Raconte-moi... la conjecture de Cherlin-Zilber en rang 3

Adrien Deloro

Séminaire «Raconte-moi»

juin 2020

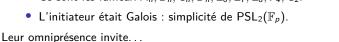
Dans cette partie :

- 1 Cadre et motivation Trois théorèmes et une conjecture Groupes de rang de Morley fini
- éléments sur la preuve en rang 3 Identification dans le bon cas Radicalisation dans le mauvais cas Élimination dans le mauvais cas
- ① L'exposé à l'envers (si le temps le permet) Origines de la conjecture Le programme de Borovik

Groupes de transformations

Les groupes de transformations de l'espace linéaire sont des groupes de matrices. Ex. : $PGL_2(\mathbb{K}) = GL_2(\mathbb{K})/Z(GL_2(\mathbb{K}))$ (dont il sera question) contrôle $\mathbb{P}^1(\mathbb{K})$.

- Programme d'Erlangen (Klein): unifier les géométries linéaires en langage groupe-théorique.
- Ces groupes ont émergé surtout à partir du modèle réel, ce qu'on appelle la « théorie de Lie ».
- Mais on peut/doit les envisager sur d'autres corps.
 Groupes simples dits « de type Lie »/« de Chevalley ».
 Dans cet exposé, « simple » sera toujours au sens des groupes abstraits.
 - Ce sont les fameux A_n , B_n , C_n , D_n , E_6 , E_7 , E_8 , F_4 , G_2 .



C. Chevalley (1909–1984)

Groupes de Lie linéaires

Un groupe de Lie linéaire, c'est un sous-groupe $G \leq GL_n(\mathbb{R})$ fermé. Outre la loi de groupe on a plusieurs couches structurelles :

- information infinitésimale;
 (G est une variété différentielle)
- information Lie-théorique ; $(T_eG \text{ porte une structure algébrique ; puis système de racines})$
- information algébrique linéaire (liée à $G \leq GL_n(\mathbb{R})$, ex. : décomposition « de Jordan »).

Théorème (Lie-Killing-Cartan)

Soit G un groupe de Lie simple. Alors G est de Chevalley.

Démonstration.

Classifier les algèbres de Lie simples, i.e. les « systèmes de racines ».

Groupes algébriques linéaires

Un groupe algébrique linéaire, c'est un groupe de matrices $G \leq GL_n(\mathbb{K})$ donné par des équations polynomiales.

Outre la loi de groupe on a plusieurs couches structurelles :

- information « rationnelle »
 (varier le corps K; en fait je devrais parler de « groupe de K-points »);
- information topologique (topologie « de Zariski », valable sur tout corps; \neq top. métrique sur $GL_n(\mathbb{C})$);
- information algébrique linéaire.

Théorème (Chevalley)

Soit G un groupe algébrique simple. Alors G est de Chevalley.

Démonstration.

En variant le corps, reconstruire les infinitésimaux et l'algèbre de Lie.

Groupes simples finis

Un groupe fini, c'est un groupe abstrait G dont l'ordre est fini. Outre la loi de groupe on a plusieurs couches structurelles :

- information arithmétique (Sylow etc.);
- information caractère-théorique
 (on peut concevoir la classe des représentations de G).

Théorème (Galois-Jordan-Mathieu-Brauer-Gorenstein; non exhaustif)

Soit G un groupe simple fini. Aux exceptions près, G est de Chevalley.

Esquisse de démonstration.

Considérer les involutions de G.

La conjecture de Cherlin-Zilber

Comme si Lie/algébriques/finis étaient 3 sommets émergés d'un continent sous-marin :

Méta-conjecture

Les groupes de géométrie linéaires n'étant pas accidentels, il existe une théorie englobant ces théorèmes de classification.

Nb. La « th. de Chevalley » part d'objets connus, ne classifie pas de groupes abstraits.

La théorie des modèles propose *des* cadres pour les mathématiques « de complexité modérée ». Exemple :

Conjecture (Cherlin-Zilber)

Soit G un groupe simple de rang de Morley fini. Alors G est de Chevalley.

C'est *le pire de tous les mondes* : pas d'arithmétique, pas de topologie, pas de représentations, pas de vision « atomique » de la matière (Jordan).

Abstraction : dimension sans topologie

Commune aux groupes de Lie, groupes algébriques, groupes finis :

une notion de dimension.

- Dimension différentielle sur les groupes de Lie;
- dimension « de Zariski » sur les groupes algébriques;
- dimension 0 sur les groupes finis (l'ordre tient lieu de multiplicité).

Idée : abstraire le concept de dimension.

Quelles parties portent une dimension?

- en Lie, les sous-variétés (← trop topologique);
- en algébrique, les constructibles (← bonne intuition);
- en fini, on peut toujours compter (← irréaliste).

La généralisation naturelle des constructibles est la classe définissable.

Parties définissables

La classe définissable généralise la classe constructible, sans géométrie. Soit G un groupe abstrait. On considère toutes les parties données par :

- les équations de groupe à paramètres (ex. : $\{g : gag^{-1} = b\}$);
- les combinaisons « et/ou/non » ;
- les projections $G^{n+1} \rightarrow G^n$ (ex. : $\{g : \exists x : g = xax^{-1}\}\)$;
- les quotients par relations d'équivalence de cette nature (ex. : G/H).

Nb. On rate typiquement G' et les « groupes engendrés ».

Fait

- Si $G = \mathbb{G}(\mathbb{K})$ est algébrique, alors tout constructible est définissable.
- Si $\mathbb K$ est alg. clos, tout définissable est constructible (Chevalley-Tarski).

Évidemment, pour un groupe abstrait, c'est compliqué. (« Quelles sont les parties déf. du groupe libre? » : Sela, Kharlampovitch-Myasnikov).

Rang de Morley

On peut dorénavant abstraire la notion de dimension.

Définition

Un groupe de rang de Morley fini est un groupe dont les définissables portent une dimension entière, « à la Zariski » :

- dim $A \ge n+1$ ss'il existe des B_i déf. de dim $\ge n$ avec $\bigsqcup_{i \in \mathbb{N}} B_i \subseteq A$;
- constructions naturelles sur les fibres des fonctions (typiquement si $f:A\to B$, alors $\dim A=\dim \inf f+\dim \operatorname{fibre} \operatorname{générique}$);
- un truc technique sur l'infini (← pour que ça reste de la théorie des modèles).

Ex. Soient \mathbb{K} alg. clos et $G = \mathbb{G}(\mathbb{K})$ pour la dimension de Zariski. Alors G est « de rang de Morley fini ».

Conjecture (Cherlin, Zilber; fin années 1970)

Soit G simple de rang fini. Alors $G \simeq \mathbb{G}(\mathbb{K})$.

Corps et matière

Conjecture (Cherlin, Zilber; fin années 1970)

Soit G simple de rang fini. Alors $G \simeq \mathbb{G}(\mathbb{K})$.

Tous les corps considérés seront algébriquement clos. Raison :

Théorème (Macintyre 1971)

Soit

K un corps infini de rang fini. Alors

K est algébriquement clos.

- C'est une première indication positive.
- En revanche il existe des corps de rang k > 1
 (cf. géométrie où dim K = 1),
- et même \mathbb{K} où \mathbb{K}_+ ou \mathbb{K}^\times ont des sous-groupes déf. non triviaux (cf. matière dans groupes alg. linéaires : \mathbb{G}_a et \mathbb{G}^m sont minimaux).

En conclusion, on n'a pas de contrôle « au niveau atomique ».

Dans cette partie :

- Cadre et motivation Trois théorèmes et une conjecture Groupes de rang de Morley fini
- éléments sur la preuve en rang 3 Identification dans le bon cas Radicalisation dans le mauvais cas Élimination dans le mauvais cas
- 3 L'exposé à l'envers (si le temps le permet) Origines de la conjecture Le programme de Borovik

Énoncé et structure de l'argument

Conjecture (Cherlin, Zilber; fin années 1970)

Soit G simple de rang fini. Alors $G \simeq \mathbb{G}(\mathbb{K})$.

Théorème (Frécon 2017)

Soit G simple de rang 3. Alors $G \simeq PGL_2(\mathbb{K})$.

- Il a fallu près de 40 ans pour le savoir ; début années 2010, certains croyaient encore que ce serait faux.
- Rappel : ni Lie, ni topologie, ni représentations, ni « matière fine » . . .
- La démonstration a trois étapes principales :
 - identification dans « le bon cas » ;
 - 2 radicalisation dans « le mauvais cas » ;
 - 3 élimination du « mauvais cas ».

Ces étapes furent portées par trois contributeurs différents.

Identification: Cherlin 1979

Soit G simple de rang 3.

Proposition (Cherlin 1979)

Si G possède un sous-groupe de rang 2, alors $G \simeq PGL_2(\mathbb{K})$.

Cherlin reconstruisait à la main la « décomposition de Bruhat », i.e. la géométrie interne au groupe $G = BwB \sqcup B$.

Proposition (Hrushovski 1989)

Si H est simple et agit sur un ensemble de rang 1, alors $H \simeq PGL_2(\mathbb{K})$.

Proposition (Altınel-Wiscons 2018)

Si H est simple et agit sur un ensemble de rang 2, alors dim H < 8; l'égalité impose $H \simeq PGL_3(\mathbb{K})$.

Cherlin 1979, d'après Hrushovski

Proposition (Hrushovski 1989)

Si H est simple et agit sur un ensemble X de rang et multiplicité 1, alors $H\simeq \mathsf{PGL}_2(\mathbb{K}).$

Démonstration.

- *H* est strictement 3-transitif (non trivial).
- Soit $\infty \in X$. Alors $(\operatorname{Stab}_H(\infty), X \setminus \{\infty\}) \equiv (\operatorname{GA}_1(\mathbb{K}), \mathbb{A}^1(\mathbb{K}))$.
- [Digression.] En fait l'émergence d'un corps à l'intérieur des stabilisateurs (en K₊ × K[×]) a été généralisée par Zilber.
 Fait troublant : les groupes de rang de Morley fini résolubles non nilpotents définissent des corps : lemme de Schur définissable.
 (Conséquence : preuve élémentaire de Borel-Tits par Poizat).
- À partir de là, on fixe $0,1,\infty\in X$ et l'on identifie $G\simeq \operatorname{PGL}_2(\mathbb{K})$.

Géométrisation: Nesin 1989

Soit G simple de rang 3.

Proposition (Nesin 1989)

Si G n'a pas de sous-groupe de rang 2, alors il n'a pas d'involutions.

C'est pathologique! En effet :

- 1 tout groupe algébrique simple a des involutions (on connaît les groupes algébriques linéaires de dimension $1 : \mathbb{G}_a, \mathbb{G}^m$);
- 2 tout groupe simple fini (non abélien) a des involutions. C'est le théorème de Feit-Thompson dont il n'y a pas d'équivalent rangé. Nb. Même modulo un Feit-Thompson rangé, Cherlin-Zilber reste ouverte.

Nesin 1989, d'après D.-Wiscons

Proposition (Nesin 1989)

Si G n'a pas de sous-groupe de rang 2, alors il n'a pas d'involutions.

Démonstration.

- « Analyse locale » : soit A < G de rang 1. Alors $G = \bigsqcup_{g \in G} A^g$. (Pathologique.) On suppose qu'il y a des involutions.
- On construit une géométrie d'incidence $\Gamma = (points, lignes, plans)$ vérifiant les axiomes d'un espace projectif de dimension 3.
- Γ est coordinatisable (Hilbert-Desargues), donc $G \hookrightarrow \operatorname{Aut}(\mathbb{P}^3(\mathbb{K}))$. \mathbb{K} est alg. clos (Macintyre).
- Th. du point fixe de Borel appliqué à $\overline{A}^{\sf Zar} \leq {\sf Aut}(\mathbb{P}^3(\mathbb{K})) \curvearrowright \mathbb{P}^3(\mathbb{K})$:
- A possède un point fixe dans l'action régulière $G \curvearrowright G$.
- Contradiction.

Élimination: Frécon 2017

Soit G simple de rang 3, sans sous-groupes de rang 2.

Proposition (Frécon 2017)

Il n'existe pas de tel G.

- Marqué par Nesin, Frécon a rédigé sa preuve en termes de géométries (points, droites, plans). Une partie de son travail est consacrée à montrer qu'il n'y a pas de plans, et l'autre à en construire. À aucun moment il ne regarde les axiomes d'incidence...
- Marqués par Frécon, Poizat et Wagner persistent en termes
- géométriques.
- On peut douter de cette approche.

Frécon 2017, d'après Poizat-Wagner

Proposition (Frécon 2017)

Il n'existe pas de G simple de rang 3 sans sous-groupes de rang 2.

Démonstration.

- [Nesin.] *G* n'a même pas d'automorphisme involutif.
- $G \times G$ agit sur $\Omega := \{ \text{parties déf.} \} / \text{« essentiellement égales »}.$
- Pour $g \in G$, on appelle symétrie σ_g la fonction $\omega \mapsto g\omega^{-1}g$.
- $Y \subseteq G$ est confiné si $Y \subseteq_{i=1}^k g_i H_i$, avec $H_i < G$ sous-groupes déf.
- Lemme général. [G simple sans automorphisme involutif]. $\forall \omega \in \Omega$, l'ensemble $\Sigma(\omega) := \{g \in G : \sigma_g(\omega) = \omega\}$ est confiné.
- Soit $c_0 = [a_0, b_0]$ « générique » ; soit $X := \{a : \exists b \ [a, b] = c_0\}$.
- Brefs calculs de commutateurs : dim X=2, puis dim $\Sigma(X)=2$.
- Mais il n'y a pas d'ensemble confiné de rang 2! Contradiction.

Dans cette partie :

- 1 Cadre et motivation Trois théorèmes et une conjecture Groupes de rang de Morley fini
- éléments sur la preuve en rang 3 Identification dans le bon cas Radicalisation dans le mauvais cas Élimination dans le mauvais cas
- 3 L'exposé à l'envers (si le temps le permet) Origines de la conjecture Le programme de Borovik

Catégoricité

Définition

Une structure algébrique (i.e. relationnelle, sans information « de plus haut ordre ») \mathbb{S} est κ -catégorique si à isomorphisme près, il existe une unique structure \mathbb{S}_{κ} de cardinal κ ayant les mêmes propriétés logiques que \mathbb{S} .

(Typiquement un corps algébriquement clos, κ indénombrable.)

Théorème (« de catégoricité » ; Morley 1965)

Si \mathbb{S} est κ -catégorique pour un κ indénombrable, elle l'est pour tous.

Morley introduisit une variante modèle-théorique du rang de Cantor-Bendixson... ... il ne savait pas qu'il généralisait la dimension de Zariski.

Théorème (Baldwin-Lachlan)

Si \mathbb{S} est κ -catégorique pour κ non dén°, alors \mathbb{S} est de rang de Morley fini.

L'apport de Zilber

Théorème (Baldwin-Lachlan)

Si $\mathbb S$ est κ -catégorique pour κ non dénombrable, alors $\mathbb S$ est de rang de Morley fini.

Théorème (Zilber)

Si G est un groupe simple de rang de Morley fini, alors il est κ -catégorique.

En fait Zilber est allé beaucoup plus loin.

Conjecture (Zilber)

Une structure algébrique catégorique provient, sauf cas triviaux, d'un corps algébriquement clos.

C'est une affirmation de l'identité : « nature catégorique = géométrie sur les corps clos », couplée à une atomistique logique.

Réfutation par Hrushovski

Théorème (Hrushovski 1993)

Il existe des structures catégoriques non triviales sans corps.

À sa suite :

Théorème (Baudisch 1996)

Il existe des groupes catégoriques non abéliens sans corps (donc non alg).

Théorème (Poizat et al. 1999–)

Il existe des structures catégoriques de corps alg. clos « avec plus de structure » (notamment \mathbb{G}_a et \mathbb{G}^m non minimaux).

Et malgré tout...

Conjecture (Cherlin-Zilber)

Soit G un groupe simple de rang de Morley fini. Alors G est de Chevalley.

Conjecture de Cherlin-Zilber et CGSF

Le bon cadre méthodologique pour penser Cherlin-Zilber, ce n'est pas les groupes algébriques; c'est la théorie des groupes finis.

Théorème (Borovik-Poizat, 1990)

Soit G de rang de Morley fini. Alors ses 2-sous-groupes de Sylow sont conjugués; leur structure est classifiée.

- Ouvert pour p > 2.
- Pas d'information sur la non-trivialité (pas de « Feit-Thompson »).
- Borovik a suggéré de transposer CGSF involutions, centralisateurs, fortement réels — vers le paysage rangé.
- Notez que 1. l'exposé ne suivait pas cette ligne : il s'agissait d'algèbre géométrique d'un genre inattendu mais 2. l'obsession involutive était inévitable.

Nombreuses involutions : succès

Théorème (Altınel-Borovik-Cherlin, 2008)

Soit G simple de rang de Morley fini. Si G contient (non définissable) $\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$, alors $G \simeq \mathbb{G}(\mathbb{K})$.

- Même en supposant que G a des involutions,
- même en supposant que tous les sous-quotients simples de G ont des involutions...
- la conjecture de Cherlin-Zilber est non triviale.
- Sans involutions c'est pire encore.
- Il n'est pas clair que la résolution en rang 3 change quoi que ce soit à la stratégie d'ensemble.
- Aveu : sans involutions, il n'y a pas de stratégie d'ensemble.

Merci!