
                 

Algebraic Dynamics and Transcendental
Numbers

Michel Waldschmidt1
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Abstract. A first example of a connection between transcendental numbers and
complex dynamics is the following. Let p and q be polynomials with complex co-
efficients of the same degree. A classical result of Böttcher states that p and q are
locally conjugates in a neighborhood of∞: there exists a function f , conformal in a
neighborhood of infinity, such that f(p(z)) = q(f(z)). Under suitable assumptions,
f is a transcendental function which takes transcendental values at algebraic points.
A consequence is that the conformal map (Douady-Hubbard) from the exterior of
the Mandelbrot set onto the exterior of the unit disk takes transcendental values
at algebraic points. The underlying transcendence method deals with the values of
solutions of certain functional equations.

A quite different interplay between diophantine approximation and algebraic
dynamics arises from the interpretation of the height of algebraic numbers in terms
of the entropy of algebraic dynamical systems.

Finally we say a few words on the work of J.H. Silverman on diophantine ge-
ometry and canonical heights including arithmetic properties of the Hénon map.

1 Transcendental Values of Böttcher Functions

For any complex number c ∈ C, define the polynomial pc ∈ C[z] by pc(z) =
z2 + c. For n ≥ 1, let pnc be the n-th iterate of pc:

p1
c(z) = pc(z) = z2 + c, p2

c(z) = pc(z
2 + c) = (z2 + c)2 + c,

pnc (z) = pn−1
c (z2 + c) (n ≥ 2).

The Mandelbrot set M can be defined as

M =
{
c ∈ C | pnc (0) does not tend to ∞ as n→∞}.

In 1982, A. Douady and J. Hubbard have shown that M is connected. They
constructed a conformal map

Φ : C \M −→ {z ∈ C ; |z| > 1}

from the complement of M onto the exterior of the unit disk, which is defined
as follows.
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For each c ∈ C, there is a unique power series ϕc with coefficients in Q(c),

ϕc(z) = z + c0 +
c1
z

+
c2
z2

+ . . . ∈ Q(c)((1/z)),

such that

ϕc(z
2 + c) = ϕc(z)2.

For c 6∈M , ϕc defines an analytic function near c. Then the above mentioned
map Φ is defined by Φ(c) = ϕc(c).

According to P.G. Becker, W. Bergweiler and K. Nishioka [2], [3], [11], for
any algebraic α ∈ C \M , the number Φ(α) is transcendental. .

The function ϕc is the unique Böttcher function with respect to pc = z2+c
and z2. More generally, let

p = azd + · · · and q = bzd + · · ·

be two polynomials in C[z] of degree d ≥ 2 and let λ ∈ C satisfy λd−1 = a/b.
There exists a unique function f , which is defined and meromorphic in a
neighborhood of ∞, such that

lim
z→∞

f(z)

λz
= 1 and f

(
p(z)

)
= q
(
f(z)

)

for sufficiently large |z|. Such a conjugating function f is called a Böttcher
function with respect to p and q.

Assume p and q have algebraic coefficients and are not linearly conjugate
to monomials or Chebychev polynomials. Then f is a transcendental function,
which takes transcendental values at algebraic points.

This result holds more generally for classes of analytic functions which
satisfy certain functional equations. There are two methods to study the
transcendence of values of such functions.

The first one originates in the solution, by Th. Schneider, of Hilbert’s
seventh problem on the value of the exponential function, which satisfies the
functional equation f(z1 + z2) = f(z1)f(z2). This method can be used to
consider other functional equations, like

f(zd) = af(z)d + bzh.

The second method has been introduced by K. Mahler (see [11]) and enables
one to prove transcendence results for the values of analytic functions f which
are solutions of more general functional equations, like

P
(
z, f(z), f(zd)

)
= 0.

In the present situation, both methods provide the desired result.
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2 Lehmer’s Problem and the Entropy of Algebraic
Dynamical Systems

Let F ∈ Z[X] be a monic polynomial of degree d ≥ 1 with complex roots
α1, . . . , αd. Define, for any positive integer n,

∆n(F ) =
d∏

i=1

(αni − 1) ∈ Z.

In case F = X − 2 we have ∆n(F ) = 2n − 1, and the prime values of the
sequence 2n− 1 are the so-called Mersenne primes. In 1933 [7], D.H. Lehmer
suggested that the sequence ∆n(F ) is likely to produce prime numbers, pro-
vided that it grows slowly. If no |αi| is 1, then

lim
n→∞

∆n+1(F )

∆n(F )
=

∏

1≤i≤n
|αi|>1

|αi|.

More generally, for a polynomial

F = a0X
d + · · ·+ ad = a0

d∏

i=1

(X − αi) ∈ C[X],

define, with K. Mahler,

M(F ) = |a0|
∏

1≤i≤n
|αi|>1

|αi| = exp

∫ 1

0

log |F (e2iπt)|dt.

For any polynomial F ∈ C[X], we have M(F ) ≥ 1. When F ∈ Z[X], we
have M(F ) = 1 if and only all its roots αi are either zero or roots of unity.
For his calculations, Lehmer used the polynomial F (X) = X3 − X − 1.
It turns out that this actually is the polynomial having smaller measure
> 1 among the non reciprocal polynomials (its root > 1 is the smallest
Pisot-Vijiyaraghavan number). For reciprocal polynomials F , that is for F
satisfying F (Xd) = XdF (1/X), Lehmer said he could not find a polynomial
having smaller measure than M(F0) = 1.1762808183 . . ., with

F0(X) = X10 +X9−X7−X6−X5−X4−X3 +X + 1 = X5Q
(
X + (1/X)

)

and
Q(T ) = (T + 1)2(T − 1)(T + 2)(T − 2)− 1.

He asked whether for each c > 1 there is a polynomial F ∈ Z[X] for which
1 < M(F ) ≤ c, and this open question is known as Lehmer’s problem.

The number M(F ) has a dynamical interpretation, which is a bridge
between the notion of height of a polynomial and ergodic theory [6], [12], [5].
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For our purposes, an algebraic dynamical system is a continuous endo-
morphism T : X → X of a metrizable compact topological group. The easiest
case, which will be sufficient for our purpose, is the torus X = Td = Rd/Zd.
Each continuous endomorphism of Td is given by a d × d matrix AT with
integer coefficients, and

Tx ≡ ATx (mod 1).

Automorphisms are given by a matrix AT with determinant 1 of −1.
An endomorphism T is “ergodic” if, whenever a measurable subset B of

X (for a Haar measure µ) satisfies T−1B = B, we have µ(B) = 0 or 1. In the
torus case Td, this condition amounts to say that for every square integrable
function f , the condition f(Tx) = f(x) almost everywhere implies that f is
constant almost everywhere.

It follows that an endomorphism T is ergodic is and only if no eigenvalue
of AT is a root of unity. So we shall be interested in polynomials (namely the
characteristic polynomial χ(AT ) of AT ) with no root a root of unity.

The set of periodic points of period n under T is

Pern(T ) = {x ∈ Td | Tn(x) = x}.

If T is ergodic, then the number of periodic points of period n is

|Pern(T )| = | det(AnT − I)| = |∆n(χ(AT ))|.

The topological entropy of T can be defined in terms of the metric: for ε > 0
denote by Bε the ball around the origin with radius ε. Then

h(T ) = lim
ε→0

lim
n→∞

− 1

n
log µ

(
∩n−1
j=0 T

−j(Bε)
)
.

Denote by λ1, . . . , λd the eigenvalues of AT (counting multiplicities). Then
Yuzvinskii’s formula reads

h(T ) =

d∑

i=1

log max{1, |λi]}.

Hence the entropy of T is nothing else than the logarithm of Mahler’s measure
of the characteristic polynomial χ(AT ) of AT .

Since any monic polynomial Xd + a1X
d−1 + · · ·+ ad is the characteristic

polynomial of a matrix, namely

A =




0
... Id−1

0
−ad −ad−1 · · · −a1


 ,
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it follows that Lehmer’s problem is equivalent to asking: which values in
[0,∞] can occur as an entropy?

According to D.A. Lind, a positive answer to Lehmer’s problem (i.e. the
existence of polynomials in Z[X] with arbitrarily small M(F ) > 1) is equiv-
alent to the existence of a continuous endomorphism of the infinite torus TZ

with finite entropy.

Interesting problems occur when one tries to replace the torus R/Z by
an elliptic curve [1].

This section has been prepared with the help of Paola D’Ambros.

3 Canonical Heights and Dynamical Systems

Define the absolute multiplicative height of a polynomial F ∈ Z[X] of degree
d > 0 by

H(F ) = M(F )1/d

and the absolute multiplicative height of an algebraic number α by

H(α) = H(F )

where F ∈ Z[X] is the minimal polynomial of α over Z. The name is moti-
vated by the property

H(αn) = H(α)n

for any algebraic number α and any positive integer n. Hence this height H
behaves nicely with respect to the polynomials φ(X) = Xn.

J.H. Silverman [18] introduced a height function which behaves nicely for
an arbitrary rational function φ with algebraic coefficients, viewed as a map
P1(Q)→ P1(Q).

Definition. Let φ ∈ Q(X) be a rational function of degree n ≥ 2. The φ-
canonical height of an algebraic number is

Ĥφ(α) = lim
r→∞

(
φr(α)

)1/nr
, (∗)

where φr = φ ◦ φr−1 and φ0 is the identity.
This construction has been introduced by Tate in his work on Abelian

varieties, and has been extended to this general context by Silverman in a
series of papers. He proved:

The limit (∗) defining Ĥφ(α) exists, and

Ĥφ(φα) = Ĥφ(α)n.

Moreover
Ĥφ(α) ≥ 1
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for any α ∈ Q, with equality if and only if α is pre-periodic for φ.

Recall that α is a pre-periodic point for φ if the orbit {α, φα, φ2α, . . .} contains
only finitely many points.

The natural generalization of Lehmer’s conjecture to this more general
setting had been raised by P. Moussa, J-S. Geronimo and D. Bessis in 1984
[10].

The rational map

φ(X) =
(X2 − 1)2

4X3 + 4X

corresponds to the duplication map on the elliptic curve Y 2 = X3 + X. For
this map, and more generally for the rational maps corresponding to multipli-
cation by an integer on an elliptic curve, partial results towards this Lehmer-
type conjecture are known (M. Laurent, D.W. Masser and S.W. Zhang,
M. Hindry and J. Silverman).

Variants of this construction have been proposed, mainly by J.H. Silver-
man. In [13], he defined heights on K3 surfaces using two involutions which
generate an infinite group of automorphisms. With G.S. Call in [4], he did the
same on general varieties V by using a morphism φ : V → V and a divisor D
for which φ∗D is linearly equivalent to αD with α > 1. In [14], he considered
a variety V related with the Hénon map

φ : A2 → A2, φ(X,Y ) = (Y, Y 2 + aX + b)

as follows: blowing up each of the points (1 : 0 : 0) and (0 : 1 : 0) three
times, one obtains a variety V so that both φ and φ−1 extend to morphisms
V → P2. For P ∈ A2(Q), the relation

h(φnP ) + h(φ−nP ) ≥ (2n + 2−n)
(
h(P )− c

)
+ 2c

holds with some constant c = c(φ). Silverman used this inequality to prove
that φ has only finitely many periodic points with rational coordinates and
to count the growth rate of points in an infinite orbit.

The author wishes to thank Michel Planat for the excellent organization of
this conference.
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