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ERRATA

p. 1 “some recent books”, in the last reference (Astérisque), replace 71
by 69-70.

p.- 1.9, 1.-7, displayed formula, replace the subscript h — 1 by h =1

p-3.9, two lines before Theorem 3.3.1 = line which ends with “Finally in
a paper to appear in Bull. Acad.”, replace > by <

p.5.2, 1.11, displayed formula starting with |F’ (%)| replace the last bracket
) by log N) so that the formula reads

1
|F(-)] < exp(—N2"2+6”+6 log N).
q

X0
p.5.5, 1. 9 = line which starts with (uq, ..., replace % — )\? by I

p-5.6, line 2 of section ¢ = just before the statement of Lemma 5.2.1, add:
We recall that T'= N?"** and L = N2 +2,

p.5.7, 1. 3. Replace twice < by <: read 0 < \; < L/¢%, (1 <j<n+1).

p.5.7, 1. 9, displayed formula (after: From the upper bound) replace c%
by 5.
p-5.7, 1. 11, replace i by 4%,'

p.6.3, 1. 5 of section 6.2. The symbol p (Weierstrass P) is missing after

0% read then o2 is entire.

p.8.4, 1.2: at the end of this formula for wy, replace 2% by 2%/? in the
denominator.

p.8.13, 1.2, replace min{s, Ly} by min{¢, L }.

p.9.14, last line. Replace 71 by 69-70.

p.10.10 Section ¢) Comparison of Bombieri’s criterion... should be labelled
section e)



of the recent variations.

The subject has made very significant advances in the
last few years, and it was necessary to choose in *this fertile

area among all the new developments. The only crit
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this choice was the taste of the author. Other asp
subject are described in the books listed in the short
especially in the Proceedings of the Cambridge Conference edit
by Baker and Masser, and in Baker's book.

The second aim of these notes is to provide an intro-
duction to the subject of transcendental numbers. I guess this
material could be used as a text boock, since the conciseness of
the proofs increases only slowly along the book. The first three
lectures prepare the field at an elementary level.

This course was given at Queen's Universi for the
Conference on Recent Developments in Number Theory, organized by
P. Ribenboim in July 1379. The text was written a few months
before the conference, and is reproduced here essentially withcut
modification. Therefore it does not include the beautiful and
unexpected result of D. Bertrand and D. W. Masser on linear
independence of elliptic logarithms, which was found only one
month before the conference. This is a good illustration of the
intense activity of the field.

It is a pleasure to thank here Paulc Ribenboim fcr the

opportunity to deliver these lectures and for his kind hospitality.
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LECTURE 1

PRELIMINARY RESULTS

In this first lecture we introduce the three main tools of the
theory of transcendental numbers. The first one is the fact that a
non-vanishing rational integer has absolute value at least 1. The
second is Dirichlet box principle: a map f: A»B with Card A >
Card B is not injective. The third one is called Schwarz lemma
and leads to an upper bound for an analytic function of one variable

having a lot of Zzeroes.

§1.1 Liouville estimates.

We consider the problem of giving a lower bound for a non-zero
algebraic number. Such an estimate must depend on some "size™
function which measures the "complexity" of the algebraic number.

The most natural one is the '"usual height"; if

aOXd + a.xdt.

1 + ... + a X + a, e ZLX]

d-1 d

is the minimal polynomial of an algebraic number a , wWe define

e

H(a) = max Ja.|

0<3j<d
Lemma 1.1.1. If o 1is a non vanishing algebraic number, then
ol > 2

H{a)+1



Proof.

- Leo=1 . e ..

Since H(a 7) = L(a), it is sufficient to prove that for any
algebraic number § ,

6| < B(E)I+1.

d
If || < 1 the result is clear. Otherwise, let I aixd—l e
i=0
the minimal polynomial of B over £ . From
d d d-i
i=1

we deduce

d 1-i

i8] < lagsl < R T [g]7"T < HGB. _ 1 _,
- —
’ 1-|8]

hence
8] - 1 < H(B),

which 1s the desired result.

The very simple estimate provided by lemma 1.1.1 is not
extremely useful{in fact we will never use it!) For the applications
o 1s a polynomial in given algebraic numbers El,...,Eq , and it
is not guite obviocus how to estimate the height of such a number o

The easiest way to get a useful estimate is to introduce the

house of «

[a] = max Iaj|

1<ji<d

where a,,...,0; are the conjugates of o , and the denominator of

a , den o, which is the positive generator of the ideal of Z

{m e £ ; m o is an algebraic integer}



Lemma 1.1.2. Let ¥ be a non-vanishing algebraic number of degree

d ; then

log [y| > - (d-1) log [¥] - d log den y

Froof.
The number (den y)y is a non zero algebraic integer. Its norm
over is a non-zero rational integer. Hence
d d =—d-1
1 < T[T (den y)y, < |yl (den y) Y] s
i=] -

which is the desired estimate.

We will make a systematic use of lemma 1.1.2. However we

mention some refined estimate, which involves Mahler's measure. Let

d g3 d
P(x) = ¥ a. X 7 =a, T] (X-a.)
. J 8] L 1
1=0 i=1l
be the minimal polynomial of a over @ . From Jensen's formula
we have
' d 1 2int
lagl ] j max {l,iaié) = exp {;G log [P(e”"7" ")|dt).
i=1 )

We denote this number by M(a). (Mahler's measure of a).

Further, let Q € C[X1g==:,Xq3 be a polynomial:
= N

; ! K (A Ay XM LLuxh
QUK 5+ v+ 5% ) AZ:O e Az:D (A -vw5hg) X71 ..Xoa
1 q
EY
= ¥ bO\). TT %43
o) 521 9

We define the height of (Q by

H(Q) = max [b(X)}
{

and the length of ¢ by



LQ) = £ |b)|
(2

Lemma 1.1.3. Let gl,...,gq be algebraic numbers of exact degrees

dl,...,dq respectively. Define D = [Q(Elg...,QqJ: Ql. Let

Q e'Z{Xlﬁ...,Xq1 be a polynomial with integer coefficients such

that Q(El""’aq) # 0. For 1 <h<q, lct Nh > dethQ. Then

p .9 -
Q€E g5 he )] 2 L@t T Mee) DNy, /dy,

Sketch of the proof.

Let ah

of Eh » 1 <h<gqg). Let {06 : X >€} be the D embeddings of

be the leading coefficient of the minimal polynomial

K into € , where K =(2(El,...,£q). The number

q
(g ahNhD/dh ) ' (T: UQ(El,...,Eq))
is a non-zeroc raticonal integer, and therefore its absolute value is
at least 1. A rather straightforward estimate leads to the desired
inequality.

(We have used the remark that if Uyse.-,0 are distinct roots
of a polynomial a Xd+...+ad52[X], then the number a o ...Q

0 1 k

is an aligebraic integer).

In the case q = 1 , an alternative proof of lemma 1.1.3 is
cbtained by considering the resultant of Q and the minimal

polynomial of & over Z.



1.5

A special case of lemma 1.1.1 (with a = & - %) or of lemma
1.1.2 (with y= £ - &%) or of lemma 1.1.3 (with Q(X) = gX-p) is

the following theorem of Liouville.

Corollary 1.1.4 Let £ be an algebraic number of degree d > 2 .

There exists an easily computable number c¢(£) > 0 such that for

any rational number p/q , @ > 0 , we have

c{§)
|g“qE|>"ga—.

All these estimates are elementary and very simple. However
Liouville thecorem is the starting point of a very deep and involved
method which leads to the theorem of Thue-Siegel-Roth-Schmidt

(cf.9.2.2). Surprisingly up tc now nobody succeeded to use, say,

Schmidt's theorems in transcendence proofs in place of Liouville

estimates in order to get sharper {(but ineffective) results.

For convenience we end this section with some inequalities
connecting together the different "size' functions that we have
intrcduced and alsoc with the absolute logarithmic height which is
defined as follows. Let X be a number field, and {v} the set of

absolutes values of K, which we normalize by

]x]v x if x €@, x > 0,

!p%v = 1/p if v extends the p-adic absolute value.

Let N, be the local degree of v; ‘the product formula reads:

T—Tlal Ve for o e K, a # 0.



We define, for o ¢ K,

h(a) = N, log max {l,|a|v}.

1 )X
k-7 {vi

This number does not depend on the number field X containing o .

Lemma 1.1.5 VYor any non zero algebraic number a of degree d we

have
HGa) < 2%M(a),  M@e) < @132 Ka)
and
_ 1 :
h(a) = 3 log M(a)

81.2. Siegel's lemma.

The idea of asserting the existence of certain polynomials
rather than explicitly constructing them is the main feature of
Thue's method. The box principle had been used earlier by Dirichlet

and Minkowski, and later Siegel used it in the following form.

i, 0 (1 <i<n, 1< 3j<m) be rational
3

Lemma 1.2.1 (Siegel) Let a

integers,with n > m . Let A be a positive integer such that

A > max |ai j! . Then there exist rational integers XiaeersX s
1,3 ’
wilth

n

0 < max [xil < (nA)Y-m
1<i<m




such that

I a, .x. =80 s (1<j<m} .

For 1 <3 <m, let -Vj (resp. wj) be the sum of the

negative (resp. positive) elements of Ay sseeesd@p 5 Thus
¥ 3

V. + W. < nA
] J -

Let X be a positive integer; to each point (xl,...,xn) of Z7"

satisfying 0 < X, < X , (1l<i<n), we associate the point (yl,...,ym)

€ Zm such that

n
y. = L a. ;i X (1<j<m)

We observe that for 1<j<m, -VjX < yj < WjX . Our set of points

(xl,...,xn) has (X+1)" elements, and the set of points (yl,...,ym)
has at most (nAX +1)" elements. Let us choose

m

X = [(na) "™ 3

Then

n-m

(X + 1) > (na)™

and therefore
x+ D> x + LPFEAT > (ax + DT .

Hence our map is not injective, and there are two distinct points

(Xl’°"’X;) , (x"

1

(yl""’ym)' The difference (x{—xi,...,xé-x;) gives the required

,,.g,x;) which correspond to the same point

solution.

When we have an homogeneous linear system of equations with

coefficients in a number field K , we first multiply each equation



1.8

by a positive rational integer, so that we get a new system with
coefficients in the ring 0, of integers of K . Then we can solve
this system in OK if the number n of unknowns is greater than
the number m of equations,in the following way: we choose a basis
of OK over Z and we expand the known and unknown elements of
OK on this basis; thus we get Dm equations with Dn unknowns
with coefficients and unknowns in 0, , with D = [K :Q1 . By

this method one can even solve the given system in & provided

that n > Dm. A slightly different argument (due to M. Mignotte)

avoids the choice of a basis of OK and leads to the following:

Lemma 1.2.2. Let K be a number field of degree D over Q .

Let a; 5 (1 <i<n, 1l<j<m) be integers of K , with n > Dm.
=== , = = -4z with

Let A be a positive integer with

A > max |ai .[

i,3 J

Then there exist rational integers Xj,...,X. with

Dm

0 < max }xi] < (21/Bppyn-bm

lfifn
such that

n
I a. . x. =0 , (1<j<m) .

Sketch of the proof.

For simplicity we assume that there exists a real embedding

0: K+ R (and we prove the result without 21fD). We define

Lm

X = i(nﬁ)n-sm 1

.t = 1 + RAX 3

3



and we observe that
(1+x)" > Pm
Using the Dirichlet box principle, one can find rational integers

Xysewe Xy with

0 < max |x.| < X
1<i<n

satisfying the system of m ineguations

T =]

b
ola. .)xil < nAX/&

:lz_ 1 1s]

for i<j<m - We take the norm, and the lemma follows.

A refined version of lemma 1.2.2 can be given in terms of

1] N = s o
Mahler's measure, when ai,j Pi,j(;l,...,éq) , where gl,...,gq
are algebraic numbers of exact degrees d1’°"’dq and Pi,j E@Z[Xl,...,Xq],
deg. P. . < N_ , (i<h<g). In this case one can obtain a solution
X 1,] - h - -

with Dm

0 < max J|x.| < 2 + (2nv)PPm

1<i<n
where
q N, fd
v o= (mex L(P, . T T mMg M
1,3 ] h-1 1

Such sharpened estimates have been used in the study of lower
bound for linear forms in logarithms, and also in papers of Stewart

and Dobrowolski on a problem of Lehmer {cf. §3.3 below).

hermite’'s proof of the transcendency of e rested on an
explicit construction of rational approximations of the exponential

function. This work has been pushed further, mainly by Mahler.



lHiowever GSiegel's influence has been preponderant and all the modern
proofs of transcendency use Thue's method, i.e. begin with Siegel's
lemma. A few weeks ago, in his lectures at the College de France,
Choodnovsky pointed out that explicit constructions can lead to

sharp results in some specific examples; he is developing a new

study based on Padé€ approximants, which replaces the use of Siegel?

lemma.

§1.3 Schwarz lemma.

In transcendental number theory the following result is called

Schwarz lemma. In fact it is connected with Jensen's formula.

Lemma 1.3.1 Let R > r be positive numbers, and f a non zero

function of one variable which is continucus in the disc

|z| <R

and analytic inside. We denote by vf(O,r}

the number of zeros

(counting multiplicities) of f in the disc |z| < r . Then
— 2
R™+r
lOg |f|3’." f lOg |f|R - \)f (O,I’) 10g -i—r—ﬁ_

(We use the notaticn If|r = sup |{f(z)}])
z|=r

Procof.
Let SETERFL N be the zeros of f in |z| < r , with

v o= vf(O,r). The function
£,(2) = f(2) [ { RS R®-aZy
=1 R(z C )

is continuous in |z £ R , analytic inside this disc. From



the maximum modulus principle

110, < ol

and from the relations

wi: conclude that

v
2rKk
£ < ii -
| |I‘— l IR(R2+I‘2)

as required.

We shall use only the weaker inequality

< log |fIR - vy (0,r) log —% R

>
F4

log |£],

which is interesting only when R > 2r .

This lemma will be plainly sufficient to deal with transcendence
methods in one variable (methods of Gel'fond, Schneider and Baker.)
An important and interesting problem is to get a similar estimate for
functions of several variables in order to generalize Gel'fond's
method (Bombieri's theorem) and Schneider's method to the higher

dimensicn. We shall study this problem in lectures 9 and 10.



LECTURE 2

GELTFOND's METHOD

We begin with the most classical method in transcendental

number theory, which was created by ALO. GelTfond in 1934 when he

solved Lhe seventh problem off Hilberrt.,  Following Schneider and
Lang, we show how Lhis mebhod lTeads alseo Lo a new prool’ of Hermile-

Lindemann!s theorem, and more generally Lo a transcendence criterion
concerning the values of meromorphic functions which satisfy differ-

ential equations,

§2.1 Geltl'fondl's solution of Hilbert!s seventh problem.

In this section we give a proof, following Gelffond!s method,

of the following result.

Theorem 2.1.1. {Gel!fond-Schneider}, Let a;, a, be two non-zero
algebraic numbers, and for j = 1,2 1let log aj be any determination

of the logarithm of «., . If log a1, log a, are linearly independent

over {1 , then they are lincarly independent over the field (] of

algebraic numbers.

b .
The theorem asserts that a is transcendental if a and b are
- ; , ~ / 4 e
algebraic, a # 0 , log a # 0 and b é {Q . Specific examples are
& .



fae]
-
R

Geltfond!s proof rests on the following observations. Assume
e

log ag = g locg oy with f§ € {} . The two functions e~ 5 eﬁz are

algebraically independent {because J é (L3 , and take algebraic

values together with their derivatives at 211 points =z = h log a s
h € Eﬁ . Changin z in 2z log oy , we will consider the two
1 d

. z z s
functions G s Gy the derivation operator > and the

Toze, @
points h € Z . B

In order to get a contradiction, our aim is to construct a non
zero polynomial P € iﬁ[Xi,ij such that the function F{z)= P(ai,ag)
vanishes identieally. We first construct P in such a way that F
has a lot of zeroes (at several points h € Z s with a high order}.
Then we show that F has more and more zeroes, and finally F = 0O .

Gel!'fond!s original proof was to construct F with a zero of

high order at the origin. The estimates are slightly easier if we

choose several points in the first ste

i

We will have to derive several estimates. The most convenient
way is to choose a very large number N , and to consider what happens
when N tends to infinity. A careful look through the proof shows

that all our estimates are valiid ¥ -_xvfb > where N, can be

£
-h
o

]

2
V
e

oo

b

[

explicitly computed in terms of &15&235 . Such a computation must

be dene for the proofs of some dicophantine inequalities (e.g. 1lower

bounds for linear forms)} but here we merely need the existence of NO .
We write our unknown polynocmia

T ¥

i £y
{v — T w0y v
P{X,Y) = z 2' p{A, s A, X X,

where L and p{i,,r_ } € 7  have to be chosen as functions of N .
g/



Once we know P, our auxiliary funcltion will be

Z . L L )le f)\.27
F(z) = Plajsa,) = T T p(rsA,) a . a
1772 17772 1 2
Ao =0 A==
1 2
We obserwve that for t ¢ r@
€
d t
T F= {log a, ) Fo
dz
where L i ( 7\'1 . Ay
Ft(-‘/.) = 7% 7 j)(}xt,)xz}(hl-}'kzﬁ)' a, u,_z“
}‘L]l ( }\2 0

We shall construct P o & 1X, v such Chal

F(h) 0 for 0O <L CT, 0 h < H

We have to choose L , T and H as functions of our large number

N . There is a very wide choice, as we shall see at the end of the

proof. For definiteness we take here

PR Vo S LU PR

E

First step. There e¢xists a non zero polynomial P € Z[}{, Y]

of
degree at most L 1in X, and X, , and height
0
H(P) = max Ep(hl,ho)!‘g uxp(NJ)
L Kl’KZ
such that
Ft(h) = 0 or 0<t<T, 0L h<H.

Proof .

We consider the linear homogeneous system
L ¢ F\,ji} ALh
v p(}\i,;x?_‘; (;kﬁkq B) oy a, =0, (0t <T, 0<h<H)

1

Ag=0 AL=0

“
of T “equations in  {L+1}7

r

unknewns. We multipliy each equation by

N VA Lil iH o s
{den £} (den al)L {den a,) , and the new system has coeificients



in the ring f of integers of the field K = Qla;,5,:8) -

The house of these coefficients is at most

where ¢ = {den B)(1 + [ET) 5 €y = (den al) |;;T.(den az),ﬁ;;

(the point is that ¢ and ¢, depend only on Gy,0,,B 5 and not

on N ). The Cfefficient ;——_’_%—m in Siegelts lemma 1.2.2 is at
"2 : : :

most _B_ <N . Our claim follows immediately from lemma 1.2.2.

N-D

Second step. For any integer M > N , we have

F (h) = 0 for o<t <M ,0<h<M.

We prove this by induction on M . The case M= N is our first

step. Assume that the result is true for M , and let tl’hl satisfy

0 <t < (M+1}6 s 0<hy < M+l . From Cauchy's inequalities we derive
_tl
1
]Ft (h}_)! =< Ilog G}_W tl' IFlh +1
1 1
7
From iemma 1.3.1 with R = M and from our induction hypothesis we
get 1 B} 1 e - 7 R
iOg]Fggﬁflas 10g[FER M lcg-zTEZifj
Further we have 6 v
2 N 1R M
IF < {L+1 e .c < ¢
where : |R‘— ( ) 3 =4
= i1 =
€4 exp( |log a1!+|1og a2|) 5 €4 ec,
Hence
M?



2.5

On the other hand a denominator of F, (hl) is

t L h 7
1
(den B) ~.{den a, .den ay ) 1 < oM 5

and the house of F_ (h.) is at most
1 1

6 t t Lh 7
1
(L+1)2 eN L .011. Cy 1 < M

From the size inequality 1.1.2 we conclude

F, (h,) = 0 .
e th

Third step. Conclusion: F = 0 .

t
Our function F satisfies T F(C) = 0 for all t € N.
dz
Therefore F = 0 , and this is a contradiction with the linear

independence of log a log a, over (I

Further comments.

a) Choice of the parameters.

We have four parameters to choose, namely L,T,H , and R .

If we decide to choose them of the shape

it is readily seen that the following inequalities are sufficient to

make the proof work:

Step 1: {(Siegells lemma): 24 > t+h



Step 2: (lemma 1.3.1 and comparison between the number of

zeroes and |F| }): r>h ,t+h> 4 +r

R
Qur choice was to take 24 = t+h+l , r = h+2, t +h = t+ r , and

finally h = 1 (this enables us to make very crude estimates).

b) It is possible to make the proof work with H constant
(and 0 < h < M replaced by 0 < h <H in the second step). We
need only H > D+2 where D = [ Cl(al,az,ﬁ): 1 (compare with
theorem 2.2.1 below).

c) There are several other ways of presenting the proof. For
instance we could say after the first step that there is an integer

Ni > N {and we choose the smallest one) such that one at least of the

numbers

7

2
1 ,0<h<N

F(h) , 0<t <N 1

is not zero {this means that we perform the third step before the
second one). An interesting question is then to give an upper bound

for N We do not need it here, but it is important for several

1 -
problems, and in fact Gel!fond!s original proof involved such a bound.

it is an exercise here to prove Nl<5 2N . The general result for

an exponential polynomial is due to Tijdeman (see 84.4).



§2.2 Schneider-Lang!s criterion.

The preceeding proof leads to the following very general result.

Theorem 2.2.1 {Schneider-Lang). Let K be a number field, £150005F

be meromorphic functions. We assume that fl’f2 are algebraically

independent over (Q , and of order < Dl,pz respectively. We

assume further that the ring K[fl""’fh] is invariant under the

d
derivation ;r
Z

Then the set of w € &€ which are not poles of f_,...,f

1’ h

and such that

f.(w) € K for 1 < j<h

3 — —

is finite with at most (p1+ ;32) [K: Q1 elements.

(The order of an entire function f 1is
log 10g|f!R

lim sup .
R = 4o log R ?
if fl and fz are entire functions of order < p and if f1/f2
is entire, then fl/f2 is of order < p . This remark enables us
to call a meromorphic function of order < o0 if it can be written
as quotient of two entire functions of order < o ).
. . _ _z £ Bz
Wwhen X = (l(al,az,ﬁ) , h =2, fl(z) =e" , 2(2) =e ",
pl=pﬁ=rl , we obtain the theorem of Gel!'fond=-Schneider as a corollary
L
to the criterion. A second example is given by K = Q(a, %),

h=2,f1(z)=z,f2{z}=ez, pp =0, p, =1



Corollary 2.2.2 (Hermite-Lindemann). Let ¢ be a non-zero algebraic

a . '
number. Then e is a transcendental number.

It will be convenient to state it in the following equivalent

form: if log v 1is a non-zero logarithm of an algebraic number vy ,

then log ¢ is transcendental.
We now deduce from theorem 2.,2,1 the elliptic analogues, due to

Schneider, to the theorems of Hermite-Lindemann and Gel'!fond-Schneider.

Let 1@ be an elliptic function of Weierstrass satisfying a
differential equation
i2 3
Y SN S

with g,,g; algebraic. A point u € C is called an algebraic

P il

? if either u is a pole of P or p(u) e ..

point of

We denote by k the field of endomorphisms of the elliptic curve
attached to ?jﬁ 3 thus k = () if jﬂ has no complex multi-
plication, while k = Q (t) in the CM case, where T = wz/w1

is the quotient of a pair of fundamental periods.

We begin with the elliptic analogue to the transcendency of log a

Corollary 2.2.3 (Schneider). A non-zero algebraic point of 63 is

transcendental.

If we replace the exponential function by an elliptic function in

2.1.1, we get:

are two algebraic points of

Corollary 2.2.4 (Schneider). If u,,u,

xS

3@ which are k-linearly independent, then they are {3 -linearly

™
£

independent.




For the prool” of corollary 2.2.3 we choose
K= QPR (Wmyory) 5 1 (2) 5 7, Fy(0) = Plo) 5 Ti(0) = @1 (2)

For the proof of corsllary 2.2.4 we put

u

K=Q (?(ul),fp(az),?s (uy )5 Pt (u,), 2,585 u—z); £,(z) =P(2),
fz(z}=zgﬁf;; z) fg(z)::jﬁf(z) s fé(z) ZQSTCJT z) .

A very important conscquence of 2,2.4 is the theorem of ,Schneider
YY) ,\‘
1728 ¢
that the modular function j which satisfies (7)) = 3 p
gy-278,
- . . bl N .
takes transcendental values for 7T algebraic nol imaginary gquadratic.

An important cpen question (second probliem of Schneiderts book) is to
prove this result without using eolliptic Tunctions.

Further consequences of the criterion 2.2.,1 concerning group
varieties have been derived by Lang (see also "Nombres transcendants
et groupes algébriques®, Astérisque, vol. 71, to appear in 1980}.

The proof of theorem 2.2.1 is essentially the same as the one
given in §2.1, apart from one technical difficulty connected with the

arithmetic estimates, which is solved by the following lemma.

Lemma 2.2.5. Let U be an open subsct of s and

£ ,...,F
i’ " h

be analytic functions in U . There exigts a positive integer C

with the following property.

et K be a number field, Ll""’Lh be non-negative integers,

and t a positive integer. Assume that the ring K[fl,...,fh] is
. . . N . . d
invariant under the derivation E;

There exists a polynomial P ¢ K[Xi,...,xh: such that




. E

de P<L< L, + Ct
& P 1,

c) The coefficients of the polynomial Ct P are algebraic.

integers of K , whose conjugates have absolute values at most

2t t
C (L1 +...+Lh+t) .

Theorem 2.2.1 shows the transcendency of several numbers. In

order to get transcendence measures for these numbers, one needs an

upper bound for the number Nl (which was introduced at the end of

§2.1.). This problem has been solved only recently for the general

situation of theorem 2.2.1, by D. Brownawell and D. Masser. For

transcendental numbers connected with elliptic functions, the best

known transcendence measures are due to E. Reyssat. Another consequence

of the upper bound of Nl is the possibility to extend the theorem

2.2.1 to a criterion of algebraic independence by means of Gel'fond!'s
method (G. Wistholz). See firther comments on §7.3 and 10.3.

The long outstanding problem of translating Schneider's results
on the zlh function into the p-adic case has been solved by D. Bertrand,
thanks to a (sharpened) p-adic version of the Schneider-lLang's criterion,
which needs a clever use of the Baker-Coates lemma (86.2).

Finally, the upper bound (p1+p2)[K:(] ] for the number of

w which is given in theorem 2.2.1 does not seem best possible and it

is not known whether it must depend on [K: O J. The most natural



2.11

way to attack this problem seems to be to replace the size inequality
by Schmidt!s thecrem. Some recent results of Choocdnovsky suggest a

different approach. (See Annals of Math., 109 (1979), 353-376).



LECTURE 3

SCHNEIDER's METHOD

The solution by Schneider of Hilbert's seventh problem can be
simplified and leads to an easy proof of Gel'fond-Schneider's theorem.
This method can be applied to other problems (six exponentials theorem)
but a further sharpening is expected (four exponentials problem ).
Schneider's method has been applied by Stewart to a problem of Lehmer:;
we give in §3.3 a sketch of a proof due to Dobrowolski of a refined

estimate.

§3.1 Schneider's solution of Hilbert's seventh problem

In this section we give a new proof of Gel'fond-Schneider's

theorem 2.1.1, along the lines of Schneider's original method in 1934.
z
2 1

are algebraically independent and take algebraic values at all points

We assume 1log a, = B log oy s with B8 sii. The two functions 2z , a
hl + h0 B, (ho,hl)a 2x7 . our aim is to constfuct a polynomial
P e l[xl,xz] , P # 0 , such that _P(z,oci) = 0 , and this will be the
required contradiction. We first construct P such that the function
Fi{z) = P(z,ai) has a lot of zeros hl + hOB s (ho,hl) e Zx Z . Then
we show that F vanishes at all the points hl + hOB N (ho’hl) e IxZ |
and finally F = 0 .

Once more we choose a large positive integer N .

We write our unknown polynomial



The auxiliary function is
L

z
F(z) = P(z,al) = z

We shall construct P such that

F(hy + hyB) = 0, (0 <h

We choose

Step 1 There exists a non-zero polynomial P e 2.[X,Y] of degree

8
at most N8 in X and N3 in Y , of height at most eV , such that
r{ =
ﬁ.hl + hgs) g, (0 < hg, hl < H)
Proof
Let us consider the system
L Ly A\, A,hy Ahg
§ Z_ p(Al,kz)(h1 + hgs) ay @, =0, (0 < ho’ h1 < H)
AI-S AQ—G

[

of H linear homogeneous equations in (Ll+1)((L2+l) unknowns
L L, H
P(A1,2,) ¢ Z . Ve multiply each equation by (den B8) 1 (den a, den a,) 2

The new system has coefficients in the ring dk of integers of the field

K =(1(al,a235). The house of these coefficients is at mest

The exponent in Siegel's lemma is at most ﬁgﬁ < N°1/2 .



Thus the required result follows from lemma 1.2.2.

Step 2 TFor each integer M > N , we have

5

(1) F(hl + hOB) = 0 for 0 < ho,h < M

M 1

and

10
(I1)y log|F|M5 < - M

We perform this step by induction on M . For M = N, (I)N is step 1.
We prove (I)M =9(II)M , using lemma 1.3.1. with R = M. It is readily
verified that

N8 L
[P!R < (Ly+1)(L,+1) e . R ~ ¢

Since

[
o

vo(0,M%) 1og B > M0 1og
F oMb -

the desired property (II)M follows.

. 2 .
Finally we prove (II)I4==?(I)M+1 . Let (ho’hl) e Z° satisfy

0 < hO’ h, < (M+l)5, By (II)M we have

1

|F(h +hy8)| < exp(-M'0) |

A denominator of F(hl+h08) is

'l L2(M+l)5 MQ
(den B) (den oy den a2) < e .

The house of F(hl+h06) is at most

8 L. L. L2(M+1)5

N M
(Ll+l)(L2+l)e H c

c < e .
2

From the size inequality 1.1.2. we conclude (I)y,; , as required.



Step 3. Ccnclusion: F = 0

This is a consequence of the property (II)M for all M > N .

Further comments

a) Choice of the parameters

We write for simplicity

r
"
=
ww
[
"
=
jan
1]
=
=
"
=

and 1t is sufficient to have

£1 + 32 > 2h , 2h > Ll 5 2h >r + 22 s >h .

We leave some space with the choice

il + £2 =2h+1, 2h = ﬁl +2, 2h=r+ L&, , pr = h+2

which implies our values.

b} If we perform the third step before the second one, we obtain the

existence of an integer Nl > N such that one at least of the numbers

F(hy + h,8) , (0 < hg,hy < Ni)

is not zero. It is not difficult to see that the smallest Ny with this
property satisfies N, ¢ 2N . In his original paper, Schneider proves
this by computing a determinant. In any case, this is now a consequence

of Tijdeman's result.
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Consequences of Schneider's method

We do not state a general transcendence criterion (see for
instance Lecture Notes 402,Chap 2), but merely give some examples of

results which can be proved by Schneider's method.

An easy exercise is to use the preceeding method with z, ai
o X, 2 X% y,2 Vo2 ¥32
replaced either by e T, € s Or by e ; e s €& , to deduce

the theorem of the six exponentials (due to Siegel, Schneider, Lang,

Ramachandra,...)

Theorem 3.2.1 Let Xy X, be two linearly independent complex numbers.

Let Y15 Yy Y4 be three linearly independent complex numbers. Then at

least one of the six numbers

is transcendental .

The problem of replacing vy, , Vs Y3 by Y15 Yo only is yet

unsolved. This "conjecture of the four exponentials" is stated in an
equivalent form by Schneider/first problem): if log CTE log %5 log as s
log o, are lcgarithms of algebraic numbers, with log oy log a,

w3

{3—1i“early independent, and log a;, log a3€261inearly independent, then

.
ued

log a log a

-
(V%)

-
O
el
2
8]
,.
O
9
g2
£



Similar problems can be stated for higher dimensional
determinants, in connection with the problem of the non-vanishing of
the p-adic regulator, and in connection with a problem of Weil (in the
complex case) and Serre (in the p-adic case) on characters associated

with Hecke L-series.

Problem 3.2.2. Let K be a number field of degree n over {} ,

{o:K—> €} the set of n embeddings of K into € , and (xO) eﬁn .

X
Assume that for all o € K , the number | i]oal is algebraic.

o
. . + - -
Prove that x_ eQ if o 1is real and LR Q if o and o are

congugate»

One can consider it either as a problem in several variables, or
as a special case of the problem of algebraic independence of logarithms
of algebraic numbers.

Another consequence of Schneider's method is the following
result: there exists an absolute constant c¢, > 0 such that if f is

0

an entire function in € with f(N) C 2 and

Lin sup g loglflgec,
then f is a polynomial. Another method (using interpolation formulae)
enabled Pdlya early in 1919 to prove this result with Cy = 108 2
{(which is plainly best possible). This method of Pélya was developed
further by Gel'fond who solved the problem of the transcendency of e’
in 1929 by this mean. The connection between the arithmetic properties

of the values, and the growth of an entire function, is at the heart of

the theory.



A further application of Schneider's method is the fellowing result

Theorem 3.2.3. Let G be an algebraic group over {J , p: C— QC an

analytic homomorphism which is not rational, and T a finitely generated

subgroup of zi such that ?(F) C Sé - Then the rank of T over Z is

at most 2 .

Exercise 3.2.4. 1In the case where G 1is an elliptic curve, prove this
result as a consequence of 2.2.4% , and prove that the upper bound 2 cannot
be improved.

Ramachandra used Schneider's method to prove a general result
on "algebraically additive" functions. As a corollary he deduces the

following interesting statement

Theorem 3.2.5. (Ramachandra). Let a, b be two multiplivatively

independent algebraic numbers, log a, log b be determinations of their

logarithms, and 20 the Weierstrass elliptic function associated with the

lattice F log a + Z 2im . Then one at least of the two numbers
L
(3983 (8Q1og a, 2im)) ° P (log b)

is transcendental.

T
P ¥4

- .. log a . .
cpen problem of the transcendency of 3(§I%—=) arises in

w

papers by Mahler and Manin.



§3.32 On the product of the cenjugates outside the unit eircle of an

algebraic integer

Let o be a non-zero algebraic integer of degree 4 . We

recail the definition (81.1) of Mahler's measure:

d
M{a) = max (1,|a.])
1=1 *
Obviously M(a) > 1 , and M{a) = 1 if a is a root of unity. A theorem
of Kronecker (1857) asserts that conversely, if M(a) = 1 , then a is

a root of unity. In 1933, D.H. Lehmer asked: 1is it true that for every
positive € there exists an algebraic integer o for which

1 < M(a) <1+ g ? The answer is not yet known, but the smallest value
larger than one of M{a) which is known is 1.17628..., which is the

largest root of the polynomial

9 i s ]
T S G LI S VS SR S

{(This exampl back to Lehmer), This polynomial is reciprocal; it

(D
04

og

(0]

ol

S

can be written X°P(X + }%) where P(Y) = (Y+1)2(Y-1)(Y+2)(Y-2) - 1 .

<

In fact,in 1971 C.J. Smyth showed that if BO = 1.32471... denotes the
real root of the polynomial X3 - X -1, and if « 1s a non-zero
algebraic intseger which 1s not conjugate of ot s then M{a) > BG . Thus

B, 1s the smallest P.V. number (as shown by Siegel in 13944).
Since there is no universal lower bound {(greater than 1} known

for M{e) (with a not root of unity), a first step towards a negative

m
-
]

answer to Lehm

on the degree ¢f o . Until recently the best known estimate was due to

guestion 1is to give a lower bound for M(w) depending



Blanksby and Montgomery: there exists a number C{d) such that

c(d) > 1 + (52d log 6d)~%

and such that the condition M(a) < C(d) implies that o 1s a root of

unity. In 1877 C. L. Stewart got a slightly less precise constant

c¢d) > 1 + (10" d log @)™t

by means of a completely different argument, using Schneider's method.
Then Dobrowolski obtained a very simple and elegant result: if o«

f
(non-zero algebraic integer of degree d) satisfies

[6] < 1 + (log d)/5d2 R

then a 1is a root of unity (the result of Blanksby and Montgomery yields
the same conclusion only with the stronger hypothesis

-1 . . .
ﬂ;i > 1 + (30 dzlog 6d4) ) . Finally in a paper to appear in Bull. Acad.

Polon. Sci.,;Dobrowslski obtained a sharp estimate.

Theorem 3.3.1 (Dobrowolski). Let o be a non-zero algebraic integer

of degree d . If o is not a root of unity, then

3
1 log log d
MCa) > 1 + 1555 (’ Tog d

Moreover for any € > 0 there exists do(e) such that for d > dgis) s

3
_ 105 log d
M(a) > 1 + {(1-g) (/ Tog o

The proof of Dobrowolski adopts Stewart approach, together with

congruence relations. We give here a simplified prcof with 1200 replaced



by 10° (the simplification is due to M. Mignotte).

We begin with three remarks whose proofs are left as exercises.

Remark 3.3.2. Let o be a non-zero algebraic number which is not a root
of unity, a' a conjugate of a . If r and s are two non-zero integers
with o'’ = o , then |r| = |s|

Remark 3.3.3. Let a be a non-zero algebraic number, and p 4 prime.

If deg L deg a , then there exists B e(}(ap) such that 1 < M(B) < M(a) .

Remark 3.3.4% 1In the proof of theorem 3.3.1., there is no loss of generality
to assume d > 16 , and to assume that for any prime p , deg aP = deg o .

We now give a sketch of proof of theorem 3.3.1.

We define

2

23]

-1
T = [50(log d)(log log d) ] , L = dT

Let P be the minimal pclynomial of o over &£ .

Step L. There exists a non-zero polynomial F e Z[X] of degree at most

L-1 and heighit at most

1/(L-Td)
HCE) < 2 + (27 L “M(a)

and which is divisible by P{(x)" .

This means that Dobrowolski needs a polynomial F satisfying

e

5 b
4 . . . T T
— Fla) = 0 for 0 <t < T . An obvious choice is P . But P has
dz
too large coefficients. Thus one allows the degree of F to be larger

T - . .. .
than deg P~ = 4T , but one asks for smaller coefficients. The answer is

provided by a sharpenesd versiocn of Siegells lemma (§1.2).



Step 2 There exists a prime number p with

ot
[ VAN
o)
LA
[#%]
o -
L ad
o
Q-

such that

FePy # 0

This is a consequence of the remarks 3.3.2. and 3.3.4.

Step 3 The norm of F(aP) over @ satisfies

p'd < INCFGPY)| < (L.H(FS M(a)DP

The upper bound is obvious. It is a very special feature of Dobrowolski’s»
proof that he succeeds to improve the trivial lower bound 1 < |N(F(ap))| .
The point is that by the small theorem of Fermat

FGOP = F(xP) mod pZ2Ix],
thus pdT divides the norm of F{(aoP) .

Conclusion. The result follows from an easy computation.




4.1

LECTURE 4

BAKER'S METHOD

The theorem of Gel!fond-Schneider states that two logarithms
of algebraic numbers which are linearly independent over (} are
alsc linearly independent over Ei . In 1935 Gell'fond extended his
method to derive a non-trivial effective lower bound for a linear
form ]Bl log ap + By log a2| . Later he derived several interesting
applications of this estimate. As a consequence of the Thue-Siegel
theorem, he obtained a non-trivial (buf ineffective) lower bound for
linear forms in n logarithms with integer coefficients; in
connection with diophantine equations and class number problems, he
proved the significance of obtaining explicit estimates.

Baker was the first to see how to deal with more than two logar-
ithms by the effective methods of the theory of transcendental numbers.
The crucial point is that he succeeded to reduce the problem to the
one variable case by means of a new internolation procedure.

We give here a first proof of Baker!s theorem. In the next lecture

we discuss later developments of the subject.

§4.1 The results (qualitative form).

»

Theorem 4.1.1. (Baker)}. Let Gyseees be non-zero algebraic numbers,

and for j =1,...,n , let 1log oy be any determinagtion of the logarithm

of ay - If log a,...,10g a, are (}-—linearEX independent, then

1, log a,...,log o, BLE [1 ~linearly independent.




This result obviously generalizes the theorems of Hermite-
Lindemann 2.2.2 and of Gel'!'fond-Schneider 2.1.1. It shows that

numbers like

s} 1 n
L& {ll . = G.n
or
BO + Bl log Gy +...+ BS log a
1 4+ gt 1 1 t
BO Bl log oy +...+ Bt log o

(with algebraic a's and $!s) can be algebraic only in trivial
circumstances.

For simplicity we will give the proof only of the homogeneous
result that log al,...,log o« 6 are Ei-linearly independent

{without 1).

84.2 Sketch of the proof.

The proof uses a generalization of Gel!fond!s method. Let us

assume that

log Gotg = By log o +...t B_ log a s

with 1log alg.a.,log a, i ~linearly independent, and the a's

+1

and B's are algebraic numbers. Our auxiliary function will be
; z Z
F{z) = P(al,,..,an+1) 5

where P € 'Z.[lea.,jx } is some polynomial to be chosen. Let

us write

(- 1 n+l”

F{z} = £ ... % 1 a
P n+1
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where (A} stands for (hl"'°’kn+1) . Using our assumption we

have also
v, Z ¥ _z
1
F{z) = ¥ p(r) ay oo aﬂn 5
(»)

where Y T A + A

i n+1 Bi 2 (1 <1< n) . In order to use the

assumption that the ['s are algebraic, we differentiate this

function: lor t ¢ ri we have

t T T
d t 1
F = = {(7) (log a,} ...{(log a ) ?r 5
t T 1 n T
dz |TJ:t
where
t tl!
T = (71,...,Tn), (T} e lr] = T1+.,.+Tn , and
L
1 n 1~ 'n®
FT(Z) _ Z p(?\) ‘Yl s+ 8 "{n (11 .. C(.n
(A)
The very crucial point is the following.
Lemma 4.2.1. Let s, Tysese2T be non-negative integers
Then s o o]
—_— d s 1 . n
S FT = = (0) (log al) ...{log an) FT+G .
dz tG’:S

This formula is readily verified by use of Leibnitz formula:

da® T1 Tn s 01
- FT(z) = T p(i) Y1 oeee Vg z (U)(yllogal) cos
dz> (n). fo|=s
g v, Z ¥ _Z
n 1 n
...(Yn log an) ay cee @
One can also see it by writing
Flz) = ¢(z,...,2)
where
Y1%1 Ynn
@(zl,...,zn} = % p(r) ay ceeoa .
(») s
Thus ’ '
T T 7|
1 n Ie)
FT(Z): {1log 0,1) ...{log an) - p &(z,...,2) ,
1 n
bzl ...bzn

and the formula of lemma 4.2.1 merely expresses the relation for an

analytic function ¥ of n variables:

45 5S
s
U (zy0..,2) = % (0) Wz,...,2) .
|
;G|=s 1 n

s
dz



This lemma 4.2.1 will be used in the following way. Assume that

Zg S {; and T ¢ N are such that

v - e - ha I
F(T} (2,) = 0 for all || < T .

This implies that F has a zero at zq of order at least T . But

this last condition involves only T conditions, while our assumption

. T+n . n
involves 0 ) equations (roughly T ) . Thus one can expect

more information from our assumption. Indeed lemma 4.2.1 implies

that each function FT ,JTI < T has a zero at zq of order at least

rticular for §Tf <=, F has a zero of

T—ITI . In =5 -

order at least

pa
I
5 .

The sketch of the procf is the following. We construct
P € EZ[X1’°"’Xn+1] , not zero, such that

F_(h) =0 for [t] < T, 0<h<N.,

Then we show that
- T
F (h) =0 for br!<:§ , 0 < h <N,
For this we observe that these numbers are values of a function having
a lot of zeroes, by Schwarz lemma they are small; being algebraic they
cannot be too small without vanishing.

It is not known how to get immediately a contradiction from this
new set of equations. But we can use the same argument and prove
| <5 ’

< Z s < h <N .

We cannot push this process up to infinity, because the order of the

FT(h) = 0 for |71

derivatives is decreasing. Thus we need a new device to get a contra-
diction after a finite number of steps. In the present lecture we

shall use some analytic results on exponential polynomials. In the



next chapter we shall use an arithmetic method which rests on Kummer's

theory.

94,3 The proof,

Let 1dog aija.g,log a7 be (1 —linearly independent logarithms

of algebraic numbers, and Bl""’Bn be algebraic numbers. Assume

log a, = Bl log ay +...+ Bn log «

+1 n

We shall eventually derive a contradiction. Define
K: Q(al’-'.,an+l’ Bl,cco,Bn) »

Let N be a sufficiently large integer. We put

2Znt+4

2
N2n+ L, T =N

L =

1,

First step. There exists a non-zero polynomial P E'Z[Xl,...,Xn+l

of degree at most L in Xj , (1 < j £<ntl}) and height at most

2 r
exp (N n+4) , such that FT(h) = 0 for | ] < T and 0 < h<XN.

Proof
We consider the homogeneous linear system

T T A.h A h

1 n 1 n+l
- = for < T 0 < h <N
z p(?x) Yl c.c'\(n C(.1 an+1 o, I ‘T[ 3 = 3
(A)
of (TZn) N < T™ N equations in (L~!—l)n+1 unknowns p(A) . (We write
as above Y, = Ay + kn+1 Si} . We multiply each equation by

T. n+li

(fT {den Si) l)( TT (den a.)Lh) 5
j=1 J

i=1]



and the new system has coefficients in the ring of integers of K

The house of these coefficients is at most

T T
L c1 CEN.S exp ((2n+3) N2n+4 log N) ,
where cq and Cy do not depend on N
1
cq = “ (den Bi)(l + !Bi ),
i=]1
n+l
c, = I ‘ (den a.) ]a‘
=1 J J
1

The exponent in Siegel's lemma is at most N 2 . Our claim follows

immediately from lemma 1.2.2.

Second Step: induction. Let S be a positive integer which does not

depend on N (we shall choose S = 2(n+1)2 .) For any non-negative

integer s with s < S, we have

—_—

s 1

F (h) =0 for IT] < 27

i T and 0 < h < N57

I

The case s 0 is our first step. We assume that the result

holds for some integer s-1 , 1 < s < S, and we prove it for s

By induction hypothesis, and thanks to lemma 4.2.1, for

I T! < 27%T the function FT has a zero at each point h € ZZ 5

s

0 <h< N , of order at least 2 °

T . From lemma 1.3.1 we deduce for

N < r <R



- S S R
log|F. | < log]|F IR - 27°IN° log 5o .
We choose 1r = NS+l s R = NS+2 . From the definition of Rr
we deduce
2n+4 2n+s+4
n+l N ft| LR N s
fFTi < (L+1) e (c,L) e/ < <
n+l
where € oz max (1 + fﬁil) y €4 7 cxp(-z [1og aJI) » € T oecy
1<i<n Jj=1
Hence
- 2 -
[F, (h)] < exp(-27° L y#otsH 10g N) for | 7] < 2751, 0 < h < &5t

On the other hand FT (h) 4is an algebraic number in K , of denominator

at most

n T n+l Lh
(TT den B.) .{ TV den a.)” < exp(N
i=1 * =1 J

and of house at most

Zn+ T h 2
oty .cf. ck < exp(N ntdfs

2 ) -

(L+1)n+l eN

From the size inequality 1.1.2 we conclude

S s+1

T, 0<h<N

F_ (h) =0 for | 7] < 2"

We postpone the third step {conclusion) to the next section.



§4.4 Conclusion of the proof.

From step 2 we know that our function F satisfies

t
d -
tF(h)=0 for O§t<ZST, 05h<N5+1 .
dz
2n2+6n+6 2n2+4n+3
Hence F has more than N zeroes in the dise N .

We proceed to prove that this condition is untenable since F # 0 .

We begin with the case where log a15---5108 @ are real numbers; in
n

+1
this case our desired contradiction is a straightforward consequence

of the following simple lemma (with M = (L+l)n+l)

Lemma 4.4.1 Let Wisee e Wy be distinct real numbers, Let

Aps e esBy be real numbers, not all of which are zero. Then the

number of real zeroes (counting multiplicities) of the function

M
WX
F(x) = T a_ e
m=1
is at most M - 1 .
Proof
We prove the lemma by induction on M . For M= 1 the result
is clear. Assume the result is proved for M - 1 . Then the function
- WX
G'(x) , where G{(x) = e F{x) , has at most M - 2 zeroes. From

Rollets theorem it follows that G, and therefore F , has at most

M~ 1 zeroes {cf. Pélya—Szeg@ Part V no.75}.



(Tt is easy to generalize this proof to the case where a_
are polynomials with rcal cocfficients,)
By mceans of a complex generalization of Rollets theorem,

M. Voorhoeve has proved two years ago the following very sharp result,

Theorem 4.4.2. Let pl,...,p£ be positive integers, a . o
s J

(1 <3< P> 1 <k< 1) be complex numbers, not all zero,

be pairwise distinct complex numbers, and R a positive

WiyeeesWy

real number. Define

L
0 = max Iwk] sy M= % P -
1<k<d k=1
Then the number Ve (0,r) of zeroes in the disc lzl < r of
the function
p
L k W, Z
F(z) = Z T ap zJ—l e k
k=1 =1 79

ve(0,0) < 2(w1) +4 r 0

A previous result due to R..Tijdeman was

vo(0,r) < 3(M-1) + 4rQ

Of course this is sufficient for our purpose. It is even sufficient

to use earlier bounds (going back to Gel!fond) involving

min ]wk = Wl o

k#K



Here is a sketch of the proof of Tijdeman in the case where

M Wz
Py =...=p, = 1 (i.e. F{(z) = b a e m } which is sufficient

m=1
for our purpose.

Let R > r > 0 be real numbers, and let ue€ €, lu] = R be
such that [F(u)]| = ]F}R . We consider the polynomial P € € [z]
of degree less than M such that
WU
P(w,) = e > (1 <h< M

Clearly P 1is given by the Lagrange interpolation formula

W, u z - W
P(z) = T o™ . 1] K

h=1 k#h "h T Yk

However we get a better upper bound (independent of min fwh—wki)
hsfk
for the coefficients bm of P :

M
P(z) = L b gz

m=]1 m

m—1

if we express these coefficients by means of integral formulae.

Now we observe that

M
F{u) = ¢ ay, P(wk}
k=1
M M
= X b L a wm—1
1
m=1 m =1 k 'k
M dm—i
- Xy F(O) .



From Cauchyl!s inequalities we derive an upper bound for the numbers

m-1

d . .

[——;jz F(0)] , (1 <m< M), in terms of !Ffr . Thus we get an
dz

upper bound for !FIR in terms of lFlr , and this is the main

point. The very estimate of Tijdeman is

M M
. +R R -
IFl, < I¥] . SlrtR) = , (R>r>0) .
r M-1
r (R-1)
Then the desired upper bound for VF(O,r) follows from Schwarz

lemma 1.3.1 {(with a suitable choice for R }.

£4.5 Further results and comments.

The proof of the non homogeneous case of theorem 4.1.1.:

log el = BO + Bl log ap tee.t Bn log o

uses an auxiliary function
P(z , af,...,az+l)
and the method is the same.

One conjectures that with the hypotheses of Baker's theorem 4.1.1,
the numbers log al,g..,lsg e, are algebraically independent (special
case of Schanuells conjecture). However very little is known in this
directicn. One does not even know that for n 1large the transcendence
degree is at least 2 . However some progress have been made in
recent years by Choodnovsky in direction of Schanuel's conjecture.

a
By

We postpone a general discussion of Bakerts method to %10.3,

in the light of Bombieri's transcendence criterion,



5.1

LECTURE 5

KUMMER'"S THLORY

The introduction of arguments of Kummer's style in transcendental
number theory is due to J. Coates. In 1970, he gave a lower bound
for ﬁlul + 52 log o5 s where 61, bQ,al =19(u1) and a, are
algebraic numbers, and ¥ 1is a Weierstrass elliptic function with
8o g3 algebraic. In his proof, he used a result of Tate on the
division points of elliptic functions. One year later, while
considering the linear independence of periods of exponential and
elliptic functions, he used a result of Serre on the torsion points.
Then Baker and Stark, in a joint work, introduced the Kummer theory
in the multiplicative case for a lower bound of linear forms in
logarithms.

We first give a new argument for the last step of the preceeding
lecture, which occured in the paper of Baker and Stark, and which
will occur again in the elliptic case (lecture 6.) Then we produce
another proof of Baker's result, which is originated in the paper
of baker usually quoted as "Sharpening III" (Acta Arith., 27 (1975),

247-252).



§5.1 An alternative method for the last step.

We go back to the end of §u4.3. At the end of the second step,
our auxiliary function P satisfies

t
o Fm) 20 for 0<t<25T, og<n<nStt.
dz -

Let q be a prime number with L < g < 2L . We prove that

F(dy = 0 .
g

To prove this assertion we begin by noting that the Schwarz lemma

1.3.1 with

2

N?n +4n+3 2n2+6n+5

r = » R = lir , vp(0,r) > N
gives

n2+63§5

|F(é—)§ < exp(-N’ ).

;
On the other hand F(g) is an algebraic number, of house at most

. n+l N2n+uL 2n+iy
(L+1)" ~e |a1i°..fan+ll < exp(2N s

of denominator at most

L Zn+3
L (den ui}...(den an+1)3 < exp(N )
n+l 2(n+l)2 . . .
and of degree at most g D < C.N . Trom the size inequality
1.1.2 we conclude ?{é) = 0 , as c¢laimed.

New the required contradiction follows from the next lemma.

Lemma 5.1.1. Let log al,,..,lcg o be () -linearly independent

logarithms of algebraic numbers. There exists a positive integer

L-0 such that if P EwZIXl""’er is a non-zerc polynomial of degree

at most L in X. , (1<i<r) with L>L

<
-

o then for all prime

q > L we have

1/q i/q
P(a1 L y £ 0,



5.3

.
where . = exp (=1 a.) 5, {1<i<r) .
i b q og 3 ]

Procf of the lemma.

There is no loss of generality to assume log oy = in . We
1/q 1fq
define X =€}{&13503,ar) 5 Kj = K(al s 0y Y , (I<j<r) . By

Kummer's thecry for ¢q sufficiently large we have

iil : Kl =g -1,
and {Ki : K._l] =g szijif .
1/q - ] 1l/q 1/q
If o, is a root of the polynomial P(al seres® 1 s X)

(of degree < L and cocefficients in Kr=l) this polynomial is

identically zero. Recursively we get the contradiction that P

itself is identicalilly zero.

§5.2 A second proof of Baker's theorem.

a) Introduction.

In all the methods we are considering we start with Siegel's
lemma, and therefore for the first step we need more unknowns
{namely the ccefficients of the auxilisary function) than equations.
In the methods of Gel'fond and Schneider the number of equations is
zerces of our auxiliary function, while in
Baker's method the number of equation (roughly TN) is larger than

the number of zerces (TN}.

1y
8]
L]
+
o
h
=
o
¢
}. P
[p]
8]
]

tradiction we need much more equations

-. fim ¢ - - 1
than unknowns {in §5.1, we use only one equation F(a) = 0 , but

. L. . . . n+l .
this equation involves a field of large degree, Dq , and this

s
Yot

1

i

amounts to Dg equations. }



5.4

In all the previous methods we have increased the number of
equations, while the number of coefficients was fixed. Here we
shall work with a fixed number of equations, and change our
auxiliary function at each step of the inductive argument in such

a way that the number of coefficients is decreasing.

T

Let al""’an+l’ Bl,...ﬁn be algebraic numbers, the oa's
being all different from zero; let log al,..,,log o4 be deter-
minations of the logarithms of the a's. We assume

log O sp Bllog &y + oL, t Bn log -
Moreover we assume that there is a prime number q such that
1/q 1l/q
. n+l
(K (al seeen® L ) + K] = g s
where K :(l(al,...,an+l, Bl""’Bn) , and
1/q 1
o = exp (= log a.) {(1<j<n+l)
3 P 3 g 37 23z
We shall derive a contradiction, and then show (in §5.3) how to
deduce baker's theorem from this contradiction.
b) Sketch of the proof.

The first step is the same as in §4.3. Thus we have an

auxiliary function F such that
F (h) =0 for |t| <T , 0 <h <N

The second step is an inductive argument. We shall give and prove

the inductive statement below; here we first explain how it works.
T
q
(h,q) = 1 . Our parameter N 1is large with respect to gq , and the

We consider the numbers FT(E) for |t} < and 0 < h < gN, with
usual arguments (Schwarz lemma and Liouville inequality) show that
these numbers all vanish. Using our assumption on the independence
of the gq-th roots of the a's, we express each FT(h/q) on the
basis

L./q £ /q
1 +1 . .
{og ...anEl s 0sLy<q , 1<j<n+1} .



Remark that

- n T. A h/q A h/q
h - i 1 n+l " =
Ly =5 T Gy e,
{3 (i} plAj . (kl An+181} oy o 4 .
Thus from one equation FT(E} = 0 we get qn+l equations, each of
which can be written
n
1. A, h/q A h/q
: N i 1 n+l =9
z s (T Tagm 50 1) ot el >
i=1

A-=AY% mod ¢
2 J *
(1<j<n+1)

for 0 < k; < q , (1<j<n+l). We choose (A;,...,A;+l) with 05A§<q s
(1§j§n+l}, in such a way that at least one of the numbers p(i},

Aj = Ag mod g (1<j<n+l) is not zero. Then we define, for

+
y e2™?t witn Ofu.fée)\g’

(Hyseeosy . » (1<j<n+l),

n+i

al

- 0 0
Pl(nzs*'ssun+l) - P(Al + qul,...,kn+l+qun+l) .

We deduce that for |1| < T/q and 0<h<gN, (h,q)=1 , we have

n T.
¥ | t 0
(:) pi(p) ( (li+uiq+hn+]
H i=1

U, h u h
. 1 1 n+l” _
8i+un+lqﬁi) ) al ...Oﬁn+l = 0 .

We proceed to prove that this system of linear equations is equivalent
to the system

- T. u.h H h
z pqiﬁ}( T ] ooy iy T2 n+l" _
' ] ] (u. + Mop1B57 } o4 °°’an+l = 0

for the same values of T and h . It is easy to express each
system as a linear combination of the other, but it is more elegant
to introduce the two functions

n
@2(21,..°,zn) = L pl(p) l ! o
(p) i=1

Bi)z.

+
(i ¥Hn+1 i

i
and

@Eézls..,,zn) = @2(21,==.,zn) . § I o



5.6

and to write the first (respectively the second) system:

17| ¢5(h,...5h) = 0, O<fT{<T , 0<h<H

with Jj=1 (resp. j=2). This amounts to say that @l {resp. @2)
has a zero at (h,...,h) of order at least T, and both conditions
are plainly equivalent,
The new system involves parameters ui""’un+l with 05u§§L/q s

while the previous one FT(h/q) = 0 1involved (A A ) with

1ot 4
ngng. By going further we reduce the number of parameters, and
after a finite (but large) number of steps we get our contradiction

that all the ceoefficients vanish.

c) The second step.

the precise inductive statement is the following. (The assumptions

are stated above, at the end of a ).

5 s . . . . S
Lemma 5.2.1 Le S be a non-negative integer satisfying q° < T .

s

There exist rational integers

S .
pS{Al""SAn+l) . ngjfL!q » (1<j<n+1) not all

2ntg

zero, bounded in absojute value by exp (N }, such that

n+tl Ai.h

n T.
T £33 3 1 J - g5
& Ps‘*f{i | (5 #A4085) ) T as” =0
i=1 5=1

for |1| < T/qs

and 0 < h < qSN with (h,q) = 1.

Froof.

= J we choose Pg(r) = p(A) and use step 1 of §u.3.

V5]

FTor

Assume that the assertion in lemma 5.2.1 is correct for some integer S



o {TTOL+a y iy ntl *57
Pghs ( iFA 418y ) TT %3 >

ST s ]
where the sum is for 0 < Aj < L/qs , (1<]<n+l), and where
+ . . .
T = (Ty5.005T) [t] < T/qS 1 By cur induction hypothesis,

and by lemma 4.2.1, these functions satisfy

a® FS’T(h} = 0 for OfoT/qS+1, G§h<q5N > (hyq) = 1
az’
We use the Schwarz lemma with r = q°+lN, R = Nr . TFrom the upper
bound
2n+y 2 2n+5
n+l N T L qLN N
IFS,TIR < (L+1) e . LTy .oy < e

(which is independent of $S), we deduce

+
|FS ¢(E)I < exp(-éNzn 51og N) for 0 < h < qS+1N
st § L -
On the other hand ?S T{%) is an algebraic number of degree at
,L

.
most an+‘ , of denominator and height at most exp(N2n+5)

From the size inequality 1.1.2 we deduce

Fg () = 0 for it] < quS%l » 0 <hcx q8+lN.
>

Nt

We use only these eguations for (h,q) = 1 . We express each
2

£./q 174
gumber FS,T(E) on the basis all "f’anill s (lf£j<qﬂ,

1<j<n+l), as explained above, and the conclusion of the lemma follows

from the previously given arguments.

d) The conclusion.

- - foy 2 S
The conclusion of lemma 5.2.1 is untenable as soon as q > L .
We choose for instance

g =¥2n+3
ilog q

. log N]

then



L<qS<T,

and the desired contradiction follows.,

£5.3 Final descent.

It remains to show that there is no loss of generality, in the

proof of Baker's theorem 4.1.1, to assume that there is a prime g
1/qg l/q

such that Ay seeenloyg generate an extension of K ={}(al,...,a

n+l?

+ .
51,...,Bn) of degree qn 1 . In fact we can choose the prime

number g arbitrarily (e.g. q = 2).

L be

Lemma 5.3.1. Let K be a number field, and El,..., r be

linearly independent complex numbers such that

aj =e 3 g K, (1<j<ri; » ;

Then there exist complex numbers E'l,...,ﬂ'r s which generate the

sane (}-vector space as El""’gr , such that
L.

e J¢eK, (1<j<r)

l .
3
anc such that for each prime g for which the g-th roots of unity

8.

belong to K , we have
1/q 1l/q .
[K((ai) ,...,(a;) ) : K] = g
where

(a%) = e s (1<ji<r)

Proof.
Let M be the Z-module generated by Kl,...,ir , and let M
be the set of £ € such that eZeK and K,El,...,ir are

linearly dependent. Since HM' 1s a finitely generated free Z-



module, we can choose a basis MY A
ES r

Let g be a prime such that K contains the g-th roots of unity.
1l/¢g
(a%) = exp (iéfq) » (1<3<r)

=i
o
[
s
o
=
o
)
)
1]

We assume that
generate an extension of K of degree less than qr s, and we want
a contradiction.

From Kummer's theory this assumption implies that there exist

rational integers diseees@, with aj > 0 5, 1 < max aj < g-1, and
i = =

an element n g K*, such that

Let 1log n be any determination of the logarithm of n . Taking

the logarithm yields a rational integer aq such that
r
. a. £! = q log n + 2imw a, .
j:l ] J 0
%0
Let us define £ = log n + 2iw T Then qf & M', hence { & M',

and therefore

4 r

we deduce a. = b.g {1<35<r), which is untenable with 1 < max a. < g-1 .
S 2 - - 2 - " -
g 1<]<r

Remark. There is a classical method to construct Ei,...,i; :
let u be the index of M in M'. TFor 1<s<r , let k R S
- - s,1 S,S

be rational integers such that

s
T k_ .£. g uM' ,
=3

with k_ > 0 minimal (1<k <u) and O0<k_ .<u-1 , (1<j<s-1) .
5,5 = S.5- - S~ - -



We define 4£!,...,L! by

s
ub! = ¥k L. (1<s<r) .

5.4 Lower bounds {for linear forms in logarithms

The method of 85.2 1is the basis for the proofs of the
sharpest known lower bounds for linear forms in logarithms. For
the effective results it is important that in this method, the
estimates in step 2 are always the same along the inductive argu-
ment.

The proofs of effective lower bounds involve some new technical
complications which did not occur here. The most accessible place
to become acquainted with them is the second part of Lang's "Elliptic
Curves, Diophantine Analysis" (Springer Verlag 1978). The next one
is "The theory of linear forms in logarithms" by Baker, Chapter 1 of

HE

Trancendence Theory: Advances and Applications"”, ed. A. Baker and
D. W. Masser {(Academic Press 1977); {(see also the chapter 2 by
van der Poorten for the p-adic case.)

All the subject was initiated by Baker in 1966, and no fund-
amental progress in the method has been made since Baker's
Sharpening III in 1973. It should be emphasized that the results are
far from best possible. We do not mention general conjectures here
(see Lang, op. cit.) but only two open problems whose solutions
could lead to important consequences for the method.

If one uses the best known lower bounds for the linear form

im - i log £| , one deduces
g

60
" - B > q=-2 log log g
q

=



for all rational numbers p/q with q > 3. The unsolved problem
is the existence of an absolute constant cq such that
~-C
: T B 1
e o >
i 5l >4
for all p/q e with q > 3 .

we consider now the inhomogeneous linear form |m-log p|

ek
bty

with m and p positive integer, we obtain

- p| > P—czlog log p

for all positive integers m and p (and p>3) with c2§2i+2 .

(In fact Mahler and Mignotte proved c2§l7.7 by quite different

techniques.) It is not yet known whether there exists an absolute

constant CS>0 such that

C

™ - p| > p7°3

for all positive integers m and p



The elliiptic statement analogous to Baker's theorem is not
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proved by Masser

in 1974% for the case of complex multiplication. One of the main
difficuities he had to solve concerned the last step: the result
of Tijdeman on exponential polynomials {§4.4) has not yet been

ne proci of Masser used rather

’y in an unpublished manuscript, J. Coates had
shown how Baker's theorem could be extended to elliptic curves with
complex multiplication provided one had an appropriate theorem for
the degree of the field of division of algebraic points. This
appropriate Kummer's statement had been proved in fact by Bashmakov

in 1970 and extended to abelian varieties of C.M. type by Ribet in

1875 . We follow here a joint paper of Coates and Lang, but as

b
m

usual we prove o result without giving a lower

[

bound.

function g} with algebraic gy5 85 ¢ it is a point u which either
is a pole of gﬁ or satisfies () ¢ Ei,

Thecrem 6.1.1. (Hassery. Let ¥ be a Weierstrass elliptic function
with algebraic invariants g52 £5- Assume that B  has complex

multiplication, and let k be the field of complex multiplication.

Let Uysee-ru  be k-linearly independent algebraic points of P .
n =2£
Then the numbers 1, <.ou_ arefl-linearly independent.




An analogous result should hold when there is no complex

multiplication.

(%)
Conjecture 6.1.2. Let 39 be a Weierstrass elliptic function with

algebraic invariants gy5 B3 > and without complex multiplication.

Let ujs...,u. be {}-linearly independent algebraic points of P o

sz

Then the numbers 1, u -5u - are Q -linearly independent.

1

Only two cases of the conjecture 6.1.2 are known (cf, 2.2.3 and
2.2.4%), namely a) the case n = 1 and b) the homogeneous part
(i.e. without 1) of the case n = 2 . The inhomogeneous part of the
case n = 2 , i.e. the transcendency of Blul + 62u2 (when 81,82
are algebraic numbers not both zero) is yet unsolved.

One can state similar conjectures for several 33 functions,
where uj is an algebraic point of ?% , (1 <3 <uw. The
assumption on the linear independence of the uj must be that the

functions 3§j(ujz) are algebraically independent. Even the case

where u. is a pole of ?% for all j 1is unsolved for n > 3 .

The hypothesis of complex multiplication is needed to make the
extrapolation procedure succeed, because the Weierstrass functions
have order 2, and one needs much more zeroes of the approximating
auxiliary function. Let us mention two possibilities to avoid this
difficulty when there is no complex multiplication. We first remark
that the first steps of the induction work quite well, the problem
being that one is not able to go sufficiently far to get the
contradiction. The first suggestion 1is to use the method of §5.2

where the estimates were always the same along the inductive arguments.

(*) See the preface, and the paper of D. BERTEAND in the Proceedings
of this Conference.



The trouble comes from the differential equation of aﬂ , which 1is

far more involved than in the exponential case, and which seems to
u u

prevent us to use an assumption like [KQ?(—%),...QP(ﬁg)) : K1 = y"

The second suggestion is to try to increase the order of derivatives

in Baker's method. Such a result would have tremendous CONsSequences .

§6.2 The lemma of Baker-Coates-Anderson

The proof of theorem 6.1.1 will follow closely that of §4.3
and §5.1 , with the same estimates (mutatis mutandis). Before we
perform this we need to solve some tecimnical problems. Firstly our

ab-functions are no more entire, but have poles. However, if o is
the Weierstrass sigma function corresponding to jd , then 02 is
entire. Secondly the entire functions o and 0230 have order 2 ,
and this is why we need much more points. Since 3D has complex
multiplication, the ring of endomorphisms of the elliptic curve is
(isomorphic to) an order & =Z +Zn in the imaginary quadratic
field k . For any positive integer H , we denote by & (H) the
set of y e (U such that |y| < H . The number of such elements is
asymptotic to CH2 . If u 1is an algebraic point of 3@ s then so is
Yu - Here comes the third difficulty, which is the main one, namely

to estimate the house and denominator of ?(Yu) (when vy 1is not a

pole), and more generally of

t

d A
— ¥ ()]
dz Z3vYy

We first consider the differential equation



o
=

Lemma 6.2.1 Let t >0 , A > 1 be integers. There exists a
H
pelynomial P, , & £IX,X »To5T,1, of degree at most A + 2t in X
s —_
1 in X!, t in Tz and t in TS s such that
. .
d g A P t 2
gt P P FoF 7 e
Moreover the sum of the absolute values {(length) L(Pt A) of the
R ol tne
coefficients of P, A satisfies
o e
d . t
LP. .3 < 2 5(a+t)
£,A° -
The proof is easy by induction on t , starting from
1.2 3 Y
}"' = %% —gzgéga .  f{(Some authors prefer to express 5 '&i as
dz
a polynomial in j?_igg’,gzﬂ » without g,, g, , thanks to the

differential equation I = 12?@3).

We now consider the multiplication formulae.

Lemma 6.2.7 Let 4 be a positive integer. There exist two
polynomials ﬁ?, B"i in E}}gEZ,TQE such that
i iz —— [ T E————————
A 2.,
m {’7 L—':— . by
é%iznzi s 5 *‘?ia) s Ty E.4 -
L;??‘:. i s pul

If we give to X, 7., T the weights 1, 2, 3 respectively, then

. - . 2 .. . .
is_homogeneous of weight m” , and B_  is homogeneous of weight
2 N m2
m--1 . Each polynomial éﬁs B has a length at most e .
1 i

€2
Further the pelynomials A (X,—=, g and ET(X, 5 g3) are
1k _—

ki
o m i 3 el

b

A

m



relatively prime. Furthermore if u € is not a m-torsion

point of > i.e. if mu 1is not a pole of gj s then

2
B P(w), —,g,) # 0 .

One gets a similar result with m e g replaced by y ¢ O

(and m2 replaced by l¥|2) by writing vy = h1 + hzr .

t
Now we come back to our number EL—VPA(Z)I ~ .
dzt Z=Yu

It 1s plain that this number can be expressed as a rational function
of P(U)’?I(U)’ g5 85 > with coefficients in Z . We need an
upper bound for the degrees and heights of this rational function.

For simplicity we look here only to the degree in 33(u) . The
dt
dz*©

get a polynomial of degree < A + 2t in 10(2) . Now we replace =z

natural way is to compute first JJA(Z) ; from lemma 6.2.1 we

by +wu 3 from lemma 6.2.2 one deduces that 3p(yu) is a raticnal

function of degree < [Y|2 in jﬂ(u) . Therefore our number
dt

dZt

at most (A+2t)lyi2 in PCu) . However this is too much for our

jﬁAiz){zzYu can be expressed as a rational function of degree

purpose.
Here comes the idea which is attributed to Baker and Coates

and has been developed by Masser (Lecture Notes 437), Bertrand

and others: we first compute 1pl(yz) in terms of 33(2) , and then

write

t -t dt

P

[aB

A

(z)}

¥

ol
N

zZzyu zZ=u

Thus our number 1s expressed as a rational function of degree at most



R|Yi2 + 2t in Q) . There is a corresponding improvement for

the upper bound of the height. We give now a precise statement.
A
Using lemma 6.2.2, we write #(yz) = EI-CFKZ)) where

Y

: &2
AY and BY have coefficients in CT[—E s gsj .

Lemma 6.2.3 There exists a positive number c depending only on 39 s

1

with the following property. Let Uyseeerly be non-zero complex

numbers, 81"”’8n complex numbers which are not all zero, and

1 a non-zero polynomial of degree < L. in X. ,

PeZ{Xl,...,X 5 in Xy

n+l

(1 < j <n+tl) . We define
¢(Zl""5zn) = PC@Kulzl),...,‘p(uﬁzn),sa(ﬁlulzl+...+8nunzn)) s

and, for vy € CT s

n
¥ 2y sz =(1_l:}i B @ (uyz50) ) B @(Byuga +e . 46z )

- . . n . .
Then for each (t{,...,tn)s N~ > the function

t.

n » i
1 9
l [ (557 oz ) wY(zl""’zn)
] 3

=1

is a polynomial in 33(ujzj) (of degree < |Yi2Lj + 2t) , in 30’(ujzj)

(of degree < 1}, in Bj (of degree < t), and in ngu and g,



{(of degree < {b}%==p+Ln)Iyi2 + t), with coefficients in & of

absolute value at most

gepy | ¢] 1t exp(cliylZ(Ll+...+Ln+l) + et

where |[t| = t +...t
m—— i I

Remark A further trick, due to M. Anderson, is to write

dt A t A

— =4 +

kt? (2) t&’ {(z+yu)

d= dz _
—_ z=0
Z=yu

which yields a rational function of degree < A|Y|2 in pCuw .

This argument is not necessary for us, but is useful to get a good

dependence in terms of wu. for linear forms in elliptic logarithms,

s =1 £ = 3

» procis of zlgebralc independence {(Choodnovsky).

§6.2 The main lemma

Let 39 be an elliptic functions with algebraic 8,5 85> and

complex multiplication in k . Let us assume

u = I R u
“n+l Si 1 Bn n’

where B?""’ﬁn are algebraic numbers, uy is a period of aﬂ s

- are k-linearly independent and (u.) are algebraic
n+tli ]

for 2 < i < ntl . We shall eventually derive a contradiction. The

aim of this section is to prove the following result



Lemma 6.3.1. There exists an integer Ly s depending only on 39 s

ByseeocsbB with the following property. TFor each

UpseessUpygs

. . . 1
integer L > L0 there exists a prime q > (2L) /2 and a non-zero

polynomial P e & [Xl""’xrﬁl] , of degree at most L in Xj N

(1 < 3 < n+l) , such that the function

F(z) = P( 63(ulz},,.., jﬁ(un+lz))

satisfies

Xy =0 .
q

The proof of lemma 6.3.1 follows closely (*) the proof of
§4.3. We choose a sufficiently large integer L, and we define a

real number N by

Further let T = N£n+¥ and H = lez . The constants CosestsCyy

are easily computable in terms of '33, Ugseses Upyys 81""’8n , and
do not depend on L, N, T, H. A convenient way to avoid some problems
connected with the poles is to use the following result: for each

i
> H there exists a subset f}‘(H1) of CT(HI), with

Hl >

card (' (H)) > c,H

{*) One could reinforce the similarity by working with a meromorphic

function g of order 1 with g{zz) = $(z) .



such that for v ¢ ij’{Hl) and 1 < j < ntl

T'AO(Yu;?; < C3 > Izo'("fu—j;f < C3 s IO(YUj)I > Ca

(The idea of the proof is as follows. Let K be a number field
.. .

containing g, 8q > gﬁ(uj), 3? (uj) (and also Bl,...,Sn). For

each embedding o : K —> € one considers the elliptic function

390 of invariants gg, gg, one considers a small disc in €

far from the poles of 330 > and one proceeds by induction using

Dirichlet box principle).

First step. There exists a non-zero polynomial P ¢ z‘[xl""’xn*-l}

of degree at most L in X. , (1 < 3 < n+l), and height at most

]
2n+u) s such that the function

exp(N

¢(zl,...,zn) = P(?(ulzl),...,p(unzn), ;]'D(B1 uy zl+...+5nunzn))

satisfies

)= 0 for [t[<T and ye (D)

~

V'J
-~
<

where

T
n J

F(z) =] E( 2 ) 0C2 4euusz) .

u,dz.
J ]

Proof: Using lemma 6.2.3, we consider the system of linear homogeneous

equations



n T

1 ]
TT &2

_ wY(l,...,l) = 0 ,
j=1 3 3

of at most ¢ TnH2 equations with

y

(L+1)"*L

unknowns. From the

estimates of lemma 6.2.3 and the inequality

T tog T + LH? < 2 N°™% 1og
we get the desired result.
Second step: induction. Let S be

N

a positive integer which does

not depend on N (we shall choose 3

integer s < S , we have
FT(Y) =0
The case s = 0 1is our first

holds for some integer s-1, 1<s<S

introduce the entire function of one

n+l

6 (z) = Fr(z) I [
j=1

We choose 1r = HS+1, R = HS+2 . It
logle.| < cp (N2™*% 4 1 10g
T 5
R
N2n+s+u

1A

= 2(n+l)2). For any non-negative

for |tl| < 275T | v sO"(HS+l)

step. We assume that the result
We choose |t| < 27°T , and we
variable
c(ujz)2L

is readily verified that

N + LRZ)
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3
(the functions ¢ and 6‘33 are entire of order < 2) .
By induction hypothesis G, has at least =2-S—102 TN® zeroes in

|z] < r ; from Schwarz lemma 1.3.1 one gets

N2n+s+#

log |Grl < - ¢ log N .

r - 7

Now let 1y ¢ O'(HS+1). From the definition of '(H,) we get
1

+s+
log [FT(Y)l < - oy R log N

We fix y , and we choose 1 with the smallest |t1]| for which
F_.{y) # 0 . We assume |t| < 2737 . From lemma 6.2.3 and the

size inequality 1.1.2 we conclude

108 IFT(Y)! _>_ _ Cg N2n+s+i+

This contradiction completes the proof of step 2.

Step 3 Proocf of lemma 6.3.1

We follow the proof of §5.1 . The function F(z) = ¢(z,...,2)

satisfies
at -S 5+1
—= F(y) = 0 for 0 <t <2°T, vye O'WH )
dz
Let q Dbe a prime number with {2L)l/2 < q < 3L1/2 . From Schwarz
lemma 1.3.1 with
2n2+4n+3 2n2+6n+10
r = H 5 R = Hy , vF(O,r} > 25 N

we get
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o

2
|F(%)| < exp(-N°T t6DTE,

On the other hand F(%) is an algebraic number of degree at most

2n+2 2n+y

c;14 and house and denominator at most exp(012 N 3} . From

the size inequality we conclude F(%) = 0 , as claimed.

§6.4 Bashmakov's tTheorem

In order to complete the proof of theorem 6.1.1 one needs a
result like lemma 5.1.1, where exp is replaced by 39 . For this we
use a result of Bashmakov , which gives for elliptic curves the
analogue of Kummer's theory for the multiplicative group.

We have assumed that wu, is a period of 39 . A classical
result of class field theory (Hasse, Deuring) implies that for g
sufficiently large,

q 1s prime in k

u i u
ERCPD) * P 20K =
q : {(g~1) if q is decomposed in k

For 1 < s < n , let KS be the field generated over K by

u. u.
fp (al}, ’ebj(gj—} s (1 <3 <s) . Let Eq be the kernel of the
multiplication by £ on the elliptic curve associated with aj 3y thus

A
qZ

. We have an injective homomorphism

. - A
K{E_} = K and E = — X
" L 0 919 %q T gz

n-1
> E
q

Gal (anKl)

which sends ¢ to {GQ9vQ2,...,ch-Qn) , where Qj is any point on

the curve such that gQ. = Pj , with Pj corresponding to ?P(uj) .
3 ‘

Bashmakov's result is that this map is surjective as soon as q is
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sufficiently large. As a consequence

P A
n
I A
s}
-

[K:K ;1 = q° 2

and this completes the proof of theorem 6.1.1.

56.5 Further results and comments

In 1863, Lang described a new method for the study of integral
points on an elliptic curve, based en a conjectural lower bound for
linear forms in elliptic logarithms (i.e. in algebraic points of a
3°-function). A similar treatment in the multiplicative case had
been done already by Gel'fond (see lecture 4). In 1970, Coates
derived a non-effective lower bound from the Thue-Siegel-Roth theorem.
Until now an effective result is known only in the case of complex
multiplication. The first result was due to Masser, then it has been
improved, mainly by Coates and Lang, using the method we just
described. The best known result to date is due to M. Anderson (unless
we take for granted some claims of Choodnovsky). Two good references
are Anderson's Chapter 7 of the book edited by Baker and Masser,
and Chapter 9 of Lang's book "Elliptic curves,diophantine analysis™.

For the application to diophantine equations, Lang's approach
needs a basis for the group of Mordell-Weil. One way of getting such
a basis 1s to assume the conjecture of Birch and Swinnerton-Dyer.

The details have been worked out by H. Groscot. G.V. Choodnovsky
announces better results assuming moreover the generalized Riemann

Hypothesis.
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The p-adic case has been solved by D. Bertrand who proved
also an effective lower bound and derived remarkable consequences on
the denominators of rational points on elliptic curves.

These results have been extended to abelian varieties of
C.M. type (Masser, Lang, Coates and Lang, Masser again for the
complex case, Bertrand and Flicker for the p-adic case). The theorem
ot Bashpakov (Kummer's theory for elliptic curves) and Ribet (for
abelian varieties of C.M. type) has been extended by Bertrand to the
product of an elliptic curve by the multiplicative group, by Ribet
to non trivial extensions of an elliptic curve by the multiplicative
group, and by Ribet to a very wide class of commutative algebraic

groups.



LECTURE 7

TRANSCENDENCE AND LINEAR INDEPENDENCE

OF PERIODS

In the present lecture we study the transcendence and the
linear independence over Zj of periods of integrals, mainly of
elliptic integrals. We begin with an historical survey of this
guestion, then we give some details about the more recent results

(which concern elliptic integrals of the third kind) and finally

we mention some further results and problems.

§7.1 Historical survey.

Lindemann's theorem (1882) asserts the transcendency of the
number Zﬁi » which is a period of the usual exponential function.
Now let P be an elliptic function of Weierstrass satisfying a dif-
ferential equation 352 = %P3-g2 -g, with algebraic g,,g, - The
problem of the transcendency of the periods of ﬂa was first studied
by Siegel (1932) who proved that if (m1,w2) is a basis of the
period lattice L, then at least one of the twe numbers Wy »W,
is transcendental. Therefore in the case of complex multiplication
each non-vanishing period of }3 is transcendental. Further
partial results were obtained by Schneider (1934} and Popken and
Mahler (1935), and in 1936 Th. Schneider published the most important
work on the subject; from 3 general theorems he deduced a lot of
consequences, and in particular got the transcendence of periods of

elliptic integrals of the first and second kind. His results involve
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the zeta function of Weierstrass, which is connected to P by
¢' = “Pland ¢ 1is odd) and is quasi-periodic with respect to the
lattice L:

Clztw) = g(z) + n for we L ,

where n = man 4 + moM, if w=m and

The three main theorems of Schneider are the following.

l. It a,b are algebraic numbers not both zero, and u a complex

number with u € [ , then one at least of the two numbers R(u) ,

au + bg(u) 1is transcendental.

2. §£_1a,?* are two algebraically independent elliptic functions

with algebraic invariants, and u a complex number with u £ L,

u ¢ L%, then one at least of the two numbers b, p*(u)  is

itranscendental.

[#%]

. If u 1s a complex number, u ¢ L, then one at least of the

two numbers e , P(u) is transcendental.

It is easy to deduce these results from Schneider-Lang's
criterion 2.2.1, and then to deduce corollaries 2.2.3 and 2.2.4
from the first and second result above.

We give here the consequences on the periods and pseudo- periods.
Let w be a non-zero pericd of gﬁ , and n the corresponding
pseudo-period of ¢ . From the first result of Schneider one
deduces:

Theorem 7.1.1(Schneider) The three numbers 1l,w,n are linearly

independent over TE .

(Proof: assume aw + bn = ¢ ; let n be the smallest positive
. . , W [ |
integer such that -— ¢ L ; chocse u = —— ; then ¢{u) = — ).
~h 2h 2h
£



7.3

Therefore each ¢of the numbers w, n, n/w, n+w is transcendental.
It is well known that a period of an elliptic integral of the
first or second kind which is defined over Q} is a linear

combination of w, n, with algebraic coefficients. Therefore we

deduce from 7.1.1:

Corollary 7.1.2. The non-vanishing periods of an elliptic integral

of the first or second kind over (} are transcendental.

From the second result of Schneider one deduces that the
quotient of two non-zero periods of elliptic integrals of the first
kind is either rational, or imaginary quadratic, or else transcendental.

Finally from the third result of Schneider one obtains

Theorem 7.1.3.(Schneider) If w is a non zerc period of 30 and

. W, .
B a non-zerc algebraic number, then eB 1s transcendental.

(It is sufficient to prove this with B=1, since Bw is a period of

-

1

the Weierstrass elliptic function B_z‘p(ﬁb z)}}. Therefore the

number w/T is transcendental.

After Schneider's fundamental paper of 1936, the next step was
provided by Baker in 1968. Using his method (see lecture 4) he

provea the transcendency of non-vanishing linear forms in ., Wo s

-

with algebraic coefficients. In 1969 he extended this result to

linear forms in Wiy Wos Nqys Ny sand then Coates (1870) added 27i.

i

Then Coates (1971) showed that 1, w w., 217 are ?i»lineariy

1* 72

independent when there is no complex multiplication. Finally, the



problem of the linear independence of l,wl, Wos Nys My 2im
has been completely solved by D. W. Masser in his thesis (Lecture

Notes 437, 1975).

Theorem 7.1.4.(Masser)l) When P has no complex multiplication,

the six numbers 1, Wiy Wos Mys Nys 2im  are @ -linearly independent.

2) When -?1 has complex multiplication, the

$ix numbers 1, Wys Wos M5 Ny, 2im  span over {] a vector space

of dimension U4

In the case of complex multiplication, there is a linear

relation between the six numbers, which is independent of the

obvious cne w, - Twy 0 with s(l. This extra relaticn

2
2 (n, - Ty e g 1)
w, "2 1 Bp283>

seems to be classical (Eisenstein) but was not widely known. It
has been rediscovered by Masser, and Brownawell and Kubota.
There are further results on periods of several elliptic

functions, but we postpone them to §7.3. TFor one elliptic curve

over ) the problem of transcendence and linear independence of
periods of integrals of the first and second kind is completely
solved by Masser's theorem 7.1.%. Until recently no result was
known on integrals of the third kind. (Schneider's third problem. )

The periods of such integrals are of the form

k

E cj(w g(uj) -n uj) + aw + bn

3=1

where Cys-v-5Cy are the residues at the points distinct from the

origin (one gets an integral of the first or second kind by

subtracting



.k ¥y,
Z 4 1 x-x% vy

[}
bd

where (x.,y.) are the points distinct from the origin where the

.
T

differential form has non-zero residue). The numbers CqpoevesCy
—_—

are algebraic, {(the integral being defined over (} ), but we need

to assume that they are rational. Multiplying by a common

denominator we can assume thal they are rational integers. Finally,

using the addition theorem of the zeta function, one reduces the

problem to the transcendency of the number

£

sz{u) - nu + aw + bn ,
where u 1is a complex number which is not a torsion point
(i.e. u ¢ Q.L), and asb,?(u} are algebraic.
In §7.2 we shall prove the transcendency of the number
exp {wz{u) - nu + aw}
as a consequence of Schneider-~Lang's criterion 2.2.1. This shows
that if the differential form has no poles of order > 2, then

the exponential of a period is either a root of unity (which occurs

tances) or a transcendental number. it

Cud

=]
0N

ot

only in trivial ¢

1 u f{(which is

should be noted that the transcendency of z{(u) -

€|

cbviously a special case) had been obtained already by Choodnovsky

a few years ago, as quence of a result of algebraic

)
O
O
o
1))
®

independence {see lecture §3,.

Y

transcendency of the period itself has been obtained very

1
FES

=

{0

recently by M. Laurent. Let w be a non zero period of ao and u

an algebraic point of which is not a torsion point.
g P ;

Theorem 7.1.5{(M. Laurent). 1. The four numbers

1, we n, nu - wilu)

P

are linearly independent over £) .




2. In the case of complex multiplication, the five numbers,

1, wy, ny Nnu - wzlu), 2iw

are linearly independent over )

In §7.2 we give a sketch of the proof of the first part of

Laurent's theorem.

§7.2 Elliptic integrals of the third kind.

Through this section we denote by ao an elliptic function
of Weierstrass with invariants gy &3 in Ei and of periocd lattice
L , by ¢ the associated zeta function, by w a non-zero period
of 10 with % € L, by n the associated pseudo-period of ¢ , and
by u an algebraic point of # which is not a torsion point.
Finally let B8 be any algebraic number.

We first prove the following result.

Theorem 7.2.1. The number exp {wZ{(u) - nu + Bw} is transcendental.

As already mentioned, a consequence is the transcendency of

c(u)-gu.

Procf of the thecorem 7.2.1.

The main tool is Schneider-Lang criterion 2.2.1; we need a
suitable function associated with our number (which we assume to
be algebraic) satisfying a differential equation and a theorem of
addition. Such a function was provided to me by J.-P. Serre, in
connection with the parametrization of the exponential map of the

extension of an elliptic curve by the multiplicative group. (See



Astérisque no.71, 1980).

We define

_ af{z=-u) zz (u)
flu,2) = Ay ©

and our first function in the criterion 2.2.1 is

£(2) = fQu,z)e’?

We recall the definition of the sigma function of Weierstrass:

2
o{z) = z ] ! (1 - %) exp (% + 5—2)
Ael 2
AEQ
and the properties

W,

o(z+w.) = -a(2) exp {nj(z+§l)} , (5=1,2),

g'/o = ¢

m-1 m2

and o{mz) = (-1) o(z) wmQP(Z)s'ﬁf(Z)) , (meZ, m>0)
where wm is a rational function with coefficients in (1(g2,g3) s
and

- 2

bmit)(z)) = Wm(?(’” , 'p' (z))]
is the polynomial in jﬁ(z), g,:85 of lemma 6.2.2.

An easy (and useful) consequence of the multiplication

formula for e 1is the fact that the numbers

o (%) e nu/8 U(% - w

5 R exp {n(% - %)}

o(u)
are algebraic. Therefore fl(%) is algebraic. Moreover from the
quasi =~-periodicity of fl:

fl(z + wj) = fl(z) exp {mjc(u) - nj(u) + Swj} s, (3=1,2),

one deduces that all the numbers fl(% + hw), he L are algebraic.

Further f satisfies a differential equation:

mlkh e
M-

)

{(z)

Z{z=-u) - z(z) + g{u) + B

e+ L Pzt )
2 Pz) - P
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It is now easy to use the criterion 2.2.1. Let K be the field
generated over (1, by g, g3,'?(u}, &’(u}, B, fl(%) and
'Jﬂ(z}, f3(z) =aa'(z),
£, (2) :“p(z) _ﬁr(u) . The set of w = (h+%)m » he 4 is infinite,

exp {wgZ(u) - nu + Bw}. Let fz(z)

these w are not poles of f f

13 f2, 3> fu {(since u 1is not a
torsion point), and fj(w) € K for 1<j<h. From the criterion
we deduce that fl(Z) is algebraically dependent from j&(z);
therefore fl is an élliptic function associated with a lattice
L, such that (lil =QL . From the quasi-periodicity of £y
one deduces
witu) - nyu + Bu, e 2in Q ,(§=1,2).
From Legendre's relation
w2n1 - nzwl = 2iTm ;
we get the contradiction that uw eQ}L , i.e. that u is a torsion

peint. Theorem 7.2.1 follows.

Now we give a sketch of the proof of the following theorem of

Laurent.

Theorem 7.2.2. (Laurent) Let & be an elliptic differential form

which is defined over . We assume that all the residues of £

are rational numbers. Then the non-vanishing periods of £ are

transcendental.

As already shown previously, it is sufficient to prove that
& relation

1 = aw + bn + ¢ A(u,w)

with algebraic a,b,c and i(u,w) = wg{u) - nu 1is impossible.
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We introduce two meromorphic functions of two complex variables

Z o z . L{ul+z,
F(z,, 22) z f(u,zl) e 2 . 0(21 u) . ‘
- gzzl)s(u)
and
G(zl,zz) = azg +b§(zl) - cz,

Further define & = (w,-k(u,m))e(? . It is readily verified that

G{(Qz) = bg{wz) - bnz + z , Fuz) = olwz-u) eVU%

3

g(mz)o(%)

and consequently G(%ﬂ) = % and F(%Q) are algebraic. We choose
N

as usual a large integer (the number cy will not depend on H )

and we define

H=nN2 , T =N, L=ntt

First step. There exists a non-zero polynomial P sll{Xg,Xl,ij

of degree at most L in Xg, Xl, XQ, and height at most

1510g N) , such that the function

exp (clN

¢(zl’22) = P(G(zl,zz} ,'@(zl), F(Zl’ZZ)) has a zero

of order > T at each point

(h+3)0 = ((h+3)w , -(A*¥PA(u,w)),  1<h<h .

For the proof cne needs to write f(u, mz)/ f(u,,z)]Ti as a
rational function of P(z), *&3' (z), pluw), p' (W, to give upper
bounds for the degree and coefficients of this rational function,
and also to check that the denominator does not vanish. {These
estimates are due to E..Reyssat who obtained a transcendence

measure for the number of theorem 7.2.1).

Second step.{(Induction). Let J be an integer, 0<J<300. Then
$ has a zeroc at each point (h+§)ﬂ with
s ] £t
1<h<nM2 1 cp<cqgcant’t, q even, of

order at least T/29 .




The proof is by induction on J . One needs upper bounds for
the degrees and heights of the division equations of f{(u,z) . It
should be noted that Ribet's recent work on Kummer's theory for
the extension of an elliptic curve by the multiplicative group
(cf.56.5) gives the exact degree.

Third step. Upper bound for the number of zeros of ¢(zQ),

At the end of the second step the function of cne variable

¢ (zi)

P{G(uz), }o(wz), F(uz))

—3OUT 75

has a zero of order > ?

at each point p/gq with 1<p<qgg2T
and q even. The desired contradiction follows from the next
proposition.

Froposition 7.2.3 (Laurent). Let ©F ¢ Cixg, X,5 X5, X

10 X, 3} be a non-

Zzerc polynomial of degree < L. Define

gz} = b(g(wz) ~ nz) + 2z ,
and
Folz) = flu,z) exp(-A(u,w) i}

. o(z-u)

nu
T Slzio(uy exp (Fz) .

Ihen the number v (0,R) of zeros in |z| < R of the function
P o

9(2) = Pg(2), pluz), £ (uwz), e21T2)

satisfies for ali R > 0O

8

v (0,R) < ¢ (LR? + 0.8)
P

where ¢ depends only on jﬂ, u, w, b .

(The introduction of e2lﬁz is useful for the second part of

theorem 7.1.5 only.)

This proposition is of course an important part of the proof
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of thecrems 7.1.5 and 7.2.2. The arguments which are used go
back to Masser's thesis; we shall indicate them in the next lecture,

in an easier case.

87.3 Turther results and comments.

Some of the results of §7.1 have beed extended to the case

where Wy is a period of jol and W, is a period of another

function 132 . The best reference to date is Chapter 6 of

"ITranscendence Theory : Advances and Applications" (ed. A. Baker

and D. W. Masser). In this chapter Masser proves

dim {1, wl,wz,nl,n2,2iﬂ} = 1 + dim {wl,m 2im}

23']1:“29
and
dim {wl, Wy Ny n2} = 2 dim {wl,m2} R

R
where dim is the dimension of the vector space spanned over } by

the considered numbers. An important open problem is to investigate

inear independence over Q of 3 periods Wy Wy, Wy of

hree Welerstrass functions 391,397,3§3 . More generally one would

rt

he

[

t

like tc know the dimension of the vector space spanned over Ei
by numbers
i, Wi MNps «eenlly; Ny 2im
where wj is a period of an elliptic function }3j and ns is the
corresponding quasi-period of Cj s (1<3<k}.

Ancther problem connected with §7.2 is to remove the assumptiocn
that the residues are rational (this assumption comes in fact from
the correspondence between extensions of an elliptic curve by
the multiplicative group and differentials of the third kind with

integral residues). As already seen this amounts to the problem

e

of the linear independence (over (A ) of numbers
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w z(uﬁ) - nuj , Wy N, (1<3j<k).
There are rather few results on abelian integrals of genus > ¥

(Schneider's fourth problem.) The most significant result is due

to Schneider (19%3) which improves an earlier result of Siegel

(1932) and implies the transcendency of B(a,b) for rational a,b

with a,b,a+b not integers. (The only recent progress is due to

D. W. Masser and concern curves of genus 2.) A transcendence

measure for Bf(a,b) has been derived by Laurent. It is usually far

more difficult to give a transcendence measure than to prove the

transcendence of the considered number. In the exponential case

most of the work is due to N. I. Feldman. In the elliptic case a

similar achievement has just been done by E. Reyssat. His results

are extremely sharp and provide a lot of numbers with finite tran-

scendence type. In his book on transcendental numbers (1868) Lang

mentioned "the problem of proving that certain numbers have definite

types" and said that "to solve this problem, one expects a higher

order of complication, of the nature encountered by Feldman in his

papers”. The most difficult problem is connected with the elliptic

‘analog of Tijdeman's result. The main contribution to this subject is

due to D.W. Masser, whose methods enabled him and Reyssat to get inm

several special cases essentially best possible estimates. On the other

hand there are now some new estimates for the number of zerces of
certain auxiliary functions, which are usually less precise, but
far more general, due to D. Brownawell and D.W. Masser. As a con-
sequence they get an effective version of Schneider-Lang's
criterion.

In 7.2.3 we have seen an example of an upper bound for the

number of zerces. We will see another one in the next lecture.



LECTURE 8

ALGEBRAIC INDEPENDELNCE OF PERIODS

The problem of the transcendence of TF(1/4) was considered
as a very difficult one, and it was a real surprise when Choodnovsky
announced, in 1875, a result on algebraic independence of numbers
connected with exponential and elliptic functions which solves this
problem (as remarked by Masser). The procof used a transcendence
measure for the number 7% . Later he produced a new proof which

gives further results. We give here this second proof.

§8.1 Choodnovsky's results

Let ja be an elliptic function of Weierstrass with invariants

1> o be a basis of the lattice [ of

).
periods of ?3, and ni = 2@(-1) as usual. We know already the linear

gy » B4 algebraic. Let @

2
relations over €} connecting the six numbers 1, Wys Wys MNys Nos 2iw .
We are now interestad with the aligebraic relations. The Legendre

relation N Wy = N, @, = 2ir  reduces the problem to the determination

fedy
w.

he

H.

of the transcendence degree of eld {3(m1=m23”1’”2) over ) .

In the case of complex multipiication it is now clear that this degree

is at most 2 and we shall see that in fact it is 2. When there 1is no

I3

complex multiplication it seems natural to expect a degree 4 , but we

know only that the degree is at least 2, and we still do not know for

0

instance if Wy sk, are algebraically independent.

Al the known results follow from the next theorem of Chcodnovsky.



Theorem 8.1.1 <(Choodnovsky) Let be an elliptic function of

i3

P

Weierstrass with invariants g., g4 in @ , v a non-zero period

2
of » N the corresponding quasi-period of ¢ » U an algebraic

of which is not a pole of s with u, w -linearl
D with tineariy

independent. Then the two numbers

u) - 3y n
Lius " B

are algebraically independent.

a1
When w = m wy * m, w, , and when we choocse u = @'/2

i
g

where w' = m, wy; - My, w, , and is the smallest integer such that

] o = -If L *
Corollary 8.1.2. The two numbers = % are algebraically independent.
A remark due to D. Bertrand is that this statement is equivalent

. . . . . . 2imT
to the following: for q e with 0 < gl <1 , write q = e

£

and J(q) = (1} ; assume that J(q) is algebraic and different from
Cen ; a . d \?

0 and 1728; then the two numbers q g Jd{q) , (q dq J{g) are

algebraically independent. {(We s%till do not know whether g itself is

transcendental ; cf.the last remark of §3.2).

Yol

From corcllary 8.1.2 it is plain that the field (](wl,mz,nl,n2>

i

as transcendence degree at least 2 over . This is specially

b

interesting in the case of complex multi lication, since we can choose
b

it
£

o
frod

{

(w,2i7) as a transcendence basis.

3]

¥
0

Coroliary €.1.3 Assume that 33 has complex multiplication then the




two numbers w,7 are algebraically independent,

Example 1. The curve y2 = ux3 - 4x has complex multiplication by

w
i 3 a periocd w3 (with (-2 = 1) is
1 2

We put u = x ° , and we use the relations

1, _ 3 1, _ m -
r(f) - ﬁ 3 F(‘l-l:) F(E) - ‘T—BT = TH/T

sSin—

y

Therefore
1 1 -374 1/2 1.1 1 r(%)2
wl = E_f (1 ) du = 2— B(‘*I 3 7) = .
Y 2/27

Thus the two numbers F(%) s T are algebraically independent, and

)  is transcendental.

£

in particular T{

Example 2. The curve y2 = Hxa—u has complex multiplication by ¢
w
with ;)3 = 1 ; a period wy (with jﬂ(-z-i) = 1) 1is
®  dx © dx .1 b oosze o -1/2
w, = 2 f — = f = 3 f u (1~uJ du

1
1 “hxs—u 4 Xg-l 0

From the relations

2n

2 1
rc2y redy =
3 3 /3



cne gets

3
1 1 1
F(g) F(f) ) F(g)

) 28/33

1 1
’..) = =
2 3 r(

IATEN

Therefore the two numbers F(%), m are algebraically independent,

and in particular T(%) is transcendental.

Remark. The number B(%, %) occurs as a period of the hyperelliptic

curve y2 = 1-x" s which is of genus [E%lE (integral part).
Therefore for n > 5 we get curves of genus greater than 1. The
only rational points between 0 and 1 where T is known to take
transcendental values are those with denominator 2, 3, 4 or 6.

We go back to ceorollary 8.1.3 and give a further consequence
on the modular function j . 1In 1964, using Schneider's results 7.1.1

and 7.1.3, Siegel deduced from the differential equation

the transcendency of the two numbers #j'(t) and 3T () /m when
T 1is imaginary quadratic and g,°84 # 0 . He asked whether Jj'(71)
itself was transcendental. The answer is provided by Masser's theorem

7.1.4, since

]

im

|

= (Tnl—nz)fwl

£
SN

However corcllary 8.1.3 vields a stronger result.

Corollary 8.1.6. Let 1T be a quadratic number of positive imaginary

part, which is not congruent to i or p modulo SLQ(Z) . Then



m, j'(1r) are algebraically independent.

§8.2 Gel'fond's transcendence criterion

There are three main methods for algebraic independence. The
cldest one is that of Lindemann-Weierstrass, developed by Siegel,
Shiclovskii,.., which deals with functions satisfying linear differential
equations. The second is due to Mahler and has been developed recently
by K. Kubota, J. Loxton and A.J. van der Poorten, and D.W. Masser; it
works with functions satisfying some functional equations (e.g.
connecting f(zk) with f(z) for some integer k). The third one,
which will be used here, was introduced by A.0. Gel'fond in 1949¢ it
works with exponential and elliptic functions mainly. The general
sketch of the proof is the same as usual, but we work with numbers in
a finitely generated extension K of (3 of transcendence degree 1,
(instead of a number field), and we need a new device to replace the
size inequality 1.1.2. We cannot give a lower bound for each element
of KX 1in general (for instance if K contains a Liouville number).

The idea, due to Gel'fond, is to consider a sequence of elements of K .
Here is an improved version of Gel'fond's criterion.

Theorem 8.2.1. Let 6 be a complex number. Assume

that there exist a sequence (tn) of positive real numbers, together

with a sequence (Pn) of non-zero polynomials of Z[X] , of degree

@n » such that

§, t+ log H(Pn) <t

lim t_ = +«
It
T



and

1og;Pn(e}| < -8t

Then 8

is algebraic and

- & o+ -
max {6n»ltn 5ntn—1’ 25ntn
Pp(&) = 0 for each n s

Sketch of the proof of theorem 8,2.1.

Since

Q

which divides

n

log[Q (8)] < - max {6

The resultant of Qn and (@

P
n

P
n

¢
&

8) 1is

Then

®

small, 8

is closed to a root of Pn

Qniﬁ) is small:

t 48t ;
-1"n 6n n-17? 26ntn’ 5ntn
n+l

5 t

nn "t}

? n+tl n

#1716

uch that tn > 2

let

3

be the maximal power of the irreducible polynomial of this root

FORANTELS

an upper bound for the absolute value of this number in terms of

max (|Q (8)]| , [Q 4182 , and

Q

.

B

T

3

the degrees and heights of Qn and

is a rational integer; one can derive

the upper bound is less than 1, and

For iarge n

cne

can write Q

g

L3 > s
n+i > @S soon as : tle1 2 ,
therefore the resultant vanishes.
with 1 < q, < én s and the inequality
§ t £
; non-
log|R(8)] < = 2
n
implies R{(8) = 0 .
§8.3 Zeroes of polynomials in
For the proof of theorem 8.1.

z gziz}a rl{z) .

1 we shall use Gel'fond's method



together with the criterion 8.2.1. We shall need an upper bound for

the number of zeroes of our auxiliary function. The arguments we

shall use go back to Masser's thesis. The next result is a special case
of a several (complex) variables statement due to P. Philippon which he
used to prove a p-adic version of theorem §.1.1.

Theorem 8.3.1(Masser, Philippon)}. Let }0 be an elliptic function of

Wejerstrass, and [ the associated zeta function. There exists a

constant c¢; > 0 such that if P e {[X;,X;,X,] 1is a non-zero

polynomial of degree at most Lj in Xj s (3=0,1,2) with Lj > 1,

then the number vF(O,r) of zeroes of the function

F(z) = P(z, 34(23, z{z))

in a disc |z| < r satisfies

. 2 :
vpl0,r) < ¢y (L +L,)x for r > Lg*L, .

This upper bound is obvious for r sufficiently large {(using
Schwarz lemma l1.3.1 and the fact that j@ and ¢ are of order < 2.
However for us it will be important to have an explicit condition on »r

From §4.4 we know already that it is sufficient to get an upper
bound for |6, with

2L, +L
G =g 172 F

in terms of |G]r , with R > r , and then to use Schwarz lemma 1.3.1.

It is possible tc prove the theorem 8.3.1 {(with the slightly



. L 1/2

weaker estimate r > LU 2 + (log Ll}

which would be quite

sufficient for us) by means of Lagrange interpolation formula in

several variables.

However we prefer to use the following result of

Moreau which will play a central role in the next lecture where it

will be proved.

For z = (z,...,2.) eC" we write |z| = max |z.| . When £ is
n : ]
1<3<n
an entire function in €% , we define |f|_ = sup |[f(z)] for
S
r > 0 . Further for Se g we write |f|S = sup |f(z)] .
zeS
Theorem 8.3.2 (Moreau). Let n be a positive integer. There
exist two constants C,ys Cg depending only on n with the following

Let Q

L , and

property, L be a positive integer,

polynomial of total degree at most

> (:[Xl,,..,Xn3

a subset of cn s

a

S

with the property that for each ¢ = (cl,...,cn) 3 [{n , with

jz] < 1 there exists o = (6y5...50.) € 8 with
lo.-g.] < == (1<3<n)
373 = e, ==
Then
c3L
Pl < e 3 Iplg
+
{In fact one can choose c, = 2n+7 nd ¢,

In this section we shall use this theorem only for the case

S

where S 1s a cartesian product lX,..XSn

{in this case interpclation



CQL c,L

formulae yield the result with e = replaced by L Ty

We begin the proof of theorem 8.3.1 with the following lemma.

Lemma 8.3.3. Let w,,uw, be a pair of fundamental pericds of Ja . Let

E be the subset of { defined by

©
E = {~l x + % Wy +£ ; xe[1,23, 0 < &, < L. +L, , 0 < 2

1 W, 1 S Lgthy < LgtLyt

2 - 70

where x 1s real and £, integers. Then

1°72

Lothy*l,

H(P) < ¢, |F|E

where ¢

, depends only on ‘33 .

Proof

“1 Y1 y

Let z, € ES—— s 3—3 . TYTor (5&1,22) € XZ, the number
= (
Flz+2iw 42,0, ) = Plzgti w L, 33(z R c\zG)+£ln1+£2ﬁ2)
is a polynomial in 21,22, say Tz (21522) . From the theorem 8.3.2
(with n = 2) we deduce
L.+L
™ ks B’
H(lzg) < cg |F|E .
Let us define
= P
Sz (XO,Xz) {XG,'P(Z J.X,) .

0

From Legendre relation one easily gets



The coefficients of S, are polynomials in y(zo)

0
If Q ¢ c.[Xl} is a polynomial of degree < L, , and if
_ £
El-{g(hr‘; , 0 <8 <Ly, 2ed},

then the theorem 8.3.2 (with n=1) implies

T

~1
H(Q) < c, ]¢|El

where ¢ = Q()

This proves lemma 8.3.3.

Lemma 8.3.4 With the notations of thecrem 8.3.1 we have for

R >r >cg (LytL,)
(L, +L, )R
IG]R < IG|P Cq
2L1+L2
where cg,cq depend only on aa and G(z) = o(z) F(z) .
Proof

We begin with the obvious upper bound

log %G[R < (L1+L2)R2 + L, log R + log H(P)

€10 0

From the functional equation of o one gets for z € E



-(Ly*L,)°
lo(z)| > clq .
Hence
2
ElL < C(L0+L2) (2L1+L2) |
E - 711 r
0
with ry = 08(LU+L2) . From lemma 8.3.3 we deduce

log H(P) < c (L0+L2)2(L1+L2) + log |G|

12 r

C

and the lemma follows.

Theorem 8.3.1 1is an immediate consequence of lemma 8.3.4 and

Schwarz lemma 1.3.1.

§8.4 Proof of Choodnovsky's theorem

We give the proof of theorem 8.1.1. We already know {(from
Schneider's theorem 7.1.1) the transcendency of n/w . We assume
that the transcendence degree over ) of the field

Cl(c(u)-g U, %) is 1, and we shall eventually get a contradiction
using the transcendence criterion 8.2.1.

et K be the number field

G
Kq = Q(gz,g3, ‘P(u),‘sﬂ’(u)) s

and let K be the field

= n n
K - KG(E_.(U.)"N U, {j}) e



By assumption the transcendence degree of K over (1 is 1,

We are going to use the property that the two functions

Pz), olz) - g z

are algebraically independent, have a common period w , and
take together with their derivatives values in K at each point
hu, h eZ which is not a pole of ’g .

Let N be a sufficiently iarge integer. We define

Lozt , L= N, T o= w%(leg M7
First step. There exists a non zero polynomial P g Z{XO,Xl,le
of degree at most L2 in XD’ Ll in Xl and L2 in X2 s, and

-
height at most ell s, such that the function

F(z) = F(2 ,(2), t(z)-22)

has a zero of order at least T at each point hu , 0 < h <N

which is not a pole of @4 .
Using the Baker-Coates-Anderson method (§6.2) , one cemputes

the t-th derivatives of the function

Ly Lithy A n, 2
(2h) thP(z>} }S(hz} (z(hz) - =hz) ;
. 5 <4 o= n 1N &) .
one gets a polynomial in gﬁ s L= 2 @3, o > Tf » 8y with

coefficients in #Z of absclute value at most



2
(L1+L2)h +t

2 t
1 E(L1+L2)h +t]

C

and degrees at most (L1+L2)h2+2t R L2 , 1 , min {S,LQ} s

(L1+L2)h2+t and (L1+L2)h2+t respectively. Lxpanding our

numbers on the transcendence basis % , we get a system of

c, I_.2 NT equations with Lng unknowns, with coefficients in Z .

Siegel's lemma 1.2.1 does the rest.

Second step. Put T, = NB log . There exists two integers

1
t 1 T :
1 hl s, with 0 < tl < Tl s 0 < hl < N , such that hl u 1s

not a pole of ﬁg , and

(t))
y = F (hlu) 0
We use the theorem 8.3.1 with L0 = L2 . N3 . The
number of zeroes of F in [|z] < N° is at most N0 (where

C3

as usual c¢ does not depend on N); therefore one of the numbers

3

r8) (o),

(D<t<'Il s O<h<N, 0<&< §T%T x° and hu not pole of F} 1s not zero.
- - - ¥

The periodicity of F with respect to w yields what we wanted.

We choose t such that F(t)(hlu)

1 0 for 0 <t <t

1 -

Third step. We have

10

log |y| < - ¢, N77 (log Ny~

This is a consequence of Schwarz lemma 1.3.1 with r = Ns(logN)-2 s



B = 3r, for the function

21..1’*[,2

G = ¢ I .

From the upper bound

2

& 10 -4
log IGiR < cg (L{RT+N7)< 2¢. N""(log N)

and the periodicity of F which yields

1 .1 .10 -3
vG(D,r) > 7 RyIN = 5 N (leg N)
we deduce
log |6],. < - %—Nlo (log N)™3

From Cauchy's inequalities

(t.) .
log [6 * (hyw| < - =10 (10g 7Y,

and from the minimality of tl

(tl) 2L1+L2

G (hlu) z c(hlu) Y.

Using the multiplication formula for o and the size inequality
for ¥, (as(u), @’(u)) , we have
1
2

10g|0(h1u){2—c? N© .

The result follows (with e, =

I bt

>, say)d.



Fourth step. There exists a non-zero polynomial

Py € LIX] with

2
L

deg Py < ¢4 N

log H(PN) < ¢4 N® (log N)? s

ic =3
log |Py(n/w)|<- ciq N7 (log N)

OQur number Yy is a non-zero element of K . We multiply
it by a denominator in such a way that it is integral over Zin/wl
and we take the norm. (These estimates are a little bit delicate,

but we do not give the technical details).

Conelusion

From the criterion 8.2.1 we get the contradiction that n/uw

is algebraic.

§8.5 Further results and ccmments

When Gel'fond developed his method in 1949 he succeeded to

, 2
prove the algebraic independence of a® . ab , when a and b are

algebraic, a # 0, log a # 0 and [): Q3 = 3. He got a lot of
other results but all of them were asserting that two numbers at
least of a certain set of numbers were algebraically independent,
and the only case where he could actually reduce this set to 2
elements, and thus get the actual independence of 2 numbers, was
the above mentioned one. Several authors developed Gel'fond's

method, especially in the 70's, but their results suffered from



the same defect. However it is worth to mention a paper of
Brownawell and Kubota (Acta Arith. 33 (1977) 111-149) where

they get nice results of algebraic independence of numbers related
to elliptic functions (in one example they show that of three
numbers at least two are algebraically independent). Their results
were extremely general (in fact they used a much more general
criterion) and it turned out that this was not the best way to

look at the situation: Choodnovsky's proof of the transcendency

of T'(l/4) rests on the same method, but uses in a more efficient
way the properties of the special case he considers, and especially
the periodicity.

The other results of Choodnovsky on algebraic independence
concern values of exponential functions, of elliptic functions
(where it is not always necessary to assume gy5 83 algebraic), and
abelian functions. Specially worth mentioning is his work on elliptic
version of the Lindemann-Weierstrass tneorem.

These problems are much more difficult to solve in the p-adic
case; the exponential and ﬁﬁ functions are defined only locally,
and it is not possible to take a large radius in Schwarz lemma.
However D. Bertrand found a new device: he works with Tate elliptic
functions. Because of the essential singularity at the origin he
needs a Schwarz lemma for an annulus which he proved both in the
complex and the p-adic case. As an example he considers the

Eisenstein series



n?¥ 1 (g% (1-¢"N

R k
Epe (@) = 1+ (-1)° (uk/B,) .

n

I 18

and shows that for any q 1in the p-adic domain of convergence,
two of the numbers Ez(q), Eu{q), Es(q) are algebraically
independent. Further p-adic results corresponding to Choodnovsky's

theorems of §8.1 have been obtained recentliy by P. Philippon.



LECTURL 9

SCHNEIDER'S METHOD IN SEVERAL VARIABLLES.

Baker's solution to the problem of linear independence of
logarithms uses a generalization of Gel'fond's method. It is
natural to ask whether another proof can be derived from a general-
ization of Schneider's method. There are at least two reasons to
make some efforts in this direction; the first one is the funda-
mental importance of getting lower bounds for linear forms in
logarithms, the second one is the hope to solve new problems, and
especially to study the rank of determinants whose coefficients
are logarithms of algebraic numbers (cf. problem 3.2.2).

We give here a first partial solution, which yields a new
proof of Baker's theorem in the real case. Our main tool is Moreau's
theorem 8.3.2 , and we first give a sketch of his proof.

There is only one serious difficulty when dealing with several
variables, namely to get a Schwarz lemma corresponding to 1.3.1.
For the case of finitely generated subgroups of Cn we have a

precise conjecture {(see § 9.4;



9.2

$9.1 Polynomials in several variables.

In his thesis (L.N. 437, appendix 2), Masser investigated
some properties of polynomials in several variables. He showed in
particular that a non-zero polynomial in Cizl,...,zn} of degree

< L cannot have a zero within cl(n)L'l/Q

of every point of the
unit ball, and cannot have a zero within c2(n) (L log L)‘l of every
real point of the unit ball. The first result is plainly best
possible (on the basis of simple counting arguments), while for the
second Masser conjectured that the log L could be removed. This
problem was solved in 1975 by Moreau, who then obtained a stronger
version (theorem 8.3.2). In 1976 Masser derived a similar refine-
ment of his first result (J. Approximation Theory, 24 (1978), 18 - 36).
It should be mentioned that Masser's conjecture (without the
refinement of Moreau) can be solved in a very different way
by means of Berndtsson's work on zeroces of analytic functions of several
variables (Arkiv fér Mat. 16 (1978) 251-262).

We give here a sketch of Moreau's proof of theorem 8.3.2. In
his first proof (C.R. Acad. Sci. Paris, A 282 (1976), 771-774%),
and also in Masser's earlier work, an important auxiliary result
was the following result of Bernstein: for a polynomial Q eflz]
of a single variable and of degree at most L, [Q'}; < LiQly -
Recently Moreau found a nice proof of the slightly weaker estimate
]Q‘ll < eL[Q[l , which is quite sufficient for his purpose (and
enables him to extend his theorem to the p-adic case.) We first

begin with a simple lemma.



Lemma 9.1.1. Let }}EZC{ZI,.-.,ZDJ be a polynomial of total

degree at most L . Then for R > r > 0 we have
R\L
Pl < (=) |P;p .
Proot.
Let z e Cn with IZUI = R and ]P(zg)f = [PIR . Define

Q0 e€ltl] by Q) = b P(—%). By the maximum modulus principle

Q)] < ]Q{R/r . Thus

z
0 R.,L
)7 sup  |P(—=}] < (=™ |p]
| t|=R/r t - r r

Lemma 9.1.2. Let Q e €[zl be a polynomial of degree at most

L > 1. 7%dhen

Q' [, < Cel) JQly-

Froof.
Let =z ¢ € with |ZO| = 1 and |Q'(ZD)| = |Q'|1 . By
Cauchy's inequalities

Q' Cz )] < LofRlyy -1 -

From lemma 9.1.1 we conclude

- L .
|Q'[, < L(1+L L |Qf, < eLlQi; .

Another important tool in the proof of theorem 8.3.2 is a

lemma of Popken and Koksma , improved by Gel'fond.

Lemma 9.1.3. Let Pl,...,Pm be polynomials in C£xl,...,xn]

and let the degree of Pl"'Pm be at most L 1in each variable

Then

. nkL
h(Pl).,.h(Rm) < e H(P1'°'Pm> .

Mahler's proof of this result uses the measure M(P) for

P g C[Xl,...,Xn]:

X

]
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1 1 2i'ﬁui Qiﬁun
M{P) = exp {fo "'IO log|P(e seees€ )ldul...dun}

so that
M(Pl"'Pm) = M(Pl)"'M(Pm)'
It is then sufficient to relate M{(P) and H(P).
(Lemma 9.1.3 was used already implicitely in the proof of

Gel'fond's criterion 8.2.1.)

Sketch of the proof of Moreau's theorem 8.3.2.

The letters C3s C c will denote positive numbers which

y> ©s

depend only on n (and are easily estimated).

First step. Let P ¢ C[Xl,...,Xn] be a polynomial of degree at

most L 1in each Xj » and S be a subset of (:n such that for

iy n . _ _ _ . .
each ¢={g,..,5 ) e with [g,]=...= g I= 1 (i.e. ¢ is on
the distinguished boundary of the unit polydisc), the distance (%)
from ¢ to S is less than c3L-l . Then
IPIl f 2IP|S *
We choose ¢ with [P(g)] = |PI1 , and ¢ € S with |o-g| < ch—l.
From the mean value theorem one has
-1 5 3
IPly < IPlg * egl™™ I lgpm Plyyg o2
1=1 3 3
From lemmas 9.1.1 and 9.1.2 this inequality gives
1
1, < Il + & [P,
which yields the desired result.
Second step. Let P ¢ CLxl,...,xn] be a polynomial of degree at
most L in each Xj , and S be a subset of €" such that for
(¥) We use always the sup norm: |z| = max |z:] for z = {zl,...,zn)sf:n.

1<i<n



each ¢ = (£y5..050 ) € C" with [gj[ = 1 and Imgj > 0 , the
distance from ¢ to S is less than ch_l . Then
. L,
vl < ekl

One applies the Lirst step to the polynomial
l ‘ l(Liai,...,tnX“} ,
where (El,...,en) runs over the 2" n-tuples Ej = +1 ., VFTor

this second step lemma 9.1.3 is needed.

Third step. Proof of the theorem.

Define h(u) = iﬁ;% for ue £ -{-i}. For ¢ e with |z} =1

and Img > 0 one has h(g) eR, |h(c)f < 1 . "Then one applies the
second step to the polynomial

I
CTT e+ DY P, .., nx ).
=1 ;

§9.2. A Schwarz lemma in several variables.

|

'he first generalization of lemma 1.3.1 to several variables

-

goes back to Schneider (1943) where he used iterated interpolation
formulae. This method works only for cartesian products which is

a degenerated situation. The first study of a non degenerate case
is due to J. P. Serre (1966) in the p-adic case (*), and to Bombieri
and Lang four years later in the complex case. We shall deal with

a further extension of Bombieri-Lang's result in the next lecture;

it is fair to mention that this result together with Berndtsson's

(¥) See also P. Robba, Invent. Math. 48 (1978), 2u5-277.
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above mentioned paper leads to another proof of the main result of
the present section. However our method is simpler (modulo

Moreau's theorem) and yields better estimates.

Theorem 9.2.1. Let n be a positive integer. There exist positive

numbers C15C55Cy depending only on n and easily computable, with

the following property. Let R 2 r > ry > 0 be real numbers, and L

a positive integer. Let S be a subset of q:” such that for each

T = (Gysennsg)) eR" with |z < r; , the distance from ¢ to 8

is less than clrlXL . Then

c,r L C,r L
£, s\+) Iflg ¢+ = |£lg -
If one applies this theorem to a polynomial of degree < %
(with say r = ry = 1, R+ ») one gets Moreau's theorem as a

corollary. But in fact we will deduce theorem 9.2.1 from Moreau's

theocrem.

Proof of theorem 9.2.1.

We write the Taylor expansion of f at the origin, and we
cut it in two parts: f = P + g , where P is a polynomial of degree
<L , and g has a zero of order at least L at the origin. It

is easily checked that for 0 < p < R, |g|_ < (—%)L lgl; (this is

p

the classical Schwarz lemma for one zero with high multiplicity).
Since there is no loss of generality to assume |0 < 2r1 for ¢ e S,

we have

|P|S < Ifls + ig|2rl .

Further from Cauchy's inequalities we have



Pl < L™ ],

and therefore
lely < 2u™ |f];.

We perform a contraction to come inside the unit polydisc: we

define
1
S!' = {Fl 6 , 0 ¢ S},
and
iz} = P(Plz)
Thus
ot = 1P, > lalg = Iplg -
Ty
From lemma 9.1.1 we have
| r L
IQ,E_f (I-.l) ’Qll *
r

1

Now we use Moreau's theorem 8.3.2:

lal, < erlalg .

From these inequalities we deduce

e
A

L
(cyr/r )7 [Plg -

Finally

A

[Pl + el

L 2rl L P L
(Cqurl) (lfls + ('—R—) [gIR + ('R—) ]glR
02r L 03r L

(—R—') |fIR+ (—r—l'} ]fIS .

1A

A

We now give an example of a set S satisfying the density

condition of theorem 9.2.1.

Lemma 9.2.2. Let Bl,...,Bn be algebraic real numbers. We assume

that 1,6;,...,8 are (d-linearly independent. Let



€ be a positive real number. There exists a positive number cg

depending only on n, B and € , such that for all H > 1

n+l

1o esB
and g ERn with |z| < 1 , there exists (hO’ hl""’hn) eZ

with -H < hj < H , (0<j<n) such that the point ¥y = (hl+h051’°”’hn+h08n)

satisfies
.._}i+€
v - ¢} < ei™m .

Once we know this property for || < 1 , we deduce it for
lz] < -]2411 (with g replaced by cg) using translations by ln .
Thus the assumption of theorem 9.2.1 is fulfilled with ry = H/2 ,
L=c, w'y e
Proof of lemma $9.2.2. We use a very deep result of W. M. Schmidt:
there exists cg = c8(n, Bl,..., Bn, €) such that

P 1
min {{¥] 5 Y=(h *hyBy,. .. i thos ), Y#0, ~lich, <} > cglm & .

The lemma follows from a classical transference theorem.

Cur purpose was to establish the following result, which is an

easy consequence o §.2.1 and 89.2.2.

Corollary 9.2.3. Let 61""’61 be algebraic real numbers. We

assume that l,Bl,...,Bn are (Q-linearly independent. Let € be

a positive real number. There exists a positive number <4 depending

only on n,si,.,.,sn, and € , such that for all H > 1 and

for all non-zero entire functions f satisfying

f(hl+h08

l’ L] ’hn+h88n) = O % (-Hihjfﬁs Gijin) s



we have

Apart from the € this estimate is best possible.

§5.3 A new proof of the real case of Baker's theorem.

We prove thet if Ays.ee5Q A€ NOL-ZETo algebraic numbers,

and log al,...,log a ~are Q) -1inearly independent, (where log aj

is any determination of the logarithm of &j), then log o,,...,10g @

1

are linearly independent over the field QN R of real algebraic

1

numbers. It 1is an easy exercise of linear algebra to check that this
statement is equivalent to the folliowing.

{(9.3.1) Let ST RRREI N be non-zerc algebraic numbers, and

p?,...,sr be real aigebraic numbers; for 1<j<n let log aj be

13

any rnon-zeroc determination of the logarithm cof @y - Further assume

1,81,.,.,bn fi-linearly independent. “hen the number
B B8 n
w a 'z exp {5 B og o.}
1 v %, Xp ]L:l p) L0g ]

is transcendental.

We assume that this number is algebraic, and we define
log O, = 8.1log a,+...+8 _log a -
We shall ultimately derive a contradiction. The hypothesis that
the @£'s are real will be used only through the Schwarz lemma 9.2.3.

The proof follows closely that of §3.1. The n+l functions

z A
1 I . B 1 Teal T oA d 1t d tak
le e s s ,Zp,ﬁt} P .an are aigeprallal.y independen and aKe

I -
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. . n+l
algebraic values at all points (hl+h081,...,hn+h08n), (hG,...,hn) ed .
Let N be a sufficiently large integer. We choose
2 2
L = N?n +5n+1 J A = N2n+l , H = N2n +3n'
Notice that
1
n n+l 1+H 2
L = AH , LA =1H "N, H = LN° .,
Step 1. There exists a non-zero polynomial P ¢ Z{Xi,...,Xn,Y3 of
degree at most L in Xl""’Xn and at most A in Y , of height
at most eL , such that the function
zq z_
F(zl,..,zn) = P(zl,...,zn,al ERL N 3

satisfies
F(hl+h061,...,hn+hgsn) = 0

for (hG,---,hn) E.zfﬁi » -H < h. < H , (0<j<n).

— J

This is easily obtained by means of Siegel's lemma for the

system
L L A T% Aj AhO' Ahe
z ve. L L pQhyseeash _32) (THh.+h . B.) ) @ ce e = 0
A,=0 A =0 A=0 1 n 3=1 3073 0 n
1 n
of (QH+1)n+1 equations with L™A unknowns.
Step 2. TYor each integer M > N we have
, _ n+}
(I)M F(hl+h0b1,,..,hn+hoﬁn) = 0 for (ho,...,hn) Y 4
) T
+ .
with |hj! < 2N +3n » (0<j<n)
and
2n2+5n+§ 2n2+3n+l
an, log [F[, < -M 2 for r =M

The proof is done by induction on M , the property (I)Nbeing

is

given by the first step. The proof that (II)M =-§(I)M+l



exactly the same as in 83.1: the house and denominator oi

F(hl+h861,...,h +h Bn) , with the condition on h

n G 2
ont+
by (I)Mél s are bounded by exp (Mt Sn+2

D""’hn given
)
For the proof that (I)M implies (II)M s We use our Schwarz

P M1/2

lemma 9.72.3 with R = , E = 1/(10n2) , and

2n2+5n+%

log |F|, < e M

The exponent of M in Uchwarz lemma is at least
Hoy- o2, oL, 2 5
(2n+3)(nt)1) - e(Zn"+3n) > Zn tonts
therefore

108|F|P < -c, I 2 log M

which gives the announced bound.

Step 3. Conclusion: T = (0.

This contradiction completes the proof.

m

Remarks. Thnis prool suggests several comments.
i. The assumption that 81""’6n are real is of course undesirable.
This suggest that the Schwarz lemma 39.2.3 could be extended to the

case where B g are not assumed to be real. We can go

IEREEEL
further and ask whether the assumption that they are algebraic is
necessary. We shall discuss the matter in the next section.

2. The constants cy and Cq of §9.2 are not effectively
computable. This 1is not a too much serious defect for two reasons.
Firstly one can hope that the corollary 9.2.3 holds without assuming

Bl,..,,Bn to be algebraic (as already mentioned), and this ask for

a proof which does not use Schmidt's theorem. Secondly for the
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applications the most important effective results concern linear
forms in logarithms with integer coefficients. In this case by
the present method there is no need of Schmidt's results (however
up to now the lower bounds which could be reached by the present
method seem less sharp than by the method of §5.2).
3. It is not straightforward to get by the method of this section
a non-homogeneous result for

log ag = 80 + Bllog a1+...+8nlog o -
liowever the technical difficulties have been solved very recently

by J. C. Moreau. This means that it is possible to combine the

methods of Gel'fond and Schneider.

§9.4. Generalized Dirichlet exponent.

Let T = Zyl+...+z‘(£ be a finitely generated subgroup of ¢
of rank . For N > 1 we define

= i h. :
FN th\;1+...irni_:‘(}3 H (h]

s+ enshy) EZ£,|hj| < N, 1<j<&}

Definition. Let O Dbe a positive real number. We say that T

satisfies a Schwarz lemma with exponent O if there exist positive

numbers Cys © C depending only on n,8,y1,...,y£, such

23 C3s

that for all H > cy and all entire functions f # 0 having a

i—i’

zero at each point of TN’ we have
8 R

£ —

log |£f], < log ILlR - c,N"log e

for R >r > c, N .
(It is easy to check that this definition does not depend on the

basis Yi,,..,yﬁ).

For instance 9.2.3 means that if £ = n+l with Yl""’Yn
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€ -linearly independent and Y1 8]¥1+...+ﬁqyn , Wwith 1,51,,..,8n

Q-linearly independent and §. ceQnR », then T satisfles a

|
J
. : 1
Schwarz lemma with exponent 1 + ot tor all ¢ > 0.

i the depgenerated case ol a cartesian product F:FJX.,.XFR )
where I'] is a subgroup ol € (l<j<n), it is not hard to prove
that [ satisfies a Schwarz lemma with exponent 6 = min rankz:F.

1<j<n J

and this 1s best possible.

The first study of a non degenerated case is due to Eombieri
and Lang (1970). Their point of view was to ask which conditions
are sufficient on [ in such a way that 6 can be chosen large.
We choose a slightly different point of view. We take any T , and
we ask for the best possible value of 0.

The upper bound 6 < {/n 1is easy: using Dirichlet box
principle, one constructs a non-zero polynomial of degree at most

Cg NL/n which has a zero at each point of FN; then we fix r
(say »r = c, N) and let R go to infinity. It is clear that this

upper bound is not always best possible. Assume for instance that

there is a surjective linear map L : anﬁ_cv such that TI' = L(I')
has a rank A with % < % From the above argument we have a
polynomial P of degree < Ce NA;U which vanishes on F’N . Then
PolL is a polynomial of the same degree which vanishes on FN, and
therefore & < % .

Notation. We denote by u(r) the minimum of the numbers

rankl sw (r) _ £ - Pankz(i’nw)

codim . W n - dim.c W

LY

. n _
where W runs over the C(C -vector subspaces of £ distinct from

Cn, and s is the canonical surjective map € > €.

W

3



We have proved:

Lemma 9.4.1. Let [ be a finitely generated subgroup of cn which

satisfies a Schwarz lemma with expcnent 6 . Then

6 < u(ry) .
The problem is to give a lower bound for 6 . Being optimistic

I propose the following conjecture.

Conjecture 9.6.2. Let T be a finitely generated subgroup of €7,

and let € > 0 . Then T satisfies a Schwarz lemma with exponent

u{ry - ¢ .

Using the method of §9.2, it is possible to prove this
conjecture in the case T C—énn Rn . The conjecture is also true
for almost all Ft:i{n » and also for almost all T ¢ Cn cf rank

> 2n. (Ref.: Astérisque Qé 71, 1980).
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LECTURE 10
GEL'FOND'S METHOD IN SEVLRAL VARIABLES.

The study of arithmelic properties of functions of several
variables began in 1940 when Schneider investigated the abelian
integrals of first and second kind (cf. §7.3). 1lis method was
extended by Lang in 1963, who got a generalization of theorem 2.2.1
to several variables; the conclusion is not that the corresponding
set of iJEZCn is finite (this is too much to hope for), but that
this set cannot contain a product Sl x...xSn with Sjt: € and
Card Sj all large. Nagata suggested that this set is contained
in an algebraic hypersurface. This problem has been solved by
Bombieri in 1970. It is now possible to give Bombieri's proof
in two distinct parts. The first one is a Schwarz lemma which is

connected with the singularities of algebraic hypersurfaces, and
24 g ¥p

the second one is the classical transcendence argument.

. - iy < . Z .
§1C.1. Singularities of algebraic hypersurfaces and L estimates.

al The result

w

-

.. n s
Let be a non empty finite subset of { , and t a positive

7]

integer. We denote by wt(S) the smallest of the degrees of the
hypersurfaces having at each point of S a singularity of order

at least t:

juR

wt(S) = min {deg P ;3 P E(:[Zl""’zn]’ P £ 0,

D P(o)=0 for ceS and T eN lt] < t}.

We have written D for _11 31T§ and 1| for 1
le*...éz

i
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Using L estimates of Hérmander-Bombieri-Skoda, we shall prove

Lemma 10.1.1. For ty» t, positive integers we have
tl+n-1
w, (S) < ——/—— w, ($) .
tl - t? t2

It is easy to deduce
Theorem 10.1.2. Let S be a finite subset of Cn . The seguence
(2w, (5)) has a limit §(S) and
Tt t>1 = —_—

Ly (s) < aes) < w(s)

n 1 - - 1 :

Moreover for each integer t > 1

w, (8) < 2(S) < T w (S) < w (S).

t+tn-1
As ancther application of the L2 estimates, we shall indicate

the proof of the following Schwarz lemma for finite subsets of (? .

Theorem 10.1.3. Let S be a finite subset of (:n , and € > 0

a real number. There exists a positive real number r,. = rD(S,e}

0

such that for any positive integer t and any non-zero function f,

which 1s entire in Cn and has a zero of order at least t at

each point of S , one has for R >r >r

0

log |f|, < log [fly - t(Q(S) - €) log gz

The proof does not enable us to compute r it would be

g °
interesting to do it, especially when S is of the form FN

(cf.89.4). We shall see later (§10.3) a recent improvement of the

thecorem 10.1.3 due to J. C. Moreau.
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b Lz estimates.

The existence theorems for the 3 operator, due to Hormander,

lead to the following

Theorem 106.1.4% (Hormander-Bombieri-Skoda}. Let V be a plurisub-

- - - I’l m o
harmonic function in £ , V # -2 , and let € > 0. There exists

a function F , entire in Cn and F # 0 , such that

-V(z}

I [F(z)|% e (1+]2] %707 ar(z) < += .
c

We show how teo deduce lemma 10.1.1 from this estimate. We

choose V = u log |P| , where P is a polynomial of degree w, (8)
2
which has a zero of order > t, at each point of S , and
2t1+2n—2
by . Let € > 0. Tfrom 10.1.4 we get an entire function
2
" # 0 3 since the integral converges, one has firstly
2 uw, (S)+2e
[Flg cep R %2 =
hence T is a polynomial of degree < % Howy (S)+e , and secondly
< 2
-2n

|F(z)|* < c, lc - olFt2”

when ¢ 1is close tc a point o0 £ S, hence I has a zero at o

of order > t,-1 . This proves lemma 10.1.1.

¢) Sketch of the proof of theorem 10.1.3.

The first part is due to Bombieri and Lang. They consider
the average mass v (0,r) of the zeroes of f in a ball [lzt} <r
(quotient of the (2n-2) Hausdorff measure in Euclidean space of
the analytic divisor f = 0 in ||z}| < r , by the Lebesgue

measure of the ball of radius r 1in the real (2n-2) space; here

! . - 3 = : ]
§lz;; is the EBuclidean norm}, and they prove a statement similar
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to 1.3.1, say

R
log |f|r < log]flR - ve(0,r) log = .
The second part is the proof of
ve(O,r) > t(Q(8) - €) for r > ry -

This proof rests on arguments and results of Bombieri's paper.

One assumes that the result is false; we get a sequence fN of

entire functions and a sequence tN of positive integers such that

fN has a zero at each point of S of order 2ty > and

Ve (01 € 5 (@(s) - o).

One constructs a plurisubharmonic function V {(which is in some

sense associated with a limit of %— log Ile) such that
N
V(z) < (Q(S) - ¢ + o(1)) log |z] as Jz]| » =
and
V(z) < (1 + o(1)) log |z-c as =z » ¢ £ S.

Then one applies the existence theorem 10.1.4 with a function
uV, u > 2(t+n-1) and t positive integer. We get (as in the
proof of lemma 10.1.1)

w, {S)
t+n~1

< Q(S) - € for all t > 1,

which is untenable as t » o .

§10.2 Bombieri's theorem.

The generalization of Schneider-Lang's criterion to several

variables is the following



10.5

f

Theorem 10.2.1. (Bombieri). Let K be a number field, fl,..., h

. - . n .
be meromorphic functions in ( , with h > n+l . We assume that

i oo f are algebraically independent over Q and of order <

1’>°° n+l
P1se Pl respectively. We assume further that the ring
K[fl,...,fh] is invariant under the derivations 527 , (l<i<n).
i
Then the set of w ¢ Cn where fl,...,fh are regular and such
that
fj(w) e K for 1<j<h

1s contained in an algebraic hypersurface of degree at most

npyte..vp ) [K QI

Proof of the theorem 10.2.1.

Without loss of generality, one can assume that fl""’fn+l
are quotients of entire functions of strict order < PyseeesP 47 >
where an entire function g in Cn is said to be of strict order
<p if
log lgly < 0(R") for R + +w
Let S = {wl,...,wm} be any finite set of w ¢ ch satisfying
the desired property. Let € > 0 , with € < 1 , and let ro=rO(S,€)

be the positive number whose existence is claimed in theorem 10.1.3.

Further let r satisfy r >r, and r > lwkl for 1l<k<m .

Now let N Dbe a sufficiently large integer. We denote by
€15 €5 €9 positive functions of N which tend to 0 as N tends

to infinity. We define
1/n

K. '
L. [N 3 (log N) 1, 1<jcn+l

J

with
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] of

Stepr 1. There exists a non-zero polynomial P E:Z{Xl"”’xn+l of

degree at most L. in Xj y (1<j<n+l), and height at most

N
1 . ; . .
i s such that Y = P(fl""’fn+1) satisfies
3 t ™ Y = H ¥ - n »
DF(w) = G for t eN", |t] < N, and w & S.
A
t 1 rkn+l

Une first writes D (f } as a polynomial in

1 77" n+l

fi""’fh (see lemma 2.2.5), and then one applies Siegel's lemma.

Step 2. Let to eidn minimal in the lexicographic order be such

that there exists wo £ S with

t
p 9 F(wo} Z 0

Let M = |t . Then

ol
log |yl > (8 - 1 + €,) M log M

with 6 = [K : Q] .

Since F # 0, the existence of ts is straightforward. From

the first step we cdeduce M > N . The lower bound for Yy comes

from the size inequality.

Step 3. Let Brse a6 47 be non-zero entire functions of strict

’?’3- i i & * & o 'Aﬂ L ) £ i L]
order at most pl,. ’pn+l such that flgl’ »f 418447 2re entire

Then the function

ntl L.
¢ =1 T7T g.-
j=1 -

is entire and satisfies

<

D7 2w = 0 for |t} < M,o0 € S

and
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This lower bound of |¢[r 1s a consequence of the minimality

of t, anra of the Cauchy's inequalities.

2(5) ¢ 8(pyt..tp 1) .

1/(p1+...+pn+l)
One uses theorem 10.1.3 for ¢ with R = M .

Conclusion. The set S 1is contained in an algebraic hypersurface

of degree < né(pl+...+pn+l) . Since this bound does not depend
on 5 , the theorem follows by a compacity argument (for each
A > 0 the set of polynomials in C[zl,...,zn] of height 1 and

degree < A is compact).

§10.3. Turther results and comments.

a) Schwarz lemma for fixed finite subsets of (:n .

Let S5 be a finite subset of Cn' and t a positive integer.
Using the remark that on the space of polynomials P e(:[zl,...,zn}
of degree < wt(S) , one defines a norm by

IPIS t: max {:.Ir'—’-IDTP(U)I 3 i’{l < t,o ¢ St ,
5 !

J. C. Mcreau derived the following result from the arguments of

§9.2.

Theorem 10.3.1 (Moreau) Let S be a finite subset of Cn' and t

e

a positive integer. There exists a positive number rl(S,t) =7y

such that for all R > r > o if f dis a non-zero entire function

having a zero of order > t at each point of S , then
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log |f]|, < log [f]; ~ w (S) log —%— .
e r

Combining this result with theorem 10.1.3 , Moreau deduces

Corollary 10.3.2. With the same notations., for R > » > r with

2
r, = Pz(S,E) one has
. R
log |f], < log tl, - (W (8) - te) log ——— .
Z2e’'r
Up to the term te this is plainly best possible.

b) Generic sets and Hilbert fourteen's problem.

It has been pointed out to me by G. V. Choodnovsky and L.
Begueri-Poitou that in his construction of a counterexample to Hilbert's
fourteen problem, M. Nagata proved the following result: let S be
a finite subset of C2 containing M2 independent generic points with
M >4 , then wt(S) >t M . He conjectures that wt(S} > t(Card 8)1/2

as soon as S 1s generic in C2 with Card S > 10.

G. V. Choodnovsky gave a simple proof of

w, (8) > t(Card 5)1/"

for S generic in Cn when Card S 1is the nth power of a positive
integer. He conjectures that there exists an integer c(n) such

- . n .
that for £ generic in ( with Card S > c(n) ,

G(S) = (Card S)l/n .

c) Degrees of algebraic hypersurfaces.

Let S be a finite set in " (which we do not assume to be
generic). We proved that

2S) > = w (S) .
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There are two natural questions. Firstly is this best possible?
When Card S = n+l, and wi(S) = 2 (i.e. S contains n*l points
which are not in a hyperplane), then obviously

wnt(S) < (n+l)t

thus 2(s8) <1 + % . Choodnovsky conjectures that for

any finite subset S of Crl,
2(S) 2 2 (w,(S) +n - 1) .
He claimed to be able to solve this problem in the case n = 2 , by
using the theory of intersections.
The second question is to prove similar results when &€ is
replaced by any field K . L2 estimates are powerful, but not
quite natural here and purely algebraic methods should apply. The

case n = 2 seems easier.

d) Finitely generated subgroups of Cn .

Let Yys---5Y, De ) -linearly independent elements of " ,

I = ZY1+=ec+ZY£ , and for N > 1

PN = {hlyl+...+hzyi e '3 =N < hj < N o, (1<3<8)) .

From the proof of lemma 9.4.1 one easily obtains

» u(r)
wl(FN) <oy N

where ¢, = cl{?l,...,Yﬁ) does bot depend on N . A special case

of conjecture 8.4.2 is the following

Conjecture 10.3.3. Let I be a finitely generated subgroup of (:n

and let € > 0 . There exists a positive real number , such that

for H > 1
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Lu(r)-¢
2 N

w,(I',) > ¢
17N -
For simplicity let us consider the case £ = n+l ,

+"'+XnYn with Yise-coY  -linearly independent.

Yn+l - XIYL n

Then u(r'}) 1is 1 or l+% according as 1,xl,...,xn are Q-
linearly dependent or not. From the remark at the end of §9.4 we
see that for almost all (xl,...,xn) ET{n , the conjecture 9.4.3
holds. It has been pointed out to me by D. Lazard that as soon as
the conjecture is satisfied by at least one generic point
(Xl,...,xn) aF{n , it is satisfied by all generic points. Combining
this result with 9.2.3, one gets.

Lemma 10.3.4. Assume F==ijf...+ZYn+l with YysereoY € -linearly

n

independent and

xlyl+...+xnyn s XyseeesXy being real

numbers. We assume that Xyy---o¥, are elther algebraic or else

Yn+1

algebraically independent. Then conjecture 10.3.3 holds.

It should not be difficult to remove the e 1in the generic case.

c¢) Comparison of Bombieri's criterion with Baker's method.

One can view Baker's method as a method dealing with meromorphic
functions of several variables satisfying differential equations
with algebraic coefficients (exactly the same as in Bombieri's
criterion 10.2.1). With this point of view the particular feature
of Baker's method is to consider the restriction of these functions
to a complex line Cu where u is a point in the space say (:n s
and the assumption is that these restrictions, i.e. the functions
of one variable

fl(tu),...,fn+l(tu)

are algebraically independent. There is not yet a general criterion

(the reason is that the order of derivation is decreasing along



10.11

the inductive argument) but a lot of examples, for instance
- in theorem #.1.1, one considers the functions
+ + +
23 Zn-1 Bozg*By2gte By 1201
Zgs & Theees € s €
and the complex line 1in (:n is determined by the point
> 3

u = (1, log Ayssves log a4

- in theorem 6.1.1 the functions are
zo,]a(zl),..,,aﬁzn-l),'P(BUZO+8121+...+GRZH)
and the point
u = (1, Ugses-s un—l) ECn 3
- in theorem 7.1.4, Masser uses 4 functions of 3 variables
Z

?1(21),'}(22), e 3, alzl+a222§81c(zl}+ﬁzﬁ(z2)+Yz3 .

restricted to the complex line €.u with

u = (wl, W 2im}) .
- in theorem 7.1.5, Laurent considers the 4 functions
o(z.-u) z1g(u)+z, VA
B i 1 Z 3
’&Q{zl), F(z{,2,) = ——— e , €
G(zl)c(u)
and
az, + bC(Zl) - <z, + dz3 .
with
u = (w , nu-wglu), 2iw) .

Further developments of the work of Brownawell and Masser on
the zeroces of entire tunctions could lead to a general criterion.
Notice that in the situation of §9.3, it is easy to give a criterion

(without differential equations).
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