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Chapter I — Stating Things

In this chapter we learn how to write and read formal mathematical statements.
Always bear in mind that symbols are for stating, not for proving.

Chapter Goals. Learn mathematical language:
e Determine if a sentence is a proposition or not.
e Translate from English to symbols and back.
e Find the truth table of a (non-quantified) proposition.
e Determine whether two propositions are equivalent.
e Manipulate quantified propositions.
e Compute the negation of a given proposition.

Main Notions. Proposition, Truth value, Truth table, Connective, Equival-
ence, Quantifier.

We first discuss propositions and truth values (§ 1). Using the propositional
connectives —, A, v, =, <> (§ 2), we can build compound propositions (§ 3); some
are equivalent. Another step in complexity, where real mathematics begin, is by
adding the quantifiers 3,V (§ 4); the method of truth tables no longer applies.
Quantified propositions beg for special rules and manipulations (§ 5).

1 Propositions

One has to start somewhere and our notion of a proposition will remain non-
formal. (A second course in mathematical logic would return to the topic, which
is not our current business.)

1.1 Informal discussion

Not every sentence® is subject to logical treatment. Let us consider a few
examples.

1.1.1. Example.

phrase, énoncé



Sentence Context-independent meaning? | True/False?
0=0 Y T
I am here. N /
0=1. Y F
Cats lay eggs. Y F
z=0 N /
Hence 2 > 0. N /

A sentence with a precise meaning is the same as a statement®™ which is
either true or false, not depending on any context.

1.1.2. Remark.

e Though ‘T am here’ sounds true to any person saying it, its contents depend
on the person saying it. So this sentence does not have a precise meaning.

e Of course 0 # 1. But the sentence ‘0 = 1’ makes good sense, even though
we know it is false. We understand the meaning of the statement.

e ‘z = 0’ is not a proposition. Who is 7 The meaning depends on some-
thing undefined. (Later it will be called a ‘proposition depending on a
variable’.)

e The sentence starting with ‘Hence’ is obviously part of something else
(maybe a proof), but it is not a statement.

The sentences that sound relevant for our purposes are those whose meaning
is precise. They are the sentences one could describe as either ‘true’ or ‘false’.

1.2 Informal definition

1.2.1. Definition (proposition, truth value). A proposition is a sentence which
is either true or false. ‘True’ or ‘False’ is the truth value® of the proposition.

(‘False’ is a truth value.)
1.2.2. Notation.
e Any of the following stands for true: T, 1, T'.
e Any of the following stands for false : F, 0, L.
1.2.3. Remark (a digression). Consider the sentence:
‘Every even number is a sum of two prime numbers.’

This is a proposition as it has a precise meaning. It also has a truth value.
But nobody knows if it is true or false. (This famous statement is known
as the Goldbach Conjecture. More in general, a conjecture is a mathematical
proposition whose truth value we do not know, viz. an open problem.)

Hence our (informal) definition of a proposition actually relies on something
very hard to determine in practice, its truth value. Which is also why there is
still research in mathematics, but that is another story...
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In mathematics we consider only propositions. We try to determine which
are true and which are false, by giving either proofs or refutations. This will be
explained in Chapter II. The goal of the present chapter is merely to manipulate
propositions.

1.2.4. Remark. For the sake of pedagogy I sometimes use sentences which are
not propositions, but which provide striking, easily remembered examples.

1.2.5. Remark (alternative phrases). Let P be a proposition (take for example
0 =0, or take 0 = 1; it does not matter).

e Phrases* meaning that P is true:

e ‘P’; e ‘P is true’; e ‘P holds’; e ‘it is the case that P’; e ‘we
have P’

e Phrases meaning that P is false:

e ‘P is not true’; e ‘P is false’; @ ‘P does not hold’; e ‘it is not
the case that P’.

Notice that in mathematics, to say ‘0 = 0’ is the same as saying ‘it is true that
0 = 0. So be careful with what you say.

1.2.6. Example.
— Does the proposition ‘cats lay eggs’ hold?
— No, it is not the case that cats lay eggs.
Pay attention to quotation marks*.

2 Connectives

We usually assemble basic propositions using words such as ‘and’ or ‘or’. This
is done in mathematics too.

We shall introduce five connectives : not (§ 2.1), and (§ 2.2), or (§ 2.3),
implies (§ 2.4), if and only if (§ 2.5). The first three are easily understood. You
may have to pay special attention to the last two.

2.1 Negation

2.1.1. Definition (negation). Let P be a proposition. Then ‘not-P’ is a pro-
position, called the negation of P and denoted by —P7.

2.1.2. Remark. Old-fashioned* notation (forbidden): ~P. Bad notation (for-
bidden): .

2.1.3. Example. Let x and y be real numbers.
e The negation of ‘o + 0=y’ is ‘¢ + 0 # y’.
e The negation of ‘x >y’ is ‘@ < ¥y’

We know that not-P is true if P is false, and false if P is true. It is convenient
to summarize this in a truth table®. This is just an array giving the truth value
of a proposition, depending on the truth values of its components.

expression(s)
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P | —-P
Truth table of =P : F| T
T| F

2.1.4. Remark. P and ——P always have the same truth value. This is an
indication that they essentially have the same meaning (§ 3.2).

(The idea that ‘same truth value = same meaning’ was disputed at the begin-
ning of the Xxx* century, which led to an interesting theoretical developement,
and a philosophical debate.)

2.2 Conjunction

2.2.1. Definition (conjunction). Let P and @ be propositions. Then ‘P-and-
Q’ is a proposition, called the conjunction of P and @, and denoted by P A Qf. \wedge

2.2.2. Remark. Old-fashioned notation (forbidden): P & Q.

2.2.3. Remark. Before we write the truth table of A, we adopt a natural
convention. In order to write truth tables with several variables (below, P and
@ are our two variables), it is convenient to use always the same enumeration
of the truth entries.

Replace ‘True’ by 1 and ‘False’ by 0. Then the natural way to enumerate
all possibilities is 00, 01, 10, 11, in increasing order. So the natural way to
enumerate truth values in two variables is FF, FT, TF, TT.

P A Q is true if both P and @ are true, false otherwise.

| PAQ

Truth table of P A @ :

NNY MY
NY N YO
N>

Thus P A T always has the same truth value as P, while P A F' is always
false.

2.2.4. Remark. In English (in French as well), there are two ways to use ‘and’:

e connective and, for connecting sentences, as in ‘2 is even and 4 is even’:
we use A;

e cnumerative and, for listing things, as in ‘2 and 4 are even’: here it is
absolutely forbidden to use A.

In mathematics we only have the connective. So ‘Let a and b be two numbers’,
may not be written ‘Let a A b...".
Likewise, ‘4 is greater than 1 and 2’ writes as ‘(4 > 1) A (4 > 2)’.

2.2.5. Remark. Mathematical language is poor. The English ‘but’ would be
translated by ‘and’, losing the nuance of opposition in it.



2.2.6. Example. Let us complicate things and introduce three propositions.

(PAQ)AR|PA(QAR)

NNSNTYYYY
NN NNY RO
NSNS Y®
NSty
e e e > B B e e |

Hence (P A Q) A Rand P A (Q A R) always have the same truth value.

End of lecture 1

2.3 Disjunction

2.3.1. Definition (disjunction). Let P and @ be propositions. Then ‘P-or-@Q’
is a proposition, called the disjunction of P and @, and denoted by P v Q. \vee

Since P v @ is true as soon as one of P or @ is true, we get the following
truth table.

| PvQ

Truth table of P v @ :

NN YT
NHYN 5O
=T B B | RS

Thus P v T is always true, while P v F' always has the same truth value as
P.

2.3.2. Remark (no symbol for ‘enumerative or’). The mathematical ‘or’ may
not be used for enumerations. So ‘z is equal to 1 or 2’ stands for ‘x is equal to
1 or z is equal to 2’, viz. (x = 1 v & = 2). Never write ‘z =1 v 2.

2.3.3. Remark (mathematical ‘or’ is inclusive). The mathematical ‘or’ is in-
clusive, viz. it always means ‘P or Q) or both’.

In English (in French as well), ‘or’ is often implicitly means ‘or. .., but not
both’. For instance, ‘will you come on Monday or on Tuesday?’* does not expect « fromage ou dessert »
‘both’ as an answer.

Should you want to specify ‘not both’, use ‘either... or...’*. Mathematics ou bien... ou bien
does not have a universal symbol for this ‘exclusive or’.

2.3.4. Remark (continued). In symbols, ‘either P or @’ writes (P A —Q) v
(=P AQ). (Alternative, less clear options, are (PvQ)A—=(PAQ), or =(P < Q)
to be seen later.)

2.3.5. Examples.

e Using truth tables, one sees that:



[Hamlet’s Principle:] P v —P is always true.
In mathematics, ‘to be or not to be’ is no question: it is simply true.

e Classical mathematical joke: — ‘Is it a boy or a girl?’ — ‘Yes.’

2.4 TImplication
The fourth connective is generally misunderstood and deserves extra attention.

2.4.1. Definition (implication). Let P and @ be propositions. Then ‘if-P-
then-Q’ is a proposition, called the implication from P to @@ and denoted by
P= Q.

Implication says nothing about the cases in which P does not hold. So the
truth table is as follows.

| P=Q

Truth table of P = @ :

NN
Nm SO
NmSA

2.4.2. Remarks (arrow shapes).
e One may also use the simple arrow P — Q7.
e No backwards arrows. ‘<’ and ‘<’ are absolutely forbidden.

2.4.3. Remark. P = (@ does not mean ‘P has @) as an arguable consequence’.
It means that if P holds, then so does @). In particular:

False implies anything. — Anything implies True.
2.4.4. Example.
e ‘If 1 =0, then cats lay eggs’ is true.
o ‘If cats lay eggs, then 1 +1 =2’ is true.
e ‘If 1 + 1 = 2, then cats lay eggs’ is false.
e ‘If hens lay eggs, then 0 = 0’ is true.
2.4.5. Remark (alternative phrases). Here are various readings of P = Q:

e ‘P implies Q; o ‘if P, then QQ’; e ‘P is a sufficient condition for ()
to hold’.

2.4.6. Remark (unrecommended alternative phrases).

e The English ‘Q if P’ is grammatically correct and means P = @), but is a
bad idea as it suggests writing the (forbidden) @ < P.

e Likewise, ‘Q) is a necessary condition for P to hold’ is correct and does
mean P = @ (one cannot have P without having @, viz. P = @), but
again suggests writing backwards.

\Rightarrow

\rightarrow, \to



e The English ‘P only if* @’ means exactly P = Q.

Example: ‘You're allowed to board this plane only if you have a boarding
pass’ People aboard the plane will have a boarding pass. But someone
with a boarding pass could be late and miss the plane. So really, the
sentence is ‘allowed = has pass’, not the other way around.

I cannot recommend this phrase. First, even I have to think in order to
understand which implies which. Second, the hasty listener could hear ‘if
and only if’, which is something else (§ 2.5).

2.4.7. Remark (common mistakes). Here are two common mistakes.

e P = () may not be read ‘P then @’
Here ‘then’ would mean ‘later’, which is not what you mean. If you want
to use ‘then’, then you must use ‘if’.

e ‘P = (Q may not be read ‘P, hence )’ (nor ‘P, therefore @’, etc.).

Let us elaborate on this. Consider the two sentences:

— ‘If cats lay eggs, then 0 = 1’—a true proposition;
— ‘Cats lay eggs, hence 0 = 1’—an incorrect proof.
Beginners tend to mistake 1. ‘P implies @’ (a proposition) with 2. ‘P,

which implies* @’ (a part of a proof). In case 1. you say nothing about P
or @, simply about their relationship. In case 2. you claim both.

It may be simpler to remember that there is no symbol for ‘hence’, because
there is no symbol for deduction.

We define two notions related to implication.

2.4.8. Definition (converse). The converse® of an implication P = @ is the
proposition @ = P.

2.4.9. Definition (contrapositive). The contrapositive® of an implication P =
Q is the proposition —Q = —P.

2.5 Equivalence

This is arguably more of an abbreviation than a connective. It is less useful
than beginners think.

2.5.1. Definition (equivalence). Let P and @ be propositions. Then ‘P-if-
and-only-if-Q)’ is a proposition, called the equivalence of P and @) and denoted
by P < Q.

Of course, P <> Q' is allowed as well.
P Q@ ‘ P<=Q
F F T
Truth table of P < @ : F T F
T F F
T T T

seulement si

ce qui implique

réciproque

contraposée

\Leftrightarrow

\leftrightarrow



2.5.2. Remark (alternative phrases). Here are various readings of P < Q:

e ‘P if and only if Q)’; e ‘P is a necessary and sufficient condition
for @ to hold’; e ‘Q is a necessary and sufficient condition for P to
hold".

Of course the last is usually a bad idea as it reverts the order.
One may also say ‘P is equivalent to @Q’, for a reason explained in § 3.2.

3 Complex propositions

With the five propositional connectives one obtains compound* propositions.

3.1 Parentheses

We can build compound sentences, for example P v —Q), etc. The expressions
that make sense are sometimes called well-formed. It is not very interesting to
define of this notion, as it is always obvious to determine whether an expression
is well-formed or not.

3.1.1. Example.

Expression | Well-formed?
- N
——=P Y
-PvQ Y
AQ N
Pv AQ N

If we keep assembling compound propositions, we should use parentheses.
Now if we want to drop some of the parentheses, we need a convention, because
the meaning of =P v @ is not clear at first sight; it could be either (=P) v Q
or =(P v Q).

Pre-eminence is given to v, then to A, then to —.

3.1.2. Example.

——=P stands for —(=(—=(P)))
-PvQ stands for (
—=Pv QAR stands for (—P)

But the golden rule is clarity:

Better too many parentheses than relying on conventions.

3.2 Equivalent Propositions

3.2.1. Definition. Two propositions P, @ are called equivalent if they always
have the same truth value.

We shall see examples shortly. For the moment, a provocative comment.

composé(es)



3.2.2. Remark. There is no symbol to denote that two propositions are equi-
valent. (The symbol < actually means something else; § 2.5.)

The following properties are essential when computing negations.
3.2.3. Properties (De Morgan’s laws).
—(P A Q) is equivalent to —P v —Q.
—(P v Q) is equivalent to —P A —Q.
Remember that:

‘The negation of a conjunction is the disjunction of negations.’
‘The negation of a disjunction is the conjunction of negations.’

3.2.4. Example.

e In case you did not understand, check the following. The negation of
‘beautiful and useful’ is not ‘ugly and useless’. It is ‘ugly or useless’.

e ‘No stopping or standing’* should be written ‘No (stopping or standing)’.
If it were, its meaning would become clear: ‘No stopping and no standing’.

Now, using truth tables, we show how the connectives relate to each other.

3.2.5. Remark. P = (@ is equivalent to =P v Q.
Indeed, ‘don’t move or I shot!” means ‘If you move, then I shot!’.

As an application of this equivalence we can compute the negation of an
implication, using De Morgan’s law.

3.2.6. Remark (negation of implication).
—(P = Q) is equivalent to P A —Q.

e Since P = (@ is equivalent to =P v @, one gets that —(P = Q) is
equivalent to —(—P v @), which is seen to be equivalent to P A —Q.

e P = () means ‘whenever P is true, also @ is true’. Negating it amounts to
refuting the implication. This is done by giving a counter-example, that
is something that satisfies P, but not ). This explains intuitively why
—(P = Q) is equivalent to P A —Q.

3.2.7. Remark. In Definition 2.5.1, we defined the ‘if and only if’ connective.
In Definition 3.2.1, we defined equivalence as a property of two propositions.
This is not at all the same, but the relationship is expressed as follows:

P ival P i
and () are equiva ent if and only if (P < Q) is t.rue
(as propositions) (as a proposition).

The symbol ‘<’ is used only as a connective. When asked to prove that
two propositions P and @) are equivalent, one may prove that the compound
proposition P < (@ is true. This is not literally the same question, but it is an
equivalent question.

3.2.8. Remark (continued). The compound proposition ‘P is equivalent to @’
is, as a proposition, equivalent to the proposition ‘P implies @) and ) implies
P’. Therefore:

‘Pe(@Q if and only if ‘(P=Q) A (Q=P).

10
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3.3 Some Classical Equivalences

Every equivalence below must be understood, known, and always ready for use.
The last column gives the common name of the property.

—-—=P is equiv. to P ‘double-negation’

P A (Q AR) “ K (PAQ)AR ‘associativity of A’
Pv(QvR) “ K (PvQ)vR ‘associativity of v’
QAP “ 7 PAQ ‘commutativity of A’
Qv P « 7 PvQ@ ‘commutativity of v’
(PvQ) AR “ K (PAR)v (QAR) ‘distributivity’
(PAQ) VR “ K (PvR)A(QVR) ‘distributivity’
—(P A Q) “ ” -P v —Q ‘De Morgan’s law’
—=(Pv Q) « ” —P A —=Q ‘De Morgan’s law’
P=Q “ " -PvQ ‘material implication’
—-(P = Q) “ ” P A—Q ‘counter-example’

One must recognize them when P and @ are compound themselves.

One should practice a little with truth tables and rewriting compound pro-
positions. But one should quickly move on as mathematics becomes interesting
with quantification (which is no longer explained by truth tables).

4 Quantifiers

Quantifying a proposition P is building another proposition that says how many
‘things’ satisfy P. The following are quantified propositions:

e ‘For any real number x, one has x? > 0’
e ‘There is a real number z that satisfies the equation z° + 2z —2 = 0.

For common mathematical purposes, the two phrases ‘all things satisfy P’
and ‘there exists (at least one) a thing satisfying P’ suffice. So there will be
only two quantifiers®, V and 3. (A useful abbreviation, 3!, is also introduced.)

Notice that truth tables cannot explain quantification.

4.1 Preliminaries

It is interesting to quantify in a sentence P only if P depends on something. For
example the expression ‘x > 0’ is meaningless as long as we do not know who x
is. We call such a sentence a proposition depending on a variable (here z), that
is an expression that becomes a proposition as soon as we assign a meaning to
its variables.

4.1.1. Example.
e ‘v +y=y+ 2 is a proposition in the variables x and y.

e ‘z + 1y’ is not a proposition in any variables: even if we assign values to x
and y, it still does not state anything.

11
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If a proposition depending on z, say P(x), becomes a true proposition when
we assign to x a certain value, say x, we say that xo satisfies P*.

4.1.2. Example.
e 2 satisfies ‘n is even’
e Das z and 1 as y satisfy ‘e +y =y + 2’
We also need some notation before proceeding.
4.1.3. Notation. We use throughout the following symbols:

e e’ denotes membership. Given two mathematical objects x and A, ‘z € A’
reads ‘x is in A’ or ‘x is an element of A’, or ‘x belongs to A’ In context,
‘belonging’® can be more correct than ‘belongs’. Really, ‘in’ is shortest
and clearest.

You may not use expressions like ‘A contains z’ or ‘x is included in A’
(which mean something else).

e In English, ‘positive’™ means > 0. This creates many confusions and
requires some care.
For < 0, one uses ‘non-negative’.

e N' denotes the set of all natural numbers, that is N = {0,1,2,3,...}. So

‘r € N'reads: ‘zisin N’, or ‘z is a natural number’, or ‘z is a non-negative
integer’.

e R denotes the set of all real numbers, that is the numbers on the line. So
‘z € R’ reads: ‘r isin R’, or ‘x is a real number’.

e To denote all positive real numbers, one writes R~." (French-style nota-
tion R* is inconvenient and non-universal; hence forbidden.)

For non-negative real numbers, use Rxq."

4.2 For all

4.2.1. Definition (universal quantification). Let A be a set and P(x) be a
proposition depending on a variable . Then ‘for all x in A, P of x’ is a pro-

position, called the universal quantification of P(x) over x € A and denoted by
Vx e A, P(z).

The upside-down letter V' is called the universal quantifier.
4.2.2. Remarks.

e Good, though infrequent, practice prefers (Vx € A)(P(x)).

e The comma ‘" after the quantification ‘Vx € A’ is here for clarity, and
entirely optional. One may wish to read it ‘one has’.

4.2.3. Example.

e VreR, 2?2 > 0’ (‘for any x in R, x-square is greater than or equal to 0°) is
the proposition stating that the square of any real number is non-negative.
(It is true.)

12
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o Vz e Rz =1 (‘for any = in R, x equals 1’) is the proposition stating
that all real numbers are equal to 1. (It is false.)

4.2.4. Remark. In some books the set A does not appear. Though technically
correct (as opposed to the present exposition...), it is pedagogically speaking
not a very good idea, because so far x is just a ‘thing’, and one could too easily
forget what we are talking about. This is why we prefer to relativise (or bound®) borner
the quantifier to the set A.
For instance, the absolute sentence ‘Jx,x + x = 1’, which is true if we
relativise it to the real numbers, is false among integers. This is why beginners
should avoid such sentences and use only bounded quantifiers.

4.2.5. Remark (alternative phrases). Vo € A may be read:

e ‘for all x in A’; e ‘for any element x of A’; e ‘for each x belonging
to A’; e ‘for every x in the set A;

or any variation on these.
One may freely add ‘one has’; or not.

4.2.6. Remark (classical sets). An important special case is when dealing with
common sets like N or R. Instead of set-theoretic terminology ‘x in N’, one often
describes x by a mass noun, as in:

e ‘for any positive integer x’; e ‘for every natural number x’; e ‘for
all reals x’; etc.

4.2.7. Example. Read the following aloud:
e VkeN, k>k+1=k=0.
e VyeR y>0<2-y>uy.

Which are true?

4.2.8. Remark (quantifying twice). We know that for any two real numbers
z and y, one has z +y = y + x. This writes ‘Vz e R, Vye R,z +y =y + x’, and
reads:

‘For any real number z, for any real number y, = plus y is equal to
y plus z.

This sounds long. If confident, one will simply say:

‘For any real numbers = and y, = plus y equals y plus .
Similarly, ‘Vx € R,Vn € N, ...’ may read:

‘for any real number x and any positive integer n. ..’

However this enumerative ‘and’ may mot be written as a connective. So
Ya Ay’ is absolutely forbidden.

13



4.3 There exists

4.3.1. Definition (existential quantification). Let A be a set and P(x) be a
proposition depending on a variable x. Then ‘there is x in A such that P of

x’ is a proposition, called the existential quantification of P(x) over x € A and
denoted by 3z € A, P(x).

The reversed letter 37 is called the existential quantifier. \exists
4.3.2. Remark (‘such that’).

o After ‘there exists’, never forget to say ‘such that’* (or something similar) tel que
— if you do not, your sentence is grammatically incorrect.

e This confuses beginners, since after ‘for all’, one does not add ‘such that’.

e This is why you might like to put commas. When you find a comma after
a 3, read ‘such that’ When you find a comma after V, do not read it; or
possibly read it ‘one has’.

e French-style / to mean ‘such that’ is neither universal nor rigorous; hence
forbidden.

e Mathematics is a symmetric language; but English and French are not.
Do not make rules; simply follow your knowledge of grammar.

4.3.3. Example.

e ‘dr e R, 2% = 2’ (‘there exists x in R such that z-square is equal to 2’) is
the proposition stating that 2 has a real square-root. (It is true.)

o ke N 2.k =23 (‘there exists k in N such that 2 times k is equal to 3’)
is the proposition stating that 2 divides 3. (It is false.)

4.3.4. Remark (alternative phrases). 3z € A may be read:

e ‘there exists an x in A such that’; e ‘there is an element x of A
satisfying™; e ‘there is an x in A with the property that’; e ‘there is vérifiant
some x belonging to A for which™’; etc. pour lequel

And of course, when dealing with known sets:
‘There exists a positive integer k such that’, etc.

4.3.5. Remark (unrecommended alternative phrase). There also is the possib-
ility to say ‘for some x in A’) but I cannot recommend this. The hasty listener
will hear ‘for’ and guess ‘for all’, viz. V; which is not what you meant.

4.3.6. Example. Read the following aloud:
e JkeN2.-k=5.
e JyeR,y>0Ay<1.

Which are true?

14



4.3.7. Remark. If we want to express that some given (say, positive) real
number z is bounded between two integers, we write:

dkeN,¥eNk<z<l{,
which reads

‘there exists a natural number k such that there exists a natural
number ¢ such that k is smaller than x that is smaller than £’.

A more natural way to read it would be:

‘there exist a natural number k and a natural number ¢ such that. ..’
or even:

‘there are natural numbers k£ and ¢ such that ...’

However this is an instance of ‘enumerative and’ and A is forbidden here.

5 Manipulating quantifiers

Quantified propositions are more interesting than non-quantified ones, but also
deserve more attention. In § 5.1 we discuss renaming; then we give rules for
quantifiers in § 5.2. § 5.3 introduces the abbreviation 3!, which is not a quanti-
fier. We finish with negating quantified sentences in § 5.4.

5.1 Renaming, and an independent digression

5.1.1. Remark (renaming is important). Let us write in symbols:

‘there exists a natural number which is even, and there exists a
natural number which is odd’.

e The first half may be written: dn € N, 3k € N, n = 2k.
e The second half may in turn be written: In e N3k e Nyn = 2k + 1.

e Combining, we get a jam. Letters n and k each play two different roles.
(Calling all your children ‘Jessie’ would lead to confusions.) So it is reas-
onable to rename. Hence we write for instance:

(ﬂnl eN,dk1 e N,ny = 21{31) A (3712 e N,dk; € N, ng = 2ks + 1).7
and everything is clear again.

This is quite the same as the treatment of the mute* variable in SZ f(x)dx =

b
$o f(W)dy.
5.1.2. Notation (a liberty with notation). An important set in mathematics
is the set R.( of all positive real numbers. As it is sometimes boring to write
z € R.g, we adopt the following convention:

‘Yo > (0" stands for ‘Vze Ry,

‘r > 0’ stands for ‘dx € Ryg’

5.1.3. Example. ‘Ve > 0,35 > 0,0 < ¢’ reads ‘for any positive real number ep-
silon, there exists a positive real number delta smaller than epsilon’, or shorter:
‘for any positive epsilon, there exists a positive delta which is smaller’.
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5.2 Quantifiers rules

5.2.1. Properties.
o Vre A P(x) is equivalent to Yy € A, P(y)’
e Az e A, P(x)’ is equivalent to Jy € A, P(y)’
o Yre A Vye B,P(x,y)’ is equivalent to Yy € B,Vx € A, P(z,y)’
e dze A, Jye B,P(x,y)  is equivalent to Jy € B,3x € A, P(z,y)’

‘—=Jx € A, P(x)’ is equivalent to Yx € A, —P(x)’

‘=Vx e A, P(x)’ is equivalent to 9x € A, —=P(x)’

Proof. Since truth values are no longer relevant for quantification, we shall
give a proof of these properties in Chapter II. O

So consecutive ‘quantification blocks’ of the same nature may be freely ex-

changed. It is not the case with different quantifiers; never switch a V with a
3.

5.2.2. Counter-example. Read aloud:
e 3zeR,Vne N,n =22
e VneN,3ze R, n = 22
Which is true? Which is false?
5.2.3. Example. The proposition ‘Vx > 0,3k € N3/ € Nk < z < £’ is
equivalent to ‘Vx > 0,30 e N,dk e N,k < z < £’ But VY must come first.
5.3 A useful abbreviation

Here is a useful abbreviation, which is not strictly speaking a quantifier.

5.3.1. Notation. Let A be a set and P(x) be a proposition depending on an
variable x. Then 3!z € A, P(x) (pronounce ‘there exists a unique x in A such
that P(x)’) stands for:

Jze A, (P(x) AVye A,P(y) =z =y).

This formula means that there is an x in A that satisfies P, but also that
any other y in A satisfying P has to be equal to . Hence x is the only element
of A satisfying P.

5.3.2. Remark (alternative phrases). 3lz € A, P(z) may read:

e ‘there is exactly one = in A such that’; e ‘there is a unique x in A
satisfying’; etc.

5.3.3. Example. Read aloud:

e VzeR,AyeR,z=y.
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e neN,—~(FkeN,n=F%k+1).
Which are true?

5.3.4. Remark. Notice how we say ‘unique’ in mathematics: ‘if there are two,
they are the same’. So 3! really means ‘exists and is unique’.

5.3.5. Remark. ‘3!’ is not a quantifier, but an abbreviation. Therefore you
should make no rules but always return to the definition.

5.3.6. Counter-example.

e Consider the proposition: ‘Iz e R,y e R,z = 2.

When 2o € R is fixed, the proposition ‘Ily € R, zy = y?’ states that zg
has a unique square root. There is exactly one real number which has a
unique square root (namely 0), so the proposition is true.

e We now revert 3!, getting the proposition ‘Aly e R,z e R, = = y?".

When yo € R is fixed, the proposition ‘Ilz € R,z = y2’ means that yo has
a unique square. This is certainly true of any yo € R, but there are many
such. So the proposition is false.

5.4 Computing negations

As an application, we may now compute negations of all propositions.
5.4.1. Remark. F and 7 are absolutely forbidden.

Consider the following proposition:
P: VzeR,IneNVyeR, |yl >n= |yl > |z|.

— P is successively equivalent to:

—VzeR, IneN, Vy e R, ly| > n =yl > |z,
—_—
turns into a 3—
Jz e R, —3dn e N, Yy e R, ly| > n =yl > |z,
—_—
turns into a V—
Jzr e R, Vn e N, =Yy e R, lyl > n = |y| > |z,
—_—
turns into a 3—
Jz e R, Vn e N, Jy e R, =(ly| >n=ly| > |z|),
Jz e R, Vn e N, Jy e R, lyl > n A =(ly| > |z]),
Jx e R, Vn e N, Jy € R, |z| = |y| > n.

5.4.2. Remark. Be careful that the negation of ‘Iz > 0, P(z)’ is not ‘Va <
0,—P(x)’

Remember that ‘dz > 0’ actually stands for ‘dz € R~ Hence the negation
of ‘9z > 0, P(x) is V& > 0, ~P(x).

End of lecture 5
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Check-up and Exercises

e Words used (check that you understand their meaning):

— proposition (Definition 1.2.1)

— connective: negation (Definition 2.1.1), conjunction (2.2.1),
disjunction (2.3.1), implication (2.4.1), equivalence (2.5.1)

— converse (Definition 2.4.8), contrapositive (Definition 2.4.9)
— equivalence of two propositions (Definition 3.2.1)

— quantification: universal (Definition 4.2.1), existential (4.3.1)
e Truth tables are useless. We teach them for two reasons:

— they make students feel confident;

— they help us convince you that sentences like ‘If hens have teeth, then
I am Santa Claus’ are true.

If you now feel comfortable with implications and negations, you may
forget about truth tables.

Basic exercises (no quantifiers)
Propositions

1.1. Which of the following are propositions? 1. How are you? 2. I am fine.
3. Socrates is dead. 4. This number is positive. 5. —1 is positive. 6. When it
rains, w is a circle.

1.2. Determine if the following are propositions. When they are, try to find
their truth values. 1. 12 = 1. 2. sin?x 4 cos?>z = tan?2z. 3. Yne N,ne R. 4.
VeAnyeR x+y=y+x 5 FEvery triangle is a square. 6. There are only two
real numbers the square of which equal themselves.

Truth tables
1.3. Enumerate entries of a truth table using four variables.
Let P,Q, R denote propositions.
1.4. Give the truth tables of: 1. (P A —=Q) A =R 2. (P v Q) A (—Q v R)
L1.5. Write truth tables for the following: 1. P = —Q 2. =P = Q 3. -P = —Q

1.6. Compute the truth tables of the following: 1. (P v Q) = (P A Q) 2.
(wPAQ)=(QAR)3 P=(Q=R) 4 Ps(Q<R)

1.7. Same exercise with: 1. (P A Q) v (P v Q) 2. (PAQ) A (P v Q) S
(PAQ)=R 4. (P=Q)VR

1.8. Find a proposition whose truth table is:




Translations

1.9. Write the following sentences as compound propositions, using symbolic
connectives (and parentheses):

1. “If it rains and I am home, then I play the piano or listen to the radio.”
2. ‘Paul was neither silly nor stupid, but George was a fool and so was Ringo.’

3. ‘Whenever I do not see cats around, I turn off the light; if in addition
there is no party around, I sleep pacefully.’

4. ‘FEither you come or I go and get you.’

1.10. Same exercise: convert the following English sentences into their symbolic
form (you may introduce notations; you need not explain it).

1. ‘My watch is on time although I did not set it.’
‘When she is asleep my cat dreams or purrs.’

‘My new car is red but I do not know how to drive.’
‘You’re allowed to drive only if you have a license.’

‘I want salt and pepper but no sauce.’

S S o e

‘Mike turns off the light exactly when he wants to sleep.’

I.11. Same exercise.

~

‘P does not imply Q.

‘It is not the case that P does not imply Q.
‘P is a sufficient condition for @ to imply R.
‘When P holds, @Q cannot imply R.’

‘P is a necessary and sufficient condition for P to be false.’

S S e e

‘It is not the case that the following occurs: the negation of P together
with the negation of Q imply the negation of the following assertion: R is
not true.’

1.12. Make up English sentences whose translations into symbols would be the
following: 1. P A (Q = —P) 2. (Pv Q) A (Q< R)

1.13. Write ten compound propositions and find English sentences having their
logical structures.
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Negations

1.14. Compute and simplify the negations of the following propositions. 1.
(PAQ)V(Pv@Q) 2. (PAQIA(PVQ) 3. (PAQ)V(RAS) 4. (Pv—=Q)A(—=RvS)

1.15. Write the negations of the following propositional forms: 1. (P A Q) = R
2.(P=Q)vR3 P= (Q < R). For the last one, you may not use arrows,
only —, v, and A.

1.16. Compute the negations of: 1. (P < Q)=R 2. (P=Q) A (P Vv Q) 3.
(PeQQ)<e(ReS) 4. (P=Q)=(Q=R)

1.17. What are the negations of:
1. ‘When it rains or snow, I avoid cats and read Lewis Carroll.’
2. ‘Tarski shaves Gddel if and only if Gédel shaves Tarski.’
1.18. Without writing intermediate steps, give the negations of:
1. (-P<Q)=R
2 (P=Q)A(PvQ)
3. (PeQ) < (ReS95).

Miscallenea manipulations

1.19. Provide the negation, converse, and contrapositive of the following: 1.
P=(Q@=R)2. (P=Q)=R3 (P=Q)=(R=209).

1.20. Rewrite the propositions below using only —, A, v, and the following
convention:

give them as disjunctions of smaller terms (which use only conjunc-
tions and negations).

1.P=(Q=R)2(P=Q)=R3 (P=Q)=(R=2S5) 4 Pr—(Q=R)
5 P=Q A—-R6 (P=Q A—(R=95)7(Q=R) =P8 R=(P=Q)
99 (R=S)= (P=0Q) 10. -(Q@ = R) = —P 11. -R = —~(P = Q) 12
~(BR=5)=~(P=Q)
For example, P = (Q = R) becomes —P v —Q v R,
(P=Q)=R becomes (P A —Q) v R,
(P=Q)= (R=1S) becomes (PA—-Q)v—-RvS.

1.21. Let P,Q, R, S be propositions. Consider the proposition:
A [(Pv Q)= (RA—5)]
1. State and simplify the negation of A.
2. State and simplify the converse of A.

3. State and simplify the contrapositive of A.

1.22. Prove without using truth tables that the following propositional forms
are equivalent:

1. (PvQ)=—-R and R= (—P A —Q).
2. =[Pv —=(Q=R)] and (=P A —Q)v (=P A R)
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Exercises involving quantifiers

Easy translations
1.23. Write the following in English:
1. Vke N,Vle NVxe e Rz =k + {.
2.VEeN,VzeR,|z| zn+1=|z| >n.
3. VzxeR,—(VkeN,|z| > k).
Which are true?
1.24. Write the following in English:
1. VzeR,Ine N,Yy e R, |y| > n = |y| > |z|.
2. IneNVkeN,I¥eNk=n-{L
3. IneZVrxeR, |z <n=3JyeR,0=1.
Find an integer n making the second statement true. Same for the third.
1.25. Write in symbols the following sentences:
1. There exists an even integer and there exists an odd integer.
2. For any real number, there is an integer bigger than it.
3. There is a real number without a real square root.
(By the way do you know how to prove these propositions?)

1.26. Let (un)nen be a sequence of real numbers. The sequence converges to
LeR i
Ve>0, IngeN, VneN, n>=ng= |u, —{| <e.

1. Translate the expression into English.

2. Give the negation of the expression.

3. Translate the negation into English.
1.27. A sequence of real numbers (an)nen is a Cauchy sequence if

Ve > 0,IN e N,Vm,n = N, |ay, — an| < e.

1. Translate the definition of ‘Cauchy sequence’ into English.

2. Negate the definition of ‘Cauchy sequence’.

3. Translate the negation into English.
Remark. The notation is quick-and-dirty for:

Ve>0,ANeN,¥Y(m,n)eN*,(m =N An=N) = |ay, —a,| <e.

You may use it or not.

1.28. Let (un)nen be a sequence of real numbers. A real number £ € R is adher-
ent to to the sequence if:

Ve > 0,Vno € N, In = ng, |u, — £ < e.

Take the negation of the property, then translate the negation into English. Re-
mark. The notation is quick-and-dirty for : Ine N;n = ng A |u, — {| <e.
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Abstract translations

1.29. Let A be a set and P a proposition depending on a variable. Write the
negation of Ilx € A, P(x).

1.30. Let A be a set and P a proposition depending on a variable. Write the
following in symbols:

There are exactly two elements of A that satisfy P.

1.31. Let A be a set and P a proposition depending on a variable. Write the
following in symbols:

There are exactly three elements of A that satisfy P.

Around functions

1.32. Let f: R — R be a real function. f has limit +00 at +00 if:
VMeR, JAe R, VzeR, z > A= f(z) > M.
1. Translate this definition into English.
2. Take the negation of the translation.
3. Translate the negation into symbols.
1.33. A real function f: R — R has limit ¢ at a if:
Ve>0,30>0, V2 eR, |z —a| <d=|f(z) ¢ <e.
Write in symbols the following sentences:
1. f has a limit at a.
2. f has a limit everywhere (i.e., at every point of R).
1.34.
e A function f:R — R is continuous at a € R if:

Ve>0,30>0 VzeR, |[r—a| <d=|f(z)— fla)] <e.

e A function is continuous on R if it is continuous at every a € R.

e A real function f is uniformly continuous on R if:

Ve>0,30>0, VeeR, VyeR, ly—z| <d=|f(y) — flz)] <e

1. Translate into English ‘continuity at a’ and ‘uniform continuity on R’
2. Write a symbolic definition of ‘continuity on R’

3. Give negations for all three formulas (continuity at a, on R, uniform con-
tinuity on R).

4. Translate these negations into English.
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1.35.

3.

1.36.

Recall that when g is a real function, and a and £ are real numbers, one
says that g has limit ¢ at a if:

Ve> 0,30 >0,Vz eR, |z —a| <d=|g(z) — ¢ <e.
The difference quotient of a real function f at a point a € R is the expres-

sion, defined for x € R\{a}:
£) ~ (@)

Tra(e) = = —

The function f is differentiable at a if this quotient has a limit at a. Write
this in symbols, then translate what you have written into English.

f is differentiable on R if it is differentiable at every a € R. Write in
symbols: f is differentiable on R. Then translate into English.

Also write: f is not differentiable on R. Then translate.

Let f be a function from R to R (f: R — R). Write the following prop-

erties in symbols, and give translations in English. 1. f is a constant function.
2. f is mot a constant function. 3. f is increasing. 4. f is not increasing. 5. f
is increasing or decreasing. 6. f is bounded above.
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Chapter II — Proving Things

We know how to state propositions and turn to learning how to prove them.
Proofs are arguments that establish mathematical statements and must be writ-
ten in English only. (Symbolic language is only for statements.)

Chapter Goals. Write mathematical proofs:
e Prove easy propositions.
e Be able to follow a contradiction proof.
e Write induction proofs.
Main Notions. Proof, Contradiction proof, Induction proof.
The golden rule of proof writing is quite simple.

Be precise. Be concise. Prefer short sentences.

6 General ideas

The notion of a proof is central in mathematics. The criterion of acceptability
of a new proposition is: ‘does it have a proof?’. A formal definition would not
help here, and one learns through practice.

Certainly you understand the difference between a position and a movement.
By analogy, statements are positions, and proofs are movements. Only state-
ments may be written using formal symbols. In particular, there is no symbol
for deduction, as opposed to implication for which there is a symbol. (Symbol
.". is non-universal, ancient, and forbidden.)

So in a proof, you will often use the following phrases:

e s0; e therefore; e thus; e hence; e whence; e as a result,

all expressing deduction. (These cannot be abbreviated by ‘=, which states an
implication. One should be careful with ‘then’, which can also express deduction
if alone; as opposed to ‘if...then. .. , which expresses implication.)

6.1 Proofs, refutations, contradiction

6.1.1. Remark (how to start a proof). In general, beginners should: 1. state
what they will prove, 2. prove it, and then 3. tell that they have proved it. This
looks redundant, but it shows the logical structure of your paper.

In particular, in 1., it is perfectly fine to write ‘I/We want to prove that ...".
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6.1.2. Remark (how to continue a proof). In a proof you may freely use:
e Propositions known to be true (e.g. usual equivalences).
e Your current assumptions®. hypothese(s)
e Things you have already proved under the same assumptions.
e Classical results (eg. the fact that for real = one has sin® x + cos?z = 1).

The level of detail in a proof depends on contextual factors: whom you write
for, how well-trained you are, etc. For that reason I will not always follow the
guidelines below.

6.1.3. Remark (how to finish a proof). To celebrate your final victory, there
are several options.

e If you announced what you wanted to prove, you may say ‘as wanted’® as  comme voulu
a conclusion.

e Snobbish variant: use QED*, which stands for the Latin: CQFD

Quod Erat Demonstrandum .
(e Ny —

What Was To be proved

e Mathematicians are keen on the o symbol (which reads ‘QED’ or ‘end of
proof’). In many books, proofs end like this.

e One occasionally sees 4 (not recommended).
6.1.4. Definition. A refutation of a proposition P is a proof of —P.

To disprove® is a synonym of to refute. [n’a pas d’équivalent]
6.1.5. Definition. A contradiction™ is any of the following: absurdité

e a proposition which is always false (for example, because of truth tables);

e the negation of one of your current assumptions;

the negation of something you have already proved under your current
assumptions;

something contradicting classical results.

6.2 How to know what to prove
There are three layers of increasing difficulty.

1. If an exercise asks to prove P (or if it asks to refute P) one knows what
to do.

2. If an exercise asks to (prove P or refute P), this is already harder as one
has to understand which is true before writing. This is where intuition
gets into play. A proof of P and a proof of =P do not even start similarly.

3. Research is even harder: one first has to decide which proposition P one
wants to prove. The problem being to determine, through intuition (and
not through wishful thinking®), a proposition P which is both true and le fait de prendre ses désirs
interesting. pour des réalités
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7 Propositional methods

We shall sketch a couple of techniques to prove propositions. Notice how the
techniques one uses depend on the shape of what one has to prove.

7.1 How to prove —P; also, contradiction proof

In order to prove —P, prove that P cannot hold.
Proof of —P:

e Assume P.

e Prove a contradiction.

e Conclude that you have proved —P.

7.1.1. Example (important). Let us prove v/2 ¢ Q'. \sqrt{2} \notin \mathbb{Q},
or \sqrt2\notin\mathbbQ
‘Suppose that 1/2 is rational. [We prove a contradiction] Then there (not recommended)
are integers a,b # 0 with v/2 = 7. We may assume that a and b are
COprimC*. copremiers, premiers entre eux

Raising to the square and multiplying, we find a? = 2b%. In particu-
lar, 2 divides a®. But this implies that 2 divides a. Hence 4 divides
a? = 2b?, and therefore 2 divides 2. Now this implies that 2 divides
b. So 2 divides both a and b, a contradiction to coprimality.

Hence /2 is not a rational number.

This example had historical significance and must be learnt.

Variation: contradiction proof. Since P and ——P are equivalent, this
gives rise to the powerful contradiction proof*. It creates an assumption ‘from  dém. par Pabsurde
nothing’ by negating what you want to prove.

Contradiction Proof of P:

e Assume —P.
e Prove a contradiction.

e Conclude that —P cannot hold, and therefore P does hold.

It is slightly better not to give a contradiction proof if it can be avoided, for
two reasons:

e some philosophers have disputed the validity of contradiction proofs (tech-
nically, they prove ——P, not P);

e contradiction proofs are more challenging for the mind as it must focus
on something false.
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7.2 How to prove P A ()
This is simple.
Proof of P A Q:

e Prove P.
e Prove Q.

e Conclude that you have proved P A Q.

7.3 How to prove P v @)

The method is not to prove P or prove (). First, which should you choose?
Second, to prove P is much stronger than to prove P v @ (since P = P v @
but the converse does not always hold). Typically one can use a contradiction
proof here.

Contradiction proof of P v Q:
e Assume —P A —Q.
e Prove a contradiction.

e Conclude that you have proved P v Q.

But one seldom does this, and relies on of the following variations instead.

Variation 1 for P v Q:
e Assume —P.
e Prove Q).
e Conclude =P = @, hence P v Q.

Since P v @ is equivalent to @) v P, we also have the symmetric method.

Variation 2 for P v Q:
e Assume —@Q.
e Prove P.

e Conclude —@Q = P, hence P v Q.

7.3.1. Example. Let m,n be integers. Prove that if mn is even then m or n
is even.

‘We assume that mn is even, and we prove that m or n is even.

To do that, we assume that m is not even. Hence m is odd.

Since mn is even, 2 divides mn, hence 2 divides m or n. As m is
odd, 2 does not divide it, so 2 divides n. Hence n is even.

Assuming that m is not even we have proved that n is. This can
also be expressed as (m is even) v (n is even).

So assuming that mn is even, we have proved that m or n is even.
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7.4 How to prove P = (); also, case division

We turn to implications.
Direct proof of P = Q:

e Assume P.
e Prove Q.
e Conclude P = Q.

Do not forget the conclusion.

7.4.1. Example. Let = be a real number. Prove that
sinx =1= cosx = 0.

‘Assume that sin z = 1. Then since sin® z + cos? z = 1, we find that
1 + cos®?z = 1, hence cos? 2z = 0, and thus cosz = 0. Therefore we
have proved that sinx =1 = cosz = 0.

Sometimes the contrapositive (§ 2.4) is easier to prove.

Contraposition Proof of P = Q:
e Assume —@Q.

e Prove —P.

e Conclude —Q = —P, hence P = Q.

7.4.2. Example. Let x be a real number. Prove that
cosz # 0= sinx # 1.

‘Assume that sin z = 1. Then since sin® z + cos? z = 1, we find that
1+ cos?z = 1, hence cos? z = 0, and thus cosz = 0. Therefore we
have proved that sinz = 1 = cosx = 0, which is the contrapositive
of cosx # 0= sinx # 1.

Return to P = ). Even assuming P, one may have trouble proving @). In
that case a contradiction proof is always possible.

Contradiction proof of P = Q:
e Assume P A —Q.
e Prove a contradiction.

e Conclude P = Q.

Notice that a contradiction proof of the contrapositive is essentially the same.

Case division. A case division proof of P consists in separating different cases
and proving P in each. The underlying principle is the following: P is equivalent
to (@ = P) A (—=Q = P). (Check you still see why by a direct computation.)
One may introduce more than two cases.
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Case division proof of P:
e Introduce cases Q1,...,Q, and prove that Q1 v --- v @, is true.
e Prove each implication Q; = P.

e Say that you have proved P in each case @);, and that the various
cases cover all possibilities. Conclude that you have proved P.

7.4.3. Example. Let n be an integer. Let us prove that w is an integer.

"There are two cases. [Here, we begin a ‘case division’]

. . . . 1
e If n is even, then 2F! is an integer, and so is ”("2+ ),
e If nisodd, then n+1 is even, and in that case "TH is an integer,

n(n+1)
2

whence is an integer too.

[We have successfully argued in each case; it remains to conclude.]

. 1) . .
In either case, % is an integer.

7.4.4. Remark. Always make sure that the disjunction of the @Q;’s is true.
(Cases may overlap, but they must cover all possibilities.)

7.5 How to prove P < ()

‘If and only if” statements are actually abbreviations for two implications, which
explains the following method.

Proof of P < Q:

e Prove P = Q.
e Prove Q = P.

e Conclude that P < Q.

7.5.1. Remarks.

e The backwards arrow ‘<’ is forbidden.
e In practice, series of < almost never work.
7.5.2. Example. Let x be a real number. Prove that
cosz =0 < sinz = +1.

‘Assume first that cosz = 0. Then since sin® 4 cos®> z = 1, we find
that 0+sin? 2 = 1, hence sin? z = 1, and thus sin 2 = +1. Therefore
we have proved that cosz =0 = sinz = +1.

Now assume that sinz = +1. Then since sin® z +cos? z = 1, we find
that cos? 2z + 1 = 1, hence cos? z = 0, and thus cosz = 0. Therefore
we have proved that sinz = +1 = cosxz = 0.

As a conclusion, we have proved: cosz =0 < sinz = +1.

7.5.3. Remark. In Example 7.5.2, between the two parts we have ‘cleared
assumptions’ This is expressed implicitly by ‘Now assume....
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8 Proofs involving quantifiers

8.1 How to prove Vz e A, P(x)

To prove such a statement one must prove P(z) for any « in A. This is done
by taking z arbitrary in A, with no extra assumptions. (It goes without saying
that mathematics does not recognize ‘proof by example’.)

Direct proof of ¥x € A, P(x):

e Take any x in A.
(This is expressed by: ‘Let* z e A.)

e Prove that P(x) holds, without assuming anything special on z.

e Conclude that for any « in A, P(x) holds.

8.1.1. Example. Let us show that Vn e N, (n is odd = n + 1 is even).

'Let n € N. [We want to show: ‘n odd = n + 1 even’]
Suppose that n is odd. Then n + 1 is clearly even.
Therefore ‘n odd = n + 1 even!

As this is true for any n € N, we have proved:

)

VneN, (nis odd = n+1 is even).

8.1.2. Remark (‘general let’). In the above proof, ‘Let n € N’ means ‘Let us
take any n € N, without making any further assumptions on it. We call it
general let.

8.2 How to prove Jx € A, P(x)

Unlike proofs of universal propositions, ‘existential proofs’ might rely on intu-
ition. You need to find an example, and this requires deep understanding of the
problem.

Direct proof of Ix € A, P(x):

e [You must think, interpret, and guess which z will do.]

e Define the = you think will satisfy P.
(This is expressed by: ‘Let* x be’ [its definition]).

e Prove that for this special 2, P(z) holds.

e Conclude that there exists an x in A such that P(x) holds.

8.2.1. Example. Let us prove that 3z € R,Vy € R, z # 3°.

[We must think before we start writing. We are looking for a real number
x such that for any real number ¥, y squared is not x. In other words, we am
looking for a real number that does not have a real square root. Now intuition
suggests that —1 will do. We briefly check that it works, and then start writing
the proof.]
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‘Let x=—1. Let y € R. Since y> > 0, we have that 3% #
—1. As this is true for any y € R, we have Vy € R,y # —1.
Hence x = —1 meets our requirements, and we have proved
IxeR,VyeR,x #y?’

8.2.2. Remark (‘particular let’). In the proof above, ‘Let = —1’ means ‘We
define x to be —1. This we call particular let, which is very different from the
general let of ‘Let y € R’.

Hence in English, ‘let’ has two very different meanings:*

e General let, as in ‘let n be an integer. This is used in proofs of V-
statements.

e Particular let, as in ‘let n = 2. This one is used in definitions, and in
proofs of 3-statements.

8.3 Contradiction and quantifiers

It is sometimes useful to apply the ‘Contradiction Proof’ technique to universal
statements. The following relies on the fact that —Vx € A, P(z) is equivalent to
Jz e A,—P(x) (§ 5.2; we return to it in § 8.4).

Proof by contradiction of Vx € A, P(x):

e Assume that there is  in A that does not satisfy P.
(This is expressed by: ‘Let z € A such that P(x) does not hold.)

e Prove a contradiction.

e Conclude that since this is impossible, Vz € A, P(z) holds.

8.3.1. Remark. This is an abstract proof, because one does not have the
slightest idea what z is being used (in particular because one is actually proving
there is no such z). In general, contradiction proofs require the mind to focus
on something false.

There is a ‘dual’ technique with existential quantifiers.

Proof by contradiction of 3x € A, P(x):
e Assume that for all z in A, x does not satisfy P.
e Prove a contradiction.

e Conclude that since this is impossible, 3z € A, P(x) holds.

8.3.2. Remark. This is an existence proof of x yielding no suitable z. It is
called a non-constructive proof (and is one of the reasons contradiction proofs
are disputed by some).

8.4 Application: proving the quantifier rules

In § 5.2 we stated the following, which we now prove.

8.4.1. Properties.
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(i) Yxe A, P(x)’ is equivalent to Yy € A, P(y)’
(ii) Jx e A, P(x)’ is equivalent to Ty e A, P(y)’
(iii) Yx e AVy e B, P(x,y)’ is equivalent to Yy € B,Vx € A, P(z,y)’
(iv) 9x € A,Jy € B, P(x,y)’ is equivalent to Jy € B,Jx € A, P(x,y)’
(v) =3z e A, P(xz)’ is equivalent to Yz € A,—~P(x)’
(vi) “—Vx e A, P(z)’ is equivalent to Jz € A, —~P(x)’

Proof.

(i) We prove:
(Vxe A, P(x)) = (Vy € A, P(y)).

Suppose Va € A, P(x); we prove Yy € A, P(y). Let y € A. By assump-
tion, we have P(y). This holds for any y € A, and therefore one has
Yy e A, P(y).

Therefore (Vx € A, P(z)) = (Vy € A, P(y)). We conclude by symmetry.
(ii) Essentially the same; exercise.
(iii) We prove:
(Vxe A,Vy e B, P(x,y)) = (Yy € B,Yr € A, P(z,y)).

Suppose Vx € A,Vy € B, P(x,y); we prove Vy € B,Vx € A, P(z,y). Let
y € B. Let x € A. By assumption, P(z,y). Therefore Yz € A, P(x,y).
This proves Vy € B,Vx € A, P(x,y). So we have (Vx € A,Vy €
B, P(z,y)) = (Vy € B,Vx € A, P(x,y)). We conclude by symmetry.

(iv) Essentially the same; exercise.

(v) We first prove (—3z € A, P(z)) = (Vx € A,—P(x)). Suppose —3x €
A, P(x); we prove Vo € A, —P(z). Let x € A. If P(z) holds then
Jz € A, P(x). This is a contradiction; so —P(z) holds. This is true of any
x € A, and therefore Vo € A, —=P(z). This proves the first implication.

We now prove the converse, viz. (Vo € A,—P(z)) = (—3z € A, P(z)).

Suppose Vo € A, —=P(z); we prove —3x € A, P(x). Suppose 3z € A, P(x).

Let xy be one witness, so that* P(xg) holds. This contradicts the as- de telle sorte que
sumption, so actually —3x € A, P(z). This proves the converse implica-

tion, and we find the equivalence.

(vi) Could be treated applying negations, but is an excellent independent
exercise. O

End of lecture 7

8.5 Our First Example (Tutorial)
8.5.1. Example. A real function f: R — R is continuous if:

VaeR,¥e > 0,30 > 0,V e R, |z —a| < d = |f(x) — f(a)| <e.
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Let ¢, d be real numbers. Let f(z) = cx + d. We show that f is continuous.

Proof. Since this is just an example, we proceed with no intuition at all,
merely analysing the structure of the sentence we are proving. Here is a useful
hint: if ¢ = 0, we shall take § = 1. If § # 0, we shall take § = I%I (the latter

value does depend on ). Case division will help. Ready?

e We want to prove:

VaeR, Ve > 0,30 > 0,Vz e R, |z —a|] < = |f(x) — f(a)| <e.

o Let a € R [‘general’ let]. We want to prove:

Ve > 0,30 > 0,V e R, |z —a| <0 = |f(z) — f(a)] <e.

e Let ¢ > 0 [‘general’ let]. We want to prove:

35 >0,YVzeR, |z —a|<d=|f(x)— fla)] <e.

o If c=0,let 6 =1 [‘particular’ let]. If ¢ % 0, let § = B [‘particular’ let].
We want to check that this value of § meets our requirements, in other
words we want to prove:

VeeR, |z —al <d=|f(x) — fla)| <e.

o Let x € R [‘general’ let]. We want to prove:
|z —a|l <d=|f(z) - fla)] <e.

e So we assume that |z — a| < , and we will prove that |f(x) — f(a)| < e.
e There are two cases: [begin case division]

— If ¢ =0, then |f(z) — f(a)| = |0z +d — (0a+ d)] =0 <e.

— Now if ¢ # 0, then |f(x) — f(a)| = |cx + d — (ca + d)| = |c- (x —a)],
0 |(z) — F(@) = el - [z —al < || -5 = <.

[end of case division]. In either case |f(x) — f(a)| < e.

e Hence we have proved that

v —al <6 = [f(2) - fla)] <.

e Since this is true for any x € R, we have proved that

VeeR, |z —al <d=|f(x)— fla)| <e.
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e Hence 0 meets our requirements, and we conclude that

35 >0,V eR, |z —a| <d=|f(x)— fla)] <e.

e As this is true regardless of e [Caution: ‘regardless’ means that it is true
for all e, though the value we assigned to § depends on €], we have proved

Ve > 0,30 > 0,V e R, |z —a| < d = |f(z) — f(a)|] <e.

e Now this is true for any real number a, and therefore

VaeR,Ve > 0,30 > 0,Vz e R, |z —a|] < = |f(x) — f(a)| < chere

End of tutorial. Half of
lecture 8 was devoted to 3!

9 ‘Induction proof’

Mathematical induction® is not a proof method, but a property of the integers. récurrence
It is usually classified as a proof method and my colleagues certainly expect the
present skill course to cover this aspect; I may not disappoint them.

9.1 Induction principle

9.1.1. Theorem (induction principle). Let P(n) be a proposition depending on
an integer n. Suppose:

o P(0);
e Vne N, P(n)= P(n+1).
Then ¥Yn € N, P(n) holds.

9.2 Proofs using induction

Consider a property P(n) depending on an integer n, and suppose that you
need to prove Yn € N, P(n). In certain cases, there is an easier way to do that
than just taking any n, and proving P(n) (which would be the ‘direct proof’).
Induction is very efficient if you feel that proving P(n) is easier when already
established for smaller values than n.

Caution. n has to be a positive integer!
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Proof by induction of Vn € N, P(n):
e Prove that P(0) holds.

e Prove ‘Vn e N, P(n) = P(n + 1)’, in other words:
Let n € N. Assume P(n), and prove P(n + 1).

(P(n) is sometimes called the induction hypothesis*.)
e Conclude. This is done as follows:

‘“We have proved P(0) and Vn e N, P(n) = P(n + 1).
By induction, we have proved Vn e N, P(n).’

9.2.1. Remark. Induction is extremely easy for two reasons:

e All you need is remember the model of the proof, then ‘fill up the form’

e The answer is given in the exercise, you need not discover anything.
9.2.2. Example.
be the property:

)
an n—i—l)'

We prove by induction: Vn € N, P(n).

For any integer n, let P(n

e We prove P(0). Indeed, 22=0 k=0= 0(02“) so P(0) is true.
[To be honest, here ‘Clearly, P(0) holds’ would suffice.]
e Let n e N. We assume P(n), and prove P(n + 1). We have:
n+1

Zk- (Zk) (n+1) W+(n+1)

because of the inductive hypothesis P(n), and therefore

n+1
2 1 1)+1
Z k= (n+1) ( +1) ()2 (ntDn+H+1)
2 2

Hence P(n + 1) is true.

So we have proved P(n) = P(n + 1), and since this is true for
any n, we have thus proved:

VneN,P(n) = P(n+1).

e We proved P(0) and Vn € N, P(n) = P(n + 1). By induction,
we have proved Vn € N, P(n).

9.2.3. Remark. To recover form the essential clumsiness of the latter proof,

let us give an elegant one.

Write
S

+ +
_ 3

3
+ +

and hence

2S=Mn+1)+--+(n+1)=n(n+1).
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9.3 Variation: induction not starting from 0

9.3.1. Notation. ‘Vn > 2, P(n)’ (read: ‘for all n greater than or equal to 2,
P of n’) stands for ‘Vne N, n = 2= P(n).

9.3.2. Remarks.

e It is implicit that n should be an integer, since the set N is not actually
present in the notation. This is because habit dictates that n denotes an
integer.

e Likewise, ‘In = 2, P(n)’ (read: ‘there is an n greater than or equal to n
such that P of n’) stands for ‘In e N,;n > 2 A P(n).

e In contrast, ‘Yo > —m, P(x)’ (read: ‘for all z greater than minus 7, P of
2’) stands for Vo € R,z > —7 = P(z)’, because here one guesses from
context that x stands for a real number.

e Last, ‘Iz > —m, P(z)’ (read: ‘there is an x greater than —m such that P
of ) stands for ‘Iz € R,z > —7 A P(x). And ‘let x > —7’ means ‘let
x € R be greater than .

The following exemple shows how it is possible to do induction from a value
greater than 0.

9.3.3. Example. We prove Vn > 4,n% — 3n > 4.

‘We do induction on n > 4. For a natural number n > 4, let P(n)
be the property: n? — 3n > 4.

e Since 4> —3.4 =16 — 12 =4 > 4, P(4) holds.

o We show Vn > 4,P(n) = P(n+1). Let n > 4. We assume
P(n), and we prove P(n + 1).
Using the induction hypothesis, one has:

(n+1)?=3n+1)=n>-2n—-2>n+2

and P(n + 1) is proved.

Assuming P(n), we proved P(n+1), so P(n) = P(n+1) holds.

As this is true for any n > 4, we have Vn > 4, P(n) = P(n+1).
e We have proved P(4) and Vn > 4, P(n) = P(n+1). By induc-

tion, we have Vn >4, P(n).’

9.3.4. Remark. Here is another proof of Example 9.3.3. Induction proofs are
always a bit clumsy, so a direct proof is likely to be more elegant.

‘We have to prove ¥n > 4,n? — 3n > 4, in other words, we prove
Vn=4,n%>—-3n—4>0.

Notice how for = € R, one has 22 —3x—4 = (z+1)(x—4). The graph
of the real function f(z) = 2% — 3z —4 is therefore a convex parabola
meeting the horizontal axis at * = —1 and = = 4. Therefore, f(x)
is non-negative when x > 4. This remains true when we restrict to
integers, so Vne N;n >4 =n? —-3n—4> 0’

End of lecture 8
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Check-up and Exercises

Words used (check that you understand their meaning):
e proof; refutation;
e contradiction; contradiction proof;
e proof by contrapositive;
e case division;

e induction proof.

Basic proofs

I1.1. Let P, QQ, R denote propositions. Prove the following:

3. [([P=Q)AP]l=Q.
1. P=PvQ.

2. PAQ = P. 4. (P= —P)= —P.

11.2. Prove that /3 is not a rational number.

11.3. Prove that </5 is not a rational number.

Proofs involving quantifiers
Easy proofs
I1.4. Prove the following statements:
1. There exists an even integer and there exists an odd integer.
2. For any real number, there is an integer greater than it.
3. There is a real number that doesn’t have a real square root.
I1.5. Here is a proof of:
VYm e N,Vn e N,m and n are even = m + n is even.

‘Let m and n be integers. We assume that m and n are even, and
we prove that so is m + n. Since m is even, there is an integer k
such that m = 2k. Similarly, there exists an integer { with n = 2¢.
Hence we have that m+n = 2k +2¢ = 2(k +£), and therefore m+n
is even.’

Write a proof of:
VYme N,Vn e N,m is odd and n is even = m + n is odd.

You may use the fact that a natural number m is odd if and only if there is a
non-negative integer k such that m = 2k + 1.
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11.6.
1. Let P be the proposition: VreR,Jye R,z =y + 1.

(a) Translate P into English.
(b) Prove that P is true.

2. Let Q be the proposition: Jye R VreR z=y+ 1.

(a) Translate @Q into English.
(b) Prove that Q is false.

11.7.
1. Prove that between two distinct integers there is always a real number.

2. Is this still true with real numbers?

Abstract proofs

11.8. Let A, B be sets and P(x,y) be a proposition depending on x and y. Write
a formal proof of the equivalence of 3x € A,y € B, P(x,y) with 3y € B,3x €
A, P(z,y).

I1.9. Let A be a set and R(z,y) be a proposition depending on two variables.
Let
S: ‘[Fze A)Vye A, R(z,y)] = [Vy e A,Jx € A, R(z,y)]

1. Prove S.

2. State in symbols the converse of S.

3. Give a counter-example to the converse of S.

4. Find a special case (depending on A) in which the converse of S holds.
I1.10. Let A be a (non-empty) classroom, and P be the proposition:

There is a student in A such that if he (or she) is a smoker,
then every student in A is a smoker.

1. Translate P into symbols (let S(x) be the property for x to be a smoker).
2. Prove P.

3. Is it still true with an empty classroom?

I1.11. Let P(x) be a proposition depending on a real number x. Prove that
—(Vx = 0, P(x)) is equivalent to 3z > 0, P(x).
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More technical
I1.12. Recall that a function has limit +00 at 40 if
VAeR,AM e RVzeRa > M = f(z) > A
1. Prove that the identity function f(x) = x has limit +00 at +00.
2. Prove that the sinus fuction g(x) = sinx does not have limit +00 at +00.
I1.13. Recall the following definitions:

e A function f: R — R is continuous at a € R if:

Ve> 0,30 > 0,Vz e R, |z —a| < d = |f(z) — f(a)| <e.

o A function is continuous on R if it is continuous at every a € R.
o A real function f is uniformly continuous on R if:

Ve>0,30 >0,Ve e R,Vye R, ly —z| < d=|f(y) — f(x)] <e.

1. Prove that if a function f is uniformly continuous, then f is continuous.

2. Prove that the function x — cx + d is uniformly continuous on R.
[Hint: if ¢ = 0, this is trivial. If ¢ # 0, then 6 = ﬁ is clearly a good idea.]

2

3. Prove that the square function x — x° is continuous on R.

[Hint: Assume a fized. When ¢ is given, use (for example)

S=min (/5. 5
B 2" 4al+1 )"

You may admit that the implication of inequalities will hold for this value
of 8, but you must write properly all the rest of the argument.]

2

4. Prove that the square function x — x* is not uniformly continuous on R.

[Hint: in fact each € will eventually fail if you let the variables go far
enough from 0. Have a look at large (but close) values for x and y.]

Induction proofs

I1.14. Prove that

n 1)(2 1
vneN,Zk2=”(”+ >6(”+ ).

k=1
I1.15. Prove that )
n 1
VneN, Y k= (”(”;)> .
k=1
I1.16. Let g be a real number not equal to 1. Prove that
n 1— n+1
Vn e N, Z ¢ = i
k=0 1—q
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11.17. Read the following argument.

‘We prove by induction that in a non-empty basket of fruits, if one
is an apple then all are apples. So for each n € N, let P(n) be the
property:

If one among n fruits is an apple, then all n fruits are apples.

e [t is clear that if 1 among 0 fruits is an apple, then the whole
basket consists of apples. So P(0) holds.

o We assume P(n) and prove P(n + 1). So let B be a basket of
n+ 1 fruits fi,..., fanr1. Assume that one of these fruits is an
apple. For convenience we may assume it is f1. Now consider
the sub-basket B = {f1,... fn}. (This notation means that B’

is the set of elements f1,..., fn.) of n fruits, one of which is an
apple. By the inductive hypothesis, all fruits in B’ are apples.
So we now consider B" = {fa,..., fnt1}, another (sub-)basket

of n fruits, one of which is an apple. By the inductive hypothesis
again, all fruits in B"” are apples. Since B’ and C" cover B,
all fruits in B are apples. Hence P(n + 1) holds. Therefore
P(n) = P(n+ 1), and this is true for any n € N.

By induction, etc.’

What went wrong ¢
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Chapter III — Using Sets

We know how to state and prove statements. It is time to start exploring
the realm of mathematics. A unified description of this world may be given
in terms of sets. (Occasionally this complicates matters instead of simplifying
them.) Discussing sets will also give us many concrete examples of properties
requiring proofs.

Chapter Goals. Write formal proofs involving sets:

e Know how to prove that A € B
e Know how to prove that A = B.

Understand set notation and abstract definitions of sets

e Handle arbitrary intersections and unions.

Main Notions. Membership and inclusion. Intersection, Union, Difference.
Power set. Cartesian Product. Partition.

10 Sets and membership

10.1 Notation; some common sets

A set is something that has elements. (We do not pretend this is a definition.)

10.1.1. Notation. For a set A and an object z, we write x € A if x is an
element of A. If x € A does not hold, we write x ¢ A.

10.1.2. Remark. It is customary (and good practice) to denote sets by capital
letters, as opposed to their elements.

10.1.3. Remark (alternative phrases). x € A may read:
e ‘r is a member of A’; e ‘z lies in A’; e ‘x belongs to A’
10.1.4. Remark (continued).

e z € A may not be written A 3 x.
e It may not be read ‘A contains z’, nor ‘z is contained in A’
e It may not be read ‘z is included in A’.

e [ once heard ‘x exists in A’, but this is completely inappropriate.
Actually a set is entirely determined by its elements.

10.1.5. Properties (extensionality axiom). * Two sets are equal if and only if  extensionnalité
they have the same elements.
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10.2 Brace notation

Sometimes, and especially when dealing with finite sets, it is useful to define a
set by giving its elements. This is done with braces.

10.2.1. Notation. The ordering of elements between braces does not matter.
Repeated elements are counted only once.

10.2.2. Example.

{1, 5} is the set that has as only elements 1 and 5.

{1,2,1} = {1,2} = {2,1}. It has exactly two elements.

{0,sin} is the set that has elements the number 0 and the function sin.

Let A be any set. Then {A} is the set that has A as its only element. In
oral form one says singleton A for {A}.
10.3 The empty set
10.3.1. Definition. The empty set ' is the set with no elements. \emptyset
‘The’ is legitimate as the empty set will be proved to be unique.
10.3.2. Remark. Let P be a proposition in the variable z. Then:
o Vxe &, P(x) is true, and
e ‘Gz e, P(x) is false.
10.3.3. Example. Let me insist on the following:
e Vxe @ 1+1=23"is true;
e ‘dx e, 1+1=2"is false.

Indeed, whenever you give me x in the empty set, 1 + 1 will be 3: because you
cannot give me such an x. Also, you cannot give me z in the empty set, so you
cannot give me one satisfying the extra (true) requirement that 1 + 1 is 2.

10.3.4. Remark. As a consequence, the proposition
[Vx e A, P(z)] = [Jz € A, P(z)]

does not hold when A = ¢§. But it does for any non-empty set A.

This once made quantification suspect. Some ill-advised people suggest that
‘for any = in A’ should assume that A is non-empty; methodologically, this is a
serious mistake
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10.4 Subsets, inclusion

10.4.1. Definition (subset, inclusion). Let A and B be two sets. A is a subset
of B (written A < BY) if every element of A lies in B. One also says that A is \subscteq
included in B.

Hence, A € B is equivalent to ‘Yz € A,x € B’.

10.4.2. Remark. The English ‘contained’ is very ambiguous; mathematical
English uses only ‘belongs’ (for €) and ‘included’ (for <).

10.4.3. Definition (proper subset). If A € B and A # B, we say that A is a
proper subset of B and write A & BT. \subsetneq

10.4.4. Remark. Pay attention to the following difference in notation:

e A < B means that A is a proper subset of B;
[I do not recommend <, which looks too much like C, at least when
writing.]
e A & BT means that A is not a subset of B. \not\subseteq

For instance, {1} < {1,2} while {1} € {0, 2}.
(If in real numbers we used 3 < 4 for 3 < 4, the analogy would be clear.)

Method to prove A c B:
e Pick any = € A.

e Prove z € B.

e Conclude that A < B.

10.4.5. Properties. Let A, B, C be sets. Then:
(i) if A< B and B < A then A = B;
(ii) &< A;
(iii) the empty set is unique: if O is another empty set, then O = J;
(iv) Ac A;
(v) if A Bc C, then A< C.

Proof.

(i) Suppose A <€ B < A. For any x, one has x € A =z € Band x € B =
x € A. So A and B have the same elements. By ‘extensionality’, A = B.

(ii) There is nothing to check since & has no elements.

(iii) If O has no elements either, then ¥ € O and O < ¢, which we know
implies O = (.
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(iv) Let z € A. Then x € A. Thus, A € A.

(v) Suppose A < B < C. Let x € A. Since A € B, one has x € B. Since
B c C, one has x € C. Therefore A < C. O

This also suggests a method to prove the equality of two sets.

Method to prove that two sets A and B are equal:
e Prove A C B.
e Prove B C A.

e Conclude that A = B.

End of lecture 9

11 Very naive operations with sets

We now describe the most elementary constructions with sets. They should be
well-known. Always bear in mind the analogy with connectives.

11.1 Intersection

11.1.1. Definition (intersection). Let A and B be two sets. The intersection
of A and B (write A n BT, pronounce ‘A and B’ or ‘A intersected with B’) is \cap
the set of elements of A that also lie in B.

Thus, for any = one has: (x € An B) <« (r € A Az € B). Later we shall
return to intersections, allowing arbitrarily many terms.

11.1.2. Example. Nn {—1,1} = {1}.

11.1.3. Properties. For all sets A, B, and C':

(i). AnBc A.
(i) AnA=A.
(iii). &A=

(iv). AnB=BnA.
(v). An B = A if and only if A< B.
(vi) An(BnC)=(AnB)nC.

Proof.

(i). Let us prove that An B < A.

Let x € An B. Then z € A and x € B; so x € A. Since this is true
regardless of x € A n B, we have proved A n B € B.

(ii). Let us prove that A m A = A. [In order to do that, we prove two
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(ii).

(vi).

inclusions.]
By (i), it is the case that An A € A.

So it remains to prove that A € A n A. Let x € A. Tt is the case that
reAand x e A, sox e An A. Since this is true regardless of x € A, we
have proved that A € A n A.

Because AnAc Aand A An A, we have An A= A.

Let us prove that @ n A = .

We know that the empty set is a subset of any set, hence & € @ n A
holds.

On the other hand, by (i), we have that & n A € (.
As a conclusion, we find that @ n A = .

. Let us prove that An B = B n A. [We have to prove two inclusions: we

prove one, and conclude by symmetry!]

Let us prove that An B < Bn A. Let xt € An B. Then z € A and
r € B;sox € Band x € A. This means that x € B n A. Since this is
true regardless of £ € A n B, we have proved that An B < B n A.

Now exchanging A and B we find Bn A< An B.
We thus have AnB € BnAand BnA € AnB; therefore AnB = BnA.

. Let us prove that An B = A if and only if A € B. [We want to prove

an equivalence, so we prove two implications.]

Let us assume that A n B = A and let us prove that A € B. So let
x € A. Since A = A n B, we get that x € A n B. In particular, x € B.
Since this is true regardless of x € A, we have proved that A € B.

Now let us assume that A € B, we shall prove that A n B = A. [We
have to prove two inclusions.]

By (i), it is always the case that A~ B € A. So all it remains to prove is
A € A n B [using our assumption ‘A € B’, of course.] Let = € A. Since
A< B, we find x € B. Thus z € A and x € B, which means x € A n B.
Since this is true regardless of z € A, we have proved A € A n B. The
converse inclusion has already been noticed, so A = A n B.

We proved both implications; hence A n B = A is equivalent to A € B.

Let us prove that An (B n C) = (An B) n C. [Two inclusions.]

Let 2 € An (BnC). Then € A, and v € B n C. This means that
x € A, and z € B, and x € C. Therefore xt € A n B and = € C, which
means ¢ € (An B)n C. Since this is true regardless of x € An (B n C),
we deduce that An (BnC)< (AnB)nC.

Instead of proving the converse inclusion, let us apply the part we have
proved to C, B, A. We get C n (B n A) € (C n B)n A. Applying (iv)
a couple of times, this implies (AN B) nC < A n (B n C), so the other
inclusion is proved too. [If you don’t understand, just write a proof like
that of the previous paragraph.]
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Both inclusions hold, therefore An (BnC)=(AnB)nC. O

11.1.4. Remark. (vi) enables us to write A n B n C without parentheses.

11.1.5. Definition (disjoint). Call two sets A and B disjoint if A n B = .

11.2 TUnion

11.2.1. Definition (union). Let A and B be two sets. The union of A and B
(write Au BT, pronounce ‘A union B’) is the set made of elements of A together \cup
with elements of B.

Thus, for any « one has: (r€ Au B) < (x€ Av ze B).

11.2.2. Properties. For all sets A, B and C':

(i). A< Au B.
(i) AvA=A.
(i5i). Av @ = A

(iv) AuB=DBuA.
(v). Au B = B if and only if A< B.
(vi) Au(BuC)=(AuB)uC.
The proof is an exercise.
11.2.3. Properties (dsitributivity). Let A, B, C be sets. Then:
e An(BuC)=(AnB)u(AnC(C).
e AUBNnC)=(AuB)n(AuC).
The proof is an exercise.
11.2.4. Remark. We give no convention on priority between n and u. In
particular A~ B uC makes no sense, and one must add parentheses somewhere.
11.3 Difference of sets

11.3.1. Definition (set difference). Let A and B be two sets. The set difference
A\B' (pronounce ‘A minus B’) is the set made of those elements of A that are \setminus; avoid \backslash
not in B.

11.3.2. Remark. The notation A — B also exists, but is not recommended.
11.3.3. Example.

e Z\N is the set of non-positive integers.

e N\Z = (.
11.3.4. Properties. For all sets A, B, C,
(i). A\A = (.
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(ii). A\G = A.

(iii). A\(B U C) = (A\B) n (A\C).

(iv). A\(BAC) = (A\B)U(AC).
The proof is an exercise.

11.3.5. Remark. Do not try to make up or remember rules with the \ opera-
tion. It is safer to redraw a small Venn diagram each time.

12 Naive operations with sets

12.1 Taking subsets

We have defined in § 10.4 what a subset of a given set is. We now introduce
further notation.

12.1.1. Notation. Let A be a set and P(x) a proposition depending on z.
Then {z € A: P(x)} (pronounce ‘the set of elements of A satisfying P’) is the
subset of A made of those elements of A which satisfy P.

Tt is absolutely necessary to say ‘such that’ (or a synonym) for the colon*.
12.1.2. Remark (alternative phrases). This is equally pronounced:

e ‘the set of = in A such that P(x) holds’; e ‘the set of members of
A with P(x)’; etc.

12.1.3. Remark (unrecommended other notation).

e One occasionally finds the notation {z € A | P(x)}. It may conflict with
using | as divisibility or asbolute value.

e I cannot recommend {x € A, P(x)}, because a comma between braces
looks too much like a list.

e ‘French-style’ / is forbidden because / means something completely differ-
ent.

12.1.4. Example.
e AA\B={acA:a¢ B}.
e {neN:3ke N, n =2k} is the set of even natural numbers.
e {reR:sinx <1} =R. (Prove it.)

e {zreR:z>0}={zeR:yeR z=y>}
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12.2 The power set

12.2.1. Definition (power set). Let A be a set. The power set of A, written
P(A), is the set whose elements are all subsets of A.

12.2.2. Remark.

e Be P(A)iff Bisasubset of Aiff B< A. (Pay attention to € and <, and
remember that ‘contained’ is ambiguous.)

e For any set A, & € P(A). So P(A) is never empty.
12.2.3. Example.

o P(@) = {0}
o P({1}) = {d,{1}}.
i P({LQ}) = {@7{1}’{2}a{1’2}}'

e In general, if A has n elements, then P(A) has 2" elements.
12.2.4. Example. We determine P({,{, {T}, {{T}}}, {T}}})-
[I am looking for P(E) where E = {J, {3, {T}, {{T}}}, {T}H}-

Since E has three elements, I am supposed to find 8 subsets. Let

a=,b={, {3}, {{T}}}, and ¢ = {{F}}. The eight subsets of
{a7 b7 C} are: @’ {a}7 {b}7 {c}’ {a’ b}7 {a7 C}’ {b’ C}’ {a7 b’ C}’ }

‘We find:
@, (@) DS UDI D )
{a} {b} {c}
(BADBADY U 2. (D)),
_ {a,b} {a,c}
PE) =3 iz (@) Hohh o),

{b.c}
(D2, {1z}, {ah), {a})

~
{a,b,c}=FE

12.3 Unions and intersections of families

The proper definition of a family would require that of a function, which comes
only later. Fortunately it is intuitive enough.

Union.

12.3.1. Definition (union of a family). Let I be a set (this set provides ‘indices’
and is called the ‘indexing/index set’) and for each i € I, let A; be a set.

The union of the A;’s when i ranges over I (denoted | J,, A;T, read ‘the
union for ¢ in I of A;’) is the set of all elements that lie in some A; for some
iel.

In retrospect, the union of two sets is a special case (when the index set [
has only two elements).
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12.3.2. Example.

e For any set A,

A= U{a}.

ac€A

U{xeR:|x|=n}=Z.

neN

U&:Q

e
Intersection

12.3.3. Definition (intersection of a non-empty family). Let I be a non-empty
set and for each i € I, let A; be a set. The intersection of the A;’s when i ranges
over I (denoted (),.; A;, read ‘the intersection for ¢ in I of A;’) is the set of all
elements that lie in all A;’s for all ¢ € I.

12.3.4. Remark. The intersection over the empty set is not defined. (It would
lead to the ‘classical paradoxes’ of naive set theory.)

12.3.5. Example.
ﬂ (_5a5> = {0}
eeR~
12.4 Cartesian Products

12.4.1. Notation. (a,b) denotes the ordered pair ‘a, then b’. It is not the same
as (b,a) (unless of course if a = b).

12.4.2. Remark. We could easily define (a,b) to be {a, {a,b}}); this technical-
ity does not interest us and we take the existence of ordered pairs for granted.

12.4.3. Definition (Cartesian product). Let A and B be two sets. The
Cartesian product of A and B (A x B, read ‘A times B’) is the set of all
pairs of the form (a,b), where a € A and b € B.

12.4.4. Example. Draw pictures of the following:
e [0,1] x [0,1]

R x [0,1)

{(z,y) eRxR:z <y}
e Nx{reR:z<0vuz>1}

12.4.5. Remark. If A and B are finite sets, then so is A x B, and its number
of elements is: the number of elements in A times the number of elements in B.

12.4.6. Notation. We write A2 for A x A.
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12.4.7. Remark. A? is bigger than the set of all pairs (a,a) where a € A. Tt is
actually the set of all pairs (a,a’) where a and a’ are in A (but not necessarily
equal).

We now explain how Cartesian products can simplify notation when working
with quantifiers.

12.4.8. Properties. Let A, B be sets and P(x,y) be a proposition depending
on x andy. Then:

o Vre A Vye B, P(x,y) is equivalent to V(x,y) € A x B, P(x,y).

e Jxe A, Jye B, P(x,y) is equivalent to I(x,y) € A x B, P(x,y).

12.5 Functions

12.5.1. Definition. Let A, B be sets. A function graph is a subset ' € A x B
such that:
(Vae A)(3b e B)((a,b) eT).

One should refrain from using 3!. So this rewrites:

(Va e A)(3be B)((a,b) € T)
A(Va € A)(Vby € B)(Vbe € B) [((a,b1) €T A (a,b) €T) = by = by].

The first line means: ‘every a has at least one image’; the second line means
‘every a has at most one image’.

12.5.2. Remark (function notation). Given a function graph I' € A x B, we
know that for each a there is a unique b with (a,b) € I'. We may then use
function notation, and write b = I'(a) for the unique b.

Of course f is often a good name for a function.

Check-up and Exercises

Words used (check that you understand their meaning):
e set, subset; membership, inclusion;
e union, intersection; complement;
e powerset, infinitary union, infinitary intersection;

e function.

Very easy exercises

Finite sets

II1.1. How many elements does {&,{,{T}}} have?

I11.2. Give all elements of the following sets:

(1) {1, {2}, {{3},4}}
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(ii). P({a,b,c})\(P({a,b}) v P({a,c}))
(iir). {DAD{} {aH {{H{dH
II1.3. Simplify the following sets:

(i). ({a,{a, b}, b} v {a, {a})\{{b}}-
(i) {a,{a,b}} n ({a, b} v P({a})).
(iit). P({a}) v P({b}).

(). P({a, b})\P({b}).

I11.4. Let A = {a,{a,b},{b,c}}. How many elements are there in the set
P(P(A) via,{a,b}}) ?

IIL5.
(i). What is P(P(2))?

(ii). What is P(P({D}))?

(iii). How many elements are there in P(P(P(P())))?
(iv). How many elements are there in P(P(P({@})))?

The algebra of sets

II1.6. Let A denote the set of all real numbers a that can be written a = \/2+n
for some natural number n. Prove that Nn A = (.

II1.7. Prove that for all sets A, B and C':
(i). A< Au B.
(ii). Au A=A
(iti). Au @ = A.
(iv). AUB =B U A.
(v). Au B = B if and only if A< B.
(vi). Av(BuC)=(AuB)uC.
I11.8. Let A, B, C be sets. Show that if A Band B C, AcC.
II1.9. Let A, B, C be sets. Prove that:
(i) An(BuC)=(AnB)u(An(C).
(ii). Av(BnC)=(AuB)n(Au ().

II1.10. Let A, B be sets. Find a proposition (which does not involve the \
operation) equivalent to A\B = A. Prove this equivalence.

II1.11. Let A, B, C be sets. Give counter-examples (pictures are allowed) to
the following wrong propositions:

o1



(i) AcC=AcBcC.
(ii). A\(Bu C) = (A\B)u (A\C).
111.12. Let A, B be sets. Prove that AnB=AuB= A=B.

111.13. Let A, B, C be sets. Assume An B =AnC and AuB=AuC.
Prove that B = C.

II1.14. Let A, B be sets such that for any set C, A < C = B < C. Show
Bc A

I11.15. We define the symmetric difference of two sets A, B to be AANB =
(A\B) v (B\A).

(i). Make a picture.

(ii). Prove that AAB = BAA.

(). Prove that (A B) n (AAB) = .

(iv). Prove that (An B) u (AAB) = Au B.

(v). Prove that AAB = & if and only if A = B.
(vi). Prove that AAB < A if and only if B < A.
(vii). Prove that A < AAB if and only if An B = (.

(viii). Prove that AAB = A if and only if B = .

The power set operation

II1.16. Let A and B be sets.
(i). Prove that P(A n B) = P(A) n P(B).
(ii). Prove that P(A) u P(B) € P(Au B).
(iit). Find a case in which P(A) v P(B) @ P(Au B)) (recall Definition 10.4.5).
II1.17. Let A, B be sets. Show that A = B < P(A) = P(B).
ITT1.18.
(i). Find a set A such that An P(A) # &.
(ii). Find a set B such that B n P(B) has at least two elements.
(iii). Find a set C such that C' n P(C) is infinite.

II1.19. Prove by induction that if a set A has n elements, then P(A) has 2™
elements.
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Understanding set notation

II1.20. Find a shorter description (in symbols) of the following sets. (i).
(NNnZ)u(@QnR). (ii). {reR: 2% =2} nQ. (iii). {n € Zn?>eN}nQ.
(). [0,1] A [3,2). (v). [0,1]U[L,2). (vi). {1,{1,2},2,{1}} n{1,2,{3}}. (vii).
(Z\R) v (Q\N). (viii). (Q n{v2,{1,~1},2, ~2})\N.

I11.21. Same question. (7). {x € R : 22 = 2} n Q. (ii). {x e R : 22 = —1}.
(iii). [0,1] A [3,2). (iv). [0,1] U [$.2). (v). {2® :z e R} A {23 : z € R}. (vi).

{fr e R:3yeR:ay =1} (vii) U,ool—2, 2] (viti). (yoo(—2z, ). (iz).

{r+1l:ze{yeR:3zeR:2=0}}. (2). Uyool—2,2]\(0,2).

II1.22. Same question.

(i). {xeR:22 =1} u{2?: 2 eR}.
(ii). {reR:JyeR:ay =2}
(iii). {reR:JyeR:y=0}.
(iv). {xeR:JyeR:z =0}

(v). {neN:3geQ:n=q}

(vi). {geQ:IneN:n =g}
II1.23. Same question.

(). Npenl[—n, +0)

(ii). (peln, +0)

(iii). U, q{z€R:in <z <n+1}
(). Uper yer{z € R 2 =y}
(0).: Upeper (~a.0)

(vi). Nas1(=a;a)

II1.24. Same question.

(Z) U0<z<1(

(it). Up<p<110; 7]

(m) ﬂ0<x<1( )
0,z

(). No<wet
(v). (0,1} x {0,1})\({(%@) raef{0,1}})
(vi). R x R\ ( (Rsp x Rep) U (Reg x Reg) U (Reg x Rxg) )
(vii). {reR:Vye[0,1]: x>y}
(viii). {zeR:3ye[0,1]:z >y}
(iz). {xe & :zeR}
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(2). {ze{D}: xR}
I11.25. Same question.
(i). P(P())\P(D)
(i) Uyep1,1(=lel )

(i) Unen(=n,0)

(7). (geol=lal:0]

(v). {reR:VyeR:a >y}
(vi). {xeR:VyeR:z > |y|}
(vii). {xeR:JyeR:z > |y|}

(viii). {xreR:z>0v z <0}

(iz). cos ([0, ])

(1) {z:oelyeR:y? =1}
(wi). {2*:ve{ye R:y=1}}

U (9
ge{xeQ:x>0}
(xis).
U@-1¢+1)
q€Q
(ziv).
U (n—1,n+1)
ne2Z

II1.26. For any integer n, let nZ be the set {kn : k € Z}.
(i). Rewrite the definition in English.

(ii). What is 2Z v 477

(#i). What is 2Z n 427

(iv). What is 27 n 377

I11.27. Let:

eR*:z+y<1}

eR?: |z +y| <1}

y)

(z,9)
Az = {(z,y) e R?: 2| + Jy| < 1}
(r,9) eR?: 2 +y > —1}
(z,y)

eR?: |z —y| <1}
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(i). Draw these sets.
(ii). Deduce a geometric proof of the following:

(le+yl<lajz—yl<l)e |z + |yl <1

II1.28. What are the following sets equal to?

(i).

(i).
UnN [k: N 1]
keN neN n n
Infinite operations

I11.29. Let I be a set and (A;)ier be a family of sets. Let B be a set. Prove the
following:

(i).
BuUAZ- = U(BUAi)
iel iel
(it).
BuﬂAi = ﬂ(BUAi)
iel iel
(iii).
B(WLJ14z = U(BHA,L)
iel iel
(iv).

BﬁﬂAZ:m(BﬁAl)

el el
II1.30. Let {A,,n € N} and {B,,n € N} be two families of sets indezxed by N.
(i). Assume: Yne N, A, < B,  A,41. Show that |,y An = Upen Bn-
(ii). Assume: Vn e N, A, 2 B, 2 A, 41. Show that (), ey An = [\,en Bn-

IIL.31. Let I, J be two non-empty sets with I < J. For each j € J, let A; be a
set.

(i). Prove the following:

(a)
U A; U Aj
el jeJ
(b)
44
jed iel
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(ii).

(a) Find an example of sets I, J, and A; such that:

(I<J) A(U&QU&)/\(H&ZH&)

iel jeJ jeJ iel

(b) Find an example of sets I, J, and A; such that:

aen o (Ya-Us) o (Naena)

iel jeJ jeJ iel

No justification required.
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Chapter IV — Using Functions

We use set formalism to discuss functions properly. We do not introduce a
distinction between ‘functions’ and ‘applications’ (which has little interest if
any at all).

Chapter Goals. Work with abstract functions and related notions:
e understand what a function is;
e compute image and preimage sets;
e be able to show that a function is injective, or surjective.

Main Notions. Function, composition. Injection, surjection, bijection. Image
set, preimage.

13 Functions and Composition

13.1 Function graphs

13.1.1. Definition (function graph). Let A and B be sets. A function graph
A — Bis a subset I'y € A x B such that the following two conditions are
satisfied:

e Yae A,dbe B, (a,b) Ty

e V(a,b,b') € Ax B% (a,b) €Ty A (a,b) el =b=10.

Thus, a subset I'y € A x B is the graph of a function if and only if:
(Vae A)(3b e B)((a,b) e T'y).

13.1.2. Remark (vertical line test). For a given curve to be the graph of a
function, it is necessary and sufficient to have the following property: every
vertical line meets the curve exactly once.

%

This is the graph of a function (it could be the square function).

13.1.3. Example.
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"\

This is the graph of a function (for instance, 2*

— 2 would do).
Not the graph of a function: some vertical lines meet the curve twice.

Not a function graph: some vertical lines meet the curve twice (or more).

13.2 Functions and function notation

13.2.1. Definition (function). A function is a triple (A, B,T'f), where I'; is
the graph of a function from A to B.

We then say that f is a function from A to B, and write
f:A— B.

13.2.2. Remark. A function is not a mapping. It consists of a ‘domain’ A, a
‘codomain’ B, and a mapping. Domain and codomain must be specified.

13.2.3. Example. Though they have exactly the same graph, the function f
from R to R that maps = to 22, and the function g from R to R that maps z
to 22 are not the same mathematical object.

13.2.4. Notation (function notation). Given a function f: A — B, we know
that for each x € A there is a unique y € B associated to it. We say that f
sends/maps x to y; in particular, writing y = f(z) makes sense. Hence ‘f is the
function from A to B that sends/maps x to f of 2’ is denoted:

fi A - B

13.2.5. Remark. — indicates the domain A and the codomain B, but —' \to
denotes the assignment. \mapsto
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13.3 Composition of functions

13.3.1. Definition (composition). Let f: A — B and g : B — C be functions.
The composition g o f is the function from A to C' which maps z to g(f(x)).

In symbols,

(g0 f)(a) = g(f(a)).

13.3.2. Remark (the graph of the composition). In graph notation, let I'y <
A x B be the graph of f and I'y € B x C be the graph of g. Then:

Iyor ={(a,c) e Ax C:(Fbe B)((a,b) ey A (b,c) eTy)}.
13.3.3. Remark.
e Apply f first, then g. The closest to z must be executed first.
e f o g makes no sense (unless of course if A = B).
13.3.4. Example.

e sinocos is the function from R to R which maps x to sin(cos(z)).

e Let f:{1,2,3} — {a,b,c} be such that f(1) =b, f(2) = ¢, f(3) = a, and
let g : {a,b,c} — {a, 8,7} be such that g(a) = «, g(b) = v, g(c) = B.
Then (go f)(1) =, (go f)(2) =B, (go [)(3) =~

13.3.5. Properties (associativity of o). Let f: A—> B, g: B—>C,h:C —> D
be functions. Then:

ho(gof)=(hog)of.

Proof. Exercise. O

14 Images and preimages

14.1 Images

14.1.1. Definition (image set). Let f: A — B be a function, and let E < A
be a subset of A. The image of E under f is f(E) = {f(e) : e € E}.

When f: A — B, we say that f(A) is the image of f.

14.1.2. Example. Let f denote the square function from R to R.
e f(R) = f(R>0) = f(R<o) = Rxo0.
o f([-1,1]) = f([0,1]) = f([-1,0]) = [0, 1].

14.1.3. Properties. Let f: A — B be a function, and let E, F < A be subsets
of A. Then:

(i) f(EnF) < f(E)n f(F).
(ii). f(E o F)=f(E)u f(F).
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Proof.

(i). Let y € f(E n F); we show y € f(E) n f(F). By definition, there is
x € En F such that y = f(x). Since x € E, one has y € f(E). Since
x € F, one also has y € f(F). This proves f(En F) < f(EnF).

(ii). Let y € f(F u F); we show y € f(E) u f(F). By definition, there
isxz € Eu F such that y = f(x). If x € E, one has y € f(E) <
f(E)Yu f(F). If z € F, one has y € f(F) € f(E) v f(F). So in either
case, y € f(E) u f(F). This proves f(EU F) < f(E U F).

Now let y € f(E)u f(F); we show y € f(EUF). If y € f(E), then there
isxz € Fsuch that y = f(x). Soxe FuFandye f(EUF). Ifye f(F),
we show y € f(EUF) similarly. This proves f(E)u f(F) < f(EuF). O
14.1.4. Remark. In general f(En F) & f(E) n f(F).
Let f: R — R be the square function. Then one has f(R-g) = Ryg =
f(R<o), so f(R=o) n f(R<y) = Rsp. But since R.g n Rsg = &, one also
J(R<o nRsp) = .

14.2 Preimages

14.2.1. Definition (preimage). Let f: A — B be a function, and let F € B
be a subset of B. The preimage of F under f is f~}(F) ={a€ A: f(a) € F}.

As opposed to an image set, this has the form {z € A : P(x)}, viz. a subset
obtained through ‘separation’.

14.2.2. Remark. f~! is not defined as a function from B to A. Expressions
like f~1(b) are meaningless. The argument of f~! must be a subset of B.

14.2.3. Example. Let f be the square function R — R.
° f_l(R) =R.
o f7H([0,1]) = [-1,1].
o [H[-2,-1]) =0
14.2.4. Properties. Let f: A — B be a function, and let E, F € B be subsets
of B. Then:

(i) f7HENF)

= f
(ii). fFUYEUF) = f~

Proof.

(i). Let z € f7Y(E n F); we show z € f~1(E) n f~1(F). By definition,
f(x)e En F. Since f(x) € E, one has z € f~}(E). Since f(z) € F, one
also has z € f~!(F). This proves fY(EnF) < f~Y(EnF).

Now let x € f~Y(E) n f~Y(F); we show z € f~*(E n F). Since z €
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fYE), one has f(z) € E. Since z € f~(F), one also has f(z) € F.
Hence f(z) € ENnF. Sox € f~Y(EnF). This proves fY(E)nf~1(F) <
fYUENF).

(ii). Let x € f~Y(F U F); we show x € f~}(E) u f~1(F). By definition,
f(x)e EUF. If f(z) € E, one has f(x) e EUF, whence x € f~1(EUF).
If f(x) € F, one has z € f~}(EUF) similarly. This proves f~}(EUF) <
fTHUE) v fUE).
Now let x € f~H(E) u f~}(F); weshow z € f"Y(E U F). Ifz e f~Y(E),
one has f(r)e EC EUF,soxe fTY(EUF). Ifze f~1(F), onehas x €
fY(E U F) similarly. This proves f~Y(E)u f~Y(F) < f"Y(Eu F). O

15 Injectivity, surjectivity, bijectivity

15.1 Injectivity
15.1.1. Definition (injection). Let f: A — B be a function. f is injective if:
V(a,a’) e A% f(a) = f(d') = a =d.

15.1.2. Remark. Old-fashioned, forbidden terminology: ‘one-one’. This may
create confusion with bijections.

15.1.3. Remark. Injectivity is equivalent to

¥(a,a') € A% a #d' = f(a) # f(d),
meaning that distinct elements cannot be mapped to the same element.
15.1.4. Remark. Distinguish carefully between:

e VY(a,a') e A%, a = a’ = f(a) = f(a’)’, which means that the notation f(a)
makes sense, i.e. that when a is given, f(a) is uniquely determined;

e Y(a,a') e A%, f(a) = f(a') = a = a”, viz. injectivity.

15.1.5. Remark (horizontal line test). f: A — B is injective if and only if for
all b € B, there is at most one solution to the equation f(z) = b, z € A. In other
words, when you draw the graph, f is injective iff an horizontal line intersects
the curve at most once.

15.1.6. Example.
e Let A be any set. Then Id4 is injective.
e sin : R — [—1,1] is not injective (for instance, sin(0) = sin()).
e If A has only one element, then any function from A is injective.
e If A has more than one element, no constant function from A is injective.
e In:R.y — R, exp: R — R.g are injective (draw the graphs).

Caution. Injectivity strongly depends on the domain!
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15.1.7. Example.
e The square function R — R is not injective, as (—1)? =1 = 12.
e The square function R — R~ is not injective, as (—1)? =1 = 12.
e The square function R>¢ — R is injective.
e The square function R>¢ — Ry is injective.

15.1.8. Proposition. Let f: A — B and g : B — C be functions.

(i). If f and g are injective, then so is go f.
(ii). If g o f is injective, then so is f.

Proof.

(i). We assume that f and g are injective, and we prove that go f is. So we let
a,a’ € A be such that (go f)(a) = (go f)(a’), and we prove a = a’. Our
assumption means g(f(a)) = g(f(a’)). By injectivity of g, this implies
f(a) = f(d'). By injectivity of f, this implies a = a’/. So go f is injective.

(ii). We now assume that g o f is injective, and we prove that f is. So let
a,a’ € A be such that f(a) = f(a'); we want to prove that a = a’.
Applying g to our hypothesis, we get (g o f)(a) = g(f(a)) = g(f(a")) =
(go f)(a’). But by injectivity of g o f, this implies a = a'. O

15.1.9. Remark. If go f is injective, there is no reason why g should be.
Let f: {1} — {1,2} map 1 to 1, and let ¢ : {1,2} — {1} map 1 and 2 to 1.
Notice that g is not injective. However, go f: {1} — {1} is injective.

15.2 Surjectivity
15.2.1. Definition (surjection). Let f: A — B be a function. f is surjective
if

Vbe B,Ja€ A, f(a) =b.

15.2.2. Remark. Old-fashioned, unrecommended terminology: ‘onto’. (Harm-
less, but not recommended.)

15.2.3. Remark. f: A — B is surjective if and only if Yb € B, there is at least
one solution to the equation f(z) = b, x € A. In other words, when you draw
the graph of f, then an horizontal line intersects the curve at least once.

15.2.4. Example.
e Let A be any set. Then Id,4 is surjective.

e sin: R — [—1,1] is surjective.

If A has only one element, then any function to A is surjective.

In:R.g — R, exp: R — Ry are surjective.
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Caution. Surjectivity strongly depends on the domain and codomain!
15.2.5. Example. We consider the same functions as in Example 15.1.7.
e The square function R — R is not surjective, as (—1) has no square root.
e The square function R — Ry is surjective.
e The square function Ryg — R is not surjective.
e The square function R>g — Ry is surjective.
15.2.6. Proposition. Let f: A — B and g : B — C be functions.
(i). If f and g are surjective, then so is go f.
(ii). If g o f is surjective, then so is g.

Proof.

(i). We assume that f and g are surjective, and we prove that g o f is. So
we let c € C, and find a € A such that (go f)(a) = c¢. By surjectivity of
g, there is b € B such that g(b) = ¢. By surjectivity of f, there is a € A
such that f(a) =b. Then (go f)(a) = c.

(ii). We now assume that go f is surjective, and we prove that g is. So we let
c € C, and find b € B such that g(b) = ¢. By surjectivity of g o f, there
is a € A such that (go f)(a) =c. Let b= f(a) € B. Then g(b) =c. O

15.2.7. Remark. If g o f is surjective, there is no reason why f should be.
Let f: {1} — {1,2} map 1 to 1, and let g : {1,2} — {1} map 1 and 2 to 1.
Notice that f is not surjective. However, go f: {1} — {1} is surjective.

15.3 Bijectivity

It turns out that the case where a function is both injective and surjective is
extremely interesting.

15.3.1. Definition (bijection). Let f: A — B be a function. f is bijective if
it is both injective and surjective; in other words f is bijective iff:

Vbe B,3lae A, f(a) =b.

15.3.2. Remark. Old-fashioned, forbidden terminology: one-to-one corres-
pondence. The risk of confusion with ‘one-one’ is huge.

15.3.3. Remark. f: A — B is bijective if and only if Vb € B, there is ezactly
one solution to the equation f(z) = b, x € A. In other words, when you draw
the graph of f, then an horizontal line intersects the curve ezxactly once.

15.3.4. Example.
e Let A be a set. Then Idy is a bijection.

e In: Ry — R, exp: R — R, are bijections.
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e The cube function R — R is a bijection.
e The absolute value R — R+ is not a bijection.
Caution. Bijectivity strongly depends on the domain and codomain!

15.3.5. Example. Same functions as in Examples 15.1.7 and 15.2.5.
e The square function R — R is not bijective, as it is not surjective.
e The square function R — Ry is not bijective, as it is not injective.
e The square function Ryg — R is not bijective, as it is not surjective.
e The square function Ryg — R is bijective.

15.3.6. Proposition. Let f: A— B, g: B — C be functions.

(i). If f and g are bijective, then so is go f.
(ii). If g o f is bijective, then f is injective, and g is surjective.

Proof. Obvious from Propositions 15.1.8 and 15.2.6. O

15.3.7. Remark. If go f is bijective, there is no reason why f nor g should be.
Let f: {1} — {1,2} map 1 to 1, and let g : {1,2} — {1} map 1 and 2 to 1.
Neither f nor g is bijective. However, go f: {1} — {1} is bijective.

Check-up and Exercises

Warm-up exercises

IV.1. Do the following constructions define functions? If yes, find the biggest
possible domain on which they make sense.

(i). Map any real number x to its square.
(ii). Map any real number to one of its real square roots.
(iii). Map any non-negative real number to one of its real square roots.
(iv). Map any real number to the biggest integer not greater than it.
(v). Map any real number to the integer that is closest to it.
(vi). Map z to sin(y/( — 2?)).
IV.2. Let F be the set of polynomials with real coefficients.
e Let D be the derivation operation:

D: F —» F
fo=f
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e Let P map a polynomial to its unique primitive which vanishes at 0:
P: F - F
fo= §orma

(i). Are the functions D, P injective?

(ii). Are the functions D, P surjective?
Iv.3.

(7). Determine all injections {1,2} — {1,2,3,4} (you should find 12 of these).
(it). Determine all surjections {1,2,3,4} — {1,2} (you should find 14 of these).
IV.4. Define f: Z x Z\{0} — Q by:

_Pr
f((p,q)) = .

(i). Is f injective? If so, prove it. If not, provide a counter-example.
(ii). Find f~*({3}).

Injections, Surjections, Bijections

IV.5. Suppose that Ay, ..., A, are sets and for each i =1,....n, f; : Aj_1 — A;
is a surjective function. Prove by induction that:

fnofn10-r0fii Ay — Ay
is also surjective.
IV.6. Let E be a set. For any subset A € E, the characteristic function of A
in B is:
XA E — {Oa 1}

1 ifzeA
Tl o0 ifz¢ A

(i). Draw the characteristic function of [0,1] in R.
(ii). Draw the characteristic function of Q in R.

(iii). Let 2F be the set of functions E — {0,1}. Let

d: PE) — 2F
A = XA.

Prove that ® is injective.
(iv). Prove that ® is surjective.

(v). Deduce that if E is finite and has n elements, then P(E) has 2™ elements.
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Images and preimages

IV.7. Let f be the following function:

f: R - R

r = .’E4

Determine the following sets:
(i). f(R), f(Rz0), f(R<o), £([0,1]), f([-1,1])
(ii). f7HR), f7H(R=0), [ (R<o), f7H(0,1]), f7H[-1,1]).

IV.8. Let f be the function from P(N\{J} to N taking any non-empty subset
of N to its least element.

(i). Let A be the set of all infinite sets of N. Determine f(A).
Let B be the set of all finite, non-empty sets of N. Determine f(B).

(ii). Determine f=1({1}), f~*({2}), f~1({1,2}).
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