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Exercise 1. Solve the following non-homogeneous linear differential equation:
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with the initial conditions
f(0) =17, f'(O) =15, f”(O) = 40.

Solution. We call (£) the equation. By the linear Cauchy-Lipschitz theorem, there will be
a unique solution satisfying the initial condition; it will even be defined on all the interval
(unspecified here, so we take it to be R).

We first consider the associated homogeneous equation (Ex):

O —ar® _5f +of.

The linear Cauchy-Lipschitz theorem predicts that all solutions are defined on R, and that the
set Sp of solutions of (£f) is a 3-dimensional vector space. A basis can be given computing the
eigenvalues of the associated matrix:

001 0
A=10 0 1
2 -5 4

The characteristic polynomial of A is x 4(\) = —A3+4\2—5X42 (which also is the “characteristic
equation” in the old-style method); it has 1 as an obvious root. Now —\3 +4X2 — 5\ + 2 =
—(XA — 1)(A* — 3X + 2); here again 1 is an obvious root of the second factor, which yields
WA = ~(A— 12(A—2),

It follows that the roots are, with multiplicity, 1, 1,2; consequently, the functions e, te!, €2 form
a basis of the space Sp. Now always by the Cauchy-Lipschitz theorem, the space S of solutions
of (£) is-an affine space directed by Sy, i.e. S = f1 + Sy where f; is any solution of (£).

It is reasonable to look for one admissible f; as Ae®; such a function is a solution iff 33\ =
4-32) —5-3\+ 2\ +4, ie. iff 4\ = 4. So the map ¥ is a solution of (£), and by the above,
any solution of (&) is of the form:

ae’ + bte! + ce? + 3

It remains to find the only triple (a, b, ¢) satisfying the initial condition (existence and uniqueness
have already been explained above). This gives rise to the linear system:

a 4c =T7-1

a +b +2¢c =15-3

a +2b +4c =40-9

In augmented matrix form, using Gauf} elimination:

1 0 1]6 1 0 1|6 1 0 1]6
12 4(31 ) 2027 Vo 2 3|25 ) @72 {0 o0 1]13
Hence ¢ = 13 and @ = b = —7. As a conclusion, the only solution is:

—7(1 +t)e! +13e* + 3



Exercise 2. Solve the following ordinary differential equation:

(&) : F'(t)=A-F(t)+ B(t),

2 3 1
a=(23) wa mo- ()

Hint: first solve the homogeneous equation, then try to find a special solution of (£) of the form
F(t) = exp(tA) - A(t), with A : R — M>(R) a differentiable map.

where

Solution. We first attack the homogeneous equation (€g) :  F'(t) = A« F(t). As we know,
solutions are of the form exp(tA) - Xg, where the initial condition Xy ranges over R2.

We then look for one solution of (£) in the recommended form, namely as F} (t) = exp(tA)-A(t).
For this to be a solution, one needs:

(exp(tA) - A(t)) = Aexp(tA)A(t) + B(t),
which simplifies into exp(tA) - A'(t) = B(t), or equivalently A’(t) = exp(—tA) - B(t), which we
now determine.

To compute the matrix exponential we determine the eigenvalues: since tr(A) = 0 and det(A) =
—1, they are +1. Let us determine the corresponding eigenspaces:

Eqi(A) =ker(A = Iy) = ker (_11 _33> =R (_31> ;

B 1(A) = ker(A+ I) = ker (_31 _31> ~R (_11> .

So let us introduce the coordinate change matrix:

and

which has inverse

1 /-1 -1 11 1
,1__7 i
P = 2(1 3) 2(—1 —3)‘

Now PAP~! and P(tA)P~! are diagonal, with:

P(tAP ! = (t - t) ,

the exponential of which is easy to guess, so that:

t
exp(tA) = P! (e €_t> P



We then get (mind the —t, which is what we want):

1 [—et+3e7" —el+et 1
exp(—tA) : B(t) D) (3(et B e—t) et — et ]’ b(t)
Integrating formally one then gets A(t) and Fi(t) = exp(tA) - A(t) explicitly. One can check,

with patience, that this is a solution.
Finally, the general solution of (€) has the form Fy(t) + exp(tA) - Fy for Fy € R2.

Exercise 3. Determine the exponential of the following matrix:
2 1 -1

A=1]-1 0 1

0 0 2

Solution. We first determine the spectre by computing the characteristic polynomial, which we
obtain by expanding the first column:

0 2-A"Jo 2-2x
=X 2-2?+2-N)=(2-N(1-2A+2)?)
=-(A—-2)(A—1)2

A Lo -1
XA()\):’A_)\IS‘:(Q_/\)" ‘

At this stage it is unclear whether the matrix will'be diagonalisable, but this does not look
favorable. And a computation confirms this:

1 1 =1 11 0 1
Ei(A)=%ker| -1 -1 1 [ =ker <0 0 1) =R|[-1
0 0 1 0

which is 1-dimensional, whereas the algebraic multiplicity of the eigenvalue 1 is equal to 2. Still,

1
we let v1 = —1
0
We have to dig deeper and investigate:
0 0 -1 1 0
ker(A—I3)2=ker |0 0 1 | =Vect||O],|1
0 0 1 0 0
1
So the vector v = | 0 | lies in the second kernel, but not in the first (in symbols, vy € ker(A —
0

I3)? \ ker(A — I5)). Notice that there are many possible choices for vs.
We finally turn to:
0 1 -1 1
Ey(A)=ker|-1 -2 1 |=R|-1
0 0 0 -1

1
and we let vg3 = | —1

-1
All the above suggests to introduce the coordinate change matrix from the standard basis to
basis (v1, vg, v3):

1 1 1
P=]1-10 -1
0 0 -1



which has inverse:

0 1 -1 0 -1 1
Pl=—|-1 -1 0]=]1 1 0
0 0 1 0 0 -1

0 -1 1 2 1 -1 1 1
PlAP=11 1 0 -1 0 1 -1 0

0 0 -1 0 0 2 0 0

0 -1 1 1 2 2

=11 1 o0]]-1 -1 -2

0 0 -1 0 0 -2

110

=10 10

00 2

The latter rewrites as D + N, where:

1 010
D= 1 and N=1]0 0 0
2 0 00
are diagonal, resp. nilpotent (N? = 0), and commute.
From this we obtain:
e 110
exp(PTYAP) = exp(D) - exp(N) = e 010
e? 001
It remains to compute:
1 1 1 e e 0
exp(A) = Pexp(P'AP) P! =| -1 0 —1|[0 e 0
0 0 —1/\0 0 ¢
1 1 1 0 e
=]1-1 0 -1 e e 0
0 0 -1/ \0 0 —e?
2¢ e e—eé?
=|—-e 0 e2—ce
0 0 ¢
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