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Abstract. Let f(x) = Po(x)ozg + -+ + Py(x)ay be an exponential polynomial over a
field of zero characteristic. Assume that for each pajrwith i # j, o; /o is not a root of

unity. DefineA = Z’;:O(deng +1). We introduce a partition dfo, . . . , ¢ } into subsets

{aio, ... L eig ) (1 < i < m), which induces a decomposition $finto f = fi+---+ fin,
sothat, for 1< i < m, (a0 : -+ : aj;) € Pt (Q), while for 1 < i # u < m, the number
a;0/ay,0 either is transcendental or else is algebraic with not too small a height. Then we
show that for all but at most eJ@n(SA)M) solutionsx € Z of f(x) = 0, we have

fix)=---= fin(x) =0.
1. Introduction
Let K be a field of zero characteristiey, . .. , a; be non-zero elements of
K and Py, ..., P, non-zero polynomials with coefficients i§. Consider

an exponential polynomial

k
f) =) Pi(xaj.

Jj=0

We study the equation
fx)=0 (1.1
in x € Z. We suppose that for each pairj with i # j,

a;/aj is notaroot of unity. 1.2
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We set

k
A(f) =) (degP; +1).

Jj=0

It is well known that(f(O), fQ,.. ) is a linear recurrence sequence of
order A(f), which is “non-degenerate”. Vice versa, any non-degenerate
linear recurrence sequen(;eo, ug, . ) of elements ofkK of orderg has
some representatian, = f(n), wheref is an exponential polynomial as
above satisfying (1.2) and with(f) = ¢. For more detalils, cf. e.g. [8].
So in studying (1.1) we study the zeros of linear recurrence sequences. An
old conjecture says that the number of solutiens Z of equation (1.1) is
bounded above by a function that depends only ufpoyi). Let us briefly
review what is known so far in this contéxt

Forg = 1, equation (1.1) reduces to

apay =0

and clearly there is no solutionat all.
Forg = 2, we have one of the following two equations

(ap +arx)ag =0 or apagy + aje; = 0.

In either case, in view of our assumption (1.2) on non-degeneracy, we clearly
do not have more than one solution

The first non-trivial case ig = 3. Here, Schlickewei [4] proved the con-
jecture to be true. His bound has been improved by Beukers and Schlickewei
[1]. They showed that fog = 3 equation (1.1) does not have more than 61
solutions.

Now suppose; > 4. In a recent paper [3], Evertse, Schlickewei and
Schmidt proved the followingSuppose that in (1.1) the polynomigisfor
i = 0,...,k are constant. Then equation (1.1) does not have more than
exp((7k)*) solutionsAs in this situatiory = k + 1, we see that when the
polynomialsyf; in (1.1) are all constant, the conjecture is true.

There remains the case when> 4 and when not alf;'s are constant.
Now obviously in (1.1) we may suppose without loss of generality that
ap = 1. With this normalization, Schlickewei [5] proved the following:
Suppose thaty, ... , o, are algebraic and thafQ(«q, ... , ax) : Q] < d.

Then the number of solutions of equation (1.1) is bounded in terpard
d only. (A bound was given explicitly). Schlickewei and Schmidt [6] later
on established the bouridg)35° 4%,

1 After the present paper was written, the second author [7] settled this conjecture.
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We denote byQ the algebraic closure @ in K (this is the field of
algebraic elements iK). We define an equivalence relation on thel§ét
of non-zero elements & by the condition

71~72 <= 1z1/z2 Iisalgebraic
This relation induces a partition v, ... , o}

m
{Olo, e ,Olk} = U{Olio, e ,Otiki},
i=1
where, for 1< i < m,
(Olio e aik,-) € Pk,»(@),

while for 1 < i # u < m, the number;q/a,0 is transcendental. Accord-
ingly, f is decomposed into

f=n++ fu (1.3
with
fi(x) = Po(x)ajp + -+ + P, (). (L<i <m).
We prove
Theorem 1.1. Suppose we have (1.2). Define= A(f) and

F(A) = exp(A(BA)™).
Then for all but at mosF'(A) solutionsx € Z of (1.1), we have

fix) == fulx) =0. (1.4

Our result, in other words, says that the only case when the conjec-
ture possibly could fail to be true arises from the algebraic case, i.e. when
ap, . .. , o are inQ. Moreover we shall see that the conjecture would follow
from the special case whesg, . .. , o are algebraic and eaofi/«; has a
small height. Actually our method of proof gives a result of the type stated
in the Theorem also under the assumption that the quotiepss are not
transcendental but have logarithmic height bounded away from zero (for
more details, see the final remark in Sect. 6).

We mention that our proof was inspired by a similar resuligfet 3 by
Beukers and Tijdeman [2]. They showed:

Leta and 8 be non-zero elements &. Suppose that, 8 anda/8 are
not roots of unity. Letz and » be non-zero elements &. Suppose that
the equation

aa’ +bp* =1
has at least} solutionsx € Z. Thena and 8 are algebraic.

Our proof uses arecent result of Schlickewei and Schmidt [6] on polynomial
exponential equations.
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2. Heights

Let K be a number field of degrek Write M (K) for the set of places of .
Forv e M(K), let| |, be the valuation which extends either the standard
absolute value d, or if v|p for arational primep, let| |, be the valuation
with |p|, = p~*. Write d, for the local degre¢k, : Q,1 and define the
absolute valug ||, by

d,/d
I l,=1 |4/,

Letn > 1and letw = (o, ... , &) # (0, ..., 0) be a point inkK"**. We
then put

leelly = max{lletollv, - - - , llllv }

and we define the homogeneous height as

Ho = ] l«l.

veM(K)

Since it depends only on the clags= (ag : --- : a,) of « in P,(Q), we
also denote it by k). Let N

h(@) = h(ao: - : @) = log H(@)

be the homogeneous logarithmic absolute height af P,(Q) We shall
also need the inhomogeneous absolute heights

Hin(x) =H@Q :x1:---:x,)
and

hin(x) =h(1:x1:---:x,) = logHn(x)
of x = (x1, ... ,x,) € Q. Further, forx € Q, we set

Hin(x) =H(1:x) and hk(x) =h(1:x) =logHi(x).

GivenD e Nandh> 0, we will use the fact that the set of elememts Q"
with
dege <D and h(ax)<Wh

is finite.
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3. Algebraic linear recurrence sequences

The results in this section are consequences of the Subspace Theorem.

Lemma3.l.Letm > 1 and I" be a finitely generated subgroup of

(@X)’” of rankr > 0. Then the solutions = X kY= (X1V1, -+ » XmYm) of
ut-+zm=1 (3.1)
withz € I', y € Q" and
1
hin(y) < mhin@) (3.2)

are contained in the union of at most
exp((@m)*" (r + 1))
proper subspaces @m.

Proof. This is a variation on Proposition A of [6]. In that proposition there
was a distinction between three kinds of solutions:

i) Solutions where somg = 0, i.e., some; = 0. These clearly lie im
subspaces.

i) Solutions where each # 0 and where h(x) > 2m logm. These were
calledlarge solutionsin [6] and it was shown in (10.4) of that paper
that they lie in the union of fewer than

23%2 (21n12)r

proper subspaces.

iii) Solutions where eacly; # 0 and where f(x) < 2mlogm. These
were calledsmall solutionsin [6]. Here we argue as follows. We have
hin(y) < (2mlogm)/(4m?) < log2 by (3.2). Then each component
has hh(y;) < log2, which is Hh(y;) < 2. Sincey; € Q*, we have
y; = 1. The equation (3.1) now becomes

tx1xxo+---£x, =1 (3.3

The group™ generated by and the vectorét1, - - - , £1) contains no
more tharr multiplicatively independent elements. By Proposition 2.1
of [6], the solutions of (3.3) lie in the union of not more than

exp((@m)®" - 2(r + 1))

proper subspaces @ .
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Combining our estimates we obtain
m + 259 (21m?)" + exp(4m)>" - 2(r + 1)) < exp((4m)* (r +1)). O

Corollary. Letg > 1and letI" be a finitely generated subgroup @ )4
of rankr > 0. Then the solutions of

21+ +2z,=0 (3.4)

wherez = x x y withx € T', y € Q7 and
1
h(y) < @h@)

are contained in the union of fewer than
exp((49)¥ (r + 1)) (3.5)
proper subspaces of the space given by (3.4).

Proof. This is just the homogeneous version of Lemma 3.1. We apply
Lemma 3.1 withm = g — 1. One needs also to consider the possible solu-
tions withz, = 0. But they lie in one subspace, and 1 is absorbed in (3.5)
sinceq > m. O

Lemma 3.2. Leta € Q" be given witthi, (o) > 0. Leta € Q. Then there
is au € Z such that

hin(aa™ ™) > %hin(a)|x|
forx € Z.
Proof. This isthe case =n = 1 of Lemma 15.1in[6]. O
Agreement We define the degree of the zero polynomial-ds
Lemma 3.3. Consider an equation
Po(x)erg + -+ -+ Pr(x)ay =0 (3.6)
where (ao, ... , o) € (Q )1 and, for0 < j < k, P; is a non-zero

polynomial of degree; > 0 with algebraic coefficients. Write

k
A=>"dj+1., D= maxd;.

0<j<k
=0 =J=

Suppose thah > 3,

max h(e; : o) >
0<i, j<k ( 2 ])_h
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where0 < i < 1 and set
E =16A°D/l, t=exp((5A)**) +5ElogE.
Then there are tuples
(P,....,PY)#(©0,...,00 (1<t<0)

of polynomials wherdegP[” < d; (0 < j < k,1 < ¢ <t)anddegP,” <
dyfore =1,...,t, such that every solution € Z of (3.6) satisfies

PPy + -+ PPl =0 (3.7)
for somet.
Proof. Suppose: € Z and sety = x + u. Then (3.6) may be rewritten as
Po(y —w)ag oy + -+ + Py — u)og "o =0,

which is the same as

Po()eg + -+ + Puy)e =0, (38)
with
Pj(Y)=P;(Y —wa;* (0= <k).
Suppose our assertion is true for (3.8), with polynomigfs., ..., P\

(1 < ¢ < t). Thus every solution of (3.8) satisfies
PPy +-+ PPl =0
for somel. But thenx = y — u satisfies (3.7) with
POX) = POX +we!  (0<j<h).

We therefore may make a change of variahles y = x + u.

We may suppose thatdy : «,) > Ii for somet in the range 1< ¢ < k.
Write P;(X) = ajotajpnX+---+ajq, X9 . Picku according to Lemma 3.2
with h(ao,doag_” taggo) ) > %h|y|. Writing E(Y) = P;(Y — u)aj_“ =
bjO + bJ'lY + -4 bj,dj Ydj, we han?O,do = ao,doaa“, bl,dl = al,dtoe[_”, SO
that

1
h(bo,apg : bra) = Zhlyl- (3.9
The equation (3.8) may be written as

(boo+b01y +--- +bo,d0yd°)ag R (bko+bk1y +-- '—f—bk,dkydk)o{]f =0.
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Some coefficients may be zero; omitting the zero coefficients, we rewrite
this as

(booy"® + « -+ + bo.agy®) oy + -+ + (bjoy™® + -+ + br.g y*)ej = 0.

Let g be the total number of (non-zero) coefficients here, and consider the
following vectors ing-space:

x = (booods - - -+ bo.dg®s - - - » Dottt - - - br.g @ty
w=(y",... Jy%, Ly ,yd").
Our equation becomes
21+ +2z4=0 (3.10)
with z = x * w = (x1wy, ..., x,w,). Hencex lies in the groupl’ of
rankr < 2 generated by, ... , 2o, ..., a, ..., ) and(bg, . .. , bo 4,

,bios -+ br.g). Further

h(x) > h(bo.ag : brae)) > —Wyl
by (3.9). On the other hand(#) < Dlog|y|. Therefore when
|yl > 2Elog E, (3.11)
so that|y| > (32¢2D /W) log(1652D/H) by g < A, then

Iyl > (164°D/W) log |y|.
and

h(w) < Dlog|y| < h(X)

l| | = l7‘| | <
16427 4q24 =22

By the corollary, for sucly, we havez contained in the union of

exp((4g)* - 3) < exp((5A)**)

proper subspaces of the space (3.10). Consider such a suhspace
-+ ¢,z = 0 (where(cy, ..., ¢y) is not proportional to(l, ... , 1)).
Taking a linear combination of this and (3.10) we obtain a non-trivial relation
cizi+-- -+c;_1zq_1 = 0. Butthis means exactly thasatisfies a non-trivial
equation _ _
Qo(Mag + -+ Qe =0, (312
where de@); < d; (0 < j < k) and degD; < d.

There are not more thark3og E values ofy where (3.11) is violated. For
fixedy, and sinceA = } (d; + 1) > 3, there will certainly be polynomials
Oo, ... , Oy as above (degz] <d;(0<j <k)and deng < dy) with
(3.12) o

Remark.When h> exp(—(5A)**) we haver < exp((5A)°*).
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4. A specialization-type argument

Lemma4.1. LetK be a number fieldD, N, M, L4, ... , L) non-negative
integersAs, ..., Ay homogeneous polynomialsif Xo, . .. , X;], each of
degree< DandB;, (1 <X < L,,1 < p < M)homogeneous polynomials
in Q[Xo, ..., Xx]. Assume that there existse P, (K) such that

() A(@) =---=Ay(@) =0and

(i) foreachu =1,..., M,thereexistg € {1,..., L,}with B, (a) # 0.
Then there exist elemeris, . .. , a; in K, algebraic overQ, not all of
which are zero, which generate an extension= K (do, . .. , a;) of K
of degred K : K] < D* and such that the poiff = (@ : -+ : &) €
P (K) satisfies
()a A1(@) =---=Ay(@ =0and
(i), foreachu =1,..., M, there exists. € {1, ..., L,} with

Bk/t(g) 75 O

Proof. Given homogeneous polynomial¥,, ..., Oy in K[Xo, ..., X1,
we write

Z(le e QN) C ]P)k(K)

for the set of zeros i, (K) of the ideal(Q4, ..., On) INK[Xo, ..., Xi]
generated by, ..., Oy.

Let Y be an absolutely irreducible component €A, ..., Ay) C
P, (K) containingg. Consider the Zariski closed subset

M
F=()ZBy.....BL,.)

n=1

of P, (K). By assumptiom is notin F. Hence Lemma 4.1 is a consequence
of the following statement:

LetA4, ..., Ay be homogeneous polynomialskriXo, ... , X;], each
of degree< D. LetY be an irreducible component of dimensibof

Z(Ag, ..., AN)
and F’ a Zariski closed subset & (K) such thatr \ F' is not empty. Then
there exists an elemeit= (ap : --- : @;) in Y \ F whose components

®o, . . . , &y are algebraic overQ and such that we have

[K(@o, ... %) : K] < D"
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SinceY is absolutely irreducible and not containediinwe have dindY N
F) < § — 1. Pick linear formsL4, ..., Ls with coefficients inK and in
sufficiently general position such that

Z(Ly)N---NZ(Ls)NFNY =0
and such that moreover
Z(LyN---NZ(WLs)NY

is a non-empty finite set which does not contain more thr? points. Let
y = (yo: - : ) be one of its elements. One at least amogyg . . , v«

is non-zero, sayy. Put@ = y;/yo. Then our construction implies that
Q =@:ay: 0= y liesinY \ F. Since our linear form&; as well
as the polynomialst4, ... , Ay have coefficients irk, it follows that for
any K -embeddingr of K (@, ... , ;) in K we have

(120’&13---:0&/()GZ(Ll)n”-ﬂZ(L(;)ﬂY.

Since moreover the right hand side has cardinalitP*—?, we may conclude
that in factay, ... , o; are algebraic ovek and that

[K@1,...,0,):K]<D'"?% o

Here is a consequence of Lemma 4.1.

Lemma 4.2. Letk be anon-negative integer, S, T, dy, . .. , ds positive in-
tegers and/la positive real number. Fak < s < §,letC,; = (Cy, ... , Cpy)
be ap-tuple of homogeneous polynomials@iXo, ... , X1, each of de-
greed;. For1 <t < T,letD, = (Dy, ..., Dp) be ap-tuple of homo-
geneous polynomials i@[Xo, ... , X, with degDy, = --- = degD,,.
Letay, ..., a; be non-zero elements Bfanda = («o, ... , o) € KL

Denote byV the subspace dk” spanned byC,(a), ..., Cg(a). AsSsume
that foreachy =1,... , T, we haveD,(a) ¢ V.
Then there exist non-zero algebraic elemefys . . , @; in K such that

- o~ kel
a=(do,...,0) €Q

has the following properties. The subspaﬁ:efK” spanned by, (@), ... ,
Cq(@) hasdimV = dimV. Further, for eachr = 1,...,T, we have
D, (@) ¢ V. Furthermore, folO < i, j < k, we have

a;/a; =a;/a; ifo;/a;is algebraic
h(@; : @;) > if o; /e is transcendental



Zeros of linear recurrence sequences 235

Proof. Let K denote a number field containing all coefficient<af (1 <
i < p,1<s < 8)and all algebraic elements Bf which belong to the set

{a;/aj; 0 <i, j < k}.We shall prove the existence®@t= (o, ... , &%) €
KK+ satisfying the desired properties together with an upper bound for the
degree of the number field = K (a, ... , &), hamely

[K:K]<D' with D=pmaxd,.

1<s<S

Definer = dim V. SinceD, («) isnotinV, we haveV # K?, hence: < p.
Denote by{As, ..., A, } the set of(r + 1) x (» + 1) minors of thep x §

matrix
(gl, o ,gs).

Each of these polynomials,, ... , A; is homogeneous of degree

<@ +1) maxd, < D.

1<s<S§

Also,forl1 <t < T,denoteby By, ..., B.,}thesetofr+1) x (r+1)
minors of thep x (S + 1) matrix

(gl,... . Cs. Q,).

Further, let{A,,1, ..., Ay} denote the set of polynomial§ X; — a; X;
where(i, j) runs over the set of pairs with® i, j < k for whiche; /«; is
algebraic. Furthermore, denote bBTH’ e BM} the set of polynomials
Xo, ..., X, andBX; — X;, where(i, j) runs over the set of pairs with
0 < i,j < k for which «;/«; is transcendental, whilg runs over the
(finite) set of algebraic elements Kffor which

[K(B): K]< D" and h(B) <M
By assumption the point € K**! satisfies

Ai(@) =+ = An(@) =0,
B,(@) #0 for T+1<u<M,

andforeactn =1,...,T,thereexists € {1,... , L} suchthaB,,(«) #
0.
From Lemma 4.1 we deduce that there exists @k+l such that

[K@o, ... .q) : K] < D,
Ay(@) =---=Ay(@) =0,
B,(@) #0 for T+1<u<M,

andforeactn = 1,..., T, thereexists € {1, ..., L} suchthaB, , (@) #
0. Thisa then satisfies all desired propertiest
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We apply Lemma 4.2 to exponential polynomials.

Lemma 4.3. Letk > 1 be an integer/fa positive real numbetj, ... , d;
non-negative integers angy, ... , oy hon-zero elements @ satisfying
(1.2). ForO< j <k, let

dj
PJ(X) = Za,-in
i=0

be a non-zero polynomial IK[X ] of degreed;. Define
k
fx) =) Pj(x)a}
j=0

and denote by the set of solutions € Z of the equationf (x) = 0. Let
£ be a finite subset &f. Assume that for each € £ we are given a subset
I(x)of{Gi, j); 0<i <d;, 0<j <k} for which

Z aijxia;.‘ # 0. 4.1)

(i.J)el (x)

Then there e;sist non-zero algebraic eleméfts . . , a; of K and there exist
polynomialsPy, ... , P, which are not all zero,

dj
Pi(X)=) a;X' (0=<j<h),
i=0

with algebraic coefficients;;, and with the following properties:

degP; <d; (0<j<k (4.2)
k
P;(x)@ =0 forallx e NV, (4.3)
j=0
a;x'al #0 foreach x €&, (4.4)
(i, )l (x)

and, for0 < i, j <k,

&i/&j :O[,'/O[j ifOtl'/Otj isalgebraiC

~ . . (4.5)
he; :aj) > if a;/a; is transcendental
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Proof. We fix an ordering of the set = {(i, ):;0<i<d;,0<j<
k, a;; # 0} and we denote by the number of elements in this set. Also
we write N = {ny, ... , ng} (recall that\/ is finite) and€ = {xq, ..., x7}.
Forl<s < S, we defineC, as thep-tuple composed of the polynomials
n§X7 for (i, j) e I.Forl<t < T, let D, be thep-tuple composed of the
polynomials

xle;’ for (i, j) e INI(x;)

0 for (i, j) e I\ I(x,).
From the definition of\" we deduce that the dimensiewf the vector space
V spanned byC,(a), ..., Cs(a) satisfiesr < p. According to (4.1), for
eacly =1,..., T wehaveD,(«) ¢ V. Therefore Lemma 4.3 follows from
Lemma4.2. O

Remark.Let K denote the field generated ov@by all algebraic elements
which belong to the sefe;/a;; 0 < i, j < k}. The proof of Lemma
4.3 also yields an upper bound for the degree of the number Kield
K(ag, ... ,ay), namely
~ k
K:K|<(Ama
[K : K] = (A max|x])

with A = d1+- - -+d; +k+1. One may prove a variant of Lemma 4.3 where
(4.3) holds only for some subsgt of A" with Card\’/ CardN > 1/(k+1)
but with the estimate

~ ) k
[K.K]g(AIgl\r/Hxl).

5. Dividing exponential polynomials

Let «p,...,a; be given non-zero elements & satisfying (1.2) and
Po, ..., P, be polynomials with coefficients iK, possibly zero. Consider
the exponential polynomial

k
fx) = Z Pj(x)a;.
j=0

We set
k
A(f) = Z(deng +1).
i
ThusA(f) = 0 precisely wherPy = --- = P, = 0. When

k
gx) =Y Q;x)a}
j=0
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is another exponential polynomial with the same frequengigs - - , ay),
we writeg < fifdegQ; < degP; for0 < j < k. We writeg <« f if
g < fandA(g) < A(f).

Lemma5.1. Supposes < f andg # 0. Then there is an exponential
polynomial
r(x) = Ro(x)oy + - - - + Ri(x)oj

with» « f such that
fx)=r(x)+cx"gx)

for somec in K* and some: > 0.

Proof. With f andg written as above, set

n = min(degp; — degQ;).
0;#0

We may suppose = degP, — degQo. When
Po=c, X' +ce1 X+, Qo=dp X" +dp X+
where nowa = b + n, setc = ¢, /d, and
r(x) = f(x) —cx"g(x).
If againr(x) = Ro(x)ag + - - - + Ri(x)e, we have
Ro(X) = Po(X) — (ca/dp)x" Qo(X),

sothatdedry < degPy.AlsodegR; < max(degP;, n+degQ;) < degP;,
sothatr <« f. O

Consider an exponential polynomial
k
fx) =) Pj(x)a}
j=0

whereayg, ... , o are non-zero algebraic elementsknsatisfying (1.2).
Assume

m

{O[o,... ,Olk}IU{Otioi-”ZOliki}

i=1
is a partition of{«o, ... , o} and define
fi(x) = Po(x)ajp+ -+ Py (), (L <i <m)

so that
fx)= failx) + -+ fu(x).
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Suppose further,fork i #u <m,0< j <k;and0< v < k,,
hin(etij /o) > 1. (5.1
From (1.2) we deduce
A(f)=AD + -+ A(fw)-

Set
A = A(f)

Lemma 5.2. Define
F(A) = exp(A(BA)™).

Then for all but at mosE' (A) solutionsx € Z of f(x) = 0, we have

i) == fu(x) =0. (5.2)
Proof. The lemma is non-trivial only whem > 2 and at least two of
f1, ..., fm are non-zero, so thak > 2. We now proceed by induction

on A. WhenA = 2 andm > 2, we have in factf (x) = aaj, + bay,
with ab # 0 and k,(a10/a@20) > 1, so thataig/azg is not a root of 1.
There can be at most one zeroof f, for if f(x) = f(y) = 0, then
(010/0020)" = (a10/020)” = —b/a, SO that(azo/a20)* > = 1 hencex =y
sinceayo/ 20 IS Not a root of 1.

Now assumeA > 3. In the induction step we apply Lemma 3.3 with
i = 1. The condition may; j<x h(a; : «j) > 1 is satisfied because > 2.
Any x € Z with f(x) = O satisfies a relation

fOw =0
for somet intherange 1< ¢ < r wherer = exp((5A)°*) and eacty® # 0
hasf® « f.ByLemma5.1we have, fork ¢ < ¢
£ =rO@) +cOx" FO )
with r® <« f. Write out

FOW =H20 4+ fP ),
KOG = rHO@) 4 -4 100
with
90 = PR+ -+ PO,
@) = RG ey + -+ R (e,
and
£ =rO) +c“)x"“)ﬁ.“)(x). (5.3)
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By induction, and sincg® « f andr® « f, henceA(f©) < A(f),
A(rY) < A(f), we see that all but at most( A — 1) solutions off ¥ (x) =
0 have

) == fP@) =0, (5.4)
and similarly all but at mosF (A — 1) solutions ofr“ (x) = 0 have
P = =rPx) =0 (5.5)

But (5.3), (5.4) and (5.5) imply (5.2). Taking the sum o¥én 1 < ¢ < ¢,
we see that all but at most

21F(A — 1) <exp(1+ (5A)°* + (A — 1)(5A)**™°) < F(A)

solutions off (x) = 0 have (5.2). O

6. Proof of Theorem 1.1

Assume that the assumptions of Theorem 1.1 are satisfied. het set of
more thanF' (A) solutions of (1.1). Assume that for eaclin £ there is an
indexi = i(x) in the range 1< i < m such thatf;,(x) # 0.

We apply Lemma 4.3 witly h= 1. We produce algebraic_elements
do, ... ,a; and polynomials with algebraic coefficien®s, ... , P, satis-
fying (4.2), (4.3), (4.4) and (4.5). The exponential polynomial

k
[ =) Pi0a;
j=0
can be written

f@) = A+ + fux)

where, for 1< i < m,
ki
fi) =) Py
j=0

and,forl<i #u<m,0<j <k and0<v <k,,
hin(&ij/&uv) > 1

We apply Lemma 5.2 and deduce that one at leasirof satisfiesf; . (x) =
0, which is a contradiction with (4.4)0

Final remark. The proof of Theorem 1.1 yields a stronger result. Fixith

0 < h < 1. If we replace the assumption thap/«, is transcendental by
the assumption that either it is transcendental, or else has heijhthen
we get the same conclusion but wifi{A) replaced by a function ok and
I, which is equal taF' (A) when h= 1.
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