CHAPITRE 2

La méthode de Schneider

§2.1 <u>Une première démonstration du théorème de Gel'fond Schneider sur la transcendance de</u> a b

La première démonstration de transcendance que nous allons étudier est une version simplifiée de celle qui permit, en 1934, à Schneider de résoudre le septième des problèmes posés par Hilbert au congrès de Paris de 1900. Nous étudierons, dans le chapitre suivant, la solution de Gel'fond.

Théorème 2.1.1. Soient $\ell \neq 0$ et b $\ell \neq 0$ deux nombres complexes. L'un au moins des trois nombres

$$a = e^{\ell}$$
, b, $a^b = e^{b\ell}$

est transcendant.

On peut énoncer ce résultat sous la forme équivalente suivante :

(2.1.2) <u>Si</u> ℓ_1, ℓ_2 <u>sont deux logarithmes de nombres algébriques, et si</u> ℓ_1, ℓ_2 <u>sont</u> <u>Q-linéairement indépendants, alors le nombre</u>

$$\frac{\ell_2}{\ell_1}$$

est transcendant (ce qui revient à dire que ℓ_1, ℓ_2 sont $\bar{\mathbf{Q}}$ -linéairement indépendants).

On déduit de 2.1.1 la transcendance de e^{π} (choisir $\ell = i\pi$, b = -i).

Pour démontrer le théorème 2.1.1, nous suivons une méthode que Lang a utilisée [Lang, T., chap.II] pour démontrer un autre résultat de transcendance sur la fonction exponentielle (2.2.3).

La démonstration s'effectue par l'absurde : on suppose que les trois nombres complexes

$$b$$
 , e^{ℓ} , $e^{b\ell}$

sont algébriques, avec $\ell \neq 0$ et b irrationnel. On remarque que les deux fonctions

sont algébriquement indépendantes (grâce à la condition $\ell \neq 0$ et à (1.4.1)), et prennent des valeurs dans le corps

$$K = \mathbf{0}(b \cdot e^{l} \cdot e^{bl})$$

pour z = i + jb, $(i,j) \in \mathbb{Z} \times \mathbb{Z}$.

Soit $\delta = [K:Q]$, et soit d un dénominateur commun des trois nombres

On considère un nombre entier N suffisamment grand (c'est-à-dire minoré par un nombre fini d'inégalités que l'on va écrire). On pourra supposer que $N^{\frac{1}{2}}$ est entier.

Montrons tout d'abord qu'il existe un polynôme non nul

$$P_N \in \mathbf{Z}[X_1, X_2]$$
,

de degré inférieur à N^{3/2} par rapport à X₁, de degré inférieur à 26N^{1/2} par rapport à X₂, et de taille inférieure ou égale à 2N^{3/2}.LogN, tel que la fonction

$$f_N(z) = P_N(z, e^{\ell z})$$

<u>vérifie</u>

$$F_{N}(i+jb) = 0$$
 pour $i=1,...,N$ et $j=1,...,N$.

Pour obtenir ce résultat, on écrit le polynôme inconnu P_N sous la forme

$$\mathbf{E}_{\mathbf{N}}(\mathbf{X}_{1},\mathbf{X}_{2}) = \sum_{\lambda=0}^{3/2-1} \sum_{\mu=0}^{2\delta\mathbf{N}^{1/2}-1} \mathbf{p}_{\lambda,\mu}(\mathbf{N}) \mathbf{X}_{1}^{\lambda} \mathbf{X}_{2}^{\mu} ,$$

avec $p_{\lambda,\mu}(N) \in \mathbf{Z}$, et on considère le système d'équations en $p_{\lambda,\mu}(N)$:

$$\mathtt{d}^{\left(4\delta+1\right)\mathtt{N}^{3/2}}.\mathtt{F}_{\mathtt{N}}(\mathtt{i}+\mathtt{j}\mathtt{b}) = \mathtt{0} \quad \text{,} \quad \left(\mathtt{1} \leqslant \mathtt{i} \leqslant \mathtt{N} \,,\, \mathtt{1} \leqslant \mathtt{j} \leqslant \mathtt{N}\right) \,,$$

c'est-à-dire

$$\sum_{\lambda=0}^{N^{3/2}-1} \sum_{\mu=0}^{2\delta N^{1/2}-1} p_{\lambda,\mu}(N) (di+djb)^{\lambda} (de^{\ell})^{i\mu} (de^{b\ell})^{j\mu} d^{(4\delta+1)N^{3/2}-\lambda-i\mu-j\mu} = 0,$$

$$(1 \le i \le N, 1 \le j \le N).$$

On obtient ainsi un système de N^2 équations à $2\delta N^2$ inconnues, à coefficients dans K entiers sur Z; ces coefficients ont une taille majorée par

$$N^{3/2} \log N + N^{3/2} ((8\delta+2)\log d + \log(1+|\overline{b}|) + 2\delta \log|e^{\ell+\overline{b}\ell}|) \leqslant \frac{3}{2} N^{3/2} \log N$$
 grâce à (1.2.5).

Le lemme 1.3.1 de Siegel permet de trouver des nombres entiers rationnels

$$p_{\lambda,\mu}(N)$$
, $(0 \le \lambda \le N^{3/2}-1, 0 \le \mu \le 2\delta N^{1/2}-1)$,

non tous nuls, vérifiant

(2.1.3)
$$\log \max_{\lambda,\mu} |p_{\lambda,\mu}(N)| \le 2 N^{3/2} \log N$$
,

(remarquer que l'exposant $\frac{m\delta}{n-m\delta}$ du lemme 1.3.1 est ici égal à 1), et tels que la fonction F_N vérifie

$$F_N(i+jb) = 0$$
, $(1 \le i \le N, 1 \le j \le N)$.

Les conditions $P_N \neq 0$ et $\ell \neq 0$ montrent que la fonction F_N n'est pas identiquement nulle ; or F_N est une fonction entière, d'ordre inférieur ou égal à 1, puisque

(2.1.4) $\log |F_N|_R \leqslant 2\delta N^{1/2} |\ell|_R + N^{3/2} \log R + 2N^{3/2} \log N + \log(2\delta N^2) \ll R$ pour $R \to +\infty$. Comme nous l'avons vu en (1.5.4), ceci entraîne que l'un des nombres

$$F_{N}(k_{1}+k_{2}b)$$
 , $(k_{1},k_{2}) \in \mathbf{Z} \times \mathbf{Z}$, $k_{1} \geqslant 1$

est non nul (on utilise ici l'hypothèse b & Q). Par conséquent, <u>il existe un entier</u>

M > N <u>tel que</u>

(2.1.5)
$$F_N(i+jb) = 0$$
 pour 1 $\leqslant i \leqslant M$, 1 $\leqslant j \leqslant M$,

et

(2.1.6) Il existe (
$$i_0, j_0$$
) $\in \mathbf{Z} \times \mathbf{Z}$, 1 $\leqslant i_0 \leqslant M+1$, 1 $\leqslant j_0 \leqslant M+1$, avec

$$\gamma_N = F_N(i_O + j_O b) \neq 0$$
.

La suite de la démonstration consiste à majorer $\gamma_N = F_N(i_0 + j_0 b)$, puis à le minorer, ce qui apportera la contradiction attendue.

Vérifions, pour commencer, la majoration

(2.1.7)
$$\log |\gamma_N| \leqslant -\frac{1}{5} \, \, \text{M}^2 \log M \ .$$

On remarque pour cela que la fonction

$$F_{N}(z) \cdot \prod_{i=1}^{M} \prod_{j=1}^{M} (z-i-jb)^{-1}$$

est entière, à cause de (2.1.5). On lui applique le principe du maximum sur le disque $|z| \le R = (1+|b|)M^{5/4}$.

On obtient

$$|\gamma_{N}| = |F_{N}(i_{o}+j_{o}b)| \leq |F_{N}|_{R^{\bullet}} \sup_{|z|=R} \prod_{i=1}^{M} \prod_{j=1}^{M} \frac{(i_{o}-i)+(j_{o}-j)b}{z-i-jb} .$$

On majore, pour |z| = R,

$$\frac{i_0-i_+(j_0-j)b}{z-i_-jb}$$

par

$$\frac{(M+2)(1+|b|)}{R-M(1+|b|)} \le \frac{M+2}{M^{5}/4-M} \le 2 M^{-1/4}$$

pour N (donc M) suffisamment grand.

D'autre part, grâce à (2.1.4), on a

$$\log |F_N|_R \le (2\delta |\ell| + 1)RN^{1/2} \le (2\delta |\ell| + 1)(1 + |b|)M^{7/4} \le M^2$$

dès que N est suffisamment grand.

On obtient ainsi

$$\log |\gamma_N| \leqslant 2 \text{M}^2 - \frac{1}{4} \text{ M}^2 \log \text{M} \leqslant -\frac{1}{5} \text{ M}^2 \log \text{M} \quad \text{,} \quad$$

ce qui démontre (2.1.7).

Pour minorer γ_{N} , il suffit de majorer la taille $\,\text{s}(\gamma_{\text{N}})$, puis d'utiliser la relation (1.2.3)

-2
$$\delta\,\text{s}(\gamma_\text{N})\,\, \leqslant\,\, \text{tog}\, |\gamma_\text{N}|$$
 ,

puisque γ_{N} f K avec [K:Q] = δ , et $\gamma_{\text{N}} \neq \text{O}$ d'après (2.1.6).

Montrons que l'on a

(2.1.8)
$$s(\gamma_N) \leqslant 4 M^{3/2} \log M$$
,

done

$$\log |\gamma_N| \geqslant -86 \text{ M}^{3/2} \log M$$
 ,

ce qui contredira (2.1.7).

Le calcul de la taille est très simple, grâce à (1.2.5) : on constate que

$$d^{N^{3/2}+4\delta N^{\frac{1}{2}}(M+1)}$$

est un dénominateur de $~\gamma_{\text{N}}$, et que

$$|\overline{\gamma_{N}}| \leq N^{2N^{3/2}} \cdot M^{2N^{3/2}} \leq M^{4M^{3/2}}$$
,

ce qui démontre (2.1.8), et termine donc la démonstration du théorème 2.1.1.

On peut maintenant expliquer les raisons du choix des deux fonctions $R_1(N) = N^{3/2} \quad \text{et} \quad R_2(N) = N^{1/2} \quad \text{exprimant le degré du polynôme} \quad P_N \quad \text{par rapport à}$ $X_1 \quad \text{et} \quad X_2 \quad \text{respectivement.}$

Pour appliquer le lemme de Siegel, on a utilisé l'inégalité

$$R_1(N)R_2(N) \ge 2 \delta N^2$$
.

La majoration de la taille de γ_{N} fait intervenir uniquement la quantité

$$R_1(N).Log M + R_2(N).M$$
.

Si les deux fonctions R, et R, sont monotones croissantes, on aura

$$s(\gamma_N) \ll \max\{R_1(M)\log M, R_2(M).M\}$$
.

Il est donc naturel de choisir R, R, de telle manière que les deux quantités

$$R_1(N)$$
Log N et $R_2(N)$ N

aient le même ordre de grandeur. Le choix optimum (compte tenu de l'inégalité

$$R_1(N)R_2(N) > 2 \delta N^2$$

serait

$$R_1(N) = [(2\delta)^{1/2} \cdot N^{3/2} \cdot (\log N)^{-1/2}] + 1$$
,

et

$$R_2(N) = [(2\delta)^{1/2} \cdot N^{1/2} \cdot (\log N)^{1/2}] + 1$$
,

où [] désigne la partie entière.

Le choix que nous avons fait n'est pas essentiellement différent, et il fournit des fonctions plus simples.

Une fois choisies R₁ et R₂, il reste à donner une valeur au paramètre R, rayon du disque sur lequel on utilise le principe du maximum pour majorer γ_N . On va choisir R beaucoup plus grand que M et on majore

$$\sup_{\substack{|z|=R}} \prod_{i=1}^{M} \prod_{\substack{j=1\\j=1}}^{M} \left| \frac{(i_o-i)_+(j_o-j)_b}{z_-i_-jb} \right|$$

par

$$-M^2 \log \frac{R}{M} + M^2 \log 2(1+|b|)$$
.

Si on vérifie l'inégalité

$$\text{M}^2 \log 2(1+\left|b\right|) + \left|\log\left|F_N\right|_R \leqslant \frac{1}{5} \text{M}^2 \log \frac{R}{M} \text{,}$$

on obtiendra

$$\log |\gamma_{\rm N}| \leqslant -\frac{4}{5} \, {\rm M}^2 \log \frac{{\rm R}}{{\rm M}}$$

(ce $\frac{4}{5}$ est évidemment sans importance).

Dans la majoration (2.1.4) de $\left. \text{Log} \right|_{R} \left|_{R} \right|_{R}$, le terme principal est

$$\frac{1}{2} \delta N^{2} | \ell | R .$$

Pour obtenir le résultat, il suffit que l'on choisisse $R \leqslant M^{3/2}$; un choix possible est celui que nous avons fait :

$$R = (1+|b|) M^{5/4}$$
.

Notons que le théorème 6.1.1 permettrait de majorer le nombre M de la démonstration précédente (qui est fonction de N) par

mais nous n'avions pas à utiliser cette majoration ici.

§2.2 Valeurs algébriques de fonctions entières

Quand on examine la démonstration précédente, on constate que l'on peut se contenter d'utiliser les seules propriétés suivantes.

Les deux fonctions $f_1(z)=z$ et $f_2(z)=e^{\ell z}$ (où $\ell\in \mathfrak{C}$, $\ell\neq 0$) sont entières, algébriquement indépendantes sur \mathfrak{C} , d'ordre inférieur ou égal à ρ_1 , ρ_2 respectivement (0 < ρ_1 < 1, et ρ_2 = 1). Elles prennent des valeurs dans le corps

$$K = Q(e^{\ell}, b, e^{b\ell})$$
,

(qui est un corps de nombres par hypothèse), pour tout point z de l'ensemble

$$S = \{i+jb ; (i,j) \in \mathbb{Z} \times \mathbb{Z}\};$$

plus précisément, si N est un entier, pour

$$z$$
 \in $S_{_{N}}$ = $\{\text{i+jb}$; 1 \langle i \langle N , 1 \langle j \langle N $\}$ \subset S ,

on a

$$s(f_{1}(z)) \leq Log N + 2s(b) \ll N^{\rho_{1}}$$
,

еt

$$s(f_{o}(z)) \leq N(s(e^{\ell})+s(e^{b\ell})) \ll N$$

pour. $N \to +\infty$.

Enfin, on a

$$\max_{\mathbf{z} \in S_{N}} |\mathbf{z}| \leqslant (1+|\mathbf{b}|) \mathbf{N} << \mathbf{N} ,$$

et

$$\operatorname{Card} S_{m} = N^{2}$$

En formalisant cette démonstration, on obtient un résultat général.

(grâce à l'irrationnalité de b).

Théorème 2.2.1. Soit K un corps de nombres ; soient f₁,...,f_d des fonctions entières, algébriquement indépendantes sur Q, d'ordre inférieur ou égal à p₁,...,p_d

respectivement, avec d > 2 . Soit ℓ un nombre réel positif, et soit (s_N) une suite de sous-ensembles finis de $\mathfrak C$, tels que

$$\begin{split} & \text{f}_{\mathbf{i}}(S_{N}) \subset K \text{ , } \underline{\text{ et}} & \text{ max } s(\text{f}_{\mathbf{i}}(z)) << \text{N}^{\text{p}_{\mathbf{i}}} \text{ , } 1 \leqslant \text{i} \leqslant \text{d} \text{ ;} \\ & z \in S_{N} \end{split} \\ & \text{card } S_{N} >> \text{N}^{\text{l}} \text{ , } \underline{\text{ et}} & \text{max } \left| z \right| << \text{N} \text{ , } \underline{\text{pour }} \text{N} \rightarrow +\infty \text{ .} \\ & z \in S_{N} \end{split}$$

Alors on a

(2.2.2)
$$\ell \leq \frac{\rho_1 + \dots + \rho_d}{d-1}$$
.

On obtient évidemment comme corollaire le théorème 2.1.1 de Gel'fond Schneider; d'autre part on déduit du théorème 2.2.1 le

Corollaire 2.2.3. Soient a₁,a₂ (resp. b₁,b₂,b₃) des nombres complexes

Q-linéairement indépendants. Alors l'un au moins des six nombres

$$\exp(a_{i}b_{j})$$
 , $(i = 1,2; j = 1,2,3)$,

est transcendant.

Pour démontrer le corollaire 2.2.3, on peut

- soit utiliser les deux fonctions

$$f_1(z) = e^{a_1^z}$$
 , $f_2(z) = e^{a_2^z}$,

avec

$$\mathbf{S_{N}} \,=\, \left\{\mathbf{ib_{1}}\!+\!\mathbf{jb_{2}}\!+\!\mathbf{kb_{3}} \right. \,,\,\, 1\,\,\leqslant\,\, \mathbf{i}\,\,\leqslant\,\, \mathbb{N} \,\,\,,\,\, 1\,\,\leqslant\,\, \mathbf{k}\,\,\leqslant\,\, \mathbb{N} \,\,\right\}$$

еt

$$d = 2$$
 , $l = 3$, $\rho_1 = \rho_2 = 1$;

- soit utiliser les trois fonctions

$$f_1(z) = e^{b_1^z}$$
, $f_2(z) = e^{b_2^z}$, $f_3(z) = e^{b_3^z}$,

avec

$$S_{N} = \{ia_{1} + ja_{2}, 1 \leqslant i \leqslant N, 1 \leqslant j \leqslant N\}$$

еt

$$d=3$$
 , $\ell=2$, $\rho_1=\rho_2=\rho_3=1$.

Le corollaire 2.2.3 peut s'énoncer sous la forme équivalente suivante :

(2.2.4) si ℓ_1 , ℓ_2 , ℓ_3 , ℓ_1' , ℓ_2' , ℓ_3' sont des logarithmes non nuls de nombres algébriques, et si

$$\frac{\ell_1}{\ell_1^*} = \frac{\ell_2}{\ell_2^*} = \frac{\ell_3}{\ell_2^*} \not\in \mathbb{Q} ,$$

alors ℓ_1 , ℓ_2 , ℓ_3 sont Q-linéairement dépendants.

Démonstration du théorème 2.2.1

Montrons déjà qu'il suffit d'établir le résultat dans le cas

(2.2.5)
$$\max_{1 \leq i \leq d} \rho_i < \frac{\rho_1 + \dots + \rho_d + \ell}{d}.$$

Supposons par exemple que l'on ait

$$\rho_{\rm d} > \frac{\rho_1 + \dots + \rho_{\rm d} + \ell}{\rm d}$$
 ,

c'est-à-dire

$$\rho_{\rm d} > \frac{\rho_1 + \cdots + \rho_{\rm d-1} + \ell}{{\rm d-1}}$$
.

Si la conclusion du théorème était fausse, on aurait

$$\ell > \frac{\rho_1 + \cdots + \rho_d}{d-1} ,$$

done

$$\ell > \frac{\rho_1 + \cdots + \rho_{d-1}}{d-1} + \frac{\rho_1 + \cdots + \rho_{d-1} + \ell}{(d-1)^2}$$
,

d'où

$$[(d-1)^2-1]\ell > d(\rho_1 + \dots + \rho_{d-1})$$
,

ce qui entraîne d > 2 et

$$\ell > \frac{\rho_1^{+\cdots+\rho_{d-1}}}{d-2}$$
.

Ainsi il suffit que l'on démontre le théorème pour les fonctions f₁,...,f_{d-1}. Par récurrence, on se ramène au cas où l'inégalité (2.2.5) est vérifiée.

On supposera aussi

$$(2.2.6) \max \rho_i < \ell ,$$

la conclusion du théorème étant immédiate dans le cas contraire (sous l'hypothèse

2.2.5). L'hypothèse

Card
$$S_N >> N^{\ell}$$
 pour $N \to +\infty$

montre qu'il existe un réel C > 0 tel que

pour tout N suffisamment grand. Quitte à remplacer chaque S_N par $\bigcup_{k=1}^N T_k$, où T_k est un sous-ensemble convenable de S_k , on peut supposer

$$\boldsymbol{S}_{N} \subset \boldsymbol{S}_{N+1}^{}$$
 et $\text{CN}^{\boldsymbol\ell} \leqslant \text{Card } \boldsymbol{S}_{N}^{} \leqslant (\text{C+1}^{}) N^{\boldsymbol\ell}$.

Soit

$$\delta = [K : Q]$$
; on note

$$\rho = \frac{\rho_1 + \dots + \rho_d}{d} \quad ,$$

et on suppose

$$(2.2.7) \ell > \rho + \frac{\ell}{d}.$$

Soit N un entier; les majorations que nous écrirons seront vraies dès que N est suffisamment grand.

Pour commencer, montrons qu'il existe un polynôme non nul

$$P_{N} \in \mathbf{z}[X_{1}, \dots, X_{d}]$$
,

de degré inférieur ou égal à

(2.2.8)
$$R_{i} = R_{i}(N) = [(2\delta(C+1))^{\frac{1}{d}} N^{\frac{\ell}{d} - \rho_{i}}]$$

 $\underline{\text{par rapport } \underline{\text{a}}} \quad X_{\underline{\text{i}}} \quad (\text{1} \, \leqslant \, \text{i} \, \leqslant \, \text{d}) \text{ , } \underline{\text{et }} \underline{\text{de taille majorée par}}$

$$(2.2.9) t(P_N) \ll N^{\rho + \frac{\ell}{d}},$$

tel que la fonction

$$F_N = P_N(f_1, \dots, f_d)$$

<u>vérifie</u>

$$F_N(z) = 0$$
 pour tout $z \in S_N$.

Pour obtenir ce résultat, on résoud le système

$$\partial_1(z)^{R_1}...\partial_d(z)^{R_d} F_N(z) = 0$$
 pour $z \in S_N$,

où $\partial_{\dot{\bf 1}}(z)$ est le dénominateur de f $_{\dot{\bf 1}}(z)$ pour $z\in S_{\mathbb N}$, (1 \leqslant i \leqslant d). On obtient ainsi un système de

Card
$$S_{N} \leqslant (C+1)N^{\ell}$$

équations à

$$(R_1+1)...(R_d+1) > 2\delta(C+1)N^{\ell}$$

inconnues (les inconnues étant les coefficients de P_N); les coefficients de ce système d'équations sont :

On peut majorer la taille de ces coefficients (qui sont des entiers de K sur

z) par

$$\max_{z \in S_N} \sum_{i=1}^d R_i (\log \delta_i(z) + \log |\overline{f_i(z)}|) << \sum_{i=1}^d R_i N^{\rho_i} << N^{\rho + \frac{\ell}{d}}.$$

Le lemme 1.3.1 montre qu'il existe des entiers rationnels

$$P_{N}(\lambda_{1},\dots,\lambda_{d})$$
 , 0 \leqslant λ_{i} \leqslant R_{i} , 1 \leqslant i \leqslant d ,

non tous nuls, majorés par

$$\log \max_{\lambda_1, \dots, \lambda_d} | p_N(\lambda_1, \dots, \lambda_d) | \ll N^{\rho + \frac{\ell}{d}},$$

tels que la fonction

$$\mathbf{F}_{\mathbf{N}} = \sum_{\lambda_{\mathbf{d}}=0}^{\mathbf{R}_{\mathbf{1}}} \cdots \sum_{\lambda_{\mathbf{d}}=0}^{\mathbf{R}_{\mathbf{d}}} \mathbf{p}_{\mathbf{N}}(\lambda_{\mathbf{1}}, \dots, \lambda_{\mathbf{d}}) \mathbf{f}_{\mathbf{1}}^{\lambda_{\mathbf{1}}} \cdots \mathbf{f}_{\mathbf{d}}^{\lambda_{\mathbf{d}}}$$

vérifie

$$F_N(z) = 0$$
 pour tout $z \in S_N$.

La fonction F_N ainsi construite n'est pas identiquement nulle (car $P_N \neq 0$, et les fonctions f_1,\dots,f_d sont algébriquement indépendantes sur Q). C'est une fonction entière, d'ordre inférieur ou égal à $\max_{1\leqslant i\leqslant d} \rho_i$. Les relations (1.5.4) et (2.2.6) montrent que les nombres

$$F_{N}(z)$$
 , $(z \in \bigcup_{M \geqslant 0} S_{M})$,

ne sont pas tous nuls.

Soit M le plus grand entier tel que tous les nombres

$$F_{N}(z)$$
 , $(z \in S_{M} = \bigcup_{0 \le H \le M} S_{H})$

soient nuls. On a donc M > N , et il existe $z_0 \in S_{M+1}$ tel que

$$\gamma_{N} = F_{N}(z_{o}) \neq 0$$
 .

Vérifions maintenant la majoration

(2.2.10)
$$\log |\gamma_{N}| \leqslant -M^{\ell}.$$

Utilisons le principe du maximum, sur le disque

pour la fonction

On obtient

$$|\gamma_{N}| = |F_{N}(z_{o})| \leqslant |F_{N}|_{R^{\bullet}} \sup_{|z|=R} \prod_{t \in S_{M}} \left| \frac{z_{o}^{-t}}{z-t} \right|.$$

On majore $|\mathbf{F}_{\mathbf{N}}|_{\mathbf{R}}$ par

$$\begin{array}{c|c} \operatorname{Log} \left| \mathbb{F}_{N} \right|_{R} << \max_{1 \leqslant i, \leqslant d} n^{\rho + \frac{\ell}{d} - \rho_{i}} \cdot \mathbb{R}^{\rho_{i}} \\ << \mathbb{M}^{\ell}, \end{array}$$

grâce à l'hypothèse

$$(2.2.7) \rho + \frac{\ell}{d} < \ell ,$$

et on majore

par

$$\left(\frac{2M+1}{R-M}\right)^{\text{Card S}_M} \leqslant \left(\frac{3}{\log M}\right)^{C \cdot M^{\ell}}$$
.

Si N est suffisamment grand, on a

$$C M^{\ell} Log 3 + Log |F_N|_R \leqslant \frac{C}{2} M^{\ell} Log Log M$$
,

donc

$$\text{Log} \left| \gamma_N \right| \, \leqslant - \, \frac{C}{2} \, \, \text{M}^{\ell} \, \, \text{Log Log M} \, \, \leqslant - \, \, \text{M}^{\ell} \, \, \, \text{,}$$

ce qui démontre (2.2.10).

Majorons maintenant la taille de $~\gamma_{_{\rm N}}$.

On remarque que

$$\partial_1(z_0)^{R_1}...\partial_d(z_0)^{R_d}$$

est un dénominateur de γ_{N} , avec

$$\label{eq:log_dist} \text{Log} \ \vartheta_{\mathbf{i}}(\mathbf{z}_{_{\mathbf{0}}}) \ \Longleftrightarrow \ \mathtt{M}^{\rho_{\mathbf{i}}} \ , \ 1 \ \leqslant \ \mathtt{i} \ \leqslant \ \mathtt{d} \ .$$

D'autre part on a (soit directement, soit en utilisant 1.2.5):

$$|\bar{\gamma}_{N}| \leq (R_{1}+1)...(R_{d}+1)e^{t(P_{N})} \cdot \prod_{i=1}^{d} \max(1,|\bar{f}_{i}(z_{0})|^{R_{i}}),$$

done

$$\mathrm{s}(\gamma_{N}) << \sum_{i=1}^{d} \mathrm{R}_{i} \ \mathrm{M}^{\rho_{i}} << \mathrm{M}^{\frac{\rho+\tilde{\mathcal{L}}}{d}}.$$

Les inégalités (2.2.7), (2.2.10) et (2.2.11) montrent que la relation

$$-2[\mathtt{K}:\mathtt{Q}].\mathtt{s}(\gamma_{\mathtt{N}}) \leqslant \mathtt{Log}|\gamma_{\mathtt{N}}|$$

n'est pas vérifiée, bien que $\gamma_{\mathbb{N}}$ \in K soit non nul. Cette contradiction termine la démonstration.

Précisons comment ont été choisies les fonctions R_1, \dots, R_d . On a cherché à satisfaire l'inégalité

$$R_{\bullet} \dots R_{d} > 2\delta(C+1)N^{\ell}$$
,

en rendant la quantité

$$\sum_{i=1}^{d} R_{i} N^{\rho_{i}}$$

minimum. On a donc imposé

$$R_1 N^{\rho_1} = R_d N^{\rho_d}$$
,

ce qui donne immédiatement R_1, \dots, R_d .

§2.3 Références

La démonstration, par Schneider, du théorème sur la transcendance de a^b date du 28 mai 1934 [Schneider, 1934]. On la trouvera également exposée dans [Siegel, T chap.III §1]. La différence essentielle avec celle présentée ici [Waldschmidt, 1973b, chap.I] réside dans la construction d'un nombre $\gamma_N \neq 0$, que l'on devra ensuite majorer et minorer. Dans la démonstration originale de Schneider, ce nombre apparaît non pas comme une valeur de la fonction F_N , mais comme un déterminant dont on doit montrer qu'il est non nul (exercice 6.1.b).

Le théorème 2.2.1 est une généralisation d'un résultat de Lang [Lang, T., chap.II, §2, Th.2] et d'un résultat de Ramachandra [Ramachandra, 1967, Th.1]. Le résultat de Lang correspond à d=2, $\rho_1=\rho_2$; on ne peut pas en déduire le théorème 2.1.1 de Gel'fond Schneider. L'énoncé de Ramachandra contient l'hypothèse supplémentaire

$$\max_{1 \le i \le d} \rho_i \leqslant \frac{\rho_1 + \dots + \rho_d}{d-1};$$

de plus, les notations de Ramachandra sont beaucoup moins agréables que celles de Lang (que nous avons adoptées ici).

On peut étendre le théorème 2.2.1 aux valeurs de fonctions méromorphes dans **C** [Waldschmidt, 1972a]; il permet alors d'obtenir des résultats de transcendance de valeurs de fonctions elliptiques, et même, plus généralement, de majorer la dimension algébrique de sous-groupes à un paramètre de certaines variétés de groupe, en fonction du nombre de points **Q**-linéairement indépendants que ces sous-groupes contiennent [Lang, T, chap.II §3 et 4] et [Waldschmidt, 1973a].

La première démonstration du corollaire 2.2.3 a été publiée par Lang, bien que le résultat semble avoir été connu avant par Siegel. Ce résultat ne paraît pas le meilleur possible, Lang conjecture que, si a, a (resp. b, , b) sont des nombres complexes &-linéairement indépendants, alors l'un au moins des quatre nombres

$$e^{a_j b_j}$$
, $(i=1,2; j=1,2)$,

est transcendant. [Lang, T., chap.II §1].

Avec les notations 2.2.4, ceci revient à montrer que si des logarithmes non nuls ℓ_1 , ℓ_2 , ℓ_1^1 , ℓ_2^2 de nombres algébriques vérifient

$$\frac{\ell_1}{\ell_1^*} = \frac{\ell_2}{\ell_2^*} \not\in \mathbb{Q} ,$$

alors $\frac{\ell_1}{\ell_2} \in \mathbb{Q}$ [Schneider, T., problème 1, chap.V].

Pour obtenir cet énoncé, il suffirait que l'on puisse remplacer, dans la conclusion (2.2.2) du théorème 2.2.1, l'inégalité large par une inégalité stricte.

Dans le cas des fonctions

$$z, 2^{z}, 3^{z}, 5^{z}, \dots,$$

on a l=1, et cette inégalité stricte serait la meilleure possible.

Puisque l'inégalité (2.2.2) est large (\leqslant) , la conclusion du théorème 2.2.1 resterait inchangée si on remplaçait la définition (1.5.1) de l'ordre d'une fonction entière F par celle, plus classique :

(2.3.1)
$$\rho = \lim_{R \to +\infty} \sup_{-\infty} \frac{\operatorname{LogLog}[F]_R}{\operatorname{Log} R}.$$

EXERCICES

Exercice 2.1.a. On sait que le groupe additif du corps on R des nombres réels algébriques est isomorphe au groupe multiplicatif on R des nombres algébriques réels positifs. Montrer qu'aucun de ces isomorphismes n'est localement croissant.

[Dieudonné, p. 164].

Exercice 2.1.b. Soit $P \in \mathbf{Z}[X,Y]$ un polynôme irréductible, tel que

$$P_{X}^{\bullet} \neq 0$$
; $P_{Y}^{\bullet} \neq 0$; $P(0,0) \neq 0$; $P(1,1) \neq 0$.

Soit a un nombre algébrique irrationnel.

Montrer que l'équation en z :

$$P(z,z^{\alpha}) = 0$$

n'a pas de racines dans .

[Fel'dman, 1964].

Exercice 2.1.c. On note $M_n(K)$ l'anneau des matrices carrées $n \times n$ à coefficients dans un corps K, et $GL_n(K)$ le groupe linéaire des matrices carrées $n \times n$ inversibles.

Soit $M \in M_n(C)$ une matrice qui n'est pas nilpotente, et soient α_1 , α_2 deux nombres algébriques, tels que les deux matrices

$$exp(M\alpha_1)$$
 , $exp(M\alpha_2)$

appartiement à $GL_n(\overline{\mathbf{Q}})$.

Montrer que α_1 , α_2 sont Q-linéairement dépendants. (Indications : la matrice M possède au moins une valeur propre non nulle λ ; la fonction $t\mapsto \exp(\lambda t)$ prend des valeurs dans $\overline{\mathbb{Q}}$ pour $t=\alpha_1$ et $t=\alpha_2$. Le résultat demandé est donc équivalent au théorème 2.1.1 de Gel'fond Schneider). [Waldschmidt, 1973, a].

Exercice 2.2.a. Soit $M \in M_n(\mathfrak{C})$; on note d la dimension du sous- \mathfrak{C} -espace vectoriel de \mathfrak{C} engendré par les valeurs propres de M. Soient t_1, \ldots, t_m des nombres complexes \mathfrak{C} -linéairement indépendants tels que les matrices

$$exp(Mt_j)$$
 , $(1 \leqslant j \leqslant m)$

appartiemment toutes à $\operatorname{GL}_n(\overline{\mathbb{Q}})$.

1) Montrer que l'on a

$$md \leqslant m+d$$
 ,

c'est-à-dire $m > 3 \implies d \leqslant 1$ et $m > 2 \implies d \leqslant 2$.

(Soit u, ..., u une base du sous-Z-module de C engendré par les valeurs propres de M; l'hypothèse entraîne

$$\exp(u_{\underline{1}}t_{\underline{j}}) \in \overline{\textbf{Q}} \ \text{pour} \ 1 \leqslant \underline{j} \leqslant \underline{m} \ , \ 1 \leqslant \underline{i} \leqslant \underline{d} \ ;$$

Le résultat demandé est donc équivalent à 2.2.3).

2) Montrer que, si la matrice M n'est pas diagonalisable, ni nilpotente, on a m = 1.

(c'est le théorème de Gel'fond Schneider).

Exercise 2.2.b. Si f_1, \dots, f_d sont des fonctions méromorphes, on note

$$\delta(f_1, \dots, f_d)$$

le nombre maximum de nombres complexes W , Q-linéairement indépendants, distincts des pôles de f_,...,f_d , et tels que

$$f_{i}(W) \in \overline{Q}$$
 pour $1 \leqslant i \leqslant d$.

Avec cette notation, le théorème 2.1.1 s'énonce

$$\delta(z \cdot e^{\ell z}) \leq 1$$

pour $\ell \in \mathbb{C}$, $\ell \neq 0$, et (2.2.3) peut s'écrire

$$\delta(e^z \cdot e^{bz}) \leqslant 2$$
 si $b \in \mathbb{C} \cdot b \notin \mathbb{Q}$.

ou encore

$$\delta(e^{b_1 z}, e^{b_2 z}, e^{b_3 z}) \le 1$$

si b₁,b₂,b₃ sont trois nombres complexes **Q-**linéairement indépendants.

On désigne par f et g^* deux fonctions elliptiques de Weierstrass, algébriquement indépendantes, dont les invariants modulaires j et j^* sont algébriques, et par ζ la fonction zêta de Weierstrass associée à f. Montrer que l'on a

$$\delta(z, \mathbf{f}(z)) \leqslant 2$$
;

$$\delta(e^{z}, \mathbf{r}(z)) \leqslant 3$$
;

$$\delta(\mathbf{Y}(z), \mathbf{Y}^{*}(z)) \leqslant 4$$
;

$$\delta(\pmb{\gamma}(z)\;\text{, bz}\,+\,\zeta(z))\,\,\leqslant\,\,4\;$$
 pour tout $\,b\,\,\in\,\,\mathbb{C}$.

[Ramachandra, 1967] et [Waldschmidt, 1972a, (5.1)].

Exercice 2.2.c. Soit f une fonction entière transcendante, d'ordre inférieur ou égal à ρ ; soient μ un nombre réel positif, et $(\frac{p_k}{q_k})$ une suite de nombres rationnels, deux à deux distincts, tels que

$$\lim_{k \to +\infty} \sup_{\mathbf{k}} \frac{1}{\log k} \max \left[\log |\mathbf{p}_{\mathbf{k}}|, \log |\mathbf{q}_{\mathbf{k}}| \right] \leqslant \mu.$$

On suppose que

$$f(\frac{p_k}{q_k}) \in \mathbf{Z}$$
 pour tout $k \geqslant 1$.

En déduire

ρμ > 1 .

(Supposer $\rho\mu$ < 1; soit ϵ > 0 tel que

$$(\rho+\epsilon)(\mu+\epsilon)<1$$
 .

D'après l'hypothèse, pour k suffisamment grand, on a

$$\left|\mathbf{p}_{\mathbf{k}}\right|\leqslant\mathbf{k}^{\mu+\epsilon}$$
 , et $\left|\mathbf{q}_{\mathbf{k}}\right|\leqslant\mathbf{k}^{\mu+\epsilon}$.

Si N est un entier positif, considérer

$$S_N = \{\frac{p_1}{q_1}, \dots, \frac{p_k}{q_k}\}$$
 , où $k = [N^{\frac{1}{\mu + \epsilon}}]$,

et appliquer le théorème 2.2.1, avec

$$f_1(z) = z$$
; $f_2(z) = f(z)$; $d = 2$; $\rho_1 = \epsilon$; $\rho_2 = \rho$,

еt

$$\ell = \frac{1}{u+\varepsilon}$$
).

Exercice 2.2.d. Sous les hypothèses du théorème 2.2.1, on suppose que les fonctions f_1, \ldots, f_d ont une période $w \neq 0$ commune. Etablir l'inégalité

$$\ell \leqslant \frac{\rho_1 + \dots + \rho_d^{-1}}{d-1} .$$

(Quitte à remplacer chaque $S_{\widetilde{N}}$ par un sous-ensemble de $\mathfrak C$ le contenant, on peut supposer

$$\mathbf{z} \, \in \, \mathbf{S}_{N} \, \Longrightarrow \, \, \mathbf{z} + \mathbf{j} \mathbf{w} \, \in \, \mathbf{S}_{N} \, \, , \quad \text{pour tout } \, \mathbf{j} \, \in \, \mathbf{Z} \, \, , \, \, - \! N \, \, \leqslant \, \mathbf{j} \, \leqslant \, N \, \, .$$

Construire une suite (T_N) de sous-ensembles de $\mathfrak C$, vérifiant

$$\begin{split} \mathbf{T}_{N} &\subset \mathbf{S}_{N} & \text{ pour tout } \mathbf{N} \geqslant \mathbf{0} \text{ ;} \\ & \text{Card } \mathbf{T}_{N} \leqslant \frac{1}{N} \text{ Card } \mathbf{S}_{N} \text{ ;} \end{split}$$

pour tout z \in S , il existe j \in Z , -N \leqslant j \leqslant N , tel que z + jw \in T .

Reprendre la démonstration du théorème 2.2.1; la fonction auxiliaire

 $\mathbf{F}_{\mathbf{N}} = \mathbf{P}_{\mathbf{N}}(\mathbf{f}_{1}, \dots, \mathbf{f}_{d})$ étant périodique, de période \mathbf{w} , il suffit qu'elle vérifie

$$F_N(z) = 0$$
 pour tout $z \in T_N$

pour que l'on ait

$$F_{N}(z) = 0$$
 pour tout $z \in S_{N}$).

[Ramachandra, 1967, Th.1] et [Waldschmidt, 1972 a].

Exercice 2.2.e. Les hypothèses sont celles du théorème 2.2.1, mais on suppose seulement que les fonctions f₁,...,f_d sont méromorphes dans C. Montrer que, pour que l'inégalité (2.2.2) soit encore valide, il suffit que l'on ajoute l'hypothèse suivante.

Pour tout $i=1,\ldots,d$, il existe une fonction entière h_i , d'ordre inférieur ou égal à ρ_i , telle que la fonction $h_i f_i$ soit entière (et d'ordre inférieur ou égal à ρ_i), et telle que

$$h_{i}(z) \neq 0$$
 pour tout $z \in \bigcup_{N \geqslant 0} S_{N}$,

et

$$\max_{z \in S_N} \text{Log} \Big| \frac{1}{h_i(z)} \Big| \ << N^{\rho_i} \quad \text{pour} \quad N \to +\infty \ .$$

(La seule modification à apporter à la démonstration du théorème 2.2.1 réside dans la vérification de 2.2.10.

On utilisera le principe du maximum, sur le disque $\left|z\right|\leqslant R=M$ Log M , pour la fonction entière

$$F_{N}(z) \cdot \prod_{i=1}^{d} h_{i}(z)^{R_{i}} \cdot \prod_{t \in S_{M}} (z-t)^{-1}$$
.

(Voir [Lang, T., chap.II, Th.2] pour le cas particulier

$$\rho_1 = \rho_2$$
, $d = 2$;

comparez avec (4.5.1)).

Exercice 2.2.f. Soient f_1, \ldots, f_d des fonctions entières, algébriquement indépendantes sur \mathfrak{Q} . Soit $(z_n)_{n\geqslant 1}$ une suite de nombres complexes, deux à deux distincts, tels que

$$\lim_{\substack{R \to +\infty}} \frac{\operatorname{Card}\{n \geqslant 1 \; ; \; |z_n| \leqslant \frac{R}{2}\}}{\max_{\substack{1 \leqslant i \leqslant d}} \operatorname{Log}|f_i|_R} = +\infty \; .$$

On suppose que pour tout $i=1,\ldots,d$ et tout $n\geqslant 1$, le nombre $f_{\dot{1}}(z_n)$ est algébrique. On note

$$\boldsymbol{\delta}_n = \left[\mathbf{Q}(\mathbf{f}_1(\mathbf{z}_n), \dots, \mathbf{f}_d(\mathbf{z}_n)) : \mathbf{Q} \right] \text{ pour } n \geqslant 1.$$

Soient $\mathbf{R_1}, \dots, \mathbf{R_d}$ des applications de N dans N , telles que

$$R_1(n)...R_d(n) > 2(\delta_1 + ... + \delta_n)$$
 pour tout $n > 1$.

Montrer que, pour tout n suffisamment grand, il existe un entier m \geqslant n+1 tel que, pour tout R > 0 , on ait

$$(\text{m-1}) \log \frac{R}{3 \cdot \max_{\textbf{j} \in \mathcal{A}_{h}} |\mathbf{z}_{h}|} \leqslant \sum_{i=1}^{d} R_{i}(n) (4\delta_{m}(1 + \max_{\textbf{j} \in h \leqslant m} s(f_{i}(\mathbf{z}_{h}))) + \log(1 + |f_{i}|_{R})) .$$

Indications. Utiliser l'exercice 1.3.b pour construire, pour n suffisamment grand, un polynôme non nul

$$P_n \in \mathbf{z}[x_1, \dots, x_d]$$
,

de degré inférieur ou égal à $R_{i}(n)$ par rapport à X_{i} , et tel que la fonction

$$F_n = P_n(f_1, \dots, f_d)$$

vérifie

$$F_n (z_h) = 0$$
 pour $1 \leqslant h \leqslant n$.

On majorera, de plus, la taille de Pn par

$$\begin{aligned} \mathsf{t}(\mathsf{P}_{\mathsf{n}}) &\leqslant \mathsf{Log} \ \sqrt[4]{2} + \sum_{\mathsf{h}=\mathsf{1}}^{\mathsf{n}} \ \frac{\delta_{\mathsf{h}}}{\mathsf{R}_{\mathsf{1}}(\mathsf{n}) \cdots \mathsf{R}_{\mathsf{d}}(\mathsf{n}) - (\delta_{\mathsf{1}} + \cdots + \delta_{\mathsf{n}})} \times \sum_{\mathsf{i}=\mathsf{1}}^{\mathsf{d}} \mathsf{R}_{\mathsf{i}}(\mathsf{n}) \times \\ &\times \mathsf{Log} \left| \overline{\mathsf{d}(\mathsf{f}_{\mathsf{i}}(\mathsf{z}_{\mathsf{h}})) \cdot \mathsf{f}_{\mathsf{i}}(\mathsf{z}_{\mathsf{h}})} \right| + \sum_{\mathsf{i}=\mathsf{1}}^{\mathsf{d}} \mathsf{Log}(\mathsf{R}_{\mathsf{i}}(\mathsf{n}) + \mathsf{1}) ; \end{aligned}$$

en particulier

$$t(P_n) \leqslant 2 \sum_{i=1}^{d} R_i(n) \cdot (1 + \max_{1 \leqslant h \leqslant n} s(f_i(z_h))) .$$

La fonction F_n étant entière non nulle, la relation 1.5.5 (avec $\lambda=2$) et les hypothèses faites montrent que les nombres

$$F_n(z_h)$$
 , $h \gg 1$

ne sont pas tous nuls. Soit m le plus petit entier tel que

$$\gamma_n = F_n(z_m) \neq 0$$
.

En utilisant le principe du maximum sur le disque de rayon R , avec

R > 3 max $|z_h|$ (puisque le résultat est trivial dans le cas contraire), majorer γ_n par

$$\log \left| \gamma_n \right| \leqslant t(P_n) + \sum_{i=1}^d R_i(n) \log \max(\left| f_i \right|_R, 1) + \log(R_i + 1) + \sup_{\left| t \right| = R} \log \sum_{h=1}^{m-1} \left| \frac{z_m^{-2}h}{t - z_h} \right| ;$$

On majorera ensuite, pour |t| = R , la quantité

$$\frac{z_{m}-z_{h}}{t-z_{h}}$$

par

$$\frac{3 \max_{1 \leq h \leq m} |z_h|}{R}.$$

Majorer ensuite la taille de γ_n par

$$s(\gamma_n) \leqslant t(P_n) + \sum_{i=1}^{d} R_i(n) s(f_i(z_m)) + Log(R_i+1)$$
,

et le dénominateur de γ_n par

$$d(\gamma_n) \leqslant \sum_{i=1}^{d} R_i(n) d(f_i(z_m))$$
,

grâce à 1.2.5. Utiliser enfin (1.2.4) pour obtenir la conclusion.

Exercice 2.2.g. Déduire le théorème 2.2.1 de l'exercice précédent. Plus généralement, montrer que si les constantes δ , C_1 , C_2 ,... qui interviennent dans les relations << des hypothèses du théorème 2.2.1 satisfont une certaine inégalité, alors on peut remplacer la conclusion (2.2.2) par l'inégalité stricte

$$\ell < \frac{\rho_1 + \cdots + \rho_d}{d-1}$$
.

(Indications. Se ramener au cas

$$\max_{1\leqslant i \leqslant d} \; \rho_i \leqslant \rho + \frac{\ell}{d} \; \text{ et } \; \max_{1\leqslant i \leqslant d} \; \rho_i \leqslant \ell \; ;$$

choisir

$$R_{\underline{i}}(N) = \left[(2\delta(C_{\underline{1}} + 1))^{\frac{1}{d}} N^{\rho + \frac{\ell}{d} \rho_{\underline{i}}} \right], \rho = \frac{\rho_{\underline{1}} + \dots + \rho_{\underline{d}}}{\underline{d}},$$

et $R = M.\lambda$, $(\lambda > 1$ réel indépendant de N et M). Ordonner les éléments de

 $S = \bigcup_{N \geqslant 0} S_N$ en une suite $(z_K)_{K \geqslant 1}$ de telle manière que

$$\begin{array}{l} \pi \quad (x-z) = \prod\limits_{K=1}^{Card \ S_{N}} \ (x-z_{K}) \ . \end{array}$$

On remarquera que l'on a

$$\max_{1\leqslant H\leqslant K} \, s(f_{\underline{i}}(z_{\underline{H}})) \, << \, K^{\rho_{\underline{i}}/\ell} \, ,$$

et

$$\max_{1\leqslant H\leqslant K} |z_H| \ll \kappa^{1/\ell}).$$