Yogyakarta, CIMPA School UGM, February 27, 2020

Linear recurrence sequences,
Michel Waldschmidt

Sorbonne University, Paris
Institut de Mathématiques de Jussieu

http://www.imj-prg.fr/~michel.waldschmidt/

Applications of linear recurrence sequences

Combinatorics

Elimination

Symmetric functions
Hypergeometric series
Language

Communication, shift registers
Finite difference equations
Logic

Approximation

Pseudo-random sequences

46

Abstract

Linear recurrence sequences are ubiquitous. They occur in
biology, economics, computer science (analysis of algorithms),
digital signal processing and number theory. We give a survey
of this subject, together with connections with linear
combinations of powers, with powers of matrices and with
linear differential equations.

We first work over a field of any characteristic. Next we
consider linear recurrence sequences over finite fields.

Applications of linear recurrence sequences

e Biology (Integrodifference equations, spatial ecology).
e Computer science (analysis of algorithms).

e Digital signal processing (infinite impulse response (lIR)
digital filters).

e Economics (time series analysis).

https://en.wikipedia.org/wiki/Recurrence_relation
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Linear recurrence sequences : definitions

A linear recurrence sequence is a sequence of numbers
u = (ug, uy, us, ... ) for which there exist a positive integer d

together with numbers aq, ..., aq with a; # 0 such that, for
n >0,
(%) Upt+d = Q1Upyd—1 T+ Aqlly.

Here, a number means an element of a field K.

Given a = (ay, ..., ay) € K% the set I, of linear recurrence
sequences u = (U, ),>¢ satisfying () is a K-vector subspace
of dimension d of the space K" of all sequences.

A basis of this space is obtained by taking for the initial d
values (ug,uy,...,us—1) the elements of the canonical basis of
K.

Linear recurrence sequences : examples

e Constant sequence : u,, = ug.

Linear recurrence sequence of order 1 : u,, 1 = u,.
Characteristic polynomial : f(X) =X — 1.
Generating series :

ZUOX” - 120)('

n>0

e Geometric progression : u,, = uyy".

Linear recurrence sequence of order 1 : u,, = Yyu,,_1.
Characteristic polynomial f(X) =X —~.
Generating series :

U
D un" X" = —OyX'

n>0

Generating series, characteristic polynomial
The generating series is the formal series

ZunX".

n>0

Let v € K*; the sequence (7"),>¢ satisfies the linear
recurrence

(%) Uptd = Q1 Uptd—1+ -+ Aqlly,.

if and only if v/ = a;y"" 4+ + ag,
The characteristic (or companion) polynomial of the linear
recurrence is

fX)=X4—a X' — . —ay

Recall that 0 is not a root of this polynomial (a4 # 0).

Linear recurrence sequences examples
e u, = n. This is a linear recurrence sequence of order 2 :

n+2=2n+1)—n.

Characteristic polynomial

fX)=X?-2X +1= (X —-1)%

Generating series

1
Xt .
>_n 1—2X + X2

n>0

Power of matrices :

0 1 n_ —-n—+1 n
-1 2) -n n+1)°
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Linear recurrence sequences : examples Linear sequences which are ultimately recurrent

e u, = p(n), where p is a polynomial of degree d. This is a

linear recurrence sequence of order d + 1. The sequence
1,0,0,...
Proof. The sequences (1,0,0,...)
is not a linear recurrence sequence.

(P(M)nz0, @M +1))pz0, -+, (P +K))nxo

are K-linearly independent in K" for k = d — 1 and linearly The condition

dependent for k = d. Upt1 = Up
A basis of the space of polynomials of degree d is given by the is satisfied only for n > 1.
d + 1 polynomials
The relation
p(X), p(X +1), ..., p(X +d). Upyo = Uns1 + Oy

with d = 2, ay = 0 does not fulfil the requirement a, # 0.

Question : which is the characteristic polynomial ?

9 /46 10 /46

Order of a linear recurrence sequence Generating series of a linear recurrence sequence

. . e Let u = (u,),>0 be a linear recurrence sequence
If u= (un),>0 satisfies the linear recurrence, the characteristic () 9

polynomial of which is f, then, for any monic polynomial
g € K[X] with g(0) # 0, this sequence u also satisfies the (%) Upid = QG Upiq_1+- - +aqu, for n >0
linear recurrence, the characteristic polynomial of which is fg.

Example : for g(X) = X — 7 with v # 0, from with characteristic polynomial

p— d _ d_l —_ . e e —
(%) Upsd— 1 Upsg1—" " *—aqUy, = 0 fX)=X"~aX d-
Denote by f~ the reciprocal polynomial of f :
we deduce
X)) =Xf(XH=1-a, X — - —agX"
Un+d+1 — A1Unyd =+ — AqUn+1
— V(Untd — Q1Untd—1 — -+ — aqtin) = 0. Then o0
n_ r(X)
up X" = ,—)()7
The order of a linear recurrence sequence is the smallest d n=0 F=
such that (%) holds for all n > 0. where 7 is a polynomial of degree less than d determined by

the initial values of u.
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Generating series of a linear recurrence sequence
Assume
Upid = A Upig—1 + -+ aqgu, for n >0.

Then

=
2 X" = 5

Proof. Comparing the coefficients of X" for n > d shows that
FX)Y u,Xxn
n=>0

is a polynomial of degree less than d.

13 /46

Linear differential equations

Given a sequence (u,,),>o of numbers, its exponential
generating power series is

v =

n>0

For k > 0, the k-the derivative 1)*) of 1) satisfies

(k) =
HOEDD
z prnd u —_—
n>0
Hence the sequence satisfies the linear recurrence relation
(%) Uprd = A Uprg1+- - +aqu, for n>0

if and only if 1/ is a solution of the homogeneous linear
differential equation

YD =ary Y 4 aay + agy.

15 /46

Taylor coefficients of rational functions

Conversely, the sequence of coefficients in the Taylor expansion
of any rational fraction a(X)/b(X) with dega < degb and
b(0) # 0 satisfies the recurrence relation with characteristic
polynomial f € K[X] given by f(X) = b (X).

Therefore a sequence u = (u,),>¢ satisfies the recurrence
relation (x) with characteristic polynomial f € K[X] if and
only if

- X

Zuan = T_< ) )

— f(X)
where 7 is a polynomial of degree less than d determined by
the initial values of u.

Matrix notation for a linear recurrence sequence

The linear recurrence sequence
(%) Upig = Q1 Upsqg_1+- - +aqu, for n >0

can be written

" 0 1 0O -+ 0 "
el 0 0 1 - 0 n
Unt2 | | . . . _ . Un+1

" 0 0 0 - 1 .
n—+d g Qg1 Qg5 - a n+d—1

14 /46
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Matrix notation for a linear recurrence sequence Powers of matrices

Un+1 = AU, Let A= (aij)lgmgd € GLdXd<K) be a d x d matrix with
with coefficients in K and nonzero determinant. For n > 0, define
0 1 0 0 n (n)
Un 0 0 1 0 A" = (aiy’ )1§i,j§d'
U — Un+1 A- | - . . _ .
" : ’ N : : R Then each of the d? sequences (ag;l))wo, (1<i,j<d)isa
Unt+d—1 0 0 0 -1 linear recurrence sequence. The roots of the characteristic
Qg Qag—1 Qg-2 -+ Qi

polynomial of these linear recurrences are the eigenvalues of A.

The determinant of 1,X — A (the characteristic polynomial of

A) is nothing but In particular the sequence (Tr(A”))nZO satisfies the linear

J g1 recurrence, the characteristic polynomial of which is the

fX) =X = X7 = —aq, characteristic polynomial of the matrix A.

the characteristic polynomial of the linear recurrence sequence.
By induction

Un - AnUO
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Conversely : Linear recurrence sequences : simple roots

) _ N _ A basis of £/, over K is obtained by attributing to the initial
Given a linear recurrence sequence u € K", there exist an -

_ ; values uyg, ..., uq_1 the values given by the canonical basis of
integer d > 1 and a matrix A € GL4(K) such that, for each K.
n >0, (n) Given 7 in K*, a necessary and sufficient condition for a

Up = Gy - sequence (7"),>o to satisfy (x) is that v is a root of the

characteristic polynomial

L . : - fX)=X"—a X" — - —aq
The characteristic polynomial of A is the characteristic
polynomial of the linear recurrence sequence. If this polynomial has d distinct roots vy, ...,74 in K,
EVEREST G., VAN DER POORTEN A., SHPARLINSKI 1., WARD T. — f(X) = (X - 71) T (X - %l)7 Vi # Yis
Recurrence sequences, Mathematical Surveys and Monographs (AMS,
2003), volume 104. then a basis of E, over K is given by the d sequences

(Vi) p>0, i = 1,...,d.
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Linear recurrence sequences : double roots Linear recurrence sequences : multiple roots

The characteristic polynomial of the linear recurrence
Up = 2YUp_1 — V2 Up_2 15 X2 — 29X + 792 = (X — )% with a

double root ~. In general, when the characteristic polynomial splits as
The sequence (ny"),>o satisfies ¢
X9 — g, X! _..._adzl_[@(_%)m7
ny" = 2y(n — Dny" "t — 4% (n — 2)y" 2 i=1

a basis of E, is given by the d sequences
A basis of F, for a; = 27, as = —~* is given by the two (nk%”)nzo, 0<k<t;—1, 1<i<V/.
sequences (7")n>0, (PY")n>0-

Given v € K*, a necessary and sufficient condition for the
sequence ny" to satisfy the linear recurrence relation (x) is
that 7 is a root of multiplicity > 2 of f(X).

21/46 22 /46

Polynomial combinations of powers Consequence

The sum and the product of any two linear recurrence e When p is a polynomial of degree < d, the characteristic

sequences are linear recurrence sequences. polynomial of the sequence u,, = p(n) divides (X — 1)%.

The set U, F, of all linear recurrence sequences with Proof.

coefficients in K is a sub-K-algebra of K. Set
110 - 0 0

Given polynomials py, ..., p, in K[X] and elements 71, ..., v, 011 00

in K* 001 -+ 00

in K, the sequence A=l i
000 - 0 1

is a linear recurrence sequence.
where [, is the d x d identity matrix and NV is nilpotent :
Conversely, any linear recurrence sequence is of this form. N¢ =0,
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Consequence

The characteristic polynomial of A is (X — 1)¢. Hence for
1 <i,j <d, the sequence u,, of the coefficient al(?) of A"
satisfies the linear recurrence relation

(%) Uptd = Q1 Untd—1+ -+ aqn,

that is

d

2) Unpd—ot (=1 2dupy 1 +(—1) .

Un+d ::dun+d1_'(

The characteristic polynomial of this recurrence relation is
(X — 1)<,

25 /46

Sum of polynomial combinations of powers

If u; and u, are two linear recurrence sequences of
characteristic polynomials f; and f5 respectively, then u; + uy
satisfies the linear recurrence, the characteristic polynomial of
which is f F

2

ng(fla f2)

27 /46

Characteristic polynomial of the recurrence

sequence p(n).
Since, for 1 <i,j < d and n > 0, we have

o™ — n
U j'—i

(where we agree that () = 0 for k < 0 and for k > n, while

(3) = (Z) = 1), we deduce that each of the d polynomials

1, X(X+1)"k;!<X+k_1) k=1,2,...,d—1
namely
L X X(X +1) X(X+1)---(X+d-2)
S T (d—1)! ’

satisfies the recurrence (x). These d polynomials constitute a
basis of the space of polynomials of degree < d.

Product of polynomial combinations of powers

If the characteristic polynomials of the two linear recurrence
sequences u; and uy are respectively

(T =) and  fo(T) = [ [(T = )%,

¢ 4
i=1 k=1

J

then u;u, satisfies the linear recurrence, the characteristic
polynomial of which is

f/

¢
HHT 77 t+t

Jj=1k=1

26 /46



Linear recurrence sequences and
Brahmagupta—Pell-Fermat Equation

Let d be a positive integer, not a square. The solutions
(z,y) € Z x Z of the Brahmagupta—Pell-Fermat Equation

22— dy? = +1
form a sequence (2, Y )nez defined by
L + Vdy, = (x1 + Vdy,)"

From

2z, = (11 + \/Eyl)n + (1 — \/Eyl)n

we deduce that (z,),>¢ is a linear recurrence sequence. Same
for y,,, and also for n < 0.

Discrete version of linear differential equations

A sequence u € K" can be viewed as a linear map N — K.
Define the discrete derivative D by

Du: N — K
N —> Uyl — Up.

A sequence u € K" is a linear recurrence sequence if and only
if there exists () € K[T'] with Q(1) # 1 such that

Q(D)u = 0.

Linear recurrence sequences are a discrete version of linear
differential equations with constant coefficients.

The condition Q(1) # 0 reflects ag # 0 — otherwise one gets ultimately
recurrent sequences.

29 /46
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Doubly infinite linear recurrence sequences

A sequence (u,,)nez indexed by Z is a linear recurrence
sequence if it satisfies

(%) Uptd = Q1 Upyd—1+ -+ AqUn.

for all n € Z.
Recall ag # 0.

Such a sequence is determined by d consecutive values.

Conclusion
The same mathematical object occurs in a different guise :

e Linear recurrence sequences

Up+d = Q1Uptd—1 + =+ QqlUp.

e Linear combinations with polynomial coefficients of powers

pr(n)y" + -+ pe(n)yy.

e Taylor coefficients of rational functions.

e Coefficients of power series which are solutions of
homogeneous linear differential equations.

e Sequence of coefficients of powers of a matrix,

30/46
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Reference Linear recurrence sequences over finite fields
EVEREST, GRAHAM ; VAN DER POORTEN, ALF; Reference: Chapter 8 : Linear recurring sequences of
SHPARLINSKI, IGOR ; WARD, TOM - Recurrence
sequences, Mathematical Surveys and Monographs (AMS,
2003), volume 104. 1290 references.

LibL, RUDOLF ; NIEDERREITER, HARALD.

Finite fields. Paperback reprint of the hardback 2nd edition
1996. (English)

—— Encyclopedia of Mathematics and Its Applications 20.
Cambridge University Press (ISBN 978-0-521-06567-2/pbk).
xiv, 755 p. (2008).
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33/46 34 /46
Linear recurring sequences Feedback shift register
Electronic switching circuit : adder, constant multiplier,
Given a, ag, ..., a1 in a finite field F,, consider a k—th order constant adder, delay element (flip-flop)

linear recurrence relation : forn =0,1,2,...,

Uptk = Qg—1Upyk—1 + Qp—2Uptk—2 + -+ + A1Up41 T AUy + Q “é_‘ _’C> " '. * E"

(a) Adder (b) Constant multiplier (c) Constant adder (d) Delay element
for multiplying by @ for adding a
Homogeneous : a = 0.

. U = Qp_ 1 Upsk—1 + Qp_2oUpif_o + -+ a1u + apu, + a
Initial values : wg, uq, ..., Up_1. ntk — Bk—18ntk—1 T Bk—-2Vn+k-2 1¥n41 7T 2050
State vector : W, = (U, Un i1+ -5 Unikh1)- © © ®
Initial state vector : wy = (ug, uy, ..., Up_1).

35 /46 36 /46



The least period of a linear recurrence sequence

Since I, is finite, any linear recurrence sequence (u,),>¢ in I,
is ultimately periodic : there exists » > 0 and ng > 0 such that
Uy = Upsy fOr n > ng. The least ng for which this relation
holds is the preperiod.

Any period is a multiple of the least period.

A linear recurrence sequence (uy,),>o is periodic if there exists
a period r > 0 such that u,, = u,, for n > 0. In this case
this relation holds for the least period; the preperiod is 0. If
ag # 0, then the sequence is periodic.

The least period 7 of a (homogeneous) linear recurrence
sequence in I, of order k satisfies r < ¢* — 1.

37/46

The least period

Assume ag # 0

The least period of the linear recurrence sequence divides the
order of the matrix A in the general linear group GLj(F,).

The impulse response sequence is the linear recurrence
sequence with the initial state (0,0,...,0,1).

The least period of a linear recurrence sequence divides the
least period of the corresponding impulse response sequence.

39 /46

The companion matrix

The linear recurrence sequence
Upik = Qp_1Upsp_1 + -+ agu, for n>0

can be written

u, = ugA"
where
0 0 0 ag
1 0 0 - 0 um
A= 10 - 0 ag
000 - 1 ap_q

Further examples of linear recurrence sequences

Fibonacci

v

» Lucas

Perrin

v

Padovan

v

v

Narayana

References

Linear recurrence sequences : an introduction.
http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/LinearRecurrenceSequencesIntroduction.pdf
Linear recurrence sequences, exponential polynomials and Diophantine
approximation.

http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/LinRecSeqDiophAppxVI.pdf
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Leonardo Pisano (Fibonacci)

Fibonacci sequence (F',),>0,
0,1, 1,2 3, 5, 8, 13, 21,

Leonardo Pisano (Fibonacci)
(1170-1250)

34, 55, 89, 144, 233,...
is defined by
Fo=0, F1 =1,

Fn+2 == Fn+1+FTL for n Z 0.

http://oeis.org/A000045
41/46

Perrin sequence http://oeis.org/A001608

The Perrin sequence (also called skiponacci sequence) is the
linear recurrence sequence (P,,),>o defined by

Pn+3:Pn+1+Pn for nZO,
with the initial conditions

Py=3, P, =0, P,=2.

It starts with

3,0,2 3,2 5 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, ...

Francois Olivier Raoul Perrin (1841-1910) :

https://en.wikipedia.org/wiki/Perrin_number
43 /46

Lucas sequence

The Lucas sequence (L,,),>¢ satisfies the same recurrence
relation as the Fibonacci sequence, namely

http://oeis.org/000032

Ln+2 = Ln+1 + Ln for n Z O7
only the initial values are different :

Lo=2 L, =1.

The sequence of Lucas numbers starts with

2,1, 3,4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ...

A closed form involving the Golden ratio ® is
L,=®"+(-®)™",

from which it follows that for n > 2, L,, is the nearest integer
to &,

Narayana sequence
Narayana sequence is defined by the recurrence relation

https://oeis.org/A000930

Cn+3 = Cn+2 + Cn

with the initial values Cy =2, C = 3, Cy = 4.
It starts with

2,3, 4, 6,9, 13, 19, 28, 41, 60, 88, 129, 189, 277, ...

Real root of 22 — 22 — 1

29 + 3v93 29 —3v93
[reem o
2 2
3

= 1.465571231876768 . ..

42 /46

44/ 46



Padovan sequence https://oeis.org/A000931
The Padovan sequence (p,,),>0 satisfies the same recurrence
Pn+3 = Pnt1 1+ Dn
as the Perrin sequence but has different initial values :
po=1, p1=p2=0.
It starts with

1,0,0,1,0,1,1,1,2 2 3, 4,5 7,9, 12, 16,...

Richard Padovan

http://mathworld.wolfram.com/LinearRecurrenceEquation.html
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