Variations on the Six Exponentials Theorem

Michel Waldschmidt

Abstract. According to the Four Exponentials Conjecture, a 2 X
2 matrix whose entries A\;; (¢ = 1,2, j = 1,2) are logarithms of
algebraic numbers is regular, as soon as the two rows as well as the
two columns are linearly independent over the field Q of rational
numbers. The question we address is as follows: are the numbers

A2 — (A1d22/A21),  (A11A22)/(A12A21),  (Mi2/A11) — (Aa2/A21)

and
A11h22 — A21 12
transcendental?

Denote by £ the set of linear combination, with algebraic coef-
ficients, of 1 and logarithms of algebraic numbers. A strong form of
the Four Exponentials Conjecture states that a 2 x 2 matrix whose
entries are in £ is regular, as soon as the two rows as well as the
two columns are linearly independent over the field Q of algebraic
numbers. From this conjecture follows a positive answer (apart
from trivial cases) to the previous question for the first three num-
bers: not only they are transcendental, but, even more, they are
not in the set £. This Strong Four Exponentials Conjecture does
not seem sufficient to settle the question for the last number, which
amounts to prove that a 3 x 3 matrix is regular; the Conjecture of
algebraic independence of logarithms of algebraic numbers provides
the answer.
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The first goal of this paper is to give the state of the art
on these questions: we replace the Strong Four Exponen-
tials Conjecture by the Strong Six Exponentials Theorem
of D. Roy; we deduce that in a set of 2 numbers, at least one
element is not in £ (and therefore is transcendental). The
second goal is to replace the Conjecture of algebraic inde-
pendence of logarithms by the Linear Subgroup Theorem;
we obtain partial results on the non existence of quadratic
relations among logarithms of algebraic numbers. The third
and last goal is to consider elliptic analogs of these state-
ments.

An appendix by Hironori Shiga provides a link with
periods of K 3-surfaces.

1. Conjectures — Exponential Case

Denote by Q the field of algebraic numbers (algebraic closure of Q
in C) and by £ the Q-vector space of logarithms of algebraic numbers:

L={)eC;rcQ }={loga; acQ }=exp 1 (@).

Here is the main Conjecture (see for instance [5], Historical Note of
Chapter III, [4], Chap. 6 p. 259 and [12], Conjecture 1.15):

CONJECTURE 1.1. (Algebraic Independence of Logarithms of Alge-
braic Numbers). Let A1, ..., Ay, be Q-linearly independent elements of L.
Then A1, ..., A, are algebraically independent.

The following special case of Conjecture 1.1 was already investigated
by Th. Schneider ([9], end of Chap. 5), S. Lang ([5], Chap. II § 1) and
K. Ramachandra ([6] II § 4) in the 1960’s (see [12], Conjecture 1.13):

CONJECTURE 1.2. (Four Ezponentials Conjecture). Let M be a 2x2
matriz with entries in L. Assume that the two rows of M are linearly
independent over Q and also that the two columns of M are linearly
independent over Q. Then M has rank 2.

It is plain that a 2 x 2 matrix

A1 A2
1.3 M =
(1) <)\21 A22
has rank < 2 if and only if there exist x1, x2, y1, y2 such that \;; =
ziy; (1 = 1,2, j = 1,2). Hence Conjecture 1.2 is equivalent to the
following statement: if x1,xo are two compler numbers which are Q-
linearly independent and if y1,y2 are two complex numbers which are

also Q-linearly independent, then one at least of the four numbers

€w1y1? €m1y2’ em2y17 ex2y2
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s transcendental.

Let X\ (1 = 1,2, j = 1,2) be four non-zero elements of £. Assume
that the two rows of the matrix (1.3) are linearly independent over Q
and also that the two columns are linearly independent over Q. The
Four Exponentials Conjecture 1.2 states that each of the following four
numbers is not zero:

Audze - Aude Az Az

A21 A2a1d1z Al A
We investigate the transcendence of these numbers. From Conjecture 1.1,
it follows that each of them is algebraic only in trivial cases (where in
fact it is rational). More precisely, we show that the diophantine nature
(rational, algebraic irrational or transcendental) of each of the three first
numbers in (1.4) is settled by the following special case of Conjecture
1.1, suggested by D. Roy (see for instance [12] Conjecture 11.17).

(1.4) Ao — s A11A22 — A21A12.

_ Denote by L the Q-vector space spanned by 1 and £ in C. Hence
L is the set of linear combinations of logarithms of algebraic numbers
with algebraic coefficients:

£={B+ Bilogai+ -+ By logan;
n Z 01 (alv"' 7an) € (@X)n7 (607517" . 7/671,) S @n+1}-

CONJECTURE 1.5. (Strong Four Exponentials Conjecture). Let M

be a 2 x 2 matriz with entries in L. Assume that the two rows of M
are linearly independent over Q and also that the two columns of M are
linearly independent over Q. Then M has rank 2.

Equivalently, if x1, xo are two complex numbers which are @—lineaﬂy
independent and if y1,y2 are two complex numbers which are also Q-
linearly independent, then one at least of the four numbers

T1Y1, T1Y2, T2Y1, T2Y2
does not belong to L.

We derive several consequences of the Strong Four Exponentials Con-
jecture 1.5.

CONSEQUENCE 1.6. Let A be a transcendental element of L. Then
1/A is not in L.

CONSEQUENCE 1.7. Let Ay, Ay be two elements of L. Assume that
Ay and Aa/Ay are transcendental. Then this quotient Aa/A; is not in

L.



340 MICHEL WALDSCHMIDT

CONSEQUENCE 1.8. Let Ay, Ay be two transcendental elements of L.
Then the product Aq1As is not in L.

CONSEQUENCE 1.9. Let A1, Ay, A3 be three elements on with Ao #
0. Assume that the two numbers A1/Ay and As/Ao are transcendental.
Then AA
1433 ~
L.
Ao 7
Examples where Consequences 1.7, 1.8 and 1.9 hold uncondition-

ally (i.e. without assuming Conjecture 1.5) are given in § 2 below (see
Corollaries 2.7, 2.8 and 2.9).

PROOF OF CONSEQUENCES 1.6, 1.7, 1.8 AND 1.9 ASSUMING CONJECTURE 1.5.
Let Ag be an element in £. We apply the Strong Four Exponentials Con-
jecture 1.5 to the matrices

A1 Ar Ay 1 Ay 4 (A A
1 Ao) L1 M) \Ay Ay) P A Ao/

Since 1 € £ one may also deduce Consequences 1.7 and 1.8 from 1.9
and then 1.6 from 1.7.

We recall Baker’s Theorem on linear independence of logarithms of
algebraic numbers: if Aq,..., A\, are Q-linearly independent elements of
L, then the numbers 1,1, ..., \, are Q-linearly independent.

Consequence 1.9 applies to the three first numbers in (1.4). Let A;;
(1 =1,2, j = 1,2) be four non-zero elements of £. Assuming Conjecture
1.5, we deduce

O

A11A — A11A —
M2 = 2 g Q\ {0}, P2 ¢T\Q
o1 A12A21
and \ \
12 2 =
Moreover, again under Conjecture 1.5, if the number
M2 _ Az
Al Az

is rational, then
e cither )\12/)\11 € Q and )\22/)\21 eQ
® Or )\21/)\11 € Q.
Notice that if A\1; and A5 are two elements of £ and a, b two rational
numbers with bA1; # 0, then

)\12 b)\12 — a/\11 . a

A1 bA11 b
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Consequence 1.8 shows that, if Conjecture 1.5 holds, and if A11, A12, Aa2o
are three elements of £ such that A11A29 # 0, then both numbers

A
A1A22 — A2 and )\712 — A22
11

are transcendental.

The transcendence of the last number Aj1A22 — Aa1A12 in (1.4) does
not seem to follow from the Strong Four Exponentials Conjecture. How-
ever Conjecture 1.1 claims that any algebraic relation among logarithms
of algebraic numbers is homogeneous, hence:

CONSEQUENCE 1.10. (of Conjecture 1.1). Let Nij; (i =1,2, j =1,2)
be four transcendental elements of L. Assume

A11A22 # A21A12.
Then the number

A11A22 — A21A12
is not in L.

Consequence 1.10 amounts to study certain quadratic relations among
logarithms of algebraic numbers. One may deduce it directly from the
next conjecture of D. Roy on the rank of matrices whose entries are in

L (see [8], remarks (i) and (ii) p. 54, as well as section 12.1.4 in [12]).
Let M be a d x £ matrix with entries in £. Let Ay,..., As be a basis
over QQ of the vector space spanned by these entries. Write

M:M1A1+"‘+MSA57

where My, ..., Ms are d x £ matrices with algebraic entries. The struc-
tural rank of M with respect to Q is defined as the rank of the matrix

My Xy +"'+MSX5

whose entries are in the field Q(X1, ..., X,). This definition is indepen-
dent of the chosen basis Ay, ..., As.

As noted by D. Roy (see [12] Prop. 12.13), Conjecture 1.1 is equiv-
alent to the next statement:

CONJECTURE 1.11. The rank of a matriz with entries in L is equal
to its structural rank with respect to Q.

By homogeneity, for any A;; (i =1,2, j =1,2) in £\ {0} with
A11A22 # Ai2A21
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and for any A € £\ {0} the structural rank with respect to Q of

1 0 A1
0 1 A2
A2 =21 A

is 3. Hence Conjecture 1.11 implies Consequence 1.10.
The two next statements, which are consequences of Conjecture 1.11,
involve cubic relations among logarithms of algebraic numbers.

CONSEQUENCE 1.12. Let X\;j; (i = 1,2, j = 1,2) be four non-zero
elements of L. Then
Az A

A1l Az
is not in L\ Q.
CONSEQUENCE 1.13. Let \;j; (i = 1,2, j = 1,2) be four non-zero

elements of L. Then
A11A22

A21 12

is not in L\ Q.

One deduces Consequences 1.12 and 1.13 from Conjecture 1.11 by
introducing the matrices

A1 A2 0 M1 A2 O
)\21 )\22 A and )\21 0 1
0 )\21 1 O )\22 A
with A € L.
2. Theorems — Exponential Case

The sharpest known result in direction of the Strong Four Exponen-
tials Conjecture 1.5 is the following one, due to D. Roy ([7] Corollary 2
84 p. 38; see also [12] Corollary 11.16).

THEOREM 2.1. (Strong Siz Exponentials Theorem). — Let M be a
2 x 3 matriz with entries in L. Assume that the two rows of M are
linearly independent over Q and also that the three columns of M are
linearly independent over Q. Then M has rank 2.

Equivalently, if z1, xo are two complex numbers which are Q-linearly
independent and if y1,y2,ys are three complex numbers which are also
Q-linearly independent, then one at least of the six numbers

T1Y1, T1Y2, T1Y3, T2Y1, T2Y2, T2Y3
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does not belong to L.

We select a sample of consequences of Theorem 2.1 related to the
conjectural statements of § 1. _

The first one involves the inverse of an element in £, like in Conse-

quence 1.6, and also a quotient of two elements in Z, like in Consequence
1.7.

COROLLARY 2.2. Let Al,ég be two elements of L. Assume that the
three numbers 1, A1, Ay are Q-linearly independent. Then one at least
of the two numbers 1/A1, Ao/Ay is not in L.

The second corollary deals with two quotients of elements in £ and
provides a partial answer to Consequence 1.7.

COROLLARY 2.3. Let Ay, Ao, As be three elements of L Assume
that Ay is transcendental and that the three numbers A1, Ao, Ag are
Q-linearly independent. Then one at least of the two numbers Aay/Aq,
As/Ay is not in L.

The third one involves two products of elements in £ and therefore
is related to Consequence 1.8.

_ COROLLARY 2.4. Let A1, As, A3 be three transcendental elements of
L Assume that the three numbers 1, A, A3 are Q-linearly independent.
Then one at least of the two numbers AiAs, AiAs is not in L.

The next corollary combines Consequence 1.7 and Consequence 1.9.

_ COROLLARY 2.5. Let A1, A2, Az be three transcendental elements of
L Assume that Ai/Ay is transcendental and that the three numbers 1,

As, A3 are Q-linearly independent. Then one at least of the two numbers
Al/AQ, A1A3/A2 18 not in L.

The last one is a weak but unconditional version of Consequence 1.9.

COROLLARY 2.6. Let A1, As, A3, Ay be four elements of L. Assume
that A1 /Ao is transcendental and that the three numbers Aa, A3, Ay are

linearly independent over Q. Then one at least of the two numbers
AMAs Ay

2

Ao Ao

is not in L.
PROOF OF COROLLARIES 2.2, 2.3, 2.4, 2.5 AND 2.6. We apply The-
orem 2.1 to the matrices

A 1 Ay Ay Ay As 1 Ay As
1 A AN LA N A, A A
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Ay As 1 Ay As Ay
At A AN A A A )
with A and A’ in L.
0

From Corollary 2.4 we deduce an example due to G. Diaz [3] where
the statement 1.8 holds. See also [2]. The basic idea occurs initially in
[6] I p. 68: a complex number is algebraic if and only if both its real part
and its itmaginary part are algebraic.

COROLLARY 2.7. (G. Diaz). Let A; € LN(RUIR)\Q and let Ay € L.
Assume that the three numbers 1, As (mdNKg are linearly independent
over Q. Then the product AiAs is not in L.

Indeed Corollary 2.4 with As :~K2 shows that one at least of the
two numbers AjAs, AjAs is not in £. From the assumption A; = £A;
the result follows.

Using Hermite-Lindemann’s Theorem

LNQ= {0},
we deduce that for Ay € LN (RUIR)\Q and Ay € £\ (R UiR), the
product AjAs is not in L.

In the same vein we may produce examples where Consequences 1.7
and 1.9 hold. We give only two such examples.

COROLLARY 2.8. Let A; € EOLR UiR)\ Q and As € L. Assume
that the three numbers A1, Ao and ZN\Q are linearly independent over Q.
Then the quotient Ao/A; is not in L.

COROLLARY 2.9. Let A1, Ao, Ag be three elements in L with A1 and
Ay in RUIR and Ay # 0. Assume that Ay/As is transcendental and
that the three numbers Ao, Az and Az are Q-linearly independent. Then
A1As3/Ag is not in L.

One deduces from Corollary 2.6 the following results. Let M be a
2 x 3 matrix with entries in L:

A1l A2 Ais
2.10 M = .
(2.10) <)\21 A22 )\23)

Assume that the two numbers A11, A1 are Q-linearly independent, and
also that the three numbers Aoy, A9g, Aoz are Q-linearly independent.
Then
(i) one at least of the two numbers
A11A22 ~ Anides

o1 b A1
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is transcendental,

(ii) if AaA13 # 0, then one at least of the two numbers
A11d22 A11Ao3
A21 A2 A21Ai3

is transcendental,

(iii) one at least of the two numbers
Az A2 Az Agg
At A A Az

is transcendental
and
(iv) one at least of the two numbers

A1 A2 A A

Aot A Ao Aos

is transcendental.

From Corollary 2.4 it follows that, if Aj1, A2, A3 are three ele-
ments of £ with A;; # 0 and if the two numbersAgs, Aog are Q-linearly
independent elements of £, then
(i) one at least of the two numbers

A1A22 — A2, A11A23 — Ai3

is transcendental

and
(i) one at least of the two numbers
A12 A13
—= = — =
W) 2 3, 23

is transcendental.

For a 2 x 3 matrix (2.10) with entries in £, assuming that on each
row and on each column the entries are linearly independent over QQ, one
would like to prove that one at least of the two numbers

A11A22 — Ao1A12,  Ar1A23 — A2 A3

is transcendental (see Corollary 2.13 for a special case). In a forthcoming
paper we shall prove that one at least of the three 2 x 2 determinants

A11A22 — A21A12,  A11des — Aa1A13,  Arzdaz — Ax2Ais
is not in L.
A partial answer will follow from the next result, whose proof is
given in § 3.
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THEOREM 2.11. Let M = (Aij)lgigm;lgjgé be a m x £ matrix with

entries in L. Denote by I,,, the identity m X m matriz and assume that
the m+ £ column vectors of the matriz (I, M) are linearly independent

over Q. Let Ay, ... Ay be elements of L. Assume that the numbers 1,
Aty ..., Ay are Q-linearly independent. Assume further £ > m?. Then
one at least of the ¢ numbers

AlAlj—f—”-—i-AmAmj (jZl,...,f)
is not in L.
Taking m = 1, £ = 2 in Theorem 2.11 we recover Corollary 2.4. In
case m = 2, £ = 5 we deduce the next two corollaries.

COROLLARY 2.12. Let M be a 2 x 5 matriz with entries in L:

A Ao Az Ay Ags
Aoi Aoo Aoz Aoy Aos )

Assume that Aoy # 0, that the number A11/A21 is transcendental and
that the seven columns of the matriz (I2, M) are linearly independent
over Q. Then one at least of the four numbers

Ao — AoiAy; (5 =2,3,4,5)
is not in L.
ProOOF. In Theorem 2.11 we set
m=2, £=5 A =-Ay and Ay=Aq.
O

By adding further hypotheses and by using the complex conjugation
a la Diaz we can reduce from 4 to 2 the number of elements in the set
which we show not to be included in L:

COROLLARY 2.13. Let M be a 2 x 3 matriz with entries in L:
A1 Ao Az
Aa1 Ago Aoz )
Assume that A11, A1, A3 and Aoy are in RU R and that Aoy # 0. As-
sume further that the number A11 /M9y is transcendental and furthermore

that the siz numbers 1, Aoy, Aga, Ags, Aoo, Aog are linearly independent
over Q. Then one at least of the two numbers

A11Ao2 — Ao1Ava,  ApiAgz — AgiAgs

s not in L.
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PRrROOF. For j =2 and j = 3 define
Aj = A11Ag; — Ao Ay
We apply Corollary 2.12 to the 2 x 5 matrix

<A11 Az A1z Arg A13>
Aoy Ao Aoz Ago Aog
with
Ay = A1o, A5 =M1z, Aoy = Az, Ao = Ass.
We deduce that one at least of the four numbers Ay, Ay, A3, A3 is not in
Z, hence one at least of the two numbers Ay, A3 is not in L.
U

We conclude this section with the following consequence of Theorem
2.11, whose conclusion goes further than [12] Exercise 11.10 (which is
[11] Corollary 2.5).

COROLLARY 2.14. Let M = (N\ij)i<i<mii<j<¢ be a m x £ matriz
with entries in L whose columns are linearly independent over Q and let
A, .., A\m be Q-linearly independent elements in L. Assume £ > m?.

Then one at least of the £ numbers
/\1)\1j+"'+)\m)\mj (j:1,...,€)
is not in L.

PROOF. According to part (iii) of Exercise 11.5 in [12], Baker’s ho-
mogeneous Theorem implies that Q-linearly independent elements in L™
are linearly independent over Q. In the same way, using the full force of
Baker’s Theorem, we deduce that the columns of the matrix (I,,,, M) are
linearly independent over Q. We use again Baker’s Theorem to deduce
from the assumptions of Corollary 2.14 that the numbers 1, A1,..., Ap
are QQ-linearly independent. Hence the hypotheses of Theorem 2.11 are
fulfilled for Az = )\i and Aij = >\ij'

O

3. Proof of Theorem 2.11 and further results

Theorem 5 of [7] (see also Corollary 11.15 in [12]) deals with the

intersection V N £¢ when V is a vector subspace of C?. For the proof of
Theorem 2.11 we shall need only the special case where V is a hyperplane
of C4.

THEOREM 3.1. Let V be a hyperplane in C* such that Vﬂ@d = {0}.

Then VN L% is a finite dimensional vector space over Q of dimension
<d(d-1).
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PROOF OF THEOREM 2.11. Let d = m + 1. The hyperplane V of
C? of equation
Arzy + -+ Az = Zmy1
contains the m + £ following points:
vi = (e, Ni)  (1<i<m)
and
where (€1,...,€p,) is the canonical basis of C™ and where
A;:AlAlj—i--'-—l-AmAmj (]:1,’€)

The definition of A},..., A} means that the (m + 1) x (m + £) matrix

~ I, M
M—<A1 s A A AZ)
has rank m. o .
Since 1, Ay, ..., Ay, are Q-linearly independent, we have VN Q =
{0}. Since the columns of M are Q-linearly independent, the m + ¢

points 71, ...,vmae are linearly independent over Q. The assumption
¢ > m? yields m + ¢ > d(d — 1), hence Theorem 3.1 shows that one at
least of the ¢ numbers A/, ..., A} is not in L.

O

Another corollary of Theorem 3.1 is the following.

COROLLARY 3.2. Let M = (Aij)lgigm;lgjgﬂ be a m x ¢ matriz with

entries in L whose columns are linearly independent over Q and let
T1,...,Tm be Q-linearly independent complex numbers. Assume £ >
m(m —1). Then one at least of the ¢ numbers

xlAlj—i—-"—i-.’L‘mAmj (jZl,...,g)
18 not zero.

ProorF. Apply Theorem 3.1 with d = m to the hyperplane V of
equation
121+ + T2, =0
in C™. O
Further related results, which deserve to be compared with Theorem
2.11, follow from Corollary 11.6 in [12] which reads as follows.
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THEOREM 3.3. Let dy > 0 and di > 1 be two positive integers. Set
d=dy+di. LeV be a vector subspace of C* of dimension n which
satisfies

V(@ x{0})={0} and VN ({0} x QM) = {0}.

Denote by £y the dimension of the Q-vector space V N @d. Then the
Q-vector space VN (@do x L% has finite dimension bounded by

dimg (VN (@% x £)) < dy(n — £).

A consequence of Theorem 3.3 is Corollary 1.6 in [11]. However
there are two misprints in this last statement which we take the oppor-
tunity to correct here: firstly the assumption in Corollary 1.6 of [11]
that ¢1,...,t,, are Q-linearly independent should be replaced by the as-
sumption that 1,t1,...,t,, are Q-linearly independent, and secondly in
the condition ¢ > (r — 1)(n 4 1) one should read m in place of n. Here
is an equivalent formulation of the corrected statement.

COROLLARY 3.4. Let M = (A\ij)1<i<msi<j<e be a m X £ matriz with
entries in L whose columns are linearly independent over Q and let
T1,...,Tm be Q-linearly independent complexr numbers. Denote by r
the dimension of the Q-vector space spanned by 1, ..., %, and assume
¢>m(r —1). Then one at least of the ¢ numbers

xl)\lj—i—‘--—i—xm/\mj (jzl,...,g)
18 not zero.

If we use only the upper bound r < m in Corollary 3.4, the result
we obtain is a consequence of Corollary 3.2 (compare with part a) of
Exercise 11.9 in [12]).

Here is another consequence of Theorem 3.3 (with dg =1, d; =n =
m, bp =m —r).

COROLLARY 3.5. Let M = (\ij)i<i<msi<j<e be a m X £ matriz with
entries in L whose columns are linearly independent over Q and let
T1,...,Tm be Q-linearly independent complex numbers. Denote by r+ 1
the dimension of the Q-vector space spanned by 1,z1, ..., x,, and assume
£ > mr. Then one at least of the £ numbers

a:l)\lj+~-+xm/\mj (_] = 1,...,6)
1s transcendental.

When 1,21, ..., are linearly independent over Q, the condition
¢ > mr in Corollary 3.5 for getting a transcendental number is the same
as in Theorem 2.11 for getting an element outside of £. However the
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former result holds with arbitrary complex numbers x; but restricts A;;
to be in £, while the later one, namely Theorem 2.11, requires A; € £
and allows A;; in L.

4. Elliptic Case

The previous study involves the multiplicative group Gy,. Similar
statements hold for an elliptic curve & which is defined over Q: we
replace the field Q by the field ke = End€ ®z Q of endomorphisms of £,
the Q-vector space £ by the kg-vector space Lg of elliptic logarithms of
algebraic points on &, namely

Le = exp;' E(Q)

and the Q-vector space L by the Q-vector space Eg spanned by 1 and
Lg in C.

Recall that the elliptic curve £ has complex multiplication or is a
CM curve if ke # Q, in which case kg is an imaginary quadratic field.

The Weierstrass elliptic function gp associated to £ satisfies a differ-
ential equation

12 3
O =4p" —gap — g3

with algebraic invariants go, g3; from the definition it follows that L¢ is
the set of elliptic logarithm of algebraic points of o, namely the set of
complex numbers u such that either u is a period of p or else p(u) is
algebraic.

A special case of the elliptico-toric Conjecture of C. Bertolin in [1]
is the following elliptic analog of Conjecture 1.1.

CONJECTURE 4.1. (Algebraic Independence of Elliptic Logarithms of
Algebraic Numbers). Let uq, ..., u, be ke-linearly independent elements
of Le. Then uy,...,u, are algebraically independent.

From this conjecture one readily deduces elliptic analogs to all the
statements in § 1: one replaces the Q-vector space £ by the Q-vector
space Lg consisting of linear combinations

Bo + Brur + - - + Brun

of elliptic logarithms u; € L¢ with algebraic coefficients ;.

Elliptic analogs of the results in § 2 deserve to be considered — we plan
to do it elsewhere. Here we content ourselves with two transcendence
statements (compare with Corollary 2.12) whose proofs are given in § 5.

THEOREM 4.2. Let o be a Weierstrass elliptic functions with alge-
braic invariants ga, g3. For 1 < j <7, let \j € L and u; € Lg. Assume
that the seven points (A\1,u1), ..., (A7, u7) are Q-linearly independent in
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C2%2. Assume also \y # 0 and u; # 0. Then one at least of the six
numbers

)\1Uj—>\jul (j:2,,7)

is transcendental.
Furthermore, if uy is a period w of o and \1 = 2iw, then one at least
of the four numbers

2itu; — \jw  (7=2,...,5)
1s transcendental.

THEOREM 4.3. Let p and p* be two Weierstrass elliptic functions
with algebraic invariants gz, g3 and g5, g respectively. For 1 < j <9,
let uj (resp. u}) be an elliptic logarithm of an algebraic point of o (resp.
©*). Assume that the nine points (u1,u}),..., (ug,us) are Q-linearly
independent in C?. Assume further either that the elliptic curves € and
E* are non isogeneous and uiui # 0, or else that &€ = £* and that the
two numbers uy,u] are linearly independent over kg. Then one at least
of the eight numbers

ujuy —ujur  (j=2,...,9)

is transcendental.
Furthermore, if u1 s a period w of p and u] a period w* of p*, then
one at least of the six numbers

wjw* —uiw (j=2,...,7)

1s transcendental.

REMARK. From the elliptico-toric Conjecture of C. Bertolin in [1]
one deduces that, under the assumptions of Theorem 4.3, the number

ugu] — UHUL

is transcendental. More precisely, in the case where £ and £* are non iso-
geneous, her conjecture implies that the number ujuj is transcendental,
and that the transcendence degree t over Q of the field Q(uy, ug, u¥, ub)
satisfies

4 if uq,u9 are linearly independent over kg
and uj,u3 are linearly independent over kg+,
t =<2 if uy,us are linearly dependent over kg
and uj,us are linearly dependent over kg«,
3 otherwise.
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In particular if we denote by (w1, ws) (resp. (wi,w3)) a pair of fundamen-
tal periods of p (resp. of ©*), then, according to Bertolin’s Conjecture,
the number

wow] — wawq
is transcendental. I wish to thank H. Shiga who pointed out to me that

such numbers occur as periods of K3 surfaces (we refer to the appendix).
His remark was the initial motivation for this paper.

5. Proofs of Theorems 4.2 and 4.3

The proofs of Theorems 4.2 and 4.3 rely on the following special case
of the Algebraic Subgroup Theorem ([10] Th. 1.1 and [11] Th. 4.1) —
the full statement deals with a vector subspace V, here we need only to
consider a hyperplane.

THEOREM 5.1. Let dy, di, do be three non negative integers with
d=dy+di+dy > 0. Let Gy be a commutative algebraic group over Q
of dimension dy and set G = G% x G4 x Gy. Let V be a hyperplane
of the tangent space T.(G) and Y a finitely generated subgroup of V of

rank ¢ such that exp(Y) C G(Q). Let k be the Z-rank of V Nker expg.
Assume

> (d — 1)(d1 + 2dy — I{).

Then V contains a non-zero algebraic Lie subalgebra of T.(G) defined
over Q.

PrOOF OF THEOREM 4.2. Consider the matrix
A A N
Uy uy ... Uy
where ¢ = 7 in general, unless \; = 2im and u; is a period w of p,

in which case £ = 5. Assume that the ¢ columns of M are linearly
independent over Q and that the ¢ numbers

’yj:ul)\j—)\luj (jZl,...,f)

are algebraic. Notice that v = 0.
DeﬁneG:GaxGmxg,dozl,dlzl,dgzl,ngg,d:&
Let V be the hyperplane

20 — U121 — )\122
in C? and Y = Zy; + - - - + Zy, the subgroup of V of rank ¢ with

yi = (v, Ajsug),  (1<5<0).
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From the assumptions A; # 0 and u; # 0 it follows that V does not con-
tain any non-zero Lie subalgebra of T.(G). In case (A1,u1) = (2im,w) €
ker exps;, we have K > 1. Since

6 if k=0,

d—1)(dy +2dy — k) =
(d=1)(d1 +2d; — &) {4 =1,

Theorem 5.1 gives a contradiction.

O

PROOF OF THEOREM 4.3. Let £ be a positive integer and u1, ..., uy
(resp. uj,...,u; ) be elliptic logarithms of algebraic points of o (resp.
©*). Assume that (uy,u}),..., (usu}) are Q-linearly independent in C?
and that the ¢ numbers

v = ujuy —uiur (f=1,...,0)

are algebraic.

Denote by £ (resp. £*) the elliptic curve associated to g (resp. p*).
In Theorem 5.1 take G = G, x E X E*, dy=1,d1 =0, do =2, d = 3.
Let V be the hyperplane

20 = ujz1 — U122
of C3 and define Y = Zy; + - - - + Zy, with
yj = (vj,uj,uj), (1<j<0).

The assumption that either the elliptic curves £ and £* are non isoge-
neous and ujuj # 0, or else £ = £* and wy,u] are linearly independent
over kg, implies that V does not contain a non-zero Lie subalgebra of
Te(G). Hence from Theorem 5.1 we deduce that the rank ¢ of Y is
bounded by

0 < (d—1)(di + 2do) = 8.

Furthermore, if u; is a period of p and u] a period of u*, then the point
(0,u1,u}) belongs to V Nkerexpg, hence k > 1 and

Eﬁ(d—l)(d1+2d2—1):6.
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