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Introduction

Prerequisites

In order to follow this class, one needs to know:

• calculus: derivatives and integrals;

• analysis: the same, with the epsilons;

• linear algebra: matrices, but also vector spaces and linear transformations.

Recommended Reading

I could locate two relevant sources. One is a classical book; l’autre est un
polycopié de l’université d’Orsay.

[1] Robert Devaney, Morris Hirsch, and Stephen Smale. Differential equa-
tions, dynamical systems and an introduction to chaos. Elsevier/Academic
Press, Amsterdam. Any of the three editions.

[2] Dominique Hulin. Équations differentielles ordinaires, études qualit-
atives. Téléchargeable depuis https://www.math.u-psud.fr/~hulin/
poly-cours-EDO.pdf

Differential equations everywhere
What is a differential equation? It is an equation:

• where the unknown variable is a function;

• involving the function and its derivatives.

And before we say anything else, the reader must be warned that to solve
is not the same thing as to study: as we shall see, most differential equations
cannot be solved explicitly by an exact formula. But they can certainly be
studied.

What are differential equations for? They can be used to model mathem-
atically every natural phenomenon where time plays a role — more precisely,
continuous (real-valued) time. This covers quite a lot as we shall see. On the
other hand they cannot be used to model the discrete (integer-valued) time
computers follow. But computers can help us study differential equations; the
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interplay between problems in continuous and discrete time is extremely subtle,
and the subject of numerical analysis. We shall not touch this. Our purpose
in this first lecture is to demonstrate that differential equations are (almost)
everywhere.

Gravity
Drop a piece of chalk: it will fall.

According to Newton’s law of gravitation, and as a first approximation, the
stick of chalk is subject to a force ÝÝÝÑFgrav “ m~g, where:

• m is the mass;

• ~g is the gravitation vector near earth surface.

We neglect other forces such as air resistance.
On the other hand, by Newton’s second law,

ř ~F “ m~a, where the sum
ranges over all forces involved, and ~a is the acceleration vector.

The latter is the second derivative of the position vector. Let us be more
specific. Say that at instant t, the piece of chalk has position:

¨

˝

xptq
yptq
zptq

˛

‚;

the three coordinates are functions of the time t. However motion is vertical, so
x and y are actually constants in this example. Now the acceleration is:

~aptq “

¨

˝

0
0

z2ptq

˛

‚

Since vector ~g is a constant, vertical vector pointing down, it has the simple
expression

~g “

¨

˝

0
0
´g

˛

‚

Put toghether and keeping only the z-coordinate, we find:

z2ptq “ ´g

Our first differential equation!
Let us introduce some terminology:

• we call z2ptq “ ´g a scalar equation, because z : R Ñ R is a real-valued
function (instead of a vector-valued function);

• it is a linear equation because it can be written:

zpnqptq ` an´1ptqz
pn´1qptq ` ¨ ¨ ¨ ` a0ptqzptq “ bptq,

where zpkq stands for the kth derivative.
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Remark. Instead of linear, one should call the equation affine for con-
sistency with geometry. In geometry the equation y ` ax “ 0 is linear,
whereas equation y ` ax “ b is merely affine.
This unfortunate misuse of “linear” in the theory of differential equations
is the source of many confusions.

• The equation has constant coefficients because the ak’s above are actually
constant: z2 ` 0z1 ` 0z; although here bptq “ g is another constant, it is
irrelevant;

• it has order 2 because the highest derivative involved is z2.

Chemistry
A liquid (what the chemists call a solution) contains molecules of types Y1, Y2, Y3
with concentrations c1ptq, c2ptq, c3ptq subject to chemical reactions:

Y3
k3
ÝÑ Y2

k2
ÝÑ Y1

k1
ÝÑ Y2.

This means that between instants t and t`dt, a certain amount of molecules
of type Y3 will transform into molecules of type Y2; this amount is proportional
to the concentration and the time elapsed. This can be modelled as:

c3pt` dtq “ c3ptq ´ k3c3ptqdt,

or:
c3pt` dtq ´ c3ptq

dt
“ ´k3c3ptq.

Now if dt is a very brief amount of time, we can call calculus in and write:

c13ptq “
dc3ptq

dt
“ ´k3c3ptq.

Likewise, as far as molecules of type Y2 are concerned:

• some molecules of type Y3 turn into molecules of type Y2, which results in
an increase of `k3c3ptq;

• but some molecules of type Y2 turn into molecules of type Y1, resulting in
a decrease ´k2c2ptq;

• then again some molecules of type Y1 turn into type Y2, which is a gain
of `k1c1ptq.

Consequently, c12ptq “ k1c1ptq ´ k2c2ptq ` k3c3ptq.
Finally, c11ptq “ ´k1c1ptq ` k2c2ptq. This gives us the following system of

coupled scalar equations:
$

&

%

c11ptq “ ´k1c1ptq ` k2c2ptq
c12ptq “ k1c1ptq ´ k2c2ptq ` k3c3ptq
c13ptq “ ´k3c3ptq

iv



‚ The matrix trick

The previous is a bit tedious to write. Just like linear algebra helps solve linear

systems, let us introduce the concentration vector Cptq “

¨

˝

c1ptq
c2ptq
c3ptq

˛

‚. It is then

subject to the equation:

C 1ptq “

¨

˝

´c1 k2 0
k1 ´k2 k3
0 0 ´k3

˛

‚¨ Cptq

So our system of chemical equations actually reduces to one vector linear
equation of order 1.

Remark. More generally, a linear, vector differential equation of order 1 takes
the form

C 1ptq “ Aptq ¨ Cptq `Bptq;

notice that:

• matrix Aptq may vary in general; in our example from chemistry, we
therefore have constant coefficients;

• there can be a `Bptq term, with Bptq a variable vector. If there is no
such term, i.e. if Bptq “ ~0 as was the case in the example, physicists call
the equation homogeneous.

This is bad terminology as pointed out.

what they say what they should say
C 1ptq “ AptqCptq `Bptq linear affine
C 1ptq “ AptqCptq linear homogeneous linear

Unfortunately, tradition is strong.

Biology
Consider a box containing bacteria with population pptq. Between instants t
and t` dt,

• a number of new bacteria are born, say βpptqdt, where β is the birth factor;

• and a number of them die, say δpptqdt, where δ is the death factor.

Put together:
ppt` dtq “ pptq ` βpptqdt´ δpptqdt,

so letting γ “ β ´ δ:
p1tq “

dp

dt
“ γpptq.

This is the Malthus model for population: a scalar, first order, linear equation
with constant coefficients.
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Of course the Malthus model is not realistic, as finiteness of the box yields
constraints. In the middle of the XIXth century Verhulst suggested the following
model, which is surprisingly accurate:

p1ptq “ c ¨ pptq ¨

ˆ

1´ pptq

K

˙

,

which is a scalar, but non-linear equation of order 1. (The equation does contain
a term p2ptq, but what matters in computing the order is the highest derivation
order, not powers involved.)

Remark. The Verhulst equation is one of the few non-linear equations for
which solutions can be written down explicitly in terms of the usual functions
(it is an excellent exercise to find the formula).

In general, a non-linear equation cannot be solved by an explicit formula.

Let us go further: in the 1920’s Lotka and Volterra suggested the following
prey/predator model:

"

p11ptq “ p1ptq ¨ pa´ bp2ptqq
p12ptq “ p2ptq ¨ p´c` dp1ptqq

,

a system of coupled, scalar, non-linear, first order equations (for which there
exists no explicit formula). The meaning is simple:

• population p1 consists of rabbits; rabbits tend to reproduce exponentially
if it were not for foxes who kill them (the number of casualties being
proportional to the number of rabbits and to the number of foxes);

• population p2 consists of foxes; this population is prosperous only if there
are rabbits to feed on.

Epidemiology too relies on differential equations.

Electrical engineering
The rlc circuit stands for resistor, iinductor (they use L, because I already
stands for electric current, in French intensité), capacitor. Let us assemble these
electrical components in series together with a variable voltage source V ptq, as
follows:

` ´

R L
C

V ptq

Let us find the resulting equation. Let Iptq stand for the current and VXptq
be the entrance voltage at component X. Then:
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• by Kirchhoff’s law: VRptq ` VLptq ` VCptq “ V ptq;

• by Ohm’s law: VRptqRIptq;

• by Faraday’s law: VL “ LI 1ptq;

• by Coulomb’s law: CV 1Cptq “ Iptq.

Consequently,
RI 1ptq ` LI2ptq `

1
C
Iptq “ V 1ptq.

This is a second order, scalar equation; people call it linear (but really, they
should say affine) and to make things worse, they say it has constant coefficients
even though V ptq depends on time.

Mechanics
Consider a simple pendulum: a point B (the bob) with mass m hangs from C
(the centre) through a massless, inextensible cord of length `.

C

B

θ

The point is located using the angular displacement θptq, so that B has polar
coordinates

`

`, 3π
2 ` θptq

˘

:

~i

~j

`3π
2 ` θ

B

In this and similar problems from physics it is often preferable not to use
Cartesian px, yq nor even polar pρ, ϕq coordinates, but work in the variable basis
p~uθ, ~vθq, defined as follows:

~i

~j

~uθ

~vθ

θ

• ~uθ is the unit vector along ÝÝÑCB;

• ~vθ is obtained from uθ by rotating it `π
2 .
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Hence:

~uθ “ p~uθ ¨~iq~i` p~uθ ¨~jq~j

“ cos
ˆ

3π
2 ` θ

˙

~i` sin
ˆ

3π
2 ` θ

˙

~j

“ sin θ~i´ cos θ~j,

and likewise ~vθ “ cos θ~i` sin θ~j.
Then notice:

d~uθ
dθ

“ ~vθ and d~vθ
dθ

“ ´~uθ,

so that using the chain rule:

d~uθ
dt

“ θ1ptq~vθ and d~vθ
dt

“ ´θ1ptq~uθ.

Now back to physics. The bob is subject to two forces:

θ

ÝÝÝÑ
Fcord

ÝÝÝÑ
Fgrav

• ÝÝÝÑFgrav “ m~g “ ´mg~j “ ´mgp´ cos θ~uθ `
sin θ~vθq;

• ÝÝÝÑFcord “ ´T~uθ.

Since ÝÝÑCB “ `~uθ and ` is a constant, one finds the velocity:

ÝÝÑ
CB

1
“ `~u1θ “ `θ1~vθ,

and acceleration:
ÝÝÑ
CB

2
“ `θ2~vθ ´ `θ

12~uθ.

Finally by Newton’s second law, ÝÝÝÑFgrav `
ÝÝÝÑ
Fcord “ m~a, so taking the scalar

product with ~vθ:
´mg sin θ “ m`θ2,

or equivalently
θ2 `

g

`
sin θ “ 0.

This is a non-linear, second order, scalar equation. It cannot be solved by a
finite, explicit formula using classical functions.

Some terminology

Definition (imprecise and temporary).
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• A differential equation is an equation of the form

Hpt,Xptq, X 1ptq, . . . , Xpnqptqq “ 0

where H is a continuous function.

• It has order n if the highest derivative appearing in the equation is Xpnq.

• It is explicit if it can be written in the simpler form

Xpnqptq “ Gpt,Xptq, X 1ptq, . . . , Xpn´1qptqq

• It is linear if G is linear in Xptq, . . . , Xpn´1qptq; this is bad terminology
as one should say affine.

• It is scalar if Xptq is real- or complex-valued, vector if Xptq takes its
values in some other normed vector space.

Definition (imprecise and temporary). A solution of a differential equation
consists of some interval I Ď R and some continuously differentiable function
X defined on I, subject to the relation.

Remarks.

• Most of the time in the non-linear case, I is proper in R; this does not
happen in the linear case (where “every solution is maximal”).

• Most of the time in the non-linear case, one cannot solve explicitly
(i.e. there is no finite-length formula using usual functions; inventing
new names, or using a series expansion, can be a possibility); even in
the linear case we shall see the phenomenon.

• As a conclusion, to study is not the same thing as to solve. To study is to
discuss existence, uniqueness, and “qualitative properties” of solutions,
even when one cannot write an explicit formula for them.

ix



Chapter I: Linear
Differential Equations

I.1. Scalar, linear, order 1 equations

Remark. Things are too good to last, since here we have:

• an existence and uniqueness result (as a special case of the Cauchy-
Lipschitz theorem), which will extend to any linear differential equation
and even a wide class of non-linear equations, but not all;

• underlying algebraic structures: vector spaces and affine spaces; this
will extend to any linear differential equation, but will not survive in
the non-linear world;

• globality of solutions: a problem posed on I will have a solution defined
on I; this will extend to any linear differential equation, but will not
survive in the non-linear world;

• explicit formulas for solutions: this will extend to linear equations with
constant coefficients, but not beyond.

I.1.1. The “homogeneous” case

Theorem. Let I Ď R be an open subinterval and a : I Ñ R be a continuous
map; also let t0 P I and x0 P R.

Consider the differential equation x1ptq “ aptqxptq with initial condition
xp0q “ x0. Then there is a unique solution; it is defined on I, and is given by
a useful formula:

xptq “ x0 ¨ e
şt
t0
apsqds

.

Proof. A “there exists a unique statement” actually consists of two claims:
one on existence, one on uniqueness.

• Existence.
Let Eptq “ e

şt
t0
apsqds; observe that this map is defined on I, and differ-
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entiable with derivative:

E1ptq “ aptqEptq;

moreover, Ept0q “ e0 “ 1.
As a consequence, the map xptq “ x0Eptq is defined on I, differentiable
with derivative x1ptq “ x0aptqEptq “ aptqxptq, and satisfies xpt0q “ x0:
it is a solution.

• Uniqueness.
Let yptq be another solution; for the future’s sake we take into account
the possibility that yptq be only defined on some subinterval J Ď I; this
subtlety may certainly be omitted at first reading.
Consider function:

zptq “ e
´

şt
t0
apsqds

¨ yptq “
1

Eptq
yptq “ pEptqq´1yptq

(this is however not equal to Ep´tqyptq, a function of no interest). Clearly
z is differentiable on J with derivative:

z1ptq “ ´aptqe
´

şt
t0
apsqds

¨ yptq ` e
´

şt
t0
apsqds

¨ y1ptq

“ ´aptqe
´

şt
t0
apsqds

¨ yptq ` e
´

şt
t0
apsqds

¨ aptqyptq

“ 0,

so z is a constant function on J ; in particular, zptq “ zpt0q “ ypt0q “ x0.
Then, always on J :

yptq “ Eptqzptq “ Eptqx0 “ xptq,

so y coincides with x (at least, where y is defined): proving uniqueness.

I.1.2. The general case

Theorem. Let I Ď R be an open subinterval and a, b : I Ñ R be continuous
maps; also let t0 P I and x0 P R.

Consider the differential equation x1ptq “ aptqxptq` bptq with initial condi-
tion xp0q “ x0. Then there is a unique solution; it is defined on I, and there
is a useless formula.

Proof.

• Existence.

2



Use again the integral factor Eptq “ e
şt
t0
apsqds; now let:

xptq “ Eptq ¨

ˆ

x0 `

ż t

t0

bpsqpEpsqq´1ds

˙

(The reader had been warned: the formula is completely useless; what
matters is the method to get it, a topic to which we shall return.)
Clearly x is defined on I, differentiable, with derivative:

x1ptq “ E1ptq ¨

ˆ

x0 `

ż t

t0

bpsqpEpsqq´1ds

˙

` Eptq ¨ bptqpEptqq´1

“ aptqEptq ¨

ˆ

x0 `

ż t

t0

bpsqpEpsqq´1ds

˙

` bptq

“ aptqxptq ` bptq;

moreover, xpt0q “ Ept0q ¨ px0 ` 0q “ 1 ¨ x0 “ x0, so x is a solution.

• Uniqueness.
Notice that if y1, y2 are two solutions with the initial condition y1pt0q “
y2pt0q “ x0, then z “ y1 ´ y2 is a solution of the easier problem:

z1ptq “ aptqzptq with initial condition zpt0q “ 0.

But the constant map 0 is certainly another solution of the other problem.
By the “homogeneous” casee we know that there is uniqueness in the
latter. Hence z “ 0, meaning y1 “ y2.

Remark. To be fully rigorous, what we proved is that z “ 0 where it is
defined, i.e. if y1 is defined on J1 and y2 on J2, then we have y1 “ y2 on
J1 X J2 (which contains t0). Since the solution x we constructed was defined
on all of I, this means that both y1 and y2 appear as restrictions of x: we
have uniqueness in this sense.

This remark can be omitted at first reading, but is typical of our future
non-linear arguments.

‚ A practical approach

The formula given in the last theorem is completely useless; do not even bother
to try learning it. Here is the method:

• Suppose we wish to solve an equation pEq : x1ptq “ aptqxptq `
bptq, possibly with initial condition xpt0q “ x0.
• If there was a given initial condition, first forget about it.
• All solutions of the simpler, “homogeneous” equation pEHq :
x1ptq “ aptqxptq have the form λ ¨ xHptq, where λ P R and xH
is any non-zero solution of pEHq (which is easily found using
integration and exponentiation).
• To find one solution of pEq we look for it in the form λptqxHptq.

3



For xSptq “ λptq ¨ xHptq to be a solution of pEq one needs:

x1Sptq “ λ1ptqxHptq ` λptqx
1
Hptq “ λ1ptqxHptq ` λptqaptqxHptq

to be equal to:

aptqxSptq ` bptq “ aptqλptqxHptq ` bptq.

So the condition reduces to λ1ptqxHptq “ bptq, which in practice
easily gives λptq.

• Now we have one solution xSptq of pEq, we see that all solutions
of pE) are of the form xSptq ` λxHptq, where λ is a constant
again.

• If an initial condition was given, we finally solve for λ in xSpt0q`
λxHpt0q “ x0.

The method is called variation of parameters because the parameter λ has
become a function. Here is a concrete example.

Examples.

• On I “ Rą0, let us solve x1ptq “ 1
txptq` t

2 with initial condition xp2q “
10.
We first solve x1ptq “ 1

txptq. As we know, solutions are of the form
λ exp

´

şt

1
1
sds

¯

“ λ exp plog tq “ λt.

We now look for one special solution of the original equation in the form
xSptq “ λptq ¨ t. For this to be a solution one needs λ1ptq ¨ t ` λptq “
1
tλptq ¨ t` t

2, i.e. tλ1ptq “ t2, and finally λ1ptq “ t. So we let λptq “ 1
2 t

2;
since the above is revertible, xSptq “ 1

2 t
3 is a special solution.

Put together, all solutions of the equation are of the form λt ` 1
2 t

3.
There is only one satisfying the initial condition xpt0q “ x0; this requires
2λ` 4 “ 10, so λ “ 3.
As a conclusion, the only solution of the equation with initial condition
is xptq “ 3t` 1

2 t
3.

• Sometimes finding one solution of pEq is immediate and does not require
varying the parameter, as in the previous and also following cases.
On I “ R consider the equation:

pEq : x1ptq “ ´txptq ` pt2 ` 1q.

Then equation pEHq is x1ptq “ ´txptq, which solves into:

xHptq “ exp p´tdtq “ exp
ˆ

´
t2

2 ` c
˙

“ λe´
t2
2

On the other hand xSptq “ t is clearly a solution of pEq.

4



I.1.3. The Algebraist speaks
Forget initial conditions and focus only on the differential equations:

pEHq : x1ptq “ aptqxptq;
pEq : x1ptq “ aptqxptq ` bptq.

Here is the algebraic approach, formulas left aside.

Theorem.

• The set SH of solutions of pEHq is a 1-dimensional vector space; for any
t0 P I, the evaluation map:

evt0 : SH Ñ R
xH ÞÑ xHpt0q

is a linear isomorphism.

• The set S of solutions of pEq is a 1-dimensional affine space directed by
S, meaning that for any xS P S, one has S “ xS ` SH .

Remark. Informal rephrasing:

• all solutions of pEHq are collinear;

• general solution of pEq “ one special solution of pEq + general solution
of pEHq.

However proper mathematicians prefer to think in geometric terms.

I.2. Higher order linear equations

Remark. Higher order linear equations still retain:

• an existence and uniqueness result (as a special case of the Cauchy-
Lipschitz theorem);

• vector spaces and affine spaces as underlying algebraic structures;

• globality of solutions: a problem posed on I has a solution defined on I;

• explicit formulas for solutions only in the case of constant coefficients.

I.2.1. Scalar linear equations with variable coefficients
The following is a special case of the Cauchy-Lipschitz theorem.

Theorem. Let a1, a0, b : I Ñ R be continuous maps; also let t0 P I and
x0, x1 P R.

5



Consider the differential equation x2ptq “ a1ptqx
1ptq`a0ptqxptq` bptq with

initial conditions xpt0q “ x0 and x1pt0q “ x1. Then there is a unique solution;
it is defined on I. . . but there is no formula.

Return to the two relevant equations:

pEq : x2ptq “ a1ptqx
1ptq ` a0ptqxptq ` bptq;

pEHq : x2ptq “ a1ptqx
1ptq ` a0ptqxptq

Here is a nice rephrasement of the above.

Theorem.

• The set SH of solutions of pEHq is a 2-dimensional vector space; for any
t0 P I, the evaluation map:

evt0 : SH Ñ R2

xH ÞÑ pxHpt0q, x
1
Hpt0qq

is a linear isomorphism.

• The set S of solutions of pEq is a 2-dimensional affine space directed by
S, meaning that for any xS P S, one has S “ xS ` SH .

I.2.2. Scalar linear equations with constant coefficients
We briefly recall how to deal with equations of the form:

pEHq : x2ptq “ a1x
1ptq ` a0xptq

where a0, a1 are constant coefficients.

• Introduce the polynomial equation λ2 “ a1λ` a0.

• Solve it (in Cq, finding complex roots λ1, λ2.

• If λ1 ‰ λ2, then all complex-valued solutions are of the form c1e
λ1t`c2e

λ2t.

• If λ1 “ λ2 (so let us simply call it λ), then all complex-valued solutions
are of the form c1e

λt ` c2te
λt.

This was a clumsy way of stating the following.

Theorem. In the assumptions and notation of the section:

• The set SH of solutions of pEHq is a 2-dimensional vector space;

• if λ1 ‰ λ2, then peλ1t, eλ2tq is a basis of SH ;

• if λ1 “ λ2 (so let us simply call it λ), then peλt, teλtq is a basis of SH .

6



More generally, to solve

xpnqptq “ an´1x
pn´1qptq ` ¨ ¨ ¨ ` a1x

1ptq ` a0xptq,

introduce the polynomial λn “ an´1λ
n´1 ` ¨ ¨ ¨ ` a1λ ` a0 and solve it in C,

finding roots λi with multiplicity di.
Then all solutions are linear combinations of the various tjeλit for j ă di.

Remarks.

• The good student should be quite dissatisfied with this recipe relying on
no proof: this seems to work by miracle, without a clear understanding
of what is going on (we will return to this).

• The polynomial involved is called the characteristic equation for a reason
which will become obvious once we put the problem into its proper
setting: linear algebra.

• In the case of variable coefficients, there is a good general theory but no
formulas.

I.2.3. Reduction to equations of order 1
Do you remember the matrix trick from the introduction? We return to it and
prove something actually more general. This will be our first incursion into
non-linear theory.

Proposition. Any differential equation of order n with unknown functions
taking values in Rd can be rewritten as a differential equation of order 1 with
values in Rnd.

In particular, any scalar equation of order n rewrites as a vector equation
of order 1.

Proof. We first do the proof in the scalar case (i.e. when d “ 1); then we shall
inspect our argument and realise it remains valid for any d.

The general form of a scalar differential equation of order n (not necessarily
linear) is:

pEq : xpnqptq “ F pt, xptq, x1ptq, . . . , xpn´1qptqq,

where F pt, a0, . . . , an´1q is a continuous map defined on some subset of I ˆ
Rˆ ¨ ¨ ¨ ˆ R and taking values in R. All this may seem a bit imprecise for the
moment but the chapter on non-linear equations will be extremely rigorous on
the topic.

Introduce the function:

~Φpt, v0, . . . , vn´1q “ pv1, . . . , vn´1, F pt, v0, . . . , vn´1q,

a continuous map defined on the same subset of I ˆ R ˆ ¨ ¨ ¨ ˆ R as F , but
taking values in Rn.
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Now consider the equation:

p~Eq : ~X 1ptq “ ~Φpt, ~Xptqq for t P I

We claim that y : I Ñ R is a solution of pEq iff the function:

~Y : I Ñ Rn

t ÞÑ

¨

˚

˚

˚

˝

yptq
y1ptq
...

ypn´1qptq

˛

‹

‹

‹

‚

is a solution of p~Eq.

• Suppose that y is a solution of pEq and let ~Y as above. Then:

~Y 1ptq “

¨

˚

˚

˚

˝

y1ptq
...

ypn´1qptq

ypnqptq

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

y1ptq
...

ypn´1qptq

F pt, yptq, y1ptq, . . . , ypn´1qptqq

˛

‹

‹

‹

‚

“ ~Φ
´

t, ~Y ptq
¯

• The converse is similar.

For the general case pd ą 1q, read the proof again, replacing every occurence
of R by Rd: the argument is still valid.

Corollary. Any scalar linear equation of order n rewrites as a vector linear
equation of order 1.

Proof. A scalar linear equation has the special form:

pEq : xpnqptq “ a0ptqxptq ` a1ptqx
1ptq ` ¨ ¨ ¨ ` an´1ptqx

pn´1qptq ` bptq,

meaning that here:

F pt, v0, . . . , vn´1q “ a0ptqv0 ` a1ptqv1 ` ¨ ¨ ¨ ` an´1ptqvn´1 ` bptq.

8



Consequently,

~Φpt, v0, . . . , vn´1q “ pv1, . . . , vn´1, a0ptqv0 ` ¨ ¨ ¨ ` an´1ptqvn´1 ` bptqq

“

¨

˚

˚

˚

˚

˚

˝

0 1 0 . . . 0
0 0 1 0 0
...

...
. . .

...
0 0 . . . 0 1

a0ptq a1ptq . . . . . . an´1ptq

˛

‹

‹

‹

‹

‹

‚

¨

¨

˚

˚

˚

˚

˝

v0
...
...

vn´1

˛

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˝

0
...
0
bptq

˛

‹

‹

‹

‚

“ Aptq ¨ ~V `Bptq

in obvious notation.

Remark. A similar argument shows that any system of coupled equations
rewrites as one (big) first-order equation; if the system is linear, so is the
resulting equation.

Example. We give a non-linear example. Return to the Lotka-Volterra sys-
tem:

"

p11ptq “ p1ptq ¨ pa´ bp2ptqq
p12ptq “ p2ptq ¨ p´c` dp1ptqq

.

Introduce the function:

Gpt, v1, v2q “ pv1 ¨ pa´ bv2q, v2 ¨ p´c` dv1qq.

Then pp1, p2q is a solution of the coupled system iff P ptq “

ˆ

p1ptq
p2ptq

˙

is a

solution of X 1ptq “ Gpt,Xptqq.

I.3. Matrix exponential
Now comes something different.

We will try to generalise the scalar, order 1 linear formulas to vector, order n,
linear differential equations. The formula giving the solution to a scalar, order 1,
linear Cauchy problem was, in our usual notation:

xptq “ e
şt
t0
apsqds

¨ x0

Be careful that the generalisation of this formula to the vector case (where
Apsq is a matrix) will not be correct. It will be only in the case of a constant
matrix A. But anyway, we must first understand what it means to take the
exponential of a matrix.

I.3.1. The definition

Theorem (and Definition). Let K “ R or C and A P MdpKq. Then the
series:

ÿ

kě0

1
k!A

k

9



converges to a limit, called the exponential of A and denoted exppAq.

Remark. From now on we denote the matrix exponential by exp, and reserve
notation ez for the real/complex exponential.

Proof.

Step 1. A fact from matrix algebra: there is a norm ~ ¨~ on MdpKq such that
for any M,N PMdpKq one has:

~M ¨N~ ď ~M~ ¨ ~N~.

We say that ~ ¨ ~ is sub-multiplicative.

Proof. Fix any norm } ¨ } on Kd (for instance, the usual norm). We let
S “ tv P Kd : }v} “ 1u be the associated sphere. For M PMdpKq we let:

~M~ “ sup
vPS

}Mv},

and we claim that ~ ¨ ~ meets the requirements. We therefore have several
properties to check.

• ~M~ is well-defined, i.e. the sup takes finite values. Indeed, the map:

f : S Ñ Rě0
v ÞÑ }Mv}

is the composition of } ¨ } and with multiplication by M . The first
is continuous as it is 1-Lipschitz; the second is continuous since it is
linear. As a conclusion, f is continuous. Since S is closed and bounded
and Kd it is compact; therefore f is bounded on S and its supremum
is finite (it even is a maximum).

• ~ ¨ ~ defines a norm. Three properties to check briefly.

– ~ ¨~ takes non-negative values and is zero only on the null matrix.
Indeed, if ~M~ “ 0 then S Ď kerM . Now S spans the whole
space Kd and kerM is a vector subspace; this shows kerM “ Kd,
and M “ 0.

– ~ ¨ ~ is positively homogeneous.
Indeed, let M PMdpKq and λ P K; then for any v P S one has:

}pλMq ¨ v} “ |λ| ¨ }λM ¨ v}

so taking the supremum on both sides, ~λM~ “ |λ|~M~.
– ~ ¨ ~ satisfies the triangle inequality.
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Indeed, let M,N PMdpKq. For v P S, one has:

}pM `Nqv} “ }Mv `Nv} ď }Mv} ` }Nv} ď ~M~ ` ~N~,

so taking the supremum, ~M `N~ ď ~M~ ` ~N~.

This proves that ~ ¨ ~ is a norm on MdpKq.

• ~ ¨ ~ is sub-multiplicative.
Indeed, let M,N P MdpKq. Let v P Kd. If Nv “ 0 then }MNv} “
}0} ď ~M~ ¨ ~N~, this case is not very interesting. Otherwise let
w “ 1

}Nv}Nv P S, so:

}MNv} “ }M ¨ }Nv}w} “ }Nv} ¨ }Mw} ď ~N~ ¨ ~M~

Taking the supremum on v P S, we find ~MN~ ď ~M~ ¨ ~N~, as
desired.

♦

A norm of the norm ~A~ “ sup}v}“1 }Av}, for } ¨ } a vector norm, is often
called an operator norm.

Step 2. The series
řn
k“0

1
k!A

k converges.

Proof. As a consequence of sub-multiplicativity, one has by induction:

~An~ ď ~A~n

Hence:
�

�

�

�

�

n
ÿ

k“0

1
k!A

k

�

�

�

�

�

ď

n
ÿ

k“0

1
k!

�

�Ak
�

� ď

n
ÿ

k“0

1
k! ~A~

k
ď e~A~,

which suggests that the series
řn
k“0

1
k!A

k should converge. This follows from
some topological facts.

Definition. Let pX, dq be a metric space.

• A sequence punq P XN is a Cauchy sequence if:

@ε ą 0DN P N@q ě p ě N, dpup, uqq ă ε

• pX, dq is a complete metric space if all Cauchy sequences are conver-
gent.

Fact. For any norm ν, the metric space pMdpKq, νq is complete.

This is easy to believe since a sequence pMnq converges iff each sequence
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pmi,j
n q converges, where pmi,j

n q are the coefficients of the matrix Mn.

Definition. Let pE, νq be a normed vector space. A series Sn “
řn
k“0 uk

is normally convergent if the real series
řn
k“0 ukνpukq is convergent.

Fact. If pE, νq is a normed vector space which is complete, then every
normally convergent series is convergent.

Let us put the pieces together. We have found one norm ~ ¨ ~ on MdpKq
such that the series

ř 1
k!A

k is normally convergent. By completeness of the
space, it is therefore convergent. ♦

So exppAq is well-defined.

I.3.2. Exponential of a diagonalisable matrix
The involved proof of existence is absolutely not efficient in practice: computing
a given matrix’ exponential remains a mystery. It is certainly not componentwise
exponentiation. Let us start with basic examples.

Examples.

• Start with the null matrix. Then clearly:

expp0q “ 1
0!0

0 `
1
1!0

1 `
1
2!0

2 ` . . .

The first term is the identity matrix I (as will be for any matrix); the
second is 0, and actually any next term is a positive power of 0, so 0.
Consequently expp0q “ I.

• Let us compute exppIq. Now:

exppIq “ 1
0!I `

1
1!I `

1
2!I

2 ` . . . ,

so clearly exppIq “ e ¨ I. A more interesting way to view this is by
writing the diagonal explicitly:

exp

¨

˚

˝

1
. . .

1

˛

‹

‚

“

¨

˚

˝

1
0! `

1
1! `

1
2! ` . . .

. . .
1
0! `

1
1! `

1
2! ` . . .

˛

‹

‚

“

¨

˚

˝

e
. . .

e

˛

‹

‚

12



• This generalises neatly: suppose we have a diagonal matrix. Then:

exp

¨

˚

˝

λ1
. . .

λn

˛

‹

‚

“

¨

˚

˝

eλ1

. . .
eλn

˛

‹

‚

In the case of a diagonal matrix we can compute the exponential quickly: it
then is componentwise exponentiation on the diagonal (this will not be true if
there are non-diagonal terms). We can extend to diagonalisable matrices thanks
to the following.

Proposition (conjugacy property). Suppose A,P P MdpKq and P is invert-
ible. Then exppPAP´1q “ P exppAqP´1.

Proof. For any matrix M and integer n, let:

SnpMq “
n
ÿ

k“0

1
k!M

k.

As we know, for any M P MdpKq, one has SnpMq Ñ exppMq. Also introduce
the map:

f : MdpKq Ñ MdpKq
M ÞÑ PMP´1

which is called conjugation by P . Since f is linear, it is continuous. Now
observe how for any matrix M , one has fpSnpMqq “ SnpfpMqq. Hence on the
one hand:

fpSnpAqq “ SnpfpAqq Ñ exppfpAqq “ exppPAP´1q;

on the other hand, since f is continuous at exppAq and SnpAq Ñ exppAq:

fpSnpAqq Ñ fpexpAq “ P exppAqP´1.

The limit being unique, we are done.

I.3.3. Matrix exponential: the general case

Proposition (commutation property). Let A,B PMdpKq be such that AB “
BA (one says that A and B commute). Then exppA`Bq “ exppAq¨exppBq “
exppBq ¨ exppAq.

Proof. This is a standard manipulation of absolutely (here, normally) con-
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verging series and does not say much about matrix exponential nor differential
equations.

Example. The assumption is required; although we still cannot compute
matrix exponentials in general we can already give a counterexample.

Let A “
ˆ

1 0
0 ´1

˙

and B “
ˆ

0 1
0 0

˙

.

First of all:

AB “

ˆ

1 0
0 ´1

˙

¨

ˆ

0 1
0 0

˙

“

ˆ

0 1
0 0

˙

;BA “
ˆ

0 1
0 0

˙

¨

ˆ

1 0
0 ´1

˙

“

ˆ

0 ´1
0 0

˙

,

so the proposition does not apply.
One sees that A2 “ I, so:

exppAq “ I `A`
1
2I `

1
6A` ¨ ¨ ¨ “

ˆ

e
e´1

˙

,

while B2 “ 0, so:

expB “ I `B ` 0` ¨ ¨ ¨ “ I `B “

ˆ

1 1
0 1

˙

,

and therefore:

exppAq ¨ exppBq “
ˆ

e
e´1

˙

¨

ˆ

1 1
0 1

˙

“

ˆ

e e
e´1

˙

.

Now in order to compute exppA`Bq, we see that:

A`B “

ˆ

1 1
´1

˙

,

and:
pA`Bq2 “

ˆ

1 1
´1

˙

¨

ˆ

1 1
´1

˙

“

ˆ

1
1

˙

,

so that:

exppA`Bq “ I ` pA`Bq `
1
2!I `

1
6!A`B ` ¨ ¨ ¨ “

ˆ

e
ř

k odd
1
k!

e´1

˙

,

which differs from exppAq ¨ exppBq.

Definition. A matrix N PMdpCq is nilpotent if Nd “ 0.

Remark. It is an excellent exercise in linear algebra to prove the equivalences
between:

• N is nilpotent;
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• there exists k P N such that Nk “ 0;

• 0 is the only eigenvalue of N .

Remark. Let N PMdpCq be a nilpotent matrix. Then:

exppNq “ I `N ` ¨ ¨ ¨ `
1

pd´ 1q!N
d´1

since the following terms of the series all vanish.

Proposition (Dunford decomposition). Let M P MdpCq. Then there is a
unique pair pD,Nq with:

• D a diagonalisable matrix,

• N a nilpotent matrix,

• M “ D `N ,

• DN “ ND (N and D commute).

We finally get a practical method: to compute expA, we try to write it in
the above form; then expA “ expD ¨ expN .

Remarks.

• Always treat your matrix as a complex matrix.

• Be extremely careful: writing A “ D`N is not enough, one must check
that D and N commute.

Examples.

• Let A “
ˆ

1 1
0 2

˙

; we compute exppAq.

Be careful that here the naive decomposition:

A “

ˆ

1
2

˙

`

ˆ

0 1
0

˙

is of no use, since the terms do not commute.
On the other hand the matrix is diagonalisable at first sight:

A ¨

ˆ

1
0

˙

“

ˆ

1
0

˙

and A ¨

ˆ

1
1

˙

“ 2
ˆ

1
1

˙

so
ˆˆ

1
0

˙

,

ˆ

1
1

˙˙
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is an eigenbasis. So we introduce the coordinate change matrix

P “

ˆ

1 1
0 1

˙

,

for which:
A “ P

ˆ

1
2

˙

P´1.

Now clearly:

exppAq “ exp
ˆ

P

ˆ

1
2

˙

P´1
˙

“ P exp
ˆ

1
2

˙

P´1

“

ˆ

1 1
0 1

˙

¨

ˆ

e
e2

˙ˆ

1 ´1
0 1

˙

“

ˆ

1 1
0 1

˙

¨

ˆ

e ´e
0 e2

˙

“

ˆ

e e´ e2

0 e2

˙

• Now let B “
ˆ

1{2 1{2
´1{2 3{2

˙

; let us find exppBq.

The determinant is 1 and trace is 2; clearly B has the sole eigenvalue
1 with algebraic multiplicity 2. Let us determine the associated eigen-
space:

E1pBq “ kerpB ´ Iq “ ker
ˆ

´1{2 1{2
´1{2 1{2

˙

“ ker
`

1 ´1
˘

“ Span
ˆ

1
1

˙

so
ˆ

1
1

˙

is an eigenvector. In dimension 2 (for reasons belonging to

your linear algebra class and which I had not time to explain) it is
safe to extend to any basis; the resulting coordinate change matrix will
trigonalise B.
So we let:

Q “

ˆ

1 1
1 0

˙

;

it can be checked that

Q´1BQ “

ˆ

1 ´1{2
1

˙

.
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Now observe how:

exp
ˆ

1 ´1{2
1

˙

“ exp
ˆˆ

1
1

˙

`

ˆ

0 ´1{2
0

˙˙

“ exp
ˆ

1
1

˙

¨ exp
ˆ

0 ´1{2
0

˙

“

ˆ

e
e

˙

¨

ˆ

1 ´1{2
1

˙

“

ˆ

e ´1{2e
e

˙

,

so we finally find:

exppBq “ exp
ˆ

Q

ˆ

1 ´1{2
1

˙

Q´1
˙

“ Q ¨ exp
ˆ

1 ´1{2
1

˙

¨Q´1

“

ˆ

1 1
1 0

˙

¨

ˆ

e ´1{2e
e

˙

¨

ˆ

0 1
1 ´1

˙

“

ˆ

1 1
1 0

˙

¨

ˆ

´1{2e 3{2e
e ´e

˙

“

ˆ

e{2 e{2
´e{2 3{2e

˙

I.3.4. Similarity classes for 2-dimensional complex matrices
Recall that two matrices A,B are similar if there is an invertible matrix P with
A “ PBP´1 (or equivalently, there is invertible Q with A “ Q´1BQ). The
following proposition classifies complex 2ˆ 2 matrices up to similarity.

Proposition. Let A PM2pCq. Then there are two cases:

• either A is similar to
ˆ

λ
µ

˙

, possibly with λ “ µ,

• or A is similar to
ˆ

λ 1
λ

˙

, possibly with λ “ 0.

Proof. The first case exactly means that A is diagonalisable. So suppose that
A is not diagonalisable. Then it must have only one eigenvalue, say λ (possibly
0), and dimEλpAq “ 1.

Let v1 P EλpAqzt0u (i.e. an eigenvector) and v2 R Cv1. Then pv1, v2q forms
a basis; moreover pA´ λIq2 “ 0, so:

pA´ λIqv2 P kerpA´ λIq “ EλpAq “ Cv1,
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meaning that there is z P C with Av2 “ λv2 ` zv1. However v2 is not an
eigenvector, so z ‰ 0.

Let v11 “ zv1; since z ‰ 0, the pair pv11, v2q still forms a basis. But one has
Av11 “ λv11 and:

Av2 “ λv2 ` zv1 “ λv2 ` v
1
1,

so the coordinate change matrix from the standard basis to pv11, v2q brings A

to
ˆ

λ 1
λ

˙

.

I.4. Vector linear differential equations with constant
coefficients

Remark. What follows applies only to linear equations with constant coeffi-
cients.

Let us finally apply our new tool (the matrix exponential) to the resolution
of linear differential equations with constant coefficients.

I.4.1. Differentiating the exponential

Lemma. For A PMdpKq, the map t ÞÑ expptAq is differentiable on R and:

pexpptAqq1 “ A ¨ expptAq

Proof. Let t0, h P R. We shall let h go to 0, so we may suppose |h| ă 1.
Observe that t0A and hA commute, so by the commutation property:

1
h
pexp ppt0 ` hqAq ´ exp pt0Aqq “

1
h
pexp phAq ¨ exp pt0Aq ´ exp pt0Aqq

“
1
h
pexpphAq ´ Iq exppt0Aq

Now observe that by definition:

expphAq ´ I “

8
ÿ

k“1

1
k!h

kAk “ hA`
8
ÿ

k“2

1
k!h

kAk

looooomooooon

εphq

.

The term εphq is however small, as follows:

~εphq~ “

�

�

�

�

�

8
ÿ

k“2

1
k!h

kAk

�

�

�

�

�

ď h2
8
ÿ

k“2

1
k! ~A~

k
ď h2e~A~
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In particular:
1
h
εphq ď he~A~ ÝÝÝÑ

hÑ0
0

As a conclusion:

1
h
pexp ppt0 ` hqAq ´ exp pt0Aqq “

1
h
pexpphAq ´ Iq exppt0Aq

“
1
h
phA` εphqq exppt0Aq

“ A exppt0Aq `
1
h
εphq exppt0Aq

ÝÝÝÑ
hÑ0

A exppt0Aq,

which exactly means that expptAq is differentiable at t0, with derivative
A exppt0Aq.

Remarks.

• A more analytic proof is possible, using a differentiation theorem for
uniformly convergent function series.

• It can actually be proved in calculus that the map exp : MdpKq Ñ
MdpKq is differentiable (as a matter of fact, C8). We can even compute
the differential at the null matrix:

D0 exp “ Id,

meaning that for any small matrixM , one has exppMq “ I`M`opMq;
this is a slightly stronger statement than the lemma.
With some pain the differential can be computed at any point, but gives
rise to an unpleasant infinite series — something impossible to use in
practice.

I.4.2. Constant coefficients

Proposition. Let I Ď R be an open interval, A PMdpRq be a matrix, t0 P I
and X0 P Rd. Consider equation:

p~Eq : X 1ptq “ A ¨Xptq

with initial condition Xpt0q “ X0.
Then there is a unique solution, which is global (i.e. defined over I), and

we have a useful formula:

Xptq “ exp pt´ t0qAq ¨X0
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Proof.

• Existence.
By the properties of the exponential, the suggested function is differen-
tiable on I with derivative:

X 1ptq “ A exp pt´ t0qAq ¨X0 “ AXptq;

moreover Xpt0q “ expp0q ¨X0 “ I ¨X0 “ X0. So the suggested function
is a solution.

• Uniqueness.
Let Y ptq be another solution (defined on some subinterval J Ď I). Let
Zptq “ expp´pt ´ t0qAq ¨ Y ptq, which is again differentiable on J with
derivative:

Z 1ptq “ ´A expp´pt´ t0qAqY ptq ` expp´pt´ t0qAqY 1ptq
“ ´A expp´pt´ t0qAqY ptq ` expp´pt´ t0qAqAY ptq
“ 0

since Y ptq is a solution and A and expptAq commute. So Z is a constant
on J ; hence for t P J one has Zptq “ Zpt0q “ expp0q ¨ Y pt0q “ X0, and:

Y ptq “ expppt´ t0qAq ¨ Zptq “ expppt´ t0qAq ¨X0 “ Xptq.

Therefore function Y appears as the restriction to J of function X.

‚ Relationship with the “characteristic method”

In the case of say x2 “ bx1 ` cx, we now have two methods.

1. The characteristic equation method: introduce the polynomial λ2´bλ´c,
with (possibly complex) solutions λ1, λ2.

• If λ1 ‰ λ2 then all solutions (with no specified initial condition) are
of the form:

c1e
λ1t ` c2e

λ2t

• If on the other hand λ1 “ λ2 (simply denoted λ) then solutions
assume the form:

c1e
λt ` c2te

λt

This method avoid linear algebra — and as a result hides the fundamental
phenomena.

2. The matrix exponential method: change the problem into solving vector
equation

X 1ptq “ A ¨Xptq

where A “

ˆ

0 1
c b

˙

and Xptq “

ˆ

xptq
x1ptq

˙

. All solutions have the form

expptAq ¨ C, where C P R2.
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We must still explain why both methods will agree.

Proof. First notice that the characteristic polynomial of matrix A is:

χApλq “ ´λpb´ λq ´ c “ λ2 ´ bλ´ c,

which is why we also called it the characteristic polynomial of the equation.
Let us keep calling λ1, λ2 its complex roots. Now there are two cases.

• Suppose λ1 ‰ λ2. Then A is diagonalisable: there is invertible P such
that:

P´1AP “

ˆ

λ1
λ2

˙

Then P ptAqP´1 is easily computed. Therefore, thanks to the conjugacy
property:

expptAq “ P

ˆ

eλ1t

eλ2t

˙

P´1

so an arbitrary solution has the form:

Xptq “ P

ˆ

eλ1t

eλ2t

˙

P´1 ¨X1 “ P

ˆ

eλ1t

eλ2t

˙

¨X2

Without actually computing it, we see that this yields a vector of the
form:

Xptq “

ˆ

c1e
λ1t ` c2e

λ2t

d1e
λ1t ` d2e

λ2t

˙

,

confirming the old-fashioned method.

• Now suppose λ1 “ λ2 (denoted λ). For a general matrix this is no
full obstruction to being diagonalisable; but here, it is. For if A were
diagonalisable we would have A “ P´1pλIqP for some invertible P . Now
the matrix in the middle commutes to every matrix, so we find A “ λI,
which is clearly not the case.
So A is not diagonalisable, and we know that there is invertible P with:

A “ P´1
ˆ

λ 1
λ

˙

P

In this case we find:

expptAq “ P

ˆ

eλt t
eλt

˙

P´1

so an arbitrary solution will have the form:

Xptq “ P

ˆ

eλt t
eλt

˙

P´1 ¨X1 “ P

ˆ

eλt t
eλt

˙

¨X2 “

ˆ

c1e
λt ` c2te

λt

d1e
λt ` d2te

λt

˙

.

In either case, both methods yield the same solution space. ♦
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Remark. More in general, the linear equation with constant coefficients

xpnq “ an´1x
pn´1q ` ¨ ¨ ¨ ` a0x

relies on the characteristic polynomial

λn ´ an´1λ
n´1 ´ ¨ ¨ ¨ ´ a0.

This is because in matrix form, one has:

X 1ptq “ A ¨Xptq

where:

A “

¨

˚

˚

˚

˚

˚

˝

0 1 0 . . . 0
0 0 1 0 0
...

...
. . .

...
0 0 . . . 0 1
a0 a1 . . . . . . an´1

˛

‹

‹

‹

‹

‹

‚

But the latter has characteristic polynomial p´1qnλn ´ an´1λ
n´1 ´ ¨ ¨ ¨ ´ a0,

as a quick induction and expansion along the first column reveals.
This finally explains the so-called “characteristic equation”.

I.4.3. Non-homogeneous case

Proposition. Let I Ď R be an open interval, A P MdpRq be a matrix,
B : I Ñ Rd be a continuous map; also let t0 P I and X0 P Rd. Consider
equation:

p~Eq : X 1ptq “ A ¨Xptq `Bptq

with initial condition Xpt0q “ X0.
Then there is a unique solution, which is global (i.e. defined over I), and

we have a useless formula.

Proof.

• Existence.
It is easy to check that letting:

Xptq “ expppt´ t0qAq ¨
ˆ

X0 `

ż t

t0

expp´sAqBpsqds
˙

gives a solution.

• Uniqueness is handled as in the scalar case: if Y1, Y2 are two solutions
(with the initial condition), then Y1 ´ Y2 is a solution of X 1ptq “ AXptq
vanishing at t0, so whereever defined.

22



What matters algebraically is the following.

Theorem. Let A P MdpRq be fixed and B : I Ñ Rd be a continuous map.
Consider as always equations pEq : X 1ptq “ A ¨Xptq`Bptq and pEHq : X 1ptq “
A ¨Xptq.

• The set SH of solutions of pEHq is a d-dimensional vector space; for any
t0 P I, the evaluation map:

evt0 : SH Ñ Rd
xH ÞÑ xHpt0q

is a linear isomorphism.

• The set S of solutions of pEq is a d-dimensional affine space directed by
S, meaning that for any xS P S, one has S “ xS ` SH .

Remark. Of course the formula is an instance of the variation of parameters:
a special solution must be looked for in the form:

xSptq “ expppt´ t0qAq ¨ Λptq,

where Λ : I Ñ Rd is differentiable. This always succeeds (possibly through
painful computations if d is large).

Be extremely careful however that in general, this does not work for a variable
matrix Aptq. The naive attempt is simply incorrect; there are no more general
formulas here.
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Chapter II: Ordinary
Differential Equations

Nature is not linear. Return to our early examples; as simple a model as
the ideal pendulum gave rise to a non-linear equation.
The study of non-linear equations is therefore unavoidable. Several warn-
ings must be issued immediately, in contrast to the linear case:

1. there are no formulas; as a matter of fact there is no general method
of explicit resolution, and non-linear equations which can be solved
by a closed formula are the exception, not the rule;

2. the set of solutions does not bear any algebraic structure (as opposed
to the linear case, where it was an affine space);

3. solutions tend not to be global, i.e. tend to be defined on proper
subintervals.

II.1. Terminology and Phenomena

II.1.1. Terminology
Let us return to the fundamentals.

Definition. A differential equation is an equation of the form:

pEq : X 1ptq “ Gpt,Xptqq for t P I

where:

• I Ď R is a (non-empty) open subinterval;

• U Ď Rd is a (non-empty) open subset;

• G : I ˆ U Ñ Rd is a map which we will always take to be continuous.

Examples.

• all linear differential equations of course;

• x1ptq “
a

xptq is a non-linear equation;
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• θ2ptq “ sinpθptqq, non-linear again.

It is a good exercise to explicit I, U , and G in the above to make sure you
understand the definition; in particular any differential equation can be con-
verted into one with order 1.

We can also add initial conditions.

Definition. An initial condition problem, also known as a Cauchy problem,
is given by a differential equation pEq together with: t0 P I, X0 P U , and the
requirement:

Xpt0q “ X0

There is a nice theory of Cauchy problems as we shall see, but:

• there are no formulas;

• there are no nice “algebraic” correspondences (eg. linear maps) between
solutions and initial conditions;

• solutions tend not to be global.

The latter requires us to review the terminology.

Definition. A solution to pEq is a pair pJ,Xq, with:

• J Ď I a non-empty open subinterval;

• X : J Ñ Rd is a differentiable map taking values in U ;

• @t P J, X 1ptq “ Gpt,Xptqq.

For a solution to a Cauchy problem we also require t0 P J and Xpt0q “ X0.

Definition. A solution is called global if J “ I, local otherwise.

This terminology is however far from satisfactory: for instance, if pJ,Xq is
a solution, J̌ Ď J is an open subinterval, and X̌ “ X

|J̌ (the restriction of X to
J̌ , then:

• on the one hand, pJ̌ , X̌q is a solution;

• on the other hand, it is strictly less interesting than pJ,Xq — because it
is a restriction.

Definition. Let pJ1, X1q, pJ2, X2q be two solutions to an equation (possibly
with initial condition). One says that pJ2, X2q extends pJ1, X1q if:
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• J1 Ď J2;

• X1 “ X2|J1 , i.e. @t P J1, X1ptq “ X2ptq.

A maximal solution is one which does not have a proper extension.

Remark. A global solution is always maximal, but the converse can fail as
we shall see.

The following derives from set-theoretic abstract non-sense.

Fact. Every solution extends to a maximal one.

As a consequence we now focus on maximal solutions; bear in mind that
they need not be global.

II.1.2. Phenomena
In the linear world all is fine:

• a Cauchy problem has a unique solution;

• all (maximal) solutions are global.

Neither is true in the non-linear world.

‚ A Cauchy problem without uniqueness

Example. Consider the Cauchy problem:

x1ptq “ 2
a

|xptq| on I “ R

with initial condition xp0q “ 0. We shall construct infinitely many solutions.
For T P Rě0 let:

xT ptq “

"

0 if t ď T
pt´ T q2 if t ě T

We make the following observations:

• xT is defined on R;

• it is continuous on p´8, T q and pT,`8q; it also is continuous at T , so
it is on p´8,`8q;

• it is actually differentiable on p´8, T q and pT,`8q; at T it admits a
left semi-derivative:

pxT q
1
´ “ lim

hÑ0´
0 “ 0
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and a right semi-derivative:

pxT q´` “ lim
hÑ0`

h2

h
“ 0

so it is actually differentiable on R;

• for all t P R one has x1T ptq “ 2
a

|xptq|;

• xT p0q “ 0.

So any xT for T ě 0 is a solution: the Cauchy problem has infinitely many.

Under some special assumptions on G, the Cauchy-Lipschitz Theorem will
rule out this situation.

‚ A differential equation with no global solution

Example. Consider the equation:

y1ptq “
1

2yptq on I “ R

We shall prove that no solution is defined on R.
Before we start: of course we think about

?
t. But notice that this function

is not defined on I “ R.
So let pJ, yq be a maximal solution to the equation; we prove J Ĺ R. First,

since y is continuous and does not vanish, it keeps a constant sign; we may
assume that y remains positive on J (the other case is similar).

Observe how 2y1ptqyptq “ 1, so py2ptqq1 “ 1; fixing t1 P J one finds:

@t P J, y2ptq “ pt´ t1q ` y
2pt1q

This forces t ´ t1 ` y2pt1q ě 0, hence t ě t1 ´ y2pt1q. In particular, J Ď
pt1 ´ y

2pt1q,`8q Ĺ R.

There will be no remedy to this. “Explosion phenomena” are unavoidable;
they however give rise to a decent theory.

II.1.3. Euler’s method
Euler’s method is an approximation method based on discretisation, i.e. turn-
ing the continuous problem of solving a differential equation into the discrete
problem of solving a difference equation.

On some subinterval ra, bs Ď I proceed as follows:

• choose a “step h” (the smaller it is, the longer your computations will be,
but the better you hope your approximation to be);

• divide the interval ra, bs into N “ b´a
h equal subinterval with endpoints:

a “ t0 ă t1 “ t0 ` h ă ¨ ¨ ¨ ă tN “ t0 `Nh “ b.
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• Now starting from the initial condition X0, iteratively compute the values:

Xi`1 “ Xi ` hGpti, Xiq

Reason: Euler’s hope is that if h is small enough, then ti`1´ ti “ h should
be small enough to write:

Gpti, Xptiqq “ X 1ptiq “ lim
εÑ0

1
ε
pXpti ` εq ´Xptiqq «

1
h
pXpti`1q ´Xptiqq

which results in the above construction.

• Then construct a piecewise affine map Yh such that Yhptiq “ Xi for all
i “ 0 . . . N . One may actually write down the expression:

for t P rti, ti`1s, let Yhptq “
t´ ti

ti`1 ´ ti
pXi`1 ´Xiq `Xi

• Hope: as hÑ 0, functions Yh are desired to converge to a function, which
in turn is desired to be a solution.

Sadly enough, this is wishful thinking, and not true in general: the method
need not converge without strong assumptions, of Lipschitz type.

II.2. Existence: the Cauchy-Peano theorem

Theorem (Peano). Consider a Cauchy problem where G is continuous. Then
there exists a solution pJ,Xq.

Remarks.

• As we know from the example of x1ptq “ 2
a

|xptq| (check that the the-
orem applies to it!), uniqueness cannot be expected.

• As we know from the example of y1ptq “ 1
2yptq (check that the theorem

applies to it!), globality should not be expected.

• Let us push the limits of the result: an implicit differential equation is
one of the form Hpt,Xptq, X 1ptqq “ 0 (our original definition therefore
focuses on explicit equations).
Here is an example with continuous H and yet no solution at all. Let
Hpt, x1, x2q “ x1x2 ` t, i.e. consider equation:

xptqx1ptq ` t “ 0

with initial condition xp0q “ 0. Suppose that pJ, xq is a solution. Ob-
serve how x2ptq ` t2 is a constant on J ; it must be 0, which forces t “ 0
and the open interval J is a singleton, a contradiction.

• Peano’s theorem is a beautiful existence result based on Euler’s method;
in this sense it can arguably be called constructive. However, since there
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is no way to effectively predict which subsequence of approximations will
converge, it is useless in practice.

Proof. The proof will take us to functional analysis. Remember that if ra, bs Ď
R is a compact interval, then any continuous function from ra, bs to the reals is
bounded, and reaches its supremum. Moreover, any continuous function from
ra, bs to a metric space is uniformly continuous.

As a consequence of the first, the vector space:

C0 `ra, bs,Rd
˘

“
 

f : ra, bs Ñ Rd a continuous map
(

can be equipped with the uniform norm

}f}8 “ sup
tPra,bs

}fptq} “ max
ra,bs

}f}

Here is a fact from functional analysis we admit.

Theorem (Ascoli). Let ra, bs Ď R be a compact interval, E “ C0pra, bs,Rdq
with norm } ¨ }8, and pfnq be a sequence of elements of E. Suppose that:

• pfnq is equi-bounded, i.e.:

DA P R, @n P N, }f}8 ď A;

• pfnq is equi-uniformly continuous, i.e.:

@ε ą 0Dη ą 0,@n P N,@ps1, s2q P ra, bs
2

|s1 ´ s2| ă η ñ }fnps1q ´ fnps2q} ă ε.

Then pfnq has a converging subsequence (convergence being of course wrt
} ¨ }8, i.e. uniform convergence).

Remark. One would love to say that pfnq is uniformly bounded, which cer-
tainly has a clear meaning; but for consistency one should then say that pfnq
is uniformly uniformly continuous, which sounds strange.

The first step involves restricting ourselves to a subset of an important
form — so important that there will be a general definition.

Step 1. There exists a security cylinder.

Definition. A security cylinder for a Cauchy problem is a compact set K “

rt0 ´ α, t0 ` αs ˆBpX0, rq Ď I ˆ U such one has αM ă r, where:

M “ sup
ps,Y qPK

}Gps, Y q}
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The idea behind a security cylinder is that if pJ,Xq is a solution with initial
condition, then Xptq remains inside BpX0, rq while t P J X rt0 ´ α, t0 ` αs.

Intuitively, while |t ´ t0| ă α, one has }X 1ptq} “ }Gpt,Xptqq} ď M , so
that }Xptq ´Xpt0q} ďM |t´ t0| ďMα ă r. (An exercise is to turn this into a
rigorous proof.)

Proof of Step 1. The open set IˆU contains pt0, X0q, so it contains a small
compact neighborhood of the form K “ rt0 ´ α, t0 ` αs ˆBpX0, rq. Since G
is continuous on M (actually everywhere), it is bounded in norm by say M .
We can always suppose that α ă r

M . ♦

Step 2. For all ε ą 0, there is a nice ε-approximate solution on rt0´α, t0`αs.

Here again the step requires a formal definition.

Definition. An ε-approximate solution is a continuous map Yε : rt0´α, t0`
αs Ñ Rd which is right-differentiable and satisfies:

@t P rt0 ´ α, t0 ` αq,
›

›pYεq
1
`ptq ´Gpt, Yεptqq

›

› ă ε

Typically Euler’s method gives ε-approximate solutions. Notice that semi-
differentiability is unavoidable when one works with piecewise affine functions.

Proof of Step 2. Fix ε ą 0. Since G is continuous on the compact K, it is
uniformly continuous there; so there exists η such that:

@ps1, X1q, ps2, X2q P K,

|s1 ´ s2| ^ }X1 ´X2} ă η ñ }Gps1, X1q ´Gps2, X2q} ă ε;

notice that η depends on ε.
Let us apply Euler’s method. We divide the interval rt0, t0`αs regularly

with step h “ minpη, ηM q; notice that h depends on ε. This results in N “ α
h

subintervals with endpoints:

t0 ă t1 ă ¨ ¨ ¨ ă tN “ t0 ` α;

here again, N and the various ti’s depend on ε (if one were after perfect
clarity one would write tε,i).

As in Euler’s method, we define inductively:

Xi`1 “ Xi ` hGpti, Xiq

since X0 is given by the initial condition (here again, one could write Xε,i

for full clarity).
Observe that by induction:

@i “ 0 . . . N, }Xi ´X0} ď ihM ď NhM “ αM ă r

The last two result from Nh “ α as in any subdivision, and the requirement

30



that αM ă r is in the definition of a security cylinder. The first inequality is
induction properly speaking, since if the claim holds at i, then pti, Xiq P K
so }Gpti, Xiq} ďM and:

}Xi`1 ´X0} ď }Xi`1 ´Xi} ` }Xi ´X0} ď hM ` ihM “ pi` 1qhM

This means that each pti, Xiq is in the security cylinder.
As in Euler’s method, we define Yε as a piecewise affine function with

Yεptiq “ Xi, namely:

for t P rti, ti`1q, Yεptq “
t´ ti

ti`1 ´ ti
pXi`1 ´Xiq `Xi;

in particular, while t P rt0, t0`αs, pt, Yεptqq remains in the security cylinder.
As any continuous piecewise affine function, Yε is left- and right-

differentiable everywhere; here, for t P rti, ti`1q, one has:

pYεq
1
`ptq “

1
ti`1 ´ ti

pXi`1 ´Xiq “
1
h
hGpti, Xiq “ Gpti, Xiq

so that, still for t P rti, ti`1q:
›

›pYεq
1
`ptq ´Gpt, Yεptqq

›

› “ }Gpti, Xiq ´Gpt, Yεptqq}

Now on the one hand, |t ´ ti| ă h ď η, and on the other hand }Xi ´

Yεptq} ď }Xi ´Xi`1} ď hM ď η, so by definition of η one has:
›

›pYεq
1
`ptq ´Gpt, Yεptqq

›

› ă ε

This defines an ε-approximate solution on rt0, t0 ` αs. Work on rt0 ´ α, t0q
using a similar procedure. ♦

As we know there is in general no guarantee that Euler’s method will result
in anything sensible — nor even in anything at all. The key idea to complete
the proof of Peano’s theorem is to use Ascoli’s result from functional analysis
to force convergence of a subsequence.

Step 3. There exists a solution.

Proof. The idea will be to let ε “ 1
n and let n go to8; the problem of course

is to find a converging subsequence. Applying Ascoli’s theorem requires equi-
boundedness and equi-uniform continuity, so we must return to the function
Yε we constructed and see that some of its properties do not depend on ε.

Let t P rt0, t0 ` αq, then there is i with t P rti, ti`1q, so:
›

›pYεq
1
`ptq

›

› “ }Gpti, Xiq} ďM,

with a similar property for any t P pt0 ´ α, t0s. This means that Yε is M -
Lipschitz. As this does not depend on ε, the family tYε : ε ą 0u is equi-
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uniformly continuous. Moreover, integrating between t0 and t:

}Yεptq ´ Yεpt0q} ď |t´ t0|M ď αM ă r,

so }Yεptq} ď }X0} ` r and }Yε}8 ď }X0} `M , where the supremum was
taken over rt0 ´ α, t0 ` αs. So the family tYε : ε ą 0u is equi-bounded.

For n P Nzt0u we let Zn “ Y 1
n
; each Zn is a 1

n -approximate solution, and
the sequence pZnq satisfies the assumptions of Ascoli’s theorem. There exists
therefore a converging subsequence pZϕpnqq with limit say Z.

We claim that Z is a solution; this involves one final idea. Notice that
in general, pJ,Xq is a solution to a Cauchy problem iff on J one has:

Xptq “ X0 `

ż t

t0

Gps,Xpsqqds

We shall prove that Z satisfies this functional relation.
Consider the error term:

Rnptq “ Znptq ´X0 ´

ż t

t0

Gps, Znpsqqds

Observe how Rnpt0q “ Znpt0q ´X0 “ 0. Moreover Rn is right-differentiable
everywhere; letting ε “ 1

n so that Zn “ Yε and returning to earlier computa-
tions:

›

›pRnq
1
`ptq

›

› “
›

›pZnq
1
`ptq ´Gpt, Znptqq

›

›

“
›

›pYεq
1
`ptq ´Gpt, Yεptqq

›

›

ď ε “
1
n

Integrating, this gives }Rnptq} “ }Rnptq ´ Rnpt0q} ď
1
nα, so }Rn}8 ď

1
nα,

and Rn Ñ 0, even uniformly so.
Now since Zϕpnq Ñ Z uniformly and since G is uniformly continuous,

Gpt, Zϕpnqptqq Ñ Gpt, Zptqq

uniformly; hence integrating on the compact rt0, ts:
ż t

t0

Gps, ZϕpnqpsqqdsÑ

ż t

t0

Gps, Zpsqqds

Here convergence is only simple (i.e. pointwise). Another way to obtain it is
by measure theory and Lebesgue’s dominated convergence theorem; the latter
option does not use uniform continuity of G, but of course the possibility to
find a dominating function; it is an exercise to check the assumptions.

In any case, one has:

Rϕpnqptq Ñ Zptq ´X0 ´

ż t

t0

Gps, Zpsqqds

where convergence is simple/pointwise. But we already know the limit is 0:
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so for all t P rt0 ´ α, t0 ` αs, one has:

Zptq ´X0 ´

ż t

t0

Gps, Zpsqqds “ 0,

proving that Z is a solution to the Cauchy problem. ♦

This completes the proof of Peano’s Theorem.

Remark. The practical value of Peano’s theorem is zero. As one sees from
the proof, if one runs Euler’s method with steps going to 0, getting always
better approximate solutions Zn, all we know is that there exists a subsequence
which converges uniformly to a solution.

But there are continuum-many such subsequences: it is out of question to
try them all.

II.3. Existence and uniqueness

II.3.1. The result (local version)
As oppposed to Peano’s result, the Cauchy-Lipschitz theorem, also known as
the Picard-Lindelöf theorem, is fundamental both in theory and in practice; it
is so important that we shall prove it twice.

Theorem (Cauchy-Lipschitz/Picard-Lindelöf: local version). Consider a
Cauchy problem:

"

X 1ptq “ Gpt,Xptqq for t P I
Xpt0q “ X0

Suppose as always that G is continuous.
Moreover suppose that there is a security cylinder K “ J ˆ BpX0, rq Ď

I ˆ U of pt0, X0q on which G is Lipschitz with respect to X, i.e.:

Dk ą 0 @t P J @pX1, X2q P BpX0, rq, }Gpt,X1q ´Gpt,X2q} ď k }X1 ´X2}

Then the problem has a unique (local) solution on this neighborhood.

Remarks.

• One sometimes says that G is locally Lipschitz in the second variable.

• Here is a trivial criterion: if G is C1 (has continuous partial derivatives),
then it is locally Lipschitz.
Hence to apply the theorem it suffices to check that Gpt, V q is C0 as a
function of pt, V q and C1 as a function of V .

• Return to example x1 “ 2
a

|xptq| on R. The function
a

|.|, though
continuous, is not Lipschitz on any neighborhood of 0 (the derivative
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goes to `8). So lack of uniqueness in this case is not against the
Cauchy-Lipschitz theorem.

• Still, the Cauchy-Lipschitz theorem does not guarantee the existence of
global solutions. Return to example y1 “ 1

2yptq on R. The function 1
2¨ is

locally Lipschitz in its variable, so the theorem applies. As we know, no
solution is global though.
As a corollary we shall give a special version where solutions are global.

II.3.2. Grönwall’s Lemma
To prove the Cauchy-Lipschitz theorem we shall return to Euler’s method. In
the proof of Peano’s theorem it was unclear whether the whole approximating
sequence would converge to a solution, nor if the convergence speed would be
satisfactory as we had no explicit control on the error term. Under a Lipschitz
assumption this is possible. We shall use a fundamental result.

Lemma (Grönwall). Let f, g : I Ñ Rě0 be continuous and c P R be such
that:

@t ě t0, fptq ď c`

ż t

t0

fpsqgpsqds

Then:
@t ě t0, fptq ď c exp

ˆ
ż t

t0

gpsqds

˙

Proof. The proof is pure magic. Let:

hptq “
c`

şt

t0
fpsqgpsqds

exp
´

şt

t0
gpsqds

¯

This function is continuous at t0, differentiable on I, and for t ě t0 the deriv-
ative is:

h1ptq “
fptqgptq ´

´

c`
şt

t0
fpsqgpsqds

¯

¨ gptq

exp
´

şt

t0
gpsqds

¯ ď 0

So, always for t ě t0, one has hptq ď hpt0q. Therefore when t ě t0:

fptq ď c`

ż t

t0

fpsqgpsqds “ hptq ¨ exp
ˆ
ż t

t0

gpsqds

˙

ď hpt0q ¨ exp
ˆ
ż t

t0

gpsqds

˙

;

as hpt0q “ c we are done.

II.3.3. Proof of the Cauchy-Lipschitz theorem
Let us apply this striking result to Euler’s method, in the Lipschitz case.
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First proof of the Cauchy-Lipschitz theorem.

Step 1. Light refreshments.

Proof. Let us refresh our memories:

• we are given a Cauchy problem,

• and a security cylinder K “ J ˆBpX0, rq, i.e. J “ pt0 ´ α, t0 ` αq and
M “ supK }G} are subject to αM ă r.

• The assumption is that G is locally Lipschitz in X on the cylinder:
there is k such that for all t P J , the map Gpt, ¨q is k-Lipschitz on
BpX0, rq.

We shall run Euler’s method and prove that it converges. Let us again
refresh our memories:

• for ε ą 0, we let n “ 1
ε , and then divide rt0, t0 ` αs into n subintervals

with step h “ α
n and endpoints t0 ă t1 ă ¨ ¨ ¨ ă tn “ t0 ` α; be careful

that in full notation this should be nε, hε and tε,0, . . . tε,nε
but this

would become unreadable;

• we then compute Xi`1 “ Xi ` hGpti, Xiq inductively; here again it
should be the family Xε,0, . . . Xε,nε ;

• finally we define Yε to be the continuous, piecewise affine function tak-
ing Yεptiq “ Xi;

• as we know, Yε is an ε-approximate solution: it is right-differentiable
and

›

›pYεq
1
`ptq ´Gpt, Yεptqq

›

› ă ε ♦

Peano’s theorem used Ascoli’s result from functional analysis to force one
subsequence of pZnq “ pY 1

n
q to converge to a solution. Here the situation is

undoubtedly better thanks to the Lipschitz assumption (not used so far).

Step 2. If Y1, Y2 are ε1-, resp. ε2-approximate solutions (with exact initial
condition), then on their common definition interval:

}Y1ptq ´ Y2ptq} ď αpε1 ` ε2q exppkpt´ t0qq.

Proof. Let Zptq “ Y1ptq ´ Y2ptq, a right-differentiable map. Write:

Z 1`ptq “ pY1q
1

` ptq ´ pY2q
1

` ptq

“
“

pY1q
1

` ptq ´Gpt, Y1ptqq
‰

´
“

pY2q
1

` ptq ´Gpt, Y2ptqq
‰

` rGpt, Y1ptqq ´Gpt, Y2ptqqs ,
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so that using the k-Lipschitz property:
›

›Z 1`ptq
›

› ď ε1 ` ε2 ` k}Y1ptq ´ Y2ptq} “ pε1 ` ε2q ` k}Zptq}

Integrating and bearing in mind Zpt0q “ Y1pt0q´Y2pt0q “ X0´X0 “ 0, this
yields:

}Zptq} ď

ż t

t0

pε1 ` ε2q ` k}Zpsq}ds ď αpε1 ` ε2q ` k

ż t

t0

}Zpsq}ds

Introduce maps fptq “ }Zptq} and gptq “ k. By Grönwall’s lemma,

}Zptq} ď αpε1 ` ε2q exppkpt´ t0qq,

the desired estimate. ♦

(As a side remark: one can also write a variant where the initial condition
is only εi-satisfied, i.e. }Yipt0q ´X0} ă εi.)

The above estimate proves both existence and uniqueness.

• Uniqueness first.
If Y1, Y2 are two exact solutions, then all the above remains valid with
ε1 “ ε2 “ 0, so Z is the null function, meaning Y1 “ Y2.

• Now to existence.
Take any sequence εn Ñ 0 (for instance εn “ 1

n ); for simplicity let
Yn “ Yεn

and Zn,m “ Yn ´ Ym. By our last estimate, }Zn,mptq} Ñ 0
as n,m Ñ 8; as a matter of fact, if t remains in a compact interval,
convergence is uniform. By completeness of the relevant function space,
it means that pYnq converges (and uniformly on compact intervals) to a
function Y .
Rewriting the differential equation with initial condition as the integral
equation Xptq “ X0 `

şt

t0
Gps,Xpsqqds, we see that Y is a solution.

Remarks.

• As opposed to Peano’s theorem, the whole Euler method will converge.

• The proof works only because thanks to the Lipschitz property error
terms can be bounded.

II.4. More on Cauchy-Lipschitz

II.4.1. Global version
As a matter of fact the proof gives a bit more.

Theorem (Cauchy-Lipschitz: global version). Consider a Cauchy problem
with continuous G.
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Suppose that there is a function k : I Ñ Rě0 such that for all t P I, the
map Gpt, ¨q is globally kptq-Lipschitz, i.e.:

@t P I,@pX1, X2q P U
2, }Gpt,X1q ´Gpt,X2q} ď kptq ¨ }X1 ´X2}.

Then the Cauchy problem has a unique maximal solution which is global.

Proof. In the notation of the proof above, let gpsq “ kpsq. We then find:

}Zptq} ď

ż t

t0

pε1 ` ε2q ` }Zpsq}gpsqds ď |t´ t0|pε1 ` ε2q `

ż t

t0

}Zpsq}gpsqds,

so by Grönwall’s lemma

}Zptq} ď |t´ t0|pε1 ` ε2q ¨ exp
ˆ
ż t

t0

gpsqds

˙

.

In the case of Zptq “ Ynptq ´Zmptq, while t remains at bounded distance from
t0, we find convergence again to a solution.

Examples. Be extremely careful with the theorem: to have a global solution,
one needs for all t function Gpt, ¨q to be globally Lipschitz.

• Consider equation x1ptq “ xptq with initial condition xp0q “ 1. As
we know from explicit resolution, there is a unique maximal solution,
which is global. Indeed, here one has Gpt, xq “ x, which at every t is
1-Lipschitz.

• Now consider equation x1ptq “ x2ptq with xp0q “ 1. Here Gpt, xq “ x2;
for any t, around every x1, it is locally p2|x1| ` 1q´Lipschitz (we add a
little something to make sure it is true), but this depends on x1; as a
matter of fact Gpt, ¨q is not globally Lipschitz.
This is the reason why there is no global solution. One can be easily
convinced: on the one hand xptq “ 1

p1´xq is a maximal solution, on the
other hand it is not global. By local uniqueness (a consequence of the
local Cauchy-Lipschitz theorem), or the “disjunction property” below,
there is no global solution.

• The global version holds in particular for linear differential equations,
since in that case:

}Gpt,X1q ´Gpt,X2q} “ }Aptq ¨ pX1 ´X2q} ď ~Aptq~ ¨ }X1 ´X2}

so taking kptq “ ~Aptq~ is suitable.

II.4.2. The disjunction property
Here is an important corollary to the Cauchy-Lipschitz theorem, saying that
two distinct maximal solutions can never intersect.
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Corollary. Suppose X 1ptq “ Gpt,Xptqq is a differential equation on I such
that for every t, Gpt, ¨q is kptq-Lipschitz for some number kptq.

Let pJ1, X1q and pJ2, X2q be two maximal solutions. If there is t0 P J1XJ2
such that X1pt0q “ X2pt0q, then J1 “ J2 and X1 “ X2.

Proof.

Lemma (common extension criterion). Let pJ1, X1q and pJ2, X2q be two
solutions of any differential equation. Suppose that J̌ “ J1 X J2 is non-
empty, and X1|J̌ “ X2|J̌ , i.e. for t P J1 X J2 one has X1ptq “ X2ptq.

Then pJ1, X1q and pJ2, X2q have a common extension.

Proof. Let Ĵ “ J1 Y J2, which is:

• non-empty, as neither J1 nor J2 can be;

• open, as both J1 and J2 are;

• connected, since it is the union of two connected sets with non-trivial
intersection.

Hence Ĵ is a non-empty open subinterval of R. On Ĵ we define a function X̂
by:

X̂ptq “

"

X1ptq if t P J1
X2ptq if t P J2

;

this is well-defined since by assumption, X1 and X2 agree on J1 X J2.
It is then obvious that X̂ is differentiable on Ĵ , and a solution of the

equation there. By construction, it extends both pJ1, X1q and pJ2, X2q. ♦

If in the above pJ1, X1q and pJ2, X2q are supposed to be maximal, then by
definition of a maximal solution one must have J1 “ Ĵ and X1 “ X̂; but also
J2 “ Ĵ and X2 “ X̂, which will prove the conclusion.

Hence to prove the corollary, it suffices to show:

Same assumptions as in the corollary, but X1 and X2 are not sup-
posed to be maximal. Then X1 and X2 agree on J1 X J2.

Proof of this claim. We let J̌ “ J1 X J2, which is:

• non-empty as t0 P J1 X J2;

• open as both J1 and J2 are;

• connected since it is the intersection of two convex sets, hence a convex
set, and convex subsets are always connected.
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So J̌ is a non-empty, open subinterval. Also introduce:

A “
!

t P J̌ : X1ptq “ X2ptq
)

,

which is non-empty as t0 P A by assumption. We must prove that A “ J̌ .
We argue using connectedness of J̌ .

• A is closed in J̌ : because A “ Y ´1pt0uq, where Y : J̌ Ñ Rd takes t
to X1ptq ´ X2ptq. Since Y is continuous and t0u is closed in Rd, A is
closed in J̌ .

• A is open in J̌ : let ta P A and Xa “ X1ptaq “ X2ptaq (since ta P A). We
may apply the Cauchy-Lipschitz theorem with initial condition pta, Xaq

and find that on some Ja “ pta ´ α, ta ` αq, there is a unique solution
with Xptaq “ Xa.
But both the restrictions X1|Ja

and X2|Ja
meet the requirements: so

they are equal. As a conclusion, X1 and X2 agree on Ja, meaning
Ja Ď A: hence A is an open subset.

Remark. We even proved that A is open in R; it is not necessarily true
that A is closed in R (but it is in J̌ , which suffices to conclude as follows).

Since J̌ is connected, its only clopen (=closed and open) subsets are H and
J̌ itself. But A ‰ H, so A “ J̌ , as desired. ♦

This concludes the proof of the Corollary.

II.4.3. Alternate proof of Cauchy-Lipschitz

Second proof of the Cauchy-Lipschitz theorem. Existence could be de-
rived from Peano’s theorem, so only uniqueness would remain; we shall however
give a completely different argument.

Let us return to an earlier idea: pJ,Xq is a solution iff on J one has:

Xptq “ X0 `

ż t

t0

Gps,Xpsqqds

This means that X is a fixed-point of some operator from functional analysis:

T : C0 `J,BpX0, rq
˘

Ñ C0 `J,Rd
˘

Y ÞÑ X0 `
şt

t0
Gps, Y psqqds

Step 1. The closed set C “ C0 `J,BpX0, rq
˘

is stable under T .

Proof. As in the definition of a security cylinder, we let J “ rt0 ´α, t0 `αs
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and:
M “ sup

K
}G}

with the requirement αM ă r.
We prove stability. If Y P C, i.e. if Y is a continuous function on J taking

values in BpX0, rq, then for all t P J :

}pT pY qqptq ´X0} “

›

›

›

›

ż t

t0

Gps, Y psqqds

›

›

›

›

ď

ż t

t0

}Gps, Y psqq} ds

But since we remain in the security cylinder, }Gps, Y psqq} ďM at all times,
and therefore:

}pT pY qqptq ´X0} ď |t´ t0|M ď αM ă r

so T pY q, a continuous map on J , takes values in BpX0, rq: hence T pY q P C.
This step did not use the local Lipschitz condition. ♦

Step 2. T : C Ñ C is a continuous map and has a power which is a contraction
mapping.

Definition. Let pC, dq be a metric space. A map S : C Ñ C is called a
contraction mapping if there is 0 ď ` ă 1 such that:

@pc1, c2q P C
2, dpSpc1q, Spc2qq ď `dpc1, c2q

Proof of Step 2. Let Y1, Y2 P C. Again this means that we have two con-
tinuous maps on J taking values “close to X0”. Then for any t P J one
has:

}T pY1qptq ´ T pY2qptq} “

›

›

›

›

ż t

t0

Gps, Y1psqq ´Gps, Y2psqqds

›

›

›

›

ď

ż t

t0

}Gps, Y1psqq ´Gps, Y2psqq} ds

Now we use the local Lipschitz character: since we remain in the se-
curity cylinder, for all s P rt0, ts one has }Gps, Y1psqq ´Gps, Y2psqq} ď
k }Y1psq ´ Y2psq} ď k}Y1 ´ Y2}8, which implies:

}T pY1qptq ´ T pY2qptq} ď |t´ t0|k}Y1 ´ Y2}8

We can already take the supremum for t P J and find }T pY1q´T pY2q}8 ď
αk}Y1 ´ Y2}8: hence T is αk-Lipschitz. This guarantees continuity, but one
could well have αk ě 1, which is not satisfactory for a contraction mapping.

A possibility could be to reduce α, but then we would not prove our
exact statement (as we would be working on a sub-cylinder of the one given
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to us). So let us refine the computation:

}T pY1qptq ´ T pY2qptq} ď |t´ t0|k}Y1 ´ Y2}8,

so

›

›T 2pY1qptq ´ T
2pY2qptq

›

› ď

ż t

t0

}Gps, T pY1qpsqq ´Gps, T pY2qpsqq} ds

ď

ż t

t0

k2|s´ t0|}Y1 ´ Y2}8ds

“
1
2k

2|t´ t0|
2}Y1 ´ Y2}8.

One can then prove by induction:

}TnpY1qptq ´ T
npY2qptq} ď

kn|t´ t0|
n

n! }Y1 ´ Y2}8 ď
pkαqn

n! }Y1 ´ Y2}8

As pkαqn

n! Ñ 0, there is n P N such that ` “ pkαqn

n! ă 1. Then Tn is an
`-contraction mapping. ♦

We finish with a fact from topology.

Fact (a corollary to Picard’s fixed point theorem). Let pC, dq be a complete
metric space, ` ă 1, and S : C Ñ C a continuous map such that there is
n P N for which Sn is an `-contraction mapping.

Then S has a unique fixed point.

Another fact from functional analysis is that C “ C0 `J,BpX0, rq
˘

is a
complete metric space indeed (for the uniform distance; one may not say norm
here, as it is not a vector space). So T has a unique fixed point in C, meaning
that the Cauchy problem has a unique solution defined on J .

Remark. This second proof of the Cauchy-Lipschitz theorem gives another
practical way to construct a solution, because for any Y P C the sequence of
iterates pTnpY qq will converge to the unique solution. This method, known
as Picard iterates, is different from Euler’s algorithm: it belongs more to
functional analysis than to numerical analysis.

Example. Return to our toy example: the Cauchy problem x1ptq “ xptq with
initial condition xp0q “ 1. Here, Gpt, xq “ x is 1-Lipschitz with respect to x
(even globally so); t0 “ 0 and x0 “ 1, so that the functional analysis operator
is:

T pyq “ 1`
ż t

0
ypsqds

Let us compute a few iterates: start with the constant function y0 “ x0 “
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1; then:

y1ptq “ T py0qptq “ 1`
ż t

0
1ds “ 1` t;

y2ptq “ T py1qptq “ 1`
ż t

0
p1` sqds “ 1` t` t2

2 ;

...

ynptq “
n
ÿ

k“0

tk

k!

The sequence is the Taylor series of the exponential map.

Remark. The same argument gives another proof of the global Cauchy-
Lipschitz theorem (just do r “ `8 in the cylinder), which we state again
for the reader’s convenience.

Theorem (Cauchy-Lipschitz: global version). Consider a Cauchy problem
with continuous G.

Suppose that there is a function k : I Ñ Rě0 such that for all t P I, the
map Gpt, ¨q is globally kptq-Lipschitz, i.e.:

@t P I,@pX1, X2q P U
2, }Gpt,X1q ´Gpt,X2q} ď kptq ¨ }X1 ´X2}.

Then the Cauchy problem has a unique maximal solution which is global.

II.5. The Cauchy-Kovalevskaya theorem
Solutions exist but do not always have an explicit formula. However, one can
expand solutions into series.

Definition. A function x : I Ñ Rd is real analytic around t0 if there are
η ą 0 and coefficients panq P RN such that, for all t P pt0 ´ η, t0 ` ηq:

xptq “
8
ÿ

n“0
anpt´ t0q

n

The maximal η such that this holds is called the convergence radius.

Remarks.

• Sometimes one says that the function is real analytic at t0, but this is
bad terminology: the condition is local (on a small neighborhood), not
punctual (on a singleton).
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• A real analytic function is a map which locally equals its Taylor expan-
sion.

• Be extremely careful that although a real analytic function is always
C8, the converse fails. The classical example is the map:

x ÞÑ e´1{x2
,

with continuous extension xp0q “ 0. One then sees that x is infinitely
differentiable everywhere including at 0, where xpnqp0q “ 0. Hence the
Taylor series of f at 0 is the null series, which does not give f .
(In particular, fp0q is equal to its Taylor series at 0, but this is not true
for any other value: this is why analytic “at” t0 is bad terminology.)

• Interestingly enough, for complex functions the difference between com-
plex analytic and C8 vanishes: another name is holomorphic functions;
see your class in complex analysis.

There is a multivariable notion of real analytic, but we shall keep things
simple.

Theorem (Cauchy-Kovalevskaya). Consider a scalar, “autonomous” Cauchy
problem x1ptq “ fpxptqq for t P I with initial condition xpt0q “ x0.

Suppose that f is real analytic around x0. Then there exists a unique
solution; it is real analytic around t0.

There are very nice proofs relying on complex analysis; we shall follow
Cauchy’s original argument.

Proof. Since f is real analytic around x0, it is C8 locally, so it is locally
Lipschitz. By the Cauchy-Lipschitz theorem, there exists a unique solution,
which we denote by xptq. The theorem now reduces to proving that x itself is
analytic around t0.

By standard reductions we may assume t0 “ 0 and x0 “ 0.
Since f is real analytic around x0 “ 0 it has (locally) an expression:

fpxq “
ÿ

n

anx
n

We argue algebraically and entirely forget about convergence issues.

Definition. A formal solution is a formal series yptq “
ř

n bnt
n such that,

formally:
ÿ

n

an

˜

ÿ

k

bkt
k

¸n

“

˜

ÿ

n

bnt
n

¸1

where composition and derivation are in the sense of formal series.
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Remarks.

• This definition may seem complicated but it is actually straightforward:
just follow the standard procedures without caring about convergence
issues.

• Here are the relationships between “formal” and “genuine” solutions:

– if a formal solution has non-zero convergence radius, then it
defines a genuine solution;

– if a genuine solution is analytic, then its series is a formal solution.

Step 1. There exists a family of polynomials pPnq, with Pn in n variables and
coefficients in Qě0, such that:

if fpxq “
ř

n anx
n, then there exists a unique formal solution to the

Cauchy problem x1ptq “ fpt, xptqq with initial condition xp0q “ 0:
the formal series xptq “

ř

n bnt
n where bn “ Pnpa1, . . . , anq,

Proof. We are still at the level of algebraic manipulations of series, without
discussing convergence. Return to the formal equation, supposing that
ř

n bnt
n is a formal solution, and write:

ÿ

n

an

˜

ÿ

k

bkt
k

¸n

“

˜

ÿ

n

bnt
n

¸1

“
ÿ

n

nbnt
n´1

In the right-hand side, the coefficient of tn is pn ` 1qbn`1. In the left-hand
side, it is a complicated expression involving a0, . . . , an and b0, . . . , bn (this
is true only since a0 “ 0) — but all coefficients are positive integers.

So by induction, bn is a rational polynomial (with positive coefficients)
in a1, . . . , an. Let Pn be this polynomial, which does not depend on f .

Since we computed formally, the converse also holds: letting bn “

Pnpa0, . . . , anq and xptq “
ř

bnt
n defines a formal solution, and we have

no other choice. ♦

So we know that the Cauchy problem has:

• a unique local solution (this is Cauchy-Lipschitz);

• a unique formal solution (by the above).

Proving that the genuine solution is real analytic around t0 amounts to proving
that the formal solution has a non-zero convergence radius.

Definition. Let
ř

bnt
n be a formal series, with bn P R. A majorant series

is a formal series
ř

βnt
n such that: @n P N, |bn| ď βn.

This definition is surprisingly simple; Cauchy’s idea is to solve analytically
the differential equation associated to a majorant series.
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Step 2. There are M, r ą 0 such that αn “ M
rn defines a majorant series for

ř

anx
n.

Proof. By assumption, f is analytic around 0: so there is x1 ‰ 0 such that
ř

n anx
n
1 converges. Then anxn1 Ñ 0; in particular, it is bounded by say M .

Let r “ |x1| and αn “
M
rn ; observe how |an| ď αn,

ř

n αnx
n is a majorant

series of
ř

anx
n. ♦

Step 3. The map ϕpxq “
ř

αnx
n is real analytic. The map χptq “ r ´?

r2 ´ 2Mrt is the unique solution of χ1ptq “ ϕpχptqq with χp0q “ 0.

Proof. Consider the formal series:

ϕpxq “
ÿ

αnx
n “

ÿM

rn
xn “M ¨

1
1´ x

r

“
Mr

r ´ x

As we know from analysis, this formal series actually has convergence radius
r; ϕ is a real analytic function on p´r, rq.

Now consider the analytic differential equation:

χ1ptq “ ϕpχptqq

with initial condition χp0q “ 0. Since ϕ is real analytic around 0, it is C8
there, hence also locally Lipschitz. So the Cauchy-Lipschitz theorem applies:
there is a unique solution.

But one can check that χptq “ r ´
?
r2 ´ 2Mrt is locally well-defined,

regular, and satisfies both the equation and initial condition. By uniqueness,
χ is the unique solution. ♦

Now χ is real analytic as we know from analysis; we may write:

χptq “
ÿ

βnt
n

Step 4.
ř

βnt
n is a majorant series for

ř

bnt
n.

Proof.

• On the one hand,
ř

bnt
n is the formal solution to x1ptq “ fpxptqq with

xp0q “ 0: hence bn “ Pnpa0, . . . , anq.

• On the other hand, χptq is the genuine solution to χ1ptq “ ϕpχptqq with
χp0q “ 0. But χ happens to be analytic, so χ also is the formal solution
to χ1ptq “ ϕpχptqq with χp0q “ 0. In particular βn “ Pnpα0, . . . , αnq.

Now remember that Pn has positive coefficients. Since |an| ď αn, we find
|bn| ď βn, as desired. ♦

We finish the proof. The formal series
ř

bnt
n is the formal solution to

x1ptq “ fpxptqq with xp0q “ 0. But it has a majorant series which converges
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with non-zero radius. So
ř

bnt
n itself has non-zero radius: as a consequence,

the real analytic function defined by
ř

bnt
n is a genuine solution. By unique-

ness, it is the function xptq.

We admit that the theorem still holds for vector equations X 1 “ GpXptqq
with G real analytic.

Examples.

• Consider the pendulum equation θ2 “ sin θ. Since sin is analytic around
0, so is the solution.

• The three-body problem in celestial mechanics is given by analytic equa-
tions: so the solution is analytic. But in practice, the series giving the
solution converges too slowly to be useful.
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