SYMMETRIC POWERS OF NAT SL(2,K)

ADRIEN DELORO

In magnis et voluisse sat est.

Abstract. We identify the representations K[X*, Xk~1y ... Y¥]
among abstract Z[SLz(K)]-modules. One result is on Q[SLy(Z)]-
modules of nilpotence length < 5 and generalises a classical “qua-
dratic” theorem by Smith and Timmesfeld; there is indication that
the result is close to optimal in the direction. Another one is on
extending the linear structure on the module from the prime field
to K. All proofs are by computation in the group ring using the
Steinberg relations.

We study here certain representations of the group SLy(K) as an abstract group;
more precisely, we aim at identifying the various symmetric powers of Nat SLy(K),
conveniently thought of as the various spaces of homogeneous polynomials in two
variables with fixed degree, among Z[SLy(K)]-modules. Differently put, we study
the inclusion of the class of representations of the algebraic group SLs over the
field K, in the wider class of Z[SLy(K)]-modules. The question may sound not
quite irrelevant to admirers of the Borel-Tits Theorem on abstract homomorphisms
between groups of points of algebraic groups; we deal with abstract modules instead.

We cannot use Lie-theoretic, algebraic geometric, nor character-theoretic meth-
ods since SLy(K) is to us but an abstract group and K is arbitrary. We cannot
even use linear algebra since we do not assume our modules to be vector spaces.
Our only method is then brute force computation in images of the group ring. So
the problem rephrases into: To which extent is the representation theory of SLs(K)
determined by the “inner” group-theoretic constraints?

The present study is therefore yet another instance of the general problem of
investigating representations of algebraic groups from a purely group-theoretic per-
spective, which we tackled in [3] and [4]. It can however be read independently of
the latter two articles and was written in this intention.

One should simply recall a result first proved by F. G. Timmesfeld and S. Smith
separately. In what follows, Nat stands for the natural representation, here the
action of SLy(K) = SL(K?) on K2. Moreover U stands for a unipotent subgroup of
SLs(K), and the assumption on the U-length being 2 means that U acts quadrati-
cally: for all uy,us € U, one has (u3 —1)(uz —1) = 0 in End(V). One word on this
assumption — since we are dealing with abstract modules instead of vector spaces,
there is no dimension around. Unipotence length is then the natural candidate to
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measure the complexity of target modules; the length of Nat SLy(K) is 2 (and more
generally the length of Sym"* Nat SLy(K) is also its dimension over K, namely k+1).

Timmesfeld’s Quadratic Theorem ([9, Theorem 3.4 of chapter IJ, also [8]). Let
K be a field, G = SLy(K), and V be a simple Z|G]-module of U-length 2. Then
there exists a K-vector space structure on V' making it isomorphic to Nat SLo(K).

Our original motivation was to find a similar result identifying the adjoint repre-
sentation, viz. the action on 2 x 2 matrices with null trace, among cubic G-modules,
i.e. modules of U-length exactly 3, with an obvious definition. As a matter of fact,
our very first step towards the adjoint representation was a joint work with G.
Cherlin in the context of model theory [2]. The present work could be taken as an
insane expansion of the former; see our final corollary.

Our work is independent from the more general study led by M. Griininger
[5], which takes place in Timmesfeld’s theory of abstract “rank one groups” [9].
Griininger deals with abstract groups not necessarily isomorphic with SLo(K), and
this loose assumption leads to numerous difficulties we ignore by being restrictive
on the group.

Returning to representations of SLo(KK) seen as abstract modules, we divided the
problem into two tasks: first deal with the prime field K, then go up from the prime
field K; to the extension field K. The dominant inspiration for doing so was the
idea arguably due to Chevalley that the group SLy(K) is a vertebrate animal, viz.
with an endoskeleton and then flesh on it: that is, that fundamental group-theoretic
constraints can be seen at the level of the subgroup of points over the prime subfield,
and that these bony relations are naturally clad in well-rounded copies of the field.
Our two main results stated below reflect this two-step methodology; notice that
the first tried to be excessively ambitious and pretended to analyse the skeleton at
the level of the very integers.

Theorem 1. Let V be a Q[SL2(Z)]-module. Suppose that for every unipotent ele-
ment u € SLa(Z), (u—1)°> =0 in End V. Then V has a composition series each
factor of which is a direct sum of copies of Q®zSym" Nat SLy(Z) for k € {0,...,4}.

Theorem 1 is proved in §1 by an excessively painful computation which Maxime
Wolff could legitimate, but not eliminate, with a geometric argument reproduced in
§1.3. This leaves us with a number of questions we wish to ask and briefly comment.
In what follows n will stand for the least integer (if any) with (u—1)" = 0 in End(V);
our Theorem thus requires n < 5.

e What happens to Theorem 1 when one assumes n = 6 instead of n < 57
As will be shown in Proposition 2 of §1.3.2, essentially due to infinite-
ness of triangular groups, there can be nothing so favourable with n > 7:
meaning that even if one could do something with n = 6 (the achievability
of which the author cannot guess) our Theorem is close to optimal. This
also indicates that the natural context for §1.3 is hyperbolic geometry.
e What happens to Theorem 1 with @Q instead of Z and no bound on n?
As for the behaviour over F), instead of Q and no bound on n, we do not
know either but this should be classical.
e Does Wolff’s geometric argument contain, or suggest, a less computational
proof of Theorem 17 Or put differently, does the computation in §1 contain,
or bear, some geometry (in any sense)?
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The paper is a call for help and we will be delighted to offer a bottle of
Scotch whisky to anyone explaining what is going on.

On the second task, namely predicting the structure of an SLy(K)-module just by
looking at the restricted SLy(K;)-module structure where K; is the prime subfield,
we obtained the following. The double factorial is defined by n!! = n - (n — 2)!! and
@©1M means a direct sum of copies of M indexed by some set I.

Theorem 2. Letn > 2 be an integer and K be a field of characteristic 0 or > 2n+1.
Suppose that K is 2(n—1)!1-radically closed. Let G = SLy(K) and V' be a G-module.
Let Ky be the prime subfield and G1 = SLa(K;). Suppose that V is a Ky-vector
space such that V ~ @&; Sym™ ' Nat Gy as K4 [G1]-modules.

Then V' bears a compatible K-vector space structure for which one has V ~
@®;Sym™ ! Nat G as K[G]-modules.

Theorem 2 is proved in §2 by a lighter computation which goes so smoothly that
there may be something more general to look for.

Finally let us mention parallel work on sl3(K). Theorems 1 and 2 may be com-
pared with the conclusions of [4], a study of Z[slz(K)]-modules where sl3(K) is the
set of 2 X 2 matrices with null trace seen as a Lie ring, i.e. endowed with an ad-
dition and a Lie bracket but no vector space structure. We followed the two-step
methodology discussed above; as one shall see the skeleton of the Lie ring is much
more rigid than that of the group, arguably because of the Casimir element.

Fact ([4, Variations n° 17 and n°18].). Let n > 2 be an integer and K; be a prime
field of characteristic 0 or > n+ 1. Let g1 = 5l2(Ky) and V' be a g1-module. If the
characteristic of K is 0 one requires V' to be torsion-free. Suppose that " = 0 in
End V; if Ky has characteristic p withmn < p < 2n, suppose further that y™ = ™ =0
in End V.

Then V = Anny(g1) @ g1 -V, and g1 -V is a Ky-vector space with g1 -V =~
@Z;ll &1, Symk Nat g1 as Ky g1-modules.

Fact ([4, Variation n°19].). Letn > 2 be an integer and K be a field of characteristic
0 or > n. Let g = sly(K) viewed as a Lie ring and V be a g-module. Let Ky be the
prime subfield of K and g1 = slz(Ky). Suppose that V' is a Ky-vector space such
that V ~ @; Sym™ ! Nat g; as Kig1-modules.

Then V' bears a compatible K-vector space structure for which one has V ~
@®7Sym™ ' Nat g as Kg-modules.

These two results are merely mentioned and will not be used. Before we start
we wish to thank: Antonin Guilloux and Maxime Wolff (see §1.3) on the one hand
for their geometric help, and Alexandre Borovik and Gregory Cherlin on the other
hand, who patiently endured earlier and even longer computations.

1. COMBINATORIAL SKELETON

In this section we study SLy(Z)-modules of short length. The main result is
Theorem 1 from the introduction, which we prove by a most brutal computation in
§1.2. Allow us to insist that for us SLy(Z) is nothing but a pure group; we do not
endow it with structure inherited from the algebraic group functor SLsy, and must
therefore do clumsy, “pedestrian” identification.

Notation. Let Gy = SLa(Z).
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We let Nat SLo(Z) stand for Z? as the natural Z[SLo(Z)]-module, and we also
let Sym® Nat SL3(Z) stand for its k" symmetric power. Such modules do not have
good divisibility properties, so we shall be interested in the tensored Q[SL2(Z)]-
modules Q ®z Sym" Nat SLy(Z).

Notation. Let Symg Nat Gy = Q ®z Sym” Nat SL, (7).

Hence Symé Nat Gy is the (k+1)-dimensional space spanned by X* X*=1y ...
Y* over Q and endowed with the usual action of SLy(Z) < SL2(Q) on polynomials.

§1.1 yields a trivial criterion used in the highly computational §1.2. §1.3 is a
meditation on the geometric contents of the latter, a meditation entirely due to
Maxime Wolff. And since we reach a dead-end, further questions we mentioned in
the introduction are suggested in §1.4.

1.1. Notations and Criteria. Criterion 2 below will be used systematically in
§1.2 to prove Theorem 1. We need a few notations.

. (11 (0 1
Notation. Let u = (O 1) and w = (1 0).

We know that i = w? generates Z(Gy).
Relations (Steinberg relations). (uw)® = 1.

The length £(V) of a Go-module V is the least (if any) k with (v — 1)* - V = 0.
Notation. If V is £(V)!-divisible and £(V)!-torsion-free, let x = logu € End V.

Criterion 1. Let n > 2 be an integer and V' be a Q[SLa(Z)]-module of length < n.
Suppose that for allk =1...n one has in EndV':
1 n—k n—1 __ (71)717]@ k—1 n—1
Then V' has a Q[SLs(Z)]-submodule Vr such that V/V+ has length <n—1, and
Vr~@; Symaf1 Nat SL2(Z) as Q[SLa(Z)]-modules.

k

Proof sketch. For k =1...n, the maps m = Ww”_ wa™ lwz*~1 are orthog-

onal idempotents; V1 = @ immy, is a Q[Gy]-submodule, and V1 = (Go-imm)g. O

Remark. Here is a dual statement: if V' has length < n and in End V' holds
ﬁx"‘lwmn_kw = ((_kllz)lk 2" lwzF~1, then V has a submodule V| of length
< n such that the quotient V/V, ~ @, Sym(gf1 Nat SL2(Z) as Q[SL2(Z)]-modules.

Note that under the assumptions of Criterion 1 one can define the subgroup
Vi as N}'_, ker m,, and that one does have im (1 — Y 7_, 7;) < Vi . But it is not
clear whether V) is Gg-invariant. Our “dual” assumption forces this as a simple
computation shows.

One could also argue by duality. In general, if V' is a Q[SLy(Z)]-module of finite
length then so is the dual space V*, and the following holds. Let b be a word in
x and w and d be the word written in reverse order; let (v, f) € V x V*. Then
(b- f)(w) = (=1)" - f(i°d - v) where i is the central involution, and the integers r
and s are easily computed from b.

Here, one can check that if V satisfies the dual assumption ﬁz"’lwx"*kw =

n—k
%x”’lkaﬂ, then the dual module V* satisfies the assumptions of Criterion
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1. Hence V* has a submodule V7 with the desired properties. Omne then sets
Vi =(V)t ={veV:Vpe V& o) =0}, which meets the requirements.

Criterion 2. Let n > 2 be an integer and V' be a Q[SL2(Z)]-module of length < n.
Suppose that for all k =1...n one has in EndV :
1 n—k n—1 __ (_1)n—k k—1 n—1
= k)!wx wz"T = -1 T we

Suppose further either ker z Nker(z"~tw) =0, or V = imx + im(wa"1).

ThenV ~ @, Sym(&f1 Nat SLy(Z) as Q[SLa(Z)]-modules.

Proof sketch. In the notations of Criterion 1, it suffices to see V' = Vv. This
is clear if V = imz + im(wz"™!); if kerz N ker(z" 'w) = 0, let ¢ = ((n —
nH2xk (), m¢ — 1) and prove that for k=n...0, g =0, s0 > 7 = 1. O

Remark. Since the equation in the assumption is not self-dual, one of the two
arguments would not suffice to prove Criterion 2.

Here is a dual statement: if in End V' one has kerz N ker(z"*w) = 0 or V =
imz + im(wz™~ 1), and ﬁx”’lwx”*kw = %x"flka’l, then we reach
the same conclusion as in Criterion 2.

This is because if V' is a Q[SL2(Z)]-module of finite length, then (setting Z (W) =
ker(z*) when acting on W): V = imx +im(wz" 1) iff Z;(V*)Nw - Z,_1(V*) =0,
and Z1(V)Nw - Z,—1(V) =0 iff V* =imz + im(wz""1).

Of course there are similar statements for F,,[SLy(F),)]-modules if p > n.

1.2. The Long Computation. The present §1.2 is dedicated to proving Theorem
1 by means of a tedious computation. A reader not enjoying heavy calculations
should skip it and jump to §1.3.

Theorem 1. Let V be a Q[SL2(Z)]-module. Suppose that for every unipotent ele-
ment u € SLa(Z), (u—1)°> =0 in End V. Then V has a composition series each
factor of which is a direct sum of copies of Q®7Sym" Nat SLo(Z) fork € {0,...,4}.

Remarks.

o If (u—1)3 = 0 the series even splits: V is a direct sum of submodules of
the desired type. We shall check it in due time.

e Powers k in Theorem 1 may appear with repetitions. We do not even know
whether terms can be rearranged in non-decreasing power order.

e We shall not use all of the Q-vector space structure during our compu-
tations. A Z 1 -module is enough to derive our formulas. In particular,
Theorem 1 has an analogue for F,[SLy(F,)]-modules (p > 5) — which we
suspect could also be obtained with much less effort.

The proof of Theorem 1 starts here. Writing V' = Cy (i) @ [V, i], we may assume
that ¢ = +1 in End(V'). We shall build the series inductively. For V of length ¢ we
construct a non-maximal series of submodules 0 = Vi < --- < V,,, = V such that:
e for j <m, V;/V;_1 has length < ¢,
e V/V,,_1 either has length < ¢, or satisfies the assumptions of Criterion 2
(depending on the value of the involution in End V).
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1.2.1. Notations and Remarks. In order to analyse modules we need to isolate a
“quadratic” radical, a “cubic” radical, and so on. This requires a few notations.

Notation. Let Z;(V) = ker(u — 1)7 and ZJ’?(V) =Z;(V)nw- Zx(V).

For instance Z1 (V) = ker(u — 1) Nker((u — 1)w) = Cy (u, wuw1) = Cy(Gy).
We have let z = log(1 + (u — 1)), so that u = exp(x). Clearly Z,(V) = ker(x’“)
4

Notation. Let Quad(V) = ZZ(V)+ Z3(V) and Cub(V) = Z}(V)+ Z3 (V) + Z1(V).

Nothing guarantees that the Q-vector subspaces Quart(V) and Cub(V) are
Q[Go]-submodules: we prove it as follows.

Notation. Let ¢ = cosh(r) and s = sinh(z), so that u =c+sand u™! =c — s.

Relations. If i = 1 in End V, then wew = cwe + sws and wsw = —cws — swe.
If on the other hand i = —1, then wcw = cws + swec and wsw = —cwe — sws.

Proof of Claim. In EndV one has by the Steinberg relations uwu = (wuw)™! =

wulw and v wu! = i(uwu) ! = jwuw. O

Observation. Quad(V) is always Go-invariant; if ¢ = 1 then so is Cub(V).

Proof of Claim. First suppose i = —1. Let us show that Quad(V') is G-invariant.
Its w-invariance is obvious (and will no longer be mentioned in similar arguments).
Clearly  maps ZZ(V) to Quad(V). Finally if ay = wb; € Z3(V), then:

2 2 2 2 2

rwras = —x wswwas = rcwcwas + rswswas = rcwwas =0

so xag € Z(V) < Quad(V), and this shows that  maps Quad(V) to itself: the
latter is therefore (u,w) = Go-invariant.

We now suppose ¢ = 1. To prove Go-invariance of Quad(V') we argue similarly
and take as € Z3(V):

waxag = x2w5wwa2 = —z?cwsway — xzswcwag = fx25wwa2 =0

which shows Gy-invariance of Quad(V).
To prove Gy-invariance of Cub(V') (still assuming ¢ = 1 in End V) there are two
non-trivial verifications. First let a3 € Z3(V). Then:

2wras = r2wswwas = —z?cwswas — X swewas = —rsaz = 0

so zag € Z3(V) < Cub(V). Now let ay € Z2(V'). Decomposing under the action of
the involution w, we may assume that was = £as, say was = €as. Hence:

TWTA2 = EXWSWaA2 = —ELCWSAy — EXSWCAY = —ETLCWTA2 — ETSWaAs = —EXCWITAY

So (1 + ec)zwzay = 0. In any case x3wzras = 0, so zaz € Z3(V) as desired. O

1.2.2. General Formula.
Relations. If i = 1 in End(V'), then:

L 5 I 4 3.1 3
0=—-3s —3ws — 3sw + 3cws + 3swc + 596 wu + —u" wx +§uwx w

2

1 1 1 1 1
(E4) + §wm3wu_1 + 1x4wu — Zu_lwx4 + Zuwx‘lw — iwx‘lwu_l
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If on the other hand ¢ = —1, then:

L 5 1 3 1 1 3
0 = 3cws + 3swc + 3cw — 3we + 3¢ + 533 wu + §uwx w + §u wT
1 1 1 1 1
(E-) — —wrdwu™t + —rtwu + ~wrtwut — —u T w4 —uwatw

2 4 4 4 4
Proof of Claim. Since the length is at most 5, one sees that:
1 1 1
02:20—1—1—1:54; 82:20—24-1%4; cs:s+§m3
First suppose i = 1 and get ready for a long computation.

0= (uwu — wu_lw) cw

Lewe — wu™tsws

2we + weswe — wesws + wsws

= uw (62 + cs) w — wu
= ywcw + vwesw — we

1 2 2

=u-+ wws?w + vwesw + weswu~ T — ¢ — ws“we + ws“ws

=s+ vws?w — ws?wu ! + uwesw + weswu !

1 1 1
= s+ uw <2c2+4z4>ww<202+4x4>wu1+uw <5+2:173>w

1
+w (s + 21“3) wu !

1
= s + 2ucwc + 2usws — 2u + Zuwm4w — 2cweu™ ! — 2swsut 4 207t

— fwx4wu*1

4

Set R = %uw:z:Sw + %wx

3 1

_ _ 1 _
— UCWSs — uswc + iuwx?’w — Cwsu L swcu 1 + iwx wu

3 4 1 4

W — FWT wu~! and resume.

wu”t + %uwx
0 = s + 2we + 2s%we + 2eswe + 2esws + 25%ws — 2u — 2ew — 2cws? + 2cwes
— 2swes + 2sws? + 2uTt — ws — s2ws — csws — cswe — s2we — cwes
+ cws? — sw — sws? + swes + R
= —3s + 2we + s2we + cswe + csws + s2ws — 2cw — cws? + cwes — swes

2

+ sws® —ws —sw+ R

3

1 1 1
—3s 4+ 2we + 2cwe — 2we + Zx‘lwc + swec + —xwe + sws + §x3ws + 2cws

1 1 1
— 2ws + Zm‘*ws — 2cw — 2cwe + 2cw — chzzc‘L + cws + —cwz? — sws

4

1 1
— §swx3 + 2swe — 2sw + stx —ws —sw+ R

1 4 1 3 1 1 4
—38+Z:c wu + 3swe + 5.%‘ wu + Jcws — 3ws — —u~ T wT

1
+ §u_1w$‘3 —3sw+ R

1 3

1 1 1
= —3s — 3ws — 3sw + 3cws + 3swe + —z3wu + —uv  wz + §uwx w

2 2
1 1 1 1 1
+ §wm3wu_1 + 1x4wu — Zu_lwx4 + iuwx‘*w — wa‘lwu_l
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If i = —1, there is a similar computation. O

We now proceed by increasing complexity of the expected factors; let n be the
least integer such that ™ = 0 in End(V).

1.2.3. Casen =2, i =1. Suppose i = 1 in EndV and n = 2, so that ¢ = 1 and
s=um.
The equation (E; ) rewrites as —3x = 0, so = 0; V is clearly Gy-trivial.

1.2.4. Casen=2,4=—1. Suppose n =2 and i = —1 in End(V).

The equation (E_) rewrites as 0 = 3wz + 3zw + 3, whence zw + wz = —1.
Therefore zwz = —x; on the other hand Z} (V) = Cy(Gy) < Cy(w) = 0 since i
inverts V. The requirements of Criterion 2 are met: V is therefore a direct sum of
copies of Sym(a Nat SL2(Z) = Q ®z Nat SLy(Z).

1.2.5. Case n = 3, i = —1. Suppose i = —1 in End(V) and n = 3, so that
c:lJr%:cz and s = x.

The equation (E_) rewrites as:

3 2 3 2 3 o 3 2 3 o

(E_3) O:3wx+§x wx+3mw+§xwx —|—§x W= 5w —|—3+§x
Multiply (E_3) on the left by 22 and on the right by z: 32?wz? = 0. Multiply
(E_3) on the left and on the right by 2: 3zw2?+ 322wz + 322 = 0. Finally multiply
(E_3) on the left by 2%: 3x?wz+322 = 0. So there remains zwx? = 0, and therefore
im(2?) < ZH(V) = Cy(Go) < Oy (w) = 0 since i inverts V.

Hence 22 = 0 in End(V'). This case is known.

1.2.6. Casen=3,4=1. Suppose n =3 and ¢ = 1 in End(V).

The equation (E.) rewrites as 0 = —3z — 3wz — 3zw + 3wz + 322wz + 3zw +
%xwxz = -3z + %x%}x + %xwxz, or:
(E4s) 22wz + rwr? = 2z

On the other hand:
(Ets) wrwr? = wswr® = —cwsz? — swex? = —zwr?
Notation. Let V| = Quad(V).
Claim 1.2.6.1. V| is Go-trivial; V/V| is a direct sum of copies of Symé Nat Gg.

Proof of Claim. First recall that V) is a Gp-submodule; by the case n = 2, =1 it
is Go-trivial: hence V; = Quad(V) = Cy (Gy).

Multiply (Ey3) on the right by x, and find in End(V): 2?wz? = 222. On the
other hand by (E,3): wrwz? = —zwx?.

These formula still hold of the action on the quotient module V = V/V,. By
the first paragraph now applied in V, Z2(V) < Quad(V) < Cy (Go) = 0. But
Cy (Go) = 0: since the congruence subgroup Gj, acts trivially on the preimage of
Cy(Gp), so does Gy. So Z(V) = 0 and V meets the requirements of Criterion

2. ¢
For the current case n = 3 we promised to split the composition series.
Notation. Let V¢ = im(z?) + im(wz?) + im(zwz?).

Claim 1.2.6.2. V7 is a direct sum of copies of Symé Nat Go; V/V7 is Go-trivial.
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Proof of Claim. Gy-invariance of V7t is obvious thanks to (F13/). Recall that in
End(V), 2?wz? = 222 and wrwr? = —zwx?; these still hold in End(V7). Moreover
one easily sees that Z; (V1) = im2? and w - Z2(V7) = im(w2?) + im(zwz?) are in
direct sum. So V1 meets the requirements of Criterion 2 and has the desired form.
Since 2 annihilates the quotient module V/V7, the latter is Go-trivial by the case
i=1,n=2. 0O

Finally let ¢ be a term in x and w which evaluates to 0 on the Gy-trivial line and
to 1 on the adjoint representation (take for instance my + 2 + w3 with the notations
of Criterion 1). Since g is 1 on V/V|, kerq < V| < kergq. Since ¢ is 0 on V/V7,
ker(¢—1) < V1 < ker(q—1). Moreover ¢-V < V7 s0 g(¢—1) = 0 in End V. Hence
V=kerq®ker(¢g—1) =V, @ V7.

Remark. One could proceed to module identification by using an action of the Lie
ring sl2(Z). Let indeed:

Y 1= —wWIW = —wWsw = cws + swe
L o 1 2
=wr + - Wwr + rWw + ZTWI";
2 2
1 1
h:= [z,y] = zwz + 2w + §x2wx2 —wz? — 5:5211&2 — zwx
= 22w — wa?
One finds [h, 2] = 2?wx + zwa? = 22 by (Ey3), and [h,y] = —hwrw + wrwh =
whxw — wrhw = 2wzw = —2y. We thus retrieve an action of sl3(Z) on V3 it

extends to an action of sl3(Q), and we could conclude with the techniques of [4].

1.2.7. Casen =4, i=1. Suppose i =1 in End(V) and n =4, so that c=1+ %xQ
and s =1z + %x?’.
Bear in mind that Cub(V) is G-invariant.

Claim 1.2.7.1. Cub(V) and V/ Cub(V) are cubic modules.

Proof of Claim. This is obvious for Cub(V). For the quotient, we first derive a
formula in End(V). Multiply equation (E) on the right by 2z%: one finds 0 =
wrd + vwrdwr?® + wrdwr® = (u + Dwzdwz® + 23wz3, so dividing on the left
by u + 1, an invertible element in End(V), one gets wawx? + %xgwxg = 0. Now
multiply on the left by (2w — 1), and find z3wz3 = 0 in End V.

It follows that z3 -V < Z3(V) < Cub(V): so the quotient module V/Cub(V)

has length at most 3. O

Remark. The module V itself need not be cubic. As a matter of fact pushing the

computation to its limits yields in End V' the equation 23w +wz? + 22wz + zwz? =

2z, an equation we do not use but which certainly controls the extension Cub(V')-
by-V/ Cub(V) in a large measure.

1.2.8. Casen=4,4i=—1. Suppose n =4 and i = —1 in End(V).
Claim 1.2.8.1. Z}(V) < Z}(V).

Proof of Claim. Let a; € Z}(V). Then equation (E_) applied to a; simplifies into:
0 = 3zwa; + %xzwal +3ay, s0 ay € ZZ(V). O

Claim 1.2.8.2. (623 + 23wz3) - V = (wzwa® — 2zxwa®) - V < Quad(V).
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Proof of Claim. Multiply equation (F_) on the right by z3:
0 = 3swz® + 3cwz® — 3wz + 323 + %m?’wﬁ + %uwxgwxg — %wx?’wxg
=3(u — Nwa® + 32° + %x?’wxs + %(u — Dwz*wx®
so multiplying on the left by u‘”—jl = 2+ 0(2?), one finds 3z2wz3 + %wax wz? = 0.

Hence im(62% + z3wz?) < w - Z3(V); inclusion in Z;(V) is obvious so im(6z3 +
dwrd) < Z3(V) < Quad(V).

3

Moreover:
wrtwr® = w(2e — 2)wa®
= 2cwsx® + 2swea® + 23
= 2zwa® + %xgwxg + 223
whence im(wr?wz? — 2zwz?) = im(62° + wr3) < Quad(V). O
Notation.

o Let V1 = Quad(V), 7 be the projection map modulo Vi, and V= V/Vi.
o Lot Vo = Quad(V), Vo = 7~ (Va), and V = V/Va.

We know that Vi and Vi ~ Va/V; are quadratic Q[Gp]-modules. By Claim

1.2.8.2, one has in End (V), and therefore in End (V) as well, z3wz3 = —623 and

wr?war® = 2zwx>. But this is not enough in order to apply Criterion 2.

Claim 1.2.8.3. Z3(V) = 0.

Proof of Claim. Let 7 be the projection map modulo Vs, V3 = Quaud(V)7 and V3 =
7r_1(V3) It is clear that Vi, Va/Vi, and V3/Va are quadratic modules. So far we
have constructed a quadratic-by-quadratic-by-quadratic submodule V3 < V.

By Claim 1.2.8.2, one has z?w(6x3 + z3wa?®) = 0 in End(V3) (actually even
in End(V)). Since V3 is quadratic-by-quadratic-by-quadratic, one has in End(V3):
2?wrdwz® = 0. So x?wx® = 0, and z3wx® = 0. Always by Claim 1.2.8.2, one
has in End(V3/V1): 623 + 23w2® = 0 (actually even in End(V/V3)). So 2% = 0 in
End(V3/V7). Hence V3/V; is actually a cubic module; by the case n = 3,4 = —1, it
is therefore quadratic, i.e. V3 = V. This proves Quad(V) = 0.

Finally by Claim 1.2.8.1, one has Z; (V) < Quad(V) =0. O

We may now apply Criterion 2 to V; the composition series 0 < V3 < Vo <V
has the desired properties.

1.2.9. Case n = 5, i = —1. Suppose i = —1 in End(V) and n = 5, so that
c=1+42?+ 3;2* and s =2 + La®.

Bear in mind that Quad(V) is Go-invariant. The author is certainly naive,
but he is still puzzled by not having been able to prove that for the expected
definition, Quart(V') is. He did not succeed modulo Quad(V) nor even modulo
71 (Quad(V/ Quad(V))). So here is a slightly revised definition.

Notation. Let Quart' (V) = Z}(V)+(Z3(V)Nker(z*wz?w))+(Z3(V )Nker (ztwz?) )+
Zy(V).
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Claim 1.2.9.1. If ay € Z}(V), then 6a; + 6zxwa; + z3wa; + rwrdwa; = 0; in
particular 6a; + z3wa; € Quad(V).

Proof of Claim. Apply equation (E_) to such an element a1, and find: 0 = 3swa;+
3cway — 3waq + 3a; + %xgwal + %(u — Dwzdwa; = 3a; + 3(u — 1)way + %x3wa1 +
1(u — )wadwa;. Multiply on the left by - = 1+ O(z): one gets 0 = 3a; +
3rway + %mg'wal + %xwx‘?’wal. So with by = 6a; + 2*wa; € Z;(V), one has

zwby = —by € Zl(V), and by € Z12(V) < Quad(V) <>
Claim 1.2.9.2. Quart’(V) is Go-invariant.
Proof of Claim. If a1 € Z$(V), then by Claim 1.2.9.1, 6a; + x*wa; € Quad(V).

Equivalently: for ay € Z}(V), one has 6way — 23a4 € Quad(V).
So let ay € Z} (V). Write b = way and q = 6b; + x3wb; € Quad(V). Then:

1
P2wzray = 2w <s — 6:r3> wby

2

1
= 22cweby + 22 swsby + gx wxwb;

1
= 2%wb; + éwa(q — 6b1)

= 22wb; — 2%wb, =0

This shows xay € Z2(V). Moreover xtwz3as = r*w(6way — q) = 0: hence zay €

Quart’ (V).
Now let az € Z2(V) Nker(z*wz?). Then:

rdwzras = —rdwswwas = i cwewas + 3 swswas = rPwwas + rrwswas
4 L4 9
= —x"cwcaz = _§$ wx“az =0

Moreover ztwzlwzas = x4w(20 -2 - éx‘l)wxag = 2ztcwszas = 2xtwa?as = 0,

so zaz € Quart’ (V).
Finally let ag € Z3(V) Nker(z*wx?w). Then:
ztwray = —rtwswway = rtcwcway = %x4wx2wa2 =0
and this shows zas € Quart’(V'), which concludes the verification. O
Claim 1.2.9.3. z*wz*wx* =0 in End(V).

Proof of Claim. Multiply equation (E_) on the left and on the right by z%, and
find 0 = %x4wx4wx4. O

Let Vi = Quart’(V). Since by Claim 1.2.9.3 one has r*wz*wz* = 0 in End(V),
one finds zwz* -V < ZH(V) < Vi. Let V = V/V; and let 7 be the projection map
modulo V;. Then ztwa?* - V =0.

Let Vo = Quart’(V) and Vp = 7'1'_1(‘./2). Then z* -V < Vo so V = V/V5 has
length at most 4.

By the case i = —1, n = 4, one can refine the series 0 < V; < V5, < V into
another one with the desired properties (we do not know whether powers Sym*
appear in non-decreasing order in the latter series).

Remarks.
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e There may be a formula similar to the one given in the final remark of case
n=4,1=1 (§1.2.7), but this exceeds our computational capacity.

e The author cannot answer the following: let V have length 4. What can
one say about V/ Quart’(V)?

1.2.10. Case n=5,4=1. Suppose n =5 and ¢ = 1 in End(V).
Claim 1.2.10.1. Z}{(V) < Z3(V).
Proof of Claim. Apply equation (E,) to a; € Z#(V) and find:

L 3 1 3 Lo 3
0= ix way + iuwx waq + iwx waq
or, ¥3way + (u + 1)wrdwa; = 0. Dividing on the left by u + 1, one gets %x?’wal +
wrdwa; = 0; since 3 + w is left-invertible in End(V), we find z3wa; = 0 as
claimed. O

Claim 1.2.10.2. (24z3wz?* — p3wrtwz?) -V < Cub(V).

Proof of Claim. Multiply equation (E,) on the right by z*:

1 1 1 1 1
0= §x3wx4 + §uwx3wm4 + §wx3wx4 + Zw‘lwx‘l + Zuwac‘lwac‘1
1
— wa‘lwx‘l
L g 41 3 o4, Ly o401 4.4
= —z’wz” + = (u+ Nwrwz” + -z wz” + —(u — Nwz wx
2 2 4 4
Multiply on the left by %H =2—z+ Lo
1 1 -1
0 = 23wa* — Zxtwz? + 2wrdwr* + Zztwz* + me4wz4
2 2 u+1
= 23wzt + 2wrwrt + tanh (g) wrtwz?
1 1
(Eis) = pwat + 2wrPwat + §xwx4waz4 — ﬂzg’waflwx‘l

Multiply the latter (which we shall use again later) on the left by (1 + w):

1 1
0 =3(1 + w)z*wz* + 5(1 + w)rwrtwrt — ﬂ(l + w)rdwrtwr?

Incidently:

1
(1 + w)zwrwz* = (xwm4w +w (s - 6333) wx4w) zt

1
= <xwx4w — swcm4w — C’U)SIAIU — gwx?’wx‘lw 1'4

1
= _6(1 + w)rdwrtwr?

So our computation simplifies into:

1
0=3(1+w)zdwz* — g(l + w)zPwrtwz?
Hence im(24z3wz?* — 22wrtwz?) < [V,w] Nker2? < Z2(V) < Cub(V). O

Notation.



SYMMETRIC POWERS OF NAT SL(2,K) 13

o Let V1 = Cub(V), 7 be the projection map modulo Vi, and V =V/W.
e Let Vo = Cub(V), V2 = 71 (Va), i be the projection map modulo V3, and
V=V/Vo =V /Vh.

Claim 1.2.10.3. In End V, one has ztwz? = 242*, wrwaz? = 22wzt and wrdwaz? =

—6zwat.

Proof of Claim. By Claim 1.2.10.2, (24z3wz2* — x3wztwa?) -V < Vi, so that
(2423wa* — 2Pwrtwz?) -V = 0. Tt follows that (24z* — zlwz?) -V < Z3(V) <
Cub(V) = Va. In particular, in End(V), one finds 24z* = z*waz?.

Still in End(V’), this implies:

1
wrlwrt = w (20 —2— 12x4) wzt

= 2cwz? — 22% — 2wzt

1
= 2wz + 22wzt + Ex4wx4 —2z% — 2wzt
= 22wzt

And finally, always in End(V') and using equation (Ey5) proved in Claim 1.2.10.2:

1 1
wzx? + Qwaiwz? + ixwx4wx4 — —dwrtwz?

24

= 23wzt + 2watwz? + 122wzt — PPwa?

0=2a>

so that wrdwz? = —6zwx*. All is proved. O

Like in §1.2.8 this is not quite enough to conclude, as one must control Z{ (V).

Notation. Let Vs :Cub(V)7 Vs = #-1(V3), 7 be the projection map modulo Vi,
and V' = V/V3 ~ V/Vs; also define V4 = Cub(V), Vi = 7 1(V4), T be the

Claim 1.2.10.4. Z{(V) = 0.

Proof of Claim. Let V'5 = Cub( V') and Vs = 7T_1(V5)

Now Vs = Vs/Va is a cubic-by-cubic-by-cubic module. But Vs < V/Vy = Vv
also satisfies 24wz = 242* by Claim 1.2.10.3. Hence in End Vs, one has 0 =
rrwztwz? = 2422* and Vj is actually a quartic module. By the case n = 4,i = 1
we know that it is actually cubic-by-cubic. Hence Vs <V, and Vs = V.

As a consequence, by Claim 1.2.10.1, Z§(V) < Z3(V) < Cub(V) = 0. O

One may therefore apply Criterion 2 to the action of Gy on V' ~ V/Vj. Finally
the series 0 < V; < Vo < V3 <V, < enjoys the following properties:

o V1, Vo/Vh, V3/Va, and V,/V3 are cubic hence known;
e V/V, is isomorphic to a direct sum of copies of Sym* Nat.

We are done. End of the proof of Theorem 1. O

1.3. A Geometric Interpretation. The arguments in §1.3 are all due to M. Wolff
(in personal communication).
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1.3.1. Short length. In order to prove Theorem 1 we followed the most naive path:
we built consecutive subquotients of V' in which we could determine the collection
of words in z and w. So the proof can provide explicit (additive) generators of
the subalgebra (SL2(Z)) < End V. Forgetting about V, this amounts in a sense to
trying to bound the number of additive generators of the quotient Z[SLa(Z)]/((u —
1)) of the group ring by the ideal generated by (u — 1)". Theorem 1 (or more
precisely its proof since the statement was over Q) has the following immediate
consequence.

Proposition 1. Forn <5, Z[SLy(Z)]/((u — 1)™) is a finitely generated Z-module.

Whether there is a converse proof, from Proposition 1 to Theorem 1, is unclear.
We now give an independent and purely geometric proof of Proposition 1.

The proof of Proposition 1 starts here. The proof makes use of the Bass-Serre tree
of PSLy(Z) = (w, (uw)) ~ Z/27Z % Z/37Z. Since the arity 2 vertices (associated to
Z,/27) bear no combinatorial information, we shall forget them and keep only the
arity 3 vertices (associated to Z/37Z). In what follows, “vertex” will always mean:
ternary vertex, and “edge” will mean: oriented edge between ternary vertices.

Notation. Let V be the set of vertices and E be the set of edges.

PSL3(Z) acts on V with good properties [7, I, §4.1, Theorem 7]; however the
associated action of SLo(Z) is not faithful, so we shall decorate the tree. The
following must be obvious to the experts.

Observation. There is a regular action of SLe(Z) on E' = E x {0,1} lifting the
action of PSLy(Z) on E.

We call the elements of E’ coloured edges.

Notation.

e Let M = Z[F’] be the Z-module freely generated by the elements of E’;

e let N < M be the submodule generated by the elements (u; — 1)™ - ¢, for
up € {gutlg™t:g € Go}and € € E/;

e let Q = M/N.

By construction the following holds.
Observation. Z[SLa(Z)]/((w — 1)™) is finitely generated as a Z-module iff @ is.

Fix some vertex vg. Call height of a coloured edge the distance (in the ternary
tree V') between its origin and vy. We shall prove that coloured edges of bounded
height suffice to generate @, by rewriting modulo IV every coloured edge of sufficient
height as a Z-linear combination of edges of lesser height. (If m origin-vertices suffice
to do it, the number of generators of @ will be bounded above by 6m.)

Now notice that for any € € E’ and u; € {gu™'g~':g € Go}:

n
_ k+1 (T K
5—2(—1) (Ic) uj -e mod N
k=1
So in order to show that Z[SL2(Z)]/((u — 1)™) is finitely generated as a Z-module,
it suffices to show that for e of sufficient height, there is u; € {gu*'g™' : g € Go}
taking all iterates uj - €,...,u} - € to (edges congruent with) edges of lesser height.
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We then entirely forget about coloured edges and focus on vertices: it suffices
to show that isometries of the tree of the form u; € {gu*'g™ : g € Gy} can
recursively take far away vertices and their first iterates closer to vg. The following
is obvious when one realises V' in the Poincaré upper half-plane [7, I, §4.2].

Observation. For any ordered triple (a,b,c) € V? of adjacent vertices with a # c,
there is u; € {gutlg™!: g € SLy(Z)} mapping a to b and b to c.

Geometrically, such an element u; acts as a translation of length 1 along a
geodesic line always turning in the same direction; we call such a transformation a
good map.

Let vy be the vertex we fixed and ag be another vertex at sufficient distance; we
are looking for a good map f such that for i = 1,...,n, a; := f*(ao) is closer to vg
(implicit: than ag was).

Let [vg, ag] = (vo,v1,...,v4 = ag) be the minimal path from vy to ap; we may
suppose d > 6. Fixing arbitrarily one oriented edge ending at vy but not starting
at v; we may represent the path as its turn sequence, i.e. the sequence of lefts and
rights (vo;t1,...,tq) with (¢;) € {¢,7}%.

Observation. If the turn sequence has k consecutive r’s or £’s not starting at t¢q,
then there is a good map f such that a; = f*(ag) is closer to vy for i = 1...2k + 1.

Proof of Claim. Locate the repetition in the turn sequence; let f be the good map
taking the k*® vertex labelled r to the (k — 1)™ and the (k — 1)*® to the (k — 2)*®
(this does make sense even if k = 1). O

Consequence 1. Proposition 1 holds of n < 3.
Proof of Claim. There is a good map f taking ai,as,as closer to vg. ¢
Consequence 2. Proposition 1 holds of n < 4.

Proof of Claim. If the turn sequence has a genuine repetition, i.e. k consecutive
similar turns not starting at ¢; with k£ > 2, then we are done.

So suppose not: up to dyslaterality, the path [vg,ag] is (vo,...,va—a; €, 7, 7).
Let f be the good map taking ag = vg to vg_1 and v4_1 to vg_o. Then a; and as
are strictly closer to vg; so is ag since d(vg, az) = d(vg, a2) + 1 = d(vg,a9) — 1. On
the other hand d(vg, as) = d(vo, ag), so it suffices to prove that iterates of by = a4
can be taken closer to vg. But now the path [vg, a4 is (vo,...,va—3;7,7,£) with a
genuine repetition: whence the claim. O

Consequence 3. Proposition 1 holds of n <5.

Proof of Claim. Here again we may assume that there is no genuine repetition in
the turn sequence: [vg, ag] = (vo, ..., v4—¢; ¢, 7, L, 7, ;7). As above let f be the good
map taking ag = vg to vg_1 and v4_1 to vq_2; as above a1, as, as are closer to vy,
and a4 at constant distance but with a repetition.

So it suffices to show that ¢y = a5 and its iterates can be taken within distance
< d of vg; now [vg, co] = (vo, - - -, V4—2;7, ¢, £); be careful that d(vg,co) =d+ 1. Let
g be the good map taking vg_o to vq_3 and vg_3 to vg_4. Then letting ¢; = gi(co)
it is easily checked that:

e [vg,c1] = (voy ..., v4—2;£,0);
e [vg,ca] = (vo,...,v4—3;¢,0);
e [vg,c3] = (vo,...,Vi—6);
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o [vg,cq4] = (vo, ..., V4—g;7,7,L);
o [vo,c5] = (vo, ..., v4—5;1, 7, 4,7, 0).
So for ¢ = 1...5, [vg,¢;] is strictly shorter than d or has length d and bears a
genuine repetition: we are done. O
End of the proof of Proposition 1. O

This lovely argument does not yield a composition series; as a matter of fact it
does not even provide a way to identify simple Q[SLz(Z)]-modules of short length.

1.3.2. Longer Length.
Proposition 2. Ifn > 7, then Z[SLa(Z)]/((u — 1)™) is not finitely generated.
Proof. The ring under consideration admits as a quotient Z[SLa(Z)]/((u — 1)7),

which in turn maps onto:

ZSLo(Z))/ (7,i— 1,u” — 1, (u —1)7) = F7[PSLa(Z)]/(u” — 1) = F7[H]
where H is the quotient of PSLy(Z) by the normal closure of u”. Hence H =
{(u,w|(uw)? = w? = u” = 1) is the (“ordinary”) triangle group (2,3,7), which is
infinite [6, §II1.7]. It follows that F7[H] is not finitely generated as a Z-module,
and neither is Z[SLa(Z)]/((u — 1)7). O

It is now clear that the path to Theorem 1 we took is simply hopeless in length
n > 7. Our curiosity is sufficiently aroused to ask the following.

Question. What happens when n =67
But we prefer to leave the scene before the geometers arrive.

1.4. Before We Move On. The original goal of our work was to study some
SLa(K)-modules of length n. As Proposition 2 shows, the behaviour of SLo(Z)-
modules of length n grows wild with n and a naive interpretation of our “two-step
methodology” (see the introduction) over the integers cannot succeed.

Of course working over the ring of integers was too ambitious; over ), one may
hope to prove Theorem 1 with no restrictions on n (but for decent values of p) by
arguments from finite group theory.

Question. Let G = SLy(F,) and V' be an Fy[G1]-module of length n < p. Does
V' have a composition series with every factor of the form @y, Sym” Nat G, ¢

The answer must be known [1]; apparently not so in characteristic 0.

Question. If V is a Q[SLy(Q)]-module of finite length, what happens?

2. SCALAR FLESH

The current section deals with SLg(K)-modules. After a few liminary remarks
we shall prove Theorem 2 in §2.3.

Notation. Let K be a field and G = SLo(K); u,w € G are defined like in §1.1. Let
U = Cg(u), a mazimal unipotent subgroup.

Notation. For V a G-module let Zo(V) =0 and Zy11(V)/Zx(V) = Cv )z, (v)(U).
The length of V' is the least k (if any) with Z, (V) = V.
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2.1. A Bitter Remark.

Observation. Let V' be an SLy(K)-module of length n. Then (G - (Z;(V) Nw -
Zn-1(V))) has length at most n — 1.

Proof of Claim. We claim that (G - (Z1(V)Nw - Z,—1(V))) < Zp_1(V). Let a1 €
Zy(V)Nw-Z,—1(V) and g € G. Write the Bruhat decomposition G = B U BwU of
G = SLs(K), where B = Ng(U). Notice that the subgroups Zj (V) are B-invariant,
and distinguish two cases:

e ifge B, theng-a; € Z1(V) < Z,_1(V);

e if ¢ = bwu with obvious notations, then g-a; = bw - a1 € Z,—1(V),
which proves the observation. O

Remark. Such an argument for SLg(Z)-modules would have delighted us. Yet
SL2(Z) has no Bruhat decomposition. Actually our tedious proof of Theorem 1
suggests precisely that in short nilpotence length one may at some cost find some-
thing like a weak form of such a decomposition.

The observation is not so useful anyway: nothing guarantees that V=V <§ .
(Z1(V)Nw-Z,_1(V))) is well-behaved; i.e., we cannot control Z,(V)Nw- Z,_1 (V).
(Tterating has no reason to terminate after finitely many steps.)

2.2. From the Integers to the Rationals. Here we start using the full Steinberg
relations for SLy(K).

Notation. For A € Ky (resp. K*) let uy = (1 i‘) and ty = <>\ /\_1>,

Relations. t,uxt,—1 = uy,2 and whw =ty 1 = t;l.
Relations (Steinberg relations). uywuy-1wuyw = ty.

Notation. Suppose that a G-module V' has length n and is n!-divisible and n!-
. —1)k
torsion-free. Then for A € K, let z) =loguy = ka(—l)’“‘“%.

Observation. Let V be a Q[SL2(Q)]-module. Suppose that for some unipotent
element u € SL2(Q), (u—1)> =0 in End V. Then V has a composition series each
factor of which is a direct sum of copies of Sym” Nat SLy(Q) with k € {0,...,4}.

Proof of Claim. By assumption v — 1 is, in End V', nilpotent with order say n.
Since every element in Q is an integer multiple of a square, it follows from [3,
Variations n°5 and n°6] that V' has U-length at most n: every element in U has
order at most n, and we may take logarithms in End V. Then for any integer a # 0,

axr ] .
e « =u% =wu=e" and therefore z1 = %x, so for any A € Q*, )y = Az in End V.
a a

We now show that every term in the composition series (as an SLy(Z)-module)
provided by Theorem 1 is SLo(Q)-invariant; it suffices to show that each term is
T-invariant where T is the group of diagonal matrices, since SL2(Q) = (SL2(Z), T).

But in any Q[SL2(Q)]-module of finite length, ker z is T-invariant. This holds
since for any rational A # 0, ) = Az, so they have the same kernel; in particular
kerz = Cy(u) = Cy(U), which is therefore T-invariant, and so is Z7 (V). In the
n = 5,4 = —1 case one also had to take some intersections (see the definition of
Quart’ in §1.2.9). But tyztwaz?ty-r = zlwai_ . = Mztwz?, so ker(ztwz?) is
T-invariant as well. This shows that the SLy(Z)-submodules Quad(V'), Cub(V),
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Quart’ (V) are actually SLy(Q)-submodules, and the same holds in any subquotient
of V.

Hence all terms in our composition series are Q[SL2(Q)]-modules. We may focus
on one term and assume V ~ @; Sym@ Nat SL2(Z) as Q[SLg(Z)]-modules. As
we saw the action of u determines that of uy, which by the Steinberg relations
determine that of ¢, and all these elements act like on Sym” Nat SLy(Q). O

Remark. We do not know whether this may hold in longer length or not (see §1.4).
2.3. The Isotypical Case.

Notation.

e The double factorial n!! is the two-step factorial n(n —2)(n —4)...
e The notation ;M stands for a direct sum of copies of M.

Recall that K is k-radically closed if for any o € K, o € K implies o € K.

Theorem 2. Letn > 2 be an integer and K be a field of characteristic 0 or > 2n+1.
Suppose that K is 2(n—1)!1-radically closed. Let G = SLy(K) and V' be a G-module.
Let Ky be the prime subfield and G1 = SLa(Ky). Suppose that V' is a Ky-vector
space such that V ~ @ Sym™ ! Nat Gy as K4 [G1]-modules.

Then V' bears a compatible K-vector space structure for which one has V ~
@®7Sym" ' Nat G as K[G]-modules.

(We give some slightly different versions after the proof.)

Proof. Let again U = Cg(u) = {ux : A € Ki}; let Zy = {0} and Zyy1/Zk =
Cvyz,(U); also let Zp = Zp Nw - Zypi1—p; the former are B = Ng(U)-submodules;
the latter are only 7= B N wBw~'-submodules. Of course w - Zj, = Znﬂ,k.

Let Uy = UNG;. Since V has U;-length n and is n!-divisible and n!-torsion-free,

the definition z = logu = Zk>1(71)’“+1% makes sense in End V.

Notation. For a1 € Z1, k=1...n, let:

Cr(ar) = (n%k)!xnfkw “ay

By definition, ¢,(a1) = wa;. Clearly (i(a1) € Zi, but it is not clear a priori
whether it lies in Z;,. Finally note that ¢y, 1(a1) = (n — k)¢ (a1).

Claim 1 (analysis over K;i). V has U-length n; V = ;;:lzk. The ¢ maps define
additive isomorphisms Z; ~ Z,, whereas  maps Zj41 to Z. Moreover, for any
a; € Z1, and any integer k =1...n:

o 27 1Gk(ar) = ()" Ay
o w(i(ar) = (=1)"*Cup1r(ar).

In particular any of these formula imply ¢;(a;) = (—1)"ta;.

Proof of Claim. We keep writing U; for U N G;. Define Cy = {0}, Cr41/Cx =
CV/Ck(Ul); and Cp, =C,Nw - On+1—k-

By inspection in Sym"™ ! Nat G4, one sees that Ly, (V) =mn, that V = @;;Zlc'k,
that the maps (; define additive isomorphisms Cj =~ Cy and z : ék+1 — Cy
likewise, and also that the announced formula are correct. So it suffices to check
Cy =2, forany k=1...n.
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Always by inspection, Cy = {v € V : VA € KJ, ty - v = A"T172%y} (here we use
the assumption that the characteristic, if not zero, is > 2n + 1). But for A € K,
A H1=2F Jies in K; which is the prime field; since the action of T is compatible
with the Z-module structure, it is compatible with the K;-vector space structure.
It follows that C} is T-invariant.

Hence C; <T-Cy, <T -Cy(Uy) = Cy({tut™! : t € T}). Now every element in
K is a square, so C; < Cy(U) = Z; and equality follows. Then use induction. ¢

_ _ k41 (=D
It therefore makes sense to let zy =loguy =3, (~1) -

Claim 2 (a Timmesfeld equation). For k=1...n, A € K*, ay € Z;:
(-t

n—1
Proof of Claim. We first show something completely different: let us prove by de-
scending induction on k = [241] ... 1:

th - Celar) = CeTan+1-2xC2(a1)

Tyn+1-2kCri1(a1) = (n — k)trCr(ar)

e Let k= | ]. There are two cases, depending on n modulo 2.
— If n is odd, then n = 2k — 1, and one has:

w- G = (1" ok = (1)1

Depending on k modulo 2, w inverts or centralises Z; in either case
w inverts T, so T centralises Z. In particular:

Tyn1-21Cri1(a1) = 2Cey1(ar) = (n — k)Ce(a1) = (n — k)txCe(a1)
— If nis even, then n = 2k. Let £ € K* be a square rootvof Aand by € 73
be such t4(x(a1) = (i (b1): this exists since (j : Z1 ~ Zj, is onto. Then:
awtoCr(ar) = ot; ' wl(ar)

)" Faty g1k (ar)
—1)"*t A Crra (ar)

)

)

k2 (b1)

so multiplying by t,: (n — k)taCk(a1) = 2xCr1(a1).
e Suppose the formula holds of &k > 2 and let us prove it at k — 1. Start with
T2ni1-2m Cpy1(a1) = (n — k)ta2Cx(ar) and apply @y cui1-2n2:
Ty (nt1-2m2 Tx20nt1-20) Gt 1(A1) = Ty nrr-2i02 (0 — k)r2Cr(ar)
=(n—k)tx2Tyni1-2m2 aCr(a1)
= (n — k)tx2Zy(nrs—2m)(n1-20) (e (1)
= Ty2mt1-20 Ty (ni1-2002 Got 1(A1) = Tnzcnpr-20) (0 — K)Ean+1-20 G (an)
— (0= B)tyeosaylar)
=n-—kn+1—Fk)txnri-2xC—1(a1)

Multiply by t;Q: x/\(n+3—2k)(n—1—2k)ck(a1) = (’Il +1- k)t)\"*F?ka—l(al)
Since K has all its (n — 1 — 2k)*™® roots, rewrite as: zynts—2x(x(a1) = (n +
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1 — k)txCk—1(a1), which is the desired formula. This concludes induction
and proves the auxiliary formula.
We now return to the equation we want: let k& < |25 ].
We know that x maps Zk+1 to Zj, and we claim that so does z. Let indeed
£ € K* be a square root of A, so that z) = tgxtzl. Now Zy41 is T-invariant, so

1 maps Zk+1 to Z which is T-invariant, and x) maps Zk+1 to Zy.

n—k—1

xt,
Z ~
It follows that xyn+1-2xx way € Zi. We now note, by inspection over Ky,

that (b ~11d; = (1)} Ez:;;: Id, . Therefore:

—1 n—1

%Ckwmﬂf%@(al)
B (_1)n71 1
= ﬁCkCE}\nJrl—zk ml’

Cka:kflx/\nﬂ—zkx”*k*lwal
(n—1)!

oo Y e k= Dl (a)

=z kxA"“*?kaJrl(al)
= taCk(ar)
So the formula holds of k < [2£L]. It then holds as well of n + 1 — k, since:
tx - Curior(ar) = (=1)" FtawCe(ar)
(—1)"_kth_1Ck(a1)

— (_1)n7kw (_1)n71<

n—1

kL )\2k—n—1 Cg (al)
)n—l

_ (_1)n—k (_1

1 wgkx)ﬂk—n—l Cg(al)

(71)7171
= ﬁ<n+1—k$)\n+l—2(n+l—k)<2 (al)

This completes the proof of the Timmesfeld equation. O

Notation. For k=1...n, a1 € Z1, and X € K*, let:

(-

A Gelar) = n—1

Cewaa(ar)

As Gy : Z1 ~ 7, is a bijection and V = EBZ:le, A - v is defined for any v € V.
Claim 3. This defines a K-vector space structure compatible with the action of G.

Proof of Claim. Additivity in a; is obvious. So is additivity in A: since (2(a1) € Zo,
one has xxy,(2(a1) = zx2(a1) + z,¢2(ar).

By the Timmesfeld equation, A"*1=2% . ¢, (a;) = ¢y - (x(a1). Now K has all its
(n + 1 — 2k)*" roots and T is commutative, so multiplicativity in A follows, and
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linearity of T" as well. Linearity of w is obvious, since:

(~1)"

wA - Grlar)) = ——

wrrala(ar)

_1\n—1/_1\n—k
= ( 1) n—(ll) Cn—&-l—kx)\CQ(al)
= (1" Gugr-n(a1)
= A (=) ¢up1-k(a1))
=X (wk(ay))

To prove linearity of G it therefore suffices to prove linearity of u, which amounts
to proving that all restrictions = : Zx41 — Zj, are linear, which amounts to proving
that all the maps (;, are. Now remember that (;(a;) = (—1)""ay, so that:

Ce(X-a1) = (=1)" " Ce(X- Ca(ar))

_1\n—1/_1\n—-1

- = - E 11) CkCreagz(ar)
_1\n—1

= %CkaCZ(al)

=X (r(ar)

as desired. O

V is therefore a K[G]-module, clearly of the desired form. O

Remark. Assuming that K is quadratically closed might be necessary for even n
as well: we could not complete the analysis with n = 4 and K only cubically closed.

Remark. For the computations properly said, it would be enough to work in
characteristic > n. The assumption that the characteristic, if not zero, is > 2n+1,
is used only in Claim 1 of the proof, in order to find a T-invariant definition of
C. When the characteristic is too low we found no such definition. But supposing
C = Z; suffices to run the argument.

Alternatively, suppose that K has characteristic 0 or > n + 1 and is 2(n — 1)!!-
radically closed. Let u € K be an (n — 1)!I'"" root of unity; let K, = K;[u] and
G, = SLy(K,). If V is a K,[G]-module such that V =~ @®;Sym" ' Nat G, as
K, [G,]-modules, then the conclusion of Theorem 2 holds since one may characterise
Cras {v €V :t, v=p""1"2*y} which proves T-invariance.

As an illustration, here is a cubic analogue of Timmesfeld’s Quadratic Theorem.

Corollary. Let K be a quadratically closed field of characteristic # 2,3, G =
SLy(K), and V be a simple Z[G]-module of U-length 3. Suppose that Cy (u) =
Cy(U) for any u € U\ {1}. Then there exists a K-vector space structure on V
making it isomorphic to AdPSLy(K).

Proof. Analyse over K; with Theorem 1; since Cy (u) = Cy(U) and by simplicity,
there are only adjoint summands. Then apply Theorem 2. (I

Future variations will explore minuscule modules for the simple algebraic groups.
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