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1 Thue equations

1.1 Introduction

A Thue equation is a Diophantine equation of the form F(x,y) = m, where F ∈
Z[X ,Y ] is a given homogeneous polynomial in two variables (i.e. a binary form) of
degree d with integer coefficients, m is a given non zero integer while the unknowns
x,y take their values in Z. Is the set of such (x,y) finite or infinite? If it is finite,
can we get an upper bound for the number of its elements? (Such an upper bound is
a qualitative statement). Can we get an upper bound for the height of its elements?
(Such an upper bound is a quantitative statement).

A Thue–Mahler equation is an exponential Diophantine equation of the form
F(x,y) = pz1

1 · · · pzs
s where F is a given binary form, p1, . . . , ps are given prime num-
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bers, the unknowns are x,y,z1, . . . ,zs where x,y take their values in Z and z1, . . . ,zs in
Z≥0.

We denote by f ∈ Z[T ] the polynomial defined by f (T ) = F(T,1):

f (T ) = a0T d +a1T d−1 + · · ·+ad−1T +ad ,

F(X ,Y ) = a0Xd +a1Xd−1Y + · · ·+ad−1XY d−1 +adY d ,

Notice that a0 = 0 is equivalent to saying that F(X ,0) is the zero polynomial. We
assume a0 > 0, so that f has degree d.

For m = 0, the set of (x,y) 6= (0,0) in Z2 such that F(x,y) = 0 is empty if f has
no rational root, while, if f has rational roots, then this set is the set of (x,y) with
y 6= 0 such that x/y is a root of f .

From now on we assume m 6= 0.
When d = 1, we have F(X ,Y ) = a0X + a1Y ; the solution of a linear equation

a0x+a1y = m is given by Bézout’s Theorem. The computation of the gcd of a0 and
a1 is done efficiently via the Euclidean algorithm, which is nothing else than the
continued fraction expansion algorithm applied to a1/a0.

Assume d = 2. The quadratic equation a0x2 +a1xy+a2y2 = m may have no so-
lution or finitely many solutions: one among many examples is for (a0,a1,a2) =
(1,0,1) with the equation x2 + y2 = m. It may have infinitely many solutions; this is
the case for (a0,a1,a2) = (1,0,−D) and m = 1, where D is a positive integer which
is not a square, with the Brahmagupta–Fermat–Pell equation x2−Dy2 = 1. The gen-
eral solution of the quadratic equation (not necessarily a Thue equation) is due to
Lagrange [Mo 1969,F 1991].

Assume now d > 2. If f is a reducible polynomial in Z[X ], then solving the equa-
tion F(x,y) = m, where the unknowns x,y take their values in the set of rational
integers, amounts to solving finitely many equations Fi(x,y) = mi with mi a divisor of
m and Fi(X ,Y ) an irreducible factor of F(X ,Y ) in Z[X ,Y ]. For this reason we assume
now that f is irreducible in Z[X ].

1.2 Positive definite binary forms

Assume first that the polynomial f has no real root (hence its degree d is even).
Then for each m ∈ Z, m 6= 0, the set of (x,y) in Z2 such that F(x,y) = m is finite.
To study the Diophantine equation F(x,y) = m means to study the representation of
integers by the definite form F . Let us quote the following elementary lemma 2.1
from [FLW 2018].

Lemma 1 Let f ∈ Z[T ] be a nonzero polynomial of degree d which has no real root.
Let g(T ) = T d f (1/T ). Assume that the leading coefficient of f (T ) is positive, so that
the real number, defined by

γ = min
{

inf
−1≤t≤1

f (t), inf
−1≤t≤1

g(t)
}
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is > 0. Let F(X ,Y ) be the binary form Y d f (X/Y ) associated with f . Then for each
(x,y) ∈ Z2, we have

F(x,y)≥ γ max
{
|x|d , |y|d

}
.

Moreover, for any real number c with c > γ , there exist infinitely many couples (x,y)
in Z2 satisfying

F(x,y)< cmax
{
|x|d , |y|d

}
.

A class of definite forms F (namely, forms which are associated with a polyno-
mial f without real root) is given by the norm over Q of a CM field. Recall that a
subfield K of C is a CM field if it is a number field which satisfies the following
equivalent conditions:
(i) K is totally imaginary and is a quadratic extension of a totally real field.
(ii) There exists γ ∈ K such that K = Q(γ) and γ2 is totally real with all conjugates
negative.
(iii) K is not real and the complex conjugation z→ z commutes with every embedding
of K into C: for σ : K→ C and α ∈ K,

σ(α) = σ(α).

Theorem 1 (K. Győry, [G 1977]) Let K be a CM field of degree d over Q. Let α ∈K
be such that K = Q(α); let f be the irreducible polynomial of α over Q and let
F(X ,Y ) = Y d f (X/Y ) the associated homogeneous binary form. Set a0 = F(1,0),
ad = F(0,1). For (x,y) ∈ Z2 we have

xd ≤ 2dad−1
d F(x,y) and yd ≤ 2dad−1

0 F(x,y).

Recall that the leading coefficient a0 of the irreducible polynomial of α is posi-
tive. The assumption implies that α is totally imaginary, hence ad > 0 and F(x,y)> 0
for (x,y) 6= (0,0).

Proof Let α1, . . . ,αd be the roots of f in C, so that

F(X ,Y ) = a0(X−α1Y ) · · ·(X−αdY ).

For 1≤ j ≤ d, the number α j is not real (since K is totally imaginary) and we have

|x−α jy| ≥ |ℑm(α j)y|.

Since K is a CM field, α is in K and 2iℑm(α) = α−α is a nonzero element in K; its
conjugates in C are α j−α j. Moreover, a0(α−α) being a nonzero algebraic integer,
its norm is a nonzero rational integer, of absolute value ≥ 1. Therefore

2dad−1
0 F(x,y) = ydNK/Q(2ia0ℑm(α))≥ yd .

The same argument gives the upper bound for xd . �
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In the special case where α is a unit in K, we have a0 = ad = 1 and the conclusion
can be written

(1) max{|x|, |y|} ≤ 2F(x,y)1/d .

Examples of binary forms satisfying the assumptions of Theorem 1 with a0 =
ad = 1 are given by the cyclotomic binary forms, which we define as follows.

For n ≥ 1, denote by φn(T ) the cyclotomic polynomial of index n and degree
ϕ(n) (Euler’s totient function). The cyclotomic binary form Φn(X ,Y ) is defined by
Φn(X ,Y ) = Y ϕ(n)φn(X/Y ). In particular, we have Φn(x,y)> 0 for n≥ 3 and (x,y) 6=
(0,0).

An example showing that the estimate (1) is optimal is given by the form F(X ,Y )=
Φn(X −Y,Y ) of degree d = ϕ(n), where n ≥ 3 is not of the form pr nor 2pr with p
prime. This condition on n implies φn(1) = φn(−1) = 1, hence for y ∈ Z we have

F(2y,y) = ydF(2,1) = yd
φn(1) = yd .

The irreducible polynomial of the unit α = 1+ ζn is φn(t−1) and the field Q(α) is
the CM field Q(ζn).

In the special case of cyclotomic binary forms, Theorem 1 gives

max{|x|, |y|} ≤ 2|m|1/ϕ(n)

for the integral solutions (n,x,y) of Φn(x,y) = m. An upper bound for n can be de-
duced only if max{|x|, |y|} ≥ 3.

In [FLW 2018], the refined estimate

max{|x|, |y|} ≤ 2√
3
|m|1/ϕ(n)

has been proved for the integral solutions (n,x,y) of Φn(x,y) = m satisfying n ≥ 3
and max{|x|, |y|} ≥ 2. Therefore

ϕ(n)≤ 2√
3

logm.

See [OEIS, A296095, A299214, A293654, A301429 and A301430].

1.3 Thue equation and Diophantine approximation

We now come back to the general case where f ∈Z[T ] is irreducible over Q of degree
d ≥ 3 and may have real zeroes. Write

f (T ) = a0(T −α1)(T −α2) · · ·(T −αd).

Recall our assumption a0 > 0. Assume m 6= 0 is fixed while x,y are rational integers
with F(x,y) = m. Let us show that, as soon as max{|x|, |y|} is sufficiently large, x/y
is close to one of the roots αi of f and is not close to any other root (since f is

https://oeis.org/A296095
https://oeis.org/A299214
https://oeis.org/A293654
https://oeis.org/A301429
https://oeis.org/A301430
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irreducible, the roots αi are distinct). For i = 1, . . . ,d, define βi = x−αiy. Label the
roots of f so that

|β1|= min
1≤i≤d

|βi|.

From a0β1 · · ·βd = m we deduce

|β1|d ≤
|m|
a0

,

which means

(2)
∣∣∣∣α1−

x
y

∣∣∣∣≤ |m|1/d

a1/d
0 |y|

·

We may notice that if α1 is not real, then we get immediately a sharp upper bound
for |y|:

|y| ≤ |m|1/d

a1/d
0 |ℑm(α1)|

·

We now sharpen the upper bound (2). If

|y| ≤ 2|m|1/d

a1/d
0 min

2≤i≤d
|αi−α1|

,

then the relation x = α1y+β1 implies the upper bound

|x| ≤

 2|α1|
min

2≤i≤d
|αi−α1|

+1

 |m|1/d

a1/d
0

,

which shows that |x| and |y| are bounded. Assume now

|y|> 2|m|1/d

a1/d
0 min

2≤i≤d
|αi−α1|

·

For i = 2, . . . ,d, we have βi = (α1−αi)y+β1, hence

|βi|= |x−αiy| ≥ |(αi−α1)y|−
|m|1/d

a1/d
0

≥ 1
2
|(αi−α1)y|,

which implies

|m|= |a0β1 · · ·βd | ≥ |y|d−1|β1|
1

2d−1 a0

d

∏
i=2
|αi−α1|

and therefore we deduce the following improvement of the upper bound (2):∣∣∣∣α1−
x
y

∣∣∣∣≤ κ1( f )|m|
|y|d
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with

κ1( f ) =
2d−1

a0

d

∏
i=2
|αi−α1|

·

Liouville’s estimate is the lower bound∣∣∣∣α1−
x
y

∣∣∣∣≥ κ2( f )
|y|d

with some explicit constant κ2( f ); this does not give any information on the Thue
Diophantine equation, but any non trivial improvement of Liouville’s estimate gives
a non trivial information on the equation F(x,y) = m (see [W 1986,LW 2011]). The
work by Thue in 1914 culminated with the proof by Roth in 1955 of the following
result:

Theorem 2 (Thue, Siegel, Roth) If α is an algebraic number of degree d ≥ 2, for
any ε > 0 there exists a positive constant κ(α,ε) such that, for any rational number
p/q with q > 0, we have ∣∣∣∣α− p

q

∣∣∣∣> κ(α,ε)

q2+ε
·

From the previous argument we deduce

Corollary 1 (A. Thue) Let F ∈ Z[X ,Y ] be an irreducible binary form of degree d ≥
3. Let m ∈ Z. Then there are only finitely many (x,y) in Z×Z such that F(x,y) = m.

One main drawback of this argument is that the proof following the original ap-
proach by Thue does not produce an effective value for the constant κ(α,ε) when
ε is less than d− 2. As a consequence, Corollary 1 is not effective; as a matter of
fact, upper bounds for the number of solutions (x,y) to the Diophantine equation
F(x,y) = m (qualitative statements) can be derived from the proof, but no upper
bound for max{|x|, |y|} can be obtained (quantitative statements). We will discuss
below (see §2) another approach which has been suggested by A.O. Gel’fond and
worked out by A. Baker, involving lower bounds for linear forms in logarithms - and
it is effective.

An illuminating presentation of Thue’s method is given by D.W. Masser in [M 2016],
Chap. 12, where he starts with x3− 2y3 = m and goes on by explaining some of the
main ideas behind Thue’s proof, building upon Newton’s method.

1.4 An example: x3−2y3 = m

Let us consider the special case of the cubic Thue equation x3−2y3 =m (see [W 1986]).
Let ψ be a positive real function which satisfies∣∣∣∣ 3√2− p

q

∣∣∣∣> ψ(q)
q3
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for each q > 0. Let m ∈ Z, m 6= 0 and let (x,y) ∈ Z2 satisfy x3−2y3 = m. Assume x
and y are positive (this is no loss of generality). Write

x3−2y3 = (x− 3√2y)(x2 +
3√2xy+ 3√4y2)

and observe that x2 + 3√2xy+ 3√4y2 > y2. We deduce that any solution (x,y) in posi-
tive integers of the equation x3−2y3 = m satisfies

(3) ψ(y)≤ |m|.

If ψ(q) tends to infinity with q, then we get an upper bound for y, while x is bounded
by

x≤ 3√2max{ 3
√
|m|, 3√2y}.

In the other direction, let ψ be a positive real function such that any solution (x,y)
in positive rational integers of x3−2y3 = m satisfies

ψ(y)≤ |m|.

We write

|p3−2q3|=
∣∣∣∣ 3√2− p

q

∣∣∣∣(p2 +
3√2pq+ 3√4q2)q.

If p≤ (3/2)q, we have p2 + 3√2pq+ 3√4q2 ≤ 6q2 and we deduce∣∣∣∣ 3√2− p
q

∣∣∣∣≥ ψ(q)
6q3 ·

If p > (3/2)q, then we have the sharper estimate∣∣∣∣ 3√2− p
q

∣∣∣∣> 3
2
− 3√2 >

1
5
·

Liouville’s estimate

(4)
∣∣∣∣ 3√2− p

q

∣∣∣∣> 1
6q3

follows by taking for ψ the constant function ψ(y) = 1, while any upper bound for
the solutions (x,y) of x3− 2y3 = m implies the validity of (3) with a function ψ(y)
tending to infinity with y, and this yields an improvement on Liouville’s estimate (4).

In this direction, the sharpest known estimates are due to M. Bennett [Be 1997a]:∣∣∣∣ 3√2− p
q

∣∣∣∣> 1
4q2.5 and |x3−2y3| ≥

√
x.

See also [Be 1997b] for similar results concerning other algebraic numbers than 3√2.
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2 Solving Thue equation using Baker’s method

2.1 References

Here is a selection of books having a section devoted to Baker’s method for solving
Thue equations.
• [Ba 1975] Chap. 4 (Diophantine equations) §2 The Thue equation - proof using
lower bounds for linear forms in logarithms.
• [SVTS 1977] Main results arising from Baker’s method in 1977, with proofs using
lower bounds for linear forms in logarithms.
• [ST 1986] Chap. 5 (The Thue equation) proof using lower bounds for linear forms
in logarithms. Includes effective estimates.
• [Sp 1982] Chap. IV (The Thue Equation).
• [BW 2007] Chap. 3 (Diophantine problems) §3 The Thue equation - sketch of proof
using lower bounds for linear forms in logarithms.
• [G 2002] Survey of some important applications of Baker’s theory of linear forms
in logarithms to Diophantine equations.
• [EG 2015] Chap. 9 (Decomposable forms equations) §9.6 (Effective results) §9.6.1
(Thue equations) Explicit results.
• [Bu 2018] Chap. 4 §3 (The Thue equation).

2.2 Thue equation and Siegel’s unit equation

We explain some of the basic ideas behind the reduction of the Diophantine equation
F(x,y) = m to Siegel’s unit equation.

Assume for simplicity a0 = 1, ad = ±1, m = 1, so that the polynomial f can be
written

f (T ) = T d +a1T d−1 + · · ·+ad−1T ±1 = (T −α1) · · ·(T −αd)

where α1, . . . ,αd are units of degree d. The numbers βi = x−αiy (i = 1, . . . ,d) are
also units of degree d, since they are algebraic integers satisfying β1 · · ·βd = 1. If
i1, i2, i3 are distinct indices in {1, . . . ,d} (recall d ≥ 3), eliminating x and y among the
three relations

βi1 = x−αi1y, βi2 = x−αi2y, βi3 = x−αi3y

shows that the determinant ∣∣∣∣∣∣
1 −αi1 βi1
1 −αi2 βi2
1 −αi3 βi3

∣∣∣∣∣∣
is 0. This yields the so–called Siegel unit equation

βi1(αi2 −αi3)+βi2(αi3 −αi1)+βi3(αi1 −αi2) = 0.
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The main result on Siegel’s unit equation is that given γ1,γ2 in K×, the set of pairs
(u1,u2) of units in a number field K satisfying γ1u1 + γ2u2 = 1 is finite. In homoge-
neous form, the result is the following: if γ1,γ2,γ3 are in K×, if we consider the equa-
tion γ1u1 + γ2u2 + γ3u3 = 0, then the set of (u1/u3,u2/u3) is finite. Baker’s method
gives an effective upper bound for the heights of the solutions.

Once we know that the set of numbers

βi1(αi2 −αi3)

βi2(αi3 −αi1)
,

for (x,y) solution of F(x,y) = m, is finite, we deduce that the set of quotients βi1/βi2
is finite, hence x/y belongs to a finite set E; if y = νx with ν ∈ E, then F(x,y) =
xdF(1,ν) and the equation xdF(1,ν) = m yields the desired upper bound for |x|.

2.3 Lower bounds for linear forms in logarithms and Siegel’s unit equation

Let α1, . . . ,αn be nonzero algebraic numbers and b1, . . . ,bn be rational integers such
that

α
b1
1 · · ·α

bn
n 6= 1.

Define B = max{2, |b1|, . . . , |bn|}. A “trivial” estimate “à la Liouville” is

|αb1
1 · · ·α

bn
n −1| ≥ e−C1B,

where C1 is an explicit constant depending only on α1, . . . ,αn. Methods from tran-
scendental number theory involving the quantity β1 logα1 + · · ·+βn logαn yield the
refinement

(5) |αb1
1 · · ·α

bn
n −1| ≥ B−C2 ,

where C2 is also an explicit constant depending only on α1, . . . ,αn. This estimate is
optimal as far as the dependence on B is concerned (but optimal estimates for C2 have
not yet been achieved).

Let γ1,γ2 be non zero elements in a number field K. Let ε1, . . . ,εr be a basis of the
group of units of K. Let (u1,u2) be two units in K such that

γ1u1 + γ2u2 = 1.

We write u1

u2
= ζ ε

b1
1 · · ·ε

br
r

where ζ is a root of unity in K and b1, . . . ,br are rational integers. Set

γ0 =
−γ1ζ

γ2
·

We use the fundamental Diophantine estimate (5) to obtain a lower bound for the
modulus of any complex conjugate of the left hand side of

γ0ε
b1
1 · · ·ε

br
r −1 =

−1
γ2u2
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An auxiliary lemma (e.g. Lemma 5.1 of [ST 1986] or Lemma 5 of [LW 2016]) shows
that one can choose such a complex embedding for which the modulus of the right
hand side is small, so that we end up with an upper bound for the heights of u1 and
u2.

Essentially, the three statements:
• finiteness of the set of solutions to Thue equations
• finiteness of the set of solutions of the unit equation
• non trivial refinement of Liouville’s Theorem
are equivalent. An upper bound for the number of exceptional solutions for one of
these statements implies such an upper bound for the two others; an effective result
on one of them (upper bound for the exceptional solutions) yields an effective result
on the two others. See [W 1986,LW 2011].

An effective result on the Thue equation is the following: let F ∈ Z[X ,Y ] be an
irreducible binary form of degree ≥ 3; let (x,y) ∈ Z2 and let m = F(x,y). Then

max{|x|, |y|} ≤ mκ ,

where κ is a positive effective absolute constant depending only on F ; explicit formu-
lae are available (see for instance [EG 2015]). At the early stages of Baker’s method,
such constants were huge; drastic improvements have been achieved; nowadays these
estimates are good enough for solving explicitly Thue equations with coefficients
which are not too large. Algorithms using this approach are implemented in compu-
tation packages.

3 Families of Thue equations

3.1 Historical survey

Given a family Ft(X ,Y ), t ∈ I of binary forms of degree≥ 3, the first goal is to prove,
under suitable assumptions, that for all m > 0 there are only finitely many (t,x,y) ∈
I×Z×Z satisfying Ft(x,y) = m. Sometimes some subsets of (t,x,y), corresponding
to “trivial solutions”, are excluded. The second goal is to give an upper bound for the
exceptional solutions.

A survey on these questions is [H 2004]. Further results can be found in [EG 2015].
See also [AMZ 2017] for another approach (the family x3−(t3−1)y3 = 1 is quoted).

3.2 Idea of the proof

Let f ∈ Z[T ] be an irreducible polynomial of degree d ≥ 3 and let

F(X ,Y ) = Y d f (X/Y ) ∈ Z[X ,Y ].

Denote by α a root of f , by K the field Q(α) and by υ a unit in K of infinite order.
For a ∈ Z we denote by fa the irreducible polynomial of αυa. We assume that fa has
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degree d. Let Fa be the binary form Y d fa(X/Y ), so that f0 = f and F0 = F . Given
m ∈ Z, m 6= 0, we consider the set of triples (x,y,a) in Z3 such that

Fa(x,y) = m.

Let σ1, . . . ,σd the embeddings of K in C. We define

αi = σi(α), υi = σi(υ) (i = 1, . . . ,d),

so that

fa(T ) = a0

d

∏
i=1

(T −αiυ
a
i ),

Fa(X ,Y ) = Y d fa(X/Y ) = a0

d

∏
i=1

(
X−αiυ

a
i Y
)
.

Let m be a nonzero integer and (x,y,a) be a solution of Fa(x,y) = m with Q(αυa) =
K. For i = 1, . . . ,d, set βi = x−αiυ

a
i y. We have

a0β1 · · ·βd = m.

Eliminating x and y among three equations βi = x−αiυ
a
i y for i = i1, i2, i3 yields the

unit equation

βi1αi2υ
a
i2 −βi1αi3υ

a
i3 +βi2αi3υ

a
i3 −βi2αi1υ

a
i1 +βi3αi1υ

a
i1 −βi3αi2υ

a
i2 = 0.

A first approach is to use Schmidt’s Subspace Theorem and its consequence on the
generalized S–unit equations: given a finite set of places S of a number field K and an
integer n, the set of nondegenerate solutions (u1, . . . ,un) in S–units of the equation

u1 + · · ·+un = 1

is finite. Nondegenerate means that no nontrivial subsum of u1 + · · ·+un vanishes. A
technical difficulty is that we need to deal with degenerate solutions. This approach
yields strong general but ineffective results [LW 2012].

Another approach, which is effective, is to use Baker’s method. This is efficient
as soon as two of the six terms on the left hand side have a size which is much larger
than the sum of all other four terms (besides, these two terms should not yield a zero
subsum). So far, this has been achieved only in special cases [LW 2013b,LW 2013c,
LW 2015a,LW 2015b,LW 2016,LW 2017].

3.3 Joint papers with Claude Levesque

We give here a summary of the results in a sequence of joint papers with C. Levesque,
which was initiated during our visit to IMPA in Rio de Janeiro in 2010. The initial
goal, which was to solve the family of equations obtained from Thomas equations
(see [H 2004]) by including powers of units, has been achieved in [LW 2015b].
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In [LW 2011], we work out equivalence statements between assertions dealing
with several Diophantine questions: Thue–Mahler equations, S–unit equation, inte-
gral points on P1(K) minus three points.

Our first results [BLW 2011,LW 2012,LW 2013a] were based on Schmidt’s sub-
space Theorem and therefore were not effective - but they were very general. We
obtained families of Thue–Mahler equations having only finitely many solutions and
we gave upper bounds for the number of solutions; but we were not able to give upper
bounds for the solutions themselves, hence we could not solve the equations.

Our first main new results were proved in [LW 2012]. Some consequences on
Diophantine approximation were given in [LW 2013a].

Here is a special case of Corollary 3.6 of [LW 2012] which deals with Thue–
Mahler equations.

Theorem 3 Let K be a number field and Γ a finitely generated subgroup of K×. For
γ ∈ Γ , denote by fγ ∈ Z[X ] the irreducible polynomial of γ and by Fγ ∈ Z[X ,Y ] its
homogeneous version. Then the set of γ ∈Γ satisfying [Q(γ) : Q]≥ 3 for which there
exists (x,y) ∈ Z2 with Fγ(x,y) ∈ Γ and xy 6= 0 is finite.

Proof Since K has only finitely many subfields, it suffices to prove that the set of
γ ∈ Γ satisfying Q(γ) = K for which there exists (x,y) ∈ Z2 with Fγ(x,y) ∈ Γ and
xy 6= 0 is finite.

Assume γ ∈ Γ satisfies Q(γ) = K and assume that there exists (x,y) ∈ Z2 with
Fγ(x,y) ∈ Γ and xy 6= 0. Let α ∈ K with K = Q(α). Let S be a finite set of places
of K such that α ∈ O×S et Γ ⊂ O×S . Corollary 3.6 of [LW 2012] with t = 0, ε = γ/α

yields the result. �

By taking for Γ the group of units Z×K in K, we deduce the following result:

Corollary 2 Let K be a number field. The set of units ε ∈Z×K of degree≥ 3 for which
there exists (x,y) ∈ Z2 with Fε(x,y) =±1 and xy 6= 0 is finite.

Another result from [LW 2012] is the following. Let S = {p1, . . . , ps} be a finite
set of prime numbers, f ∈Z[X ] an irreducible polynomial of degree d ≥ 3, α a root of
f , K the number field Q(α), σ1, . . . ,σd the embeddings of K into C. For each S–unit
ε ∈ O×S , define Fε(X ,Y ) ∈ Z[X ,Y ] by

Fε(X ,Y ) = a0
(
X−σ1(αε)Y

)(
X−σ2(αε)Y

)
· · ·
(
X−σd(αε)Y

)
.

Let m ∈ Z\{0}. Then the set of (x,y,ε,z1, . . . ,zs) in Z2×O×S ×Ns satisfying

Fε(x,y) = mpz1
1 · · · p

zs
s ,

with xy 6= 0, gcd(xy, p1 · · · ps) = 1 and [Q(αε) : Q]≥ 3, is finite.
Theorem 3 implies finiteness results for families of Thue–Mahler equations. It is

not effective: upper bounds for the number of solutions could be deduced, but not
upper bounds for the heights of the solutions.
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In [BLW 2011], which is a joint paper involving also Yann Bugeaud, we obtained
an upper bound for the number of solutions of simultaneous Brahmagupta–Fermat–
Pell–Mahler equations: given rational integers a1,b1,c1,a2,b2,c2 and prime numbers
p1, . . . , ps, we considered the system of equations{

a1X2 +b1XZ + c1Z2 = ±pm1
1 · · · pms

s ,

a2Y 2 +b2Y Z + c2Z2 = ±pn1
1 · · · pns

s ,

where the unknowns x,y,z,m1, . . . ,ms,n1, . . . ,ns take their values in the set of rational
integers with m1, . . . ,ms,n1, . . . ,nsnon negative.

Our more recent papers provide effective results for families of Thue equations
by means of Baker’s method. One main goal is to prove the following conjecture.

Conjecture 1 Let α be an algebraic number of degree d ≥ 3 over Q. We denote by
K the algebraic number field Q(α), by f ∈ Z[X ] the irreducible polynomial of α

over Z, by Z×K the group of units of K and by r the rank of the abelian group Z×K .
For any unit ε ∈ Z×K such that the degree δ = [Q(αε) : Q] is ≥ 3, we denote by
fε(X) ∈ Z[X ] the irreducible polynomial of αε over Z (uniquely defined upon re-
quiring that the leading coefficient be > 0) and by Fε the irreducible binary form de-
fined by Fε(X ,Y )=Y δ fε(X/Y )∈Z[X ,Y ]. Then there exists an effectively computable
constant κ > 0, depending only upon α , such that, for any m ≥ 2, each solution
(x,y,ε) ∈ Z2×Z×K of the inequation |Fε(x,y)| ≤ m with xy 6= 0 and [Q(αε) : Q]≥ 3
satisfies

max{|x|, |y|, eh(αε)} ≤ mκ .

In [LW 2013b], we prove conjecture 1 when the field K is a non totally real cubic
field. In [LW 2016], we prove conjecture 1 in the more general case where the field
K has at most one real embedding. In [LW 2013c], we prove conjecture 1 when one
requests the unknown ε to belong to a subset of the group of units of K; we show that
this subset contains a positive proportion of all units as soon as the degree of K is at
least 4.

The papers [LW 2013b,LW 2015a,LW 2015b,LW 2017] deal with the special
case where one restricts to a rank one subgroup of the group of units, namely when
ε = υa with a ∈ Z.

The main result of [LW 2013b], which deals only with non totally real cubic equa-
tions, is a special case of the main result of [LW 2017]; the “constants” in [LW 2013b]
depend on α and υ , while in [LW 2017] they depend only on the degree d. The main
result of [LW 2013c] deals with Thue equations twisted by a set of units which is not
supposed to be a group of rank 1, but it involves an assumption (namely that at least
two of the conjugates of υ have a modulus as large as a positive power of υ ) which
we do not need in [LW 2017]. Our Theorem in [LW 2017] also improves the main
result of [LW 2015a]: we remove the assumption that the unit is totally real (besides,
the result of [LW 2015a] is not explicit in terms of the heights and regulator). We
also notice that part (iii) of Theorem 1.1 of [LW 2015b] follows from our Theorem
in [LW 2017]. The main result of [LW 2016] does not assume that the twists are done
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by a group of units of rank 1, but it needs a strong assumption which does not occur
in [LW 2017], namely that the field K has at most one real embedding.

A very recent joint work with E. Fouvry and C. Levesque, already quoted in §1.2,
deals with the family of cyclotomic binary forms [FLW 2018]. One motivation came
from the fact that in [LW 2017], we needed an assumption that some number was not
a root of unity. It was a natural task to study the special case of roots of unity, which
gives rise to the sequence of cyclotomic binary forms.

4 A guide to further references

One of the main references is the classical paper of C.L. Siegel in 1929, which has
been recently translated into English. The reference [Z 2014] includes the English
translation On some applications of Diophantine approximations by Clemens Fuchs,
of the original text by C.L. Siegel in German Über einige Anwendungen diophantis-
cher Approximationen, which is also reproduced in [Z 2014], together with comments
by Clemens Fuchs and Umberto Zannier Integral points on curves: Siegel’s theorem
after Siegel’s proof.

Another reference is [Z 2009] Chap. 2 (Thue’s equations and rational approxima-
tions), where full proofs are given with lots of supplements.
There are many references on Diophantine geometry and Schmidt subspace Theorem,
including the following ones:
• [L 1983], Chap. 7 (The Thue Siegel – Roth Theorem).
• [Se 1989], Chap. 7 (Siegel’s method), Chap. 8 (Baker’s method).
• [Sc 1991], Chap. III (The Thue equation); also Chap. V (Diophantine Equations in
More Than Two Variables).
• [Z 2003], Chap. 1 (Diophantine Approximation and Diophantine Equations) §1.2
(From Thue to Roth); also Chap. II (Schmidt’s Subspace Theorem and S–unit equa-
tions) and Chap. III (Integral points on curves and other varieties).
• [Bu 2004], Chap. 2 (Approximation to algebraic numbers), §2.1 (Rational approx-
imation), §2.2 (Effective rational approximation).
• [HY 2008], Chap. 6 (Roth Theorem); also Chap. 7 (Subspace Theorem) and Chap. 8
(Vojta’s conjectures)
• [C 2016], Chap. 3 (The theorems of Thue and Siegel); also includes results on
Hilbert Irreducibility Theorem and integral points on surfaces.
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cubic fields, J. Théor. Nombres Bordx. 27, No. 2 (2015), 537–563.
arXiv:1505.06708 [math.NT]

LW 2016. — , Solving simultaneously Thue Diophantine equations: almost totally
imaginary case, Ramanujan Mathematical Society, Lecture Notes Series
23 (2016), 137–156.
arXiv: 1505.06653 [math.NT]

LW 2017. — , Families of Thue equations associated with a rank one subgroup of
the unit group of a number field, Mathematika, 63 3 (2017) 1060-1080.
arXiv: 1701.01230 [math.NT].

M 2016. D. MASSER, Auxiliary polynomials in number theory, vol. 207 of Cam-
bridge Tracts in Mathematics, Cambridge University Press (2016).

Mo 1969. L. J. MORDELL, Diophantine equations, Pure and Applied Mathematics,
Vol. 30, Academic Press, London-New York, 1969.

OEIS. N.J. SLOANE, The On–line Encyclopedia of Integer Sequences.
https://oeis.org/

Sc 1991. W. M. SCHMIDT, Diophantine approximations and Diophantine equa-
tions, vol. 1467 of Lecture Notes in Mathematics, Springer-Verlag, Berlin,
1991.

Se 1989. J.-P. SERRE, Lectures on the Mordell-Weil theorem, Aspects of Mathe-
matics, Friedr. Vieweg & Sohn, Braunschweig, (1989); third ed., 1997.

ST 1986. T. N. SHOREY & R. TIJDEMAN, Exponential Diophantine equations,
vol. 87 of Cambridge Tracts in Mathematics, Cambridge University Press
(1986).

http://arxiv.org/abs/1312.7202
http://arxiv.org/abs/1312.7203
http://www.springer.com/mathematics/numbers/book/978-1-4614-6641-3
http://www.springer.com/mathematics/numbers/book/978-1-4614-6641-3
http://arxiv.org/abs/1312.7204
http://arxiv.org/abs/1312.7205
http://dx.doi.org/10.1090/conm/655
http://www.ams.org/books/conm/655/
http://www.ams.org/books/conm/655/
http://arxiv.org/abs/1505.06656
http://arxiv.org/abs/1505.06708
http://arxiv.org/abs/1505.06653
http://arxiv.org/abs/1701.01230
https://oeis.org/ 


Thue Diophantine Equations 17

SVTS 1977. T. N. SHOREY, A. J. VAN DER POORTEN, R. TIJDEMAN &
A. SCHINZEL, Applications of the Gel’fond-Baker method to Diophan-
tine equations, in Transcendence theory: advances and applications, Cam-
bridge (1977), pp. 59–77.
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