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Université Pierre et Marie Curie (Paris 6) France

http://www.imj-prg.fr/~michel.waldschmidt/

http://www.iitb.ac.in/fcseminars/seminar.html
http://www.imj-prg.fr/~michel.waldschmidt/


Abstract

L. Euler (1707–1783) investigated the values of the numbers

ζ(s) =
∑
n≥1

1

ns

for s a rational integer, and B. Riemann (1826–1866)
extended this function to complex values of s. For s a positive
even integer, ζ(s)/πs is a rational number. Our knowledge on
the values of ζ(s) for s a positive odd integer is extremely
limited. Recent progress involves the wider set of numbers

ζ(s1, . . . , sk) =
∑

n1>n2>···>nk≥1

1

ns11 · · ·n
sk
k

for s1, . . . , sk positive integers with s1 ≥ 2.



Abstract (Continued)

Some Bourbaki lectures (by Pierre Cartier in March 2001 and
by Pierre Deligne in January 2012) have been devoted to this
question. As a matter of fact, there are three Q–algebras
which are intertwined : the first one is the subalgebra of the
complex numbers spanned by these multiple zeta values
(MZV). Another one is the algebra of formal MZV arising
from the known combinatorial relations among the multiple
zeta values. The main conjecture is to prove that these two
algebras are isomorphic. The solution is likely to come from
the study of the third algebra, which is the algebra of motivic
zeta values, arising from the pro–unipotent fundamental
group, involving cohomology, mixed Tate motives.
Outstanding progress (mainly by Francis Brown) has been
made recently on motivic zeta values.
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Euler–Mascheroni constant

γ = lim
N→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

N
− logN

)
= 0.577 215 664 9 . . .

Neil J. A. Sloane – The On-Line Encyclopedia of Integer
Sequences
http://oeis.org/A001620

http://oeis.org/A001620


The Basel Problem (1644) :
∑

n≥1 1/n
2

In 1644, Pietro Mengoli (1626 – 1686) asked the exact value
of the sum

1

12
+

1

22
+

1

32
+

1

42
+ · · · = 1 +

1

4
+

1

9
+

1

16
+ · · · = 1.644934 . . .



Basel in 1761

The Bernoulli family was originally from Antwerp, at that time
in the Spanish Netherlands, but emigrated to escape the
Spanish persecution of the Huguenots. After a brief period in
Frankfurt the family moved to Basel, in Switzerland.



The Bernoulli family

Jacob Bernoulli (1654–1705 ; also known as James or Jacques)
Mathematician after whom Bernoulli numbers are named.

Johann Bernoulli (1667–1748 ; also known as Jean)
Mathematician and early adopter of infinitesimal calculus.



The Bernoulli family (continued)
Nicolaus II Bernoulli (1695–1726) Mathematician ;

worked on curves, differential equations, and probability.
Daniel Bernoulli (1700–1782) Developer of

Bernoulli’s principle and St. Petersburg paradox.
Johann II Bernoulli (1710–1790 ; also known as Jean)

Mathematician and physicist.
Johann III Bernoulli (1744–1807 ; also known as Jean)

Astronomer, geographer, and mathematician.
Jacob II Bernoulli (1759–1789 ; also known as Jacques)

Physicist and mathematician.

Nicolaus II Daniel Johan III Jacob II
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Another similar series

Example
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(2n+ 1)(2n+ 2)
= log 2.
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The Basel Problem :
∑

n≥1 1/n
2

1728 Daniel Bernoulli : approximate value 8/5 = 1.6

1728 Christian Goldbach : 1.6445± 0.0008

1731 Leonard Euler : 1.644934 · · ·



ζ(2) = π2/6 by L. Euler (1707 – 1783)

The Basel problem, first posed by Pietro Mengoli in 1644,
was solved by Leonhard Euler in 1735, when he was 28 only.

ζ(2) =
1

12
+

1

22
+

1

32
+

1

42
+ · · · =

∑
n≥1

1

n2
·

ζ(2) =
π2

6
·



“Proof” of ζ(2) = π2/6, following Euler
The sum of the inverses of the roots of a polynomial f with
f(0) = 1 is −f ′(0) : for

1 + a1z + a2z
2 + · · ·+ anz

n = (1− α1z) · · · (1− αnz)

we have α1 + · · ·+ αn = −a1.
Write

sinx

x
= 1− x2

3!
+
x4

5!
− x6

7!
+ · · ·

Set z = x2. The zeroes of the function

sin
√
z√

z
= 1− z

3!
+
z2

5!
− z3

7!
+ · · ·

are π2, 4π2, 9π2, . . . hence the sum of the inverses of these
numbers is ∑

n≥1

1

n2π2
=

1

6
·
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Remark

Let λ ∈ C. The functions

f(z) = 1 + a1z + a2z
2 + · · ·

and
eλzf(z) = 1 + (a1 + λ)z + · · ·

have the same zeroes, say 1/αi.

The sum
∑

i αi cannot be at the same time −a1 and −a1 − λ.
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Completing Euler’s proof
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(
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n2π2

)
.

sinx
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= 1− x2

6
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n2π2
=

1

6
·

http://en.wikipedia.org/wiki/Basel−problem

Evaluating ζ(2). Fourteen proofs compiled by Robin Chapman.

http://en.wikipedia.org/wiki/Basel_problem
http://secamlocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf
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Another proof (Calabi)

Eugenio Calabi Pierre Cartier

P. Cartier. – Fonctions polylogarithmes, nombres polyzêtas et
groupes pro-unipotents. Sém. Bourbaki no. 885 Astérisque
282 (2002), 137-173.



Another proof (Calabi)

1

1− x2y2
=
∑
n≥0

x2ny2n.

∫ 1

0

x2ndx =
1

2n+ 1
·

∫ 1

0

∫ 1

0

dxdy

1− x2y2
=
∑
n≥0

1

(2n+ 1)2
·

x =
sinu

cos v
, y =

sin v

cosu
,

∫ 1

0

∫ 1

0

dxdy

1− x2y2
=

∫
0≤u≤π/2, 0≤v≤π/2, u+v≤π/2

dudv =
π2

8
·
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Completing Calabi’s proof of ζ(2) = π2/6

From ∑
n≥0
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8
·
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·
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Introductio in analysin infinitorum

Leonhard Euler

(1707 – 1783)

Introductio in analysin infinitorum



Special values of the Zeta function

ζ(s) for s ∈ Z, s ≥ 2
Jacques Bernoulli

(1654–1705),
Leonard Euler (1739).

π−2kζ(2k) ∈ Q for k ≥ 1 (Bernoulli numbers).



Bernoulli numbers

t

et − 1
= 1− t

2
+
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(−1)n+1Bn
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ζ(2n) = 22n−1 Bn

(2n)!
π2n (n ≥ 1).

ζ(2) =
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6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
·
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Riemann zeta function

ζ(s)=
∑
n≥1

1

ns

=
∏
p

1

1− p−s

Euler : s ∈ R. Riemann : s ∈ C.



Analytic continuation of the Riemann zeta function

The complex function which is defined for <es > 1
by the Dirichlet series

ζ(s) =
∑
n≥1

1

ns

has a meromorphic continuation to C
with a unique pole in s = 1 of residue 1. B. Riemann

(1826–1866)
lim
s→1

(
ζ(s)− 1

s− 1

)
= γ.

Euler Constant :

γ= lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
= 0.577 215 664 901 532 860 606 512 090 082 . . .
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Functional equation of the Riemann zeta function

Connection between ζ(s) and ζ(1− s) :

ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s).

Euler Gamma function

Γ(s) =
1

s

∞∏
n=1

(1 + 1/n)s

1 + s/n
=

∫ ∞
0

xs−1e−xdx.

Trivial zeroes of the Riemann zeta function −2, −4, −6. . .
Riemann hypothesis :

The non trivial zeroes of the Riemann zeta function have
real part 1/2.
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∫ ∞
0

xs−1e−xdx.
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Riemann hypothesis :

The non trivial zeroes of the Riemann zeta function have
real part 1/2.
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Values of ζ at the positive even integers

• F. Lindemann : π is a
transcendental number, hence
ζ(2k) also for k ≥ 1.

• Hermite–Lindemann :
transcendence of logα and eβ

for α and β nonzero algebraic
numbers with logα 6= 0.



Diophantine question

Determine all algebraic relations among the numbers

ζ(2), ζ(3), ζ(5), ζ(7), . . .

Conjecture. There is no algebraic relation among these
numbers : the numbers

ζ(2), ζ(3), ζ(5), ζ(7), . . .

are algebraically independent.

In particular the numbers ζ(2n+ 1) and ζ(2n+ 1)/π2n+1 for
n ≥ 1 are expected to be transcendental.
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ζ(3) = 1 +
1

8
+

1

27
+

1

64
+ · · · 6∈ Q

• Roger Apéry (1978) : The number

ζ(3) =
∑
n≥1

1

n3
= 1, 202 056 903 159 594 285 399 738 161 511 . . .

is irrational.



Infinitely many odd zeta are irrational

Tanguy Rivoal (2000)

Let ε > 0. For any sufficiently
large odd integer a, the
dimension of the Q–vector
space spanned by the numbers
1, ζ(3), ζ(5), · · · , ζ(a) is at
least

1− ε
1 + log 2

log a.



Wadim Zudilin

• At least one of the four numbers
ζ(5), ζ(7), ζ(9), ζ(11)

is irrational.



Stéphane Fischler and Wadim Zudilin

There exist odd integers j1 and j2 with 5 ≤ j1 ≤ 139 and
5 ≤ j2 ≤ 1961 such that the four numbers 1, ζ(3), ζ(j1) ,
ζ(j2) are linearly independent over Q.



Linearization of the problem (Euler)

The problem of algebraic independence of values of the
Riemann zeta function is difficult. We show that it can be
reduced to a problem of linear independence.

The product of two special values of the zeta function is a
sum of multiple zeta values.

∑
n1≥1

1

ns11

∑
n2≥1

1

ns22
=

∑
n1>n2≥1

1

ns11 n
s2
2

+
∑

n2>n1≥1

1

ns22 n
s1
1

+
∑
n≥1

1

ns1+s2
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Multiple zeta values (Euler)

For s1 ≥ 2 and s2 ≥ 2, we have

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)

with
ζ(s1, s2) =

∑
n1>n2≥1

n−s11 n2
−s2 .

Examples :

ζ(2)2= 2ζ(2, 2) + ζ(4)

ζ(2)ζ(3)= ζ(2, 3) + ζ(3, 2) + ζ(5)
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Multiple zeta values (MZV)

For k, s1, . . . , sk positive integers with s1 ≥ 2, we set
s = (s1, . . . , sk) and

ζ(s) =
∑

n1>n2>···>nk≥1

1

ns11 · · ·n
sk
k

·

For k = 1 we recover the special values of ζ.

k is the depth while n = s1 + · · ·+ sk is the weight.
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The algebra of multiple zeta values

The product of two multiple zeta values is a linear
combination of multiple zeta values.

Hence, the Q–vector space Z spanned by the numbers ζ(s) is
also a Q–algebra.

The problem of algebraic independence becomes a problem of
linear independence.

Question : which are the linear relations among these numbers
ζ(s) ?

Answer : there are many of them ! This algebra Z has a rich
algebraic structure, not yet fully understood.
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Two main conjectures

First Conjecture : there is no linear relation among multiple
zeta values of different weights.

Recall that Z denotes the Q-subspace of R spanned by the
real numbers ζ(s) with s = (s1, . . . , sk), k ≥ 1 and s1 ≥ 2.

Further, for n ≥ 2, denote by Zn the Q-subspace of Z spanned
by the real numbers ζ(s) where s has weight
s1 + · · ·+ sk = n.

Define also Z0 = Q and Z1 = {0}.

The First Conjecture is

Z =
⊕
n≥0

Zn.
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The second main Conjecture

Denote by dn the dimension
of Zn.

Conjecture (Zagier). For
n ≥ 3, we have

dn = dn−2 + dn−3.

(d0, d1, d2, . . .) = (1, 0, 1, 1, 1, 2, 2, . . .).

Zagier’s Conjecture can be written∑
n≥0

dnX
n =

1

1−X2 −X3
·
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Small weight : k = 0, 1, 2, 3, 4

Weight 0 d0 = 1 ζ(s1, . . . , sk) = 1 for k = 0, Z0 = Q.

Weight 1 d1 = 0 k = 1, Z1 = {0}.

Weight 2 d2 = 1 ζ(2) 6= 0

Weight 3 d3 = 1 ζ(2, 1) = ζ(3) 6= 0

Weight 4 d4 = 1 ζ(3, 1) =
1

4
ζ(4), ζ(2, 2) =

3

4
ζ(4),

ζ(2, 1, 1) = ζ(4) =
2

5
ζ(2)2
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Weight 5

d5 = 2 ?
One can check :

ζ(2, 1, 1, 1) = ζ(5),
ζ(3, 1, 1) = ζ(4, 1) = 2ζ(5)− ζ(2)ζ(3),

ζ(2, 1, 2) = ζ(2, 3) =
9

2
ζ(5)− 2ζ(2)ζ(3),

ζ(2, 2, 1) = ζ(3, 2) = 3ζ(2)ζ(3)− 11

2
ζ(5),

Hence d5 ∈ {1, 2}. Moreover d5 = 2 if and only if the number

ζ(2)ζ(3)/ζ(5)

is irrational.
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A modular relation in weight 12

5 197 ζ(12) = 19 348 ζ(9, 3) + 103 650 ζ(7, 5) + 116 088 ζ(5, 7).

Herbert Gangl

EZ Face
http://oldweb.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi

http://oldweb.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi
http://oldweb.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi


Broadhurst and Kreimer

A filtration of Zn is (Z`n)`≥0 where Z`n is the space of MZV of
weight n and depth ≤ `

Denote by dn` the dimension of Z`n/Z
`−1
n .

The Conjecture of Broadhurst and Kreimer is :∑
n≥0

∑
`≥1

dn`X
nY ` =

1 + E(X)Y

1−O(X)Y + S(X)(Y 2 − Y 4)
,

where

E(X) =
X2

1−X2
, O(X) =

X3

1−X2
,

S(X) =
X12

(1−X4)(1−X6)
·
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Broadhurst and Kreimer imply Zagier

For Y = 1, the Conjecture of Broadhurst and Kreimer∑
n≥0

∑
`≥1

dn`X
nY ` =

1 + E(X)Y

1−O(X)Y + S(X)(Y 2 − Y 4)

is Zagier’s conjecture∑
n≥0

dnX
n =

1

1−X2 −X3
·



Modular relations

Notice that

E(X) =
X2

1−X2
=
∑
k≥1

X2k,

O(X) =
X3

1−X2
=
∑
k≥1

X2k+1,

S(X) =
X12

(1−X4)(1−X6)
=
∑
k≥0

dimC(Sk)X
k,

where Sk is the space of parabolic modular forms of weight k.



Hoffman’s remark

The number dn of tuples
(s1, . . . , sk), where each si is
2 or 3 and s1 + · · ·+ sk = n,
satisfies Zagier’s recurrence
relation

dn = dn−2 + dn−3

with d1 = 0, d2 = d3 = 1.



Hoffman’s Conjecture

Michael Hoffman conjectures :
A basis of Zn over Q is given
by the numbers ζ(s1, . . . , sk),
s1 + · · ·+ sk = n, where each
si is 2 or 3.



Hoffman’s Conjecture for n ≤ 20

For n ≤ 20, Hoffman’s Conjecture is compatible with known
relations among MZV.

Masanobu Kaneko

M. Kaneko, M. Noro and K. Tsurumaki. – On a conjecture
for the dimension of the space of the multiple zeta values,
Software for Algebraic Geometry, IMA 148 (2008), 47–58.



Francis Brown

The numbers ζ(s1, . . . , sk), s1 + · · ·+ sk = n, where each si
is 2 or 3, span Zn over Q.



Previous upper bound for the dimension

Zagier’s numbers dn are upper bounds for the dimension of
Zn.

Alexander Goncharov Tomohide Terasoma

A.B. Goncharov – Multiple ζ-values, Galois groups and
Geometry of Modular Varieties. Birkhäuser. Prog. Math. 201,
361-392 (2001).
T. Terasoma – Mixed Tate motives and Multiple Zeta Values.
Invent. Math. 149, No.2, 339-369 (2002).



Motivic zeta values

From Brown’s results, it follows that the algebraic
independence of the numbers

ζ(2), ζ(3), ζ(5), ζ(7), . . .

is a consequence of the two main Conjectures.

There is a combinatorial description of linear relations among
MZV, we do not know yet whether they provide a complete
picture of the situation.
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Problem : lower bound for the dimension

The Diophantine problem is now to prove lower bounds for the
dimension.

We do not even know how to prove dn ≥ 2 for at least one
value of n !
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Periods, following Kontsevich and Zagier

Periods,
Mathematics unlimited—
2001 and beyond,
Springer 2001, 771–808.

A period is a complex number with real and imaginary parts
given by absolutely convergent integrals of rational fractions
with rational coefficients on domains of Rn defined by
(in)equalities involving polynomials with rational coefficients.



ζ(s) is a period

1

1− u
=
∑
n≥1

un−1,

∫ 1

0

un−1du =
1

n
·

1

1− u1 · · ·us
=
∑
n≥1

(u1 · · ·us)n−1,

∫
[0,1]s

du1 · · · dus
1− u1 · · ·us

=
∑
n≥1

(∫ 1

0

un−1du

)s
=
∑
n≥1

1

ns
= ζ(s).
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ζ(2) is a period

ζ(2) =

∫ 1

0

∫ 1

0

dudv

1− uv
·

Another integral for ζ(2) :

π2

6
= ζ(2) =

∑
n≥1

1

n2
=

∫
1>t1>t2>0

dt1
t1
· dt2

1− t2
·
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Notation

Set

ω0 =
dt

t
, ω1 =

dt

1− t
·

For s ≥ 2 we write the relation

ζ(s) =

∫
1>t1>···>ts>0

dt1
t1
· · · dts−1

ts−1
· dts

1− ts
as

ζ(s) =

∫ 1

0

ωs−10 ω1.

This leads to a definition of a (non–commutative) product of
differential forms.
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Chen iterated integrals

When ϕ is a holomorphic 1-form,∫ z

0

ϕ

is the primitive of ϕ which vanishes at z = 0.
When ϕ1, . . . , ϕk are holomorphic 1-forms, we define
inductively ∫ z

0

ϕ1 · · ·ϕk :=

∫ z

0

ϕ1(t)

∫ t

0

ϕ2 · · ·ϕk.
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Coding MZV

s = (s1, . . . , sk) ωs = ωs1−10 ω1 · · ·ωsk−10 ω1

• ends with ω1

• starts with ω0 (s1 ≥ 2).

Weight : n = s1 + · · ·+ sk is the number of factors
Depth : k is the number of ω1

Depth 1 : for s ≥ 2, ωs = ωs−10 ω1 weight s
Examples in depth 2 : ω2,1 = ω0ω

2
1 weight 3

ω4,3 = ω3
0ω1ω

2
0ω1 weight 7
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Multiple zeta values are periods

s = (s1, . . . , sk), s1 ≥ 2, p = s1 + · · ·+ sk

ζ(s) =

∫
1>t1>t2>···>tp>0
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Quadratic relations

The product of two multiple zeta values is a linear
combination, with positive integer coefficients, of multiple zeta
values.

Besides, there are two essentially different ways of writing such
a product as a linear combination of MZV : one of them arises
from the product as series

ζ(s) =
∑

n1>n2>···>nk≥1

1

ns11 · · ·n
sk
k

,

the other one arises from the integral representation

ζ(s) =

∫ 1

0

ωs.
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Products of integrals

ζ(2) =

∫
1>t1>t2>0

dt1
t1
· dt2

1− t2
·

ζ(2)2 =

∫
1>t1>t2>0
1>u1>u2>0

dt1
t1
· dt2

1− t2
· du1
u1
· du2

1− u2
·

We decompose the cartesian product of two simplices

{1 > t1 > t2 > 0} × {1 > u1 > u2 > 0}

as a union, essentially disjoint (up to subsets of zero measure),
of 6 simplices, which yields

ζ(2)2 = 4ζ(3, 1) + 2ζ(2, 2).



{1 > t1 > t2 > 0} × {1 > u1 > u2 > 0}

1 > t1 > t2 > u1 > u2 > 0
1

t1
· 1

1− t2
· 1

u1
· 1

1− u2
ζ(2, 2)

1 > t1 > u1 > t2 > u2 > 0
1

t1
· 1

u1
· 1

1− t2
· 1

1− u2
ζ(3, 1)

1 > t1 > u1 > u2 > t2 > 0
1

t1
· 1

u1
· 1

1− u2
· 1

1− t2
ζ(3, 1)

1 > u1 > t1 > t2 > u2 > 0
1

u1
· 1
t1
· 1

1− t2
· 1

1− u2
ζ(3, 1)

1 > u1 > t1 > u2 > t2 > 0
1

u1
· 1
t1
· 1

1− u2
· 1

1− t2
ζ(3, 1)

1 > u1 > u2 > t1 > t2 > 0
1

u1
· 1

1− u2
· 1
t1
· 1

1− t2
ζ(2, 2)



Linear relations among MZV

As a consequence, multiple zeta values satisfy a lot of
independent linear relations with integer coefficients.

Example

Product of series :

ζ(2)2 = 2ζ(2, 2) + ζ(4)

Product of integrals :

ζ(2)2 = 2ζ(2, 2) + 4ζ(3, 1)

Hence
ζ(4) = 4ζ(3, 1).



The algebras P of multiple zeta periods

Recall that Z is the subalgebra of R over Q spanned by the
numbers ζ(s), where s = (s1, . . . , sk), s1 ≥ 2.

Let P be the Q–algebra defined by generators Zs,
s = (s1, . . . , sk) with s1 ≥ 2, and the relations among MZV
arising from the products of series and integrals.

There is a homomorphism ev : P → R (think of elements of
P as equivalence classes of programs and ev as the “exec”
command). It should be expected that ev is an injective map.
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The algebras M of motivic zeta values

The third algebra is the algebra M of motivic zeta values.
M is a graded algebra generated by homogeneous elements
ζm(s).

There is also an evaluation map evm : M→ R, such that
evm
(
ζm(s)

)
= ζ(s), and a commutative diagram

M
evm

−−−→ Zy ↗ev

P

F. Brown has shown that a basis of M as a Q–vector space is
given by the ζm(s) where si ∈ {2, 3} (i = 1, . . . , k).
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The motivic Galois group

Thanks to the work of F. Brown, we control the automorphism
group of M.

F. Brown deduces that the category of mixed Tate motives of
Z is generated by the fundamental group of P1 \ {0, 1,∞}.
Ref.: Bourbaki seminar by P. Deligne in 2012.

We expect the evaluation map from M to R to be injective.
This would imply for instance that the numbers

π, ζ(3), ζ(5) . . .

are transcendental and algebraically independent. According to
P. Cartier, this wild dream is to be fulfilled around 2040 !.
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