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Let p, q, r be three multiplicatively independent positive ra-
tional numbers and u a positive real number such that the
three numbers pu, qu, ru are rational. Then u is also ratio-
nal. We prove this result by introducing a parameter L and
a square L × L matrix, the entries of which are functions
(ps1qs2rs3)(t0+t1u)x. The determinant ∆(x) of this matrix van-
ishes at a real point x , 0 if and only if u is rational. From the
hypotheses, it follows that ∆(1) is a rational number; one eas-
ily estimates a denominator of it. An upper bound for |∆(1)|
follows from the fact that the first L(L − 1)/2 Taylor coeffi-
cients of ∆(x) at the origin vanish.

This text is mainly an english translation by the author of his paper
published in French in the Revue de la Filière Mathématiques-RMS
http://www.rms-math.com with the title Le théorème des six expo-
nentielles restreint à l’irrationalité, RMS, avril 2021, 131ème année,
N.3, 2020-2021, 26-33.

Our goal is to give a complete elementary proof of the following
result:

Theorem. Let p, q, r be three positive rational numbers which
are multiplicatively independent, namely, the only relation paqbrc =

1 with integers a, b, c is for a = b = c = 0. Let u be a real number
such that pu, qu and ru are rational numbers. Then u is a rational
number.

Recall that for x > 0 and u ∈ R, xu = exp(u log x).

This statement is a special case of the six exponentials Theorem,
where the assumption that p, q, r and xu are rational is replaced
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with the assumption that they are algebraic (and u may be a com-
plex number). More information on this result from transcenden-
tal number theory is available in [KKT, Lan, Lau, R, W1, W2]
for instance.

From the fundamental Theorem of arithmetic, it follows that any
three distinct prime numbers are multiplicatively independent.
One easily checks that if u is a rational number and p a prime
number such that pu is rational, then u is an integer. Examples
with an irrational u and a prime number p with pu an integer n
are obtained with u = (log n)/(log p). We do not know whether
there exist an irrational u and two multiplicatively independent ra-
tional numbers p and q with pu and qu rational numbers: proving
that there is no such example is the four exponentials Conjecture
for irrationality, so far it is an open problem. Writing pu = r and
qu = s, we would get

u =
log r
log p

=
log s
log q

·

The problem is to prove that a 2 × 2 matrixlog p log q
log r log s


has a rank 2 when p, q, r, s are positive rational numbers with
multiplicatively independent p, q and multiplicatively indepen-
dent p, r.

A consequence of the Theorem is the following statement:

Corollary. If u is a positive real number such that xu is a rational
number for each positive rational number x, then u is an integer.

In his paper Transcendental numbers [H], Heini Halberstam quotes
the following special case of the above corollary:

If u is a positive real number such that xu is an inte-
ger for each positive integer x, then u is an integer.

According to Halberstam: This result appeared as a problem in
the 1972 Putnam Prize competition, and not one of more than
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2000 university student competitors gave a solution; the solu-
tion, though not hard, could well elude even a professional math-
ematician for several hours (or days). The reference to Putnam is
32nd Putnam 1971 question A6 https://prase.cz/kalva/putnam/
putn71.html. A proof of this special case, using the calculus of
finite differences, is given in [H] — see also [W1, Chapter I Exer-
cise 6, p. I-12 — I-13] and [KKT]. It might be interesting to find
a similar proof of the above corollary.

Here is the idea of the proof of the Theorem. Given that the six
numbers p, q, r, pu, qu and ru are rational. Then the three func-
tions of a real variable px, qx and rx take rational values at all
points of the form ξt = t0 + t1u with t = (t0, t1) ∈ Z2. For
s = (s1, s2, s3) ∈ Z3, the same is true for the function fs(x) =

(ps1qs2rs3)x. Select a sufficiently large integer N (we will make
this assumption explicit at the end of the proof). Set S = N2,
T = N3, L = N6, so that L = S 3 = T 2. The determinant 1

∆ = det
(

fs(ξt)
)

0≤s j<S
0≤ti<T

is a rational number. Let D be a common denominator of p, q, r,
pu, qu and ru. Since s j ≥ 0 and ti ≥ 0 are integers, the numbers

D6S T fs(ξt) = (Dp)s1t0(Dq)s2t0(Dr)s3t0(Dpu)s1t1(Dqu)s2t1(Dru)s3t1

are integers, hence D6LS T ∆ is a rational integer. We will produce
an upper bound for |∆|, in particular, for sufficiently large N, we
will check |∆| < D−6LS T , hence ∆ = 0. And we will show that the
condition ∆ = 0 implies that u is rational.

Let us start by proving this last claim. The condition ∆ = 0 means
that there are rational numbers as, not all of which are zero, such
that the function

F(x) =

S−1∑
s1=0

S−1∑
s2=0

S−1∑
s3=0

as fs(x)

satisfies
F(ξt) = 0 for 0 ≤ t0, t1 < T. (1)

1This determinant is well defined up to its sign, depending on the ordering
of the s and of the t.
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Since p, q, r are multiplicatively independent, the three num-
bers log p, log q, log r are Q–linearly independent. Using the next
lemma for

{w1, . . . ,wn} =
{
s1 log p + s2 log q + s3 log r | 0 ≤ s1, s2, s3 < S

}
with n = L, we deduce that the conditions (1) imply that the
numbers ξt are not all distinct, hence u is a rational number.

Lemma 1. Let w1, . . . ,wn be pairwise distinct real numbers and
a1, . . . , an real numbers, not all of which are zero. Then the num-
ber of real zeroes of the function

F(x) = a1ew1 x + · · · + anewn x

is ≤ n − 1.

Proof. We use the following result, known as Rolle Theorem
(1691)2: if a real function of a real variable of class C1 (con-
tinuously derivable) has at least m real zeroes, then its derivative
has at least m − 1 zeroes.

We prove Lemma 1 by induction on n. The statement is true for
n = 1: the function a1ew1 x has no zero. Assume that the result
holds for n − 1 for some n ≥ 2. Assume also, without loss of
generality, that a1, . . . , an−1 are not all zero. The derivative G(x)
of the function e−wn xF(x) can be written

G(x) = a1(w1 − wn)e(w1−wn)x + · · · + an−1(wn−1 − wn)e(wn−1−wn)x

with coefficients a1(w1−wn), . . . , an−1(wn−1−wn), not all of which
are zero, while in the exponent w1 − wn, . . . ,wn−1 − wn are pair-
wise distinct. From the inductive hypothesis, we deduce that G(x)
has at most n − 2 zeroes. From Rolle Theorem it follows that
e−wn xF(x), hence also F(x), has at most n − 1 zeroes. �

It remains only to estimate |∆| from above. The upper bound will
not use arithmetic assumptions: it holds also when the numbers

2Already stated by Bhāskarācārya (Bhāskara II, 1114 - 1185).
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p, q, r, pu, qu and ru are not assumed to be rational, only real
numbers.

We introduce the function

Ψ(x) = det
(

fs(ξt x)
)

0≤s j<S
0≤ti<T

,

so that ∆ = Ψ(1). We expand the determinant and write

Ψ(x) =
∑
σ∈SL

ε(σ)ewσx,

whereSL is the set with L! elements which are the bijective maps
σ : s→ (t0,σ(s), t1,σ(s)) from the set of s = (s1, s2, s3) (0 ≤ s j < S ,
j = 1, 2, 3) onto the set of t = (t0, t1), (0 ≤ ti < T, i = 1, 2), ε(σ)
is the signature of σ (depending on the order which was chosen
for the s and the t), and, for σ ∈ SL,

wσ =

S−1∑
s1=0

S−1∑
s2=0

S−1∑
s3=0

(s1 log p + s2 log q + s3 log r)(t0,σ(s) + t1,σ(s)u).

We will use the upper bound

|wσ| ≤ LS T (1 + u) log(pqr). (2)

We write the Taylor expansion at the origin of ψ:

Ψ(x) =
∑
m≥0

αmxm.

The next Lemma shows that

α0 = α1 = · · · = αM−1 = 0

with M = L(L − 1)/2.

Let us recall that an analytic function at 0 is the sum in a neigh-
bourhood of 0 of a convergent series: this series is the Taylor
expansion of the function at the origin.

Lemma 2. Let f1, . . . , fL be analytic functions at 0 and ξ1, . . . , ξL

be complex numbers. The Taylor expansion at the origin of the
function

F(x) = det
(

fλ(ξµx)
)
1≤λ,µ≤L

,
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say
F(x) =

∑
m≥0

αmxm,

satisfies
α0 = α1 = · · · = αM−1 = 0.

Proof. From the multilinearity of the determinant, it is sufficient
to prove this lemma when each fλ(x) is a monomial xnλ . If the
determinant

det
(
(ξµx)nλ

)
1≤λ,µ≤L

= xn1+n2+···+nL det
(
ξnλ
µ

)
1≤λ,µ≤L

is not zero, then n1, . . . , nL are pairwise distinct, hence

n1 + n2 + · · · + nL ≥ 0 + 1 + · · · + (L − 1) = M.

�

In order to prove the expected upper bound for |∆| , we introduce
an auxiliary parameter R > 1; we will choose R = e, the basis of
the Napierian logarithms, but any constant > 1 would do.

Lemma 3. Let w1, . . . ,wJ , a1, . . . , aJ be real numbers. If the Tay-
lor expansion at the origin of the function

F(x) =

J∑
j=1

a jew j x,

say
F(x) =

∑
m≥0

αmxm,

has
α0 = α1 = · · · = αM−1 = 0,

then

|F(1)| ≤ R−M
J∑

j=1

|a j|e|w j |R.
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Proof. We have

F(x) =

J∑
j=1

a j

∑
m≥0

wm
j

m!
xm =

∑
m≥0

J∑
j=1

a j

wm
j

m!
xm,

hence

αm =

J∑
j=1

a j

wm
j

m!

and

|αm| ≤

J∑
j=1

|a j|
|w j|

m

m!
·

Therefore

|F(1)| =

∣∣∣∣∣∣∣∑m≥M

αm

∣∣∣∣∣∣∣ ≤ ∑
m≥M

|αm| ≤ R−M
∑
m≥M

|αm|Rm

≤ R−M
∑
m≥M

J∑
j=1

|a j|
|w j|

m

m!
Rm ≤ R−M

J∑
j=1

|a j|e|w j |R.

�

Thanks to Lemma 2, we can use the upper bound given by Lemma
3 for the function Ψ with J = L! and a j ∈ {−1, 1}; since Ψ(1) = ∆,
we deduce from (2):

|∆| ≤ R−ML!(pqr)LS T (1+u)R.

It remains to check

L!(pqr)LS T (1+u)RD6LS T < RM (3)

for sufficiently large N. Recall the choice of parameters

L = N6, S = N2, T = N3, M =
1
2

L(L − 1).

One checks that the condition (3) is satisfied with R = e as soon
as

N > 12 log D + 2e(1 + u) log(pqr) + 1.
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Comments. Where does this determinant ∆ comes from? There
is a long history behind it. The transcendence proofs originate
in the proof by Hermite of the transcendence of the number e;
they have been developed since 1873 by many a mathematician,
including Siegel, Lang and Ramachandra, who are at the origin
of the six exponentials Theorem. The first occurence of this The-
orem is in a paper by Alaoglu and Erdős [AE] on Ramanujan
highly composite numbers, where they also study superabundant
and colossaly abundant numbers. They asked Siegel whether it
was true that the conditions that pu and qu are integers with p and
q distinct primes imply that u is an integer. Siegel replied that he
did not know how to prove such a result (which is still an open
problem nowadays), but that he knew how to get the conclusion
if one added ru, like in the Theorem.

[AE, p. 449] This question leads to the following
problem in Diophantine analysis. If p and q are dif-
ferent primes, is it true that px and qx are both ratio-
nal only if x is an integer?

[AE, p. 455] It is very likely that qx and px can not
be rational at the same time except if x is an inte-
ger. At present we cannot show this. Professor Siegel
has communicated to us the result that qx, rx and sx

cannot be simultaneously rational except if x is an
integer

The proofs by Lang and Ramachandra are given in [Lan] and [R].
These proofs involve auxiliary functions. To replace these func-
tions with the so–called interpolation determinant ∆ is an idea of
M. Laurent [Lau, § 6.1]. There is already a similar determinant
introduced by Cantor and Straus in their paper [CS] on a Theo-
rem of Dobrowolski dealing with a question of Lehmer. Further
references are given in [W1, W2].

The interested reader will compare this proof with the proof in
[KKT].
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