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1 Introduction.

Recently, close connections have been established between simultaneous dio-

phantine approximation and algebraic independence. A survey of this topic

is given by M. Laurent in these proceedings [7]. These connections are one

of the main motivations to investigate systematically the question of algebraic

approximation to transcendental numbers. In view of the applications to al-

gebraic independence, a special attention is paid to the dependence on the

degree.

To each qualitative transcendence result telling:

one at least of the numbers θ1, . . . , θm is transcendental

one can associate a quantitative refinement, which is a lower bound for

max
1≤i≤m

|θi − γi|

when γ1, . . . , γm are algebraic numbers. Such estimates will depend on two

parameters: the degree [Q(γ1, . . . , γm) : Q] of the number field generated by

the algebraic approximations, and the height

max
1≤i≤m

h(γi).

Here it will be convenient to use the absolute logarithmic height h(γ) of an alge-

braic number γ, which has several equivalent definitions (see for instance [12],

Chap. 3). One of these is

h(γ) =
1

d
log M(γ),
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where d = [Q(γ) : Q] is the degree of γ over Q and M(γ) is Mahler’s measure of

γ: if f ∈ Z[X] is the minimal polynomial of γ over Z, with leading coefficient

a0 > 0 and roots γ(1), . . . , γ(d), so that

f(X) = a0(X − γ(1)) · · · (X − γ(d)),

then

M(γ) = a0

d∏
i=1

max{1, |γ(i)|} = exp
(∫ 1

0
log |f(e2iπt)|dt

)
.

Another equivalent definition for h(γ) is

h(γ) =
1

[K : Q]

∑
v∈MK

Dv log max{1, |γ|v},

when K is any number field containing γ, MK denotes the set of (normalized)

places of K and Dv denotes the local degree at v ∈ MK . The normalization is

done in such a way that the product formula reads∏
v∈MK

|γ|Dv
v = 1

for any non zero γ ∈ K.

In the classical theory of simultaneous rational approximation, given a tuple

(ϑ1, . . . , ϑm) of real numbers, Khinchine’s transference theorem ([2] Chap. V

§ 3 Th. IV) exhibits a duality between lower bounds for

q #−→ min
(p1,...,pm)∈Zm

max
1≤i≤m

∣∣∣∣∣ϑi − pi

q

∣∣∣∣∣
and for

(p1, . . . , pm) #−→ min
q∈Z

|p1ϑ1 + · · · + pmϑm + q|.

It is not known whether there is a similar transference theorem in the context

of algebraic diophantine approximation.

Here, we shall consider both questions: measures of simultaneous algebraic

approximation and measures of linear independence.

Such a study is worth of consideration in a general context; just to give an

example, the situation concerning almost all tuples (either in Rm or in Cm,

for Lebesgue’s measure) is not yet described in a satisfactory way (see [1] for

recent results on this context).
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For simplicity, we shall restrict here our attention to a special case, where

we assume that the numbers eθi are algebraic. We denote by

L = exp−1(Q) = {z ∈ C ; ez ∈ Q
×}

the set of complex logarithms of algebraic numbers. It is a Q-vector space,

which contains numbers like iπ, log 2, log 3. . . .

It will be convenient to introduce the following definition.

Definition. Let θ = (θ1, . . . , θm) be a tuple of complex numbers. A function

ϕ : N × R>0 → R>0 ∪ {∞} is a simultaneous approximation measure for θ

if there exist a positive integer D0 together with a real number h0 ≥ 1 such

that, for any integer D ≥ D0, any real number h ≥ h0 and any m-tuple

γ = (γ1, . . . , γm) of algebraic numbers satisfying

[Q(γ) : Q] ≤ D and max
1≤i≤m

h(γi) ≤ h,

we have

max
1≤i≤m

|θi − γi| ≥ exp{−ϕ(D, h)}.

2 Main Conjectures.

Let λ1, . . . , λm be logarithms of algebraic numbers with αi = eλi (1 ≤ i ≤ m).

Let β0, . . . , βm be algebraic numbers. Denote by D the degree of the number

field Q(α1, . . . , αm, β0, . . . , βm). Finally let h ≥ 1/D satisfy

h ≥ max
1≤i≤m

h(αi), h ≥ 1

D
max

1≤i≤m
|λi| and h ≥ max

0≤j≤m
h(βj).

Conjecture 1. Assume λ1, . . . , λm are linearly independent over Q. Then

m∑
i=1

|λi − βi| ≥ exp{−c1mD1+(1/m)h},

where c1 is a positive absolute constant.

Conjecture 2. Assume that the number

Λ = β0 + β1λ1 + · · · + βmλm

is non zero. Then

|Λ| ≥ exp{−c2mD2h},
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where c2 is a positive absolute constant.

These conjectures are very simple and describe the situation in a clear way.

On the opposite, as we shall see, known results are more complicated to state,

so far.

In case m = 1, both conjectures 1 and 2 coincide:

|λ − β| ≥ exp{−cD2h} (?)

For D = 1 (and m = 1), this is an open problem of Mahler [8]:

Does there exist an absolute constant c > 0 such that, for any positive

rational integers a and b,

|eb − a| ≥ a−c?

If |eb − a| is small, then b and log a are of the same order of magnitude, hence

one can replace a−c = e−c log a in the right hand side by e−cb. For the same

reason, since |eb − a|/a = |eb−log a − 1| is close to |b − log a|, one can replace

|eb − a| in the left hand side by |b − log a| (replacing at the same time c by

c + 1 in the right hand side).

The best known estimates on this question are due to K. Mahler [8]:

|eb − a| ≥ b−cb

and

|b − log a| ≥ a−c log log a for a ≥ 3.

Mahler found a sharp explicit numerical value for c, namely c = 33 (for both

estimates), provided that a (hence also b) is sufficiently large. A refinement is

due to Franck Wielonsky [13]: for sufficiently large a, these last two estimates

hold with c = 20.

Stronger estimates than Conjecture 2 are suggested in [6] in the special

case D = 1 and β0 = 0. When a1, . . . , am are positive rational numbers

and b1, . . . , bm are rational numbers, one can remove the logarithms from the

statement, replacing

b1 log a1 + · · · + bm log am

by the number

|ab1
1 · · · abm

m − 1|
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which is a close aproximation:

Conjecture 3. For any ε > 0, there exists a constant C(ε) > 0 such that,

for any non-zero rational integers a1, . . . , am, b1, . . . , bm with ab1
1 · · · abm

m != 1,

∣∣∣ab1
1 · · · abm

m − 1
∣∣∣ ≥ C(ε)m

Bm−1+εAm+ε
,

where A = max1≤i≤m |ai| and B = max1≤i≤m |bi|.

Links between measures of linear independence of logarithms and the abc-

conjecture are discussed in [9].

3 Results: Simultaneous Approximation.

Here is the state of the art concerning Conjecture 1. Until recently, only

N.I. Fel’dman considered such a question [3] and [4]; see also [5] Th. 3.34:

Theorem 1 (Fel’dman) . Let λ1, . . . , λm be Q-linearly independent loga-

rithms of algebraic numbers. There exists a positive constant c = c(λ1, . . . , λm)

such that

cD2+1/m(h + log D)(log D)−1

is a simultaneous approximation measure for the numbers λ1, . . . , λm.

Further estimates have been produced more recently [10], [11], [12]. We

select a few examples.

A rather general statement is the following (cf. Chap. 16 of [12]).

Theorem 2. Let m and n be two positive rational integers. Define

c = 223m3n2(2m)m/n.

Let λij (1 ≤ i ≤ m, 1 ≤ j ≤ n) be elements of L, K a number field of

degree D = [K : Q] such that the algebraic numbers αij = eλij belong to K×,

β1, . . . , βn, β′
1, . . . , β

′
m elements of K, Aij (1 ≤ i ≤ m, 1 ≤ j ≤ n), B, B′ and

E positive real numbers satisfying, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, the following

conditions:

h(αij) ≤ log Aij, |λij| ≤ D

E
log Aij,

h(1 : β1 : · · · : βn) ≤ log B, h(1 : β′
1 : · · · : β′

m) ≤ log B′,
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B ≥ e, B′ ≥ e, B ≥ D log B′, B′ ≥ D log B

and

1 ≤ log E ≤ D log Aij ≤ min{B, B′}.
Assume that the m × n matrix (log Aij) 1≤i≤m

1≤j≤n
has rank 1:

log Aij log A11 = log Ai1 log A1j

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Define

Umn
2 = Dmn+m+n(log B)n(log B′)m

 m∏
i=1

n∏
j=1

log Aij

 (log E)−m−n.

Assume further that for any t ∈ Zm\{0} satisfying |ti| ≤ (cU2)2 for 1 ≤ i ≤ m,

we have

t1β
′
1 + · · · + tmβ′

m %= 0,

and that for any s ∈ Zn \ {0} satisfying |sj| ≤ (cU2)2 for 1 ≤ j ≤ n, we have

s1β1 + · · · + snβn %= 0.

Assume furthermore

D log B ≤ U2, D log B′ ≤ U2,

D log B′ log A11 · · · log A1n ≥ (log A1j)
n log E

for 1 ≤ j ≤ n and

D log B log A11 · · · log Am1 ≥ (log Ai1)
m log E

for 1 ≤ i ≤ m. Then
m∑

i=1

n∑
j=1

|λij − βjβ
′
i| ≥ e−cU2 .

In the special case m = 1 the statement is slightly simpler:

Corollary 1. Let n be a positive integer. Define

c = 224n2.

128



  � � �  � � �   

Let α1, . . . , αn and β1, . . . , βn be algebraic numbers, let D be the degree of the

number field they generate, and let A1, . . . , An, A, B, B′, E be real numbers

which satisfy

B ≥ e, B′ ≥ e, A = max
1≤j≤n

Aj,

h(αj) ≤ log Aj (1 ≤ j ≤ n) and h(1 : β1 : · · · : βn) ≤ log B.

For 1 ≤ j ≤ n, assume that the number αj is non zero, choose λj ∈ L such

that eλj = αj and assume

|λj| ≤ D

E
log Aj.

Let U be a positive real number satisfying

U ≥ D2+(1/n)(log B)(log B′ log A1 · · · log An)1/n(log E)−1−(1/n) ;

U ≥ D2(log B)(log A)(log E)−1−(1/n).

Further, assume

1 ≤ log E ≤ D log Aj ≤ B, log B′ ≤ D log A,

B′ ≥ D log A, U ≥ D log B,

log E ≤ D log B ≤ B′ and log E ≤ D log B′ ≤ B.

Furthermore, assume

s1β1 + · · · + snβn $= 0

for any s ∈ Zn \ {0} with

0 < max
1≤j≤n

|sj| ≤ (cU)2.

Then, we have
n∑

j=1

|λj − βj| ≥ e−cU .

Before giving a few examples, we introduce the following definition.

Definition. A tuple θ = (θ1, . . . , θn) ∈ Cn of complex numbers satisfies a linear

independence measure condition if, for any ε > 0, there exists S0 > 0 such

that, for any S ≥ S0 and any s ∈ Zn satisfying 0 < max1≤j≤n |sj| ≤ S, we

have

|s1θ1 + · · · + snθn| ≥ e−Sε
.
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The following three examples are easily deduced from Corollary 1.

Example 1. Let (x1, . . . , xn) be a tuple of complex numbers which satisfies

a linear independence measure condition. There exists a positive constant c =

c(n, x1, . . . , xn) such that the function

cD2+(1/n)h(h + log D)(log h + log D)−1

is a simultaneous approximation measure for the 2n numbers

x1, . . . , xn, e
x1 , . . . , exn .

Example 2. Let β1, . . . , βm be Q-linearly independent algebraic numbers.

There exists a positive constant c = c(β1, . . . , βm) such that the function

cD1+(1/m)h(log h + D log D)(log h + log D)−1

is a simultaneous approximation measure for the numbers eβ1 , . . . , eβm.

Example 3. Let α1, . . . , αm be non zero algebraic numbers. For 1 ≤
i ≤ m, let λi be a determination of the logarithm of αi. Assume the numbers

λ1, . . . , λm are Q-linearly independent. Then there exists a positive constant

c = c(λ1, . . . , λm) such that

cD2+1/m(h + log D)(log h + log D)1/m(log D)−1−1/m

is a simultaneous approximation measure for the numbers λ1, . . . , λm.

The next three examples are consequences of Theorem 2.

Example 4. Let m ≥ 1 and n ≥ 1 be positive integers, (x1, . . . , xm)

be a m-tuple of complex numbers satisfying a linear independence measure

condition, and (y1, . . . , yn) be also a n-tuple of complex numbers satisfying a

linear independence measure condition. There exists a constant c > 0 such

that a simultaneous approximation measure for the m + n + mn numbers

xi, yj, exiyj (1 ≤ i ≤ m, 1 ≤ j ≤ n)

is

cD1+m+n
mn h(h + log D)

m+n
mn (log h + log D)−

m+n
mn .
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Example 5. Let K be a number field of degree D, β, β′
1, β

′
2 be elements

of K, λ1, λ2 λ′
1, λ

′
2 elements in L such that the algebraic numbers

α1 = eλ1 , α2 = eλ2 , α′
1 = eλ′

1 , α′
2 = eλ′

2

are in K. Assume λ1, λ2 are linearly independent over Q and β is irrational.

Let B ≥ e and B′ ≥ e be real numbers with

h(β) ≤ log B, h(1 : β′
1 : β′

2) ≤ log B′.

Let A1, A2, A′
1, A

′
2 be positive numbers, all ≥ e2, and E a real number ≥ e,

which satisfy

log A1 log A′
2 = log A2 log A′

1

and, for i = 1, 2,

h(αi) ≤ log Ai, h(α′
i) ≤ log A′

i,

and

|λi| ≤ D

E
log Ai, |λ′

i| ≤
D

E
log A′

i.

Assume

log E ≤ D log Ai ≤ min{B, B′}, log E ≤ D log A′
i ≤ min{B, B′},

log E ≤ D log B′, log B′ ≤ B, log B ≤ B′

and

log E ≤ D log B
log A1

log A2
, log E ≤ D log B

log A2

log A1
.

Define

U = D2(log B)1/2(log B′)1/2(log A1 log A2 log A′
1 log A′

2)
1/4(log E)−1.

Then

|λ1 − β′
1| + |λ2 − β′

2| + |βλ1 − λ′
1| + |βλ2 − λ′

2| > exp{−230U}.

Example 6. Let λ1, λ2 be two elements of L which are linearly indepen-

dent over Q and let θ be a complex irrational number which satisfies a linear

independence measure condition. Then there exists a constant c > 0 such that

the function

cD2(h + log D)h1/2(log D)−1
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is a simultaneous approximation measure for the five numbers λ1, λ2, θ,

eθλ1 , eθλ2.

Theorem 2 can be extended: in place of βjβ′
i, on may consider more gen-

erally algebraic numbers βij. Here is an example dealing with simultaneous

approximation of logarithms of algebraic numbers (compare with [11] § 10,

Th. 10.1 and remark p. 423–424).

Theorem 3. Let d1 and $1 be positive integers and let M = (λij) be a

d1 × $1 matrix with coefficients in L. Let r be the rank of M . Assume the

the d1$1 numbers λij are linearly independent. Set κ = (1/d1) + (1/$1). Then,

there exists a positive constant c such that the function

cDrκ+1(h + log D)rκ(log D)−rκ

is a simultaneous approximation measure for the d1$1 numbers λij (1 ≤ i ≤ d1,

1 ≤ j ≤ $1).

4 Results: Measures of Linear Independence.

The story concerning Conjecture 2 is quite rich. We refer to [5] and [12]

for extensive references, including works of A.O. Gel’fond, N.I. Fel’dman and

A. Baker, just to name a few.

Here is the state of the art on this topic.

Theorem 4. For each m ≥ 1 there exists a positive number C(m) with the

following property. Let λ1, . . . , λm be logarithms of algebraic numbers, define

αj = exp(λj) (1 ≤ j ≤ m), and let β0, . . . , βm be algebraic numbers. Denote

by D the degree of the number field Q(α1, . . . , αm, β0, . . . , βm) over Q. Further,

let B, E, E∗ be positive real numbers, each ≥ e and let A1, . . . , Am be positive

real numbers. Assume

log Aj ≥ max

{
h(αj),

E|λj|
D

,
log E

D

}
(1 ≤ j ≤ m)

log E∗ ≥ max

{
1

D
log E, log

(
D

log E

)}
and B ≥ E∗. Further, assume either
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(i) (general case)

B ≥ max
1≤i≤m

D log Ai

log E
and log B ≥ max

0≤i≤m
h(βi)

or

(ii) (homogeneous rational case)

b0 = 0, βi = bi ∈ Z (1 ≤ i ≤ m), bm $= 0

and

B ≥ max
1≤j≤m−1

{ |bm|
log Aj

+
|bj|

log Am

}
.

If the number

Λ = β0 + β1λ1 + · · · + βmλm

is non zero, then

|Λ| > exp{−C(m)Dm+2(log B)(log A1) · · · (log Am)(log E∗)(log E)−m−1}.

A discussion of the explicit value for C(m) is given in Chapter 12 of [12].
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