A course on linear recurrent sequences African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Quizz (10')

A word on the alphabet with two letters $\{a, b\}$ is a finite sequence of letters, like aaba, abab.

The weight of the letter a is 1, the weight of the letter b is 2. The weight of a word is the sum of the weights of its letters.

For instance the word aaba has 3 letters a and 1 letter b, hence its weight is 3+2=5. The word abab has 2 letters a and 2 letters b, its weight is $2+2\times 2=6$.

Given a positive integer n, how many words of weight n are there?

Solution.

Denote by S_n be the set of words of weight n, by s_n the number of elements of S_n .

Next, denote by S'_n the subset the words in S_n which end with a, by s'_n the number of elements of S'_n .

Finally, denote by S_n'' the subset of the words in S_n which end with b, by S_n'' the number of elements of S_n'' .

It follows that S_n is the disjoint union of S'_n and S''_n and therefore

$$s_n = s_n' + s_n''.$$

 $S_1 = \{a\}, S_2 = \{aa, b\}, S_3 = \{aaa, ab, ba\}, S_4 = \{aaaa, aab, aba, baa, bb\},$ $S_5 = \{aaaaa, aaab, aaba, abaa, baaa, bba, abb, bab\}, \dots$

$$s_1 = 1, s_2 = 2, s_3 = 3, s_4 = 5, s_5 = 8, \dots$$

 $S_1'=\{a\},\,S_2'=\{aa\},\,S_3'=\{aaa,ba\},\,S_4'=\{aaaa,aba,baa\},$ $S_5' = \{aaaaa, aaba, abaa, baaa, bba\}, \dots$

$$s'_1 = 1, s'_2 = 1, s'_2 = 2, s'_4 = 3, s'_5 = 5, \dots$$

$$s'_1 = 1, s'_2 = 1, s'_3 = 2, s'_4 = 3, s'_5 = 5, \dots$$

 $S''_1 = \emptyset, S''_2 = \{b\}, S''_3 = \{ab\}, S''_4 = \{aab, bb\}, S''_5 = \{aaab, abb, bab\}, \dots$
 $s''_1 = 0, s''_2 = 1, s''_3 = 1, s''_4 = 2, s''_5 = 3, \dots$

For $n \geq 2$, the map $S_{n-1} \to S'_n$ which maps a word w to wa is bijective, so that $s'_n = s_{n-1}$.

For $n \geq 3$, the map $S_{n-2} \to S''_n$ which maps a word w to wb is also bijective, so that $s_n'' = s_{n-2}$

Hence $s_n = s_{n-1} + s_{n-2}$ for $n \ge 3$. Since $s_1 = 1$ and $s_2 = 2$, we deduce that $s_n = F_{n+1}$ for $n \ge 1$, where $(F_n)_{n \ge 0}$ is the Fibonacci sequence. We also have $s'_n = F_n$ and $s''_n = F_{n-1}$ for $n \ge 1$.

Comment. Compare with the slides

Reflections of a ray of light

Levels of energy of an electron of an atom of hydrogen Rhythmic patterns

of the course Linear recurrence sequences: part I.