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1. Introduction. Let d,, d,, m be non-negative integers, with m > 0,
let Xy,..., X4, (T€SPs Y3,-.., ¥m) be complex numbers which are Q-lincarly
independent, and let uy,..., 44, be complex numbers. We consider a
Weierstrass elliptic function & with invariants g, g;:
P=4P — g, P — g,

We denote by O the ring of endomorphisms of the elliptic curve asso-
ciated with @: hence O = Z if P has no complex multiplication, while
O is an order of an imaginary quadratic ficld otherwise. We assume that
Uy,..., Ug, are linearly independent over O.

We denote by K, the field generated over Q(g,, g;) by the numbers
exp (xoy), (1 < i € dy, 1 < j < m), together with the numbers P(uxys),
(1 < k< dy, 1 < j < m)for which uxy) is not a pole of &P.

Next we define
Ky = Ky(Piyeees Ym)s
K. = K,(xl,..., Xdy 9 Upyeeey Ugy ),
and
Ky = Ky(Pyeeees Yms Xasoees Xdy o Ugpeeey Udy )-
Our main purpose is to give lower bounds for the transcendence
degree 1, of K; over Q, fori = 1, 2, 3, 4.

We first give a short historical survey of this problem (§2). Next we
state our main result (§3), which is a consequence of a general theorem
dealing with algebraic groups (§4). Thf two next sections are devoted to
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proofs, and we conclude by announcing some generalizations @§N-
2. Historical survey

(a) Results of transcendence. We get a transcendence result by
asserting #; > 0 for some i = 1, 2, 3, 4.

Let us begin by the pure exponential case, i.e. d; = 0. The Hermite-
Lindemann’s theorem on the transcendence of e* (for non-zero algebraic
«) is equivalent to the assertion 7, > 0 for d; > 0. Next the Gel’fond-
Schneider’s theorem on the transcendence of «f (for algebraic « and
with 2 £ 0, logx %0 and B ¢ Q) is equivalent to either one of the
following assertions:

\ t,>0ford,>1and m>2
t; > 0 for d, > 2.
Finally the so-called six-exponentials theorem, due to Siegel, Lang and
Ramachandra reads:
t, >0 if dm > m + d,.
Next we consider the pure elliptic case, i.e. d; = 0. Schneider’s

theorem on the transcendence of P(«) (for non-zero algebraic «, and for
algebraic g,, g,) can be written:

t,>0if dy > 0.
The assertions
t,>0ford,>1and m >3
and
tg > 0 for d, > 2

are also due to Schneider, while Lang and Ramachandra proved

t, > 0 if dom > m + 2d,.

Finally, in the general case (d, > 0, d, > 0), the statement
t, > 0 for dy > 1 and d, >-1
is due to Schneider, the inequality
t, > 0 for m(d, + dy) > m + 2(d, + d)

Q.‘
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can be deduced from a result of Lang on algebraic groups, while the
refinement

y > 0 for m(d, + dy) > m + d, + 2d,

is a consequence of Ramachandra’s work on functions satisfying an
addition theorem.

In conclusion, the following statement includes results due to Hermite,
Lindemann, Schaeider, Gel’fond, Lang and Ramachandra (see [G], [L],
[R], and [S)).

THEOREM 1.1,
0 If @, + d)m > m + dy, + 2d,, then t, > 1.
(i) If(@d>1andm 2 2),0r(dy > 1 and m > 3), then Lz 1,
(i) If dy + d, > 2, then =2 1.
(V) Ifd, + d, > 1, then > L
The relevant values for the assumption m(d, + d;) > m + d, + 2d,

are as follows:

m 2> 2 3 3 3 4 4 5

4> | 3 2 1 0 1 o | o

>0 |o |2 | 4 1 |3 | 2

(b) Small transcendence degree. If we have 4> Oforsome i =1,
2, 3, 4, then two at least of the elements of K; are algebraically indepen-
dent, \

In the pure exponential case, the first results were due to Gel’fond
[G]. They have been refined by Shmelev, Tijdeman, Brownawell,... (see
[W2]) and read now:

k‘_
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if dm = 2m + d,), then t; > 2
if dm > m + 2d,, then t, > 2; if dym = 2m + dy, then ty > 2
if dym > m + dy, then £{ > 2.

(Of course, the second and third results are equivalent).

In the pure elliptic case, the first results were due to Brownawell and
Kubota [B-K]. Later using their zero estimate, Masser and Wiistholz
[M-W1] proved the expected elliptic analog of the above mentioned
result; the rule is to replace d; by d, in the left hand side of the assumed
inequality, and by 24, in the right hand side.

Finally, if one combines these results‘with recent works of Tubbs [T]
and with theorem 2 of [W4], one concludes:

THEOREM 1.2.

() If (dy + dyym = 2(m + dy + 2d,), then t; > 2.
(i) If (dy +dom > m + Ady + 2dy), then ty > 2.
(iii) If (dy + dpm > 2m + dy + 2d,, then ty > 2.
(iv) If (dy+ dm > m +dy + 2d,, then t, > 2.

Several refinements, involving extra assumptions (periodicity, assump-
tion that some of the considered numbers are algebraic, torsion poiats,...)
are known (see [C], [T], [W2], [W4)).

There are also further results on «small transcendence degrees”, in
particular due to Chudnovsky [C] (see also [W2]), which yield #; > 3 for
some i and which are slightly sharper then the resuits on «Jarge transcen-
dence degrees” we are going to discuss now.

(c) Large transcendence degrees. So far, inorder to get lower bounds
for #, in terms of dy, d,, m which yield stronger results than ¢; > 2, one
needs for technical reasons extra assumptions on measures of linear
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indepcndencé of the numbers x;, y; and #. Itis an interesting and non
trivial open problem to remove these assumptions.

We assume that for all e > O there exists H, > 0 such that for all
(Ayeeeey hay) € Z1 withlmax | & | = H > H,,

<i<d:

| hyxy +.t hay X | > exp (— HY). @1

Similarly, we assume that for all ¢ > 0 there exists L, > 0 such that
for all (A,...., \n) € Z™ with zax |A]| =L > L,
1Igjsm

[ Myy + oot Awym | €xp (— Le). 2.2)

Finally, we assume that for all e > 0, there exists M, > 0 such that
for all (my,..., mg,) € O% with max |my| = M > M,,
ICk<dy

| muy + ...+ maug, | > exp (— Me). (2.3)

From now on in this section we shall assume that these assumptions
hold.

The first result on large transcendcnce degrees (apart from the
Lindemann-Weierstrass theorem which we mention briefly in §7 below)
was provided by Chudnovsky in 1974, in the pure exponential case:

24 > dym|(m + dy),
2 > (dy + D)mf(m + dy) and 2% > dy(m + 1)/(m + d,),
24> (dym + m + d/(m + dy).

Further works on this subject are due to Warkentin, Philippon, Reyssat,
Endell and Nesterenko (see [W2] I §1). Recently, Philippon succeeded
to prove a sharp refinement of these results, by replacing, essentially, 2f
byt+ 1:

ty = (dym — d — m)/(m + dy),
fy > dym — f(m + d) and £, > (d, — Dimf(m + d,
te > dynf(m + dy.

In the pure elliptic case (d, = 0), Masser and Wiistholz [M-W2] proved
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2042 (¢ + 8) > md,/(m + 2d,),

under the assumption that g, and g, are algebraic (they also assumed
O = Z, but it is easy to remove this assumption). The refinement

20> md,/(m + 2d,)

is given in [W3], without the assumption that g,, g, are algebraic, and
the better result

t, > (mdy, — m — 2d,)[(m + 2d,)
(see [W3], cor. 13.3) involvesa further technical assumption: let t=w /e,
be a quotient of a pair of fundamental periods of P; we assume that for
all ¢ > O there exists H, > 0 such that for all H > H, and all imaginary
quadratic number B of height € H, with = 7 B,

| = —B| > exp (— H°). 2.4)

Masser [M] (Th. I, p. 1) proved that this assumption (2.4) is auto-
matically satisfied when the modular invariant

j = 1728 g3/(g2 — 27g3)
is algebraic (for sharper estimates see [F-P]. It should not be too
difficult to remove completely this assumption (2.4).

3. The main result.

THEOREM 3.1. We assume that the conditions (2.1),(2.2),(2.3) and
(2.4) hold. Then
t, > ((dy + dy) m — m — d, — 2d,)[(m + d, + 24y),
t, > ((d, + d) m — d, — 2d)|(m + d, + 2d,),
ty > (d + dy — Dm[(m + d, + 24y,
ty = (dy + dy) ml[(m + dy + 2d,).
It should be pointed out that these lower bounds improve Phillipon’s

one (which correspond to dy = 0) only if m > dy for t, andt,, m > d; + 2
for t,, and m > d; — 2 for t,.

The lower bound for #,, say, is a very slight improvement compared
S
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with the lower bound for #,, since one adds only one in the right hand
side, while we adjoin d, + d, + m numbers to K, in order to get K.
Because of this we will give the proof only for the lower bounds of t,
and ¢, (which involve Schneider’s method, while the two others involve
Gel'fond’s method).

Instead of taking only one P-function, it is possible to consider
several elliptic functions. However the technical assumptions (2.3) and
(2.4) have to be modified accordingly (see [W3] Cor. 13.6). Let us give
an example. Let E; = C/Q (1 < i < d) be elliptic curves over Q which
are pairwise non-isogeneous. For | < i < d, let w; € Cy, w; # 0. Next,
let y,, ..., ¥m be Q-linearly independent numbers. We assume that for all
e > 0 there exists My > 0 such that for all i =1, ..., d, forall o€ Q;,
and all (hy, ..., hm) € Zm with Jax | by | = M > M,, if the number

E=0— m,-lg hyvy
does not vanish, then

[&] > exp (— M").
Then the transcendence degree of the field generated by P(wyy)), (1 < i< d,
i jm)isatleast 2(dm — 2d — m + 1)[(m + 2d — 1).

It is also possible to consider Weierstrass zeta or sigma functions.
Indeed, the general result which can be proved involves algebraic groups.
It is also possible to translate such a result in terms of functions satisfying
an algebraic addition theorem (see [R]) by means of a result of Weil

[We].

4. Algebraic groups. This section is devoted to the statement of a
somewhat complicated result, which contains the hard part of the proof
of large transcendence degrees, excluding the zero estimate.

Let K be a subfield of C of transcendence degree ¢ _over Q. Let d,,
dy, d, be non-negative integers with d = d, + d, + d, > 0. Define
Go - GA". G| - G:ls

and let G, be a commutative algebraic group of dimension d, which is
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defined over K, and suitably embedded in a projective space Py over K
(see [W3]). Further define G = GyX Gy X G, in Py, X Py, XPy = L

Let n be a positive integer, and g: C* -> G(C) be an analytic homo-
morphism. We assume that the tangent map dyp: C* - Tg(C) of @ at
the origin is injective, and that g(C*) is Zariski dense in G(C). Further,
we put « = ranky ker ¢.

Let Y = Zy, + ... + Zym be a finitely geoerated subgroup of C* of
rank m over Z, such that I' = @(¥) is contained in G(K). Further let
I = ranky T. Furthermore, let u# and v be positive real numbers such
that

‘+‘(‘—%:)<(d“" + & — dy — 2d,)/nu* .1

z+1<v<(d_—'§‘+”_—;’3,,;2,1)/(n—§). 4.2)

and

We choose a transcendence basis (8, ..., 8) of K over Q, and a
primitive element 6., € K of K over Q(b,, - .., 6,), which is integral
over Z0,, ...,0]. Let BE Z[X,, ..., Xuy,] be such that B(@®,, ...,0,X)
is the minimal polynomial of 0,4; over Q(0y, ..., 8,).

There exist a constant ¢ > 0 such that, for each (8, ..., 0,)& C* with

max |0, — 0.| < ¢,
1€r<t

we can define 8,4, to be the unique root of B(®,, - .., 8, X) which is at
minimal distance of 6,4,, We can construct an algebraic group G defined
over the field £ = Q(B,, ..., 6+1), and we can also deform the points
v; = 9(y)) of G(K) into points 11 of G(K) (see [W3] for details).

Finally, we choose a sufficiently large integer ¢, > 0, next an integer

S, much larger than ¢,. ForeachS > Sy, we define Dy, Dy, Dy, A as
functions of S by

Dylog S = DyS = D,S* = ¢ - S¥7.
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TuBorEM 4.3. There exists an unbounded set of real numbers S > S,
with the following property. For each such S, there exists (by,..., 6) e C,
satisfying

max |6, —0.| < exp (— 25v)
ICr<t

such that, if we define 6,45, Y1,-.., Ym, G as before, then the set
IS = (s +eoothaym; y € Z,0 < by < S, 1 < j < m)

is contained in an algebraic hypersurface of P, of multidegrees at most (D,,
D,, D,), which does not contain G(K).

We sketch the proof of theorem 4.3 in §5 below, while in §6 we show
how to deduce theorem 3.1 by using a zero estimate due to Philippon.

Notice that theorem 4.3 is a refinement of [W3] Th. 9.1.

5. Proof of Theorem 4.3. The proof is a slight modification of the
one given in [W3]. We just mention the differences.

In the first stage, we replace the assumptions (4.1) and (4.2) by the
stronger ones

K 1 d «—d, —2d
l+:(1—£+;)<;+_%“#—- .1)
and .
Kk k=—d, — K
t+l<v<(d+l—i+#)/(n+l—i) 62)

We apply Proposition 2.1 of [W1] with U and r defined by

. U"-H—sll s c‘—u_Ad+1—:l3S—dx-“a+l (log S)-d.,
an
r = S(U[c,A)'2.

This choice is done in such a way that
Dyr* < U (with D, = A/S?)
= Ut < "Dy DDA, \
while the assumption (5.1) implies
A L o g
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We construct an auxiliary function using the method of [W1] §2. The
main two differences with the proof of [W1] Prop. 2.4 are the following
ones:

1. The values of the parameters U and r are different.

2. We replace Q by K; hence, instead of using Liouville’s inequality
(“deuxidme pas” in [W1] p. 641], we use Philippon’s criterion ([P1]; see
also (W3] §2).

This yields the conclusion of theorem 4.3 under the assumptions (5.1)
and (5.2).

The last stage is to use the so-called Iandau-Philippon’s trick: assum-
ing only (4.1) and (4.2), we choose an integer k > 1 large enough such
that

LW
l+t(l—§;+;k)<ﬁ-r nu#

and
1 «,«—d,— 2 1 «
d g Rl o R M ecks: B s
t+1<v<:(d+k 2+ e )/(n+,c 2).

and we apply the result we just proved to Y, G¥, with n, «, dy, dy, d,, d
replaced by kn, k, kd,, kdy, kd,, kd, while t, p#, v are unchanged
(compare with [W3] lemma 5.3). It is convenient here to introduce the
following notation:

DEFINITION. Let G = G x G& x G, be an algebraic group of dimension
d = d, + dy + d, as before, and I' = Zy, +...+ Zym be a finitely
generated subgroup of G(K). For each integer §=> 1, we define
w# (I'(S), G) as the minimum of the real numbers A > 0 such that there
exists a multihomogeneous polynomial of multidegrees at most (Do,
D,, D,), with
Dylog S = D,S = D,§* = A\
which vanishes on I'(S), but not on all G.

LEMMA 5.3. For each integerk > 1,
o# (T%(S), G¥) = a# (T(S), G).
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We conclude the proof of theorem 4.3 by using lemma 5.3 for I and G.

6. Proof of Theorem 3.1. The difference now with the proof of [W 3]
is that we replace the zero estimate of Masser-Wiistholz (see [M-W 2]
Chap. 1, and [W 3] §6) by a refinement due to Philippon [P 2].

DerFINITION.  Let G = G2 x G2 x G, be an algebraic group of dimen-
siond = d, + d, + d, over a subfield K of C, and let I' be a finitely
generated subgroup of G(K). We define

w# (T, G) = ﬂ:'iﬂ A+ + 2r)r,
where H runs over the algebraic subgroups of G defined over K, with
H # G, r = dim\G/H, and r,, r, are the largest integers such that -
G/H=G2x G} x G,

and where r, = r —ry —r;, and A = rankz I'/TN H.

A corollary of Philippon’s result in [P 2] is:
#
o#(1(8), 6) > es** T D,

where ¢ does not depend on S.

More precisely, under the hypotheses of theorem 4.3 there exists an
algebraic subgroup H of G, with G/H = G2 x G2 X G', dim G’ = r,,
r=ry,+r, + r, say, where H is defined by equation of multidegrees at
most (Do, Dy, ¢oD,), and there exist elemets A%),. .., AU-Y of

1S) ={(hy,...., ) €EZm | by |< S, 1< j<m}
which are Z-linearly independent, with

0<A<L1I<r<d 3+ r+ 2r)lr < p#,
such that, if K@ = (4{",..., &%), then

m - -~
Y Py e HE),  (1<s<I=N).
j= \
Now, for the proof of the two first inequalities in theorem 3.1, we use

what we just proved for G, = E9, where E is the elliptic curve associa-
ted with @, and d, =0 when we work with #,, while d, = 1 for #,.
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Next we follow the proof given in [W 3] §13: one uses a refined version
of Kolchin’s theorem [M-W 2] (Chap. III) in order to describe expli-
citely the algebraic subgroups of G = G&* X Ga X E%. The assumption
(2.4), together with [W 3] lemma 13.10, enables one to write

H=HyXH, X ﬁp
where H, is an algebraic subgroup of E4 . Finally, one uses [W 3]
lemma 13.9 (in the simplest case n = 1) to get a contradiction with
assumption (2.1), (2.2) and (2.3).

7. Further results.

(a) Using the arguments of [W 1] and [W 3], it is not difficult to
extend theorem 3.1 to n-variables.- One takes x;, y;, w in C", one
replaces the products like x,; by the usual scalar product in C, and the
ranks like m = rankz Y by the Dirichlet exponent (Y, Cn).

(b) Similar results can be proved in the p-adic case too.

(c) As mentioned earlier, we proved the lower bounds for , and 1,
only, because the results for #, and ¢, involve only very small improve-
ments. However, there is one circumstance where the use of derivatives
yields strong results, namely the situation of theorems of Lindemann-
Weierstrass type. Chudnovsky was the first to notice that Gel'fond’s
method can be used to prove for instance the algebraic independence of
en and e, or of P(x,) and P(a,) in the CM case (where a,, a, are alge-
braic number which are linearly independent over Z or O respectively).
A survey of recent works in this direction is given in [P 3].

(d) Itseems reasonable to expect that, in the situation of §4, the
lower bound
14t 3> (du# (T, G) + k—dy—2d))np# (T, G)
holds, without further assumptions. This would yield
14 ¢ > du(¥, CY(nu(Y, C°) + dy + 2dy — x).

The next step would be to replace (dy, dy, d;) by (da, dm, g) When G is
an extension of an abelian variety of dimension g by Gie x Gom.
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