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We start with a short historical survey of the improvements of Liouville’s
inequality: in the lower bound∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d ≥ 3, the exponent d of q in the
denominator of the right hand side is replaced by κ with
• any κ > (d/2) + 1 by A. Thue (1909),
• 2
√
d by C.L. Siegel in 1921,

•
√

2d by Dyson and Gel’fond in 1947,
• any κ > 2 by K.F. Roth in 1955.
See [3] Course N◦4 §4.1.3.

Théorème 1 (A. Thue, C.L. Siegel, F. Dyson, K.F. Roth 1955). For any real
algebraic number α, for any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε

is finite.

An equivalent statement is that, for any real algebraic number α and for
any ε > 0, there exists q0 > 0 such that, for p/q ∈ Q with q ≥ q0, we have
|α− p/q| > q−2−ε.

We now explain that, if one restricts the denominators q of the rational
approximations p/q by requesting that their prime factors belong to a given
finite set, then the exponent 2 can be replaced by 1 (D. Ridout, 1957). See
([3] Course N◦4 §4.1.3 Th. 47).

Let S be a finite set of primes. A rational number is called an S–integer
if it can be written a/b where all prime factors of the denominator b belong



to S. The set of S–integers is the subring of Q generated by the elements
1/p with p ∈ S. We denote it by S−1Z. The group of units of S−1Z is
a multiplicative subgroup (S−1Z)× of Q×, its elements are the S–units. If
S = {p1, . . . , ps}, then

(S−1Z)× =
{
pk11 · · · pkss | (k1, . . . , ks) ∈ Zs

}
⊂ Q×

and
S−1Z =

{a
b
| a ∈ Z, b ∈ (S−1Z)×

}
⊂ Q.

A corollary to Ridout’s Theorem 2 below is the following:

Let S be a finite set of prime numbers. Let α be a real algebraic
number. For any ε > 0, the set of S–integers a/b such that |α −
a/b| < b−1−ε, is finite.

Actually, the statement by Ridout is more general (see for instance [1]
§2.1).

Théorème 2 (D. Ridout, 1957). Let α and β be two algebraic numbers with
(α, β) 6= (0, 0). For 1 ≤ i ≤ s, let αi and βi be two rational numbers with
(αi, βi) 6= (0, 0). Let ε > 0. Then the set of rational numbers p/q such that

q|qα− pβ|
s∏
i=1

|qαi − pβi|pi <
1

max{|p|, q}ε

is finite.

The previous corollary follows by taking β = 1, αi = 0 and βi = 1 for
1 ≤ i ≤ s: if q is a positive integer which is an S–unit, then

s∏
i=1

|q|pi =
1

q
·

We now state a special case of Schmidt’s Subspace Theorem (1972) to-
gether with its p-adic extension by H.P. Schlickewei (1976). Next we intro-
duce one of its many applications to exponential Diophantine equations.

For x a nonzero rational number, write the decomposition of x into prime
factors

x = ±
∏
p

pvp(x),



where p runs over the set of prime numbers and vp(x) ∈ Z (with only finitely
many vp(x) distinct from 0), and set

|x|p = p−vp(x).

The product formula is

|x|
∏
p

|x|p = 1

for all x ∈ Q× (see [2] §3.1.1 for the rational field case and §3.1.5 for algebraic
number fields).

For x = (x1, . . . , xm) ∈ Zm, define

|x| = max{|x1|, . . . , |xm|}.

Here is a simplified version of this fundamental result ([3] Course N◦4
§4.1.3 Th. 49; see also Theorem 2.3 of [1]).

Théorème 3 (Schmidt’s Subspace Theorem, simplified form). Let m ≥ 2
be a positive integer, S a finite set of prime numbers. Let L1, . . . , Lm be m
independent linear forms in m variables with algebraic coefficients. Further,
for each p ∈ S let L1,p, . . . , Lm,p be m independent linear forms in m variables
with rational coefficients. Let ε > 0. Then the set of x = (x1, . . . , xm) ∈ Zm
such that

|L1(x) · · ·Lm(x)|
∏
p∈S

|L1,p(x) · · ·Lm,p(x)|p ≤ |x|
−ε

is contained in the union of finitely many proper subspaces of Qm.

Thue–Siegel–Roth’s Theorem 1 follows from Theorem 3 by taking

S = ∅, m = 2, L1(x1, x2) = x1, L2(x1, x2) = αx1 − x2.

A Q-vector subspace of Q2 which is not {0} nor Q2 (that is, a proper subspace)
is generated by an element (q0, p0) ∈ Q2. There is one such subspace with
q0 = 0, namely Q × {0} generated by (1, 0), the other ones have q0 6= 0.
Mapping such a rational subspace to the rational number p0/q0 yields a 1 to
1 correspondence. Hence Theorem 3 says that there is only a finite set of
exceptions p/q in Thue–Siegel–Roth’s Theorem 1.

Ridout’s Theorem 2 is the special case n = 1 of Schmidt’s Subspace The-
orem 3. Indeed, a subset E of Z2 is contained in a finite union of hyperplanes



of Q2 if and only if the set of y/x ∈ Q, where (x, y) ranges over the set of
elements in E with x 6= 0, is finite. Hence Thue–Siegel–Roth’s Theorem 1 is
the special case (n = 1, S = ∅) of Theorem 3.

We derive a further consequence, dealing with exponential Diophantine
equations, of the special case of Schmidt’s Subspace Theorem 3 where the
linear forms L1, . . . , Lk also have rational coefficients. We start with an
exercise.

Exercise 1. Show that the only solutions of the equation 2a + 3b = 5c in
nonnegative integers a, b and c are given by

2 + 3 = 5, 22 + 1 = 5, 24 + 32 = 52.

The finiteness of the set of solutions of such an equation is a general fact:
we deduce from Ridout’s Theorem 2 the following statement:

Corollary 1. Let S = {p1, . . . , ps} be a finite set of prime numbers and let
n ≥ 2. Then the set of solutions of the equation x1 +x2 = 1 in S–units x1, x2
is finite.

Proof. Let (x1, x2) be a solution of the equation x1 + x2 = 1 in S–units.
Let y0 be the least common denominator of x1 and x2. Set y1 = y0x1 and
y2 = y0x2. Then y0, y1, y2 are relatively prime integers, they are S–units, and
y1 + y2 = y0. Introduce the three linear forms in two variables Y1, Y2

Λ1(Y1, Y2) = Y1, Λ2(Y1, Y2) = Y2, Λ0(Y1, Y2) = Y1 + Y2.

Notice that Λi(y1, y2) = yj for j = 0, 1, 2, and that any two linear forms
among Λ0,Λ1,Λ2 are linearly independent. Let k ∈ {0, 1, 2} be an index
such that max{|y0|, |y1|, |y2|} = |yk|, and let `,m be the two other indices, so
that {0, 1, 2} = {k, `,m}.

Since y0, y1, y2 are relatively prime rational integers, for j = 1, . . . , s,
we have max{|y0|pj , |y1|pj , |y2|pj} = 1; let kj ∈ {0, 1, 2} be an index such
that |ykj |pj = 1, and let `j,mj be the two other indices, so that {0, 1, 2} =
{kj, `j,mj}.

Consider the linear forms

L1 = Λ`, L2 = Λm, L1j = Λ`j , L2j = Λmj
(1 ≤ j ≤ s).

Notice that

L1(y1, y2)L2(y1, y2) = y`ym =
y0y1y2
yk

= ± y0y1y2
max{|y0|, |y1|, |y2|}

,



while
L1j(y1, y2)L2j(y1, y2) = y`jymj

=
y0y1y2
ykj

and
|L1j(y1, y2)L2j(y1, y2)|pj = |y0y1y2|pj .

From the product formula, using the fact that y0y1y2 is an S unit, one deduces

|y0y1y2|
s∏
j=1

|y0y1y2|pj = 1

Therefore

|L1(y1, y2)L2(y1, y2)|
s∏
j=1

|L1j(y1, y2)L2j(y1, y2)|pj =
1

max{|y0|, |y1|, |y2|}
·

From Ridout’s Theorem 2 with ε = 1, one deduces that the set of y1/y2 is
finite, and Corollary 1 follows.

It turns out that the result of Corollary 1 is effective: one can bound from
above the (numerators and denominators of the) solutions x1 and x2. The
proof rests on transcendence methods and lower bounds for linear combina-
tions of logarithms of algebraic numbers.

We now consider the more general equation

(1) X1 + · · ·+Xk = 1,

where k is a fixed positive integer and the values x1, . . . , xk taken by the
unknown X1, . . . , Xk are S–units in Q for a fixed given finite set S of prime
numbers. This equation has infinitely many solutions as soon as k ≥ 3 and
S is nonempty: for p ∈ S and a ∈ Z,

x1 = pa, x2 = −pa, x3 = 1, pa − pa + 1 = 1.

In view of this example, we will say that a solution (x1, . . . , xk) ∈ ((S−1Z)×)k

of equation (1) is non degenerate if no nontrivial subsum vanishes:

x1 + · · ·+ xk = 1



and ∑
i∈I

xi 6= 0 for any nonempty subset I of {1, . . . , k}.

Without giving all details, we explain how to deduce, from Schmidt’s Sub-
space Theorem 3, the following statement.

Corollary 2. Let S be a finite set of primes and k a positive integer. Then
the set of nondegenerate solutions (x1, . . . , xk) ∈ ((S−1Z)×)k of equation (1)
is finite.

Sketch of proof of Corollary 2 as a consequence of Theorem 3. The proof is
by induction on k. A first remark is that the statement of Corollary 2 is
equivalent to the next one (which only looks more general):

For any finite set S of primes, any positive integer k and any
rational numbers c1, . . . , ck, the set of (x1, . . . , xk) ∈ ((S−1Z)×)k

satisfying
c1x1 + · · ·+ ckxk = 1

and ∑
i∈I

cixi 6= 0 for any nonempty subset I of {1, . . . , k}

is finite.

This last statement is in fact a consequence of Corollary 2: we deduce it
by enlarging the set S of primes to a finite set S ′ ⊃ S, so that c1, . . . , ck are
S ′–units.

In the same vein, by reducing to the same denominator, one can phrase
Corollary 2 in an equivalent form by stating that the set of (y1, . . . , yk+1) ∈
(Z ∩ (S−1Z)×)k+1, satisfying

y1 + · · ·+ yk = yk+1 and gcd(y1, . . . , yk+1) = 1,

and ∑
i∈I

yi 6= 0 when I is a nonempty subset of {1, . . . , k},

is finite.
Starting with a solution y, using the assumption gcd(y1, . . . , yk+1) = 1,

we consider for each prime p ∈ S an index ip ∈ {1, . . . , k + 1} such that



|yip|p = 1. We also consider an index i0 such that |yi0| = max1≤i≤k+1 |yi|. In
other terms |yi0 | = |y|. The tuple

(
i0, (ip)p∈S

)
can take only finitely many

possible values – we fix one of them.
We introduce the following k + 1 linear forms Λj (1 ≤ j ≤ k + 1) in

Y1, . . . , Yk:

Λj = Yj for 1 ≤ j ≤ k and Λk+1 = Y1 + · · ·+ Yk.

Clearly, any k distinct linear forms among Λ1, . . . ,Λk+1 are linearly indepen-
dent. We shall use Theorem 3 with the following linear forms in the variables
Y1, . . . , Yk:

{L1, . . . , Lk} = {Λj | 1 ≤ j ≤ k + 1, j 6= i0}
and, for any prime p in S,

{L1p, . . . , Lkp} = {Λj | 1 ≤ j ≤ k + 1, j 6= ip}.

We write
k∏
i=1

|Li(y)| = 1

|y|

k+1∏
j=1

|Λj(y)|

and, for each prime p ∈ S,

k∏
i=1

|Lip(y)|p =
k+1∏
j=1

|Λj(y)|p.

For any prime p not in S and for j = 1, . . . , k + 1, we have |Λj(y)|p = 1.
From the product formula

|Λj(y)|
∏
p

|Λj(y)|p = 1

for 1 ≤ j ≤ k + 1, we deduce the estimate

|L1(y) · · ·Lk(y)|
∏
p∈S

|L1p(y) · · ·Lkp(y)|p =
1

|y|
,

which shows that we can apply Theorem 3 with ε = 1.
It follows that the solutions (y1, . . . , yk) we are considering belong to a

finite union of proper subspaces of Zk. We are reduced to consider a finite
set of Diophantine equations of the form

c1Y1 + · · ·+ ckYk = 0,



where c1, . . . , ck are fixed elements of Z, not all 0. We fix such an equation,
we fix an index j1 ∈ {1, . . . , k} with cj1 6= 0 and we write∑

1≤i≤k
i6=j1

−ci
cj1

yi
yj1

= 1.

We use the preliminary remark of this proof (we enlarge S if necessary so
that ci/cj1 becomes an S–unit for i = 1, . . . , k). We also select one such
subsum which is non degenerate. We deduce from the induction hypothesis
that there is an index j2, (1 ≤ j2 ≤ k, j2 6= j1) such that the set of yj2/yj1 is
finite. We now write the initial equation in the form∑

1≤i≤k
i 6=j1,i 6=j2

yi
yj1
− yk+1

yj1
= −1− yj2

yj1
·

The right hand side is a nonzero constant, since yj2 + yj1 6= 0 (here we use
the assumption on nonvanishing subsums for subsums of two terms only).
Again, we enlarge S if necessary, so that −1 − yj2/yj1 becomes an S–unit.
The left hand side is a sum of k − 1 terms which are S–units. This sum is
non degenerate (no nontrivial subsum vanishes): indeed it follows from the
assumption on nonvanishing subsums (here we need the full assumption, not
only for subsums of two terms) that no sum of the form∑

i∈I

yi nor
∑
i∈I

yi − yk+1 for ∅ 6= I ⊂ {1, . . . , k} \ {i1, i2}

can vanish. We obtain the final conclusion by using the induction hypothesis
once more.

The proof of Corollary 2 is noneffective: in general, there is no method
(yet) to derive an upper bound for the size of the solutions. But upper
bounds for the number of solutions are available. To give an upper bound
for the number of subspaces in the conclusion of Theorem 3 has been an open
problem from 1970 to 1980, which has been solve by W.M. Schmidt (see the
references to the works of Evertse and Schlickewei on the quantitative versions
of Schmidt’s Subspace Theorem in [1]).

The general case of Schmidt’s Subspace Theorem ([1], Theorem 2.5) in-
volves a finite set of places of a number field K, containing the places at



infinity, and instead of |x|−ε it involves H(x)−ε where

H(x) =
∏
v∈MK

max
1≤i≤k

|xi|v,

where MK is the set of places of K.
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