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Differential Equations
Assignment #2: answers.

Exercise 1. Solve the equation on R

F ′(t) =
(

1 1
0 1

)
F (t) +

(
et

0

)

with the initial condition
F (0) =

(
1
1

)
.

Solution. Existence and uniqueness of a solution (with initial condition) are predicted by the
linear Cauchy-Lipschitz theorem; we even know that the solution will be defined on R.

For simplicity let A =
(

1 1
0 1

)
and B(t) =

(
et

0

)
. In order to solve the equation

(E) : F ′(t) = A · F (t) +B(t)

(with or without initial condition), we first handle the simpler equation:

(EH) : F ′(t) = A · F (t).

The matrix tA is readily exponentiated:

exp(tA) =
(
et tet

0 et

)

And as we know, the space of solutions of (EH) is:

SH = {exp(tA) ·X1 : X1 ∈ R2}.

Now given one solution F1 of (E), the solution set of (E) is exactly:

S = F1 + SH .

A possibility to find a special solution is of course to draw our inspiration from the very shape
of B; let us look for it in the form:

F1(t) =
(
x(t)et

0

)

For this to be a solution, one needs:

x′(t)et + x(t)et = x(t)et + 0 + et

which suggests to let:

F1(t) =
(
tet

0

)
One may check that F1 is a solution of (E).
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As a conclusion,
S = {exp(tA) ·X1 + F1 : X1 ∈ R2}

Instead of endlessly rewriting it, let us see when a solution F (t) = exp(tA) · X1 + F1 satisfies
the initial condition. One needs:(

1
1

)
= F (0) = exp(0) ·X1 + F1(0) = X1 +

(
0
0

)
= X1

So the only candidate is:

F (t) = exp(tA) ·
(

1
1

)
+
(
tet

0

)

=
(
et tet

0 et

)
·
(

1
1

)
+
(
tet

0

)

=
(
t+ 2tet

et

)

And as we know by existence of a solution, this only candidate must be the only solution.

Note. If you do not believe in the theory, check that the above is a solution (with initial
condition) indeed.

Exercise 2. We consider the following ordinary differential equation

(E)
{
u′(t) = 5

3u
2/5

u(0) = 0 .

1. Prove that the solution set of (E) is infinite. Provide a family of solutions.

2. Does this contradict the Cauchy-Lipschitz theorem? Justify!

Solution.

1. We adapt a construction seen in class. For T ≥ 0 let:

uT (t) =
{

0 if t ≤ T
(t− T )5/3 if t ≥ T .

We first observe that uT is well-defined, since both definitions agree at T . It is clearly
continuous for the same reason. Now uT is differentiable (as a matter of fact, C∞) both
on (−∞, T ) and (T,+∞); on the former, the derivative is 0; on the latter, it is:

5
3(t− T )2/3

To conclude that uT is differentiable at T one can either use the above and a theorem from
real analysis (“limit of the derivative”), or return to the simple fact that for h > 0:

uT (T + h)− uT (T )
h

= h2/3 −→h→0 0,

proving that uT is right-semi-differentiable at T . Since the left-semi-derivative has the same
value, we conclude that uT is differentiable at T , and the formula u′T (t) = 5

3(t−T )2/3 holds
on [T,∞).
In particular, one sees that uT is a solution of the equation; since T ≥ 0, it satisfies the
initial condition. As a conclusion, {uT : T ≥ 0} is an infinite family of solutions.
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2. This does not contradict the Cauchy-Lipschitz theorem as it simply does not apply here.
Indeed, the function x 7→ 5

3x
2/5 is not locally Lipschitz around 0. One argument can be

to differentiate, and see that the derivative goes to ∞ as t → 0. But why make things
complicated? Let us write a short contradiction proof.
Suppose that f(x) = x2/5 is locally Lipschitz around 0, say k-Lipschitz for some k ≥ 0.
This means that there is ε > 0 such that for all x, y ∈ [0, ε), |f(x) − f(y)| ≤ k|x − y|.
Letting y go to 0, by continuity, this implies x2/5|f(x)| ≤ kx for x ∈ [0, ε). However, if
x < min(ε, k−5/3, then:

x2/5

x
= x−35 = (x3/5)−1 > ((k−5/3)3/5)−1 = k

which is a contradiction.
Hence the Cauchy-Lipschitz is safe: its assumptions do not hold here.

Notes.

• Some of you decided to carelessly manipulate the equation and integrate — which was
not asked.
If you do this, after meaningless symbolic computations, you might have the impression
that there exists a unique solution; some actually said so.
This is silly for two reasons: first, the symbolic manipulations involve division by 0;
you are too old for such a foolish thing. Second, you are supposed to show that there
are infinitely many solutions; claiming something about “the unique”, or even “the”
solution is mathematically wrong.

• Do not write that it “contradicts the Cauchy-Lipschitz theorem”: the theorem is proved,
it is no longer possible to contradict it.

• To my great surprise, not all of you could state the Cauchy-Lipschitz theorem correctly.

Exercise 3.

1. Let n ∈ Z \ {0, 1}; also let a, b : R→ R be continuous maps, and consider the equation:

x′(t) + a(t)x(t) + b(t)(x(t))n = 0

where (x(t))n is the nth power of x(t) (not the derivative).
Suppose that x is a solution that remains positive. Let y(t) = (x(t))1−n and show that y
satisfies a linear equation.

2. Solve
tx′(t) + x(t)− t(x(t))3 = 0

on each interval where x keeps a constant sign.

Solution.

1. We let y(t) = x(t)1−n, as suggested (assuming that x never vanishes). Then y is differen-
tiable and one has:

y′(t) = (1− n)x′(t)x(t)−n

= (1− n)(−a(t)x(t)− b(t)x(t)n)x(t)−n

= (1− n)(−a(t)y(t)− b(t))

so y′(t) = (n− 1)(a(t)y(t) + b(t)), a linear equation (really, they should say affine).
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2. Suppose that x(t) does not vanish on some interval I.
Suppose that 0 ∈ I. Then at t = 0 we find: x(0) = 0, so x vanishes at 0 ∈ I: a
contradiction. Hence 0 /∈ I.
Then on I the equation rewrites as:

x′(t) + 1
t
x(t)− x3(t) = 0

As we know, letting y(t) = x−2(t) helps: it satisfies the equation:

y′(t) = 2
t
y − 2,

which has (on I) global solutions by the linear Cauchy-Lipschitz theorem. One easily finds
that y(t) = λt2 + 2t for λ a real number.
On I this should remain positive (notice that we thus find again that 0 /∈ I); this yields
constraints on I depending on λ but these were not explicitly asked. Since y(t) = x−2(t),
we find:

x(t) = δ√
λt2 + 2t

where δ = ±1.

Notes.

1. No, a2 = b > 0 does not imply a =
√
b.

2. You are too old to divide by 0.

3. The Cauchy-Lipschitz theorem can be invoked for y, not for x; the mathematical diffi-
culty is that one needs x to behave well (here, not to vanish) in order to define y.

Exercise 4 (some theory). Let A : I →Md(R) have the property:

∀(t1, t2) ∈ I2 A(t1) ·A(t2) = A(t2) ·A(t1)

Prove that the unique solution of the differential equation on I with initial condition:

X ′(t) = A(t) ·X(t), with X(t0) = X0

has the form:
X(t) = exp

(∫ t

t0
A(s)ds

)
·X0

Hint: prove that
∫ t

t0
A(s)ds and

∫ t+h
t A(s)ds commute.

Solution. The linear Cauchy-Lipschitz theorem predicts existence and uniqueness; it is then
safe to let

X(t) = exp
(∫ t

t0
A(s)ds

)
·X0,

a well-defined and differentiable map, and check that X(t) satisfies the equation and initial
condition. The latter is trivial since:

X(t0) = exp
(∫ t0

t0
A(s)ds

)
·X0 = exp(0) ·X0 = I ·X0 = X0,

so we turn to the equation itself. It suffices to check that X ′(t) = A(t) ·X(t).
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Our goal is obviously to compute the derivative of X(t). Since we have not computed the
differential of exp, we return to the basic definition as a limit of difference quotients:

X ′(t1) = lim
h→0

1
h

(X(t1 + h)−X(t1)).

Fix t1 ∈ I and let h ∈ R be small. Then:

X(t1 + h) = exp
(∫ t1+h

t0
A(s)ds

)
·X0

= exp
(∫ t1

t0
A(s)ds+

∫ t+h

t1
A(s)ds

)
·X0

We claim that the matrix integrals inside the exponential commute. Indeed let s1 ∈ (t0, t1) and
s2 ∈ (t1, t1 + h). Then A(s1)A(s2) = A(s2)A(s1), so integrating over s1:(∫ t1

t0
A(s1)ds1

)
·A(s2) = A(s2) ·

(∫ t1

t0
A(s1)ds1

)
.

Now integrating over s2, we find:(∫ t1

t0
A(s1)ds1

)
·
(∫ t1+h

t1
A(s2)ds2

)
=
(∫ t1+h

t1
A(s2)ds2

)
·
(∫ t1

t0
A(s1)ds1

)
,

as desired.
Returning to X(t1 + h), we find:

X(t1 + h) = exp
(∫ t1

t0
A(s)ds+

∫ t1+h

t1
A(s)ds

)
·X0

= exp
(∫ t1

t0
A(s)ds

)
· exp

(∫ t1+h

t1
A(s)ds

)
·X0

= exp
(∫ t1+h

t1
A(s)ds

)
· exp

(∫ t1

t0
A(s)ds

)
·X0

= exp
(∫ t1+h

t1
A(s)ds

)
·X(t1)

Therefore:

X(t1 + h)−X(t1) =
(

exp
(∫ t1+h

t1
A(s)ds

)
− I

)
·X(t1)

We keep in mind that we want to find X ′(t) = A(t)X(t); that is, we now wish to prove:

lim
h→0

1
h

(
exp

(∫ t1+h

t1
A(s)ds

)
− I

)
= A(t1)

If we prove this we are done. Intuitively, on the short segment [t1, t1 + h] the function A(s) is
almost constant; so the integral is more or less hA(t1), which is small (since h is); hence the
exponential is approximately I + hA(t1); and finally the derivative should be A(t1). Let us do
this properly.
Fix ε ∈ (0, 1). By continuity of A at t1 (I realise that the assumption was not stated explicitly
in the assignment; however, we always considered continuous coefficients), there is η such that:

∀h ∈ (−η, η), ‖A(t1 + h)−A(t1)‖ < ε
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Of course since we are trying to compute a limit, we may freely suppose that |h| < η.
It follows that:∫ t1+h

t1
A(s)ds =

∫ t1+h

t1
A(t1)ds+

∫ t1+h

t1
(A(s)−A(t1))ds = hA(t1) +R(h),

where the error term satisfies:

‖R(h)‖ =
∥∥∥∥∥
∫ t1+h

t1
(A(s)−A(t1))ds

∥∥∥∥∥ ≤
∫ t1+h

t1
‖A(s)−A(t1)‖ ds ≤ ε|h|

Here again, hA(t1) and R(h) commute, so:

exp
(∫ t1+h

t1
A(s)ds

)
= exp(hA(t1)) · exp(R(h)).

Now as a function of h (bear in mind that t1 is fixed), the map exp(hA(t1)) is differentiable at 0
with derivative A(t1), as proved in class; it means that it has Taylor expansion I+hA(t1)+o(h).
On the other hand, one has:

expR(h) = I +R(h) + 1
2!R(h)2 + . . . .

But since ‖R(h)‖ ≤ εh with ε < 1, the term of order n ≥ 2 has norm ≤ 1
n!ε

n|h|n ≤ 1
n!ε|h|

2; it
follows that:

‖ exp(R(h))− I −R(h)‖ =
∥∥∥∥∥
∞∑

k=2

1
k! (R(h))k

∥∥∥∥∥ ≤ |h2|
∞∑

k=2

1
k! ≤ ε|h|

2e

Hence exp(R(h)) = I +R(h) + o(h).
Put together:

exp
(∫ t1+h

t1
A(s)ds

)
= exp(hA(t1)) · exp(R(h))

= (I + hA(t1) + o(h)) · (I +R(h) + o(h))
= I + hA(t1) +R(h) + o(h)

so

Q(h) := 1
h

(
exp

(∫ t1+h

t1
A(s)ds

)
− I

)
= 1
h

(I + hA(t1) +R(h) + o(h)− I)

= A(t1) + 1
h
R(h) + o(1)

But since ‖R(h)‖ ≤ ε|h|, this means that Q(h) can be made arbitrarily close to A(t1). Which is
our claim.

Note. There is no such thing as “vector division”. This is a serious mathematical mistake
against which I had warned you several times.
In class I made a point of never dividing, even in the scalar case; apparently you preferred
to rely on unsatisfactory recipes you learnt in the past. Unfortunately, in this exercise, “not
quite rigorous” became “completely out”.
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