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Differential Equations
Assignment #3: answers.

Exercise 1. Prove Grönwall’s Lemma:

Let f, g : I → R≥0 be continuous and c ∈ R be such that:

∀t ≥ t0, f(t) ≤ c +
∫ t

t0
f(s)g(s)ds

Then:
∀t ≥ t0, f(t) ≤ c exp

(∫ t

t0
g(s)ds

)
You may introduce the map:

h(t) =
c +

∫ t
t0

f(s)g(s)ds

exp
(∫ t
t0

g(s)ds
) .

Solution. The function h is continuous at t0, differentiable on I, and for t ≥ t0 the derivative
is:

h′(t) =
f(t)g(t)−

(
c +

∫ t
t0

f(s)g(s)ds
)
· g(t)

exp
(∫ t
t0

g(s)ds
) ≤ 0

So, always for t ≥ t0, one has h(t) ≤ h(t0). Therefore when t ≥ t0:

f(t) ≤ c +
∫ t

t0
f(s)g(s)ds = h(t) · exp

(∫ t

t0
g(s)ds

)
≤ h(t0) · exp

(∫ t

t0
g(s)ds

)
;

as h(t0) = c we are done.

Exercise 2. Consider the following scalar Cauchy problem:

x′(t) = x(t) on R with initial condition x(0) = 0

For f : (−1, 1)→ R let T (f) be the map:

T (f)(t) =
∫ t

0
f(s)ds.

1. Let f0 = exp. Compute f1 = T (f0), then f2 = T (f1), then f3 = T (f2).

2. Conjecture and prove something about fn (defined by successive iterations).

3. How do you explain this in terms of differential equations?

Solution.

1. By construction:

f1(t) =
∫ t

0
exp(s)ds = et − 1;

f2(t) =
∫ t

0
(es − 1)ds = et − 1− t;

f3(t) =
∫ t

0
(es − 1− s)ds = et − 1− t− t2

2 .
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2. We claim that for all n ∈ N, one has:

fn(t) = et −
n−1∑
k=0

1
k! t

k =
+∞∑
k=n

1
k! t

k

Indeed, we just checked the claim for n = 0, 1, 2, 3. Suppose it holds at some fixed n; then
by construction:

fn+1(t) = T (fn)(t)

=
∫ t

0

(
es −

n−1∑
k=0

1
k!s

k

)
ds

= et − 1−
n∑
k=1

1
k! t

k

= et −
n∑
k=0

1
k! t

k,

which proves the claim by induction.

3. This is easily explained. The problem x′(t) = x(t) with x(0) = 0 has a unique solution,
the constant function 0.
On the other hand, the equation x′ = x rewrites as x′(t) = G(t, x(t)) for G(a, b) = b.
This map is clearly locally Lipschitz in its second variable; by the Picard proof of the
Cauchy-Lipschitz theorem we know that the functional T as defined in the exercise:

• has a unique fixed point,
• which is the unique solution (here, 0),
• and that any sequence of iterates will converge to it.

So (fn)→ 0 was to be expected.

Exercise 3. Consider the Cauchy problem:

x′(t) = 1 + x2(t) for t ∈ (−1, 2)

with x(0) = 0.

1. Prove that there is a unique solution in the neighborhood of 0.

2. Give an explicit formula (this is not a trick question: by chance, this non-linear equation
can be solved using trigonometric functions).

3. Let h > 0 be any step. As in Euler’s method, define v0 = 0, then vn+1 = vn + h(1 + v2
n).

Prove that for all n ∈ N, vn > 0.

4. Hence Euler’s method gives a strictly positive affine function.
How do you reconcile this with the fact that lim π

2
+ tan(t) = −∞?

Solution.

1. Since the map x 7→ 1 + x2 is C∞ on R, it is locally Lipschitz everywhere; by the Cauchy-
Lipschitz theorem, around every initial condition there exists a unique solution.

2. The map tan satisfies the requirement. Notice that it is a non-global solution (as it goes
to +∞ at π

2
− < 2).
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3. A trivial induction.

4. The local Cauchy-Lipschitz guarantees existence (and uniqueness) of a local solution; here,
it is the restriction of tan to (−1, π2 ). We also know that Euler’s method will converge to
this function on the relevant interval.
What is pointed out is that this convergence does not hold on (π2 , 3).
But the Cauchy-Lipschitz theorem does not guarantee existence of a global solution. It
would if x 7→ 1 + x2 were globally Lipschitz on all of R, but it is not the case as the
derivative goes to ∞ with x.
Final note: no, tan on (1, 3) is not a global solution: it is not defined at π

2 .
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