JOURNAL OF NUMBER THEORY 47, 43-62 (1994)

On Algebraic Numbers of Small Height:
Linear Forms in One Logarithm

MAURICE MIGNOTTE

Université Louis Pasteur, Centre de Calcul de I'Esplanade,
7, rue René Descartes, F-67084 Strasbourg Cedex, France

AND

MICHEL WALDSCHMIDT

Université P. et M. Curie ( Paris V1), Probléemes Diophantiens, UFR 920,
T.45-46, B.P. 172, 4 Place Jussieu, F-75252 Paris Cedex 05, France

Communicated by Alan C. Woods

Received September 20, 1992

DEDICATED TO THE MEMORY OF PROFESSOR HANS ZASSENHAUS

We produce a lower bound for |x— 1| when « is an algebraic number with
relatively small height. The bound is rather sharp in the dependence on the degree
of x. The proof rests on the transcendence method of Schneider, but with Siegel’s
lemma replaced by Laurent’s interpolation determinant. ¥ 1994 Academic Press, Inc.

1. INTRODUCTION

Let « be an algebraic number of degree D, with complex conjugates
%, .., 2p and minimal polynomial

aX?+a, X° '+ - +ap=ag(X—a)) - (X —ap),

where a,, ..., a, are relatively prime integers in Z and a, > 0. We denote, as
usual, by M(a) and h(x) respectively Mahler’s measure and Weil’s height

of a:

1

M(x)=a, [] max{1, |1}, h(oc)=Blog M(x).

i=1

We recall Liouville’s inequality (compare with Lemma 5 below): if
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PeZ[X] is a polynomial of degree <N and length' <L, which does not
vanish at the point «, then

[P(a)l =L~ M(a) ™™,
For instance, when P(X)= X —1, one gets
=122 " "M(2) 7,

provided that a 1. This inequality is sometimes sharp, as shown by the
following example: choose two rational integers ¢ > 2 and D = 2, and define

g l 1/D
o= (1 —-> .
a

Then a is of degree D with Mahler’s measure M(xj=a, and |[x— 1| is
essentially 1/aD:

In this particular case Liouville’s inequality reads la—1|z=2"?*'qa~ !,

which is sharp in term of M(x)=a, but not in terms of the degree D.
Similar examples can be produced by replacing the polynomial aX? —a+ 1
(which is the minimal polynomial of « in the previous example), for
instance, by X? —aX” '+a or by X°—aX +a; in particular one gets
algebraic integers close to 1.

Our purpose is to improve the dependence on D in Liouville’s lower
bound for |o—1].

The first (and up to now single) result in this direction is given in [M]
(and is reproduced in the book of Schmidt [S, Chap. VIII, Sect. 11]). The
method of [M] was completely elementary: the auxiliary functions were
polynomials. Here, we use the exponential function. Since a lower bound
for |« — 1] is equivalent to a lower bound for |loga|, the present work
can be considered as a variant of [MW], where Schneider’s method
was developed for estimating linear combinations of two logarithms of
algebraic numbers.

Our main result (the theorem in Section 2) implies the following result.

PROPOSITION.  Let p be a positive number and let « be a complex
algebraic number of degree D. Assume log M(2) < p and a# 1. Then

la— 1] =exp{ —(3/Dulog, (D/u)+2u+log, (D/u))},

! The length is the sum of the absolute values of the coefficients.
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where log, x=max{log x,0}. Moreover, for each &, O0<e<1, one can
replace 3 in this formula by 1 + ¢ provided that log M(x) < u <¢&'D, where ¢'
is sufficiently small depending on ¢.

For instance we deduce from the proposition above (see Section 2) that
if o is an irrational algebraic number of degree D > 2 then

lo— 1] > max {2, M(x)} ~*VPleD,

This_improves one result of [M], where 3./Dlog D was replaced by
4 \/Elog(4D) under the extra assumption M(a) < 2.

The present paper is organized as follows. In Section 2 we state the
fundamental inequality and we deduce the proposition above. In Section 3
we formulate and prove several auxiliary lemmas. The proof of the
fundamental inequality is given in Section 4. Finally, in Section 5 we derive
further consequences of our main inequality.

2. THE FUNDAMENTAL INEQUALITY

Let £ be a number field of degree D=[FE: Q7] and G the set of complex
embeddings of E into C. Further let o, ..., ax be non-zero pairwise distinct
elements of E with K> 2. Furthermore let G’ be a subset of G with |G|
elements,” for each ceG’, let ¢, iR be a purely imaginary number, let
log oo, be any determination of the logarithm of ox, (1 <k <K), and let
X, be a non-empty subset of {1, .., K} with at least two elements; we put

1
2. llog(oa) + @,.

A, =
Aol S,

THEOREM. We have
2
£ (%) ()= (32) 1)
seo \ K |5 K4,

1IN2D X D 2K+ 1
<(1—E>——k;h(ack)+g(2+log< 4+ >>

This theorem is very general and—we hope—this generality can be
useful. But, we use only a special case of this result. We state this special
case as

2 We denote by |X| the cardinality of a set X.

641:47/1-4
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COROLLARY 1. When X, = {1, .., K}, we get the inequality

2D X
- Y log 4, <= ¥ ()

aeG’ k=1

D 2K+1 K ,
+K_1(2+log< 7 >)+K—1 |Gl

We now deduce the proposition of Section 1 from this inequality. The
case o =0 is straightforward. Assume first that o is a root of unity of order
n>=2. Then |a— 1| > 4/n; in particular the result is obvious if n<4. It is
easy to check, for n>5, that 9D? > nlog(n/4) and 2D > e log(n/4) (see,
for instance, [MW,III, Appendix]). If we choose 2u>=log(n/4) (resp.
u<4D/n), the result holds trivially because of the contribution of 2u (resp.
log , (D/u)). For 4D/n < u < DJe, we have Dulog(D/u)> (4/n) D* log(n/4)
and once more the result follows.

Therefore we assume that « is neither O nor a root of unity. If D=1, then
the result is a trivial consequence of Liouville’s estimate. Thus we assume
D>2 We also note that this result is trivially implied by Liouville’s
inequality for pu> Dlog2. We assume p<Dlog2 and we put pu=D/t.
A short computation shows that

1 3 Jflogt 1
t+2 ; >log?2 for lOg2<t<15,
hence this proposition is still a consequence of Liouville’s estimate on the
range =< p/D <log2. Thus, we assume p < D/15. Since log(D/u)>2 for
0 < u< D/15, we may also assume that |x—1]|<e 2

Let us denote by log the principal determination of the logarithm in the
disk |z — 1] < 1. Since |x—1|<e 2 we have |log a| <1.08 jo — 1|. Indeed,
for |z] < R< 1, using the Schwarz lemma together with the bound
llog(1+2z) < —log(l—R) we deduce |log(l+:z)/z|< —log(l— R)/R;
hence for |z| <e * we have |log(1 +z)| < 1.08 |z|.

Let K= 2 be an integer. Since the algebraic number « in the proposition is
complex, we have an embedding, say g, of Q(a) into C such that gy(x) =
We choose G’ = {0,}, ¢,,=0, #, = {1, .., K},and o, = 2™ (1 <k < K), with

rk=(—1>k“['§] (1 <k<K),

so that
K K*/4 if K is even,
z |rk| = 2 . .
P (K-—1)4 if Kis odd,
K 08K
Am,<zllog al < —,—la—1l,
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and

rl log M(x) K

Ku
<Z10g M(a) < 2H
D 7 log M) <

By Corollary 1 above,

D 2K+1
—1 —<——(2+1
og |« | K_]<+og< ) ))

LK K L (108
TR\ Ty )

This inequality holds for every rational integer K = 2. The coefficient of u
is at least 1, which means that the result improves Liouville’s inequality
only if the coefficient of D is less than log 2. In particular we need to
choose K>26. For K=6 the inequality is not trivial; but the first good
value is K =11, which gives

D
—log |a— 1} Sm (2+log(5.75))+ 5.5u+ 1.1 +10g(2.97)

<0.375D + 5.5u + 2.19,

which improves Liouville’s inequality as soon as D> 14.2u+9.1.
The above result obtained for K= 11 shows that our proposition is also
true for 15 <1< 36; indeed

3 1 3.5
- /_O_tg_’go.375+—t« for 15<1<36.

Thus, we assume ¢ > 36 and choose K=2+[./tlogt], hence K> 13 and

D <2+10 <2K+1>)
K_1 E\ 3

D 1
< (2+log (0.75+—,/rlog r>>
Jtlogt 2

We get

1 J—
—log Ja—1|< D (2+log<0.75+—\/rlogr)>
tlogt? 2

tl 1.08
+Mu+l.l+log (——4—x(2+,/zlog t)).

2
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Then, it is easy to verify that the condition t > 36 implies

| log t
2+10g(0-75+§\/t10gt><logt+ %

1.08 —
1.1 +log (—4—x (2+\/t log t)><log L

and

This ends the proof of the first half of the proposition. Finally, for suf-
ficiently large ¢, the right hand side of the two last inequalities above
can be replaced by (i+¢)log?; the second half of the proposition
follows. |

We conclude this section with a proof of the remark following the
proposition. Since

D<3./DlogD for 2<D <30,
Liouville’s estimate implies our claim on this range. Thus, we suppose

D > 31 and we take = max{log(M(x)), 1 }. Then, log(D/u) <log D; since,
for D> 31, we have

1<§+ 2 +/logD><3
log2\2 \/DlogD D ’

we deduce from our proposition

o — 1] >max{M(x), e} *'°82vPleD  for D>31,

This implies our claim.

3. PRELIMINARY LEMMAS

The first lemma gives an upper bound for the number of consecutive
integral zeroes of an exponential polynomial. The second lemma, due to
Michel Laurent [L1, L2], provides an upper bound for the absolute value
of an interpolation determinant. The next result is an estimate for some
Feldman-like polynomials. Finally, we state a variant of Liouville’s
inequality. For the sake of completeness we give proofs for all these
lemmas, even when they are well known.
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LEMMA 1. Let Q2 be a field a, ..., ayx non-zero elements of £ which are
pairwise distinct, and A, ..., Ax non-zero polynomials in Q[ X, of degrees,
say, Ly, .., Ly. Then the function Z — 2, which is defined by

K
F(m)=}, Ai(m)af,

k=1
cannot vanish on a set of L, + --- + Lg+ K consecutive integers.

Proof. We prove the result by induction on L=L,+ --- + Ly + K. For
K =1 the result is obvious. Assume K> 2. There is no loss of generality in
assuming o, =1 [just replace F(m) by a;"F(m)]. Define

F(m)=F(m+1)—F(m)= Y. B,(m)ay,

k=1
where

B (X)=A,(X+1)a,—A,(X) (1<k<K)

In particular By is either O or a polynomial of degree <L, while, for
1<k<K, B, is a non-zero polynomial of degree L,. The induction
hypothesis shows that F cannot vanish on a set of L —1 consecutive
integers. The result follows. |

The next lemma involves functions of one complex variable; when f is
such a function which is analytic in a disk |z] < R (namely f is continuous
on the closed disk and analytic inside ), we write | f| g for sup{| f(z)]; |z| = R}.

LEMMA 2. Let N< M be two positive integers, let f|, ..., fx be analytic
functions in a disk |z] KR of C, let oy, .., 2, be points in a smaller disk
|zI <r, with r< R, and let §,, be complex numbers, N<v< M, |<u<M.
For | <v< Nand | Su< M, suppose that 5,,= f,(x,). Let 4 be the deter-
minant of the M x M matrix (3,,), <, <. Then

R\ - MN=1)2 N M
a1<(3) M (T 150e)max T1 16,

Hi y=N+1

v=1

where {u} denotes the set of (M — N)-tuples (Un. s tas) Of pairwise
distinct elements of {1, .., M}.

Proof. The idea is due to Michel Laurent [L1,L2]. For 1 € u< M we
define

Sola,z) for 1<v<N,
d for N<v< M.

Vi

d,, (2) ={
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The function of one complex variable

D(:) = det(dvu (2))1 <v,us M

is analytic in the disk |z| < R/r; we claim that this function has a zero of
multiplicity > N(N — 1)/2 at the origin.

By linearity of the determinant, the proof of this claim reduces to the
case where f,(z)=2z", with 1<v< N, for some rational non-negative
integers k,, .., ky; if two of the k, are equal, then D(z)=0; otherwise
K+ - +Ky=NN—1)/2 while

D(z)=z"1* "+ D(1),

which proves our claim.
From the classical Schwarz lemma we deduce

R -N(N—1)/2
(1) s(;) Dl

But clearly D(1)= 4, and

M
iD| Rir S M' n}a}x n ld\',zplv)lR,‘“r’
[P S|

where ¢ runs over the set of bijective maps of {1, .., M} onto itself. The
desired result readily follows. ||

LeMMA 3. Ler J be a positive integer; for each integer j in the range
0<j<J we define a polynomial A,e C[z] of degree j by Ay=1 and
1 - .
Aj(l)zﬁz(Z— D+ DE=2)---+ (=Y ' [j2)  (1<j<d).

Then for all j=0, ..,J and all ze C,

. bzl
log {4, (z)| <J+) log<z+7).

Proof. For j=0 and for z =0 the result is obvious (with log 0 = — o).
Let us assume 1 < j<J and z#0. In the definition of 4, (z) we bound the
modulus of each factor z + a by |z| + |a|, then—using the inequality of the
arithmetical-geometrical mean—we get

. N L J
i1, < (121 +5)
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[Consider the two cases j odd and j even.] Since j!= j/e ™ for j=1, we
deduce

14, (2)] < (1+‘—Zl)j o
4

For T=1t>0 we have

1 1 1 1
t+tlog Z+? <T+tlog Z+?‘ ;

indeed the right hand side is an increasing function of T in the range 7> 1.
We apply this estimate with ¢ = j/|z} and T =J/|z|:

(1+El>iei<<l+'_zl>191
4 4 7))
This completes the proof of Lemma 3. |

LEMMA 4. Let E be a number field of degree D, G the set of embeddings
of E into C, and a, ..., x, elements in E. For each i=1, ..., s, we denote by
ay(2;) the leading coefficient of the minimal polynomial of o, and by d. the
degree of a;. Further let Pe Z[ X, ..., X,] be a polynomial of degree at most
L.in X; (1 <i<s). Then

<l—[ ag ()" D"“") [T Plox,, ... ou,)e Z.
i=1 ceCG

Proof. The number considered is clearly rational, since it is invariant
under action of the automorphisms of C (it is a norm). We must prove that

it is also an algebraic integer; for this, it suffices to prove that if y,, ..., 7,
are distinct conjugates of an algebraic number y with minimal polynomial
having leading coefficient a,, then a,7,, ..., y, is an algebraic integer.

Fact. Let a be an algebraic number; if G=(X—a) H(X) is a polyno-
mial whose coefficients are algebraic integers, then the same property holds
for the polynomial H.

This fact is proved by induction on the degree of the polynomial G. If
this degree is 1, then the conclusion is trivial. If this degree is s+ 1 > 1, then
write G(X)}=bX*(X —a)+ F(X) with F of degree <s. Since b is the leading
coefficient of G and « is a root of G, the number ba is an algebraic integer;
if follows that the coefficients of the polynomial F are algebraic integers.
Since « i1s a root of F, the inductive argument leads to the conclusion.
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Now we complete the proof of Lemma 4. The fact above shows that the
coeflicients of the polynomial H(X)=a,(X —7,)--- (X —y,) are algebraic
integers. Thus H(0)= +a,7,, -, ¥« 1 an algebraic integer. |

Lemma 4 leads at once to the following variant of Liouville’s inequality.

LEMMA 5. Let E be a number field of degree D, and «,, ..., a, elements in
E. For each i=1,..s, we denote by d; the degree of a,. Further let
PeZ[X,, .., X,] be a polynomiial of degree at most L, in X; (1 <i<s) such
that P(a,, ..., 2,)#0. Then

IP(als very CXA.)I 2L(P)70+l n M(ai)’L'D‘MI.

i=1

4. PROOF OF THE THEOREM

This section is devoted to the proof of our fundamental inequality. Let
us first remark that for each o€ G’ we have A, #0: from the assumption
o, #a, we deduce logoa; #logoa,, which shows that the relations
log o, + @, =0 cannot hold for two distinct values of k.

There is no loss of generality in assuming G’ # (J, and also

EANEA

>2 d |1 >
|| an %8 B4 ZTH -1

for all ¢ € G'. In particular |,| > KA.

For each 6e G’ we define a real number E,>1 by setting E, =
|, |/KA,. Next we choose a positive odd integer J (which will tend to
infinity later) and we define M= K(J+ 1), M'=M/2, M, =|H,| (J+ 1) for
o€ G'. Note that we have E,=M_/MA,.

We divide the proof into several steps: we define a non-zero element y of
E, we bound [gy| from above, first for ce€ G, next for e G', we write
Liouville’s inequality, and we let J tend to infinity.

First Step. Definition of y€ E, y #0. We recall the notation 4;, which
was introduced in Lemma 3. We consider the square M x M matrix?

(4, (MY o) ki mys

* The ordering of the pairs (j, k) is irrelevant: we are interested only in the absolute value
of the determinant.
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where (J, k) is the index of row, say, 0<j<J, 1 k<K, while m is the
index of columns, with — M’ <m < M’. Lemma 1 shows that this matrix is
regular. We denote by 7y its determinant.

Second Step.  Upper bound for |ay|, 6 € G. Let us denote by ¥ the set of
bijective maps from [0,J]x[1, K] onto [—M'+1, M’] (where, for
rational integers 4 < B, we denote by [4, B] the set {4, 4+1, .., B}).
Then

J K

ay = Z &y l—[ I_I A,’(l//(jsk))(gak)w(i'k)

ves  j=0 k=1

with g, e {1, —1}. The right hand side is a polynomial in ox,, ..., ooy,
oa; ', .., oa; |, with rational integer coefficients. The degree of this polyno-
mial in oo, (resp.in ga, ') is

J J
max {O, max 3y w(j,k)} <resp. max {0, max » —|//(j,k)}>.
WESI'].=0 Yes j=0
For Yy e.¥ and 0< /< J, let us define
¥, =max {0, max ¥(j, k)};
I<k<kX
then g, ..., ¥, are pairwise distinct and < M/2. Hence
M (M M
<t =—1 -—_7J)
Vot o +¥, <5 +<2 >+ +<2 J>

Denote by N the sum on the right hand side:

M JU+) M A
N==(+1) 5 —2(J+l)<l M).

We deduce

7K
loy| < M! (H [1 max |4, (m)])
Jj=0 k=1 Iml<M2

X ( [ (max{l, |oo,|} max {1, |oo,] “})N>.

k=1

Thanks to Lemma 3 we have

1 M
log _max |A,(m)|<J+jlog<z+§3);

|m| < M/2
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since Y7_o X k-, j=MJ/2, we deduce

i il |4, ( )|<MJ+1MJ10 l M)
max m
; - 8 Il < M2 2 g 4727

We conclude that for all ¢ € G, we have

——1 log |oy| <lo M+J+ Jlo ! M
ay
g 1oy g 5 g 2 2J

X (log, foml +log. (lomyl "))

EIZ

Third Step. Upper bound for |oy|, o € G'. The conclusion of Step 2 is not
sufficient: we need a non-trivial estimate for o € G’; this is the only part of
the proof which is not completely elementary.

Let us fix 6 € G'. We define

Ao =log o0, + @, (1<k<K),

and, for ke &, (and only for these values), we introduce the analytic func-
tions

fi(z)=4;(z) e (0<j<J)
Since |e?™| =1 for all me Z, we readily see that
10”))| = ldet(éjk (m))(j.k;m)|9

where, for 0<j<J, 1 <k <K, and {m| < M/2,

5 (m)z{f,-k(m) if ke,
o e’ A, (m)ysay  if k¢,

We now use Lemma 2 with N replaced by M,: for each real number

R> M/2,
2R Mo(Mgo— 1)/2 J
o <(3) M (11 TT Ul

ji=0 ke,

( ax H H 14; (m/k}o'akl”)
=0 k¢
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where m= (my), 0< j<J, k¢ A, with |m,| <M and m, pairwise distinct.
We use Lemma 3 exactly as in the second step: we have

1 R
log |4, 1R<J+jlog<4 J)

and
| 1 R
Z Y logld;lx <M, J+- MJlog( )
;=0 keX, 2 4 ‘]
1 M
Z Z log |4, (my)] < (M — M)J+ (M—M_)Jlog
o 4 27)
j= & Xy
For |z| = R we bound |e***| by exp{|.,, R|}; using the definitions of A,
and A, we can write
Ay=— ¥ i
a ‘(Yﬂl S akls

which gives

J
Y X Aul R=(J+1)[AH | A, R=M,A,R

j=0 ke X,

On the other hand we have (we again use the parameter N=M(J+ 1)
x (1 —J/M)/2 introduced in Step 2)

J
max Yy myloglon ] <N Y (log, {ow ] +log, (Joxd "))

=0 k¢ X, k¢ H,
Thus, we get
M (M, —1 2R
]03|0V|<——A§"—210g-M—+Mlog M+ A,M_R

+JM llo lM
MERCAVEEY,

+N Z (10g+ |0’(1k|+10g+(|0'1k]‘]))

k¢ X,

J 1 R\/([l M
+2M log<<4 J> (Z+2J>)'
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Now, we choose R=M_/24,=E_M/2 (recall that £, was introduced at

the beginning of the proof and satisfies E, = |X,|/KA,>1). Finally, for
each o e G', we conclude

M (M, —1) M2
Mo Mo = ) 10 B+ log M + 2
OBl e Mo,

+9(1430 (3+37))

N
+57 % (log, Jon,] +log., (|ox| 1))
kA,

— 108 |0} &

M, <J+ 2E(,M)
+

2M J+2M

Fourth Step. Liouville inequality. For 1 <k <K, we denote by d, the
degree of a, over Q, and by a(a,) (resp. aq(x, ')) the leading coefficient
of the minimal polynomial of a, (resp. of o, '). Using Lemma 4, we see that
the number

n (ao (o) ag( YV dk H lay|

k=1 ceG
is a positive integer, hence is > 1. Since M(x)=M(a~') when o is a non-

zero algebraic number, we obtain

h(“k)—_l()g ao(“k)‘l'D Z log ., ool

ceCG

1 1
dk log ag(a, ' +BG§G log, |oa, '|.

We now bound |ay| thanks to Step 3 for g € G', and thanks to Step 2 for
o ¢ G'; we conclude

2ND X 1 2M +
OSm Dlog M+ DJ D
o kg (o) +Dlog M+ +5 J lo ( 4Jﬁ

J+2E.M
—_— M_ - — .
( ( TToM >+ ,— (M, ])logEa)

3%
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Fifth Step. Conclusion. We divide the previous relation by M/2:

5 (M,,(Ma—])lo M:oME <J+2E(,M>
Ry M? SO VR VE J+2M
VD 2DlogM 2DJ DJ.  (2M+
h lo .
Z S A " ( 4JJ>

Next we let J (hence M) tend to infinity: M/ J—-K, M, /J—-K_,
N/M? — (K —1)/2K?; therefore

| A | Ifl 1+2E,
Z<<K> BEae) =T °g<1+2KK>>

1\2D & 2D D, (2K+1
<{1-=)= ¥ hx)+=+=1 .
(1) 2 e S R (557

=1

To simplify, we use the upper bound

1 +2E K

il APy 5
142K

We obtain the estimate

y (I«fal 210g<|%|>_|%llog(ll’nl>
K ekA,) K’ KA,

2D X 2D 2K+1
<<1—7<> Zh(ak)+-+—l ( 2 )

k=1

This completes the proof of the theorem. ||

5. FURTHER COROLLARIES

We first show a connection between our result and Lehmer’s problem, as
well as the conjecture of Schinzel and Zassenhaus [SZ]. The best known
result so far is Dobrowolski’s in [D]; an alternative proof has been given
by Cantor and Straus [CS], involving a determinant in place of the
auxiliary function. Our approach plays a similar role with respect to
Stewart’s paper [St].
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COROLLARY 2. Let o be a non-zero algebraic number of degree D = 2; if
o is not a root of unity, then

1
ha)2 ————.
(%) > 550D Tog D

Proof. The proof consists of two steps: in the first step we deduce an
estimate from Corollary 1; in the second one we choose the parameters.

First Step. A consequence of Corollary 1. Let o be a complex algebraic
number of degree D =2 such that M(a)< 1.3 and |2} > 1. Let K>2 and
A =1 be two positive integers. We define C >0 by

(1/C*)=(n/A)’ + (AK log |«|)*

and we assume

K D 2K+1
> —_—
logC/AKDh(ot)+K_1+2K_2<2+log< 3 >>

Then « is a root of unity.

By a well-known result of Smyth [Sm], the condition M(a) < 6, where
0, = 1.3247... is the real root of X*— X — 1, implies that « must be recipro-
cal (which means that «~' is a conjugate of «). Let ¢, be the natural
embedding of Q(«) into C (« is a complex algebraic number) and let o,
be defined by o,(x)=a"'. We take G’ = {0,, g,}. Using Dirichlet’s box
principle, exactly like Stewart in [St], we can find integers 1<r, <
r,< - <rp<AK together with a purely imaginary number ¢eiR
satisfying

|Imlog(rx"‘)—(p|<% for 1<k<K,
where log denotes the principal value of the logarithm. Then we also have
[Im 10g(a”*)+<p|<% for 1<k<K

From the definition of C we deduce

[log(2™) — | < 1/C
and

log(ax ™)+ | < 1/C.
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We now take X, =1{1,2,.,K} and a,=ao"% (1<k<K). Therefore
A, < 1/C. Since

K K
Y h(o)=h(x) Z re < AK*h(a),
k=1 -

Corollary 1 shows that the numbers o™ are not pairwise distinct, hence «
is a root of unity.

Second Step. Choice of the parameters A, K and C. We first note that
the assumption M(x) <2 implies that x in an algebraic integer (and even
an algebraic unit). According to [SZ], for a non-zero algebraic integer «
which is not a root of unity, when [a] denotes the maximum of the absolute
values of the conjugates of a, we have

Taf=14272-4
For 2< D <8 we have

20+4<250D log D,

therefore we may assume D > 10 (a reciprocal algebraic number is of even
degree).

If h(x) <1/(500D% log D) then log || < 1/(500D log D). We take A4 =40
and K=[Dlog D] and we use the bounds

K>23,  AK/(500Dlog D)<008, C>8919, logC>2.188,

K+1

2
K/(K—1)<1.045, 2 +log )

< 1.9393 log D,

1/(2K—2)<0.5476/(D log D),
and finally
0.08 + 1.045 + 1.9393 x 0.5476 < 2.187 < log C.

This completes the proof of Corollary 2. |

COROLLARY 3. Let a be a an algebraic number of degree D. Let u and
¢ be real numbers such that log M(a) <pu < D/11 and 0 <e<p/D. Then the
number s of conjugates oo which satisfy |oo— 1| < ¢ is bounded by

_ o~/ Dulog(Dju)

log(e ')
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Proof. We take G'={o;log|oa—1|<e}, so that |G'|=s. For all

oe G, we choose ¢,=0. We define K=[./(D/u)log(D/u)]. Hence we
have K=5 We follow the proof of the proposition. We consider K
numbers «, = o™, with |r,| < K/2. From our assumption ¢ < u/D < 1/11 and
from the inequality 11 log(1.1) < 1.05 we deduce 4, < (1.05K/4) |oo — 1] for
oceG.

Corollary 1 leads to the inequality

s(lo (481>——1—<— <5 +—2—<2+10 2K+ 1
E\Tosk) k—1)S2H "k E7% )

We use the estimates

log(1.05K/4) + K/(K — 1) < 0.69 log(¢ '),
K—1>064./(D/u)log(D/u),
2K+1

1
241
( +log 2064/ 031

1 14
>< 1.4 log(D/u) and <—+——>—<9
This completes the proof of Corollary 3. |}

COROLLARY 4. Let E be a number field of degree D, o, ..., o, be distinct
embeddings of E into C, and 2., .. 2, be multiplicatively independent
elements in E*. Suppose that p is a real number satisfying Dh(a,)<p for
1<i<s and D/ju=6. Then

max max |o; o~ 1|

1<ig<s 1 €jgr

gsu D D s+ 1) 1 D D —2/ls+ 1)
> mi R ,—— (= log = .
minfewo (=22 (s ) ) 1o (es)

Proof. We take G’'=1{0,, .., 0,}, so that |G'| =r. For all 6eG’, we
choose @, =0. Let 1 be a positive integer which will be chosen later. We
consider that K= (2r+ 1)* numbers

a® =gl .cal with |j,|<t for 1<h<s

Put e =max, .;,., max, ., {o;a,— 1| and suppose that

. 9sy D DA\Ve+D 1 D D\ s+
o<minfon (- (Froel) ) g (Greg) )

Since £ < % and 16 log(i2) < 1.04, for 0 € G’ we have

A, <max |log(ga'™)| < 1.04est.
k
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We choose

t=[3((D/u) log(Djp)) e+ 1) + 1],

Therefore we have K > 4; the upper bound 1.04 x ¢*?

K/(K—1)<log(4est). Thanks to the estimate

Y j=tt+ 1)<+ 52+ 1)

ljlst

we deduce from Corollary 1 the inequality

1 1 D 2K+1
rlog osr <su I+5 +-ﬁ 2+1log 2 .

We use the estimates

t<((D/p) log(D/u))* 1, K3,
+1

2K
2+log <2.12slog(D/u),

——Q~ 2+1lo 2K+
K-1 g

and
sp(t+3) < 3sp((D/u) log(D/u)) "+ 1.

We conclude
———1 .
rlog ( ) < 4.55u((D/u) log(D/u))t/t+ 1.
dest

Therefore either /e < 4ste or
rlog e <9su((D/u)log(D/u))>¢+ 1.

In both cases we derive a contradiction. |
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