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Abstract

This lecture will be devoted to a survey of transcendental
number theory, including some history, the state of the art and
some of the main conjectures.

http://www.imj-prg.fr/~michel.waldschmidt/
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Extended abstract

An algebraic number is a complex number which is a root of a
polynomial with rational coefficients. For instance V2,

i = +/—1, the Golden Ratio (1 + 1/5)/2, the roots of unity
e/ the roots of the polynomial X — 6X + 3 are algebraic
numbers. A transcendental number is a complex number
which is not algebraic.
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Extended abstract (continued)

The existence of transcendental numbers was proved in 1844
by J. Liouville who gave explicit ad-hoc examples. The
transcendence of constants from analysis is harder; the first
result was achieved in 1873 by Ch. Hermite who proved the
transcendence of e. In 1882, the proof by F. Lindemann of the
transcendence of 7 gave the final (and negative) answer to the
Greek problem of squaring the circle. The transcendence of
2vV2 and e™, which was included in Hilbert's seventh problem in
1900, was proved by Gel'fond and Schneider in 1934. During
the last century, this theory has been extensively developed,
and these developments gave rise to a number of deep
applications. In spite of that, most questions are still open. In
this lecture we survey the state of the art on known results
and open problems.
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Rational, algebraic irrational, transcendental

Goal : decide upon the arithmetic nature of “given” numbers :
rational, algebraic irrational, transcendental.

Rational integers : Z = {0, £1,+2,43,...}.

Rational numbers :

Q={p/g | peZ,qeZ,q>0, ged(p,q) = 1}.

Algebraic number : root of a polynomial with rational
coefficients.

A transcendental number is complex number which is not
algebraic.
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Rational, algebraic irrational, transcendental

Goal : decide wether a “given” real number is rational,
algebraic irrational or else transcendental.

e Question : what means "given" 7

e Criteria for irrationality : development in a given basis (e.g. :
decimal expansion, binary expansion), continued fraction.

e Analytic formulae, limits, sums, integrals, infinite products,
any limiting process.
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Algebraic irrational numbers

Examples of algebraic irrational numbers :
e /2, i=+/—1, the Golden Ratio (1 +/5)/2,

e \/d for d € Z not the square of an integer (hence not the
square of a rational number),

e the roots of unity e>™%/® for a/b € Q,

e and, of course, any root of an irreducible polynomial with
rational coefficients of degree > 1.
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Rule and compass; squaring the circle

Construct a square with the same area as a given circle by
using only a finite number of steps with compass and
straightedge.

Any constructible length is an algebraic number, though not
every algebraic number is constructible
(for example /2 is not constructible).

Pierre Laurent Wantzel (1814 — 1848)

Recherches sur les moyens de reconnaitre si un probléme de
géométrie peut se résoudre avec la régle et le compas. Journal de
Mathématiques Pures et Appliquées 1 (2), (1837), 366-372.
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Quadrature of the circle

Marie Jacob

La quadrature du cercle
Un probléme

a la mesure des Lumiéres

Fayard (2006).
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Resolution of equations by radicals

The roots of the polynomial
X® —6X + 3 are algebraic
numbers, and are not
expressible by radicals.

Evariste Galois
(1811 — 1832)
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Gottfried Wilhelm Leibniz

Introduction of the concept of
the transcendental in
mathematics by Gottfried
Wilhelm Leibniz in 1684 :
“Nova methodus pro maximis
et minimis itemque
tangentibus, qua nec fractas,
nec irrationales quantitates
moratur, ..."

Breger, Herbert. Leibniz’ Einfiihrung des Transzendenten, 300
Jahre “Nova Methodus” von G. W. Leibniz (1684-1984),

p. 119-32. Franz Steiner Verlag (1986).

Serfati, Michel. Quadrature du cercle, fractions continues et autres
contes, Editions APMEP, Paris (1992).
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91 Irrationality

Given a basis b > 2, a real number z is rational if and only if
its expansion in basis b is ultimately periodic.

b = 2 : binary expansion.
b = 10 : decimal expansion.
For instance the decimal number

0.123456789012345678901234567890 . . .

is rational :

1234567890 137174210
©9999999999 1111111111
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First decimal digits of v/2

http://wims.unice.fr/wims/wims.cgi

1.41421356237309504880168872420969807856967187537694807317667973
799073247846210703885038753432764157273501384623091229702492483
605585073721264412149709993583141322266592750559275579995050115
278206057147010955997160597027453459686201472851741864088919860
955232923048430871432145083976260362799525140798968725339654633
180882964062061525835239505474575028775996172983557522033753185
701135437460340849884716038689997069900481503054402779031645424
782306849293691862158057846311159666871301301561856898723723528
850926486124949771542183342042856860601468247207714358548741556
570696776537202264854470158588016207584749226572260020855844665
214583988939443709265918003113882464681570826301005948587040031
864803421948972782906410450726368813137398552561173220402450912
277002269411275736272804957381089675040183698683684507257993647
290607629969413804756548237289971803268024744206292691248590521
810044598421505911202494413417285314781058036033710773091828693
1471017111168391658172688941975871658215212822951848847 .. .
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First binary dlglts of \/i http://wims.unice.fr/wims/wims.cgi

1.011010100000100111100110011001111111001110111100110010010000
10001011001011111011000100110110011011101010100101010111110100
11111000111010110111101100000101110101000100100111011101010000
10011001110110100010111101011001000010110000011001100111001100
10001010101001010111111001000001100000100001110101011100010100
01011000011101010001011000111111110011011111101110010000011110
11011001110010000111101110100101010000101111001000011100111000
11110110100101001111000000001001000011100110110001111011111101
00010011101101000110100100010000000101110100001110100001010101
11100011111010011100101001100000101100111000110000000010001101
11100001100110111101111001010101100011011110010010001000101101
00010000100010110001010010001100000101010111100011100100010111
10111110001001110001100111100011011010101101010001010001110001
01110110111111010011101110011001011001010100110001101000011001
10001111100111100100001001101111101010010111100010010000011111
00000110110111001011000001011101110101010100100101000001000100
110010000010000001100101001001010100000010011100101001010 .. .
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Computation of decimals of v/2
1542 decimals computed by hand by Horace Uhler in 1951
14 000 decimals computed in 1967
1000000 decimals in 1971

137 - 10? decimals computed by Yasumasa Kanada and
Daisuke Takahashi in 1997 with Hitachi SR2201 in 7 hours
and 31 minutes.

e Votivation : computation of 7.
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Square root of 2 on the web
The first decimal digits of \/2 are available on the web

]‘7 47 ]" 47 27 ]‘7 37 57 67 27 37 77 37 07 97 5’ O’ 47 87 8’ 07 17

6,8,872,4,2,0,96,9,8,0,7,8,5,6,9,6,7,1,8, ...
http://oeis.org/A002193

The On-Line Encyclopedia of Neil J. A. Sloane
Integer Sequences

http://oeis.org/
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Pythagoras of Samos ~ 569 BC — ~ 475 BC

a? +b* = = (a+b)* — 2ab.

\\\
s
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Irrationality in Greek antiquity

Platon, La République :
incommensurable lines,
irrational diagonals.

Theodorus of Cyrene
(about 370 BC.)
irrationality of \/g, cee V1T,

Theetetes : if an integer n > 0 is the square of a rational
number, then it is the square of an integer.
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Irrationality of v/2

Pythagoreas school
Hippasus of Metapontum (around 500 BC).

Sulba Sutras, Vedic civilization in India, ~800-500 BC.
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Emile Borel : 1950
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The sequence of decimal
digits of V2 should behave
like a random sequence, each
digit should be occurring with
the same frequency 1/10,
each sequence of 2 digits
occurring with the same
frequency 1/100 . ..
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Emile Borel (1871-1956)

» Les probabilités dénombrables et leurs applications
arithmétiques,
Palermo Rend. 27, 247-271 (1909).
Jahrbuch Database JFM 40.0283.01
http://www.emis.de/MATH/JFM/JFM.html

» Sur les chiffres décimaux de \/2 et divers problémes de

probabilités en chaines,
C. R. Acad. Sci., Paris 230, 591-593 (1950).
Zbl 0035.08302
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Complexity of the b—ary expansion of an irrational

algebraic real number

Let b > 2 be an integer.

e E£. Borel (1909 and 1950) : the b—ary expansion of an
algebraic irrational number should satisfy some of the laws
shared by almost all numbers (with respect to Lebesgue’s
measure).

e Remark : no number satisfies all the laws which are shared
by all numbers outside a set of measure zero, because the
intersection of all these sets of full measure is empty !

R\ {z} =0.

zeR

e More precise statements by B. Adamczewski and
Y. Bugeaud.
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Conjecture of Emile Borel

Conjecture (E. Borel). Let = be an irrational algebraic real
number, b > 3 a positive integer and a an integer in the range
0 <a <b-—1. Then the digit a occurs at least once in the
b—ary expansion of x.

Corollary. Each given sequence of digits should occur
infinitely often in the b—ary expansion of any real irrational
algebraic number.

(consider powers of b).

e An irrational number with a regular expansion in some basis
b should be transcendental.

23 /104



The state of the art

There is no explicitly known example of a triple (b, a, z), where
b > 3 is an integer, a is a digit in {0,...,b— 1} and z is an
algebraic irrational number, for which one can claim that the
digit a occurs infinitely often in the b—ary expansion of x.

A stronger conjecture, also due to Borel, is that algebraic
irrational real numbers are normal : each sequence of n digits
in basis b should occur with the frequency 1/b", for all b and
all n.
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What is known on the decimal expansion of /27

The sequence of digits (in any basis) of v/2 is not ultimately
periodic

Among the decimal digits
{07 17 27 37 47 57 67 77 87 9}7
at least two of them occur infinitely often. Almost nothing

else is known.
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Complexity of the expansion in basis b of a real
irrational algebraic number

A

Theorem (B. Adamczewski, Y. Bugeaud 2005 ; conjecture of
A. Cobham 1968).

If the sequence of digits of a real number x is produced by a
finite automaton, then x is either rational or else

transcendental.
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Finite automata
The Prouhet — Thue — Morse sequence : A010060 OEIS

(tn)n>0 = (01101001100101101001011001101001 .. .)

Write the number n in binary. 0

If the number of ones in this . . .
binary expansion is odd then @.@
t, =1, if even then t, = 0.

Fixed point of the morphism 0 — 01, 1 — 10.

Start with 0 and successively append the Boolean complement
of the sequence obtained thus far.

to = O, to, = tna t2n+1 =1~ 128
Sequence without cubes X X X.
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§2 Irrationality of transcendental numbers

e The number ¢
e The number 7

e Open problems
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Introductio in analysin infinitorum

Leonhard Euler (1737)
(1707 - 1783)

Introductio in analysin infinitorum

1
e—=2+

Continued fraction of e :

1

1+ 1

2+

1
S, L+ i
e Is Irrational. 1+

1
4+ —
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Joseph Fourier

Fourier (1815) : proof by means of the series expansion

_ 1 1 1 1 1
e = +ﬂ+§+a+"'+m+7"N

with ry > 0 and Nlry — 0 as N — +o0.

Course of analysis at the Ecole
Polytechnique Paris, 1815.
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Variant of Fourier's proof : e~ ! is irrational

C.L. Siegel : Alternating series

For odd N,
1,1 L1 1+1 1
12l NS TP MRS
oy g1 Oy 1 ay € Z
NI N (N Y

ay < Nle7! < ay + 1.

Hence Nle™! is not an integer.
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Irrationality of 7

Aryabhata, born 476 AD : 7 ~ 3.1416.

Nilakantha Somayaji, born 1444 AD : Why then has an
approximate value been mentioned here leaving behind the
actual value ? Because it (exact value) cannot be expressed.

K. Ramasubramanian, The Notion of Proof in Indian Science,
13th World Sanskrit Conference, 2006.
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Irrationality of 7

Johann Heinrich Lambert (1728 — 1777)
Mémoire sur quelques propriétés
remarquables des quantités transcendantes
circulaires et logarithmiques,

Mémoires de |I'Académie des Sciences

de Berlin, 17 (1761), p. 265-322;

lu en 1767 ; Math. Werke, t. Il.

tan(v) is irrational when v # 0 is rational.
As a consequence, T is irrational, since tan(mw/4) = 1.
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Lambert and Frederick Il, King of Prussia

— Que savez vous,
Lambert?

— Tout, Sire.

— Et de qui le
tenez—vous ?

— De moi-méme!
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Known and unknown transcendence results

Known :
e, m, log2, e‘/i, e’ 2‘/5, ['(1/4).

Not known :

e+, em, logm, 7¢ I'(1/5), ¢(3), Euler constant

Why is €™ known to be transcendental while 7€ is not known

to be irrational ?
Answer : e™ = (—1)7".
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Catalan’s constant

Is Catalan’s constant

S
= (2n + 1)2
=0.9159655941772190150...

an irrational number?

36 /104



Catalan’s constant, Dirichlet and Kronecker

Catalan’s constant is the value at s = 2 of the Dirichlet
L—function L(s,y_4) associated with the Kronecker character

0 if n is even,
X_4(n) = (E) =<1 ifn=1 (mod 4) ,
-1 ifn=-1 (mod4).

Johann Peter Gustav Lejeune Dirichlet Leopold Kronecker
1805 — 1859 1823 - 1891
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Catalan’s constant, Dedekind and Riemann

The Dirichlet L—function L(s, x_4) associated with the
Kronecker character x_4 is the quotient of the Dedekind zeta
function of Q(7) and the Riemann zeta function :

Cqi(s) = L(s, x-4)((s)

Julius Wilhelm Richard Georg Friedrich Bernhard
Dedekind Riemann
1831 - 1916 1826 — 1866 38/104



Riemann zeta function

The function

1
C(s) =D, —
n>1 n
was studied by Euler (1707- 1783)
for integer values of s

and by Riemann (1859) for complex values of s.

Euler : for any even integer value of s > 2, the number ((s) is
a rational multiple of 7*.

Examples : ((2) = 72/6, ((4) = ©*/90, ((6) = °/945,
C(8) = 78/9450 - -

Coefficients : Bernoulli numbers.
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Riemann zeta function

APERY'S CONSTANT c

The number

1
¢(3) = Z 5= 1.202 056 903 159 594 285 399 738 161 511 . ..

n>1

is irrational (Apéry 1978).
Recall that ((s)/m* is rational for any even value of s > 2.

Open question : Is the number ((3)/7? irrational ?
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Riemann zeta function

Is the number

1
¢(b) = Z 5= 1.036 927755 143 369 926 331 365 486 457 . . .

n>1

irrational ?

T. Rivoal (2000) : infinitely many ((2n + 1) are irrational.
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Infinitely many odd zeta values are irrational

Tanguy Rivoal (2000)

Let € > 0. For any sufficiently
large odd integer a, the
dimension of the Q—vector
space spanned by the numbers

1, ¢(3), ¢(5), -+~ ¢(a) is at

least

1—e¢
—— loga.
1+ log?2
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Euler-Mascheroni constant .

Lorenzo Mascheroni

Euler's Constant is (1750 — 1800)

. 1 1 1
y=lm |1+ -+5++——logn

= 0.577215664 901 532 860 606 512090 082. . .

Is it a rational number?
= /1 1 1 1
pry _—— 1 —_— = o0 _— — (1
=3 (g (1g)) = [ (G- 5) o
// (1 — z)dady
(1 —zy) loga:y)
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Euler's constant

Recent work by J. Sondow inspired by the work of F. Beukers
on Apéry's proof.

F. Beukers

Jonathan Sondow

http://home.earthlink.net/~jsondow/
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Jonathan Sondow http://home.earthlink.net/~jsondow/

k
/1 1
— i -

1 1, 2
,y:/oo F(’ )
12U

t+1) \3,

DQAC
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Euler Gamma function

Is the number

I'(1/5) = 4.590 843 711 998 803 053 204 758 275 929 152 ...

irrational ?
~ AN dt
r — a7 1 (1 _) z/n:/oo —tyz
(2) =e 7%z n”l —I—n e i e ;

Here is the set of rational values € (0, 1) for which the
answer is known (and, for these arguments, the Gamma value
['(r) is a transcendental number) :

re{eirra e e
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Georg Cantor (1845 - 1918)

The set of algebraic numbers
is countable, not the set of
real (or complex) numbers.

Cantor (1874 and 1891).

D¢
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Henri Léon Lebesgue (1875 — 1941)

Almost all numbers for
Lebesgue measure are
transcendental numbers.
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Most numbers are transcendental

Meta conjecture : any number Goro Shimura
given by some kind of limit,
which is not obviously rational
(resp. algebraic), is irrational
(resp. transcendental).
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Special values of hypergeometric series

Jirgen Wolfart

Frits Beukers

PANE
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Sum of values of a rational function

Work by S.D. Adhikari, N. Saradha, T.N. Shorey and
R. Tijdeman (2001),

Let P and  be non-zero polynomials having rational
coefficients and deg () > 2 + deg P. Consider

P(n).
2. Q0
Q(n)#0

Robert Tijdeman Sukumar Das Adhikari N. Saradha
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Telescoping series

Examples

o0

— 1 1 3
P S

n=1 n=0

i L NS SUNNE S B
An+1 4n+2 4n+3 4dn+4/)

n=0

i L3 1 y_5
5n+2 5n+7 5n—3) 6

n=0
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Transcendental values

— log2
24 (n+ 1 2n—|—2) 8%
n:1n2_6’

; n+1)( 2n—|—1)(4n—|—1)

are transcendental.

_’/T
3

53/
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Transcendental values

o0

1

— (6n 4 1)(6n + 2)(6n + 3)(6n + 4)(6n + 5)(6n + 6)

n

= 330 (192l0g 2 — 81log3 - 77V3)

oo _1)n 9
> 2 0972020054982
n e~ T

11 -
3 :§+E.e+—e_7r:2.0766740474...
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Leonardo Pisano (Fibonacci)

The Fibonacci sequence Leonardo Pisano (Fibonacci)

0,1, 1,2, 3,5, 8, 13, 21,

34, 55, 89, 144, 233...
is defined by

FOIO, Flzl,

Fn:Fn_1+Fn_2 (TLZZ)
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Encyclopedia of integer sequences (again)

0,1, 1,2 3 5 8 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, . ..

The Fibonacci sequence is available Neil J. A. Sloane
online

The On-Line Encyclopedia
of Integer Sequences

http://oeis.org/A000045
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Series involving Fibonacci numbers

The number

is rational, while

n

1-5

HZ:O Fon 2 ; F Fn+1
and

SRR
— Fopg+1 2

are irrational algebraic numbers.

2
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Series involving Fibonacci numbers

The numbers

NE

=1 =1
anf 1F_nzi' ZFG'

n=1

S
Il

;F?n—l, ; Fn2 ' ;FQTZ,
- 1 =1
; Fon_1+ Fonyy ; Faniq

are all transcendental
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Series involving Fibonacci numbers

Each of the numbers

F.Fy---F,

is irrational, but it is not known whether they are algebraic or
transcendental.

The first challenge here is to formulate a conjectural statement
which would give a satisfactory description of the situation.
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The Fibonacci zeta function

For Re(s) > 0,

)= 5
n>1 n

Cr(2), Cr(4), (r(6) are

algebraically independent.

lekata Shiokawa, Carsten
Elsner and Shun Shimomura

(2006) lekata Shiokawa
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93 Transcendental numbers

e Liouville (1844)

e Hermite (1873)

e Lindemann (1882)

e Hilbert's Problem 7th (1900)
e Gel'fond—Schneider (1934)

e Baker (1968)

e Nesterenko (1995)
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Existence of transcendental numbers (1844)

J. Liouville (1809 - 1882)

gave the first examples of
transcendental numbers.
For instance

1
Z o 0.110001 0000000 ..

n>1

is a transcendental number.
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Charles Hermite and Ferdinand Lindemann

Hermite (1873) : Lindemann (1882) :
Transcendence of e Transcendence of 7
e =2.7T18281 8284 . .. m =3.1415926535 ...
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Hermite—Lindemann Theorem

For any non-zero complex number z, one at least of the two
numbers z and e is transcendental.

Corollaries : Transcendence of log o and of € for a and 3
non-zero algebraic complex numbers, provided log o # 0.
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Transcendental functions

A complex function is called transcendental if it is
transcendental over the field C(z), which means that the
functions z and f(z) are algebraically independent : if

P € C[X,Y] is a non-zero polynomial, then the function
P(z, f(z)) is not 0.

Exercise. An entire function (analytic in C) is transcendental if
and only if it is not a polynomial.

Example. The transcendental entire function e* takes an
algebraic value at an algebraic argument z only for z = 0.
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Weierstrass question

Is it true that a transcendental
entire function f takes usually
transcendental values at algebraic
arguments ?

Examples : for f(z) = e*, there is a single exceptional point
« algebraic with e* also algebraic, namely a = 0.

For f(z) = e""*) where P € Z][z] is a non—constant
polynomial, there are finitely many exceptional points «,
namely the roots of P.

The exceptional set of e* + e!** is empty
(Lindemann—Weierstrass).

The exceptional set of functions like 2% or ¢™* is Q, (Gel'fond
and Schneider).
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Exceptional sets

Answers by Weierstrass (letter to Strauss in 1886), Strauss,
Stackel, Faber, van der Poorten, Gramain. ..

If S is a countable subset of C and T is a dense subset of C,
there exist transcendental entire functions f mapping S into
T, as well as all its derivatives.

Any set of algebraic numbers is the exceptional set of some
transcendental entire function.
Also multiplicities can be included.

van der Poorten : there are transcendental entire functions f
such that D* f(a) € Q(«) for all k > 0 and all algebraic c.
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Integer valued entire functions

An integer valued entire function is a function f, which is
analytic in C, and maps N into Z.

Example : 2% is an integer valued entire function, not a
polynomial.

Question : Are there integer valued entire function growing
slower than 2% without being a polynomial 7

Let f be a transcendental entire function in C. For R > 0 set

|flr = sup |f(2)]

|z|=R
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Integer valued entire functions

G. Pdlya (1914) :

if f is not a polynomial

and f(n) € Z forn € Z>,, then
limsup 2~ %|f|g > 1.

R—o0

Further works on this topic by G.H. Hardy, G. Pélya, D. Sato,
E.G. Straus, A. Selberg, Ch. Pisot, F. Carlson, F. Gross,. ..

69 /104



Integer valued entire function on Z|i]

A.O. Gel'fond (1929) : growth of entire functions mapping the
Gaussian integers into themselves.
Newton interpolation series at the points in Z[i].

An entire function f which is not a polynomial and satisfies
f(a+ ib) € Z[i] for all a + ib € Z[i] satisfies

1
limsupﬁlog|f|3 > .

R—o0c0

F. Gramain (1981) : 6 = 7/(2¢) = 0.5778636748. ..
This is best possible : D.W. Masser (1980).
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Transcendence of €™

A.O. Gel'fond (1929).

e" = 23.140 692632 779 269 005 729 086 367 . ..

is rational, then the function e™ takes values in Q(7) when
the argument z is in Z[i].

Expand €™ into an interpolation series at the Gaussian
integers.

71 /104



Hilbert's Problems

August 8, 1900

David Hilbert (1862 - 1943)

Second International Congress
of Mathematicians in Paris.

Twin primes,
Goldbach's Conjecture,
Riemann Hypothesis

Transcendence of ¢™ and 2V?2
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A.O. Gel'fond and Th. Schneider

Solution of Hilbert's seventh problem (1934) : Transcendence
of a” and of (log o)/ (log ay) for algebraic o, 3, oy and cy.
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Transcendence of o’ and log a1/ log avs : examples

The following numbers are transcendental :

V2 — 9665144 1426 . . .

g2 _ 6309207535 .
log 3
e" =23.1406926327. .. (e" = (-1)7%

e™V103 — 262 537 412 640 768 743.999 999 999 999 25. ..

74 /104



e™ = (—1)""

Example : Transcendence of the number

e™V163 — 9262 537 412 640 768 743.999 999 999 999 2. . ..

Remark. For

1 +1v163 it —7/163
-y o 1T =e

T

we have j(7) = —640 320° and

1
‘j(T) — — — T44| < 10712

q
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Beta values : Th. Schneider 1948

Euler Gamma and Beta functions

B(a,b) = /133“1(1 —z)" da.
0
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Algebraic independence : A.O. Gel'fond 1948

Tge two numbers 2V2 and
2V4 are algebraically
independent.

More generally, if avis an

algebraic number, a # 0,

a # 1 and if 3 is an algebraic

number of degree d > 3, then

two at least of the numbers
ozﬁ, 0552 aﬁdfl

g eee g

are algebraically independent.
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Alan Baker 1968

Transcendence of numbers
like

prlogoy + -+ -+ B, log
or

eﬁoalﬂl . ,@151

for algebraic ;'s and f3;'s.

Example (Siegel) :

dx 1 T
1 ~— (1o 2+—>=0.835648848...
/Ol—l—a:3 3( : V3

is transcendental.
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Gregory V. Chudnovsky

G.V. Chudnovsky (1976)
Algebraic independence of the
numbers 7 and I'(1/4).

Also : algebraic independence
of the numbers 7 and

r(1/3).

Corollaries : Transcendence of I'(1/4) = 3.6256099082. ..
and T(1/3) = 2.678 9385347 . ...
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Yuri V. Nesterenko

Yu.V.Nesterenko (1996)
Algebraic independence of
['(1/4), = and €.

Also : Algebraic
independence of

['(1/3), m and e™3.

Corollary : The numbers m = 3.1415926535 ... and
e =23.140692632 7. .. are algebraically independent.

Transcendence of values of Dirichlet's L—functions :
Sanoli Gun, Ram Murty and Purusottam Rath (2009).
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Eisenstein series, modular functions,

Es(q)=1-— 24201(k;)q2k,
k=1
Fula) = 1420 os(W)™,  oufn) = "
k=1 d|n
Eg(q) =1—504  o5(k)g™,
k=1
Ramanujan notation : P = F,, () = E4, R = E§.

Yu.V.Nesterenko (1996) : For 0 < |g| < 1, at least three of the
four numbers ¢, P(q), Q(q), R(q) are algebraically
independent.
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E. Grosswald (1976)

Fk(z) _ f: f: n—k827rimnz.

m=1 n=1
For k odd > 3,

o0

Fk(z) = Za_k(n)e%im = _g(k) - Z m

n=1
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Lambert type series

= 1 T3
¢(3)+ 2; n3(e2m — 1) 180

For k > 0, one at least of the two numbers

o0

1
<(4k + 3)7 Z nAk+3 (627rn _ 1)

n=1

is transcendental.
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Eichler integrals

_ 27z .

q=e
Er(2) = ) _oka(n)e®™, oy = =7
n=1

Eichler integrals

S. Gun, R. Murty, P. Rath (2011) : for k£ a non negative
integer, with at most 2k + 5 exceptions, the number

Fapi1(a) — &* Fopr(—1/a)

is transcendental for every algebraic « in the upper half plane.
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Purusottam Rath, Ram Murty, Sanoli Gun

S. Gun, R. Murty, P. Rath, Transcendental values of certain
Eichler integrals, Bull. London Math. Soc. 43 (2011),
939-952.

R. Murty, C. Smyth, R. Wang, Zeroes of Ramanujan
polynomials, J. Ramanujan Math. Soc. 26 (2011), 107-125.
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WeierstraB sigma function

Let Q) = Zw, + Zw- be a lattice in C. The canonical product
attached to € is the WeierstralB3 sigma function

v 2 2
0(z) =0q(z) ==z II (1 w)e :
we\{0}

The number
ozi(1/2) = 25/47/ 2™/ (1/4) 2

is transcendental.
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§4 : Conjectures
Borel 1909, 1950
Schanuel 1964
Grothendieck 1960's
Rohrlich and Lang 1970’s
André 1990's

Kontsevich and Zagier 2001.
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Periods : Maxime Kontsevich and Don Zagier

Periods,
Mathematics
unlimited—2001
and beyond,
Springer 2001,
771-808.

A period is a complex number whose real and imaginary parts
are values of absolutely convergent integrals of rational
functions with rational coefficients, over domains in R" given
by polynomial inequalities with rational coefficients.
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The number

Basic example of a period :

ez+27r1 — ez

d
omi = / &
|z]=1 ?

1
T = // dxdy —2/ V1 —22dx
z2+y2<1 -1
! dz

_/OO dz
,1\/1—1‘2 N ,OO]_—.I’Q
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Further examples of periods

V2 = dx

2x2<1

and all algebraic numbers.

d
log 2 :/ &
l<z<2 L

and all logarithms of algebraic numbers.

™= / dxdy,
x2492<1

A product of periods is a period (subalgebra of C), but 1/7 is
expected not to be a period.
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Numbers which are not periods

Problem (Kontsevich—Zagier) : To produce an explicit example
of a number which is not a period.

Several levels :
analog of Cantor : the set of periods is countable.

Hence there are real and complex numbers which are not
periods (“most” of them).
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Numbers which are not periods
analog of Liouville

Find a property which should be satisfied by all periods, and
construct a number which does not satisfies that property.

Masahiko Yoshinaga, Periods and elementary real numbers
arXiv:0805.0349

Compares the periods with hierarchy of real numbers induced
from computational complexities.

In particular, he proves that periods can be effectively
approximated by elementary rational Cauchy sequences.

As an application, he exhibits a computable real number which
is not a period.
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http://arxiv.org/abs/0805.0349

Numbers which are not periods

analog of Hermite
Prove that given numbers are not periods

Candidates : 1/, e, Euler constant.
M. Kontsevich : exponential periods

“The last chapter, which is at a more advanced level and also more

speculative than the rest of the text, is by the first author only.”
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Relations among periods

Additivity
(in the integrand and in the domain of integration)

/(f()+g dx_/f d:c+/ o(z)de,
/f dx—/acf(:c)dx—i—/cbf(:c)dx

Change of variables :
if y = f(x) is an invertible change of variables, then

f()
/ Fly)dy = / VF(f(2)) f (2)de.
f

(a) a
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Relations among periods (continued)

Newton—Leibniz—Stokes Formula

/ ' (a)de = F(b) — f(a).
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Conjecture of Kontsevich and Zagier

A widely-held belief, based on a
judicious combination

of experience, analogy,

and wishful thinking,

is the following

Conjecture (Kontsevich-Zagier). If a period has two integral
representations, then one can pass from one formula to
another by using only rules[1], [2], [3] in which all functions
and domains of integration are algebraic with algebraic
coefficients.
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Conjecture of Kontsevich and Zagier (continued)

In other words, we do not expect any miraculous
coincidence of two integrals of algebraic functions
which will not be possible to prove using three simple
rules.

This conjecture, which is similar in spirit to the
Hodge conjecture, is one of the central conjectures
about algebraic independence and transcendental
numbers, and is related to many of the results and
ideas of modern arithmetic algebraic geometry and
the theory of motives.

Advice : if you wish to prove a number is transcendental, first
prove it is a period.
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Conjectures by S. Schanuel and A. Grothendieck

e Schanuel : ifxy,...,x, are Q-linearly independent complex
numbers, then n at least of the 2n numbers x+, ..., x,,
e ...,e" are algebraically independent.

e Periods conjecture by Grothendieck : Dimension of the
Mumford—Tate group of a smooth projective variety.
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Consequences of Schanuel's Conjecture

Kumar Murty N. Saradha

Purusottam Rath, Ram Murty, Sanoli Gun
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Ram and Kumar Murty (2009)

Kumar Murty

Raml\/lurty

il

Transcendental values of class group L—functions.
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Motives

Y. André : generalization of
Grothendieck's conjecture to
motives.

Case of 1-motives :
Elliptico-Toric Conjecture of
C. Bertolin.
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Francis Brown

arXiv:1412.6508 Irrationality proofs for zeta values, moduli
spaces and dinner parties

Date : Fri, 19 Dec 2014 20 :08 :31 GMT (50kb)

A simple geometric construction on the moduli spaces M, ,, of
curves of genus 0 with n ordered marked points is described
which gives a common framework for many irrationality proofs
for zeta values. This construction yields Apéry's
approximations to ((2) and ((3), and for larger n, an infinite
family of small linear forms in multiple zeta values with an
interesting algebraic structure. It also contains a generalisation
of the linear forms used by Ball and Rivoal to prove that
infinitely many odd zeta values are irrational.

102 /104


http://arxiv.org/abs/1412.6508

Francis Brown

For k, s1,..., s, positive integers with s; > 2, we set
s=(s1,...,5) and

1
C(s) = Z T

ny>ng>-->np>1

The Q-vector space 3 spanned by the numbers ((s) is also a
Q-algebra. For n > 2, denote by 3,, the Q-subspace of 3
spanned by the real numbers ((s) where s has weight

S1+ -+ s =n.

The numbers ((s1,. .., Sk),
$1 -+ -+ s =n, where each
s; is 2 or 3, span 3, over Q.
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