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Transcendental Numbers and
Functions of Several Variables

Michel Waldschmidt
Université P. et M. Curie (Paris VI)

SuMMARY. We start by two density problems: one was raised by Sansuc and
deals with algebraic number fields, the other #s a question of Mazur and deals
with abelian varieties. While the first has just been completely solved by D.Roy,
only partial answers have been obtained so far for the second. In both cases the
main tool is the theorem of the algebraic subgroup.

We show that this theorem enables one to recover Baker’s result on linear
combinations of logarithms of algebraic numbers in at least four different ways.
Another consequence, once more due to R. Roy, concerns matrices whose entries
are linear combinations of logarithms of algebraic numbers.

The proof of the algebraic subgroup theorem is briefly explained, by means of
an interpolation determinant, following an idea of M. Laurent. Finally we show
how the transposition ofithe interpolation matrix is connected with a duality in
transcendence proofs.

1. Two density problems

A question of Sansuc

Let k be a number field of degree [k : Q] = n = r; + 2r;, where, as
usual, r; (resp. r5) denotes the number of real (resp. the number of pairs
of complex conjugate) embeddings of k into R (resp. into C). The tensor
product (R ®gk)™ is nothing else than R*"* x C*™. Since the topological
group R (resp. C*) is isomorphic to R} x Z/2Z (resp RY x R/Z), and
si.nce R is isomorphic to R, the canonical embedding of k* into (R ®qk) 3
gives rise to an injective homomorphism

kX — RT*: x (R/Z)™ x (Z/2Z)".

Tlfe image of k* is dense; Colliot-Théléne and Sansuc asked whether there
eXists a finitely generated subgroup of k* whose image is dense; then Sansuc
[Sa] asked for the smaller rank of such a finitely generated subgroup. The
complete answer to this question has just been obtained by D. Roy [R3]:

Theorem 1. There exists a finitely generated subgroup of k* of rank
™ + 12+ 1 which is dense in (R ®q k) ™.
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68 Trenscendental Numbers

The proof splits in two parts. The first one is a topological argument:
let Yy be a discrete subgroup of R™ and Y a finitely generated subgroup
of R™ containing Yy. If no subgroup of Y of rank n + 1 containing Y; is
dense in R™, then there exists a finitely generated subgroup of Y of rank
> rkY — n + 1 which contains Y, and is dense in R™. In the special case
we are dealing with, we take for Yy the kernel of the exponential map

exp: R®gk — (R®qk)™

We refer to Roy’s paper [R3] for more detailed information on the topo-
logical argument. We shall be mainly concerned here with the second part
of the proof, which is a transcendence argument: let «y,...,a, in £* be
such that the n numbers a;aj, (1 < i < n, 1< j < £) are multiplicatively
independent. Choose y, ...,y in R ®q k such that

expy; = (105, ..-,0005), 1€ 9 f

If £ > n? —n+ 2, then any subgroup of Y = Zy; + -+ + Zy, of rank
> n?—n+2 is dense R®gk. In particular if £ > n? + 1, then any subgroup
of Y of rank > rkY — n+ 1 is dense R ®q k. :

We discuss more thoroughly this statement below.

(2] A question of Mazur

The following question is a special case of a much more general situation
considered by B. Mazur [M]. Let A be a simple abelian variety over Q of
dimension d > 1 with Mordell-Weil group A(Q) of positive rank. Does the
connected component of 0 in the topological closure of A(Q) coincide with
the connected component A(R)q of 0 in A(R)?

We can provide a positive answer if we assume that the rank of A(Q)
is sufficiently large:

Theorem 2. AssumerkzA(Q) > d* —d+ 1. Then A(Q)N A(R) is dense
in A(]R)()

Remark. Using the above mentioned topological argument of D.Roy, one
can also show that if rkz A(Q) > d?, then there isa u € A(Q) such that Zu
is dense in A(R)o.

In both examples, we are dealing with a finitely generated subgroup of
a real vector space. The following easy lemma will reduce the topological
problem to an algebraic question: liow many independent points of this
subgroup can lie in a given hyperplane?
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Lemma 3. Let Y = Zy; + - - - + Zy, be a finitely generated subgroup of a
R-vector space E of dimension d. ThenY is dense in E if and only if for
each hyperplane V of E,

tkzY/Y NV > 2.

Writing V as the kernel of a linear form, we can state this condition as
follows: for each non-zero ¢ € Homg(E,R), one has ¢(Y) ¢ Z.

Let us come back to our two special cases.

First example (Sansuc).

We denote by @ the field of algebraic numbers (algebraic closure of Q
into C), and by L the Q-vector space of logarithms of algebraic numbers:

L= {loga;a € Q*} = {z € C;¢* € Q).

Michel Emsalem first noticed that if V is an hyperplane of C? with VnQ? #
{0}, then
dimg V N L% = oo;

indeed, assume 0 # (by,...,ba) €V N QY then for all loga €L,
(bl’iog a,...,baloga) €V N 1]_,“,

which proves the claim. Emsalem [E] also proved the converse: if V' is an
hyperplane of C* with V N Q% = {0}, then

dimg V. NL? < co.

Using lemma 3, we now show that the first part of the proof of theorem 1
1s a consequence of t.he‘following:

Transcendence result: if VNQ% = {0}, then

dimg V NL* < d(d - 1).

This transcendence result, due to M. Emsalem [E], will be deduced later
from the theorem of the algebraic subgroup.

Consequence: let Y’ be a subgroup of L? of rank £ > d* — d + 2; for each
hyperplane V with VNQ¢% = {0} we obtain the bound rkz(Y'NV) < d(d-
1), hence rkz(Y'/Y' N V) > 2. We need to consider also the hyperplanes
V with VN Q? # {0}. Assume Y’ is contained in a finitely generated
subgroup Y of L4, and Y is generated by £ elements of L4 such that the £d
components of the generators are linearly independent over Q. Let S be
the. subspace of C% generated by VNQ¥; this is the maximal subspace of (0
which is rational over Q and contained in V. We write S as intersection of
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6 hyperplanes ¢, =0, ...,¢s = 0, where ¢, ..., ps are linear forms on C?
with rational coefficients. Hence ¢ = (i1, ..., @s) is a surjective linear map
from C? onto C° with kernel S, and V' = (V) satisfies V/NQ? = 0. On the
other hand our assumption on Y is more than enough to ensure Y N.S = 0,
hence Y" = ¢(Y’) is again of rank £'. We apply the transcendence result to
Y"” C L4 and deduce rk(Y"”’NV"’) < §(6—1). Therefore tk(Y'NV) < d(d—1)
and tk(Y’/Y’'NV) > 2 for all hyperplanes V of C?.

Second example (Mazur).

Let A be an abelian variety which is defined over Q. We denote by
T4 the tangent space of A at the origin, and by exp : T4(C) — A(C) the
exponenfial map of the Lie group A(C). The complex vector space T4 (C)
is of dimension d = dim A and its kernel (periods of the exponential map)
is a lattice in T4 (C) (discrete subgroup of rank 2d).

We consider the Q-vector space of logarithms of algebraic points on A:

A =exp3;! A(Q) C T4 (C).

We now show that theorem 2 is a consequence of the following statement,
which we deduce below from the theorem of the algebraic subgroup:
Transcendence result: if V' is a hyperplane of T4 (C) containing d — 1 inde-
pendent elements of ker exp 4, then dimg VN A < d? - 1.

Consequence: assume A is defined over Q; then Ty (R) contains d periods
Wy, ...,wq, which are linearly independent. over R. Consider m points in
A(Q) which are linearly independent over Z; we can write these points
exp 4(u;) € A(Q), (1 < j < m), and the subgroup

Y=Zw1+---+Zw.z+Zu1+---+ZumCTA(IR):]Rd

is contained in A, of rank rkzY = £ =m+d. If m > d? —d + 1, then
£>d?+1, and we conclude

tkzY/ YNV > d*+1=(d*=1)=2.

2. Theorem of the algebraic subgroup

Let G be an algebraic group defined over Q. We denote by A the Q-
vector space of the logarithms of algebraic points on G:

A = expz' (G(Q)).

Further, let V' be a complex subspace of Tg(C). We consider the intersec-
tion V N A, which is a Q-vector space, and we denote by £ its dimension.
A necessary condition for ¢ to be finite is that V does not contain any
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non-zero tangent subspace of an algebraic subgroup H of G, defined over

Q:
V 3 Tu(C) # {0}.

Examples: firstly, let G = GZ,, where G,, is the multiplicative group; in
this case A = L9, and the above condition reads VNQ? = {0}. Secondly, let
G = A be a simple abelian variety; then the condition is just V # T4 (C).

Theorem 4. If V is a hyperplane in Tg(C) which does not contain any .
non-zero subspace of the form Ty (C), (H algebraic subgroup of G defined
over Q), then £ < co.

-

We now want. to give an explicit upper bound for £, assuming that it is
finite. A first estimate, which is valid in the general case, is £ < 2d(d — 1).
This estimate is sufficient for theorem 1; however our transcendence argu-
ment related to Sansuc’s problem above claimed a stronger upper bound.
Indeed, when G is a linear algebraic group then one can sharpen this esti-
mate and get £ < d(d - 1).

One can produce a bound which is valid in the general case, and includes
the refinement in the linear case: we write GG as a product G = Gy x Gy X G2,
with G, = Ggﬂ, G, = del , dim Gy = dy, and d = dy + dy + dy. This is no
loss of generality: we can choose for instance dy = d; = 0, dy = d. With
this notation the followitig bound for £ holds: £ < (dy + 2d3)(d — 1).

This estimate is not. still sharp enough for theorem 2. In order to have a
more precise bound we introduce a further notation: we take into account
the number x of independent periods of exps which sit in V:

k = tkz (V Nkerexpg).

Then ¢ < (dy + 2d, — &)(d-1).

For Mazur’s problem we choose dy = d; =0, dy = d, k = d -1, and we
conclude £ < d? - 1. &

A further refinement will be needed below: we count how many inde-
pendent points of T(C) which are rational over @ lie inside V (recall that
T5 has a natural Q-structure, since it is the tangent space of the algebraic
group G which is defined over Q)

Theorem 4 (continued). If V O W with W rational over Q, then

5 S ((11 + 2(12 = IC) (llnlc(V/W)

_ There is a more general result ((W1] theorem 4.1) but the statement is
slightly more complicated. ;
This theorem of the algebraic subgroup includes essentially all known
tr'.anscendence results on analytic subgroups of commutative group vari-
eties (apart from results of algebraic indepen dence). The first statements of
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this form dealing with several parameter subgroups go back to Schneider’s
works in the first half of this century. In particular his paper [S], where he
proves the transcendence of values of the Beta function at rational points,
introduces for the first time functions of several complex variables in tran-
scendental number theory. The subject was taken up again by Lang in the
60’s [L]; like in Schneider’s work, the analytic argument is an interpola-
tion formula for a cartesian product in C*. The main transcendence result
(Schneider-Lang criterion) concerns the values on a cartesian .product of -
analytic functions satisfying differential equations; one main point is that
the cartesian product does not involve the same system of coordinates than
the differential equations, and this is why the result does not reduce to its
one dimensional analog; it. is useful for applications to so-called normalized
n-parameter subgroups of algebraic groups [L]. A deeper Schwarz lemma
in higher dimension, using Lelong’s measure for the area of the analytic
hypersurface of zeros of an analytic function, was proved by Bombieri and
Lang in [B-L], and they used it to study non-normalized n-parameter sub-
groups of algebraic groups; but the result they obtain involves very strong
repartition results which seem out of reach of the present theory of dio-
phantine approximations. Then Bombieri [B] introduced in the theory the
L?-estimates of Hormander and replaced the cartesian product by a more
natural condition (conjectured by Nagata) that the considered points do
not. lie in an algebraic hypersurface; but. it turns out that these tools do not
yield further transcendence results in connection with algebraic groups.

Nowadays, these ingredients from the theory of functions in several
variables are no longer useful: the analytic argument is reduced to the
very easy Schwarz lemma for functions of a single variable [W2]; on the
other hand a very important role is played by a geometrical tool, the zero
estimate [P].

In the case V = W, the conclusion of theorem 4 is £ = 0. This is a result
of Wiistholz [Wii] which rests on Baker’s method. The proof of this special
case does not involve functions of several variables, since it is sufficient to
work with one point and its multiples, which all lie on a complex line in

T (C).
3. Linear combinations of logarithms of algebraic numbers

In this section we deduce from the algebraic subgroup theorem the
following well known result of Baker:

Theorem 5. Let logay,...,loga, be elements in L, not all of which are
zero, and let B,...,0B, be algebraic numbers, not all zero. If we have
Bilogay + -+ Pploga, = 0, then By,..., B, are Q-linearly dependent,
and logay,...,loga, are Q-linearly dependent.

We give four sketches of proof of theorem 5 as a consequence of theorem
4 with d3 = k = 0. We start witli a non-trivial relation of minimal length n



Michel Waldschnidt 73

between logarithms of algebraic numbers with algebraic coefficients; since n
is minimal, it is plainly sufficient. to prove either that the f’s are Q-linearly
dependent, or that the log«’s are Q-linearly dependent.

Baker’s method
Let us choose dy = 0 and d = d; = n; in this case A = L. We take for

V the hyperplane of equation 8123 + -+ fBr2zn = 0 in C*, and we choose
W = V. In this case

VNAS3(logay,...,loga,) #0,

\

which shows that £ > 0. The theorem of the algebraic subgroup implies
V NQ" # {0} and therefore 3, ..., B, are Q-linearly dependent.

Hirata’s method 2

The choice here is dyg =1, dy =n,d=n+1, hence A = Q x L™. Let
V = W be the hyperplane of equation zy = B2 + - - + Bnz, in C**1.
Since

VNA>S(0,logay,...,loga,) #0,

we have £ > 0, and theorem 4 implies V O Ty # {0}, which means that
Bi,...,PRn are Q-linearly dependent.

Dual of Baker’s method

We now choose dy = n—1,d; = 1,d = n, so that A = Q" ! x L.
Further let W = {0}, and let. V be the hyperplane kernel of the linear form
zilogay + -4 2,y log ap—1 + 2. For (hy,...,h,) € Z™ we have

VNAS (hl:‘. e b, hy logul + oot hpog logan_l)
and

VNAS (h,, i h,,gn—-—l-, hy, log an) R

e T
ﬂﬂ- ﬂ"

Therefore £ > n, hence V. O Ty # {0}. One therefore deduces that

log ay,..., log evp,_; are Q-linearly dependent, which contradicts our choice
of n minimal.

@ Dual of Hirata’s method

The duality that we shall describe at the end of this lecture suggests
to choose dy = n,dy =1, d=n+1, hence A= Q" x L, and then W =



74 Transcendental Numbers

C(B1,.--,Bn,0), while V is once more an hyperplane: z,4; = z;loga; +
-+ -4z, log@n. For (hy,...,h,) € Z™ we have

VOAD (hy,... e hilogay + -+ hologen);

therefore £ > n, and V O Ty # {0}. But here we already know that V
contains a non-zero subspace of this form, namely W which is the tangent
space of the additive group, image of G, — G} x Gn by

& =t ([)’12, ooe .,,Bmz, 1)

Instead of this we work with the quotient V/W; we are back to a situation
similar to that in method 3, except that we do not loose the symmetry
between logay, ..., loga,, and also the choice of the parameters is sub-
stantially different (see [W3]).

It is possible to develop the four methods in order to provide explicit
estimates. This is well known for the first method (Baker’s theory). The
second method has been introduced by N. Hirata-Kohno in her study of
lower bounds for linear forms on algebraic commutative groups [H]. The
third and fourth method have been used in [W3] and provide sharp esti-
mates; here is an example which has been worked out using method 3:

Theorem 6. Let ay,...,a, be rational integers, a; > 2, and let by, ..., bn
be rational integers with a'{‘ ..-a’» # 1. Define B = max{2, b, ..., |bal};
then

|“:l cealr — 1| > exlw{—24"+mn3"+5logBlog ay - -log an}.

In methods 1 and 2, the points we consider in VN A all lie on a complex
line (subspace of dimension 1); this fact has been an essential feature of
Baker’s method up to recently (see for instance [Wii], and also [H]): it
enables one to use interpolation techniques, and to work out the proof
without introducing functions of several variables. The situation is quite
different for the two dual methods, where the points span a vector space
of higher dimension (as soon as n > 3 for method 3, and also for n = 2 in
method 4). In this case there is so far no available extrapolation argument,
and because of this the method is more primitive. The main fact which
enables us to derive sharp bounds is that there is a single factor Gm (i.e.
only one exponential function); cf [W2] and [W3].

4. Matrices whose entries are linear combinations of logarithms
One motivation for the results in this section is Leopoldt’s conjecture on

the p-adic rank of units of an algebraic number field. When one considers an
algebraic number field which is Galois over Q, the action of the Galois group
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gives rise to a block decomposition of the the p-adic regulator into square
matrices whose entries are linear combinations with algebraic coefficients
of p-adic logarithms of algebraic numbers. The problem is to give a lower
bound for the rank of such matrices.

We consider here only the complex case, but the results can be extended
also to non-archimedean fields.

Let M be a d x £ matrix whose entries are linear combinations of -
(complex) logarithms of algebraic numbers. The coefficients of M be-
long to a Q-vector space generated by Q-linearly independent elements
logay,...,loga, of L ; hence one can write

S )
M= ﬂﬂij "*‘Zﬁslij 103“’5 = B()*'I'ZB, log(_r,
s=1 1<igd, s=1
1<5<¢t
with log «, linearly independent. over Q (or over Q) and By, . . ., Bs matrices

with algebraic entries.
Following D.Roy [R1], one defines the structural rank reonj(M) of M as
the rank of the matrix

g
By + Z B, X,

a=1

»

in Q(Xy,.... X s). From the standard conjecture stating that Q-linearly
independent elements of L are algebraically independent. over Q (hence
over Q), one immediately dednces:

Conjecture 7. .
rk(M) = reo,i(M).

It happens often in this subject that one is able to prove half of what
one expects; in the presént case, D.Roy proved [R1]:

Theorem 8.
1
l‘k(M) Z ;2' 1‘¢°"j (A{) S

Here is a connection with the sitnation we considered in theorem 4: if
rk(M) < d, then the £ columns vectors

) 5
TR (ﬂm’j + Zﬁ,.;j log (.r_.) S (€<l
1<i<d

s=]

belong to a hyperplane of C%; denote by £ the Q-vector space spanned by
land L in C:

L={Buo+pilogay+ -+ fn logay, ; Bi € Q, logw; €L},
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Let V be a complex vector subspace of C?%; if V NnQ?> (Br,....P1) #0,
then .
(Brlogex, ..., Laloga) eV N LY

for all loga € LL; hence dimg V' N L4 = 00. As sho»\in by D. Roy [R1], the
converse is true: if dimgV N L% = oo, then VNQ? 3 (B1,...,B4) # 0.

More precisely:

Theorem 9. If VNQ4= {0}, then
dimg VN L? < d(d - 1).

\
This result is in fact a consequence of thearem 4 (this is not obvious). In
a joint work with Damien Roy [R-W], we develop the idea of [R1] and study
the following generalization of theorem 9: let again G be an algebraic group
defined over Q; we consider once more the Q-vector space A = expz! G(Q)
in Tg(C). Now let K be a number field; define Ay as the K-vector space
spanned by A in Tg(C):

Ag = {Brur+ -+ Baun; n 20, B; € K, expg u; € G(Q)}.

Form>1and 8= (81,...,Pm) € K™, consider the map

$

®p Tm —y Tc
(21,....Zm) — 2181+ + ZmPm

If G’ is an algeb:a‘.ic subgroup of G™ defined over Q of positive dimension
such that ¢5(Tg:) C V, then for each u € T (C) with expg: u € G'(Q), we
have pg(u) € VN Ag. Therefore dimg VN A = co. Here is the converse:

Theorem 10. If V does not contain any non-zero subspace of the form
ws(TG), then

dimg'V N Ag < (dy + 2ds) dimg(V/W).

5. Interpolation determinants

This last section is devoted to a sketch of proof of the algebraic sub-
group theorem. The original proof [W1] used the classical transcendence
method of Gel’fond-Schneider, with a construction of an auxiliary function
performed thanks to the Dirichlet box principle (lemma of Thue-Siegel).
Here, we follow an idea of Michel Laurent [La] and consider an interpola-
tion determinant:

A= (let(SOA (C;t)) 1<, 4<N”

The main analytic argument is the following:
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Lemma 11. Let ¢,,...,on be analytic functions in a polydisk {z €
C*; |z| < R} in C*, and let (3,...,(n in C* satisfy |(,| < r < R. Then

R -T N
< | = !
ai< (7)) W 1Lieln

with
T > - N(n+1)/n for N>2PoM,
Z Be 2
This lemma is fundamental for the proof below; its proof just uses the
classical Schwarz lemma for functions of one complex variable with a high

order multiplicity of zero at the origin. -

Here is a sketch of proof of the algebraic subgroup theorem using lemma
11. We take linearly independent points #;,...,7 in V N A; the interpo-
lation points will be indexed by h = (hy,...,h¢) € Z* with 0 < hj < H,
(1<
En=lan+- -+ Iy

We consider the functions oy = fo"--- fa/fE, where (Xo,...,AM) €
ZMA \o+ -4 Ay = L, and (fo, ..., fair) are entire functions which give
a representation the exponential map expg : Tg(C) — G(C) composed
with an embedding of G(C) into a projective space Pps(C). We restrict the
values of A = (), ..., Ap) so that the o, arelinearly independent. Further,
the vector subspace W of T¢(C) in theorem 4 provides derivations which
we write DJ,,, (r € N* with ¢ = dimg W) which have the crucial property:

Diyor(én) €Q, forall 7eN.

We shall use this information only for ||7|| < T, where T is a new parameter.
The main steps of the proof are as follows:

1. One starts by cheosing the parameters L, T and H. In practice, one
first writes the conditions that these parameters have to satisfy in such a
way that the four steps below work, then one optimizes the choice of these
barameters, and finally one writes down the proof starting with this choice.
The final result depends heavily on these estimates, and there is no other
Justification than these computations to explain the explicit upper bound
we finally obtain.

2. Here comes the geometric part of the proof, with the zero estimate
°fl Philippon; it. enables one to choose a subset. H of {h=(hy,...,he) €
Z°;0< hj < H, (1< j < ()}, such that the determinant

A = det. (D;‘;cp,\(f),))( - ')

does not vanish.
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3. The analytic part of the proof is-provided by lemma 11 of M.Laurent
(the fact that the ¢, are meromorphic rather than analytic is not a serious
difficulty); one deduces an upper bound for |A[, say |A| < €.

4. The arithmetic argument is nothing else than the classical Liouville
estimate; since A is a non-zero algebraic number, it cannot be too small:
|A] > €.

5. Now comes the conclusion: €3 < €;. There is still some work to do

to get the desired statement; in fact the zero estimate yields a non-zero A’

provided that not too many points of Zy; + - -- + Zy, lie in the tangent
space of a proper algebraic algebraic subgroup of G. But we shall not give
more details here (see (W1} for a complete proof).

6. Duality

We end this lecture by a discussion of a duality in transcendence proofs.
We consider the following easy identity:

(d/dz)™ (7€) p=y = (d]d2)° i T

where =z, y, z are complex numbers while ¢ and 7 are non-negative integers.

There is a generalization of this identity to several variables [W2]: let
n,t,s be positive integers, =,y,z,wy,...,wy,uy,...,u, € C*, and ¢ € N?,
T € NY; define (z as the standard scalar product in C*, namely (z =
€121+ - -+ (nzna, and similarly D¢ = (1(0/021) + - - - + (a(0/0z,); then

Dy, - Dy ((m12) -+ (us2)* ™), _, =

= Dgt--- Dy’ ((wlz)’l o (wez)™ e”‘)

This relation occurs in the proofs of theorem 5 as follows: assume we
have a non-trivial linear relation loga, = By loga; + -+ + fp-1logan—y
and defthe, for h =(by,....h:) € Z% v &= {n;....Th-1) € Z7! and
AEZ:

Z=T

n-1 n
: Al
Vs, N = H("i + hnﬁi)r' «a; =
=1 gl
these numbers )., » are interpolation values of analytic functions in two
different. ways: on one hand

= i n... 9 r‘-‘d) (A]O'( | Adlog ¢ )
Thir, A = 621 (?Zn_l h -3 I EXn-1),

with
11),‘(_21’ 154 zn—l) = 6("1+/‘:.l’1)=1 ) ,e(hn-l +hafn-1)zn-1.

'

on the other
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Yh;r A = ‘Pr,/\(hl + hnfh, ey ha—1 + hnﬂn-—l)

where x
S o=
Pral21y:0 0 2n=1)= zI‘ E L ey (u‘;‘ .o -an_l') ’

If one specializes the preceding proof to the special case of theorem 5,
depending on whether one express 7., » in terms of ¢, ) or in terms of ¥,
one recognizes Baker’s method or its dual.. For Hirata’s method and its
dual, one writes, for re N®, he N*+*land A € Z

gy E
(a—zl) (E) ¢h()flogr11,...,/\lob‘-rxn)_

: = ha =
(Eﬁi (%)) 951,;\(’11)---,’111),
i=1 .

where -
lph(ZI, ey Zn) -— (ﬁlZl + .. + ,ann)h"ehlzl o0 .ehnzn
and :
; (ﬁT’A(Zl, e ,Zn) —t Z;l .. .z;’l (ail S ‘(1;")
¢ -
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