§\\“”///é Differential Equations

Assignment #2: answers.
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Exercise 1. Solve the equation on R

with the initial condition

Solution. Existence and uniqueness of a solution (with initial condition) are predicted by the
linear Cauchy-Lipschitz theorem; we even know that the solution will be defined on R.

t
For simplicity let A = <(1) 1) and B(t) = <%> In order to solve the equation

(&) : F'(t)=A-F(t) + B(t)
(with or without initial condition), we first handle the simpler equation:
(En) : F'(t)=A-F(t).

The matrix tA is readily exponentiated:

t gt
exp(tA) = (% t;)

And as we know, the space of solutions of (€p) is:
Sg = {exp(tA) - X1 : X; € R?}.
Now given one solution Fj of (£), the solution set of (£) is exactly:
S=F + Su.

A possibility to find a special solution is of course to draw our inspiration from the very shape
of B; let us look for it in the form:

For this to be a solution, one needs:

2 (t)e! + x(t)et = z(t)e! + 0+ €

Fi(t) = <t8t>

One may check that Fj is a solution of (&).

which suggests to let:



As a conclusion,
S = {exp(tA) - X, + F, : X; € R?}

Instead of endlessly rewriting it, let us see when a solution F'(t) = exp(tA) - X1 + F} satisfies
the initial condition. One needs:

So the only candidate is:

[t + 2t
= Iy

And as we know by existence of a solution, this only candidate must be the only solution.

Note. If you do not believe in the theory, check that the above is a solution (with initial
condition) indeed.

Exercise 2. We consider the following ordinary differential equation

u'(t) = 5q,2/5
€ {u(O) = 8

1. Prove that the solution set of (£) is infinite. Provide a family of solutions.
2. Does this contradict the Cauchy-Lipschitz theorem? Justify!
Solution.

1. 'We adapt a construction seen in class. For T' > 0 let:

A - 0 if +<T
) =GB i ST

We first observe that ur is well-defined, since both definitions agree at T'. It is clearly
continuous for the same reason. Now ur is differentiable (as a matter of fact, C*) both
on (—o0,T") and (7, +00); on the former, the derivative is 0; on the latter, it is:

5
“(t—T)*3
St =T)

To conclude that up is differentiable at T one can either use the above and a theorem from
real analysis (“limit of the derivative”), or return to the simple fact that for h > 0:

uT(T + h) — UT(T)
h
proving that ur is right-semi-differentiable at T'. Since the left-semi-derivative has the same

value, we conclude that uy is differentiable at T', and the formula w/.(t) = 2(¢ —T)%/3 holds
on [T, 00).

= h2/3 —h—0 07

In particular, one sees that up is a solution of the equation; since T > 0, it satisfies the
initial condition. As a conclusion, {ur : T" > 0} is an infinite family of solutions.



2. This does not contradict the Cauchy-Lipschitz theorem as it simply does not apply here.
Indeed, the function x — g$2/ % is not locally Lipschitz around 0. One argument can be
to differentiate, and see that the derivative goes to oo as t — 0. But why make things
complicated? Let us write a short contradiction proof.

Suppose that f(x) = 2%/° is locally Lipschitz around 0, say k-Lipschitz for some k > 0.
This means that there is € > 0 such that for all z,y € [0,¢), |f(z) — f(y)| < k|z — y|.
Letting 3 go to 0, by continuity, this implies 2%/°|f(z)| < kz for = € [0,¢). However, if
& < min(e, k~%/3, then:

22/5

T -3k _ (.3/5)-1 L—5/3y3/5y-1 _ 1.
a5 = () > ()

which is a contradiction.

Hence the Cauchy-Lipschitz is safe: its assumptions do not hold here.
Notes.
e Some of you decided to carelessly manipulate the equation and integrate — which was

not asked.

If you do this, after meaningless symbolic computations, you might have the impression
that there exists a unique solution; some actually said so.

This is silly for two reasons: first, the symbolic manipulations involve division by 0;
you are too old for sucha foolish thing. Second, you are supposed to show that there
are infinitely many solutions; claiming something about “the unique”, or even “the”
solution is mathematically wrong.

e Do not write that it “contradicts the Cauchy-Lipschitz theorem”: the theorem is proved,
it is no longer possible to contradict it.

e To my great surprise, not all of you could state the Cauchy-Lipschitz theorem correctly.

Exercise 3.
1. Let n € Z\ {0,1}; also let a,b: R — R be continuous maps, and consider the equation:
2 (t) + a(t)z(t) + b(t)(z(t))" = 0

where (z(t))" is the n'" power of z(t) (not the derivative).

Suppose that x is a solution that remains positive. Let y(t) = (x(t))!~" and show that y
satisfies a linear equation.

2. Solve
ta! (t) + z(t) — t(z(t))® =0

on each interval where x keeps a constant sign.
Solution.

1. We let y(t) = z(t)' ", as suggested (assuming that = never vanishes). Then y is differen-
tiable and one has:

y'(t) =1 —n)a'()a(t)™"

so y'(t) = (n — 1)(a(t)y(t) + b(t)), a linear equation (really, they should say affine).



2. Suppose that x(t) does not vanish on some interval I.

Suppose that 0 € I. Then at t = 0 we find: x(0) = 0, so = vanishes at 0 € I: a
contradiction. Hence 0 ¢ I.

Then on I the equation rewrites as:
! 1 3
z'(t) + ;a}(t) —z°(t) =0

As we know, letting y(t) = 7 2(¢) helps: it satisfies the equation:

2

y'(t) = V2

which has (on I) global solutions by the linear Cauchy-Lipschitz theorem. One easily finds
that y(t) = M2 + 2t for A a real number.

On I this should remain positive (notice that we thus find again that 0 ¢ I); this yields
constraints on I depending on A but these were not explicitly asked. Since y(t) = z72(t),

we find:
x(t) — L
VA2 + 2t
where § = +1.
Notes.

1. No, a®> = b > 0 does not imply a = /b.
2. You are too old to divide by O.

3. The Cauchy-Lipschitz theorem can be invoked for y, not for x; the mathematical diffi-
culty is that one needs @ to behave well (here, not to vanish) in order to define y.

Exercise 4 (some theory). Let A : I — My(R) have the property:
V(ti,te) € I* A(ty) - A(ta) = Alta) - A(ty)

Prove that the unique solution of the differential equation on I with initial condition:
X'(t) = A(t) - X (1), with X (t9) = Xo

has the form: .
X(t) =exp < A(s)ds) - Xo

to

Hint: prove that ftto A(s)ds and ftt+h A(s)ds commute.

Solution. The linear Cauchy-Lipschitz theorem predicts existence and uniqueness; it is then
safe to let

X(t) =exp < t A(s)d5> - Xo,

to

a well-defined and differentiable map, and check that X (t) satisfies the equation and initial
condition. The latter is trivial since:

t
X(tg) = exp ( ’ A(s)ds) - Xo =exp(0) - Xo =1 - Xy = X,

to

so we turn to the equation itself. It suffices to check that X'(t) = A(t) - X(¢).



Our goal is obviously to compute the derivative of X (t). Since we have not computed the
differential of exp, we return to the basic definition as a limit of difference quotients:

X'(t) = Jim (X (11 + h) — X (1),

Fix t; € I and let h € R be small. Then:

t1+h
X(t1 +h) =exp (/ A(s)ds) - Xo

to

to t1

= exp (/tl A(s)ds + o A(s)ds) - Xo

We claim that the matrix integrals inside the exponential commute. Indeed let s1 € (tg,¢1) and
S9 € (t1,t1 + h). Then A(s1)A(s2) = A(s2)A(s1), so integrating over sy:

( " A(sl)dsl)-A(SQ):A(SQ)-( tlA(sl)d81>.

to to

Now integrating over ss, we find:

( tjl A(sl)d:;l) : (/tltﬁh A(SQ)dSQ) L (/tltﬁh A(sz)d82> : < tjl A(sl)dsl> ,

as desired.
Returning to X (¢1 + h), we find:

t1+h

Therefore:

t1+h
X(t +h) — X(t1) = (exp (/ A(s)ds) - 1) X (t1)

We keep in mind that we want to find X'(¢) = A(t) X (¢); that is, we now wish to prove:

ti1+h
ilzlg%)% (exp </t1 ’ A(s)ds) - I) = A(t1)

If we prove this we are done. Intuitively, on the short segment [¢1,¢1 + h| the function A(s) is
almost constant; so the integral is more or less hA(t;), which is small (since h is); hence the
exponential is approximately I + hA(t1); and finally the derivative should be A(¢1). Let us do
this properly.

Fix € € (0,1). By continuity of A at ¢; (I realise that the assumption was not stated explicitly
in the assignment; however, we always considered continuous coefficients), there is 1 such that:

Vhe (=n,n), [[Ati+h)—A)| <e



Of course since we are trying to compute a limit, we may freely suppose that |h| < 7.
It follows that:

t1+h ti+h ti+h
/ As)ds = / Atds+ [ (A(s) — A(t1))ds = hA(t) + R(R),

t1 t1 t1
where the error term satisfies:

t1+h
< [ 1AG) - A ds <

it = [t - acye

Here again, hA(t;) and R(h) commute, so:

ti1+h
exp </ A(s)ds) = exp(hA(t1)) - exp(R(h)).

t1

Now as a function of h (bear in mind that ¢; is fixed), the map exp(hA(t1)) is differentiable at 0
with derivative A(¢1), as proved in class; it means that it has Taylor expansion I +hA(t1)+o(h).
On the other hand, one has:

exp R(h) = I'+ R(h) + %R(h)z +....

But since ||R(h)|| < eh with € < 1, the term of order n > 2 has norm < Le"|h|" < Le|nf%; it
follows that:

lexp(R(R) ~ T~ R = | S (RO < 073" - < eliPe
k=2 """ k=2""

Hence exp(R(h)) =1 + R(h) 4+ o(h).
Put together:

ti+h
exp (/t A(s)ds) = exp(hA(t1)) - exp(R(h))
= (I 4+ hA(t1) 4+ o(h)) - (I + R(h) + o(h))

=1+ hA(t1) + R(h) + o(h)

1 fth 1
Q(h) := 7 <exp (/ A(s)ds) — I) = (I +hA(t1) + R(h) 4+ o(h) — I)

1
= A(tl) + ER(h) + 0(1)
But since ||R(h)|| < ¢|h], this means that Q(h) can be made arbitrarily close to A(¢;). Which is
our claim.

Note. There is no such thing as “vector division”. This is a serious mathematical mistake
against which I had warned you several times.

In class I made a point of never dividing, even in the scalar case; apparently you preferred
to rely on unsatisfactory recipes you learnt in the past. Unfortunately, in this exercise, “not
quite rigorous” became “completely out”.



