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Chapter I — Stating Things

In this chapter we learn how to write and read formal mathematical statements.
Always bear in mind that symbols are for stating, not for proving.

Chapter Goals. Learn mathematical language:

• Determine if a sentence is a proposition or not.

• Translate from English to symbols and back.

• Find the truth table of a (non-quantified) proposition.

• Determine whether two propositions are equivalent.

• Manipulate quantified propositions.

• Compute the negation of a given proposition.

Main Notions. Proposition, Truth value, Truth table, Connective, Equival-
ence, Quantifier.

We first discuss propositions and truth values (§ 1). Using the propositional
connectives  ,^,_,ñ,ô (§ 2), we can build compound propositions (§ 3); some
are equivalent. Another step in complexity, where real mathematics begin, is by
adding the quantifiers D,@ (§ 4); the method of truth tables no longer applies.
Quantified propositions beg for special rules and manipulations (§ 5).

1 Propositions
One has to start somewhere and our notion of a proposition will remain non-
formal. (A second course in mathematical logic would return to the topic, which
is not our current business.)

1.1 Informal discussion
Not every sentence˚ phrase, énoncéis subject to logical treatment. Let us consider a few
examples.

1.1.1. Example.
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Sentence Context-independent meaning? True/False?
0 “ 0 Y T

I am here. N /
0 “ 1. Y F

Cats lay eggs. Y F
x “ 0 N /

Hence 2 ą 0. N /

A sentence with a precise meaning is the same as a statement˚ affirmationwhich is
either true or false, not depending on any context.

1.1.2. Remark.

• Though ‘I am here’ sounds true to any person saying it, its contents depend
on the person saying it. So this sentence does not have a precise meaning.

• Of course 0 ‰ 1. But the sentence ‘0 “ 1’ makes good sense, even though
we know it is false. We understand the meaning of the statement.

• ‘x “ 0’ is not a proposition. Who is x? The meaning depends on some-
thing undefined. (Later it will be called a ‘proposition depending on a
variable’.)

• The sentence starting with ‘Hence’ is obviously part of something else
(maybe a proof), but it is not a statement.

The sentences that sound relevant for our purposes are those whose meaning
is precise. They are the sentences one could describe as either ‘true’ or ‘false’.

1.2 Informal definition
1.2.1. Definition (proposition, truth value). A proposition is a sentence which
is either true or false. ‘True’ or ‘False’ is the truth value˚ valeur de véritéof the proposition.

(‘False’ is a truth value.)

1.2.2. Notation.

• Any of the following stands for true: T , 1, J: ztop.

• Any of the following stands for false : F , 0, K: zbot.

1.2.3. Remark (a digression). Consider the sentence:

‘Every even number is a sum of two prime numbers.’

This is a proposition as it has a precise meaning. It also has a truth value.
But nobody knows if it is true or false. (This famous statement is known
as the Goldbach Conjecture. More in general, a conjecture is a mathematical
proposition whose truth value we do not know, viz. an open problem.)

Hence our (informal) definition of a proposition actually relies on something
very hard to determine in practice, its truth value. Which is also why there is
still research in mathematics, but that is another story. . .
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In mathematics we consider only propositions. We try to determine which
are true and which are false, by giving either proofs or refutations. This will be
explained in Chapter II. The goal of the present chapter is merely to manipulate
propositions.

1.2.4. Remark. For the sake of pedagogy I sometimes use sentences which are
not propositions, but which provide striking, easily remembered examples.

1.2.5. Remark (alternative phrases). Let P be a proposition (take for example
0 “ 0, or take 0 “ 1; it does not matter).

• Phrases˚ expression(s)meaning that P is true:

• ‘P ’; • ‘P is true’; • ‘P holds’; • ‘it is the case that P ’; • ‘we
have P ’.

• Phrases meaning that P is false:

• ‘P is not true’; • ‘P is false’; • ‘P does not hold’; • ‘it is not
the case that P ’.

Notice that in mathematics, to say ‘0 “ 0’ is the same as saying ‘it is true that
0 “ 0’. So be careful with what you say.

1.2.6. Example.
— Does the proposition ‘cats lay eggs’ hold?
— No, it is not the case that cats lay eggs.
Pay attention to quotation marks˚ guillemets.

2 Connectives
We usually assemble basic propositions using words such as ‘and’ or ‘or’. This
is done in mathematics too.

We shall introduce five connectives : not (§ 2.1), and (§ 2.2), or (§ 2.3),
implies (§ 2.4), if and only if (§ 2.5). The first three are easily understood. You
may have to pay special attention to the last two.

2.1 Negation
2.1.1. Definition (negation). Let P be a proposition. Then ‘not-P ’ is a pro-
position, called the negation of P and denoted by  P : zneg.

2.1.2. Remark. Old-fashioned˚ Démodé(e)notation (forbidden): „P . Bad notation (for-
bidden): {P .

2.1.3. Example. Let x and y be real numbers.

• The negation of ‘x` 0 “ y’ is ‘x` 0 ‰ y’.

• The negation of ‘x ą y’ is ‘x ď y’.

We know that not-P is true if P is false, and false if P is true. It is convenient
to summarize this in a truth table˚ table de vérité. This is just an array giving the truth value
of a proposition, depending on the truth values of its components.
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Truth table of  P :
P  P
F T
T F

2.1.4. Remark. P and   P always have the same truth value. This is an
indication that they essentially have the same meaning (§ 3.2).

(The idea that ‘same truth value = same meaning’ was disputed at the begin-
ning of the xxth century, which led to an interesting theoretical developement,
and a philosophical debate.)

2.2 Conjunction
2.2.1. Definition (conjunction). Let P and Q be propositions. Then ‘P -and-
Q’ is a proposition, called the conjunction of P and Q, and denoted by P ^Q: zwedge.

2.2.2. Remark. Old-fashioned notation (forbidden): P & Q.

2.2.3. Remark. Before we write the truth table of ^, we adopt a natural
convention. In order to write truth tables with several variables (below, P and
Q are our two variables), it is convenient to use always the same enumeration
of the truth entries.

Replace ‘True’ by 1 and ‘False’ by 0. Then the natural way to enumerate
all possibilities is 00, 01, 10, 11, in increasing order. So the natural way to
enumerate truth values in two variables is FF , FT , TF , TT .

P ^Q is true if both P and Q are true, false otherwise.

Truth table of P ^Q :

P Q P ^Q
F F F
F T F
T F F
T T T

Thus P ^ T always has the same truth value as P , while P ^ F is always
false.

2.2.4. Remark. In English (in French as well), there are two ways to use ‘and’:

• connective and, for connecting sentences, as in ‘2 is even and 4 is even’:
we use ^;

• enumerative and, for listing things, as in ‘2 and 4 are even’: here it is
absolutely forbidden to use ^.

In mathematics we only have the connective. So ‘Let a and b be two numbers’,
may not be written ‘Let a^ b. . . ’.

Likewise, ‘4 is greater than 1 and 2’ writes as ‘p4 ą 1q ^ p4 ą 2q’.

2.2.5. Remark. Mathematical language is poor. The English ‘but’ would be
translated by ‘and’, losing the nuance of opposition in it.
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2.2.6. Example. Let us complicate things and introduce three propositions.

P Q R pP ^Qq ^R P ^ pQ^Rq
F F F F F
F F T F F
F T F F F
F T T F F
T F F F F
T F T F F
T T F F F
T T T T T

Hence pP ^Qq ^R and P ^ pQ^Rq always have the same truth value.

End of lecture 1

2.3 Disjunction
2.3.1. Definition (disjunction). Let P and Q be propositions. Then ‘P -or-Q’
is a proposition, called the disjunction of P and Q, and denoted by P _Q: zvee.

Since P _ Q is true as soon as one of P or Q is true, we get the following
truth table.

Truth table of P _Q :

P Q P _Q
F F F
F T T
T F T
T T T

Thus P _ T is always true, while P _ F always has the same truth value as
P .

2.3.2. Remark (no symbol for ‘enumerative or’). The mathematical ‘or’ may
not be used for enumerations. So ‘x is equal to 1 or 2’ stands for ‘x is equal to
1 or x is equal to 2’, viz. px “ 1_ x “ 2q. Never write ‘x “ 1_ 2’.

2.3.3. Remark (mathematical ‘or’ is inclusive). The mathematical ‘or’ is in-
clusive, viz. it always means ‘P or Q or both’.

In English (in French as well), ‘or’ is often implicitly means ‘or. . . , but not
both’. For instance, ‘will you come on Monday or on Tuesday?’˚ « fromage ou dessert »does not expect
‘both’ as an answer.

Should you want to specify ‘not both’, use ‘either. . . or. . . ’˚ ou bien. . . ou bien. Mathematics
does not have a universal symbol for this ‘exclusive or’.

2.3.4. Remark (continued). In symbols, ‘either P or Q’ writes pP ^  Qq _
p P^Qq. (Alternative, less clear options, are pP_Qq^ pP^Qq, or  pP ô Qq
to be seen later.)

2.3.5. Examples.

• Using truth tables, one sees that:
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[Hamlet’s Principle:] P _ P is always true.

In mathematics, ‘to be or not to be’ is no question: it is simply true.

• Classical mathematical joke: — ‘Is it a boy or a girl?’ — ‘Yes.’

2.4 Implication
The fourth connective is generally misunderstood and deserves extra attention.

2.4.1. Definition (implication). Let P and Q be propositions. Then ‘if-P -
then-Q’ is a proposition, called the implication from P to Q and denoted by
P ñ Q: zRightarrow.

Implication says nothing about the cases in which P does not hold. So the
truth table is as follows.

Truth table of P ñ Q :

P Q P ñ Q
F F T
F T T
T F F
T T T

2.4.2. Remarks (arrow shapes).

• One may also use the simple arrow P Ñ Q: zrightarrow, zto.

• No backwards arrows. ‘ð’ and ‘Ð’ are absolutely forbidden.

2.4.3. Remark. P ñ Q does not mean ‘P has Q as an arguable consequence’.
It means that if P holds, then so does Q. In particular:

False implies anything. — Anything implies True.

2.4.4. Example.

• ‘If 1 “ 0, then cats lay eggs’ is true.

• ‘If cats lay eggs, then 1` 1 “ 2’ is true.

• ‘If 1` 1 “ 2, then cats lay eggs’ is false.

• ‘If hens lay eggs, then 0 “ 0’ is true.

2.4.5. Remark (alternative phrases). Here are various readings of P ñ Q:

• ‘P implies Q; • ‘if P , then Q’; • ‘P is a sufficient condition for Q
to hold’.

2.4.6. Remark (unrecommended alternative phrases).

• The English ‘Q if P ’ is grammatically correct and means P ñ Q, but is a
bad idea as it suggests writing the (forbidden) Qð P .

• Likewise, ‘Q is a necessary condition for P to hold’ is correct and does
mean P ñ Q (one cannot have P without having Q, viz. P ñ Q), but
again suggests writing backwards.
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• The English ‘P only if˚ seulement siQ’ means exactly P ñ Q.
Example: ‘You’re allowed to board this plane only if you have a boarding
pass’. People aboard the plane will have a boarding pass. But someone
with a boarding pass could be late and miss the plane. So really, the
sentence is ‘allowed ñ has pass’, not the other way around.
I cannot recommend this phrase. First, even I have to think in order to
understand which implies which. Second, the hasty listener could hear ‘if
and only if’, which is something else (§ 2.5).

2.4.7. Remark (common mistakes). Here are two common mistakes.

• P ñ Q may not be read ‘P then Q’.
Here ‘then’ would mean ‘later’, which is not what you mean. If you want
to use ‘then’, then you must use ‘if’.

• ‘P ñ Q may not be read ‘P , hence Q’ (nor ‘P , therefore Q’, etc.).
Let us elaborate on this. Consider the two sentences:

– ‘If cats lay eggs, then 0 “ 1’—a true proposition;
– ‘Cats lay eggs, hence 0 “ 1’—an incorrect proof.

Beginners tend to mistake 1. ‘P implies Q’ (a proposition) with 2. ‘P ,
which implies˚ ce qui impliqueQ’ (a part of a proof). In case 1. you say nothing about P
or Q, simply about their relationship. In case 2. you claim both.
It may be simpler to remember that there is no symbol for ‘hence’, because
there is no symbol for deduction.

We define two notions related to implication.

2.4.8. Definition (converse). The converse˚ réciproqueof an implication P ñ Q is the
proposition Qñ P .

2.4.9. Definition (contrapositive). The contrapositive˚ contraposéeof an implication P ñ
Q is the proposition  Qñ  P .

2.5 Equivalence
This is arguably more of an abbreviation than a connective. It is less useful
than beginners think.

2.5.1. Definition (equivalence). Let P and Q be propositions. Then ‘P -if-
and-only-if-Q’ is a proposition, called the equivalence of P and Q and denoted
by P ô Q: zLeftrightarrow.

Of course, P Ø Q: zleftrightarrowis allowed as well.

Truth table of P ô Q :

P Q P ô Q
F F T
F T F
T F F
T T T
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2.5.2. Remark (alternative phrases). Here are various readings of P ô Q:

• ‘P if and only if Q’; • ‘P is a necessary and sufficient condition
for Q to hold’; • ‘Q is a necessary and sufficient condition for P to
hold’.

Of course the last is usually a bad idea as it reverts the order.
One may also say ‘P is equivalent to Q’, for a reason explained in § 3.2.

3 Complex propositions

With the five propositional connectives one obtains compound˚ composé(es)propositions.

3.1 Parentheses
We can build compound sentences, for example P _  Q, etc. The expressions
that make sense are sometimes called well-formed. It is not very interesting to
define of this notion, as it is always obvious to determine whether an expression
is well-formed or not.

3.1.1. Example.

Expression Well-formed?
 N

   P Y
 P _Q Y
^Q N

P _^Q N

If we keep assembling compound propositions, we should use parentheses.
Now if we want to drop some of the parentheses, we need a convention, because
the meaning of  P _Q is not clear at first sight; it could be either p P q _Q
or  pP _Qq.

Pre-eminence is given to _, then to ^, then to  .

3.1.2. Example.

   P stands for  p p pP qqq
 P _Q stands for p P q _Q

 P _Q^R stands for p P q _ pQ^Rq.

But the golden rule is clarity:

Better too many parentheses than relying on conventions.

3.2 Equivalent Propositions
3.2.1. Definition. Two propositions P,Q are called equivalent if they always
have the same truth value.

We shall see examples shortly. For the moment, a provocative comment.

9



3.2.2. Remark. There is no symbol to denote that two propositions are equi-
valent. (The symbol ô actually means something else; § 2.5.)

The following properties are essential when computing negations.
3.2.3. Properties (De Morgan’s laws).

 pP ^Qq is equivalent to  P _ Q.
 pP _Qq is equivalent to  P ^ Q.

Remember that:
‘The negation of a conjunction is the disjunction of negations.’
‘The negation of a disjunction is the conjunction of negations.’

3.2.4. Example.
• In case you did not understand, check the following. The negation of
‘beautiful and useful’ is not ‘ugly and useless’. It is ‘ugly or useless’.

• ‘No stopping or standing’˚ ne pas s’arrêter ou stationnershould be written ‘No (stopping or standing)’.
If it were, its meaning would become clear: ‘No stopping and no standing’.

Now, using truth tables, we show how the connectives relate to each other.
3.2.5. Remark. P ñ Q is equivalent to  P _Q.

Indeed, ‘don’t move or I shot!’ means ‘If you move, then I shot!’.
As an application of this equivalence we can compute the negation of an

implication, using De Morgan’s law.
3.2.6. Remark (negation of implication).

 pP ñ Qq is equivalent to P ^ Q.

• Since P ñ Q is equivalent to  P _ Q, one gets that  pP ñ Qq is
equivalent to  p P _Qq, which is seen to be equivalent to P ^ Q.

• P ñ Q means ‘whenever P is true, also Q is true’. Negating it amounts to
refuting the implication. This is done by giving a counter-example, that
is something that satisfies P , but not Q. This explains intuitively why
 pP ñ Qq is equivalent to P ^ Q.

3.2.7. Remark. In Definition 2.5.1, we defined the ‘if and only if’ connective.
In Definition 3.2.1, we defined equivalence as a property of two propositions.
This is not at all the same, but the relationship is expressed as follows:

P and Q are equivalent
(as propositions)

*

if and only if
"

pP ô Qq is true
(as a proposition).

The symbol ‘ô’ is used only as a connective. When asked to prove that
two propositions P and Q are equivalent, one may prove that the compound
proposition P ô Q is true. This is not literally the same question, but it is an
equivalent question.
3.2.8. Remark (continued). The compound proposition ‘P is equivalent to Q’
is, as a proposition, equivalent to the proposition ‘P implies Q and Q implies
P ’. Therefore:

‘P ô Q’ if and only if ‘pP ñ Qq ^ pQñ P q’.
End of lecture 2
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3.3 Some Classical Equivalences
Every equivalence below must be understood, known, and always ready for use.
The last column gives the common name of the property.

  P is equiv. to P ‘double-negation’
P ^ pQ^Rq “ ” pP ^Qq ^R ‘associativity of ^’
P _ pQ_Rq “ ” pP _Qq _R ‘associativity of _1

Q^ P “ ” P ^Q ‘commutativity of ^’
Q_ P “ ” P _Q ‘commutativity of _’

pP _Qq ^R “ ” pP ^Rq _ pQ^Rq ‘distributivity’
pP ^Qq _R “ ” pP _Rq ^ pQ_Rq ‘distributivity’
 pP ^Qq “ ”  P _ Q ‘De Morgan’s law’
 pP _Qq “ ”  P ^ Q ‘De Morgan’s law’
P ñ Q “ ”  P _Q ‘material implication’
 pP ñ Qq “ ” P ^ Q ‘counter-example’

One must recognize them when P and Q are compound themselves.
One should practice a little with truth tables and rewriting compound pro-

positions. But one should quickly move on as mathematics becomes interesting
with quantification (which is no longer explained by truth tables).

End of lecture 3

4 Quantifiers
Quantifying a proposition P is building another proposition that says how many
‘things’ satisfy P . The following are quantified propositions:

• ‘For any real number x, one has x2 ě 0.’

• ‘There is a real number x that satisfies the equation x5 ` x´ 2 “ 0.’

For common mathematical purposes, the two phrases ‘all things satisfy P ’
and ‘there exists (at least one) a thing satisfying P ’ suffice. So there will be
only two quantifiers˚ quantificateur(s), @ and D. (A useful abbreviation, D!, is also introduced.)

Notice that truth tables cannot explain quantification.

4.1 Preliminaries
It is interesting to quantify in a sentence P only if P depends on something. For
example the expression ‘x ą 0’ is meaningless as long as we do not know who x
is. We call such a sentence a proposition depending on a variable (here x), that
is an expression that becomes a proposition as soon as we assign a meaning to
its variables.

4.1.1. Example.

• ‘x` y “ y ` x’ is a proposition in the variables x and y.

• ‘x` y’ is not a proposition in any variables: even if we assign values to x
and y, it still does not state anything.
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If a proposition depending on x, say P pxq, becomes a true proposition when
we assign to x a certain value, say x0, we say that x0 satisfies P˚ satisfaire à.

4.1.2. Example.

• 2 satisfies ‘n is even’.

• 0 as x and 1 as y satisfy ‘x` y “ y ` x’.

We also need some notation before proceeding.

4.1.3. Notation. We use throughout the following symbols:

• P: zindenotes membership. Given two mathematical objects x and A, ‘x P A’
reads ‘x is in A’, or ‘x is an element of A’, or ‘x belongs to A’. In context,
‘belonging’˚ appartenantcan be more correct than ‘belongs’. Really, ‘in’ is shortest
and clearest.
You may not use expressions like ‘A contains x’ or ‘x is included in A’
(which mean something else).

• In English, ‘positive’˚ strictement positifmeans ą 0. This creates many confusions and
requires some care.
For ď 0, one uses ‘non-negative’˚ positif.

• N: zmathbbtNudenotes the set of all natural numbers, that is N “ t0, 1, 2, 3, . . . u. So
‘x P N’ reads: ‘x is in N ’, or ‘x is a natural number’, or ‘x is a non-negative
integer’.

• R: zmathbbtRudenotes the set of all real numbers, that is the numbers on the line. So
‘x P R’ reads: ‘x is in R’, or ‘x is a real number’.

• To denote all positive real numbers, one writes Rą0.: zmathbbtRu_t>0u(French-style nota-
tion R˚` is inconvenient and non-universal; hence forbidden.)
For non-negative real numbers, use Rě0.: zmathbbtRu_tzgeq 0u

4.2 For all
4.2.1. Definition (universal quantification). Let A be a set and P pxq be a
proposition depending on a variable x. Then ‘for all x in A, P of x’ is a pro-
position, called the universal quantification of P pxq over x P A and denoted by
@x P A,P pxq.

The upside-down letter @: zforallis called the universal quantifier.

4.2.2. Remarks.

• Good, though infrequent, practice prefers p@x P AqpP pxqq.

• The comma ‘,’ after the quantification ‘@x P A’ is here for clarity, and
entirely optional. One may wish to read it ‘one has’.

4.2.3. Example.

• ‘@x P R, x2 ě 0’ (‘for any x in R, x-square is greater than or equal to 0’) is
the proposition stating that the square of any real number is non-negative.
(It is true.)
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• ‘@x P R, x “ 1’ (‘for any x in R, x equals 1’) is the proposition stating
that all real numbers are equal to 1. (It is false.)

4.2.4. Remark. In some books the set A does not appear. Though technically
correct (as opposed to the present exposition. . . ), it is pedagogically speaking
not a very good idea, because so far x is just a ‘thing’, and one could too easily
forget what we are talking about. This is why we prefer to relativise (or bound˚ borner)
the quantifier to the set A.

For instance, the absolute sentence ‘Dx, x ` x “ 1’, which is true if we
relativise it to the real numbers, is false among integers. This is why beginners
should avoid such sentences and use only bounded quantifiers.

4.2.5. Remark (alternative phrases). @x P A may be read:

• ‘for all x in A’; • ‘for any element x of A’; • ‘for each x belonging
to A’; • ‘for every x in the set A;

or any variation on these.
One may freely add ‘one has’; or not.

4.2.6. Remark (classical sets). An important special case is when dealing with
common sets like N or R. Instead of set-theoretic terminology ‘x in N’, one often
describes x by a mass noun, as in:

• ‘for any positive integer x’; • ‘for every natural number x’; • ‘for
all reals x’; etc.

4.2.7. Example. Read the following aloud:

• @k P N, k ą k ` 1 ñ k “ 0.

• @y P R, y ą 0 ô 2 ¨ y ą y.

Which are true?

4.2.8. Remark (quantifying twice). We know that for any two real numbers
x and y, one has x` y “ y` x. This writes ‘@x P R,@y P R, x` y “ y` x’, and
reads:

‘For any real number x, for any real number y, x plus y is equal to
y plus x.’

This sounds long. If confident, one will simply say:

‘For any real numbers x and y, x plus y equals y plus x’.

Similarly, ‘@x P R,@n P N, . . . ’ may read:

‘for any real number x and any positive integer n. . . ’

However this enumerative ‘and’ may not be written as a connective. So
‘@x^ y’ is absolutely forbidden.
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4.3 There exists
4.3.1. Definition (existential quantification). Let A be a set and P pxq be a
proposition depending on a variable x. Then ‘there is x in A such that P of
x’ is a proposition, called the existential quantification of P pxq over x P A and
denoted by Dx P A,P pxq.

The reversed letter D: zexistsis called the existential quantifier.

4.3.2. Remark (‘such that’).

• After ‘there exists’, never forget to say ‘such that’˚ tel que(or something similar)
— if you do not, your sentence is grammatically incorrect.

• This confuses beginners, since after ‘for all’, one does not add ‘such that’.

• This is why you might like to put commas. When you find a comma after
a D, read ‘such that’. When you find a comma after @, do not read it; or
possibly read it ‘one has’.

• French-style { to mean ‘such that’ is neither universal nor rigorous; hence
forbidden.

• Mathematics is a symmetric language; but English and French are not.
Do not make rules; simply follow your knowledge of grammar.

4.3.3. Example.

• ‘Dx P R, x2 “ 2’ (‘there exists x in R such that x-square is equal to 2’) is
the proposition stating that 2 has a real square-root. (It is true.)

• ‘Dk P N 2 ¨ k “ 3’ (‘there exists k in N such that 2 times k is equal to 3’)
is the proposition stating that 2 divides 3. (It is false.)

4.3.4. Remark (alternative phrases). Dx P A may be read:

• ‘there exists an x in A such that’; • ‘there is an element x of A
satisfying˚ vérifiant; • ‘there is an x in A with the property that’; • ‘there is
some x belonging to A for which˚ pour lequel’; etc.

And of course, when dealing with known sets:

‘There exists a positive integer k such that’, etc.

4.3.5. Remark (unrecommended alternative phrase). There also is the possib-
ility to say ‘for some x in A’, but I cannot recommend this. The hasty listener
will hear ‘for’ and guess ‘for all’, viz. @; which is not what you meant.

4.3.6. Example. Read the following aloud:

• Dk P N, 2 ¨ k “ 5.

• Dy P R, y ą 0^ y ă 1.

Which are true?
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4.3.7. Remark. If we want to express that some given (say, positive) real
number x is bounded between two integers, we write:

Dk P N, D` P N, k ă x ă `,

which reads
‘there exists a natural number k such that there exists a natural
number ` such that k is smaller than x that is smaller than `’.

A more natural way to read it would be:
‘there exist a natural number k and a natural number ` such that. . . ’

or even:
‘there are natural numbers k and ` such that . . . ’

However this is an instance of ‘enumerative and’ and ^ is forbidden here.
End of lecture 4

5 Manipulating quantifiers
Quantified propositions are more interesting than non-quantified ones, but also
deserve more attention. In § 5.1 we discuss renaming; then we give rules for
quantifiers in § 5.2. § 5.3 introduces the abbreviation D!, which is not a quanti-
fier. We finish with negating quantified sentences in § 5.4.

5.1 Renaming, and an independent digression
5.1.1. Remark (renaming is important). Let us write in symbols:

‘there exists a natural number which is even, and there exists a
natural number which is odd’.

• The first half may be written: Dn P N, Dk P N, n “ 2k.

• The second half may in turn be written: Dn P N, Dk P N, n “ 2k ` 1.

• Combining, we get a jam. Letters n and k each play two different roles.
(Calling all your children ‘Jessie’ would lead to confusions.) So it is reas-
onable to rename. Hence we write for instance:

pDn1 P N, Dk1 P N, n1 “ 2k1q ^ pDn2 P N, Dk2 P N, n2 “ 2k2 ` 1q.,
and everything is clear again.

This is quite the same as the treatment of the mute˚ muettevariable in
şb

a
fpxqdx “

şb

a
fpyqdy.

5.1.2. Notation (a liberty with notation). An important set in mathematics
is the set Rą0 of all positive real numbers. As it is sometimes boring to write
x P Rą0, we adopt the following convention:

‘@x ą 0’ stands for ‘@x P Rą0’,
‘Dx ą 0’ stands for ‘Dx P Rą0’.

5.1.3. Example. ‘@ε ą 0, Dδ ą 0, δ ă ε’ reads ‘for any positive real number ep-
silon, there exists a positive real number delta smaller than epsilon’, or shorter:
‘for any positive epsilon, there exists a positive delta which is smaller’.
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5.2 Quantifiers rules
5.2.1. Properties.

• ‘@x P A,P pxq’ is equivalent to ‘@y P A,P pyq’.

• ‘Dx P A,P pxq’ is equivalent to ‘Dy P A,P pyq’.

• ‘@x P A,@y P B,P px, yq’ is equivalent to ‘@y P B,@x P A,P px, yq’.

• ‘Dx P A, Dy P B,P px, yq’ is equivalent to ‘Dy P B, Dx P A,P px, yq’.

• ‘ Dx P A,P pxq’ is equivalent to ‘@x P A, P pxq’.

• ‘ @x P A,P pxq’ is equivalent to ‘Dx P A, P pxq’.

Proof. Since truth values are no longer relevant for quantification, we shall
give a proof of these properties in Chapter II.

So consecutive ‘quantification blocks’ of the same nature may be freely ex-
changed. It is not the case with different quantifiers; never switch a @ with a
D.

5.2.2. Counter-example. Read aloud:

• Dx P R,@n P N, n “ x2.

• @n P N, Dx P R, n “ x2.

Which is true? Which is false?

5.2.3. Example. The proposition ‘@x ą 0, Dk P N, D` P N, k ă x ă `’ is
equivalent to ‘@x ą 0, D` P N, Dk P N, k ă x ă `’. But @ must come first.

5.3 A useful abbreviation
Here is a useful abbreviation, which is not strictly speaking a quantifier.

5.3.1. Notation. Let A be a set and P pxq be a proposition depending on an
variable x. Then D!x P A,P pxq (pronounce ‘there exists a unique x in A such
that P pxq’) stands for:

Dx P A, pP pxq ^ @y P A,P pyq ñ x “ yq .

This formula means that there is an x in A that satisfies P , but also that
any other y in A satisfying P has to be equal to x. Hence x is the only element
of A satisfying P .

5.3.2. Remark (alternative phrases). D!x P A,P pxq may read:

• ‘there is exactly one x in A such that’; • ‘there is a unique x in A
satisfying’; etc.

5.3.3. Example. Read aloud:

• @x P R, D!y P R, x “ y.
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• D!n P N, pDk P N, n “ k ` 1q.

Which are true?

5.3.4. Remark. Notice how we say ‘unique’ in mathematics: ‘if there are two,
they are the same’. So D! really means ‘exists and is unique’.

5.3.5. Remark. ‘D!’ is not a quantifier, but an abbreviation. Therefore you
should make no rules but always return to the definition.

5.3.6. Counter-example.

• Consider the proposition: ‘D!x P R, D!y P R, x “ y2’.
When x0 P R is fixed, the proposition ‘D!y P R, x0 “ y2’ states that x0
has a unique square root. There is exactly one real number which has a
unique square root (namely 0), so the proposition is true.

• We now revert D!, getting the proposition ‘D!y P R, D!x P R, x “ y2’.
When y0 P R is fixed, the proposition ‘D!x P R, x “ y2

0 ’ means that y0 has
a unique square. This is certainly true of any y0 P R, but there are many
such. So the proposition is false.

5.4 Computing negations
As an application, we may now compute negations of all propositions.

5.4.1. Remark. ­ @ and E are absolutely forbidden.

Consider the following proposition:

P : ‘@x P R, Dn P N,@y P R, |y| ą nñ |y| ą |x|’.

 P is successively equivalent to:

 @x P R,
loooomoooon

turns into a D 

Dn P N, @y P R, |y| ą nñ |y| ą |x|,

Dx P R,  Dn P N,
loooomoooon

turns into a @ 

@y P R, |y| ą nñ |y| ą |x|,

Dx P R, @n P N,  @y P R,
loooomoooon

turns into a D 

|y| ą nñ |y| ą |x|,

Dx P R, @n P N, Dy P R,  p|y| ą nñ |y| ą |x|q,
Dx P R, @n P N, Dy P R, |y| ą n^ p|y| ą |x|q,
Dx P R, @n P N, Dy P R, |x| ě |y| ą n.

5.4.2. Remark. Be careful that the negation of ‘Dx ą 0, P pxq’ is not ‘@x ď
0, P pxq’.

Remember that ‘Dx ą 0’ actually stands for ‘Dx P Rą0’. Hence the negation
of ‘Dx ą 0, P pxq’ is ‘@x ą 0, P pxq’.

End of lecture 5
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Check-up and Exercises
• Words used (check that you understand their meaning):

– proposition (Definition 1.2.1)
– connective: negation (Definition 2.1.1), conjunction (2.2.1),

disjunction (2.3.1), implication (2.4.1), equivalence (2.5.1)
– converse (Definition 2.4.8), contrapositive (Definition 2.4.9)
– equivalence of two propositions (Definition 3.2.1)
– quantification: universal (Definition 4.2.1), existential (4.3.1)

• Truth tables are useless. We teach them for two reasons:

– they make students feel confident;
– they help us convince you that sentences like ‘If hens have teeth, then

I am Santa Claus’ are true.

If you now feel comfortable with implications and negations, you may
forget about truth tables.

Basic exercises (no quantifiers)
Propositions

I.1. Which of the following are propositions? 1. How are you? 2. I am fine.
3. Socrates is dead. 4. This number is positive. 5. ´1 is positive. 6. When it
rains, π is a circle.

I.2. Determine if the following are propositions. When they are, try to find
their truth values. 1. 12 “ 1. 2. sin2 x` cos2 x “ tan2 x. 3. @n P N, n P R. 4.
@x^ y P R, x` y “ y ` x. 5. Every triangle is a square. 6. There are only two
real numbers the square of which equal themselves.

Truth tables

I.3. Enumerate entries of a truth table using four variables.

Let P,Q,R denote propositions.

I.4. Give the truth tables of: 1. pP ^ Qq ^  R 2. p P _Qq ^ p Q_Rq

I.5. Write truth tables for the following: 1. P ñ  Q 2.  P ñ Q 3.  P ñ  Q

I.6. Compute the truth tables of the following: 1. pP _ Qq ñ pP ^ Qq 2.
p P ^Qq ñ pQ^Rq 3. P ñ pQñ Rq 4. P ô pQô Rq

I.7. Same exercise with: 1. pP ^ Qq _ pP _ Qq 2. pP ^ Qq ^ pP _ Qq 3.
pP ^Qq ñ R 4. pP ñ Qq _R

I.8. Find a proposition whose truth table is:
P Q ?
F F F
F T T
T F T
T T F
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Translations

I.9. Write the following sentences as compound propositions, using symbolic
connectives (and parentheses):

1. ‘If it rains and I am home, then I play the piano or listen to the radio.’

2. ‘Paul was neither silly nor stupid, but George was a fool and so was Ringo.’

3. ‘Whenever I do not see cats around, I turn off the light; if in addition
there is no party around, I sleep pacefully.’

4. ‘Either you come or I go and get you.’

I.10. Same exercise: convert the following English sentences into their symbolic
form (you may introduce notations; you need not explain it).

1. ‘My watch is on time although I did not set it.’

2. ‘When she is asleep my cat dreams or purrs.’

3. ‘My new car is red but I do not know how to drive.’

4. ‘You’re allowed to drive only if you have a license.’

5. ‘I want salt and pepper but no sauce.’

6. ‘Mike turns off the light exactly when he wants to sleep.’

I.11. Same exercise.

1. ‘P does not imply Q.’

2. ‘It is not the case that P does not imply Q.’

3. ‘P is a sufficient condition for Q to imply R.’

4. ‘When P holds, Q cannot imply R.’

5. ‘P is a necessary and sufficient condition for P to be false.’

6. ‘It is not the case that the following occurs: the negation of P together
with the negation of Q imply the negation of the following assertion: R is
not true.’

I.12. Make up English sentences whose translations into symbols would be the
following: 1. P ^ pQñ  P q 2. pP _Qq ^ pQô Rq

I.13. Write ten compound propositions and find English sentences having their
logical structures.
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Negations

I.14. Compute and simplify the negations of the following propositions. 1.
pP^Qq_pP_Qq 2. pP^Qq^pP_Qq 3. pP^Qq_pR^Sq 4. pP_ Qq^p R_Sq

I.15. Write the negations of the following propositional forms: 1. pP ^Qq ñ R
2. pP ñ Qq _ R 3. P ñ pQ ô Rq. For the last one, you may not use arrows,
only  , _, and ^.

I.16. Compute the negations of: 1. p P ô Qq ñ R 2. pP ñ Qq ^ pP _Qq 3.
pP ô Qq ô pRô Sq 4. pP ñ Qq ñ pQñ Rq

I.17. What are the negations of:

1. ‘When it rains or snow, I avoid cats and read Lewis Carroll.’

2. ‘Tarski shaves Gödel if and only if Gödel shaves Tarski.’

I.18. Without writing intermediate steps, give the negations of:

1. p P ô Qq ñ R

2. pP ñ Qq ^ pP _Qq

3. pP ô Qq ô pRô Sq.

Miscallenea manipulations

I.19. Provide the negation, converse, and contrapositive of the following: 1.
P ñ pQñ Rq 2. pP ñ Qq ñ R 3. pP ñ Qq ñ pRñ Sq.

I.20. Rewrite the propositions below using only  , ^, _, and the following
convention:

give them as disjunctions of smaller terms (which use only conjunc-
tions and negations).

1. P ñ pQñ Rq 2. pP ñ Qq ñ R 3. pP ñ Qq ñ pR ñ Sq 4. P ^ pQñ Rq
5. pP ñ Qq ^  R 6. pP ñ Qq ^  pRñ Sq 7. pQñ Rq ñ P 8. Rñ pP ñ Qq
9. pR ñ Sq ñ pP ñ Qq 10.  pQ ñ Rq ñ  P 11.  R ñ  pP ñ Qq 12.
 pRñ Sq ñ  pP ñ Qq

For example, P ñ pQñ Rq becomes  P _ Q_R,
pP ñ Qq ñ R becomes pP ^ Qq _R,
pP ñ Qq ñ pRñ Sq becomes pP ^ Qq _  R_ S.

I.21. Let P,Q,R, S be propositions. Consider the proposition:

A : rpP _Qq ñ pR^ Sqs

1. State and simplify the negation of A.

2. State and simplify the converse of A.

3. State and simplify the contrapositive of A.

I.22. Prove without using truth tables that the following propositional forms
are equivalent:

1. pP _Qq ñ  R and Rñ p P ^ Qq.

2.  rP _ pQñ Rqs and p P ^ Qq _ p P ^Rq
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Exercises involving quantifiers
Easy translations

I.23. Write the following in English:
1. @k P N,@` P N,@x P R, x “ k ` `.

2. @k P N,@z P R, |z| ě n` 1 ñ |z| ą n.

3. @x P R, p@k P N, |x| ą kq.
Which are true?
I.24. Write the following in English:

1. @x P R, Dn P N,@y P R, |y| ą nñ |y| ą |x|.

2. Dn P N,@k P N, D` P N, k “ n ¨ `.

3. Dn P Z,@x P R, |x| ă nñ Dy P R, 0 “ 1.
Find an integer n making the second statement true. Same for the third.
I.25. Write in symbols the following sentences:

1. There exists an even integer and there exists an odd integer.

2. For any real number, there is an integer bigger than it.

3. There is a real number without a real square root.
(By the way do you know how to prove these propositions?)
I.26. Let punqnPN be a sequence of real numbers. The sequence converges to
` P R if:

@ε ą 0, Dn0 P N, @n P N, n ě n0 ñ |un ´ `| ă ε.

1. Translate the expression into English.

2. Give the negation of the expression.

3. Translate the negation into English.
I.27. A sequence of real numbers panqnPN is a Cauchy sequence if

@ε ą 0, DN P N,@m,n ě N, |am ´ an| ă ε.

1. Translate the definition of ‘Cauchy sequence’ into English.

2. Negate the definition of ‘Cauchy sequence’.

3. Translate the negation into English.
Remark. The notation is quick-and-dirty for:

@ε ą 0, DN P N,@pm,nq P N2, pm ě N ^ n ě Nq ñ |am ´ an| ă ε.

You may use it or not.
I.28. Let punqnPN be a sequence of real numbers. A real number ` P R is adher-
ent to to the sequence if:

@ε ą 0,@n0 P N, Dn ě n0, |un ´ `| ă ε.

Take the negation of the property, then translate the negation into English. Re-
mark. The notation is quick-and-dirty for : Dn P N, n ě n0 ^ |un ´ `| ă ε.
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Abstract translations

I.29. Let A be a set and P a proposition depending on a variable. Write the
negation of D!x P A,P pxq.

I.30. Let A be a set and P a proposition depending on a variable. Write the
following in symbols:

There are exactly two elements of A that satisfy P .

I.31. Let A be a set and P a proposition depending on a variable. Write the
following in symbols:

There are exactly three elements of A that satisfy P .

Around functions

I.32. Let f : RÑ R be a real function. f has limit `8 at `8 if:

@M P R, DA P R, @x P R, x ą Añ fpxq ąM.

1. Translate this definition into English.

2. Take the negation of the translation.

3. Translate the negation into symbols.

I.33. A real function f : RÑ R has limit ` at a if:

@ε ą 0, Dδ ą 0, @x P R, |x´ a| ă δ ñ |fpxq ´ `| ă ε.

Write in symbols the following sentences:

1. f has a limit at a.

2. f has a limit everywhere (i.e., at every point of R).

I.34.

• A function f : RÑ R is continuous at a P R if:

@ε ą 0, Dδ ą 0, @x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

• A function is continuous on R if it is continuous at every a P R.

• A real function f is uniformly continuous on R if:

@ε ą 0, Dδ ą 0, @x P R, @y P R, |y ´ x| ă δ ñ |fpyq ´ fpxq| ă ε.

1. Translate into English ‘continuity at a’ and ‘uniform continuity on R’.

2. Write a symbolic definition of ‘continuity on R’.

3. Give negations for all three formulas (continuity at a, on R, uniform con-
tinuity on R).

4. Translate these negations into English.
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I.35.

• Recall that when g is a real function, and a and ` are real numbers, one
says that g has limit ` at a if:

@ε ą 0, Dδ ą 0,@x P R, |x´ a| ă δ ñ |gpxq ´ `| ă ε.

• The difference quotient of a real function f at a point a P R is the expres-
sion, defined for x P Rztau:

τf,apxq :“ fpxq ´ fpaq

x´ a
.

1. The function f is differentiable at a if this quotient has a limit at a. Write
this in symbols, then translate what you have written into English.

2. f is differentiable on R if it is differentiable at every a P R. Write in
symbols: f is differentiable on R. Then translate into English.

3. Also write: f is not differentiable on R. Then translate.

I.36. Let f be a function from R to R (f : R Ñ R). Write the following prop-
erties in symbols, and give translations in English. 1. f is a constant function.
2. f is not a constant function. 3. f is increasing. 4. f is not increasing. 5. f
is increasing or decreasing. 6. f is bounded above.
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Chapter II — Proving Things

We know how to state propositions and turn to learning how to prove them.
Proofs are arguments that establish mathematical statements and must be writ-
ten in English only. (Symbolic language is only for statements.)

Chapter Goals. Write mathematical proofs:

• Prove easy propositions.

• Be able to follow a contradiction proof.

• Write induction proofs.

Main Notions. Proof, Contradiction proof, Induction proof.

The golden rule of proof writing is quite simple.

Be precise. Be concise. Prefer short sentences.

6 General ideas
The notion of a proof is central in mathematics. The criterion of acceptability
of a new proposition is: ‘does it have a proof?’. A formal definition would not
help here, and one learns through practice.

Certainly you understand the difference between a position and a movement.
By analogy, statements are positions, and proofs are movements. Only state-
ments may be written using formal symbols. In particular, there is no symbol
for deduction, as opposed to implication for which there is a symbol. (Symbol
6 is non-universal, ancient, and forbidden.)

So in a proof, you will often use the following phrases:

• so; • therefore; • thus; • hence; • whence; • as a result,

all expressing deduction. (These cannot be abbreviated by ‘ñ’, which states an
implication. One should be careful with ‘then’, which can also express deduction
if alone; as opposed to ‘if. . . then. . . ’, which expresses implication.)

6.1 Proofs, refutations, contradiction
6.1.1. Remark (how to start a proof). In general, beginners should: 1. state
what they will prove, 2. prove it, and then 3. tell that they have proved it. This
looks redundant, but it shows the logical structure of your paper.

In particular, in 1., it is perfectly fine to write ‘I/We want to prove that . . . ’.
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6.1.2. Remark (how to continue a proof). In a proof you may freely use:

• Propositions known to be true (e.g. usual equivalences).

• Your current assumptions˚ hypothèse(s).

• Things you have already proved under the same assumptions.

• Classical results (eg. the fact that for real x one has sin2 x` cos2 x “ 1).

The level of detail in a proof depends on contextual factors: whom you write
for, how well-trained you are, etc. For that reason I will not always follow the
guidelines below.

6.1.3. Remark (how to finish a proof). To celebrate your final victory, there
are several options.

• If you announced what you wanted to prove, you may say ‘as wanted’˚ comme vouluas
a conclusion.

• Snobbish variant: use qed˚ cqfd, which stands for the Latin:

Quod
loomoon

What

Erat
loomoon

Was

Demonstrandum
looooooooomooooooooon

To be proved

.

• Mathematicians are keen on the ˝ symbol (which reads ‘qed’ or ‘end of
proof’). In many books, proofs end like this.

• One occasionally sees % (not recommended).

6.1.4. Definition. A refutation of a proposition P is a proof of  P .

To disprove˚ [n’a pas d’équivalent]is a synonym of to refute.

6.1.5. Definition. A contradiction˚ absurditéis any of the following:

• a proposition which is always false (for example, because of truth tables);

• the negation of one of your current assumptions;

• the negation of something you have already proved under your current
assumptions;

• something contradicting classical results.

6.2 How to know what to prove
There are three layers of increasing difficulty.

1. If an exercise asks to prove P (or if it asks to refute P ) one knows what
to do.

2. If an exercise asks to (prove P or refute P ), this is already harder as one
has to understand which is true before writing. This is where intuition
gets into play. A proof of P and a proof of  P do not even start similarly.

3. Research is even harder: one first has to decide which proposition P one
wants to prove. The problem being to determine, through intuition (and
not through wishful thinking˚ le fait de prendre ses désirs

pour des réalités
), a proposition P which is both true and

interesting.
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7 Propositional methods
We shall sketch a couple of techniques to prove propositions. Notice how the
techniques one uses depend on the shape of what one has to prove.

7.1 How to prove  P ; also, contradiction proof
In order to prove  P , prove that P cannot hold.

Proof of  P:

• Assume P .

• Prove a contradiction.

• Conclude that you have proved  P .

7.1.1. Example (important). Let us prove
?

2 R Q: zsqrtt2u znotin zmathbbtQu,
or zsqrt2znotinzmathbbQ
(not recommended)

.

‘Suppose that
?

2 is rational. [We prove a contradiction] Then there
are integers a, b ‰ 0 with

?
2 “ a

b . We may assume that a and b are
coprime˚ copremiers, premiers entre eux.
Raising to the square and multiplying, we find a2 “ 2b2. In particu-
lar, 2 divides a2. But this implies that 2 divides a. Hence 4 divides
a2 “ 2b2, and therefore 2 divides b2. Now this implies that 2 divides
b. So 2 divides both a and b, a contradiction to coprimality.
Hence

?
2 is not a rational number.’

This example had historical significance and must be learnt.

Variation: contradiction proof. Since P and   P are equivalent, this
gives rise to the powerful contradiction proof ˚ dém. par l’absurde. It creates an assumption ‘from
nothing’ by negating what you want to prove.

Contradiction Proof of P:

• Assume  P .

• Prove a contradiction.

• Conclude that  P cannot hold, and therefore P does hold.
It is slightly better not to give a contradiction proof if it can be avoided, for

two reasons:

• some philosophers have disputed the validity of contradiction proofs (tech-
nically, they prove   P , not P );

• contradiction proofs are more challenging for the mind as it must focus
on something false.
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7.2 How to prove P ^Q

This is simple.
Proof of P^Q:

• Prove P .

• Prove Q.

• Conclude that you have proved P ^Q.

7.3 How to prove P _Q

The method is not to prove P or prove Q. First, which should you choose?
Second, to prove P is much stronger than to prove P _ Q (since P ñ P _ Q
but the converse does not always hold). Typically one can use a contradiction
proof here.

Contradiction proof of P_Q:

• Assume  P ^ Q.

• Prove a contradiction.

• Conclude that you have proved P _Q.

But one seldom does this, and relies on of the following variations instead.

Variation 1 for P_Q:

• Assume  P .

• Prove Q.

• Conclude  P ñ Q, hence P _Q.

Since P _Q is equivalent to Q_ P , we also have the symmetric method.

Variation 2 for P_Q:

• Assume  Q.

• Prove P .

• Conclude  Qñ P , hence P _Q.

7.3.1. Example. Let m,n be integers. Prove that if mn is even then m or n
is even.

‘We assume that mn is even, and we prove that m or n is even.
To do that, we assume that m is not even. Hence m is odd.
Since mn is even, 2 divides mn, hence 2 divides m or n. As m is
odd, 2 does not divide it, so 2 divides n. Hence n is even.
Assuming that m is not even we have proved that n is. This can
also be expressed as pm is evenq _ pn is evenq.
So assuming that mn is even, we have proved that m or n is even.’
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7.4 How to prove P ñ Q; also, case division
We turn to implications.

Direct proof of P ñ Q:

• Assume P .

• Prove Q.

• Conclude P ñ Q.
Do not forget the conclusion.

7.4.1. Example. Let x be a real number. Prove that

sin x “ 1 ñ cosx “ 0.

‘Assume that sin x “ 1. Then since sin2 x` cos2 x “ 1, we find that
1 ` cos2 x “ 1, hence cos2 x “ 0, and thus cosx “ 0. Therefore we
have proved that sin x “ 1 ñ cosx “ 0.’

Sometimes the contrapositive (§ 2.4) is easier to prove.
Contraposition Proof of P ñ Q:

• Assume  Q.

• Prove  P .

• Conclude  Qñ  P , hence P ñ Q.

7.4.2. Example. Let x be a real number. Prove that

cosx ‰ 0 ñ sin x ‰ 1.

‘Assume that sin x “ 1. Then since sin2 x` cos2 x “ 1, we find that
1 ` cos2 x “ 1, hence cos2 x “ 0, and thus cosx “ 0. Therefore we
have proved that sin x “ 1 ñ cosx “ 0, which is the contrapositive
of cosx ‰ 0 ñ sin x ‰ 1.’

Return to P ñ Q. Even assuming P , one may have trouble proving Q. In
that case a contradiction proof is always possible.

Contradiction proof of P ñ Q:

• Assume P ^ Q.

• Prove a contradiction.

• Conclude P ñ Q.

Notice that a contradiction proof of the contrapositive is essentially the same.

Case division. A case division proof of P consists in separating different cases
and proving P in each. The underlying principle is the following: P is equivalent
to pQ ñ P q ^ p Q ñ P q. (Check you still see why by a direct computation.)
One may introduce more than two cases.
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Case division proof of P:

• Introduce cases Q1, . . . , Qn and prove that Q1 _ ¨ ¨ ¨ _Qn is true.

• Prove each implication Qi ñ P .

• Say that you have proved P in each case Qi, and that the various
cases cover all possibilities. Conclude that you have proved P .

7.4.3. Example. Let n be an integer. Let us prove that npn`1q
2 is an integer.

’There are two cases. [Here, we begin a ‘case division’.]

• If n is even, then n`1
2 is an integer, and so is npn`1q

2 .
• If n is odd, then n`1 is even, and in that case n`1

2 is an integer,
whence npn`1q

2 is an integer too.

[We have successfully argued in each case; it remains to conclude.]
In either case, npn`1q

2 is an integer.’
7.4.4. Remark. Always make sure that the disjunction of the Qi’s is true.
(Cases may overlap, but they must cover all possibilities.)

7.5 How to prove P ô Q

‘If and only if’ statements are actually abbreviations for two implications, which
explains the following method.

Proof of P ô Q:

• Prove P ñ Q.

• Prove Qñ P .

• Conclude that P ô Q.

7.5.1. Remarks.
• The backwards arrow ‘ð’ is forbidden.

• In practice, series of ô almost never work.
7.5.2. Example. Let x be a real number. Prove that

cosx “ 0 ô sin x “ ˘1.

‘Assume first that cosx “ 0. Then since sin2 x` cos2 x “ 1, we find
that 0`sin2 x “ 1, hence sin2 x “ 1, and thus sin x “ ˘1. Therefore
we have proved that cosx “ 0 ñ sin x “ ˘1.
Now assume that sin x “ ˘1. Then since sin2 x`cos2 x “ 1, we find
that cos2 x` 1 “ 1, hence cos2 x “ 0, and thus cosx “ 0. Therefore
we have proved that sin x “ ˘1 ñ cosx “ 0.
As a conclusion, we have proved: cosx “ 0 ô sin x “ ˘1.

7.5.3. Remark. In Example 7.5.2, between the two parts we have ‘cleared
assumptions’. This is expressed implicitly by ‘Now assume...’.

End of lecture 6
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8 Proofs involving quantifiers

8.1 How to prove @x P A, P pxq

To prove such a statement one must prove P pxq for any x in A. This is done
by taking x arbitrary in A, with no extra assumptions. (It goes without saying
that mathematics does not recognize ‘proof by example’.)

Direct proof of @x P A,Ppxq:

• Take any x in A.
(This is expressed by: ‘Let˚ Soitx P A.’)

• Prove that P pxq holds, without assuming anything special on x.

• Conclude that for any x in A, P pxq holds.

8.1.1. Example. Let us show that @n P N, pn is odd ñ n` 1 is evenq.

’Let n P N. [We want to show: ‘n odd ñ n` 1 even’.]
Suppose that n is odd. Then n` 1 is clearly even.
Therefore ‘n odd ñ n` 1 even.’
As this is true for any n P N, we have proved:
@n P N, pn is odd ñ n` 1 is evenq. ’

8.1.2. Remark (‘general let’). In the above proof, ‘Let n P N’ means ‘Let us
take any n P N, without making any further assumptions on it’. We call it
general let.

8.2 How to prove Dx P A, P pxq

Unlike proofs of universal propositions, ‘existential proofs’ might rely on intu-
ition. You need to find an example, and this requires deep understanding of the
problem.

Direct proof of Dx P A,Ppxq:

• [You must think, interpret, and guess which x will do.]

• Define the x you think will satisfy P .
(This is expressed by: ‘Let˚ Soit, ici encorex be’ [its definition]).

• Prove that for this special x, P pxq holds.

• Conclude that there exists an x in A such that P pxq holds.

8.2.1. Example. Let us prove that Dx P R,@y P R, x ‰ y2.
[We must think before we start writing. We are looking for a real number

x such that for any real number y, y squared is not x. In other words, we am
looking for a real number that does not have a real square root. Now intuition
suggests that ´1 will do. We briefly check that it works, and then start writing
the proof.]
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‘Let x “ ´1. Let y P R. Since y2 ě 0, we have that y2 ‰

´1. As this is true for any y P R, we have @y P R, y2 ‰ ´1.
Hence x “ ´1 meets our requirements, and we have proved
Dx P R,@y P R,x ‰ y2 ’

8.2.2. Remark (‘particular let’). In the proof above, ‘Let x “ ´1’ means ‘We
define x to be ´1.’ This we call particular let, which is very different from the
general let of ‘Let y P R’.

Hence in English, ‘let’ has two very different meanings:˚ [même problème en français]

• General let, as in ‘let n be an integer’. This is used in proofs of @-
statements.

• Particular let, as in ‘let n “ 2’. This one is used in definitions, and in
proofs of D-statements.

8.3 Contradiction and quantifiers
It is sometimes useful to apply the ‘Contradiction Proof’ technique to universal
statements. The following relies on the fact that  @x P A,P pxq is equivalent to
Dx P A, P pxq (§ 5.2; we return to it in § 8.4).

Proof by contradiction of @x P A,Ppxq:

• Assume that there is x in A that does not satisfy P .
(This is expressed by: ‘Let x P A such that P pxq does not hold.’)

• Prove a contradiction.

• Conclude that since this is impossible, @x P A,P pxq holds.

8.3.1. Remark. This is an abstract proof, because one does not have the
slightest idea what x is being used (in particular because one is actually proving
there is no such x). In general, contradiction proofs require the mind to focus
on something false.

There is a ‘dual’ technique with existential quantifiers.
Proof by contradiction of Dx P A,Ppxq:

• Assume that for all x in A, x does not satisfy P .

• Prove a contradiction.

• Conclude that since this is impossible, Dx P A,P pxq holds.

8.3.2. Remark. This is an existence proof of x yielding no suitable x. It is
called a non-constructive proof (and is one of the reasons contradiction proofs
are disputed by some).

8.4 Application: proving the quantifier rules
In § 5.2 we stated the following, which we now prove.

8.4.1. Properties.
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(i) ‘@x P A,P pxq’ is equivalent to ‘@y P A,P pyq’.

(ii) ‘Dx P A,P pxq’ is equivalent to ‘Dy P A,P pyq’.

(iii) ‘@x P A,@y P B,P px, yq’ is equivalent to ‘@y P B,@x P A,P px, yq’.

(iv) ‘Dx P A, Dy P B,P px, yq’ is equivalent to ‘Dy P B, Dx P A,P px, yq’.

(v) ‘ Dx P A,P pxq’ is equivalent to ‘@x P A, P pxq’.

(vi) ‘ @x P A,P pxq’ is equivalent to ‘Dx P A, P pxq’.

Proof.

(i) We prove:
p@x P A,P pxqq ñ p@y P A,P pyqq.

Suppose @x P A,P pxq; we prove @y P A,P pyq. Let y P A. By assump-
tion, we have P pyq. This holds for any y P A, and therefore one has
@y P A,P pyq.
Therefore p@x P A,P pxqq ñ p@y P A,P pyqq. We conclude by symmetry.

(ii) Essentially the same; exercise.

(iii) We prove:

p@x P A,@y P B,P px, yqq ñ p@y P B,@x P A,P px, yqq.

Suppose @x P A,@y P B,P px, yq; we prove @y P B,@x P A,P px, yq. Let
y P B. Let x P A. By assumption, P px, yq. Therefore @x P A,P px, yq.
This proves @y P B,@x P A,P px, yq. So we have p@x P A,@y P

B,P px, yqq ñ p@y P B,@x P A,P px, yqq. We conclude by symmetry.

(iv) Essentially the same; exercise.

(v) We first prove p Dx P A,P pxqq ñ p@x P A, P pxqq. Suppose  Dx P
A,P pxq; we prove @x P A, P pxq. Let x P A. If P pxq holds then
Dx P A,P pxq. This is a contradiction; so  P pxq holds. This is true of any
x P A, and therefore @x P A, P pxq. This proves the first implication.
We now prove the converse, viz. p@x P A, P pxqq ñ p Dx P A,P pxqq.
Suppose @x P A, P pxq; we prove  Dx P A,P pxq. Suppose Dx P A,P pxq.
Let x0 be one witness, so that˚ de telle sorte queP px0q holds. This contradicts the as-
sumption, so actually  Dx P A,P pxq. This proves the converse implica-
tion, and we find the equivalence.

(vi) Could be treated applying negations, but is an excellent independent
exercise.

End of lecture 7

8.5 Our First Example (Tutorial)
8.5.1. Example. A real function f : RÑ R is continuous if:

@a P R,@ε ą 0, Dδ ą 0,@x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.
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Let c, d be real numbers. Let fpxq “ cx` d. We show that f is continuous.

Proof. Since this is just an example, we proceed with no intuition at all,
merely analysing the structure of the sentence we are proving. Here is a useful
hint: if c “ 0, we shall take δ “ 1. If δ ‰ 0, we shall take δ “ ε

|c| (the latter
value does depend on ε). Case division will help. Ready?

• We want to prove:

@a P R,@ε ą 0, Dδ ą 0,@x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

• Let a P R [‘general’ let]. We want to prove:

@ε ą 0, Dδ ą 0,@x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

• Let ε ą 0 [‘general’ let]. We want to prove:

Dδ ą 0,@x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

• If c “ 0, let δ “ 1 [‘particular’ let]. If c ‰ 0, let δ “ ε
|c| [‘particular’ let].

We want to check that this value of δ meets our requirements, in other
words we want to prove:

@x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

• Let x P R [‘general’ let]. We want to prove:

|x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

• So we assume that |x´ a| ă δ, and we will prove that |fpxq ´ fpaq| ă ε.

• There are two cases: [begin case division]

– If c “ 0, then |fpxq ´ fpaq| “ |0x` d´ p0a` dq| “ 0 ă ε.
– Now if c ‰ 0, then |fpxq ´ fpaq| “ |cx` d´ pca` dq| “ |c ¨ px´ aq|,

so |fpxq ´ fpaq| “ |c| ¨ |x´ a| ă |c| ¨ δ “ ε.

[end of case division]. In either case |fpxq ´ fpaq| ă ε.

• Hence we have proved that

|x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

• Since this is true for any x P R, we have proved that

@x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

33



• Hence δ meets our requirements, and we conclude that

Dδ ą 0,@x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

• As this is true regardless of ε [Caution: ‘regardless’ means that it is true
for all ε, though the value we assigned to δ depends on ε], we have proved

@ε ą 0, Dδ ą 0,@x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

• Now this is true for any real number a, and therefore

@a P R,@ε ą 0, Dδ ą 0,@x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă εhere

End of tutorial. Half of
lecture 8 was devoted to D!

9 ‘Induction proof’

Mathematical induction˚ récurrenceis not a proof method, but a property of the integers.
It is usually classified as a proof method and my colleagues certainly expect the
present skill course to cover this aspect; I may not disappoint them.

9.1 Induction principle
9.1.1. Theorem (induction principle). Let P pnq be a proposition depending on
an integer n. Suppose:

• P p0q;

• @n P N, P pnq ñ P pn` 1q.

Then @n P N, P pnq holds.

9.2 Proofs using induction
Consider a property P pnq depending on an integer n, and suppose that you
need to prove @n P N, P pnq. In certain cases, there is an easier way to do that
than just taking any n, and proving P pnq (which would be the ‘direct proof’).
Induction is very efficient if you feel that proving P pnq is easier when already
established for smaller values than n.

Caution. n has to be a positive integer!
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Proof by induction of @n P N,Ppnq:

• Prove that P p0q holds.

• Prove ‘@n P N, P pnq ñ P pn` 1q’, in other words:
Let n P N. Assume P pnq, and prove P pn` 1q.
(P pnq is sometimes called the induction hypothesis˚ hypothèse de récurrence.)

• Conclude. This is done as follows:

‘We have proved Pp0q and @n P N, Ppnq ñ Ppn` 1q.
By induction, we have proved @n P N, Ppnq.’

9.2.1. Remark. Induction is extremely easy for two reasons:
• All you need is remember the model of the proof, then ‘fill up the form’.

• The answer is given in the exercise, you need not discover anything.
9.2.2. Example.

For any integer n, let P pnq be the property:
n
ÿ

k“0
k “

npn` 1q
2 .

We prove by induction: @n P N, P pnq.

• We prove P p0q. Indeed,
ř0

k“0 k “ 0 “ 0p0`1q
2 , so P p0q is true.

[To be honest, here ‘Clearly, P p0q holds’ would suffice.]
• Let n P N. We assume P pnq, and prove P pn` 1q. We have:

n`1
ÿ

k“0
k “

˜

n
ÿ

k“0
k

¸

` pn` 1q “ npn` 1q
2 ` pn` 1q

because of the inductive hypothesis P pnq, and therefore
n`1
ÿ

k“0
k “ pn`1q

´n

2 ` 1
¯

“ pn`1qn` 2
2 “

pn` 1qppn` 1q ` 1q
2 .

Hence P pn` 1q is true.
So we have proved P pnq ñ P pn` 1q, and since this is true for
any n, we have thus proved:

@n P N, P pnq ñ P pn` 1q.

• We proved P p0q and @n P N, P pnq ñ P pn ` 1q. By induction,
we have proved @n P N, P pnq.

9.2.3. Remark. To recover form the essential clumsiness of the latter proof,
let us give an elegant one.

Write
S “ 1 ` . . . ` n

“ n ` . . . ` 1
and hence

2S “ pn` 1q ` ¨ ¨ ¨ ` pn` 1q “ npn` 1q.
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9.3 Variation: induction not starting from 0
9.3.1. Notation. ‘@n ě 2, P pnq’ (read: ‘for all n greater than or equal to 2,
P of n’) stands for ‘@n P N, n ě 2 ñ P pnq’.

9.3.2. Remarks.

• It is implicit that n should be an integer, since the set N is not actually
present in the notation. This is because habit dictates that n denotes an
integer.

• Likewise, ‘Dn ě 2, P pnq’ (read: ‘there is an n greater than or equal to n
such that P of n’) stands for ‘Dn P N, n ě 2^ P pnq’.

• In contrast, ‘@x ą ´π, P pxq’ (read: ‘for all x greater than minus π, P of
x’) stands for ‘@x P R, x ą ´π ñ P pxq’, because here one guesses from
context that x stands for a real number.

• Last, ‘Dx ą ´π, P pxq’ (read: ‘there is an x greater than ´π such that P
of x’) stands for ‘Dx P R, x ą ´π ^ P pxq’. And ‘let x ą ´π’ means ‘let
x P R be greater than π’.

The following exemple shows how it is possible to do induction from a value
greater than 0.

9.3.3. Example. We prove @n ě 4, n2 ´ 3n ě 4.

‘We do induction on n ě 4. For a natural number n ě 4, let P pnq
be the property: n2 ´ 3n ě 4.

• Since 42 ´ 3.4 “ 16´ 12 “ 4 ě 4, P p4q holds.
• We show @n ě 4, P pnq ñ P pn ` 1q. Let n ě 4. We assume
P pnq, and we prove P pn` 1q.
Using the induction hypothesis, one has:

pn` 1q2 ´ 3pn` 1q “ n2 ´ 2n´ 2 ě n` 2

and P pn` 1q is proved.
Assuming P pnq, we proved P pn`1q, so P pnq ñ P pn`1q holds.
As this is true for any n ě 4, we have @n ě 4, P pnq ñ P pn`1q.

• We have proved P p4q and @n ě 4, P pnq ñ P pn` 1q. By induc-
tion, we have @n ě 4, P pnq. ’

9.3.4. Remark. Here is another proof of Example 9.3.3. Induction proofs are
always a bit clumsy, so a direct proof is likely to be more elegant.

‘We have to prove @n ě 4, n2 ´ 3n ě 4, in other words, we prove
@n ě 4, n2 ´ 3n´ 4 ě 0.
Notice how for x P R, one has x2´3x´4 “ px`1qpx´4q. The graph
of the real function fpxq “ x2´3x´4 is therefore a convex parabola
meeting the horizontal axis at x “ ´1 and x “ 4. Therefore, fpxq
is non-negative when x ě 4. This remains true when we restrict to
integers, so @n P N, n ě 4 ñ n2 ´ 3n´ 4 ě 0.’

End of lecture 8
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Check-up and Exercises
Words used (check that you understand their meaning):

• proof; refutation;

• contradiction; contradiction proof;

• proof by contrapositive;

• case division;

• induction proof.

Basic proofs
II.1. Let P , Q, R denote propositions. Prove the following:

1. P ñ P _Q.

2. P ^Qñ P .

3. rpP ñ Qq ^ P s ñ Q.

4. pP ñ  P q ñ  P .

II.2. Prove that
?

3 is not a rational number.

II.3. Prove that 3
?

5 is not a rational number.

Proofs involving quantifiers
Easy proofs

II.4. Prove the following statements:

1. There exists an even integer and there exists an odd integer.

2. For any real number, there is an integer greater than it.

3. There is a real number that doesn’t have a real square root.

II.5. Here is a proof of:

@m P N,@n P N,m and n are evenñ m` n is even.

‘Let m and n be integers. We assume that m and n are even, and
we prove that so is m ` n. Since m is even, there is an integer k
such that m “ 2k. Similarly, there exists an integer ` with n “ 2`.
Hence we have that m`n “ 2k` 2` “ 2pk` `q, and therefore m`n
is even.’

Write a proof of:

@m P N,@n P N,m is odd and n is evenñ m` n is odd.

You may use the fact that a natural number m is odd if and only if there is a
non-negative integer k such that m “ 2k ` 1.
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II.6.

1. Let P be the proposition: @x P R, Dy P R, x “ y ` 1.

(a) Translate P into English.
(b) Prove that P is true.

2. Let Q be the proposition: Dy P R,@x P R, x “ y ` 1.

(a) Translate Q into English.
(b) Prove that Q is false.

II.7.

1. Prove that between two distinct integers there is always a real number.

2. Is this still true with real numbers?

Abstract proofs

II.8. Let A,B be sets and P px, yq be a proposition depending on x and y. Write
a formal proof of the equivalence of Dx P A, Dy P B,P px, yq with Dy P B, Dx P
A,P px, yq.

II.9. Let A be a set and Rpx, yq be a proposition depending on two variables.
Let

S : ‘ rDx P A,@y P A,Rpx, yqs ñ r@y P A, Dx P A,Rpx, yqs ’.

1. Prove S.

2. State in symbols the converse of S.

3. Give a counter-example to the converse of S.

4. Find a special case (depending on A) in which the converse of S holds.

II.10. Let A be a (non-empty) classroom, and P be the proposition:

There is a student in A such that if he (or she) is a smoker,
then every student in A is a smoker.

1. Translate P into symbols (let Spxq be the property for x to be a smoker).

2. Prove P .

3. Is it still true with an empty classroom?

II.11. Let P pxq be a proposition depending on a real number x. Prove that
 p@x ě 0, P pxqq is equivalent to Dx ě 0, P pxq.
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More technical

II.12. Recall that a function has limit `8 at `8 if

@A P R, DM P R,@x P R, x ąM ñ fpxq ą A

1. Prove that the identity function fpxq “ x has limit `8 at `8.

2. Prove that the sinus fuction gpxq “ sin x does not have limit `8 at `8.

II.13. Recall the following definitions:

• A function f : RÑ R is continuous at a P R if:

@ε ą 0, Dδ ą 0,@x P R, |x´ a| ă δ ñ |fpxq ´ fpaq| ă ε.

• A function is continuous on R if it is continuous at every a P R.

• A real function f is uniformly continuous on R if:

@ε ą 0, Dδ ą 0,@x P R,@y P R, |y ´ x| ă δ ñ |fpyq ´ fpxq| ă ε.

1. Prove that if a function f is uniformly continuous, then f is continuous.

2. Prove that the function x ÞÑ cx` d is uniformly continuous on R.
[Hint: if c “ 0, this is trivial. If c ‰ 0, then δ “ ε

|c| is clearly a good idea.]

3. Prove that the square function x ÞÑ x2 is continuous on R.
[Hint: Assume a fixed. When ε is given, use (for example)

δ “ min
ˆ
c

ε

2 ,
ε

4|a| ` 1

˙

.

You may admit that the implication of inequalities will hold for this value
of δ, but you must write properly all the rest of the argument.]

4. Prove that the square function x ÞÑ x2 is not uniformly continuous on R.
[Hint: in fact each ε will eventually fail if you let the variables go far
enough from 0. Have a look at large (but close) values for x and y.]

Induction proofs
II.14. Prove that

@n P N,
n
ÿ

k“1
k2 “

npn` 1qp2n` 1q
6 .

II.15. Prove that

@n P N,
n
ÿ

k“1
k3 “

ˆ

npn` 1q
2

˙2
.

II.16. Let q be a real number not equal to 1. Prove that

@n P N,
n
ÿ

k“0
qk “

1´ qn`1

1´ q .
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II.17. Read the following argument.

‘We prove by induction that in a non-empty basket of fruits, if one
is an apple then all are apples. So for each n P N, let P pnq be the
property:

If one among n fruits is an apple, then all n fruits are apples.

• It is clear that if 1 among 0 fruits is an apple, then the whole
basket consists of apples. So P p0q holds.
• We assume P pnq and prove P pn ` 1q. So let B be a basket of
n` 1 fruits f1, . . . , fn`1. Assume that one of these fruits is an
apple. For convenience we may assume it is f1. Now consider
the sub-basket B1 “ tf1, . . . fnu. (This notation means that B1
is the set of elements f1, . . . , fn.) of n fruits, one of which is an
apple. By the inductive hypothesis, all fruits in B1 are apples.
So we now consider B2 “ tf2, . . . , fn`1u, another (sub-)basket
of n fruits, one of which is an apple. By the inductive hypothesis
again, all fruits in B2 are apples. Since B1 and C2 cover B,
all fruits in B are apples. Hence P pn ` 1q holds. Therefore
P pnq ñ P pn` 1q, and this is true for any n P N.

By induction, etc.’

What went wrong ?

40



Chapter III — Using Sets

We know how to state and prove statements. It is time to start exploring
the realm of mathematics. A unified description of this world may be given
in terms of sets. (Occasionally this complicates matters instead of simplifying
them.) Discussing sets will also give us many concrete examples of properties
requiring proofs.
Chapter Goals. Write formal proofs involving sets:
• Know how to prove that A Ď B

• Know how to prove that A “ B.

• Understand set notation and abstract definitions of sets

• Handle arbitrary intersections and unions.
Main Notions. Membership and inclusion. Intersection, Union, Difference.
Power set. Cartesian Product. Partition.

10 Sets and membership

10.1 Notation; some common sets
A set is something that has elements. (We do not pretend this is a definition.)
10.1.1. Notation. For a set A and an object x, we write x P A if x is an
element of A. If x P A does not hold, we write x R A.
10.1.2. Remark. It is customary (and good practice) to denote sets by capital
letters, as opposed to their elements.
10.1.3. Remark (alternative phrases). x P A may read:

• ‘x is a member of A’; • ‘x lies in A’; • ‘x belongs to A’.
10.1.4. Remark (continued).
• x P A may not be written A Q x.

• It may not be read ‘A contains x’, nor ‘x is contained in A’.

• It may not be read ‘x is included in A’.

• I once heard ‘x exists in A’, but this is completely inappropriate.
Actually a set is entirely determined by its elements.

10.1.5. Properties (extensionality axiom). ˚ extensionnalitéTwo sets are equal if and only if
they have the same elements.
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10.2 Brace notation
Sometimes, and especially when dealing with finite sets, it is useful to define a
set by giving its elements. This is done with braces.

10.2.1. Notation. The ordering of elements between braces does not matter.
Repeated elements are counted only once.

10.2.2. Example.

• t1, 5u is the set that has as only elements 1 and 5.

• t1, 2, 1u “ t1, 2u “ t2, 1u. It has exactly two elements.

• t0, sinu is the set that has elements the number 0 and the function sin.

• Let A be any set. Then tAu is the set that has A as its only element. In
oral form one says singleton A for tAu.

10.3 The empty set
10.3.1. Definition. The empty set H: zemptysetis the set with no elements.

‘The’ is legitimate as the empty set will be proved to be unique.

10.3.2. Remark. Let P be a proposition in the variable x. Then:

• ‘@x P H, P pxq’ is true, and

• ‘Dx P H, P pxq’ is false.

10.3.3. Example. Let me insist on the following:

• ‘@x P H, 1` 1 “ 3’ is true;

• ‘Dx P H, 1` 1 “ 2’ is false.

Indeed, whenever you give me x in the empty set, 1` 1 will be 3: because you
cannot give me such an x. Also, you cannot give me x in the empty set, so you
cannot give me one satisfying the extra (true) requirement that 1` 1 is 2.

10.3.4. Remark. As a consequence, the proposition

r@x P A,P pxqs ñ rDx P A,P pxqs

does not hold when A “ H. But it does for any non-empty set A.
This once made quantification suspect. Some ill-advised people suggest that

‘for any x in A’ should assume that A is non-empty; methodologically, this is a
serious mistake
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10.4 Subsets, inclusion
10.4.1. Definition (subset, inclusion). Let A and B be two sets. A is a subset
of B (written A Ď B: zsubseteq) if every element of A lies in B. One also says that A is
included in B.

Hence, A Ď B is equivalent to ‘@x P A, x P B’.

10.4.2. Remark. The English ‘contained’ is very ambiguous; mathematical
English uses only ‘belongs’ (for P) and ‘included’ (for Ď).

10.4.3. Definition (proper subset). If A Ď B and A ‰ B, we say that A is a
proper subset of B and write A Ĺ B: zsubsetneq.

10.4.4. Remark. Pay attention to the following difference in notation:

• A Ĺ B means that A is a proper subset of B;
[I do not recommend Ă, which looks too much like C, at least when
writing.]

• A Ę B: znotzsubseteqmeans that A is not a subset of B.

For instance, t1u Ĺ t1, 2u while t1u Ę t0, 2u.
(If in real numbers we used 3 ň 4 for 3 ă 4, the analogy would be clear.)

Method to prove A Ď B:

• Pick any x P A.

• Prove x P B.

• Conclude that A Ď B.

10.4.5. Properties. Let A, B, C be sets. Then:

(i) if A Ď B and B Ď A then A “ B;

(ii) H Ď A;

(iii) the empty set is unique: if O is another empty set, then O “ H;

(iv) A Ď A;

(v) if A Ď B Ď C, then A Ď C.

Proof.

(i) Suppose A Ď B Ď A. For any x, one has x P A ñ x P B and x P B ñ
x P A. So A and B have the same elements. By ‘extensionality’, A “ B.

(ii) There is nothing to check since H has no elements.

(iii) If O has no elements either, then H Ď O and O Ď H, which we know
implies O “ H.
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(iv) Let x P A. Then x P A. Thus, A Ď A.

(v) Suppose A Ď B Ď C. Let x P A. Since A Ď B, one has x P B. Since
B Ď C, one has x P C. Therefore A Ď C.

This also suggests a method to prove the equality of two sets.
Method to prove that two sets A and B are equal:

• Prove A Ď B.

• Prove B Ď A.

• Conclude that A “ B.
End of lecture 9

11 Very naive operations with sets
We now describe the most elementary constructions with sets. They should be
well-known. Always bear in mind the analogy with connectives.

11.1 Intersection
11.1.1. Definition (intersection). Let A and B be two sets. The intersection
of A and B (write A X B: zcap, pronounce ‘A and B’ or ‘A intersected with B’) is
the set of elements of A that also lie in B.

Thus, for any x one has: px P A X Bq ô px P A ^ x P Bq. Later we shall
return to intersections, allowing arbitrarily many terms.

11.1.2. Example. NX t´1, 1u “ t1u.

11.1.3. Properties. For all sets A, B, and C:

(i). AXB Ď A.

(ii). AXA “ A.

(iii). HXA “ H.

(iv). AXB “ B XA.

(v). AXB “ A if and only if A Ď B.

(vi). AX pB X Cq “ pAXBq X C.

Proof.

(i). Let us prove that AXB Ď A.
Let x P A X B. Then x P A and x P B; so x P A. Since this is true
regardless of x P AXB, we have proved AXB Ď B.

(ii). Let us prove that A X A “ A. [In order to do that, we prove two
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inclusions.]
By (i), it is the case that AXA Ď A.
So it remains to prove that A Ď A X A. Let x P A. It is the case that
x P A and x P A, so x P AXA. Since this is true regardless of x P A, we
have proved that A Ď AXA.
Because AXA Ď A and A Ď AXA, we have AXA “ A.

(iii). Let us prove that HXA “ H.
We know that the empty set is a subset of any set, hence H Ď HX A
holds.
On the other hand, by (i), we have that HXA Ď H.
As a conclusion, we find that HXA “ H.

(iv). Let us prove that AXB “ BXA. [We have to prove two inclusions: we
prove one, and conclude by symmetry!]
Let us prove that A X B Ď B X A. Let x P A X B. Then x P A and
x P B; so x P B and x P A. This means that x P B X A. Since this is
true regardless of x P AXB, we have proved that AXB Ď B XA.
Now exchanging A and B we find B XA Ď AXB.
We thus have AXB Ď BXA and BXA Ď AXB; therefore AXB “ BXA.

(v). Let us prove that A X B “ A if and only if A Ď B. [We want to prove
an equivalence, so we prove two implications.]
Let us assume that A X B “ A and let us prove that A Ď B. So let
x P A. Since A “ A X B, we get that x P A X B. In particular, x P B.
Since this is true regardless of x P A, we have proved that A Ď B.
Now let us assume that A Ď B, we shall prove that A X B “ A. [We
have to prove two inclusions.]
By (i), it is always the case that AXB Ď A. So all it remains to prove is
A Ď AXB [using our assumption ‘A Ď B’, of course.] Let x P A. Since
A Ď B, we find x P B. Thus x P A and x P B, which means x P AX B.
Since this is true regardless of x P A, we have proved A Ď A X B. The
converse inclusion has already been noticed, so A “ AXB.
We proved both implications; hence AXB “ A is equivalent to A Ď B.

(vi). Let us prove that AX pB X Cq “ pAXBq X C. [Two inclusions.]
Let x P A X pB X Cq. Then x P A, and x P B X C. This means that
x P A, and x P B, and x P C. Therefore x P A X B and x P C, which
means x P pAXBqXC. Since this is true regardless of x P AXpBXCq,
we deduce that AX pB X Cq Ď pAXBq X C.
Instead of proving the converse inclusion, let us apply the part we have
proved to C, B, A. We get C X pB X Aq Ď pC XBq X A. Applying (iv)
a couple of times, this implies pAXBq XC Ď AX pB XCq, so the other
inclusion is proved too. [If you don’t understand, just write a proof like
that of the previous paragraph.]
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Both inclusions hold, therefore AX pB X Cq “ pAXBq X C.

11.1.4. Remark. (vi) enables us to write AXB X C without parentheses.

11.1.5. Definition (disjoint). Call two sets A and B disjoint if AXB “ H.

11.2 Union
11.2.1. Definition (union). Let A and B be two sets. The union of A and B
(write AYB: zcup, pronounce ‘A union B’) is the set made of elements of A together
with elements of B.

Thus, for any x one has: px P AYBq ô px P A_ x P Bq.

11.2.2. Properties. For all sets A, B and C:

(i). A Ď AYB.

(ii). AYA “ A.

(iii). AYH “ A.

(iv). AYB “ B YA.

(v). AYB “ B if and only if A Ď B.

(vi). AY pB Y Cq “ pAYBq Y C.

The proof is an exercise.

11.2.3. Properties (dsitributivity). Let A, B, C be sets. Then:

• AX pB Y Cq “ pAXBq Y pAX Cq.

• AY pB X Cq “ pAYBq X pAY Cq.

The proof is an exercise.

11.2.4. Remark. We give no convention on priority between X and Y. In
particular AXBYC makes no sense, and one must add parentheses somewhere.

11.3 Difference of sets
11.3.1. Definition (set difference). Let A and B be two sets. The set difference
AzB: zsetminus; avoid zbackslash(pronounce ‘A minus B’) is the set made of those elements of A that are
not in B.

11.3.2. Remark. The notation A´B also exists, but is not recommended.

11.3.3. Example.

• ZzN is the set of non-positive integers.

• NzZ “ H.

11.3.4. Properties. For all sets A, B, C,

(i). AzA “ H.
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(ii). AzH “ A.

(iii). AzpB Y Cq “ pAzBq X pAzCq.

(iv). AzpB X Cq “ pAzBq Y pAzCq.

The proof is an exercise.

11.3.5. Remark. Do not try to make up or remember rules with the z opera-
tion. It is safer to redraw a small Venn diagram each time.

End of lecture 10

12 Naive operations with sets

12.1 Taking subsets
We have defined in § 10.4 what a subset of a given set is. We now introduce
further notation.

12.1.1. Notation. Let A be a set and P pxq a proposition depending on x.
Then tx P A : P pxqu (pronounce ‘the set of elements of A satisfying P ’) is the
subset of A made of those elements of A which satisfy P .

It is absolutely necessary to say ‘such that’ (or a synonym) for the colon˚ deux points.

12.1.2. Remark (alternative phrases). This is equally pronounced:

• ‘the set of x in A such that P pxq holds’; • ‘the set of members of
A with P pxq’; etc.

12.1.3. Remark (unrecommended other notation).

• One occasionally finds the notation tx P A | P pxqu. It may conflict with
using | as divisibility or asbolute value.

• I cannot recommend tx P A, P pxqu, because a comma between braces
looks too much like a list.

• ‘French-style’ { is forbidden because { means something completely differ-
ent.

12.1.4. Example.

• AzB “ ta P A : a R Bu.

• tn P N : Dk P N,n “ 2ku is the set of even natural numbers.

• tx P R : sin x ď 1u “ R. (Prove it.)

• tx P R : x ě 0u “ tx P R : Dy P R, x “ y2u.
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12.2 The power set
12.2.1. Definition (power set). Let A be a set. The power set of A, written
P pAq, is the set whose elements are all subsets of A.

12.2.2. Remark.

• B P P pAq iff B is a subset of A iff B Ď A. (Pay attention to P and Ď, and
remember that ‘contained’ is ambiguous.)

• For any set A, H P P pAq. So P pAq is never empty.

12.2.3. Example.

• P pHq “ tHu.

• P pt1uq “ tH, t1uu.

• P pt1, 2uq “ tH, t1u, t2u, t1, 2uu.

• In general, if A has n elements, then P pAq has 2n elements.

12.2.4. Example. We determine P ptH, tH, tHu, ttHuuu, ttHuuuq.

[I am looking for P pEq where E “ tH, tH, tHu, ttHuuu, ttHuuu.
Since E has three elements, I am supposed to find 8 subsets. Let
a “ H, b “ tH, tHu, ttHuuu, and c “ ttHuu. The eight subsets of
ta, b, cu are: H, tau, tbu, tcu, ta, bu, ta, cu, tb, cu, ta, b, cu. ]
We find:

P pEq “
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’

’

’
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/
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/
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/
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/
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/
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12.3 Unions and intersections of families
The proper definition of a family would require that of a function, which comes
only later. Fortunately it is intuitive enough.

Union.

12.3.1. Definition (union of a family). Let I be a set (this set provides ‘indices’
and is called the ‘indexing/index set’) and for each i P I, let Ai be a set.

The union of the Ai’s when i ranges over I (denoted
Ť

iPI Ai
:

zbigcup_tizin Iu A_i, read ‘the
union for i in I of Ai’) is the set of all elements that lie in some Ai for some
i P I.

In retrospect, the union of two sets is a special case (when the index set I
has only two elements).
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12.3.2. Example.

• For any set A,
A “

ď

aPA

tau.

•
ď

nPN
tx P R : |x| “ nu “ Z.

•
ď

iPH

Ai “ H.

Intersection

12.3.3. Definition (intersection of a non-empty family). Let I be a non-empty
set and for each i P I, let Ai be a set. The intersection of the Ai’s when i ranges
over I (denoted

Ş

iPI Ai, read ‘the intersection for i in I of Ai’) is the set of all
elements that lie in all Ai’s for all i P I.

12.3.4. Remark. The intersection over the empty set is not defined. (It would
lead to the ‘classical paradoxes’ of naive set theory.)

12.3.5. Example.
č

εPRą0

p´ε, εq “ t0u.

12.4 Cartesian Products
12.4.1. Notation. pa, bq denotes the ordered pair ‘a, then b’. It is not the same
as pb, aq (unless of course if a “ b).

12.4.2. Remark. We could easily define pa, bq to be ta, ta, buu); this technical-
ity does not interest us and we take the existence of ordered pairs for granted.

12.4.3. Definition (Cartesian product). Let A and B be two sets. The
Cartesian product of A and B (A ˆ B: ztimes, read ‘A times B’) is the set of all
pairs of the form pa, bq, where a P A and b P B.

12.4.4. Example. Draw pictures of the following:

• r0, 1s ˆ r0, 1s

• Rˆ r0, 1q

• tpx, yq P Rˆ R : x ă yu

• Nˆ tx P R : x ă 0_ x ą 1u.

12.4.5. Remark. If A and B are finite sets, then so is AˆB, and its number
of elements is: the number of elements in A times the number of elements in B.

12.4.6. Notation. We write A2 for AˆA.
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12.4.7. Remark. A2 is bigger than the set of all pairs pa, aq where a P A. It is
actually the set of all pairs pa, a1q where a and a1 are in A (but not necessarily
equal).

We now explain how Cartesian products can simplify notation when working
with quantifiers.

12.4.8. Properties. Let A,B be sets and P px, yq be a proposition depending
on x and y. Then:

• @x P A,@y P B,P px, yq is equivalent to @px, yq P AˆB,P px, yq.

• Dx P A, Dy P B,P px, yq is equivalent to Dpx, yq P AˆB,P px, yq.

12.5 Functions
12.5.1. Definition. Let A,B be sets. A function graph is a subset Γ Ď AˆB
such that:

p@a P AqpD!b P Bqppa, bq P Γq.

One should refrain from using D!. So this rewrites:

p@a P AqpDb P Bqppa, bq P Γq
^p@a P Aqp@b1 P Bqp@b2 P Bq rppa, b1q P Γ^ pa, b2q P Γq ñ b1 “ b2s .

The first line means: ‘every a has at least one image’; the second line means
‘every a has at most one image’.

12.5.2. Remark (function notation). Given a function graph Γ Ď A ˆ B, we
know that for each a there is a unique b with pa, bq P Γ. We may then use
function notation, and write b “ Γpaq for the unique b.

Of course f is often a good name for a function.

Check-up and Exercises
Words used (check that you understand their meaning):

• set, subset; membership, inclusion;

• union, intersection; complement;

• powerset, infinitary union, infinitary intersection;

• function.

Very easy exercises
Finite sets

III.1. How many elements does tH, tH, tHuuu have?

III.2. Give all elements of the following sets:

(i). t1, t2u, tt3u, 4uu
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(ii). P pta, b, cuqzpP pta, buq Y P pta, cuqq

(iii). tH, tH, tHu, ttHuuu, tttHuuuu

III.3. Simplify the following sets:

(i). pta, ta, bu, bu Y ta, tauuqzttbuu.

(ii). ta, ta, buu X pta, bu Y P ptauqq.

(iii). P ptauq Y P ptbuq.

(iv). P pta, buqzP ptbuq.

III.4. Let A “ ta, ta, bu, tb, cuu. How many elements are there in the set
P pP pAq Y ta, ta, buuq ?

III.5.

(i). What is P pP pHqq?

(ii). What is P pP ptHuqq?

(iii). How many elements are there in P pP pP pP pHqqqq?

(iv). How many elements are there in P pP pP ptHuqqq?

The algebra of sets

III.6. Let A denote the set of all real numbers a that can be written a “
?

2`n
for some natural number n. Prove that NXA “ H.

III.7. Prove that for all sets A, B and C:

(i). A Ď AYB.

(ii). AYA “ A.

(iii). AYH “ A.

(iv). AYB “ B YA.

(v). AYB “ B if and only if A Ď B.

(vi). AY pB Y Cq “ pAYBq Y C.

III.8. Let A, B, C be sets. Show that if A Ď B and B Ď C, A Ď C.

III.9. Let A, B, C be sets. Prove that:

(i). AX pB Y Cq “ pAXBq Y pAX Cq.

(ii). AY pB X Cq “ pAYBq X pAY Cq.

III.10. Let A, B be sets. Find a proposition (which does not involve the z
operation) equivalent to AzB “ A. Prove this equivalence.

III.11. Let A, B, C be sets. Give counter-examples (pictures are allowed) to
the following wrong propositions:
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(i). A Ď C ñ A Ď B Ď C.

(ii). AzpB Y Cq “ pAzBq Y pAzCq.

III.12. Let A, B be sets. Prove that AXB “ AYB ñ A “ B.

III.13. Let A, B, C be sets. Assume A X B “ A X C and A Y B “ A Y C.
Prove that B “ C.

III.14. Let A,B be sets such that for any set C, A Ď C ñ B Ď C. Show
B Ď A.

III.15. We define the symmetric difference of two sets A, B to be A4B “

pAzBq Y pBzAq.

(i). Make a picture.

(ii). Prove that A4B “ B4A.

(iii). Prove that pAXBq X pA4Bq “ H.

(iv). Prove that pAXBq Y pA4Bq “ AYB.

(v). Prove that A4B “ H if and only if A “ B.

(vi). Prove that A4B Ď A if and only if B Ď A.

(vii). Prove that A Ď A4B if and only if AXB “ H.

(viii). Prove that A4B “ A if and only if B “ H.

The power set operation

III.16. Let A and B be sets.

(i). Prove that P pAXBq “ P pAq X P pBq.

(ii). Prove that P pAq Y P pBq Ď P pAYBq.

(iii). Find a case in which P pAqYP pBq Ł P pAYBq) (recall Definition 10.4.3).

III.17. Let A,B be sets. Show that A “ B ô P pAq “ P pBq.

III.18.

(i). Find a set A such that AX P pAq ‰ H.

(ii). Find a set B such that B X P pBq has at least two elements.

(iii). Find a set C such that C X P pCq is infinite.

III.19. Prove by induction that if a set A has n elements, then P pAq has 2n

elements.
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Understanding set notation
III.20. Find a shorter description (in symbols) of the following sets. (i).
pN X Zq Y pQ X Rq. (ii). tx P R : x2 “ 2u X Q. (iii). tn P Z, n2 P Nu X Q.
(iv). r0, 1sX r 1

2 , 2q. (v). r0, 1sY r
1
2 , 2q. (vi). t1, t1, 2u, 2, t1uuX t1, 2, t3uu. (vii).

pZzRq Y pQzNq. (viii). pQX t
?

2, t1,´1u, 2,´2uqzN.

III.21. Same question. (i). tx P R : x2 “ 2u X Q. (ii). tx P R : x2 “ ´1u.
(iii). r0, 1s X r 1

2 , 2q. (iv). r0, 1s Y r 1
2 , 2q. (v). tx2 : x P Ru X tx3 : x P Ru. (vi).

tx P R : Dy P R : xy “ 1u. (vii).
Ť

xą0p´x, xs. (viii).
Ş

xą0p´x, xq. (ix).
tx` 1 : x P ty P R : Dz P R : z “ 0uu. (x).

Ť

xą0p´x, xszp0, xq.

III.22. Same question.

(i). tx P R : x2 “ 1u Y tx2 : x P Ru.

(ii). tx P R : Dy P R : xy “ 2u.

(iii). tx P R : Dy P R : y “ 0u.

(iv). tx P R : Dy P R : x “ 0u.

(v). tn P N : Dq P Q : n “ qu

(vi). tq P Q : Dn P N : n “ qu

III.23. Same question.

(i).
Ş

nPNr´n,`8q

(ii).
Ş

nPNrn,`8q

(iii).
Ť

nPNtx P R : n ď x ă n` 1u

(iv).
Ť

xPR
Ş

yPRtz P R : z “ yu

(v).
Ť

0ăaă1p´a, aq

(vi).
Ş

aą1p´a, aq

III.24. Same question.

(i).
Ť

0ăxă1p0, xq

(ii).
Ť

0ăxă1r0, xs

(iii).
Ş

0ăxă1p0, xq

(iv).
Ş

0ăxă1r0, xs

(v). pt0, 1u ˆ t0, 1uq z ptpa, aq : a P t0, 1uuq

(vi). Rˆ Rz p pRě0 ˆ Ră0q Y pRă0 ˆ Ră0q Y pRă0 ˆ Rě0q q

(vii). tx P R : @y P r0, 1s : x ą yu

(viii). tx P R : Dy P r0, 1s : x ą yu

(ix). tx P H : x P Ru
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(x). tx P tHu : x P Ru

III.25. Same question.

(i). P pP pHqqzP pHq

(ii).
Ť

xPr´1,1sp´|x|, xq

(iii).
Ť

nPNp´n, 0q

(iv).
Ş

qPQr´|q|, 0s

(v). tx P R : @y P R : x ą yu

(vi). tx P R : @y P R : x ą |y|u

(vii). tx P R : Dy P R : x ą |y|u

(viii). tx P R : x ą 0_ x ă 0u

(ix). cos pr0, πsq

(x). tx : x P ty P R : y2 “ 1uu

(xi). tx2 : x P ty P R : y “ 1uu

(xii).
ď

qPtxPQ:xą0u
p´q, qq

(xiii).
ď

qPQ
pq ´ 1, q ` 1q

(xiv).
ď

nP2Z
pn´ 1, n` 1q

III.26. For any integer n, let nZ be the set tkn : k P Zu.

(i). Rewrite the definition in English.

(ii). What is 2ZY 4Z?

(iii). What is 2ZX 4Z?

(iv). What is 2ZX 3Z?

III.27. Let:

A1 “ tpx, yq P R2 : x` y ă 1u

A2 “ tpx, yq P R2 : |x` y| ă 1u

A3 “ tpx, yq P R2 : |x| ` |y| ă 1u

A4 “ tpx, yq P R2 : x` y ą ´1u

A5 “ tpx, yq P R2 : |x´ y| ă 1u
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(i). Draw these sets.

(ii). Deduce a geometric proof of the following:

p|x` y| ă 1^ |x´ y| ă 1q ô |x| ` |y| ă 1.

III.28. What are the following sets equal to?

(i).
č

nPN

„

n´
1
n
, n`

1
n



(ii).
ď

kPN

č

nPN

„

k ´
1
n
, k `

1
n



Infinite operations
III.29. Let I be a set and pAiqiPI be a family of sets. Let B be a set. Prove the
following:

(i).
B Y

ď

iPI

Ai “
ď

iPI

pB YAiq

(ii).
B Y

č

iPI

Ai “
č

iPI

pB YAiq

(iii).
B X

ď

iPI

Ai “
ď

iPI

pB XAiq

(iv).
B X

č

iPI

Ai “
č

iPI

pB XAiq

III.30. Let tAn, n P Nu and tBn, n P Nu be two families of sets indexed by N.

(i). Assume: @n P N, An Ď Bn Ď An`1. Show that
Ť

nPNAn “
Ť

nPNBn.

(ii). Assume: @n P N, An Ě Bn Ě An`1. Show that
Ş

nPNAn “
Ş

nPNBn.

III.31. Let I, J be two non-empty sets with I Ď J . For each j P J , let Aj be a
set.

(i). Prove the following:

(a)
ď

iPI

Ai Ď
ď

jPJ

Aj

(b)
č

jPJ

Aj Ď
č

iPI

Aj
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(ii).

(a) Find an example of sets I, J , and Aj such that:

pI Ĺ Jq ^

˜

ď

iPI

Ai Ł
ď

jPJ

Aj

¸

^

˜

č

jPJ

Aj “
č

iPI

Aj

¸

.

(b) Find an example of sets I, J , and Aj such that:

pI Ĺ Jq ^

˜

ď

iPI

Ai “
ď

jPJ

Aj

¸

^

˜

č

jPJ

Aj Ĺ
č

iPI

Aj

¸

.

No justification required.
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Chapter IV — Using Functions

We use set formalism to discuss functions properly. We do not introduce a
distinction between ‘functions’ and ‘applications’ (which has little interest if
any at all).

Chapter Goals. Work with abstract functions and related notions:

• understand what a function is;

• compute image and preimage sets;

• be able to show that a function is injective, or surjective.

Main Notions. Function, composition. Injection, surjection, bijection. Image
set, preimage.

13 Functions and Composition

13.1 Function graphs
13.1.1. Definition (function graph). Let A and B be sets. A function graph
A Ñ B is a subset Γf Ď A ˆ B such that the following two conditions are
satisfied:

• @a P A, Db P B, pa, bq P Γf

• @pa, b, b1q P AˆB2, pa, bq P Γf ^ pa, b
1q P Γf ñ b “ b1.

Thus, a subset Γf Ď AˆB is the graph of a function if and only if:

p@a P AqpD!b P Bqppa, bq P Γf q.

13.1.2. Remark (vertical line test). For a given curve to be the graph of a
function, it is necessary and sufficient to have the following property: every
vertical line meets the curve exactly once.

13.1.3. Example.

•

This is the graph of a function (it could be the square function).
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•

This is the graph of a function (for instance, x3 ´ x would do).

•

Not the graph of a function: some vertical lines meet the curve twice.

•

Not a function graph: some vertical lines meet the curve twice (or more).

13.2 Functions and function notation
13.2.1. Definition (function). A function is a triple pA,B,Γf q, where Γf is
the graph of a function from A to B.

We then say that f is a function from A to B, and write

f : AÑ B.

13.2.2. Remark. A function is not a mapping. It consists of a ‘domain’ A, a
‘codomain’ B, and a mapping. Domain and codomain must be specified.

13.2.3. Example. Though they have exactly the same graph, the function f
from R to R that maps x to x2, and the function g from R to Rě0 that maps x
to x2 are not the same mathematical object.

13.2.4. Notation (function notation). Given a function f : A Ñ B, we know
that for each x P A there is a unique y P B associated to it. We say that f
sends/maps x to y; in particular, writing y “ fpxq makes sense. Hence ‘f is the
function from A to B that sends/maps x to f of x’ is denoted:

f : A Ñ B
x ÞÑ fpxq.

13.2.5. Remark. Ñ:
ztoindicates the domain A and the codomain B, but ÞÑ:

zmapstodenotes the assignment.
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13.3 Composition of functions
13.3.1. Definition (composition). Let f : AÑ B and g : B Ñ C be functions.
The composition g ˝ f is the function from A to C which maps x to gpfpxqq.

In symbols,
pg ˝ fqpaq “ gpfpaqq.

13.3.2. Remark (the graph of the composition). In graph notation, let Γf Ď

AˆB be the graph of f and Γg Ď B ˆ C be the graph of g. Then:

Γg˝f “ tpa, cq P Aˆ C : pDb P Bqppa, bq P Γf ^ pb, cq P Γgqu.

13.3.3. Remark.

• Apply f first, then g. The closest to x must be executed first.

• f ˝ g makes no sense (unless of course if A “ B).

13.3.4. Example.

• sin ˝ cos is the function from R to R which maps x to sinpcospxqq.

• Let f : t1, 2, 3u Ñ ta, b, cu be such that fp1q “ b, fp2q “ c, fp3q “ a, and
let g : ta, b, cu Ñ tα, β, γu be such that gpaq “ α, gpbq “ γ, gpcq “ β.
Then pg ˝ fqp1q “ α, pg ˝ fqp2q “ β, pg ˝ fqp3q “ γ

13.3.5. Properties (associativity of ˝). Let f : AÑ B, g : B Ñ C, h : C Ñ D
be functions. Then:

h ˝ pg ˝ fq “ ph ˝ gq ˝ f.

Proof. Exercise.

14 Images and preimages

14.1 Images
14.1.1. Definition (image set). Let f : A Ñ B be a function, and let E Ď A
be a subset of A. The image of E under f is fpEq “ tfpeq : e P Eu.

When f : AÑ B, we say that fpAq is the image of f .

14.1.2. Example. Let f denote the square function from R to R.

• fpRq “ fpRě0q “ fpRď0q “ Rě0.

• fpr´1, 1sq “ fpr0, 1sq “ fpr´1, 0sq “ r0, 1s.

14.1.3. Properties. Let f : AÑ B be a function, and let E,F Ď A be subsets
of A. Then:

(i). fpE X F q Ď fpEq X fpF q.

(ii). fpE Y F q “ fpEq Y fpF q.
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Proof.

(i). Let y P fpE X F q; we show y P fpEq X fpF q. By definition, there is
x P E X F such that y “ fpxq. Since x P E, one has y P fpEq. Since
x P F , one also has y P fpF q. This proves fpE X F q Ď fpE X F q.

(ii). Let y P fpE Y F q; we show y P fpEq Y fpF q. By definition, there
is x P E Y F such that y “ fpxq. If x P E, one has y P fpEq Ď
fpEq Y fpF q. If x P F , one has y P fpF q Ď fpEq Y fpF q. So in either
case, y P fpEq Y fpF q. This proves fpE Y F q Ď fpE Y F q.
Now let y P fpEqY fpF q; we show y P fpEYF q. If y P fpEq, then there
is x P E such that y “ fpxq. So x P EYF and y P fpEYF q. If y P fpF q,
we show y P fpEYF q similarly. This proves fpEqYfpF q Ď fpEYF q.

14.1.4. Remark. In general fpE X F q Ł fpEq X fpF q.
Let f : R Ñ R be the square function. Then one has fpRą0q “ Rą0 “

fpRă0q, so fpRą0q X fpRă0q “ Rą0. But since Ră0 X Rą0 “ H, one also
fpRă0 X Rą0q “ H.

14.2 Preimages
14.2.1. Definition (preimage). Let f : A Ñ B be a function, and let F Ď B
be a subset of B. The preimage of F under f is f´1pF q “ ta P A : fpaq P F u.

As opposed to an image set, this has the form tx P A : P pxqu, viz. a subset
obtained through ‘separation’.

14.2.2. Remark. f´1 is not defined as a function from B to A. Expressions
like f´1pbq are meaningless. The argument of f´1 must be a subset of B.

14.2.3. Example. Let f be the square function RÑ R.

• f´1pRq “ R.

• f´1pr0, 1sq “ r´1, 1s.

• f´1pr´2,´1sq “ H.

14.2.4. Properties. Let f : AÑ B be a function, and let E,F Ď B be subsets
of B. Then:

(i). f´1pE X F q “ f´1pEq X f´1pF q.

(ii). f´1pE Y F q “ f´1pEq Y f´1pF q.

Proof.

(i). Let x P f´1pE X F q; we show x P f´1pEq X f´1pF q. By definition,
fpxq P E X F . Since fpxq P E, one has x P f´1pEq. Since fpxq P F , one
also has x P f´1pF q. This proves f´1pE X F q Ď f´1pE X F q.
Now let x P f´1pEq X f´1pF q; we show x P f´1pE X F q. Since x P
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f´1pEq, one has fpxq P E. Since x P f´1pF q, one also has fpxq P F .
Hence fpxq P EXF . So x P f´1pEXF q. This proves f´1pEqXf´1pF q Ď
f´1pE X F q.

(ii). Let x P f´1pE Y F q; we show x P f´1pEq Y f´1pF q. By definition,
fpxq P EYF . If fpxq P E, one has fpxq P EYF , whence x P f´1pEYF q.
If fpxq P F , one has x P f´1pEYF q similarly. This proves f´1pEYF q Ď
f´1pEq Y f´1pF q.
Now let x P f´1pEq Y f´1pF q; we show x P f´1pE Y F q. If x P f´1pEq,
one has fpxq P E Ď EYF , so x P f´1pEYF q. If x P f´1pF q, one has x P
f´1pE YF q similarly. This proves f´1pEq Y f´1pF q Ď f´1pE YF q.

15 Injectivity, surjectivity, bijectivity

15.1 Injectivity
15.1.1. Definition (injection). Let f : AÑ B be a function. f is injective if:

@pa, a1q P A2, fpaq “ fpa1q ñ a “ a1.

15.1.2. Remark. Old-fashioned, forbidden terminology: ‘one-one’. This may
create confusion with bijections.

15.1.3. Remark. Injectivity is equivalent to

@pa, a1q P A2, a ‰ a1 ñ fpaq ‰ fpa1q,

meaning that distinct elements cannot be mapped to the same element.

15.1.4. Remark. Distinguish carefully between:

• ‘@pa, a1q P A2, a “ a1 ñ fpaq “ fpa1q’, which means that the notation fpaq
makes sense, i.e. that when a is given, fpaq is uniquely determined;

• ‘@pa, a1q P A2, fpaq “ fpa1q ñ a “ a1’, viz. injectivity.

15.1.5. Remark (horizontal line test). f : AÑ B is injective if and only if for
all b P B, there is at most one solution to the equation fpxq “ b, x P A. In other
words, when you draw the graph, f is injective iff an horizontal line intersects
the curve at most once.

15.1.6. Example.

• Let A be any set. Then IdA is injective.

• sin : RÑ r´1, 1s is not injective (for instance, sinp0q “ sinpπq).

• If A has only one element, then any function from A is injective.

• If A has more than one element, no constant function from A is injective.

• ln : Rą0 Ñ R, exp : RÑ Rą0 are injective (draw the graphs).

Caution. Injectivity strongly depends on the domain!
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15.1.7. Example.

• The square function RÑ R is not injective, as p´1q2 “ 1 “ 12.

• The square function RÑ Rě0 is not injective, as p´1q2 “ 1 “ 12.

• The square function Rě0 Ñ R is injective.

• The square function Rě0 Ñ Rě0 is injective.

15.1.8. Proposition. Let f : AÑ B and g : B Ñ C be functions.

(i). If f and g are injective, then so is g ˝ f .

(ii). If g ˝ f is injective, then so is f .

Proof.

(i). We assume that f and g are injective, and we prove that g˝f is. So we let
a, a1 P A be such that pg ˝ fqpaq “ pg ˝ fqpa1q, and we prove a “ a1. Our
assumption means gpfpaqq “ gpfpa1qq. By injectivity of g, this implies
fpaq “ fpa1q. By injectivity of f , this implies a “ a1. So g˝f is injective.

(ii). We now assume that g ˝ f is injective, and we prove that f is. So let
a, a1 P A be such that fpaq “ fpa1q; we want to prove that a “ a1.
Applying g to our hypothesis, we get pg ˝ fqpaq “ gpfpaqq “ gpfpa1qq “
pg ˝ fqpa1q. But by injectivity of g ˝ f , this implies a “ a1.

15.1.9. Remark. If g ˝ f is injective, there is no reason why g should be.
Let f : t1u Ñ t1, 2u map 1 to 1, and let g : t1, 2u Ñ t1u map 1 and 2 to 1.

Notice that g is not injective. However, g ˝ f : t1u Ñ t1u is injective.

15.2 Surjectivity
15.2.1. Definition (surjection). Let f : A Ñ B be a function. f is surjective
if

@b P B, Da P A, fpaq “ b.

15.2.2. Remark. Old-fashioned, unrecommended terminology: ‘onto’. (Harm-
less, but not recommended.)

15.2.3. Remark. f : AÑ B is surjective if and only if @b P B, there is at least
one solution to the equation fpxq “ b, x P A. In other words, when you draw
the graph of f , then an horizontal line intersects the curve at least once.

15.2.4. Example.

• Let A be any set. Then IdA is surjective.

• sin : RÑ r´1, 1s is surjective.

• If A has only one element, then any function to A is surjective.

• ln : Rą0 Ñ R, exp : RÑ Rą0 are surjective.
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Caution. Surjectivity strongly depends on the domain and codomain!

15.2.5. Example. We consider the same functions as in Example 15.1.7.

• The square function RÑ R is not surjective, as p´1q has no square root.

• The square function RÑ Rě0 is surjective.

• The square function Rě0 Ñ R is not surjective.

• The square function Rě0 Ñ Rě0 is surjective.

15.2.6. Proposition. Let f : AÑ B and g : B Ñ C be functions.

(i). If f and g are surjective, then so is g ˝ f .

(ii). If g ˝ f is surjective, then so is g.

Proof.

(i). We assume that f and g are surjective, and we prove that g ˝ f is. So
we let c P C, and find a P A such that pg ˝ fqpaq “ c. By surjectivity of
g, there is b P B such that gpbq “ c. By surjectivity of f , there is a P A
such that fpaq “ b. Then pg ˝ fqpaq “ c.

(ii). We now assume that g ˝ f is surjective, and we prove that g is. So we let
c P C, and find b P B such that gpbq “ c. By surjectivity of g ˝ f , there
is a P A such that pg ˝ fqpaq “ c. Let b “ fpaq P B. Then gpbq “ c.

15.2.7. Remark. If g ˝ f is surjective, there is no reason why f should be.
Let f : t1u Ñ t1, 2u map 1 to 1, and let g : t1, 2u Ñ t1u map 1 and 2 to 1.

Notice that f is not surjective. However, g ˝ f : t1u Ñ t1u is surjective.

15.3 Bijectivity
It turns out that the case where a function is both injective and surjective is
extremely interesting.

15.3.1. Definition (bijection). Let f : A Ñ B be a function. f is bijective if
it is both injective and surjective; in other words f is bijective iff:

@b P B, D!a P A, fpaq “ b.

15.3.2. Remark. Old-fashioned, forbidden terminology: one-to-one corres-
pondence. The risk of confusion with ‘one-one’ is huge.

15.3.3. Remark. f : A Ñ B is bijective if and only if @b P B, there is exactly
one solution to the equation fpxq “ b, x P A. In other words, when you draw
the graph of f , then an horizontal line intersects the curve exactly once.

15.3.4. Example.

• Let A be a set. Then IdA is a bijection.

• ln : Rą0 Ñ R, exp : RÑ Rą0 are bijections.
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• The cube function RÑ R is a bijection.

• The absolute value RÑ Rě0 is not a bijection.

Caution. Bijectivity strongly depends on the domain and codomain!

15.3.5. Example. Same functions as in Examples 15.1.7 and 15.2.5.

• The square function RÑ R is not bijective, as it is not surjective.

• The square function RÑ Rě0 is not bijective, as it is not injective.

• The square function Rě0 Ñ R is not bijective, as it is not surjective.

• The square function Rě0 Ñ Rě0 is bijective.

15.3.6. Proposition. Let f : AÑ B, g : B Ñ C be functions.

(i). If f and g are bijective, then so is g ˝ f .

(ii). If g ˝ f is bijective, then f is injective, and g is surjective.

Proof. Obvious from Propositions 15.1.8 and 15.2.6.

15.3.7. Remark. If g ˝f is bijective, there is no reason why f nor g should be.
Let f : t1u Ñ t1, 2u map 1 to 1, and let g : t1, 2u Ñ t1u map 1 and 2 to 1.

Neither f nor g is bijective. However, g ˝ f : t1u Ñ t1u is bijective.

Check-up and Exercises

Warm-up exercises
IV.1. Do the following constructions define functions? If yes, find the biggest
possible domain on which they make sense.

(i). Map any real number x to its square.

(ii). Map any real number to one of its real square roots.

(iii). Map any non-negative real number to one of its real square roots.

(iv). Map any real number to the biggest integer not greater than it.

(v). Map any real number to the integer that is closest to it.

(vi). Map x to sinp
a

p ´ x2qq.

IV.2. Let F be the set of polynomials with real coefficients.

• Let D be the derivation operation:

D : F Ñ F
f ÞÑ f 1
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• Let P map a polynomial to its unique primitive which vanishes at 0:

P : F Ñ F
f ÞÑ

şx

0 fptqdt

(i). Are the functions D, P injective?

(ii). Are the functions D, P surjective?

IV.3.

(i). Determine all injections t1, 2u Ñ t1, 2, 3, 4u (you should find 12 of these).

(ii). Determine all surjections t1, 2, 3, 4u Ñ t1, 2u (you should find 14 of these).

IV.4. Define f : Zˆ Zzt0u Ñ Q by:

fppp, qqq “
p

q
.

(i). Is f injective? If so, prove it. If not, provide a counter-example.

(ii). Find f´1pt 1
2uq.

Injections, Surjections, Bijections
IV.5. Suppose that A0, ..., An are sets and for each i “ 1, ..., n, fi : Ai´1 Ñ Ai

is a surjective function. Prove by induction that:

fn ˝ fn´1 ˝ ¨ ¨ ¨ ˝ f1 : A0 Ñ An

is also surjective.

IV.6. Let E be a set. For any subset A Ď E, the characteristic function of A
in E is:

χA : E Ñ t0, 1u

x ÞÑ

"

1 if x P A
0 if x R A

.

(i). Draw the characteristic function of r0, 1s in R.

(ii). Draw the characteristic function of Q in R.

(iii). Let 2E be the set of functions E Ñ t0, 1u. Let

Φ : P pEq Ñ 2E

A ÞÑ χA
.

Prove that Φ is injective.

(iv). Prove that Φ is surjective.

(v). Deduce that if E is finite and has n elements, then P pEq has 2n elements.

65



Images and preimages
IV.7. Let f be the following function:

f : R Ñ R
x ÞÑ x4

Determine the following sets:

(i). fpRq, fpRě0q, fpRď0q, fpr0, 1sq, fpr´1, 1sq

(ii). f´1pRq, f´1pRě0q, f´1pRď0q, f´1pr0, 1sq, f´1pr´1, 1sq.

IV.8. Let f be the function from P pNqztHu to N taking any non-empty subset
of N to its least element.

(i). Let A be the set of all infinite sets of N. Determine fpAq.
Let B be the set of all finite, non-empty sets of N. Determine fpBq.

(ii). Determine f´1pt1uq, f´1pt2uq, f´1pt1, 2uq.
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