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Abstract

The set of real numbers and the set of complex numbers have
the power of continuum. Among these numbers, those which
are “interesting”, which appear “naturally”, which deserve our
attention, form a countable set. In a seminal paper with the
title “Periods” published in 2000, M. Kontsevich and D.
Zagier suggest a suitable definition for that set, by introducing
the definition of “periods”. They propose one conjecture, two
principles and five problems. The goal of this talk is to address
the question : what is known on the transcendence of periods ?
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Periods : Maxime Kontsevich and Don Zagier
A period is a
complex number with
real and imaginary parts
given by absolutely
convergent integrals
of rational fractions
with rational coe�cients
on domains of Rn

defined by (in)equalities
involving polynomials
with rational coe�cients

Periods, Mathematics unlimited—2001 and beyond, Springer
2001, 771–808.
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The number ⇡

Basic example of a period :

ez+2i⇡

= ez

2i⇡ =

Z

|z|=1

dz

z
·
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The exponential function

d

dz
ez = ez, ez1+z2

= ez1ez2

exp : C ! C⇥

z 7! ez

ker exp = 2i⇡Z.

The function z 7! ez is the exponential map of the
multiplicative group G

m

.
The exponential map of the additive group G

a

is

C ! C
z 7! z

The only period is 0.

5 / 99

Elliptic curves and elliptic functions
Elliptic curves :

E =

�
(t : x : y) ; y2t = 4x3 � g

2

xt2 � g
3

t3
 
⇢ P

2

(C).

Elliptic functions

}02
= 4}3 � g

2

}� g
3

,

}(z
1

+ z
2

) = R
�
}(z

1

),}(z
2

)

�

exp

E

: C ! E(C)

z 7!
�
1,}(z),}0

(z)
�

ker exp

E

= Z!
1

+ Z!
2

.
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Weierstraß elliptic function

⌦ = Z!
1

+ Z!
2

⇢ R2

}(z) =
1

z2
+

X

!2⌦\{0}

✓
1

(z � !)2
� 1

!2

◆
.

}0
(z) =

X

!2⌦

�2

(z � !)3
·
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Weierstraß and Jacobi models

Weierstraß :

The function }

Jacobi :

The functions sn and cn
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Periods of an elliptic function

The set of periods of an elliptic function is a lattice :

⌦ = {! 2 C ; }(z + !) = }(z)} = Z!
1

+ Z!
2

.

A pair of fundamental periods (!
1

,!
2

) is given by

!
i

=

Z 1

ei

dtp
4t3 � g

2

t� g
3

, (i = 1, 2)

where

4t3 � g
2

t� g
3

= 4(t� e
1

)(t� e
2

)(t� e
3

).
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Examples

Example 1 : g
2

= 4, g
3

= 0, j = 1728

A pair of fundamental periods of the elliptic curve

y2t = 4x3 � 4xt2.

is given by

!
1

=

Z 1

1

dtp
t3 � t

=

1

2

B(1/4, 1/2) =
�(1/4)2

2

3/2⇡1/2

= 2.6220575542 . . .

and
!
2

= i!
1

.
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Examples (continued)

Example 2 : g
2

= 0, g
3

= 4, j = 0

A pair of fundamental periods of the elliptic curve

y2t = 4x3 � 4t3.

is

!
1

=

Z 1

1

dtp
t3 � 1

=

1

3

B(1/6, 1/2) =
�(1/3)3

2

4/3⇡
= 2.428650648 . . .

and
!
2

= %!
1

where % = e2i⇡/3.
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Euler Gamma and Beta functions

�(z) =

Z 1

0

e�ttz · dt
t

= e��zz�1

1Y

n=1

⇣
1 +

z

n

⌘�1

ez/n.

B(a, b) =

�(a)�(b)

�(a+ b)

=

Z
1

0

xa�1

(1� x)b�1dx.
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Chowla–Selberg Formula

X

(m,n)2Z2\{(0,0)}

(m+ ni)�4

=

�(1/4)8

2

6 · 3 · 5 · ⇡2

and X

(m,n)2Z2\{(0,0)}

(m+ n%)�6

=

�(1/3)18

2

8⇡6

Formula of Chowla and Selberg (1966) : the periods of
elliptic curves with complex multiplication are products of
values of the Gamma function.
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Elliptic integrals and ellipses
An ellipse with radii a and b has equation

x2

a2
+

y2

b2
= 1

and the length of its perimeter is

2

Z
b

�b

r
1 +

a2x2

b4 � b2x2

dx.

In the same way, the perimeter of a lemniscate

(x2

+ y2)2 = 2a2(x2 � y2)

is given by an elliptic integral

4a

Z
1

0

(1� t4)�1/2 dx.
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Hypergeometry and elliptic integrals

Gauss Hypergeometric series

2

F
1

�
a, b ; c

�� z
�
=

1X

n=0

(a)
n

(b)
n

(c)
n

· z
n

n!

with (Pochhammer rising
factorial power)
(a)

n

= a(a+ 1) · · · (a+ n� 1)

=

�(a+ n)

�(a)
·

K(z) =

Z
1

0

dxp
(1� x2

)(1� z2x2

)

=

⇡

2

·
2

F
1

�
1/2, 1/2 ; 1

�� z2
�
.
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Elliptic integrals of the second kind

Quasi–periods of elliptic functions

Let ⌦ = Z!
1

+ Z!
2

be a lattice in C. The canonical product
of Weierstraß associated with ⌦ is the sigma function �

⌦

defined by

�
⌦

(z) = z
Y

!2⌦\{0}

⇣
1� z

!

⌘
exp

✓
z

!
+

z2

2!2

◆

This function has a simple zero at each point of ⌦.
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Hadamard canonical products

For N = {0, 1, 2, . . .} :

e��z

�(�z)
= z

Y

n�1

⇣
1� z

n

⌘
e�z/n.

For Z :
sin ⇡z

⇡
= z

Y

n�1

✓
1� z2

n2

◆
.
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Wallis formula for ⇡

John Wallis (Arithmetica
Infinitorum 1655)

⇡

2

=

Y

n�1

✓
4n2

4n2 � 1

◆

=

2 · 2 · 4 · 4 · 6 · 6 · 8 · 8 · · ·
1 · 3 · 3 · 5 · 5 · 7 · 7 · 9 · · · ·
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Weierstraß sigma function

For Z+ Zi :

�Z[i](z) = z
Y

!2Z[i]\{0}

⇣
1� z

!

⌘
exp

✓
z

!
+

z2

2!2

◆
·

�Z[i](1/2) = 2

5/4⇡1/2e⇡/8�(1/4)�2

= 0.4749493799 . . .

For ↵ 2 Q(i), the number �Z[i](↵) is algebraic over

Q
�
⇡, e⇡, �(1/4)

�
.
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Weierstraß zeta function

The logarithmic derivative of the Weierstraß sigma function is
the Weierstraß zeta function

�0

�
= ⇣

and the derivative of ⇣ is �}. The minus sign is selected so
that

}(z) =
1

z2
+ a function analytic at 0.

The fonction ⇣ is therefore quasi–periodic : for any ! 2 ⌦

there exists ⌘ = ⌘(!) such that

⇣(z + !) = ⇣(z) + ⌘.
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Elliptic integrals of the third kind

Quasi–periodicity of the sigma
Weierstraß function :

�(z + !
i

) = ��(z)e⌘i(z+!i/2)
(i = 1, 2).

J-P.Serre (1979) :
the function

F
u

(z) =
�(z + u)

�(z)�(u)
e�z⇣(u)

satisfies

F
u

(z + !
i

) = F
u

(z)e⌘iu�!i⇣(u).
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Legendre relation

The numbers ⌘(!) are the
quasi–periods of the elliptic
curve.

When (!
1

,!
2

) is a pair of
fundamental periods, we set
⌘
1

= ⌘(!
1

) and ⌘
2

= ⌘(!
2

).

Legendre relation :

!
2

⌘
1

� !
1

⌘
2

= 2i⇡.
this is not Adrien Marie but
Louis Legendre
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Legendre and Fourier

Peter Duren, Changing Faces : The Mistaken Portrait of
Legendre.
Notices of American Mathematical Society, December 2009.
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Examples

For the curve y2t = 4x3 � 4xt2 the quasi–periods associated
to the previous fundamental periods are

⌘
1

=

⇡

!
1

=

(2⇡)3/2

�(1/4)2
, ⌘

2

= �i⌘
1

,

while for the curve y2t = 4x3 � 4t3 they are

⌘
1

=

2⇡p
3!

1

=

2

7/3⇡2

3

1/2

�(1/3)3
, ⌘

2

= %2⌘
1

.
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Higher dimensions : abelian varieties

Abelian varieties,
abelian integrals,
theta functions.
Jacobian of an
algebraic curve.

Periods of the jacobian of a Fermat curve : values of Euler
Beta function.
The Fermat curve xn

+ yn = zn has genus (n� 1)(n� 2)/2.
For n = 1 and n = 2 the genus is 0.
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Fermat curve xn + yn = zn

For n = 3 the genus is 1 —
elliptic curve with complex
multiplication by the cubic
roots of unity : �(1/3).

For n = 4 the genus is 3 —
product of three elliptic curves
with complex multiplication
by the fourth roots of unity
Q(i) : �(1/4).

For n = 5 the genus is 6 — product of three simple abelian
surfaces with CM having as field of endomorphisms the field of
fifth roots of unity : �(1/5).
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Higher dimensions : commutative algebraic groups

Extensions of abelian varieties by the additive group (abelian
integrals of the second kind) and by the multiplicative group
(abelian integrals of the third kind).

Lie groups – exponential map, periods.
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Further examples of periods

p
2 =

Z

2x

21

dx

and all algebraic numbers.

log 2 =

Z

1<x<2

dx

x

and all logarithms of algebraic numbers :

log↵ =

Z

1<x<↵, xy<1, y�0

dxdy.
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Further examples of periods

⇡ =

Z

x

2
+y

21

dxdy,

⇡2

6

= ⇣(2) =
X

n�1

1

n2

=

Z

1>t1>t2>0

dt
1

t
1

· dt
2

1� t
2

·
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⇣(2) is a period

Z

1>t1>t2>0

dt
1

t
1

· dt
2

1� t
2

=

Z
1

0

✓Z
t1

0

dt
2

1� t
2

◆
dt

1

t
1

=

Z
1

0

 Z
t1

0

X

n�1

tn�1

2

dt
2

!
dt

1

t
1

=

X

n�1

1

n

Z
1

0

tn�1

1

dt
1

=

X

n�1

1

n2

= ⇣(2).
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⇣(s) is a period

For s an integer � 2,

⇣(s) =

Z

1>t1>t2···>ts>0

dt
1

t
1

· · · dts�1

t
s�1

· dt
s

1� t
s

·

Induction :

Z

t1>t2···>ts>0

dt
2

t
2

· · · dts�1

t
s�1

· dt
s

1� t
s

=

X

n�1

tn�1

1

ns�1

·
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Numbers which are not periods

Problem (Kontsevich–Zagier) : To produce an explicit example
of a number which is not a period.

Several levels :

1 analog of Cantor : the set of periods is countable.
Hence there are real and complex numbers which are not
periods (“most” of them).

32 / 99



Numbers which are not periods
2 analog of Liouville

Find a property which should be satisfied by all periods, and
construct a number which does not satisfies that property.

Masahiko Yoshinaga, Periods and elementary real numbers
arXiv:0805.0349

Compares the periods with hierarchy of real numbers induced
from computational complexities.
In particular, he proves that periods can be e↵ectively
approximated by elementary rational Cauchy sequences.

As an application, he exhibits a computable real number which
is not a period.
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Numbers which are not periods

3 analog of Hermite
Prove that given numbers are not periods

Candidates : 1/⇡, e, Euler constant.

M. Kontsevich : exponential periods

“The last chapter, which is at a more advanced level and also more

speculative than the rest of the text, is by the first author only.”
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Relations among periods

1 Additivity

Z
b

a

�
f(x) + g(x)

�
dx =

Z
b

a

f(x)dx+

Z
b

a

g(x)dx

and Z
b

a

f(x)dx =

Z
c

a

f(x)dx+

Z
b

c

f(x)dx.

2 Change of variables

Z
'(b)

'(a)

f(t)dt =

Z
b

a

f
�
'(u)

�
'0
(u)du.
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Relations among periods

3 Newton–Leibniz–Stokes

Z
b

a

f 0
(t)dt = f(b)� f(a).
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Conjecture of Kontsevich and Zagier

Periods,
Mathematics unlimited—
2001 and beyond,
Springer 2001, 771–808.

Conjecture (Kontsevich–Zagier). If a period has two integral
representations, then one can pass from one formula to
another using only rules 1 , 2 and 3 in which all functions
and domains of integration are algebraic with algebraic
coe�cients.
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Examples

⇡ =

Z

x

2
+y

21

dxdy = 2

Z
1

�1

p
1� x2 dx

=

Z
1

�1

dxp
1� x2

=

Z 1

�1

dx

1 + x2

=

22

7

�
Z

1

0

x4

(1� x4

)dx

1 + x2

= 4

Z
1

0

dx

1 + x2

·

Dramatic consequences :
There is no new algebraic dependence relation among

classical constants from analysis.
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Degree of a period, following Janming Wan

If p is a real period, Janming Wan defines the degree deg(p)
of p as the minimal dimension of a domain ⌃ such that

p =

Z

⌃

1,

where ⌃ is a domain in the Euclidean space given by
polynomial inequalities with algebraic coe�cients.

For any complex period p = p
1

+ ip
2

, he defines

deg(p) = max{deg(p
1

), deg(p
2

)}.

A complex number which is not a period has infinite degree.

Jianming Wan, arXiv:1102.2273 Degrees of periods
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Degree of a period, following Janming Wan

Jianming Wan, arXiv:1102.2273 Degrees of periods

Theorem. Let p be a period with deg(p)  2. Then the real
and imaginary parts of p have the forms

a arctan ⇠ + b log ⌘ + c,

where a, b, c, ⇠, ⌘ are algebraic numbers.

Theorem. Let p
1

, p
2

be two complex numbers. If
deg(p

1

) 6= deg(p
2

), then p
1

and p
2

are linearly independent
over the field of algebraic numbers.
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Rational approximation of real periods

Liouville (1844) : for any
algebraic irrational number ↵,
there exist two constants c
and d such that, for any
rational number p/q, we have

����↵� p

q

���� �
c

qd
·
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Liouville numbers

A Liouville number is a number x 2 R such that, for all
 > 0, there exists p/q 2 Q with q � 2 satisfying

0 <

����↵� p

q

���� 
1

q
·

As a consequence, a Liouville number is transcendental.
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Rational approximation of periods

In dynamical systems theory, a Liouville number is a real
number which does not satisfy a Diophantine condition.

Question. Let ✓ be a real irrational period ; does there exist
c(✓) > 0 such that, for any rational number p/q with q � 2,
the lower bound ����✓ �

p

q

���� >
1

qc(✓)

holds ?

In other words, it is expected that no period is a Liouville
number (i.e. : no Liouville number is a period !).

43 / 99

Lebesgue measure

A more ambitious goal would
be to prove that real or
complex periods behave, from
the Diophantine
approximation point of view,
as almost all numbers for
Lebesgue measure.
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Diophantine approximation of periods

Question. Given a transcendental period ✓ 2 C, does there
exist a constant (✓) such that, for any nonzero polynomial
P 2 Z[X], we have

|P (✓)| � H�(✓)d,

where H � 2 is an upper bound for the usual height of P
(maximum of the absolute values of the coe�cients) and d the
degree of P ?
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Hermite and Lindemann Theorems

Hermite (1873) :
transcendence of e.

Lindemann (1882) :
transcendence of ⇡.

Theorem of Hermite–Lindemann
For any nonzero complex number z, at least one of the two
numbers z, ez is transcendental.

Corollaries : transcendence of log↵ and e� for ↵ and �
nonzero algebraic numbers with log↵ 6= 0.
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Hilbert seventh problem

For ↵ and � algebraic numbers
with ↵ 6= 0 and � 62 Q
and for any choice of log↵ 6= 0,
prove that the number

↵�

= exp(� log↵)

is transcendental.
Examples : 2

p
2, e⇡.

http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Hilbert.html
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Solution of Hilbert seventh problem

A.O. Gel’fond and Th. Schneider (1934).
Solution of Hilbert seventh problem :
transcendence of ↵�

The two algebraically independent functions

ez and e�z cannot take algebraic values

at the same point log↵.
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Transcendence of (log↵
1

)/(log↵
2

) and e⇡
p
d

Equivalent form of Gel’fond-Schneider Theorem :

Let log↵
1

, log↵
2

be two nonzero logarithms of algebraic
numbers. Assume that the quotient (log↵

1

)/(log↵
2

) is
irrational. Then this quotient is transcendental.

From the Theorem of Gel’fond-Schneider one deduces the
transcendence of 2

p
2, e⇡, log 2/ log 3 and e⇡

p
d when d is a

positive integer.
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e⇡ = (�1)

�i

Example :

e⇡
p
163

= 262 537 412 640 768 743.999 999 999 999 250 7 . . .

Martin Gardner,

Scientific American,

April 1, 1975.

Imaginary quadratic fields Q(
p
�m) with class number 1 :

m = 1, 2, 3, 7, 11, 19, 43, 67, 163.

For

⌧ =
1 + i

p
163

2
, q = e2i⇡⌧ = �e�⇡

p
163

we have j(⌧) = �640 3203 and

����j(⌧)�
1

q
� 744

���� < 10�12.
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Baker’s Theorem

A. Baker, (1968). Let
log↵

1

, . . . , log↵
n

be
Q–linearly independent
logarithms of algebraic
numbers. Then the numbers
1, log↵

1

, . . . , log↵
n

are
linearly independent over the
field Q of algebraic numbers.
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Consequences of Baker’s Theorem

Let ↵
1

, . . . ,↵
n

, �
1

, . . . , �
n

be nonzero algebraic numbers and
for 1  i  n, let log↵

i

be a complex logarithms of ↵
i

. Then
the number

�
1

log↵
1

+ · · ·+ �
n

log↵
n

is either zero or else transcendental.

Famous example (considered by Siegel in 1949) : from Baker’s
Theorem, one deduces the transcendence of the number

Z
1

0

dt

1 + t3
=

1

3

✓
log 2 +

⇡p
3

◆
·

52 / 99



Genus zero

Corollary. Let P and Q be polynomials with algebraic
coe�cients satisfying degP < degQ and let � be either a
closed path, or else a path with limit points either algebraic
numbers or infinity. If the integral

Z

�

P (z)

Q(z)
dz

exists, then its value is either rational or transcendental.

Proof.
Decompose the rational fraction P (z)/Q(z) into simple
elements.

53 / 99

Van der Poorten

A. J. Van der Poorten.
On the arithmetic nature of
definite integrals of rational
functions.
Proc. Amer. Math. Soc. 29
451–456 (1971).
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Periods in genus zero

As a matter of fact, the corollary is equivalent to Baker’s
Theorem : write the logarithm of an algebraic number as a
period. For instance, for the principal value of the logarithm,
when ↵ is not a real negative number, we have

log↵ =

Z 1

0

(↵� 1)dt

(t+ 1)(↵t+ 1)

,

while

i⇡ = 2i

Z 1

0

dt

1 + t2
·

The corresponding integrals are not Liouville numbers -
explicit transcendence measures are also available.
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Transcendence of periods of elliptic integrals

Elliptic analog of Lindemann’s Theorem on the transcendence
of ⇡.

Theorem (Siegel, 1932) : If the invariants g
2

and g
3

of } are
algebraic, then at least one of the two numbers !

1

,!
2

is
transcendental.

As a consequence, in the CM case, any nonzero period of } is
transcendental.
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A. Thue, C.L. Siegel

Dirichlet’s box

principle

Thue-Siegel

Lemma
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Siegel’s results on Gamma and Beta values

Consequence of Siegel’s 1932 result :
both numbers

�(1/4)4/⇡ and �(1/3)3/⇡

are transcendental.
Ellipse :

2

Z
b

�b

r
1 +

a2x2

b4 � b2x2

dx

Transcendence of the perimeter of the lemniscate

(x2

+ y2)2 = 2a2(x2 � y2)
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Elliptic integrals of the first kind

1934 : solution of Hilbert’s seventh problem by A.O. Gel’fond
and Th. Schneider.

Schneider (1934) : If the invariants g
2

and g
3

of } are
algebraic, then any nonzero period ! is a transcendental
number
i.e. : a nonzero period of an elliptic integral of the first kind is
transcendental.
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Transcendence of quasi–periods

Elliptic integrals of the second kind.
Pólya, Popken, Mahler (1935)

Schneider (1934) : If the invariants g
2

and g
3

of } are
algebraic, then each of the numbers ⌘(!) with ! 6= 0 is
transcendental.

Examples : the numbers

�(1/4)4/⇡3 and �(1/3)3/⇡2

are transcendental.
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Periods of elliptic integrals of the third kind

Theorem (1979). Assume g
2

, g
3

, }(u
1

), }(u
2

), � are
algebraic and Zu

1

\ ⌦ = {0}. Then the number

�(u
1

+ u
2

)

�(u
1

)�(u
2

)

e

�
��⇣(u1)

�
u2

is transcendental.

Corollary. Transcendence of periods of elliptic integrals of the
third kind :

e!⇣(u)�⌘u+�!.
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Higher dimensions, several variables

Schneider (1937) : If the invariants g
2

and g
3

of } are
algebraic and if ↵ and � are nonzero algebraic numbers, then
each of the numbers

2i⇡/!
1

, ⌘
1

/!
1

, ↵!
1

+ �⌘
1

is transcendental.

Schneider (1948) : for a and b in Q with a, b and a+ b not in

Z, the number

B(a, b) =
�(a)�(b)

�(a+ b)

is transcendental.

The proof involves abelian integrals in higher genus, arising
from the Jacobian of the Fermat curve.
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Baker’s method

A. Baker (1969) :
transcendence of linear
combinations with algebraic
coe�cients in

!
1

, !
2

, ⌘
1

and ⌘
2

.
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Baker’s method

J. Coates (1971) :
transcendence of linear
combinations with algebraic
coe�cients in

!
1

, !
2

, ⌘
1

, ⌘
2

and 2i⇡.

Further, in the non–CM case, the three numbers

!
1

, !
2

and 2i⇡

are Q-linearly independent.
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Masser’s work

D.W. Masser (1975) : the six
numbers

1, !
1

, !
2

, ⌘
1

, ⌘
2

2i⇡

span a Q-vector space of
dimension 6 in the CM case, 4
in the non–CM case :

dimQ{1,!1

,!
2

, ⌘
1

, ⌘
2

, 2i⇡} = 2 + 2dimQ{!1

,!
2

}.

Further : linear independence measures.
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Elliptic analog of Baker’s Theorem

Linear independence over the field of algebraic numbers of
elliptic logarithms :

Masser (1974) in
the CM case.

Bertrand-Masser
(1980) in the
general case.
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Bertrand–Masser

New proof of Baker’s Theorem using functions of several

variables in the case of Cartesian products.

The proof rests on Schneider’s Criterion (1949), before the
solution by Bombieri of a conjecture by Nagata 1970.

Let } be a Weierstraß elliptic function with algebraic
invariants g

2

, g
3

. Let u
1

, . . . , u
n

be End(E)–linearly
independent complex numbers. Assume that for 1  i  n,
either u

i

2 ⌦ or else }(u
i

) 2 Q. Then the numbers
1, u

1

, . . . , u
n

are Q–linearly independent.
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Wüstholz’s Theorem

G. Wüstholz (1987) –
extension of the results by
Schneider, Lang, Baker,
Coates, Masser, Bertrand to
abelian varieties and abelian
integrals.

General result of linear independence on commutative
algebraic groups (including the result of Baker corresponding
to the special case of a product of multiplicative groups).
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Wolfart and Wüstholz

Consequences (J. Wolfart and G. Wüstholz) dealing with the
values of Euler Beta and Gamma functions : linear
independence over the field of algebraic numbers of the values
of Euler Beta function at rational points (a, b).

Transcendence of values at algebraic points of hypergeometric
functions with rational parameters.
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Elliptic functions and algebraic independence

1976, G.V. Chudnovsky :

The numbers ⇡ and �(1/4)
are algebraically independent.

Proof :
involves elliptic functions.
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Modular functions

1996, Yu. V. Nesterenko :

The three numbers
⇡, e⇡ and �(1/4)
are algebraically independent.

Proof :
involves modular functions.

Open problem :
Show that e and ⇡ are algebraically independent.
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Irrationality measure for ⇡
1953 : K. Mahler : ⇡ is not
a Liouville number

1967 : K. Mahler :����⇡ � p

q

���� >
1

q42
for q � 2.

1974 : M. Mignotte :
exponent 20.6 for q � 2

1984 : D. and G. Chudnovsky : 14.65 for su�ciently large q.

1992 : M. Hata : 8.0161 for su�ciently large q.

2008 : V.Kh. Salikhov (best known estimate so far)
����⇡ � p

q

���� >
1

q7.606
for su�ciently large q.
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Irrationality measure for e⇡

It is not yet known that e⇡ is not a Liouville number :
����e

⇡ � p

q

���� >
1

qc
?

Best known :
����e

⇡ � p

q

���� >
1

q260 log log q
for q � 3.

(Baker’s method)
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Irrationality measure for �(1/4)

1999, P. Philippon and
S. Bruiltet : The number
�(1/4) is not a Liouville
number

�����(1/4)�
p

q

���� >
1

q10330

for su�ciently large q.

(Chudnovsky’s method)
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Further open problems
Algebraic independence of the three numbers

⇡, �(1/3), �(1/4).

Algebraic independence of at least three numbers among

⇡, �(1/5), �(2/5), e⇡
p
5.

Faustin Adiceam : consequence of Nestenreko’s Theorem using
the Formula of Chowla and Selberg.
Algebraic independence of the three numbers ⇡, e⇡

p
5 and ✓

where
✓ = �(1/5) �(7/20) �(9/20).

Same result with

✓ =

�(1/20) �(3/20)

�(1/5)
·
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Standard relations among Beta values

(Translation) :

�(a+ 1) = a�(a)

(Reflection) :

�(a)�(1� a) =
⇡

sin(⇡a)

(Multiplication) : for any positive number n,

n�1Y

k=0

�

✓
a+

k

n

◆
= (2⇡)(n�1)/2n�na+(1/2)

�(na).
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Conjectures of Rohrlich and Lang

Conjecture (D. Rohrlich) Any multiplicative relation

⇡b/2

Y

a2Q

�(a)ma 2 Q

with b and m
a

in Z is in the ideal generated by the standard
relations.

Conjecture (S. Lang) Any algebraic dependence relation
among (2⇡)�1/2

�(a) with a 2 Q is in the ideal generated by
the standard relations (universal odd distribution).
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Riemann zeta function

⇣(s)=
X

n�1

1

ns

=

Y

p

1

1� p�s

Euler : s 2 R. Riemann : s 2 C.
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Special values of the Riemann zeta function

s 2 Z :
Jacques Bernoulli

(1654–1705),
Leonard Euler (1739).

⇡�2k⇣(2k) 2 Q for k � 1 (Bernoulli numbers).
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Jacques Bernoulli (1654–1705)
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Values of Riemann zeta function at the positive

integers

Even positive integers

⇣(2n) = (�1)

n�1

2

2n�1

B
2n

(2n)!
⇡2n

(n � 1).

Odd positive integers : ⇣(2n+ 1), n � 1 ?

Question : for n � 1, is the number

⇣(2n+ 1)

⇡2n+1

rational ?
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Diophantine question

Determine all algebraic relations among the numbers

⇣(2), ⇣(3), ⇣(5), ⇣(7), . . .

Conjecture. there is no algebraic relation : the numbers

⇣(2), ⇣(3), ⇣(5), ⇣(7), . . .

are algebraically independent.

As a consequence, one expects the numbers ⇣(2n+ 1) and
⇣(2n+ 1)/⇡2n+1 for n � 1 to be transcendental.
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Values of ⇣ at the even positive integers

• F. Lindemann : ⇡ is a
transcendental number, hence ⇣(2k) also
for k � 1.
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Values of ⇣ at the odd positive integers

• Apéry (1978) : The number

⇣(3) =
X

n�1

1

n3

= 1, 202 056 903 159 594 285 399 738 161 511 . . .

is irrational.

• Rivoal (2000) + Ball, Zudilin, Fischler,. . . Infinitely many
numbers among ⇣(2k + 1) are irrational + lower bound for the
dimension of the Q-space they span.
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Tanguy Rivoal

Let ✏ > 0. For any su�ciently large odd integer a,
the dimension of the Q–space spanned by the numbers
1, ⇣(3), ⇣(5), · · · , ⇣(a) is at least

1� ✏

1 + log 2

log a.
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Wadim Zudilin

• At least one of the four numbers
⇣(5), ⇣(7), ⇣(9), ⇣(11)

is irrational.

• There exists an odd number j
in the interval [5, 69] such that
the three numbers

1, ⇣(3), ⇣(j)
are Q–linearly independent.
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Linearization of the problem (Euler)

The product of two special values of the Riemann zeta
function is a linear combination of multizeta values.

X

n1�1

n�s1
1

X

n2�1

n
2

�s2
=

X

n1>n2�1

n�s1
1

n
2

�s2

+

X

n2>n1�1

n�s2
2

n
1

�s1
+

X

n�1

n�s1�s2
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Multizeta values

One deduces, for s
1

� 2 and s
2

� 2,

⇣(s
1

)⇣(s
2

) = ⇣(s
1

, s
2

) + ⇣(s
2

, s
1

) + ⇣(s
1

+ s
2

)

with
⇣(s

1

, s
2

) =

X

n1>n2�1

n�s1
1

n
2

�s2 .
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⇣(s
1

)⇣(s
2

) = ⇣(s
1

, s
2

) + ⇣(s
2

, s
1

) + ⇣(s
1

+ s
2

)

⇣(2)⇣(3)= ⇣(2, 3) + ⇣(3, 2) + ⇣(5)

⇣(2)2= 2⇣(2, 2) + ⇣(4)

Relation among divergent series

⇣(1)⇣(2) = ⇣(1, 2) + ⇣(2, 1) + ⇣(3).

⇣(1) and ⇣(1, 2) are divergent series

⇣(1) =
X

n�1

1

n
and ⇣(1, 2) =

X

n1>n2�1

1

n
1

n2

2

·
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Multizeta values

For k, s
1

, . . . , s
k

positive integers satisfying s
1

� 2, one sets
s = (s

1

, . . . , s
k

) and

⇣(s) =
X

n1>n2>···>nk�1

1

ns1
1

· · ·nsk
k

·

For k = 1 one recovers the values of Riemann ⇣ function.

k is the depth and p = s
1

+ · · ·+ s
k

the weight.
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The algebra of multizeta

The product of two multizeta values is a multizeta value.

The Q–space spanned by the ⇣(s) is also a Q–algebra.

The problem of algebraic independence is reduced to a
problem of linear independence.

Question : which are the linear relations among these
numbers ?

Answer : there are plenty of linear relations !
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⇣(2, 2, . . . , 2)

For k � 1, set {2}
k

= (2, 2, . . . , 2) (with k terms). We have

⇣({2}
k

) =

⇡2k

(2k + 1)!

·

Hence ⇣({2}
k

)/⇣(2k) 2 Q.

Examples.

⇣(2) =
⇡2

6

, ⇣(2, 2) =
⇡4

120

, ⇣(2, 2, 2) =
⇡6

5 040

·

Proof :

sin(⇡z)

⇡z
=

Y

n�1

✓
1� z2

n2

◆
=

X

k�0

⇣
�
{2}

k

�
(�z2)k.
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The multizeta values are periods

⇣(2, 1) =

Z

1>t1>t2>t3>0

dt
1

t
1

· dt
2

1� t
2

· dt
3

1� t
3

·

Proof.
We have
Z

t2

0

dt
3

1� t
3

=

X

n�1

tn�1

2

n
, then

Z
t1

0

tn�1

2

dt
2

t
2

� 1

=

X

m>n

tm
1

m
,

and Z
1

0

tm�1

1

dt
1

=

1

m
,

hence
Z

1>t1>t2>t3>0

dt
1

t
1

· dt
2

1� t
2

· dt
3

1� t
3

=

X

m>n�1

1

m2n
= ⇣(2, 1)
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Conjecture of Zagier

Let Z
p

be the Q-subspace of
R spanned by the numbers
⇣(s) where s has weight s

1

+ · · ·+ s
k

= p,
with Z

0

= Q and Z
1

= {0}.
Let d

p

be the dimension of Z
p

.

Conjecture (Zagier). For p � 3, we have

d
p

= d
p�2

+ d
p�3

.

(d
0

, d
1

, d
2

, . . .) = (1, 0, 1, 1, 1, 2, 2, . . .).
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Conjecture of Ho↵man

Zagier’s conjecture can be stated as

X

p�0

d
p

Xp

=

1

1�X2 �X3

·

Conjecture of M. Ho↵man : a basis of Z
p

as a Q–vector space
is given by ⇣(s

1

, . . . , s
k

), s
1

+ · · ·+ s
k

= p, where each s
i

is
either 2 or 3.

M. Kaneko, M. Noro and K. Tsurumaki. – On a conjecture
for the dimension of the space of the multiple zeta values,
Software for Algebraic Geometry, IMA 148 (2008), 47–58.

It is not yet proved that there exists p with d
p

� 2.
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Upper bound for the dimension

A.B. Goncharov – Multiple ⇣-values, Galois groups and
Geometry of Modular Varieties. Birkhäuser. Prog. Math. 201,
361-392 (2001).
T. Terasoma – Mixed Tate motives and Multiple Zeta Values.
Invent. Math. 149, No. 2, 339-369 (2002).

Theorem. The numbers given by Zagier’s Conjecture
d
p

= d
p�2

+ d
p�3

with initial conditions d
0

= 1, d
1

= 0 are
actually upper bounds for the dimension of Z

p

.
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Francis Brown

arXiv:1102.1310 On the decomposition of motivic multiple
zeta values
We review motivic aspects of multiple zeta values, and as an
application, we give an exact-numerical algorithm to
decompose any (motivic) multiple zeta value of given weight
into a chosen basis up to that weight.

arXiv:1102.1312 Mixed Tate motives over Z
We prove that the category of mixed Tate motives over Z is
spanned by the motivic fundamental group of Pro1 minus
three points. We prove a conjecture by M. Ho↵man which
states that every multiple zeta value is a Q-linear combination
of ⇣(n

1

, . . . , n
r

) where n
i

2 {2, 3}.
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