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Abstract

In a well–known paper published in 1915 in the Proceedings of the London
Mathematical Society, Srinivasa Ramanujan defined and studied highly com-
posite numbers. A highly composite number is a positive integer n with more
divisors than any positive integer smaller than n.

This work was pursued in 1944 by L. Alaoglu and P. Erdős, who raised a
question which belongs to transcendental number theory.

A simple instance is the following open question: does there exist a real
irrational number t such that 2t and 3t are integers?

We give a short survey of this topic where we point out links with a number
of other subjects.
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1 Highly composite and similar numbers

In 1915 [22] (see also [23] and [2]), S. Ramanujan defined a highly composite
number as a number n such that, for m < n, one has d(m) < d(n), where d(n)
is the number of divisors of n:

d(n) =
∑
d|n

1.

The sequence of highly composite numbers (reference A002182 in Sloane’s
Encyclopaedia of Integer Sequences [32]) starts with

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, . . .

In 1944, L. Alaoglu and P. Erdős [1] defined highly abundant numbers, super
abundant numbers and colossally abundant numbers. A colossally abundant
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number is a positive integer n for which there exists ε > 0 such that, for all
k > 1,

σ(n)

n1+ε
≥ σ(k)

k1+ε
·

Here, σ is the function sum of divisors:

σ(n) =
∑
d|n

d.

The sequence of colossally abundant numbers (reference A004490 in [32])
starts with

2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, . . .

The successive quotients are: 3, 2, 5, 2, 3, 7, 2, 11, 13, 2, 3, 5, . . .
In their paper [1], Alaoglu and Erdős write:

. . . this makes qx rational. It is very likely that qx and px can not be
rational at the same time except if x is an integer. This would show
that the quotient of two consecutive colossally abundant numbers
is a prime. At present we can not show this. Professor Siegel has
communicated to us the result that qx, rx and sx cannot be simul-
taneously rational except if x is an integer. Hence the quotient of
two consecutive colossally abundant numbers is either a prime or the
product of two distinct primes.

This is the origin of the problem that we now consider.

2 Four exponentials Conjecture and six expo-
nentials Theorem

If p and q are distinct primes and if x is a real number such that px = r and
qx = s are integers, then we have

x =
log r

log p
=

log s

log q

and the matrix (
log p log q
log r log s

)
has rank 1. One does not know an example where this happens without x being
an integer. More generally, if we replace the assumption that p and q are dis-
tinct primes by the assumption that they are two multiplicatively independent
positive numbers, then the expected conclusion is that x should be rational.
Recall that two positive numbers p and q are multiplicatively independent if the
relation paqb = 1 with a and b rational integers implies a = b = 0. Hence the
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condition of multiplicative independence is equivalent to the condition that the
quotient log p/ log q be irrational.

There are several simple proofs of the weaker statement that if x is a positive
real number such that nx is an integer for all positive integers n, then x is a
nonnegative integer [5, 40].

The four exponentials Conjecture was formulated by Th. Schneider [30],
S. Lang [7] and K. Ramachandra [18].
Four exponentials Conjecture (matrix form). Let

M =

logα1 logα2

log β1 log β2


be a 2 × 2 matrix , the entries of which are logarithms of algebraic numbers.
Assume that the two columns of M are Q–linearly independent and that the two
rows of M are also Q–linearly independent. Then M has rank 2.
Four exponentials Conjecture (exponential form). Let x1, x2 be Q–linearly
independent complex numbers and y1, y2 be also Q–linearly independent complex
numbers. Then at least one of the four numbers

ex1y1 , ex1y2 , ex2y1 , ex2y2

is transcendental.
The equivalence between the two statements follows by writing

αj = ex1yj , βj = ex2yj .

The next result was apparently known to C.L. Siegel (at least), its proof was
published first by S. Lang [7] and then by K. Ramachandra [18].
Six exponentials Theorem (exponential form). Let x1, x2 be two Q–linearly
independent complex numbers and y1, y2, y3 be also Q–linearly independent com-
plex numbers. Then at least one of the 6 numbers

exiyj , (i = 1, 2, j = 1, 2, 3)

is transcendental.
An equivalent form of this statement is the following one:

Six exponentials Theorem (matrix form). Let

M =

logα1 logα2 logα3

log β1 log β2 log β3


be a 2 × 3 matrix whose entries are logarithms of algebraic numbers. Assume
that the three columns are linearly independent over Q and that the two rows
are also linearly independent over Q. Then the matrix M has rank 2.

Proofs of the six exponential Theorem are given in many places including
[7, 18, 19, 35, 40, 42]. A consequence of the six exponentials Theorem is that,
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if t is an irrational number, at least one of the three numbers 2t, 2t
2

, 2t
3

is
transcendental.

In case t is algebraic, these three numbers are transcendental by Gel’fond–
Schneider’s Theorem.

If t is a transcendental number and a, b, c are positive integers with b 6= c,
then of at least one of the numbers

2t
a

, 2t
b

, 2t
c

, 2t
a+b

, 2t
a+c

is transcendental. For instance if a and b are positive integers, at least one of
the numbers

2t
a

, 2t
b

, 2t
a+b

, 2t
2a+b

.

is transcendental.
A consequence of Schanuel’s Conjecture would be that all numbers 2π

n

(n ≥
1) are transcendental. A special case of the four exponentials Conjecture is

that at least one of the two numbers 2π, 2π
2

is transcendental. According to
the six exponentials Theorem, at least one of the three numbers 2π, 2π

2

, 2π
3

is
transcendental.

Algebraic approximations to 2π
k

have been investigated by T.N. Shorey [31]
and S. Srinivasan [33, 34]. See also [13].

Upper bounds for the number of algebraic numbers among 2π
k

, (1 ≤ k ≤ N)
have been obtained by S. Srinivasan [34]. See also [20, 21].

3 Five exponentials Theorem, strong four expo-
nentials Conjecture and strong six exponen-
tials Theorem

The five exponentials Theorem was proved in 1986 [39] Cor. 2.2.
Five exponentials Theorem (Exponential form). Let x1, x2 be two Q–linearly
independent complex numbers and y1, y2 be also two Q–linearly independent
complex numbers. Then at least one of the 5 numbers

ex1y1 , ex1y2 , ex2y1 , ex2y2 , ex2/x1

is transcendental.
The next result is stronger:

Five exponentials Theorem (Matrix form). Let M be a 2× 3 matrix whose
entries are either algebraic numbers or logarithms of algebraic numbers. Assume
that the three columns are linearly independent over Q and that the two rows
are also linearly independent over Q. Then M has rank 2.

We deduce the exponential form from the matrix form by considering the
matrix (

logα11 logα12 1
logα21 logα22 log γ

)
=

(
x1y1 x1y2 1
x2y1 x2y2 x2/x1

)
.
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Denote by L the Q–vector subspace of C of logarithms of algebraic numbers:
it consists of the complex numbers λ for which eλ is algebraic (say λ = logα).

The Q–vector space spanned by 1 and L is Q ∪ L. Further, denote by L̃ the
Q–vector space spanned by 1 and L: hence L̃ is the set of linear combinations
with algebraic coefficients of logarithms of algebraic numbers:

L̃ = {Λ = β0 + β1λ1 + · · ·+ βnλn ; n ≥ 0, βi ∈ Q, λi ∈ L}.

Notice that L̃ ⊃ Q ∪ L.
The strong six exponentials Theorem was proved by D. Roy in 1992 [25],

where he also proposed the strong four exponentials Conjecture.
Strong Six Exponentials Theorem (Exponential form). If x1, x2 are Q–
linearly independent complex numbers and y1, y2, y3 are Q–linearly independent
complex numbers, then at least one of the six numbers

x1y1, x1y2, x1y3, x2y1, x2y2, x2y3

is not in L̃.
An equivalent statement is the next one:

Strong Six Exponentials Theorem (matrix form). Let

M =

Λ1 Λ2 Λ3

Λ1 Λ2 Λ3


be a 2 × 3 matrix whose entries are in L̃ Assume that the three columns are
linearly independent over Q and that the two rows are also linearly independent
over Q. Then M has rank 2.

Clearly, the strong six exponentials Theorem implies the six exponentials
Theorem and the five exponentials Theorem, while the four exponentials Con-
jecture is a special case of the following strong four exponentials Conjecture.
Strong Four Exponentials Conjecture (exponential form). If x1, x2 are
Q–linearly independent complex numbers and y1, y2 are Q–linearly independent
complex numbers, then at least one of the four numbers

x1y1, x1y2, x2y1, x2y2

is not in L̃.
Again, an equivalent statement is the next one:

Strong Four Exponentials Conjecture (matrix form). Let

M =

Λ1 Λ2

Λ1 Λ2


be a 2 × 2 matrix whose entries are in L̃ Assume that the two columns are
linearly independent over Q and that the two rows are also linearly independent
over Q. Then M has rank 2.
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4 Lower bound for the rank of matrices with
entries logarithms of algebraic numbers

The conclusions of the previous results are that some matrices have rank > 1.
The six exponentials Theorem has been generalized in 1980 [36] in order to
produce lower bounds for the rank of matrices with entries in L of any size.
Under suitable assumptions, the rank r of such a d× ` matrix satisfies

r ≥ d`

d+ `
·

Hence, when d = `,

r ≥ d

2
,

which is half of what is expected. One cannot expect to reach the maximal rank
if one only assumes that the columns and the rows are linearly independent:
the matrix  0 log 2 − log 3

− log 2 0 log 5
log 3 − log 5 0


has rank 2 only.

The main result of [36] (see also Theorem 12.17 of [42]) states that a d × `
matrix of rank n with entries in L is Q–equivalent to a bloc matrix(

A B
C 0

)
where C is a d′ × `′ matrix with d′ > 0 and

n

d
≥ `′

d′ + `′
·

A consequence of this result is the answer to a question from A. Weil [37]: if the
values of a Hecke Grössencharacter are algebraic (resp. in a number field), then
the character is of type A (resp. A0). Another consequence is the answer by
D. Roy in [26] to a question raised by J.-L. Colliot-Thélène, D. Coray and J.-J.
Sansuc: given a number field k with a group of units of rank r, the smallest
positive integer m for which there exists a finitely generated subgroup of rank
m of k× having a dense image in (R⊗Q k)× under the canonical embedding is
r + 2.

There is a version for nonarchimedean valuations, which implies the lower
bound rp ≥ r/2 for the p–adic rank rp of the units of an algebraic number field,
in terms of the rank r of the group of units [36, 38], while Leopoldt’s Conjecture
predicts rp = r. See also the results which are proved by M. Laurent [8] and
those which are claimed in [14, 15] by P. Mihăilescu.

Also, the ultrametric transcendence result has applications to `–adic rep-
resentations [6]. Let K be a number field, and GK = Gal(Q/K) the Galois
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group of Q over K. Let E be a number field, λ a finite place of E and % an
Eλ–adic representation of GK , and assume that % is abelian, semisimple and
rational over E; then % is locally algebraic. Further, if % is a semisimple `–adic
representation of GK that is unramified except for a finite number of places of
K and ramified over Q, then the Lie algebra of the image of % is algebraic.

In [27], D. Roy introduced the definition of structural rank of a matrix with
entries in L. For

M =
(
λij
)

1≤i≤d
1≤j≤`

with λij ∈ L, select a basis {µ1, . . . , µs} of the Q–vector subspace of L spanned
by the d` numbers λij , write

λij =

s∑
σ=1

aijσµσ

with aijσ ∈ Q and denote by rsrt(M) the rank of the matrix(
s∑

σ=1

aijσXσ

)
1≤i≤d
1≤j≤`

∈ Matd×`
(
Q(X1, . . . , Xs)

)
.

This number rsrt(M) does not depend on the basis {µ1, . . . , µs} and is called
the structural rank of M . It is obvious that the rank r(M) of the matrix M is
bounded above by the structural rank. One deduces from Schanuel’s Conjecture
that for a matrix M with entries in L, the equality rsrt(M) = r(M) always holds.
The best lower bound so far for r(M) is ([42], Cor. 12.18)

r(M) ≥ 1

2
rsrt(M).

5 Lower bound for the rank of matrices with
entries in L̃

In 1992, D. Roy extended his strong six exponentials Theorem dealing with 2×3
matrices to matrices of any size with entries L̃ (linear combinations of 1 and
logarithms of algebraic numbers). He defines the structural rank rsrt(M) of a
matrix

M =
(
Λij
)

1≤i≤d
1≤j≤`

with entries Λij in L̃ as the rank of the matrix(
s∑

σ=1

αijσXσ

)
1≤i≤d
1≤j≤`

∈ Matd×`
(
Q(X1, . . . , Xs)

)
,

where {M1, . . . ,Ms} is a basis of the Q–vector subspace of L̃ spanned by the
d` numbers Λij and where αijσ are defined by

Λij =

s∑
σ=1

αijσMσ.

7



Again, this number rsrt(M) does not depend on the choice of the basis {M1, . . . ,Ms}.
Further, for a matrix M with entries in L, the two definitions of rsrt(M) coming

from the inclusion L ⊂ L̃, coincide. In [27], D. Roy proves that the rank r(M)
of M satisfies:

r(M) ≥ 1

2
rsrt(M).

6 Schanuel’s Conjecture

Schanuel’s Conjecture [7] state that Let x1, . . . , xn be Q–linearly independent
complex numbers. Then at least n of the 2n numbers x1, . . . , xn, e

x1 , . . . , exn

are algebraically independent.
One of the most important and open special cases of Schanuel’s conjecture is

the conjecture on algebraic independence of logarithms of algebraic numbers: if
λ1, . . . , λn are linearly independent logarithms of algebraic numbers, then these
numbers are algebraically in dependent.

So far, it is not even known if there exist two logarithms of algebraic num-
bers which are algebraically independent. Baker’s result provides a satisfactory
answer for the linear independence of such numbers over the field of algebraic
numbers. But he says nothing about algebraic independence. Even the non–
existence of non–trivial quadratic relations among logarithms of algebraic num-
bers is not yet established. According to the four exponentials Conjecture, any
quadratic relation (logα1)(logα4) = (logα2)(logα3) is trivial : either logα1 and
logα2 are linearly dependent, or else logα1 and logα3 are linearly dependent.

However something is known on the conjecture of algebraic independence
of logarithms of algebraic numbers. Instead of taking linearly independent log-
arithms of algebraic numbers λ1, . . . , λn and asking about the non–vanishing
of values P (λ1, . . . , λn) of polynomials P ∈ Z[X1, . . . , Xn], D. Roy looks at
this question from another point of view: starting with a nonzero polynomial
P ∈ Z[X1, . . . , Xn], he investigates the tuples (λ1, . . . , λn) ∈ Ln whose compo-
nents are logarithms of algebraic numbers such that P (λ1, . . . , λn) = 0. More
generally, he remarked that the conjecture of algebraic independence of loga-
rithms of algebraic numbers is equivalent to the next statement: if V is an
affine algebraic subvariety of Cn, then the set Ln ∩ V is contained in the union
of linear subspaces of Cn rational over V contained in V . In [27], he proves
special cases of this statement. See also the paper [4] by S. Fischler.

The conjecture on algebraic independence of logarithms of algebraic numbers
would solve the question of the rank of matrices having entries in the space Q∪L
spanned by 1 and the logarithms of algebraic numbers. Conversely, it has been
proved by D. Roy that the conjecture on algebraic independence of logarithms
is equivalent to the conjecture that he rank of a matrix with entries in Q ∪ L is
equal to its structural rank. The key lemma ([24, 27] – see also [42] § 12.1.5) is
that if k is a field and P ∈ k[X1, . . . , Xn] a polynomial in n variables, then there
exists a square matrix M , whose entries are linear combinations of 1, X1, . . . , Xn

with coefficients in k, such that P is the determinant of M .
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A promising strategy for proving Schanuel’s Conjecture has been devised by
D. Roy in [28] (see also § 15.5.3 of [42]). He proposes a new conjecture which he
shows to be equivalent to Schanuel’s Conjecture. In a series of recent papers,
he proved special cases of his conjecture – see for instance [29].

7 Ellliptic four exponentials Conjecture

The question of algebraic independence of logarithms of algebraic numbers can
be generalized by replacing the multiplicative group by other algebraic group,
like an elliptic curve (early examples are in [18] which is expanded in [43]) or
a commutative group variety. An example of such a generalization occurs in
connection with a problem of K. Mahler et Yu.V. Manin on the transcendence
of J(q) for algebraic q = e2iπτ . This problem has been solved by K. Barré–Siriex,
G. Diaz, F. Gramain and G. Philibert in 1996 [3]; see also [44].
Mixed four exponentials Theorem. Let logα be a logarithm of a non–zero
algebraic number. Let Zω1 + Zω2 be a lattice associated with a Weierstrass
elliptic curve having algebraic invariants g2, g3. Then the matrixω1 logα

ω2 2πi


has rank 2.

Here is a stronger statement. Let ℘ be a Weierstraß elliptic function with
algebraic invariants g2, g3 and E be the corresponding elliptic curve. Denote
by LE the set of u ∈ C which either are poles of ℘ or are such that ℘(u) is
algebraic.
Mixed four exponentials Conjecture. Let u1 and u2 be two elements in LE
and logα1, logα2 be two logarithms of algebraic numbers. Assume further that
the two rows of the matrix

M =

(
u1 logα1

u2 logα2

)
are linearly independent over Q. Then the matrix M has rank 2.

8 Density questions

As shown in [41], these questions are related with a problem of B. Mazur [9, 10,
11, 12] on the density of rational points on varieties. See also [16, 17]. Just to
give an example, a positive answer to the next question would follow from the
four exponentials Conjecture (see [43]).

For α = a+ b
√

2 ∈ Q(
√

2), write α = a− b
√

2. Define

α1 := 2
√

2− 1, α2 := 3
√

2− 1, α3 := 4
√

2− 1,

9



and let Γ be the set of elements in (R×)2 of the form(
αa11 α

a2
2 α

a3
3 , α

a1
1 α

a2
2 α

a3
3

)
with (a1, a2, a3) ∈ Z3.

Question: Is this subgroup Γ dense in (R×)2?
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(1982).

[7] S. Lang – Introduction to transcendental numbers, Addison–Wesley (1966).

[8] M. Laurent, – Rang p–adique d’unités et action de groupes, J. Reine
Angew. Math. 399 (1989), 81–108.

[9] B. Mazur – The topology of rational points, Experiment. Math. 1 (1992),
n◦1, 35–45.

[10] — , Questions of decidability and undecidability in number theory, J. Sym-
bolic Logic 59 (1994), n◦2, 353–371.

[11] — , Speculations about the topology of rational points: an update, Astérisque
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[30] Th. Schneider – Einführung in die transzendenten Zahlen, Springer
(1957). Traduction française par Pierre Eymard, Gauthier–Villars (1959).

[31] T.N. Shorey – On the sum
∑3
k=1 |2π

k − αk|, αk algebraic numbers, J.
Number Theory 6 (1974), 248–260.

[32] N.J.A. Sloane – The On–Line Encyclopedia of Integer Sequences R©
(OEIS R©),
http://oeis.org/

[33] S. Srinivasan – On algebraic approximations to 2π
k

(k = 1, 2, 3, . . .), In-
dian J. Pure Appl. Math., 5 (1974), 513–523.

[34] — , On algebraic approximations to 2π
k

(k = 1, 2, 3, . . .), (II); J. Indian
Math. Soc., 43 (1979), 53–60.

[35] M. Waldschmidt – Nombres transcendants, Lecture Notes in Mathemat-
ics, Vol. 402. Springer–Verlag, Berlin–New York (1974).

[36] — , Transcendance et exponentielles en plusieurs variables, Invent. Math.
63 (1981), n◦1, 97–127.

[37] — , Sur certains caractères du groupe des classes d’idèles d’un corps de
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