = 64D% + 64cD* +6,

b_i = 8D*+2c

bo = 6,

by = 8D*+2c

by = 64D8% + 64cD* + 6,

by = b512D'2 +1768D%c + 264D* + 2c.
Set

Fn(Xv Y) - Y4fn(X/Y),

so that

Fu(X,Y) = (X —"MY)(X — 5 MY ) (X — efTY)(X — ey,
Let m be a rational positive integer. Denote by
& = {(x,y,n) € Z®|zy # 0, n # —1 and |Fy(z,y)| < m}

the set of solutions of the Thue inequality |F,(X,Y)| < m. Then from
Theorem [2| we deduce the upper bound

max{|z|, [yl, e[ | (z,y.n) € €} < kem",

where g and A are positive constants depending only on D.

Let us denote by ® = {01,...,04} the set of embeddings of K into C. Let
us write the irreducible polynomial f of a over Z as

fX)=aoX'+a, X+ +aq € Z[X],
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f(X)=ao H(X —oi(a)),

i=1

and the irreducible binary form associated to F' € Z[X,Y] is
FX,)Y) =YY (X/Y) = aoX + a; XY + - +aqY%

For e € Z}; satisfying Q(ae) = K, we have
d
FAX,Y) =ao [[(X = 0i(ae)Y) € Z[X,Y].
i=1

Let us denote by h the absolute logarithmic height and by M the Mahler
measure. Hence,

h(a):élogM(a) where M(a) =ao [] max{1,|oi(a)[}.
1<i<d

2 Tools

In this section, let us put together the auxiliary lemmas which will prove
useful. We will use some results in geometry of numbers to establish an equiv-
alence of norms (Lemma [5). Then we state in Lemma 6 what is Lemma 2 of
[2]. Finally in Proposition and in Corollaries [9] and [L0] we exhibit some lower
bounds of linear forms of logarithms of algebraic numbers.

2.1 Equivalence of norms

Let K be an algebraic number field of degree d. We denote by €1,...,€, a

basis of the unit group of K modulo K5 . and we suppose r > 1. Let us recall

that the house of the algebraic number v, denoted [7], is the maximum of the
absolute values of the conjugates of .

Let us first remark that there exists a positive constant kg, depending only
on €1,..., €6, such that, if ¢1, ..., ¢, are rational integers and if we let

v=¢€1"€er with C=max{|c1],...,]|c |}

be a unit of K, then
e B < p(y)] < e (4)

for any embedding ¢ of K into C. More precisely, the inequalities

Iw(v)ISHWC and Iw(v”)ISHye—i\C



(note that [¢;] > 1) suggest to take

Ky = Z log|e; .
i=1

The following result, Lemma [5| is a variant of Lemma 5.1 of [3]. It shows
that the two inequalities of are optimal. They make C' appear as an upper
bound, while the two inequalities of the conclusion of Lemma [5| make C appear
as a lower bound.

Lemma 5. There exists an effectively computable positive constant kg, de-
pending only on €1, ..., €., with the following property. If c1,...,c. are rational
integers and if we let

y=e¢it e, C=max{|e1],...,|el},
then there exist two embeddings o and T of K into C such that
lo()] = e® and |7(7)] < e7"EC
Obviously, Hg < K
Proof. For any embedding ¢ of K into C, we have

log [o(7)] = c1log |p(er)| + -+ + ¢ log |p(er)].

The matrix (log |¢(e;)|), with d lines and 7 columns, where the indices for the
lines are the ¢’s of ® and the indices for the columns are the j’s of the set
{1,2,...,r}, has rank r. Therefore we can write ¢1,...,¢, as linear combina-
tions of the elements log |¢(7)|, whose coefficients in absolute values have upper
bounds which are functions of the regulator of K. Hence

e} < 1 .

max{lenl,... ler[} < mio max(log (7))

Let us take for o an element of ® such that |o(v)| be maximal:
lo(v)] = max |o(y)]

This leads to

C < rpglog | (v),
providing the conclusion for o with xg = .

We next apply this result to
’Y_l _ 6;61 "'er_CT'
If 7 is an element of ® such that |7(7y)| be minimal, namely
[m()] = min ()],

then we have
C < mmglog|r (v7") |-



Remark. Under the hypotheses of Lemma [ if vy is a nonzero element of
K and if we let v; = 97y, we deduce

e~ < i o (ol ™) plon)]| < e~

and
e < max [ (50l ) pln)| < =,

To benefit from these inequalities, we will use the estimates

lo(70)l < o] < e™®) and  h(y5") = h(v)

from which we deduce

e—rEC—dh(v0) < min ()| < e~ raC+dh(vo)
= min <

and
MmO —dh(70) < 3125 lo(11)| < oFEC+dh(Y0)

The term dh(+p) always appears as an upper bound, and as an error term. Note
also that the constant ng is large (it appears in the upper bounds), while the
constant Ag is small (it comes into play in some lower bounds).

2.2 Upper bound involving the norm

Given an algebraic number ~ of degree < d and norm < m, there exists a unit
¢ in the field Q(«) such that the conjugates of ey are bounded from above by
a constant times m!/¢. This is a consequence of Lemma A.15 of [3], a result
which we want to state; (this is also Lemma 2 of [2]).

Lemma 6. Let K be an algebraic number field of degree d with requlator R
and let v be a nonzero element of Z whose norm in absolute value is m. Then
there exists a unit € € Zjy, such that

1 ~1/d
7 ax, log(m™""“|o;(e7)])

s bounded from above by an effectively computable constant depending only on
d.

Remark. The unit ¢ € Z5 may come from the group generated by the
basis of the unit group modulo the torsion. In other words, the torsion elements
do not come into play because of the absolute values which appear in |o;(e7)].

We use this lemma in the same way we did in [2]: there exists an effectively
computable constant k11, which is a function of d and R, such that, if v is a
nonzero element of Zx whose norm has an absolute value < m, then there exists
a unit € € Z% such that
1/d

4 <
max loj(ev)| < Hrmm



We will suppose m > 2 and we will rather use the weaker upper bound

) < M
Jwax |oj(ey)] <m (7)

with k12, an effectively computable constant which can be calculated as a func-
tion of d and R.

2.3 Diophantine tools

In this section, we are given two positive integers s and D; the constants
K13, k14 and k15 depend only on s and D and are effectively computable.

Here are the hypotheses and notations common to Proposition |8 and to
Corollaries[9and[I0] Let ~1,...,7s be algebraic numbers in an algebraic number
field of degree < D. Let ¢q, ..., ¢, be rational integers. Suppose vj* -+ -5 # 1.
Moreover, let Hy, ..., Hs be real numbers > 1 which satisfy

Hy>h(y) (1<j<s).

We will use the following particular case of Theorem 9.1 of [5] (see Proposition
9.21 of [5]).

Proposition 8. Let A1,...,As be complex numbers such that v; = e for
all j €{1,...,s}. Put
A161>\1+"'+63)\3.

Suppose Hj; > el for j=1,...,s. Let Cy be a real number satisfying

les| | el
Co>2, Cy> LA
0=2 0—1??§S{Hj+HS

Then
|A| > exp{—~mgH, - -- Hslog Co }.
Note that the hypothesis v{' ---~% # 1 implies A # 0. Proposition [§] will

be used via the following corollary.
Corollary 9. Suppose H; < Hg for 1 < j < s. Let Ci a real number
satisfying

.
Ci>2, C;> max {ch}.

Then
h/fl .. "}/ss — 1‘ > GXP{—KEHl ---Hy logCl}.

Proof. Under the hypotheses of Corollary [0} we choose an embedding of the
algebraic number field K = Q(v1,...,7s) into C. From the definition of the



absolute logarithmic height h, we deduce |y;| < ePP) for j =1,...,s. We
introduce some real numbers v4, ..., v, via the conditions

v = yle? ™, —l<y; <1 (1<5<s)

and we put
Aj = log |y | + 2imy, (1<j<s).
In other words, A; is the main determination of the logarithm of 7;. In partic-
ular, eN =, and |\;| < DH; + 27 (1 < j < s). Write
Ao=c1 M+ + cshs.
So
e =aft e £ 1L

Note also A the main determination of the logarithm of 4{*---~%. So there
exists ¢y € Z such that A = 2imcy + Ag. We may suppose |e} — 1| < 1/2;
otherwise, the conclusion of Corollary |§| is trivial; we deduce (for instance, see
Lemma 3 of [2])

A <2t -y =1

In the same vein, write A\g = 2iw, 79 = 1, Hy = 27, so
A= C(])\() + Cl>\1 + -+ CS)\S.

From the upper bound |A] < 1, we deduce

2loo] <1+ lejAjl < 1+ > (DH; + 27)|c;.

j=1 j=1
Therefore the inequalities
H; .
Clzﬁ|cj|a H; >1 (1<j<s)
and ol ) D
Co S
< | —+=— C; <2sDC
HS_<27T+27T+S) L= 2
allow us to use Proposition [8| with s replaced by s + 1 and 4sDC playing the
role of Cy. This concludes the proof. O

The following particular case of Corollary [9]is also deduced from Corollary
9.22 of [5].

Corollary 10. Let Cy be a real number satisfying
Cy > max{2, |c1|,...,|cs|}

Then
it vt — 1 > exp{—rmmH: - - - Hs log Ca}.



3 The reciprocal polynomial

Let us show that there is no restriction, for the statement of Theorem
to suppose |z| < |y|. Suppose that Theorem is proved in the particular case
|z] < |y| with the constant sq replaced by ki6(cr). Suppose now that we are
under the hypotheses of Theorem [2{ and consider a solution (x,y,¢) € Z? x Zy
of the inequality |F.(z,y)| < m with zy # 0 and |z| > |y|. Write o/ = a™1; let
g € Z]Y] be the irreducible polynomial of o’

d
g(Y) = Yyef (Yﬁl) =aq H(Y — U,;(o/)).
i=1
Put
d
f=ct g (V) =a (Y -oiee)), Go(¥.X) =X (Y/X),
i=1
so that

G (Y, X) = F.(X,Y).

Consequently, (y,z,¢’) is a solution of the Thue inequality
|Ger (y, )| < m.

Since h((ae)™!) = h(ae), we deduce from Theorem [2| applied to G., with the
condition |y| < |z,
max{|z|, e"(°2)} < mrmeT),

which allows us to draw the conclusion, by taking xq = max{rg(a), Amm(a1)}.

From now on, we fix an element (z,y,e) € £ with |z| < |y|. The constants
KT, KRS - - - » kg which will appear, depend only on h(«), d and m; they are easy
to calculate explicitly.

4 Introduction of the parameters A, A, B, B

Put R
A= max{l, h(a&)}.

Write
ar

EZCGTI...GT

with ¢ € K and a; € Z for 1 <4 <r, and put
A =max{1,|a],...,|ar|}.

The upper bound
h(OéE) S I*i17A

10



follows from ; more precisely, we may take
K7 = max{l, h(a) +h(e) +---+ h(er)}.
The lower bound
h(OéE) Z I*ilsA

follows from Lemma (5] Consequently,

A < A < AA.
Next put ~
B=xz—aey and B =max{1,h(B)}.
So
Fe(z,y) = ago1(B) - -~ aa(PB). (11)
Since |F(z,y)| < m, it follows from (7)), and Lemma [f] that there exists

0 € Zy satisfying h(p) < kiglogm and such that n = /o belongs to the
subgroup of the unit group of Zy generated by ey, ..., €.. Write

pe e
with rational numbers b1, ..., b, and put
B = max{l, [b1], |b2]s .-y |br|}-

With the relation 8 = g1, we deduce from ,

B < kig0(B + logm)
and from Lemma [5] we get

B < kg1 (B +logm).

By using the hypothesis zy # 0, we verify that the condition Q(cae) = K
which appears in the definition of £ implies Q(8) = Q(f8/ae) = K. Conse-
quently, for ¢ and ¢ in ¢, we have

=0 > plag) =o(ag) <= @(B) =0(B) += o(ac)p(B) = a(B)p(ae).

5 Elimination

5.1 Expressions of x and y in terms of ae and 3

Let 1,92 be two distincts elements of ®, i.e., two distinct embeddings of
K into C. Let us eliminate z (resp. y) between the two equations

01(B) =x —pi(ae)y and 2(B) =z — p2(ac)y, .
This leads to

11



5.2 A Siegel unit equation

Let ¢1, @2, 3 be three elements of @, i.e., three embeddings of K into C.
Write

Uy = SDi(O‘E)a Uy = 901(5) (Z = 17273)

We can eliminate x and y between the three equations

e1(8) = z—¢pi(ag)y
v2(B) = x—@2(ae)y
p3(B) = x—p3(ae)y

by writing that the determinant

1 pi(ag) »1(B) I u v
1 @a(ae) @208)|=|1 wuz wsy
1 p3(ae) »3(B) 1 uz w3

is equal to 0, and this leads to the unit equation d la Siegel

ULV — UV3 + UgV3 — UV + U3V, — U3y = 0. (13)

6 Four privileged embeddings

Let us denote by o, (resp. o) an embedding ¢ of K into C having the
property that |p(ae)| (resp. |¢(8)]) be maximal among all the elements |p(ae)|
(resp. |p(B)|) when ¢ runs through all the embeddings of ®. Let us denote by
To (resp. 7p) an embedding ¥ of K into C having the property that | (ae)|
(resp. |©¥(B)|) be minimal among all the elements |(ce)| (resp. [¥(B)|) when
1 runs through all the embeddings of ®. We may suppose 7, # oy, Tp # 0Op,
together with 7, # 04, 74 # Tq-

These four embeddings will be used in the unit equation in many different
ways.

7 About the parameters A and B

It turns out that if we are under the hypothesis max{A, B} < klogm, we
can easily prove Theorem

7.1 Proof of Theorem [2| if max{A, B} < klogm
We indeed have a short proof of Theorem [2|in this case.

Lemma 14. If « is a real number such that max{A, B} < klogm, then the
conclusion of Theorem[2] holds true with a constant ny depending not only on «
but also on kK.

12



Proof. In this proof, the constants xpm, K3, Kz, K, Aeg depend not only
on a but also on k. We use with the estimates

[01(8) = p2(B) < €27, |ps(ae) — pi(ae)| = e,

and the estimates

|01(B)p2(ag) — 2 (B (azg)| < et (AHR),

to successively obtain the upper bounds |y| < m"25 and then |z| < m®2¢. There-
fore it follows that, if an upper bound of both A and B is xlog m, the proof of
Theorem [2 is secured. O

The goal is now to show that we can assume that we always are under the
hypothesis max{A, B} < xlogm. In the next two subsections, we show that
this goal is achieved if we assume that an upper bound of either A or B is
given by a constant times logm. This will mean that there is no restriction in
supposing A and B larger than ko7 logm with a constant gz we may assume to
be sufficiently large. Once more, we could produce a convenient explicit value
for this constant which will make valid the arguments which will be used.

7.2  Proof of Theorem 2| if A < k/logm

In the next lemma, we prove that if A < ’logm, then we have the inequality
max{A, B} < klogm, whereupon Lemma [14]states that Theorem [2 holds true.

Lemma 15. If &' > 0 is a constant such that A < x'logm, then the hypoth-
esis max{A, B} < klogm of Lemma holds true with a constant k depending
upon o and K'.

Proof. In this proof, the constants xpg, ~pm, Amm, Azm, A3z depend not only
on « but also on «’. Let us use the unit equation with the two embeddings
op, p and a third embedding ¢ distinct from o, and 73:

e(B) ov(ae) —m(ag) - n(B) plae) —op(as) (16)

op(B)  plag) —m(ae) op(B)  p(ag) — m(ae)

The member on the right side is nonzero, since ¢ # op; it has a modulus
< e‘“QsBeW, since

[ (B)] < e oy (B)] > e

and

e —oa)|

p(ag) — 1p(ae

Put s=7r+1, and
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Put
Hy=---=H, = kg, Hs;=ng(l+logm), C1=2+

For 1 < j <r, we have |¢j| < B and
ol < mmp- < o
H, H, — 1+logm
The upper bound
%|Cj| <G
is still valid for j = s since ¢, = 1. Corollary [J] shows that a lower bound of

the left member of is given by exp{—#ks1 H;log Cy}, whereupon the above
upper bound and the last lower bound lead to

exp{—ngnHs log C1} < exp{—~zgB + ngmA}.

Therefore
xgB < {EnH s log C1 + rpgA,

which shows that B < k32 logm, which is what we wanted to establish. O

From now on, without loss of generality we may assume that A is sufficiently
large, say, A > ngglog m.

7.3 Proof of Theorem [2|if B < k" logm

In the next lemma, we prove that if B < k”logm, then we have the inequal-
ity max{A, B} < rklogm, whereupon Lemma [14] states that Theorem 2 holds
true.

Lemma 17. If ¥” > 0 is a constant such that B < k''logm, then the
hypothesis max{A, B} < klogm of Lemma holds true with a constant k
depending on o and k" .

Proof. In this proof, the constants ngg, ~mm, AR, Az, Amm depend not only
on a but also on k”.

Assume B < k”logm. Let us use the unit equation with the two
embeddings o, 7, and a third one ¢ distinct from o, and 7,:

p(02) 0alB)=7alB) | __alo) @(8)=ulf). as)

oa(ae)  p(B) — 1a(B) aa(ae)  (B) = 1a(B)

14



The member on the right side is nonzero, since ¢ # 0,; it has a modulus
< e rssdermB gince

7a(0€)] < e~ |5, (ac)| > T and ]M‘<B

Put s=7r+1 and

_ (p(e‘) o . . LP(OCC) ) Ua(ﬂ) _Ta(ﬁ) o
’Yj_?ejj)7 Cj = aj (1§]§T)7 IYS_O'G(OLC) @(ﬁ)*Ta(ﬂ), 05—1,
" ALy plag) 0a(B) — 1a(B)

! 3 oa(ag)  p(B) —Ta(B)
Now put
A
le...:HT:Fng), Hszfqm(1+logm)7 01:2+m

Corollary |§| shows that a lower bound of the left member of is given by
exp{—kssHslog C1}, whereupon the above upper bound and the last lower
bound lead to

exp{—rggH s log C1} < exp{—ngzA + ngaB}-

Therefore
nEgA < rpaB + wpgH s log Cy.

We conclude A < k37 log m, which is what we wanted to achieve. O

7.4 Consequences

From now on, without loss of generality, we may assume that both A and
B are larger than qrglogm. Since A is sufficiently large, we have |o,(ae)| > 2
and |7, ()| < 1/2. Similarly, since B is sufficiently large, we have |op(8)| > 2
and |7 (8)] < 1/2.

By using Lemma [5| with the bounds , we deduce that there exist some
constants k3g et k39 such that

{ e < oy (ag)| < eEmA, e~ < |7, (ag)| < erEmAd

5 < oy ()] < e, e~ < |y (B)] < emrEm@P,

)

(19)

Remark. Note that the constant sgg is sufficiently small (it comes into play
as a lower bound) while spgg is sufficiently large (it comes into play as an upper
bound).

Lemma 20. We have

Ip(ag)| <2 and o (B)] > eri0d,
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Proof. On the one hand, we have
[z — T(ae)y| = Im(B)] <1 < [z,
and since |z| < |y|, we get
|76 (e)y| < 2[z] < 2]yl

On the other hand, upon using |z| < |y| and |o,(ac)| > 2, we find

|0a(B)] = |oa(ag)y| - || = (Joa(as)] = Dy > %Iaa(aE)l > e,

8 An upper bound for A, |z|, |y| involving B

From the relation , we will deduce in an elementary way the follow-
ing upper bound.

Lemma 21. We have
A § /<L41B

and
log max{|z|, |y|} < k42 B.

Proof. Since A is sufficiently large, we have |oq(ag)| > 2|7, (ag)|. We then
deduce

loa(ae) — T (ae)| > %|oa(a6)|.
Let us use with ¢ = 0, and 1 = 7,:
y(oalae) = 7a(ae)) = 7a(B) — 0u(B).
The very definition of o, gives the upper bound
0a(B) = 7a(B)] < 2|0 (B)],

from which we deduce
lyoa(ae)| < 4|ow(B)]. (22)

The inequalites
T < oy (ag)| < [yoa(ae)| < 4]oy(B)] < 4eT°
imply A < kggB. From we deduce
ly| < dermE.

The upper bound for |z| follows from |z| < |y|. This concludes the proof of
Lemma 211 O
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9 On the unicity of 7

We plan to show that the embedding 75, that we have defined, is unique.

Lemma 23. Suppose that there exists ¢ € ®, ¢ # 7, such that we have
le(B)| = |7(B)|. Then B < Kas.

Proof. Suppose |¢(B3)| = |7(B)| with ¢ # 7. Let us use with @1 = ¢,
(2 = Tp, under the form

L (o(8) - n(8)).

—p(ag) + m(ae) = ol

We have ) 2m(B)|
Tb
lp(ag) — mp(ag)| = —|e(B) — (B)| < :
ly| |yl
From 1
[ = (ac)yl = [m(8)] < e~ < 2,
we deduce
ri(ac)y] > la = 5 > -
blaeyl = 2= 2
Consequently,
2
QO(O[E) _1‘ < |Tb(ﬁ)| §4‘Tb(5)| §4e—ﬁmB.
m(ae) |75 (ce)yl
Let us write the member on the left in the form |y7* ---~4¢ — 1] with s = r + 1,
o(e) . ¢(ag)
P = 5 C; = Qj, 7,:1,...,7“, = 5 CS:1.
% ) ( ) (ad)
From Corollary [10] with
Hi=---=H; =Ky, Cy=A,

(note that Cy > 2 since A is sufficiently large) we deduce
RS
< > .
The above upper bound and the last lower bound lead to
e~rmElos A < go—rmmB

hence B < k46(log A). Using the upper bound A < wqgpB of Lemma [21] allows
us to conclude. O

As outlined in the upper bound B < ngglog m allows to secure the proof
of Theorem 2} So Lemma 23] allows us to suppose |¢(3)| > |7,(B)| for any ¢ € ®
different from 7,. In particular, the embedding 7, is real. This completes the
proof in the case where the algebraic number field Q(«) is totally imaginary.

When the algebraic number field K has a unique real embedding, which is
what we will assume from now on, all embeddings different from 7, are imagi-
nary. In particular, since oy, # 7, we deduce oy, # 7.

17



10 An upper bound for B involving A

Let us use the strategy of with the three embeddings oy, o5 and 7.

Lemma 24. There exists an effectively computable positive constant kg7
such that

B < rgmA.

Proof. We use the relation with @1 = 0y, Yo = T3, @3 = T3, in the form
75(8) (ob(ae) — 1 (ag)) — v (B) (Gb(ae) — 1 (ag)) + 7,(8) (G5 (ce) — oy (ag)) =0,
and we divide by 04,(8)(5(ag) — 7,(ce)) (which is not 0):

BB aulos) —nos) | n(B) Fles) —ovlos)

ou(B) * 73(as) — my(ae) a(B8)  T(ag) - m(ae)

The member on the right of is nonzero since oy, # . Let us show that its
modulus is bounded from above by

61{481467){493 .

On the one hand, we have
I (8)] < e 5 oy (B)| > e,

on the other hand, an upper bound for the absolute logarithmic height of the

number
op(ae) — op(ae)

6 =
op(ae) — 1p(ae)
is given by ks0A, hence |§| < erEBA,
Let us write the term

73(8) _ ov(oc) ~ n(ac)
ou(B) Tp(ae) — mp(ae)

which appears on the left side of in the form ~{* ---~% with s = r+1, and

ab(€;) .

;= i =b, =1,...

’YJ O_b(Gj) I C] J (j bl bl T))

y = op(ae) — (ae) T5(0) o1
° o op(ae) —m(ag) ap(e)’

We have h(ys) < k51 4.
With

Hy = =H,=r5, H,=nrmA,

18



we have, using Lemma
KJ53B

i ey
max —=|c
1<j%<sHs N="H
Moreover, with
Ci =2+ —,
1 +A

we obtain from Corollary [I0] that a lower bound of the modulus of the left
member of is given by exp{—kssHslog C1}. The above upper bound and

the last lower bound lead to

exp{—ngalls log C1} < exp{—ngaB + ramA}-

Consequently,
ngaB < rmagA + rgHs log Cr.

Therefore,
B
2+ — =C1 < ksslog Gy,
A
O

which allows to conclude C; < k56, namely B/A < rgg .

11 Ultimate diophantine argument

We will use the strategy of with the three embeddings o, 7, 7.

Lemma 26. We have
A+ B < ks7lo 714 +B
logm — o708 1+ logm
Proof. We use the relation with ¢1 = g4, p2 = T4, 3 = 7 under the
form
coleH3) ) (o) ) o) (D)
0a(B) \Ta(ae) da(ag) \oa(B)

oa(ag)oa(f)
The left member of is not 0 since o, # 7,. The inequalities and

|0a(B)] = [0a(8)] = ™.

Lemma [20] indicate that we have

m(B)] < e 5, |ny(ae)| < 2,
Since B
o {243 [

we deduce that each of the two terms

Zi(é)) (583 - 1) )
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of the right member of has a modulus bounded from above by e84,

Let us write L
ca(ae)aq(B)

— €1, ., ACs
Talac)oa(B) LT
with s =7+ 1 and
Yi = i(ei)v Ci:ai_bi (Z: 13"'7T), Vs = g(aC)aa(Q)’ Cs = 1.
Ua(ei) Ua(O‘C)Ua(Q)
The absolute logarithmic height of v, is bounded from above by
h(vs) < K59 logm.
Let us also write
A+ B
Hi=---=H,= , Hs,= 141 , =24+ —
1 K60 wea(l +logm), Ch + 1+ logm

Corollary [10] implies that the modulus of the left member of has a lower
bound given by exp{—rg1H;log C1}. The above upper bound and the last lower
bound lead to

exp{—ngpHslog C1} < 2exp {—nzgA} .

Consequently,
A+ B
+ S Kg2 IOg Cl .
logm
This completes the proof of Lemma O

12 End of the proof of Theorem
Thanks to Lemma 21] we have
A < /B
while from Lemma 24 we deduce
B < rad,

and from Lemma 26 we have

A+ B A+ B
+Sfﬂs:alog ha

logm 1+logm'

We conclude max{A, B} < kg3logm, and this is what we wanted to show in
order to apply Lemma [T4]
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