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Abstract

Linear recurrence sequences are ubiquitous. They occur in
biology, economics, computer science (analysis of algorithms),
digital signal processing and number theory. We give a survey
of this subject, together with connections with linear
combinations of powers, with powers of matrices and with
linear di↵erential equations.
We first work over a field of any characteristic. Next we
consider linear recurrence sequences over finite fields.
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Applications of linear recurrence sequences

Combinatorics

Elimination

Symmetric functions

Hypergeometric series

Language

Communication, shift registers

Finite di↵erence equations

Logic

Approximation

Pseudo–random sequences
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Applications of linear recurrence sequences

• Biology (Integrodi↵erence equations, spatial ecology).

• Computer science (analysis of algorithms).

• Digital signal processing (infinite impulse response (IIR)
digital filters).

• Economics (time series analysis).

https://en.wikipedia.org/wiki/Recurrence_relation
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Linear recurrence sequences : definitions

A linear recurrence sequence is a sequence of numbers
u = (u0, u1, u2, . . . ) for which there exist a positive integer d
together with numbers a1, . . . , ad with ad 6= 0 such that, for
n � 0,

(?) un+d = a1un+d�1 + · · ·+ adun.

Here, a number means an element of a field K.

Given a = (a1, . . . , ad) 2 Kd, the set Ea of linear recurrence
sequences u = (un)n�0 satisfying (?) is a K–vector subspace
of dimension d of the space KN of all sequences.

A basis of this space is obtained by taking for the initial d
values (u0, u1, . . . , ud�1) the elements of the canonical basis of
Kd.
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Generating series, characteristic polynomial

The generating series is the formal series
X

n�0

unX
n.

Let � 2 K⇥ ; the sequence (�n)n�0 satisfies the linear
recurrence

(?) un+d = a1un+d�1 + · · ·+ adun.

if and only if �d = a1�d�1 + · · ·+ ad.
The characteristic (or companion) polynomial of the linear
recurrence is

f(X) = Xd � a1X
d�1 � · · ·� ad.

Recall that 0 is not a root of this polynomial (ad 6= 0).
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Linear recurrence sequences : examples

• Constant sequence : un = u0.
Linear recurrence sequence of order 1 : un+1 = un.
Characteristic polynomial : f(X) = X � 1.
Generating series :

X

n�0

u0X
n =

u0

1�X
·

• Geometric progression : un = u0�n.
Linear recurrence sequence of order 1 : un = �un�1.
Characteristic polynomial f(X) = X � �.
Generating series :

X

n�0

u0�
nXn =

u0

1� �X
·
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Linear recurrence sequences : examples

• un = n. This is a linear recurrence sequence of order 2 :

n+ 2 = 2(n+ 1)� n.

Characteristic polynomial

f(X) = X2 � 2X + 1 = (X � 1)2.

Generating series
X

n�0

nXn =
1

1� 2X +X2
·

Power of matrices :
✓

0 1
�1 2

◆n

=

✓
�n+ 1 n
�n n+ 1

◆
.
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Linear recurrence sequences : examples

• un = p(n), where p is a polynomial of degree d. This is a
linear recurrence sequence of order d+ 1.

Proof. The sequences

(p(n))n�0, (p(n+ 1))n�0, · · · , (p(n+ k))n�0

are K–linearly independent in KN for k = d� 1 and linearly
dependent for k = d.

A basis of the space of polynomials of degree d is given by the
d+ 1 polynomials

p(X), p(X + 1), . . . , p(X + d).

Question : which is the characteristic polynomial ?
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Linear sequences which are ultimately recurrent

The sequence
(1, 0, 0, . . . )

is not a linear recurrence sequence.

The condition
un+1 = un

is satisfied only for n � 1.

The relation
un+2 = un+1 + 0un

with d = 2, ad = 0 does not fulfil the requirement ad 6= 0.
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Order of a linear recurrence sequence

If u = (un)n�0 satisfies the linear recurrence, the characteristic
polynomial of which is f , then, for any monic polynomial
g 2 K[X] with g(0) 6= 0, this sequence u also satisfies the
linear recurrence, the characteristic polynomial of which is fg.
Example : for g(X) = X � � with � 6= 0, from

(?) un+d�a1un+d�1�· · ·�adun = 0

we deduce

un+d+1 � a1un+d � · · ·� adun+1

� �(un+d � a1un+d�1 � · · ·� adun) = 0.

The order of a linear recurrence sequence is the smallest d
such that (?) holds for all n � 0.
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Generating series of a linear recurrence sequence

Let u = (un)n�0 be a linear recurrence sequence

(?) un+d = a1un+d�1+· · ·+adun for n � 0

with characteristic polynomial

f(X) = Xd � a1X
d�1 � · · ·� ad.

Denote by f� the reciprocal polynomial of f :

f�(X) = Xdf(X�1) = 1� a1X � · · ·� adX
d.

Then
1X

n=0

unX
n =

r(X)

f�(X)
,

where r is a polynomial of degree less than d determined by
the initial values of u.
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Generating series of a linear recurrence sequence

Assume

un+d = a1un+d�1 + · · ·+ adun for n � 0.

Then
1X

n=0

unX
n =

r(X)

f�(X)
·

Proof. Comparing the coe�cients of Xn for n � d shows that

f�(X)
1X

n=0

unX
n

is a polynomial of degree less than d.
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Taylor coe�cients of rational functions

Conversely, the sequence of coe�cients in the Taylor expansion
of any rational fraction a(X)/b(X) with deg a < deg b and
b(0) 6= 0 satisfies the recurrence relation with characteristic
polynomial f 2 K[X] given by f(X) = b�(X).

Therefore a sequence u = (un)n�0 satisfies the recurrence
relation (?) with characteristic polynomial f 2 K[X] if and
only if

1X

n=0

unX
n =

r(X)

f�(X)
,

where r is a polynomial of degree less than d determined by
the initial values of u.
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Linear di↵erential equations

Given a sequence (un)n�0 of numbers, its exponential
generating power series is

 (z) =
X

n�0

un
zn

n!
·

For k � 0, the k-the derivative  (k) of  satisfies

 (k)(z) =
X

n�0

un+k
zn

n!
·

Hence the sequence satisfies the linear recurrence relation

(?) un+d = a1un+d�1+· · ·+adun for n � 0

if and only if  is a solution of the homogeneous linear
di↵erential equation

y(d) = a1y
(d�1) + · · ·+ ad�1y

0 + ady.
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Matrix notation for a linear recurrence sequence

The linear recurrence sequence

(?) un+d = a1un+d�1+· · ·+adun for n � 0

can be written

0

BBB@

un+1

un+2
...

un+d

1

CCCA
=

0

BBBBB@

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ad ad�1 ad�2 · · · a1

1

CCCCCA

0

BBB@

un

un+1
...

un+d�1

1

CCCA
.

16 / 46



Matrix notation for a linear recurrence sequence

Un+1 = AUn

with

Un =

0

BBB@

un

un+1
...

un+d�1

1

CCCA
, A =

0

BBBBB@

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ad ad�1 ad�2 · · · a1

1

CCCCCA
.

The determinant of IdX � A (the characteristic polynomial of
A) is nothing but

f(X) = Xd � a1X
d�1 � · · ·� ad,

the characteristic polynomial of the linear recurrence sequence.
By induction

Un = AnU0.
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Powers of matrices

Let A = (aij)1i,jd 2 GLd⇥d(K) be a d⇥ d matrix with
coe�cients in K and nonzero determinant. For n � 0, define

An =
�
a(n)ij

�
1i,jd

.

Then each of the d2 sequences
�
a(n)ij

�
n�0

, (1  i, j  d) is a
linear recurrence sequence. The roots of the characteristic
polynomial of these linear recurrences are the eigenvalues of A.

In particular the sequence
�
Tr(An)

�
n�0

satisfies the linear
recurrence, the characteristic polynomial of which is the
characteristic polynomial of the matrix A.
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Conversely :

Given a linear recurrence sequence u 2 KN, there exist an
integer d � 1 and a matrix A 2 GLd(K) such that, for each
n � 0,

un = a(n)11 .

The characteristic polynomial of A is the characteristic
polynomial of the linear recurrence sequence.

Everest G., van der Poorten A., Shparlinski I., Ward T. –
Recurrence sequences, Mathematical Surveys and Monographs (AMS,
2003), volume 104.
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Linear recurrence sequences : simple roots

A basis of Ea over K is obtained by attributing to the initial
values u0, . . . , ud�1 the values given by the canonical basis of
Kd.
Given � in K⇥, a necessary and su�cient condition for a
sequence (�n)n�0 to satisfy (?) is that � is a root of the
characteristic polynomial

f(X) = Xd � a1X
d�1 � · · ·� ad.

If this polynomial has d distinct roots �1, . . . , �d in K,

f(X) = (X � �1) · · · (X � �d), �i 6= �j,

then a basis of Ea over K is given by the d sequences
(�in)n�0, i = 1, . . . , d.
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Linear recurrence sequences : double roots

The characteristic polynomial of the linear recurrence
un = 2�un�1 � �2un�2 is X2 � 2�X + �2 = (X � �)2 with a
double root �.

The sequence (n�n)n�0 satisfies

n�n = 2�(n� 1)n�n�1 � �2(n� 2)�n�2.

A basis of Ea for a1 = 2�, a2 = ��2 is given by the two
sequences (�n)n�0, (n�n)n�0.

Given � 2 K⇥, a necessary and su�cient condition for the
sequence n�n to satisfy the linear recurrence relation (?) is
that � is a root of multiplicity � 2 of f(X).
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Linear recurrence sequences : multiple roots

In general, when the characteristic polynomial splits as

Xd � a1X
d�1 � · · ·� ad =

Ỳ

i=1

(X � �i)
ti ,

a basis of Ea is given by the d sequences

(nk�i
n)n�0, 0  k  ti � 1, 1  i  `.
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Polynomial combinations of powers

The sum and the product of any two linear recurrence
sequences are linear recurrence sequences.

The set [aEa of all linear recurrence sequences with
coe�cients in K is a sub–K–algebra of KN.

Given polynomials p1, . . . , p` in K[X] and elements �1, . . . , �`
in K⇥, the sequence

�
p1(n)�1

n + · · ·+ p`(n)�
n
`

�
n�0

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.
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Consequence

• When p is a polynomial of degree < d, the characteristic
polynomial of the sequence un = p(n) divides (X � 1)d.

Proof.
Set

A =

0

BBBBBBB@

1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1

1

CCCCCCCA

= Id +N

where Id is the d⇥ d identity matrix and N is nilpotent :
Nd = 0.
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Consequence

The characteristic polynomial of A is (X � 1)d. Hence for

1  i, j  d, the sequence un of the coe�cient a(n)ij of An

satisfies the linear recurrence relation

(?) un+d = a1un+d�1+ · · ·+adun,

that is

un+d = dun+d�1�
✓
d

2

◆
un+d�2+· · ·+(�1)d�2dun+1+(�1)d�1un.

The characteristic polynomial of this recurrence relation is
(X � 1)d.
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Characteristic polynomial of the recurrence

sequence p(n).
Since, for 1  i, j  d and n � 0, we have

a(n)ij =

✓
n

j � i

◆

(where we agree that
�
n
k

�
= 0 for k < 0 and for k > n, while�

d
0

�
=

�
d
d

�
= 1), we deduce that each of the d polynomials

1,
X(X + 1) · · · (X + k � 1)

k!
k = 1, 2, . . . , d� 1

namely

1, X,
X(X + 1)

2
, . . . ,

X(X + 1) · · · (X + d� 2)

(d� 1)!
,

satisfies the recurrence (?). These d polynomials constitute a
basis of the space of polynomials of degree < d.
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Sum of polynomial combinations of powers

If u1 and u2 are two linear recurrence sequences of
characteristic polynomials f 1 and f 2 respectively, then u1 + u2

satisfies the linear recurrence, the characteristic polynomial of
which is

f 1f 2

gcd(f 1, f 2)
·
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Product of polynomial combinations of powers

If the characteristic polynomials of the two linear recurrence
sequences u1 and u2 are respectively

f 1(T ) =
Ỳ

j=1

(T � �j)
tj and f 2(T ) =

`0Y

k=1

(T � �0k)
t0k ,

then u1u2 satisfies the linear recurrence, the characteristic
polynomial of which is

Ỳ

j=1

`0Y

k=1

(T � �j�
0
k)

tj+t0k�1.
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Linear recurrence sequences and

Brahmagupta–Pell–Fermat Equation

Let d be a positive integer, not a square. The solutions
(x, y) 2 Z⇥ Z of the Brahmagupta–Pell–Fermat Equation

x2 � dy2 = ±1

form a sequence (xn, yn)n2Z defined by

xn +
p
dyn = (x1 +

p
dy1)

n.

From
2xn = (x1 +

p
dy1)

n + (x1 �
p
dy1)

n

we deduce that (xn)n�0 is a linear recurrence sequence. Same
for yn, and also for n  0.
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Doubly infinite linear recurrence sequences

A sequence (un)n2Z indexed by Z is a linear recurrence
sequence if it satisfies

(?) un+d = a1un+d�1 + · · ·+ adun.

for all n 2 Z.

Recall ad 6= 0.

Such a sequence is determined by d consecutive values.
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Discrete version of linear di↵erential equations

A sequence u 2 KN can be viewed as a linear map N �! K.
Define the discrete derivative D by

Du : N �! K
n 7�! un+1 � un.

A sequence u 2 KN is a linear recurrence sequence if and only
if there exists Q 2 K[T ] with Q(1) 6= 1 such that

Q(D)u = 0.

Linear recurrence sequences are a discrete version of linear
di↵erential equations with constant coe�cients.

The condition Q(1) 6= 0 reflects ad 6= 0 – otherwise one gets ultimately
recurrent sequences.
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Conclusion

The same mathematical object occurs in a di↵erent guise :

• Linear recurrence sequences

un+d = a1un+d�1 + · · ·+ adun.

• Linear combinations with polynomial coe�cients of powers

p1(n)�1
n + · · ·+ p`(n)�

n
` .

• Taylor coe�cients of rational functions.

• Coe�cients of power series which are solutions of
homogeneous linear di↵erential equations.

• Sequence of coe�cients of powers of a matrix.
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Linear recurrence sequences over finite fields
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Linear recurring sequences

Given a, a0, . . . , ak�1 in a finite field Fq, consider a k–th order
linear recurrence relation : for n = 0, 1, 2, . . . ,

un+k = ak�1un+k�1 + ak�2un+k�2 + · · ·+ a1un+1 + a0un + a

Homogeneous : a = 0.

Initial values : u0, u1, . . . , uk�1.

State vector : un = (un, un+1, . . . , un+k�1).

Initial state vector : u0 = (u0, u1, . . . , uk�1).
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Feedback shift register

Electronic switching circuit : adder, constant multiplier,
constant adder, delay element (flip-flop)

un+k = ak�1un+k�1 + ak�2un+k�2 + · · ·+ a1un+1 + a0un + a
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The least period of a linear recurrence sequence

Since Fq is finite, any linear recurrence sequence (un)n�0 in Fq

is ultimately periodic : there exists r > 0 and n0 � 0 such that
un = un+r for n � n0. The least n0 for which this relation
holds is the preperiod.

Any period is a multiple of the least period.

A linear recurrence sequence (un)n�0 is periodic if there exists
a period r > 0 such that un = un+r for n � 0. In this case
this relation holds for the least period ; the preperiod is 0. If
a0 6= 0, then the sequence is periodic.

The least period r of a (homogeneous) linear recurrence
sequence in Fq of order k satisfies r  qk � 1.
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The companion matrix

The linear recurrence sequence

un+k = ak�1un+k�1 + · · ·+ a0un for n � 0

can be written
un = u0A

n

where

A =

0

BBBBB@

0 0 0 · · · 0 a0
1 0 0 · · · 0 a1
0 1 0 · · · 0 a2
...

...
...

. . .
...

...
0 0 0 · · · 1 ak�1

1

CCCCCA
.
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The least period

Assume a0 6= 0

The least period of the linear recurrence sequence divides the
order of the matrix A in the general linear group GLk(Fq).

The impulse response sequence is the linear recurrence
sequence with the initial state (0, 0, . . . , 0, 1).

The least period of a linear recurrence sequence divides the
least period of the corresponding impulse response sequence.
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Further examples of linear recurrence sequences

I Fibonacci

I Lucas

I Perrin

I Padovan

I Narayana

References
Linear recurrence sequences : an introduction.
http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/LinearRecurrenceSequencesIntroduction.pdf

Linear recurrence sequences, exponential polynomials and Diophantine
approximation.
http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/LinRecSeqDiophAppxVI.pdf
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Leonardo Pisano (Fibonacci)

Fibonacci sequence (F n)n�0,

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233, . . .

is defined by

F 0 = 0, F 1 = 1,

F n+2 = F n+1+F n for n � 0.

http://oeis.org/A000045

Leonardo Pisano (Fibonacci)
(1170–1250)

41 / 46

Lucas sequence http://oeis.org/000032

The Lucas sequence (Ln)n�0 satisfies the same recurrence
relation as the Fibonacci sequence, namely

Ln+2 = Ln+1 + Ln for n � 0,

only the initial values are di↵erent :

L0 = 2, L1 = 1.

The sequence of Lucas numbers starts with

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . .

A closed form involving the Golden ratio � is

Ln = �n + (��)�n,

from which it follows that for n � 2, Ln is the nearest integer
to �n.
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Perrin sequence http://oeis.org/A001608

The Perrin sequence (also called skiponacci sequence) is the
linear recurrence sequence (P n)n�0 defined by

P n+3 = P n+1 + P n for n � 0,

with the initial conditions

P 0 = 3, P 1 = 0, P 2 = 2.

It starts with

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, . . .

François Olivier Raoul Perrin (1841-1910) :
https://en.wikipedia.org/wiki/Perrin_number
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Narayana sequence https://oeis.org/A000930

Narayana sequence is defined by the recurrence relation

Cn+3 = Cn+2 + Cn

with the initial values C0 = 2, C1 = 3, C2 = 4.
It starts with

2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, . . .

Real root of x3 � x2 � 1

3

s
29 + 3

p
93

2
+

3

s
29� 3

p
93

2
+ 1

3
= 1.465571231876768 . . .
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Padovan sequence https://oeis.org/A000931

The Padovan sequence (pn)n�0 satisfies the same recurrence

pn+3 = pn+1 + pn

as the Perrin sequence but has di↵erent initial values :

p0 = 1, p1 = p2 = 0.

It starts with

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, . . .

Richard Padovan
http://mathworld.wolfram.com/LinearRecurrenceEquation.html
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