GENERAL ARTICLE

Six exponentials Theorem — irrationality

Michel Waldschmidt

Let p, g, r be three multiplicatively independent positive ra-
tional numbers and « a positive real number such that the
three numbers p“, ¢, r are rational. Then u is also ratio-
nal. We prove this result by introducing a parameter L and
a square L X L matrix, the entries of which are functions
(p*1g*2r)othwx - The determinant A(x) of this matrix van-
ishes at a real point x # O if and only if « is rational. From the
hypotheses, it follows that A(1) is a rational number; one eas-
ily estimates a denominator of it. An upper bound for |A(1))|
follows from the fact that the first L(L — 1)/2 Taylor coeffi-
cients of A(x) at the origin vanish.

This text is mainly an english translation by the author of his paper
published in French in the Revue de la Filiere Mathématiques-RMS
http://www.rms-math.com with the title Le théoréme des six expo-
nentielles restreint a Uirrationalité, RMS, avril 2021, 131éme année,
N.3, 2020-2021, 26-33.

Our goal is to give a complete elementary proof of the following
result:

Theorem. Let p, g, r be three positive rational numbers which
are multiplicatively independent, namely, the only relation p®q’r® =
1 with integers a, b, c is fora = b = ¢ = 0. Let u be a real number
such that p*, g"* and r* are rational numbers. Then u is a rational

number.

Recall that for x > 0 and u € R, x" = exp(u log x).

This statement is a special case of the six exponentials Theorem,
where the assumption that p, ¢, r and x" are rational is replaced
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with the assumption that they are algebraic (and # may be a com-
plex number). More information on this result from transcenden-
tal number theory is available in [KKT, Lan, Lau, R, W1, W2]
for instance.

From the fundamental Theorem of arithmetic, it follows that any
three distinct prime numbers are multiplicatively independent.
One easily checks that if u is a rational number and p a prime
number such that p” is rational, then u is an integer. Examples
with an irrational # and a prime number p with p* an integer n
are obtained with u = (logn)/(log p). We do not know whether
there exist an irrational u and two multiplicatively independent ra-
tional numbers p and g with p* and ¢" rational numbers: proving
that there is no such example is the four exponentials Conjecture
for irrationality, so far it is an open problem. Writing p* = r and
q" = s, we would get

logr logs
= —= ——:-
logp logg
The problem is to prove that a 2 X 2 matrix
logp loggqg
logr logs

has a rank 2 when p, g, r, s are positive rational numbers with
multiplicatively independent p,q and multiplicatively indepen-
dent p, r.

A consequence of the Theorem is the following statement:
Corollary. Ifu is a positive real number such that x" is a rational

number for each positive rational number x, then u is an integer.

In his paper Transcendental numbers [H], Heini Halberstam quotes
the following special case of the above corollary:

If u is a positive real number such that x* is an inte-
ger for each positive integer x, then u is an integer.

According to Halberstam: This result appeared as a problem in
the 1972 Putnam Prize competition, and not one of more than
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2000 university student competitors gave a solution; the solu-
tion, though not hard, could well elude even a professional math-
ematician for several hours (or days). The reference to Putnam is
32nd Putnam 1971 question A6 https://prase.cz/kalva/putnam/
putn71.html. A proof of this special case, using the calculus of
finite differences, is given in [H] — see also [W1, Chapter I Exer-
cise 6, p. I-12 — I-13] and [KKT]. It might be interesting to find
a similar proof of the above corollary.

Here is the idea of the proof of the Theorem. Given that the six
numbers p, g, r, p*, ¢* and r" are rational. Then the three func-
tions of a real variable p*, ¢* and r* take rational values at all
points of the form & = 1) + tju with t = (t,11) € Z?. For
§ = (81,52,53) € 73, the same is true for the function fs(0) =
(p*'g®2r3)*. Select a sufficiently large integer N (we will make
this assumption explicit at the end of the proof). Set S = N2,
T = N3, L=N®sothat L =53 = T2 The determinant !

A = det( £(£)) oz s

0<1;<T

is a rational number. Let D be a common denominator of p, g, r,
p", ¢" and r". Since s; > 0 and #; > O are integers, the numbers

DT f,(&) = (Dp)*"(Dg)*™(Dr)*** (Dp")*"" (Dg")**" (Dr")*"

are integers, hence D®ST A is a rational integer. We will produce
an upper bound for |A], in particular, for sufficiently large N, we
will check |A] < D™8E5T hence A = 0. And we will show that the
condition A = 0 implies that u is rational.

Let us start by proving this last claim. The condition A = 0 means
that there are rational numbers ay, not all of which are zero, such
that the function

S-185-158-1
F(X) = Z Z Zag g(x)
51=0 5,=0 53=0
satisfies
F(§£)=O for 0<1y,n <T. (1)

IThis determinant is well defined up to its sign, depending on the ordering
of the s and of the .
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Since p, ¢, r are multiplicatively independent, the three num-
bers log p, log g, log r are Q-linearly independent. Using the next
lemma for

Wi,...,wy} ={s1logp+s2logg+s3logr | 0<s1,52,83<S}

with n = L, we deduce that the conditions (1) imply that the
numbers & are not all distinct, hence u is a rational number.

Lemma 1. Let wy,...,w, be pairwise distinct real numbers and
ai,...,ay, real numbers, not all of which are zero. Then the num-
ber of real zeroes of the function

WpX

F(x)=a1e"* +---+a,e

is<n-1.

Proof. We use the following result, known as Rolle Theorem
(1691)2: if a real function of a real variable of class C' (con-
tinuously derivable) has at least m real zeroes, then its derivative
has at least m — 1 zeroes.

We prove Lemma 1 by induction on n. The statement is true for
n = 1: the function a;e"'* has no zero. Assume that the result
holds for n — 1 for some n > 2. Assume also, without loss of

generality, that ay, ..., a,—1 are not all zero. The derivative G(x)
of the function e™"*F(x) can be written

G(x) =ai(w - Wn)e(WI_Wn)x + a1 (Wt — Wn)e(wnil_wn)x

with coeflicients a;(w; —wy,), ..., d,—1(W,—1 —w,,), not all of which
are zero, while in the exponent wy — wy, ..., w,_1 — W, are pair-
wise distinct. From the inductive hypothesis, we deduce that G(x)
has at most n — 2 zeroes. From Rolle Theorem it follows that
e ""*F(x), hence also F(x), has at most n — 1 zeroes. m]

It remains only to estimate |A| from above. The upper bound will
not use arithmetic assumptions: it holds also when the numbers

% Already stated by Bhaskaracarya (Bhaskara II, 1114 - 1185).
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P, q, 1, p*, ¢* and r* are not assumed to be rational, only real
numbers.

We introduce the function
() = det{£(£0) sy
so that A = ¥(1). We expand the determinant and write
Y = > o),
€S

where Sy is the set with L! elements which are the bijective maps
0 1 8 = (to,0(s)> 1,0(s5)) from the set of s = (s1,52,53) (0 < 5; < S,
j=1,2,3)ontothe setof t = (tp,41), (0 < t; < T,i=1,2), e(0)
is the signature of o (depending on the order which was chosen
for the s and the ¢), and, for o € &,

S-15-15-1
Wo = Z Z Z(Sl log p + s2log g + s310g r)(10,0(5) + H,0(s)1)-

51=0 5,=0 53=0

We will use the upper bound
We| < LST(1 + u)log(pgr). 2)
We write the Taylor expansion at the origin of ¢:

Y(x) = Z amx".

m>0

The next Lemma shows that
aozc}{l :---:aM_l :0
with M = L(L — 1)/2.

Let us recall that an analytic function at O is the sum in a neigh-
bourhood of 0 of a convergent series: this series is the Taylor
expansion of the function at the origin.

Lemma 2. Let fi, ..., fi be analytic functions at 0 and &1, . .., &L
be complex numbers. The Taylor expansion at the origin of the
function

F(x) = det(fxg,lx))lwﬂ,
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say

F(x) = Z anx",

m>0
satisfies
ap=a;=---=ay-; =0.

Proof. From the multilinearity of the determinant, it is sufficient
to prove this lemma when each fj(x) is a monomial x**. If the

determinant
det( X n/l) = it det( nﬂ)
(&u) 1<Au<L H J1<au<L
is not zero, then ny, ..., ny are pairwise distinct, hence

np+ny+---+n,>20+14+---+(L-1)=M.

In order to prove the expected upper bound for |A| , we introduce
an auxiliary parameter R > 1; we will choose R = e, the basis of
the Napierian logarithms, but any constant > 1 would do.

Lemma 3. Letwy,...,wy, ai,...,ay be real numbers. If the Tay-
lor expansion at the origin of the function

J
F(x) = Z aje"’,
=1

say
F(x) = Z anx",
m>0
has
ay=ay=--=ay-1 =0,
then

J
F(DI<R™M S JajfeR.
j=1
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Proof. We have

w J n
J J
LETD WD AR ) yoi o
=1  m>0 """ m>0 j=1
hence
J m
_ Wi
=) a4
m!
=
and
Lo
ol < ) lajl—=
, m
J=1
Therefore
FDI={ ) am| < D lanl <B™M 3" Ja,lR"
m>M m=M m>M
<RM Y N lajl =5 R < R™M Y fajfeik,
m>M j=1 m: =1

Thanks to Lemma 2, we can use the upper bound given by Lemma
3 for the function ¥ with J = L! and a; € {1, 1}; since ¥(1) = A,
we deduce from (2):

Al < RMLI(pgr)ESTA+0R
It remains to check
L(pgr)STU+wR pOLST _ pM 3)
for sufficiently large N. Recall the choice of parameters
L=N° S§S=N’, T=N’, M= %L(L—l).

One checks that the condition (3) is satisfied with R = e as soon
as
N > 12log D + 2e(1 + u) log(pgr) + 1.
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Comments. Where does this determinant A comes from? There
is a long history behind it. The transcendence proofs originate
in the proof by Hermite of the transcendence of the number e;
they have been developed since 1873 by many a mathematician,
including Siegel, Lang and Ramachandra, who are at the origin
of the six exponentials Theorem. The first occurence of this The-
orem is in a paper by Alaoglu and Erdés [AE] on Ramanujan
highly composite numbers, where they also study superabundant
and colossaly abundant numbers. They asked Siegel whether it
was true that the conditions that p* and ¢" are integers with p and
q distinct primes imply that u is an integer. Siegel replied that he
did not know how to prove such a result (which is still an open
problem nowadays), but that he knew how to get the conclusion
if one added r“, like in the Theorem.

[AE, p. 449] This question leads to the following
problem in Diophantine analysis. If p and q are dif-
ferent primes, is it true that p* and q* are both ratio-
nal only if x is an integer?

[AE, p. 455] It is very likely that g* and p* can not
be rational at the same time except if x is an inte-
ger. At present we cannot show this. Professor Siegel
has communicated to us the result that q*, r* and s*
cannot be simultaneously rational except if x is an
integer

The proofs by Lang and Ramachandra are given in [Lan] and [R].
These proofs involve auxiliary functions. To replace these func-
tions with the so—called interpolation determinant A is an idea of
M. Laurent [Lau, § 6.1]. There is already a similar determinant
introduced by Cantor and Straus in their paper [CS] on a Theo-
rem of Dobrowolski dealing with a question of Lehmer. Further
references are given in [W1, W2].

The interested reader will compare this proof with the proof in

[KKT].
4\/\/\/\/\N RESONANCE | June 2021



GENERAL ARTICLE

Suggested Reading

[AE]

[CS]

[H]

L. AraocLu & P. Erpos - “On highly composite and similar numbers”, Trans.
Amer. Math. Soc. 56 (1944), p. 448—469.

DOl http://dx.doi.org/10.2307/1990319.

D. C. Cantor & E. G. STRAUS — “On a conjecture of D. H. Lehmer”, Acta Arith.
42 (1982/83), no. 1, p. 97-100, Correction, id. no. 3 p.327.

DOI http://dx.doi.org/10.4064/aa-42-1-97-100.

H. HaLBERSTAM — “Transcendental numbers”, Math. Gaz. 58 (1974), p. 276~
284,

DOI https://www.jstor.org/stable/3616099.

[KKT] K.SenTHIL KuMAR& VEEKESH KuMArR & R.THANGADURAL, “On a Problem of

[Lan]

[Lau]

[R]

[(Wi1]

[w2]

Alaoglu and Erdés”, Resonance (2018), 749-758.
https://www.ias.ac.in/article/fulltext/reso/023/07/0749-0758

S. Lang — Introduction to transcendental numbers, Addison-Wesley Publishing
Co., Reading, Mass.-London-Don Mills, Ont., 1966.

M. LAurenT - “Sur quelques résultats récents de transcendance”, Astérisque
(1991), no. 198-200, p. 209-230 (1992); Journées Arithmétiques, Luminy
1989.

https://smf.emath. fr/publications/sur-quelques-resultats-recents-de-transcendance.
K. RamacHANDRA — “Contributions to the theory of transcendental numbers.
L II”, Acta Arith. 14 (1967/68), 65-72 and 73-88.

DOI http://dx.doi.org/10.4064/aa-14-1-73-88.

M. WaLpscamt — Linear independence of logarithms of algebraic numbers,
IMS Report, vol. 116, Institute of Mathematical Sciences, Madras, 1992,
With an appendix by Michel Laurent.
https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/LIL.pdf.

— , Diophantine approximation on linear algebraic groups, Grundlehren der
Mathematischen Wissenschaften, vol. 326, Springer-Verlag, Berlin, 2000.
DOI http://dx.doi.org/10.1007/978-3-662-11569-5.

Address for correspondence

Michel Waldschmidt

Sorbonne Université, Faculté Sciences et Ingénierie

CNRS, Institut Mathématique de Jussieu Paris Rive Gauche, IMJ-PRG

F — 75005 Paris, France

E-mail: michel.waldschmidt@imj-prg.fr

URL: http://www.imj-prg.fr/~michel.waldschmidt

RESONANCE | June 2021 4\/\/\/\/\N



http://dx.doi.org/10.2307/1990319
http://dx.doi.org/10.4064/aa-42-1-97-100
https://www.jstor.org/stable/3616099
https://www.ias.ac.in/article/fulltext/reso/023/07/0749-0758
https://smf.emath.fr/publications/sur-quelques-resultats-recents-de-transcendance
http://dx.doi.org/10.4064/aa-14-1-73-88
https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/LIL.pdf
http://dx.doi.org/10.1007/978-3-662-11569-5
michel.waldschmidt@imj-prg.fr
http://www.imj-prg.fr/~michel.waldschmidt

