Some equivalences of derived exponential functors

Alexander Zakharov*

Abstract

Given a functor $F \colon \operatorname{Ab}^{free,fg} \to \operatorname{Ab}^{flat}$, such that $F(A \oplus B) \simeq F(A) \otimes F(B)$ we will show that the algebra structure on its left derived functor $\mathbb{L}^*F(P)$ is completely determined by the augmented coalgebra structure on $F(\mathbb{Z})$ if $P \in D^{\geq 3}_{perf}(\operatorname{Ab})$. Among other applications we will prove that the Dold-Puppe isomorphism $H_*(K(A,n);\mathbb{Z}) \simeq \mathbb{L}_*\operatorname{Sym} A[n]$ is functorial in $A \in \operatorname{Ab}^{fg}$ if $n \geq 2$.

^{*}xaxa3217 ($\bullet _ \bullet)$ gmail com

1 Introduction

1.1 Results

Fix a base ring k and let $F: (Ab^{free,fg}, \oplus) \to (k - Mod^{flat}, \oplus)$ be a monoidal functor with values in flat k-modules. Such functor provides $F(\mathbb{Z})$ with a commutative and cocommutative Hopf algebra structure over k.

In the following we prefer cohomological notation. Let $D_{perf}^{<-1}(\mathrm{Ab})$ denotes complexes in $D(\mathrm{Ab})$ which are bounded and has cohomology concentrated in degress <-1. Denote by $D_{perf}^{<-1}(\mathrm{Ab})^{\vee}$ the image of $D_{perf}^{<-1}(\mathrm{Ab})$ under $\mathcal{R}Hom(-,\mathbb{Z})$.

In case $P \in D_{perf}^{<-1}(\mathrm{Ab})^{\vee}$ is represented by a complex of free modules, we can define the *left derived* functors of F by $\mathbb{L}F(P) := N(F(K(P))) \in D(\mathrm{Ab})$, where $N \operatorname{cs} \mathrm{Ab} : \to \leftarrow \mathrm{Ch}^{\geq 0}(\mathrm{Ab}) : K$ is the usual Dold-Kan equivalence of categories.

In this work we will prove the following.

Theorem 1.1.1. For F as above, the algebra structure on $\mathbb{L}F(P) \in D^{\geq 0}(Ab)$ does not depend on the multiplication in $F(\mathbb{Z})$. Namely, if G is another monoidal functor, provided with isomorphism $F(\mathbb{Z}) \simeq G(\mathbb{Z})$ of coalgebras preserving the augmentation $F(\mathbb{Z}) \to \mathbb{Z}$, the we have isomorphism of functors

$$\mathbb{L}F \simeq \mathbb{L}G \colon D^{<-1}_{perf}(\mathrm{Ab}) \to D(\mathrm{Ab}).$$

To state the other result, as an application of the technique developed in this article, recall an existence of Dold-Puppe isomorphism $DP: H_*(K(A,n);\mathbb{Z}) \simeq \mathbb{L}_*\operatorname{Sym}(A[n])$ for a finetely generated abelian group $A \in \operatorname{Ab}^{fg}$. Both parts a functors in A, but the construction of A a priori is not canonical. In fact, as shown in [4] there is no functorial isomorphism of $H_3(K(A,1);\mathbb{Z})$ and $\mathbb{L}_3\operatorname{Sym}(A[1])$. It turns out that this phenomena occurs only on the level of classical group homology:

Theorem 1.1.2. The Dold-Puppe isomorphism DP is functorial for $n \geq 2$.

Our third result is related to "cohomological" version of Dold theorem given by

Theorem 1.1.3 ([5]). There algebra $H^*(SP^nX;\mathbb{Z})/Tors$ functorially depends on the algebra $H^*(X;\mathbb{Z})$.

It is natural to ask if the algebra $H^*(\operatorname{SP}^n X; \mathbb{Z})$ can be recovered by $H^*(X; \mathbb{Z})$. In general this is not true, because the information about torsion coefficients get lost. After providing a simple couter-example based on [7], we prove the following:

Theorem 1.1.4. For a suspension space $X = \Sigma Y$, the algebra $H^*(\mathrm{SP}^n X; \mathbb{Z})$ functorially depends on \mathbb{Z} -module $\bar{H}^*(X; \mathbb{Z})$

Finally let us note, that this work grew from [6] as an attempt to cover classical topology problems.

2 Preliminaries

2.1 Categories Ab' and Ab"

Consider category Sets_{*} of finite based sets. We denote its objects by $S_{+} = S \sqcup \{pt\}$, where pt is the base point of S_{+} .

We have a faithful functor $\mathbb{Z}\langle - \rangle$: Sets_{*} \to Ab given by $S_+ \to \mathbb{Z}\langle S \rangle = \mathbb{Z}^{\oplus S}$.

Definition 2.1.1. The category Ab' is the image of $\mathbb{Z}\langle - \rangle$: $Sets_* \to Ab^{free,fg}$. Define $Ab'' \subset Ab^{free,fg}$ is the image of Ab' under the counter-variant functor $V \to V^{\vee}$.

Hence Ab' is equivalent to Sets_{*}, while Ab" is equivalent to Sets_{*}.

Example 2.1.2. 1. Objects of Ab' are free modules $\mathbb{Z}^{\oplus S}$ with a chosen unordered basis. A morphism $f_* \in \operatorname{Hom}_{\operatorname{Ab'}}(\mathbb{Z}^{S_1}, \mathbb{Z}^{S_2})$ corresponds to a map $f \colon S_1 \to S_2 \sqcup \{\operatorname{pt}\}$, such that $f_*e_s = e_{f(s)}, s \in S_1$ if $f(s) \neq \operatorname{pt}$ and zero otherwise.

2. Similarly a morphism $f^* \in \operatorname{Hom}_{\operatorname{Ab}''}(\mathbb{Z}^{S_1}, \mathbb{Z}^{S_2})$ corresponds to a map $S_2 \to S_1 \sqcup \{\operatorname{pt}\}$, such that $f^*e_s = \sum_{s' \in f^{-1}(s)} e_{s'}$.

Both categories Ab', Ab'' share morphisms $0 \to \mathbb{Z}$ and $\mathbb{Z} \to 0$. We see that $\mathbb{Z}^{\oplus 2} \xrightarrow{+} \mathbb{Z}$ belongs to Ab', while $\mathbb{Z} \xrightarrow{\Delta} \mathbb{Z}^{\oplus 2}$ belongs to Ab''.

We consider $(Ab', \oplus), (Ab'', \oplus)$ as monoidal categories under the direct sum. This corresponds to the connected sum in Sets* given by $S_{1+} \vee S_{2+} = (S_1 \sqcup S_2)_+$. We will be interested in monoidal functors of the form $(Ab, \oplus) \to (\mathbb{k} - \operatorname{Mod}, \otimes)$.

Proposition 2.1.3. We have following equivalences:

- 1. $\{F: (Ab^{free,fg}, \oplus) \to (\mathbb{k} Mod, \otimes)\} = \{Commutative \ and \ cocommutative \ Hopf \ algebras \ /\mathbb{k}\}.$
- 2. $\{F: (Ab', \oplus) \to (\mathbb{k} Mod, \otimes)\} = \{Commutative \ algebras \ with \ augmentation \ /\mathbb{k}\}.$
- 3. $\{F: (Ab'', \oplus) \to (\mathbb{k} Mod, \otimes)\} = \{Cocommutative \ coalgebras \ with \ augmentation \ /\mathbb{k}\}.$

Provided by evaluation $F(\mathbb{Z})$.

Precisely, given a commutative affine group scheme G over \mathbb{k} we denote the corresponding monoidal functor by $\mathcal{O}_G^{\otimes -}: (\mathrm{Ab}^{free,fg}, \oplus) \to (\mathbb{k} - \mathrm{Mod}, \otimes)$ defined by $\mathcal{O}_G^{\otimes V} := \mathcal{O}(G \otimes_{\underline{Z}} V^{\vee})$, where V^{\vee} is a discrete group considered as a constant group scheme over \mathbb{Z} . For example $\mathcal{O}_G^{\otimes \mathbb{Z}^n} \simeq G^{\times n}$, so that $\mathbb{Z}^{\oplus 2} \xrightarrow{+} \mathbb{Z}$ induces algebra structure in \mathcal{O}_G , while $\mathbb{Z} \xrightarrow{\Delta} \mathbb{Z}^{\oplus 2}$ induces the comultiplication.

2.2 Derived functors

Here we recall some basic facts following [1]. Recall that we have an equivalence of categories and N: cs $Ab \rightleftharpoons Ch^{\geq 0}$: K given by the Moore normalization functor N(-) and the Kan functor K(-). We have natural isomorphisms $K \circ N \simeq \operatorname{id}$ and $N \circ K \simeq \operatorname{id}$. Also for all categories above we have a notion of homotopy between morphisms, such that the functors N, K preserve homotopies. In particular the equivalence survives on the homotopy level. Let $F: Ab^{\operatorname{free}, \operatorname{fg}} \to \mathbb{k} - \operatorname{Mod}^{\operatorname{flat}}$ be a functor.

Proposition 2.2.1 ([1]). The natural prolongation $F: \operatorname{csAb}^{\operatorname{free,fg}} \to \operatorname{s} \mathbb{k} - \operatorname{Mod}^{\operatorname{flat}}$ preserves homotopies.

This amounts to the following notion

Definition 2.2.2. For F as above, define its *left derived functor* $\mathbb{L}F: D_{perf}^{<-1}(\mathrm{Ab})^{\vee} \to D(\mathbb{k} - \mathrm{Mod})$ by the formula $\mathbb{L}F(P) := N(F(K(P)))$, where $P \in \mathrm{Ch}^{\geq 0}(\mathrm{Ab})$ is a bounded complex of free \mathbb{Z} -modules.

Assume $F: (\mathrm{Ab}^{\mathrm{free,fg}}, \oplus) \to (\Bbbk - \mathrm{Mod}, \otimes)$ is monoidal. We have the following (lax) monoidal transformations:

$$AW: N(A) \otimes N(B) \to N(A \otimes B),$$

and

EZ:
$$N(A \otimes B) \to N(A) \otimes N(B)$$
,

where $A, B \in \operatorname{cs} Ab$. Recall that the Eilenberg-Zilber morphism or the shuffle map EZ is symmetric, while the Alexander-Whitney or the face-degeneracy map AW is not. In particular the complex N(F(K(P))) is provided with cocommutative comultiplication via EZ, while the multiplication given by AW is only associative. In fact N(F(K(P))) is E_{∞} -algebra, hence the cohomology $\mathbb{L}^*F(P)$ form a commutative graded algebra.

We finish this section by noting that all results above hold in the simplicial setting by using s Ab, $Ch^{\leq 0}(Ab)$ and $D_{perf}^{\leq -1}(Ab)$.

3 Homotopy refinement of the Kan functor K

In this section we consider categories of based topological spaces and simplicial sets $\operatorname{Top}^{\operatorname{pt}}$ and $\operatorname{sSet}^{\operatorname{pt}}$. Given $(X,\operatorname{pt})\in\operatorname{sSet}^{\operatorname{pt}}$ defines a free abelian group $\mathbb{Z}\langle X\rangle\in\operatorname{sAb}$. The constant simplicial set pt together with morphisms $\operatorname{pt}\to X\to\operatorname{pt}$ defines a splitting $\mathbb{Z}\langle X\rangle\simeq\mathbb{Z}\langle X/\operatorname{pt}\rangle\oplus\mathbb{Z}\langle\operatorname{pt}\rangle$, where $\mathbb{Z}\langle X/\operatorname{pt}\rangle_n\in Ab$ has a unordered basis given by elements of the form $x':=x-\operatorname{pt},\,x\in X_n\setminus\operatorname{pt}_n$. Clearly we have $\mathbb{Z}\langle X/\operatorname{pt}\rangle\in\operatorname{sAb}'$. We have a functor $\mathbb{Z}\langle -/\operatorname{pt}\rangle\colon\operatorname{sSet}^{\operatorname{pt}}\to\operatorname{sAb}'$.

3.1 Moore spaces

Definition 3.1.1. A Moore space $M(A, n) \in \text{Top}^{\text{pt}}$ for $A \in \text{Ab}^{\text{fg}}$ and n > 1 is a space such that $\pi_i(M(A, n)) = 0, i = 0, 1$ and $\bar{H}_i(M(A, n); \mathbb{Z}) = 0, i \neq n$, provided with an isomorphism $H_n(M(A, n); \mathbb{Z}) \simeq A$.

We can represent $\mathrm{M}(A,n)$ as a CW-complex with cells in dimensions n,n+1 as follows. If $A=[\mathbb{Z}^R \xrightarrow{f} \mathbb{Z}^\mathbb{G}]$ is given by two-term resolution, then one can put $M(A,n):=\mathrm{Cone}(\vee_R S^n \xrightarrow{F} \vee_G S^n)$, where F is such that $H_n(F)=f$. In fact $\mathrm{M}(A,n)$ can be modeled by a finite simplicial complex. Moreover, if $F:(\mathrm{M}(A,n),\mathrm{pt})\to (\mathrm{M}(A',m),\mathrm{pt})$ is a map of the topological spaces corresponding to simplicial complexes, then the simplicial approximation theorem asserts that F is homotopic to a simplicial map $F^\varepsilon:(\mathrm{M}(A,n),\mathrm{pt})\to (\mathrm{M}(A',m),\mathrm{pt})$ after passing to sufficiently fine barycentric subdivision. Assume n>1. Passing from simplicial complexes to simplicial sets allows to consider Moore simplical sets. Thus any topological statement about maps between Moore space has simplicial couterpart, abusing notation we will denote a simplicial model of the Moore space also by $\mathrm{M}(A,n)\in\mathrm{SSet}^{\mathrm{finite},\mathrm{pt}}$.

We note that though for n > 1 the homotopy type of M(A, n) is unique, there is no functor $Ab^{fg} \to Ho(Top)$ providing a natural realization of Moore space. In fact there are sufficiently many morphisms between Moore spaces. First we note that there are sufficiently many maps between Moore spaces.

Proposition 3.1.2. For n > 1 and $A, A' \in Ab^{fg}$ the natural maps

$$\operatorname{Hom}_{\operatorname{Ho}(\operatorname{Top^{pt}})}(\operatorname{M}(A, n), \operatorname{M}(A', n)) \xrightarrow{C_*^{\operatorname{sing}}(-)} \operatorname{Hom}_{D(\operatorname{Ab})}(A[n], A'[n]) = \operatorname{Hom}_{\operatorname{Ab}}(A, A')$$
(3.1.1)

$$\operatorname{Hom}_{\operatorname{Ho}(\operatorname{Top^{pt}})}(\operatorname{M}(A,n),\operatorname{M}(A',n+1)) \stackrel{C^{\operatorname{sing}_*(-)}}{\longrightarrow} \operatorname{Hom}_{D(\operatorname{Ab})}(A[n],A[n+1]) = \operatorname{Ext}^1(A,A')$$
 (3.1.2)

are surjective.

Proof. Let $P_{\bullet} := [\mathbb{Z}^R \xrightarrow{m_A} \mathbb{Z}^G] \to A$ be a free resolution of A. For n > 1 the space M(A, n) is homotopy equivalent to a CW-complex given by a cofiber of $M_A : \vee_R S^n \to \vee_G S^n$ of a map induced by m_A . Let $C_*^A := C_*^{cw}(M(A, n))$. Similarly for A'.

Given $f \in \operatorname{Hom}_{\operatorname{Ab}}(A, A')$, there is a morphism $\tilde{f}: P_{\bullet} \to Q_{\bullet}$ inducing f. Consider the corresponding diagram of maps:

$$\bigvee_R S^n \xrightarrow{M_A} \bigvee_G S^n \longrightarrow \operatorname{M}(A,n)$$

$$\downarrow \qquad \qquad \downarrow_{\tilde{F}} \qquad \qquad \downarrow_g$$

$$\bigvee_{R'} S^n \xrightarrow{M_{A'}} \bigvee_{G'} S^n \longrightarrow \operatorname{M}(A',n)$$

If n > 1 the left square is homotopy commutative, thus by basic properties of cofiber sequences the dashed arrow exists and produces a map $g: M(A, n) \to M(A', n)$ such that $H_n(g) = f$. This proves surjectivity in (3.1.1). For the second arrow redefine $C_*^{A'} = C_*^{\text{cw}}(M(A', n+1))$ and leave C_*^{A} as above. Then

$$\operatorname{Ext}\nolimits_{\operatorname{Ab}}^1(A,A') = \operatorname{Hom}\nolimits_{C^{\leq 0}}(C_*^A,C_*^{A'})/\sim$$

where \sim is the equivalence relation identifying homotopical morphisms. Since

$$\operatorname{Hom}_{C^{\leq 0}}(C_*^A, C_*^{A'}) = \operatorname{Hom}_{\operatorname{Ab}}(C_{n+1}^A, C_{n+1}^{A'}) = \operatorname{Hom}_{\operatorname{Ho}(\operatorname{Top^{pt}})}(M(A, n) / \operatorname{Sk}_n M(A, n), \operatorname{Sk}_n M(A', n+1))$$

naturally maps to $\operatorname{Hom}_{\operatorname{Ho}(\operatorname{Top}^{\operatorname{pt}})}(M(A,n),M(A',n+1))$ and passes through \sim , we obtain:

$$\operatorname{Ext}^1_{\operatorname{Ab}}(A,A') \to \operatorname{Hom}_{\operatorname{Ho}(\operatorname{Top^{pt}})}(M(A,n),M(A',n+1)) \overset{C^{\operatorname{sing}}_*(-)}{\longrightarrow} \operatorname{Ext}^1(A,A')$$

This composition is the identity, this proves that the map in 3.1.2 is surjective.

Remark 3.1.3. For n=1 the surjectivity of (3.1.1) fails. To construct a counterexample consider $\mathbb{R}P^2 \sim \mathbb{M}(A,1)$ for $A=\mathbb{Z}/2$. Assume there is a map $\Delta: \mathbb{R}P^2 \to \mathbb{R}P^2 \vee \mathbb{R}P^2$ such that $\Delta_* \in H_1(\mathbb{R}P^2,\mathbb{Z}) = \operatorname{Hom}_{\operatorname{Ab}}(A,A\oplus A)$ is the diagonal morphism. Denote by $\pi_i: \mathbb{R}P^2 \vee \mathbb{R}P^2 \to \mathbb{R}P^2$ two collapsing maps. Let $\gamma \in H^1(\mathbb{R}P^2,\mathbb{Z}/2)$ be the generator. Then $\pi_i \circ \Delta$ induces identity morphisms on $H_1(\mathbb{R}P^2,\mathbb{Z}/2)$ and hence on its dual $H^1(\mathbb{R}P^2,\mathbb{Z}/2)$. Hence $(\pi_1 \circ \Delta)^* \gamma \cup (\pi_2 \circ \Delta)^* \gamma = \gamma^2 \neq 0 \in H^2(\mathbb{R}P^2,\mathbb{Z}/2)$. On the other hand it iss equal to $\Delta^*(\pi_1^* \gamma \cup \pi_2^* \gamma) = 0$.

Let $P_* \in D_{\text{perf}}^{<-1}(Ab)$ and fix a (non functorial) Moore space construction M(-). Consider

$$M(P_*) := \bigvee_{i} M(H_i(P_*), i) \in sSet^{finite, pt}$$
 (3.1.3)

One can always assume that $M(P_*)$ has no non-trivial simplices in degrees ≤ 1 , thus by Whitehead's theorem any two such constructions $M(P_*)$ and $M'(P_*)$ are homotopy equivalent and are suspensions spaces. In particular $M(P_*)$ is a comonoid. The natural isomorphism

$$P_* \simeq \bigoplus_i H_i(P_*)[i] \in D(Ab)$$

provides a natural isomorphism

$$N(\mathbb{Z}\langle M(P_*)/\operatorname{pt}\rangle) \simeq P_* \in D(\operatorname{Ab})$$
 (3.1.4)

If $F: \mathcal{M}(P_*) \to \mathcal{M}'(Q_*) \in \mathrm{sSet}^{finite,pt}$ then we denote by $\overline{F}: P_* \to Q_* \in D(\mathrm{Ab})$ the morphism $N(\mathbb{Z}\langle F/\operatorname{pt}\rangle)$ in terms of (3.1.4).

Recall that $I': sAb' \to sAb$ is the natural embedding. Let Ho(sAb') denotes a category obtained by identifying those morphisms in sAb' which become homotopical in Ho(sAb) under I'. Thus $Ho(I'): Ho(sAb') \to Ho(sAb)$ is faithfull.

Lemma 3.1.4. Given $P_*, Q_* \in D^{<-1}_{perf}(Ab)$ and $F_i : M(P_*) \to M'(Q_*) \in sSet^{finite,pt}, i = 1, 2$ such that $\overline{F}_1 = \overline{F}_2$, we have

$$\mathbb{Z}\langle F_1/\operatorname{pt}\rangle = \mathbb{Z}\langle F_2/\operatorname{pt}\rangle \in \operatorname{Ho}(\operatorname{s}\operatorname{Ab}')$$

Proof. More generally, the Dold-Kan correspondence together with (3.1.4), implies the isomorphism

$$\operatorname{Hom}_{\operatorname{Ho}(\operatorname{s}\operatorname{Ab})}(\mathbb{Z}\langle\operatorname{M}(P_*)/\operatorname{pt}\rangle,\mathbb{Z}\langle\operatorname{M}'(Q_*)\rangle) \stackrel{D(N)}{\longrightarrow} \operatorname{Hom}_{D(\operatorname{Ab})}(P_*,Q_*)$$

By definition $Ho(I'): Ho(s Ab') \to Ho(s Ab)$ is faithful, this finish the proof.

3.2 The construction of K' and K''

The following observation provides a refinement of the Dold-Kan functor $D(K): D(Ab) \to Ho(sAb)$ and serves our main construction.

Theorem 3.2.1. There is a monoidal functor $K': D^{<-1}_{perf}(Ab) \to Ho(sAb')$, defined up to a natural isomorphism, such that $Ho(I') \circ K'$ is naturally isomorphic to D(K).

Proof. Let $P_*, Q_* \in D^{<-1}_{perf}(Ab)$ be complexes and $f \in \text{Hom}_{D^{<-1}_{perf}(Ab)}(P_*, Q_*)$. Fix a (non functorial) Moore space constructions $M_1(-)$ and $M_2(-)$.

We have a natural decomposition

$$\operatorname{Hom}_{D^{<-1}_{\operatorname{perf}}(\operatorname{Ab})}(P_*,Q_*) = \bigoplus_i \operatorname{Hom}_{\operatorname{Ab}}(H_i(P_*),H_i(Q_*)) \oplus \bigoplus_j \operatorname{Ext}^1_{\operatorname{Ab}}(H_j(P_*),H_{j+1}(Q_*))$$

The set $\operatorname{Hom}_{\operatorname{Ho}(\operatorname{sSet}^{finite},pt)}(\operatorname{M}_1(P_*),\operatorname{M}_2(Q_*))$ forms an abelian group, since the argument is a comonoid. Then by Proposition 3.1.2 there is $F \in \operatorname{Hom}_{\operatorname{Ho}(\operatorname{sSet}^{\operatorname{finite},\operatorname{pt}})}(\operatorname{M}_1(P_*),\operatorname{M}_2(Q_*))$ such that $\overline{F} \sim f$. By repeating the argument we can form a diagram in sSet finite,pt.

$$\begin{array}{ccc}
\mathbf{M}_{1}(P_{*}) & \xrightarrow{F_{1}} & \mathbf{M}_{1}(Q_{*}) \\
I_{P} \downarrow & & \downarrow I_{Q} \\
\mathbf{M}_{2}(P_{*}) & \xrightarrow{F_{2}} & \mathbf{M}_{2}(Q_{*})
\end{array} \tag{3.2.1}$$

The vertical arrows in (3.2.1) correspond to maps, provided by Proposition 3.1.2, such that the induced $H_*(I_P)$ and $H_*(I_Q)$ are identity maps. Note that in general arrows in the diagram (3.2.1) are not canonical and the square does not commute up to homotopy.

On the other hand applying $N(\mathbb{Z}\langle -, \operatorname{pt} \rangle)$ in terms of the natural identification (3.1.4) we get

$$P_* \xrightarrow{f} Q_*$$

$$id \downarrow \qquad \downarrow id$$

$$P_* \xrightarrow{f} Q_*$$

Then lemma 3.1.4 implies that the following square commutes and all arrows are canonical in Ho(s Ab'):

$$\mathbb{Z}\langle \mathcal{M}_{1}(P_{*})/\operatorname{pt}\rangle \xrightarrow{\overline{F_{1}}} \mathbb{Z}\langle \mathcal{M}_{1}(Q_{*})/\operatorname{pt}\rangle
\overline{I_{P}} \downarrow \qquad \qquad \downarrow \overline{I_{Q}}
\mathbb{Z}\langle \mathcal{M}_{2}(P_{*})/\operatorname{pt}\rangle \xrightarrow{\overline{F_{2}}} \mathbb{Z}\langle \mathcal{M}_{2}(Q_{*})/\operatorname{pt}\rangle$$
(3.2.2)

Thus, if be define $K'(P_*) := \mathbb{Z}\langle M_1(P_*)/\operatorname{pt}\rangle$ and $K'(f) := \overline{F_1} = \mathbb{Z}\langle F_1/\operatorname{pt}\rangle$ we obtain a genuine functor with the desired properties. Moreover, passing to a different construction $M_2(-)$ produces a naturally isomorphic functor.

It remains to check that K' is monoidal, i.e. there is a natural isomorphism

$$K'(P_* \oplus Q_*) \xrightarrow{\sim} K'(P_*) \oplus K'(Q_*) \in D(Ab)$$

This follows by the similar argument: there is an equivalence

$$F: \mathcal{M}(P_* \oplus Q_*) \sim \mathcal{M}(P_*) \vee \mathcal{M}(Q_*)$$

and $\overline{F} \in \text{Ho}(s \text{ Ab}')$ is canonically defined. This proves the claim.

Let $D^{<-1}_{\mathrm{perf}}(\mathrm{Ab})^{\vee}$ denotes the image of $D^{<-1}_{\mathrm{perf}}$ under monoidal functor $\mathcal{RH}om_{D(\mathrm{Ab})}(-,\mathbb{Z})$. Note that $D^{>2}_{\mathrm{perf}}(\mathrm{Ab}) \subset D^{<-1}_{\mathrm{perf}}(\mathrm{Ab})^{\vee}$. On the other hand, since the functor $\mathrm{Hom}_{\mathrm{Ab}}(-,\mathbb{Z})$ provides an equivalence of $\mathrm{Ab}' \subset \mathrm{Ab}$ with $\mathrm{Ab}'' \subset \mathrm{Ab}$ in Ab , as a direct corollary we obtain:

Corollary 3.2.2. There is a monoidal functor $K'': D_{\text{perf}}^{<-1}(Ab)^{\vee} \to \text{Ho}(\operatorname{cs} Ab'')$, defined up to a natural isomorphism, such that $\text{Ho}(I'') \circ K''$ is naturally isomorphic to D(K).

3.3 On $\mathbb{L}F \simeq \mathbb{L}G$

Recall that $I'': \operatorname{Ab}'' \to \operatorname{Ab}$ is the natural embedding. Denote by $\mathbb{k} - \operatorname{Mod}^{flat} \subset \operatorname{Ab}$ the subcategory of flat \mathbb{k} -modules. If $F: \operatorname{Ab}^{fg,free} \to \operatorname{Ab}$ is a functor, then it is possible to define $\mathbb{L}F: D_{\operatorname{perf}}(\operatorname{Ab}) \to D(\operatorname{Ab})$. Above we introduced $D_{\operatorname{perf}}^{<-1}(\operatorname{Ab})^{\vee}$ to be the full subcategory $D_{\operatorname{perf}}(\operatorname{Ab})$ formed by the image of $\mathcal{RH}om_{D(\operatorname{Ab})}(-,\mathbb{Z})$ applied to $D_{\operatorname{perf}}^{-1}(\operatorname{Ab})$. Note in particular $D_{\operatorname{perf}}^{>2}(\operatorname{Ab}) \subset D_{\operatorname{perf}}^{<-1}(\operatorname{Ab})^{\vee}$.

Theorem 3.3.1. Assume $F, G : Ab^{fg, free} \to \mathbb{k} - Mod^{flat}$ are two functors:

1. provided with an isomorphism $\phi'': F'' \simeq G''$. Then there is a natural isomorphism of functors

$$\phi_{F,G}: \mathbb{L}F \simeq \mathbb{L}G$$

from $D^{<-1}_{\mathrm{perf}}(\mathrm{Ab})^{\vee}$ to $D(\Bbbk-\mathrm{Mod})$. In addition, if $F,G:(\mathrm{Ab^{fg,free}},\oplus)\to(\Bbbk-\mathrm{Mod^{flat}},\otimes)$ and ϕ'' are monoidal, then so is ϕ .

2. provided with an isomorphism $\phi': F' \simeq G'$. Then there is a natural isomorphism of functors

$$\phi_{F,G}: \mathbb{L}F \simeq \mathbb{L}G$$

from $D^{<-1}_{perf}(Ab)$ to $D(\mathbb{k}-Mod)$. In addition, if $F,G:(Ab^{fg,free},\oplus)\to (\mathbb{k}-Mod^{flat},\otimes)$ and ϕ' are monoidal, then so is ϕ .

Proof. Thanks to theorem 3.2.2 there is a natural isomorphism $\mathbb{L}F = D(N) \circ F \circ D(K) \simeq D(N) \circ F'' \circ K''$. If F is monoidal, then so is the isomorphism. Thus $\mathbb{L}F$ restricted to $D_{\text{perf}}^{<-1}(Ab)^{\vee}$ depends only on F'', this proves the second claim. The first clame is literally the same.

Corollary 3.3.2. For monoidal functors F, G as above, for any $P_* \in D^{-1}_{perf}(Ab)^{\vee}$ the isomorphism $\phi_{F,G} : \mathbb{L}F(P_*) \simeq \mathbb{L}G(P_*)$ is a natural (in P_*) isomorphism of monoids in $D(\mathbb{k} - Mod)$.

Proof. The claim is a tautological corollary of monoidality of ϕ in theorem 3.3.1. The algebra structure on $\mathbb{L}F(P_*)$ is induced by the sum morphism $+: P_* \oplus P_* \to P_*$, thus the monoid structure

$$\mathbb{L}F(P_*) \otimes \mathbb{L}F(P_*) \simeq \mathbb{L}F(P_* \oplus P_*) \overset{\mathbb{L}F(+)}{\to} \mathbb{L}F(P_*)$$

is preserved by monoidal functor ϕ .

Remark 3.3.3. The assumption on cohomology of P is sharp. In the following section we will introduce monoidal functors Bin and Γ . So that Bin" $\simeq \Gamma$ " and $\mathbb{L} \operatorname{Bin}(\mathbb{Z}/2[-2]) \overset{L}{\otimes} \mathbb{Z}/2 \simeq H^*(K(\mathbb{Z}/2,1);\mathbb{Z}/2)$ is not isomorphic to $\mathbb{L}\Gamma(\mathbb{Z}/2[-2]) \overset{L}{\otimes} \mathbb{Z}/2 \simeq H^*(K(\mathbb{Z},1);\mathbb{Z}/2) \otimes H^*(K(\mathbb{Z},2);\mathbb{Z}/2)$.

Remark 3.3.4. In fact one can prove an isomorphism $\mathbb{L}F(\mathbb{Z}[-n]) \simeq \mathbb{L}G(\mathbb{Z}[-n])$ directly. Namely $K(\mathbb{Z}[-n]) \in \operatorname{cs} \operatorname{Ab}''$ and the complex $N(F(K(\mathbb{Z}[-n])))$ uses only coalgebra structure of $F(\mathbb{Z})$, so we get a tautological additive isomorphism of $\mathbb{L}F(\mathbb{Z}[-n])$ and $\mathbb{L}G(\mathbb{Z}[-n])$. Then the straighforward computation shows that the multiplication given by Alexander-Whitney formula for AW does not use the multiplication at all! What makes the theorem above remarkable is that we do not have even a comparsion morphism on the nose already in case $P = \mathbb{Z}/2[-n]$.

4 Binomial algebras

Definition 4.0.1. For $V \in Ab^{free,fg}$, the free algebra of divided powers $\Gamma(V) \subset \operatorname{Sym}(V) \otimes_{\mathbb{Z}} \mathbb{Q}$ is the algebra generated by expressions $v^{[n]} := \frac{v^n}{n!}$ for all $n \geq 0$, $v \in V$.

Definition 4.0.2. For $V \in \mathrm{Ab}^{free,fg}$ The free binomial algebra $\mathrm{Bin}(V)$ is algebra of all integer-valued polynomial functions on V^{\vee} .

By naturality this defines a monoidal functor Bin(-): $(Ab^{free,fg}, \oplus) \to (Ab^{flat}, \otimes)$. In particular $Bin(\mathbb{Z})$ is spanned by binoms $\binom{x}{n}$. The comultiplication is given by:

$$\Delta \binom{x}{n} = \binom{x_1 + x_2}{n} = \sum_{i+j=n} \binom{x_1}{i} \binom{x_2}{j}.$$

We denote by $\mathrm{Bin}^{\leq k}(-)$ and $\Gamma^{\leq k}(-)$ the multiplicative filtrations corresponding to the degree of polynomial functions. We have an isomorphism of monoidal functors $\mathrm{Gr}\,\mathrm{Bin}(V)\simeq\Gamma(V)$ given by $\binom{v}{n}\to v^{[n]}$. The comultiplication formula provides an isomorphism of coalgebras $\mathrm{Bin}(\mathbb{Z})\simeq\Gamma(\mathbb{Z})$. More precisely we have:

Proposition 4.0.3. The monoidal functors $Bin'' := Bin|_{Ab''}$ and $\Gamma'' := \Gamma|_{Ab''}$ with target (Ab, \otimes) are isomorphic.

Apart from the canonical increasing filtration $\operatorname{Bin}^{\leq n}$, we have a decreasing filtration $\operatorname{IBin}_{>n}'' \subset \operatorname{Bin}''$ defined as follows:

$$\mathrm{IBin}_{>n}''(\mathbb{Z}^S) = \mathbb{Z}\langle \prod_{s \in S} \binom{e_s}{n_s} \mid \sum_{s \in S} n_s > n \rangle.$$

It is easy to see that in general a morphism $f: \mathbb{Z}^{S_1} \to \mathbb{Z}^{S_2}$ restricts to a map $\mathrm{IBin}_{>n}''(\mathbb{Z}^{S_1}) \to \mathrm{IBin}_{>n}''(\mathbb{Z}^{S_2})$ only in case $f \in \mathrm{Ab}''$.

Definition 4.0.4. Let $\operatorname{Sym}': (\operatorname{Ab}', \oplus) \to (\operatorname{BiAlg}, \otimes)$ be a monoidal functor determined by the bialgebra $\operatorname{Sym}'(\mathbb{Z})$ defined as follows:

- 1. The multiplication is given by the identification $\operatorname{Sym}'(\mathbb{Z}) = \mathbb{Z}[t]$.
- 2. The comultiplication is given by $\Delta t = t_1 + t_2 + t_1 t_2 = t \otimes 1 + 1 \otimes t + t \otimes t$.
- 3. The unit and the augmentation are given by $1 \in \mathbb{Z}[t]$ and $t\mathbb{Z}[t]$ respectively.

So Spec Sym'(\mathbb{Z}) is the "polynomial" version of $\widehat{\mathbb{G}}_m$. Consider now Bin": $(\mathrm{Ab}'', \oplus) \to (\mathrm{BiAlg}, \otimes)$. Since $\mathrm{Bin}''(\mathbb{Z}^S) \in \mathrm{BiAlg}$ has a preferred unordered basis given by binoms $\prod_{s \in S} \binom{e_s}{n_s}$, one can form a dual $\mathrm{Bin}''(\mathbb{Z}^S)^\vee$ of the same cardinality as $\mathrm{Bin}''(\mathbb{Z}^S)$. Setting $\mathrm{Bin}'' \vee (V) := (\mathrm{Bin}''(V^\vee))^\vee$ defines a functor $(\mathrm{Ab}', \oplus) \to (\mathrm{BiAlg}, \otimes)$

Proposition 4.0.5. We have an isomorphism $\operatorname{Bin}''^{\vee} \simeq \operatorname{Sym}'$ of functors $(\operatorname{Ab}', \oplus) \to (\operatorname{BiAlg}, \otimes)$. Under this duality we have $\operatorname{IBin}''_{>n} \stackrel{\perp}{\simeq} \operatorname{Sym}'^{\leq n}$.

Proof. The claim reduces to the isomorphism of bialgebras $\operatorname{Bin}''(\mathbb{Z})^{\vee} \simeq \operatorname{Sym}'(\mathbb{Z})$. If we have a bialgebra E with basis e_i , let f^i denote its duals in $F := E^{\vee}$. Set $u(e, f) := \sum e_i f^i$, then the structure constants of F are determined by: $\Delta_e u(e, f) = m_f(u(e', f), u(e'', f))$ and $m_e(u(e, f'), u(e, f'')) = \Delta_f u(e, f)$. Our case corresponds to the formal function $u(x, t) := (1+t)^x = \sum_n \binom{x}{n} t^n$. The claim is equivalent to checking identities

 $\Delta_x(1+t)^x = m_t((1+t)^{x_1}, (1+t)^{x_2})$ and $m_x((1+t_1)^x, (1+t_2)^x) = \Delta_t(1+t)^x$. By the definition $\operatorname{IBin}_{>n}''(\mathbb{Z})$ is spanned by $\binom{x}{i}, i > n$, which are duals of t^i , so that $\operatorname{IBin}_{>n}(\mathbb{Z})^{\perp}$ is spanned by $t^j, j \leq n$.

In particular the product in Bin restricts to a morphism $\operatorname{IBin}_{>n}'' \otimes \operatorname{IBin}_{>m}'' \to \operatorname{IBin}_{>\max(n,m)}''$, hence $\operatorname{IBin}_{>m}''$ provides a non-multiplicative decresing filtration. Since $\operatorname{IBin}_{>0}'' = \operatorname{Bin}''$, $\operatorname{IBin}_{>n}''$ is an ideal for each n.

By technical reasons we want to introduce another monoidal functor corresponding to the formal group law $\widehat{\mathbb{G}}_m$. For a motivation note that $\operatorname{Spec}\operatorname{Sym}'(\mathbb{Z})$ is a monoid scheme (\mathbb{A}^1,\cdot) with coordinate t in the neighborhood of $1\in\mathbb{A}^1$, so $\operatorname{Sym}'(\mathbb{Z})$ is not a Hopf algebra. Clearly, passing to the completion at (t) we obtain $\operatorname{Spec}_0\operatorname{Sym}'(\mathbb{Z})\simeq\widehat{\mathbb{G}}_m$. The Cartier dual $\mathbb{H}^\vee=\widehat{\mathbb{G}}_m$ gives rise to a monoidal functor

$$\widehat{\operatorname{Sym}'}$$
: $(\operatorname{Ab}^{free,fg}, \oplus) \to (\operatorname{Ab}^{flat}, \otimes)$.

In previous notation $\widehat{\operatorname{Sym}}'(-) = \mathcal{O}_{\widehat{\mathbb{G}}_m}^{\otimes -}$.

It is easy to describe its behavior bound the morphisms in Ab'. For example the map induced by $\Delta \colon \mathbb{Z} \to \mathbb{Z}^{\oplus 2}$ induce a morphism $\widehat{\operatorname{Sym}}'(t) \to \widehat{\operatorname{Sym}}'(t_1, t_2)$ is given by $t \to t_1 + t_2 + t_1 t_2$. Similarly $\mathbb{Z} \xrightarrow{a \to} \mathbb{Z}$ is given by $t \to (1+t)^a - 1$.

5 Symmetric powers

In this section we revise the Dold-Thom isomorphism and relate $C^*(SP^{\infty}X)$ with $\mathbb{L}\operatorname{Bin}(\bar{H}^*(X;\mathbb{Z}))$. A less direct approach, but with other goals was developed in [2]. Below we will assume that (X, pt) is based simplicial set, which is connected, i.e. $X_0 = \{\operatorname{pt}\}$ and its cohomology are finitely generated.

5.1 A splitting of $\mathbb{Z}\langle SP^{\infty}(X, pt)\rangle$

We denote by $pt \in sSet$ the constant simplicial set corresponding to a point.

Notation 5.1.1. Denote by sSet^{finite,pt} the category of connected based finite simplicial sets such that for $(X, \text{pt}) \in \text{sSet}^{\text{finite},\text{pt}}, X_0 = \text{pt}_0$.

For X as above, $\mathbb{Z}\langle X \rangle/\mathbb{Z}\langle \text{pt} \rangle$ splits of $\mathbb{Z}\langle X \rangle$ via the projection $p: \mathbb{Z}\langle X \rangle \to \mathbb{Z}\langle X \rangle$ defined by $p(x_n) = x_n - \text{pt}_n$, where $x \in X_n$.

Definition 5.1.2. Let

$$\mathbb{Z}\langle X/\operatorname{pt}\rangle := \mathbb{Z}\langle X\rangle/\langle\operatorname{pt}\rangle \simeq \mathbb{Z}^{\oplus X\setminus\{\operatorname{pt}\}} \in \operatorname{sAb}'$$

denotes the natural in (X, pt) lifting of $\text{Im}[p] = \mathbb{Z}\langle X \rangle / \mathbb{Z}\langle pt \rangle \in s \text{ Ab in } s \text{ Ab}'$.

Recall that $SP^{\infty}(X, pt) = \underbrace{\operatorname{colim}_{n}} SP^{n}(X, pt)$ is the union of symmetric powers under the natural inclusions

 $\mathrm{SP}^n(X,\mathrm{pt}) \to \mathrm{SP}^{n+1}(X,\mathrm{pt})$. Since $\mathrm{SP}^\infty(X,\mathrm{pt})$ is a monoid in sSet, $\mathbb{Z}\langle \mathrm{SP}^\infty(X,\mathrm{pt})\rangle$ is a simplicial bialgebra. The following is an appropriate form of an observation due to Dold:

Theorem 5.1.3. For (X, pt) as above the natural morphism of monoids $\operatorname{SP}^{\infty} X \to \mathbb{Z}\langle X/\operatorname{pt}\rangle$ is a quasi-isomorphism. There is a natural isomorphism of simplicial bialgebras

$$\mathbb{Z}\langle \mathrm{SP}^{\infty}(X,\mathrm{pt})\rangle \simeq \mathrm{Sym}'(\mathbb{Z}\langle X/\mathrm{pt}\rangle) \in \mathrm{s}\,\mathrm{BiAlg}\,.$$

This identification corresponds to a quasi-isomorphism of bialgebras

$$\operatorname{Sym}'(\mathbb{Z}\langle X/\operatorname{pt}\rangle) \to \mathbb{Z}\langle \mathbb{Z}\langle X/\operatorname{pt}\rangle\rangle.$$

Proof. The morphism of monoids $SP^{\infty}X \to \mathbb{Z}\langle X/\operatorname{pt}\rangle$ is determined by mapping $\operatorname{pt} \to 0$ and $x \to x'$. It is quasi-isomorphism the classical Dold-Thom theorem.

Fix a natural number n. Then a q-simplex $SP^n(X, pt)$ is a symmetric expression

$$x_N = x_1 \cdot \ldots \cdot x_n \in \mathrm{SP}^n(X,\mathrm{pt})$$

for $x_i \in X_q$ and $N = \{1, \dots, n\}$. For any $x \in X_q$ put x' := x - pt for $x \notin pt_q$ and $pt'_q := pt_q$.

Thus $x_N = \sum_{I \subset N} x_I' \cdot pt_q^{n-|I|} \in \mathbb{Z}\langle \operatorname{SP}^n(X,\operatorname{pt}) \rangle$ Mapping pt_q to 1 gives a natural identification $\mathbb{Z}\langle \operatorname{SP}^N(X,\operatorname{pt}) \rangle \simeq \bigoplus_{i \leq n} \operatorname{Sym}^{i}(\mathbb{Z}\langle X/\operatorname{pt} \rangle)$ of simiplicial groups. It is easy to see that the isomorphism above is consistent with the inclusions $\operatorname{SP}^n(X,\operatorname{pt}) \to \operatorname{SP}^{n+1}(X,\operatorname{pt})$, given by $x_N \to x_N \cdot pt_q$ on the LHS, and with the natural inclusions $\operatorname{Sym}^{i \leq n} \to \operatorname{Sym}^{i \leq n+1}$.

Therefore we obtain an isomorphsim of simplicial groups $\mathbb{Z}\langle \mathrm{SP}^{\infty}(X,\mathrm{pt})\rangle \to \mathrm{Sym}'(\mathbb{Z}\langle X/\mathrm{pt}\rangle)$. Clearly it is a morphism of simplicial algebras and the image of pt_q is $1 \in \mathrm{Sym}'(\mathbb{Z}\langle X/\mathrm{pt}\rangle)$ for all q.

Let us compute the comultiplication on the LHS. The diagonal

$$\Delta: \mathrm{SP}^n(X,\mathrm{pt}) \to \mathrm{SP}^n(X,\mathrm{pt}) \times \mathrm{SP}^n(X,\mathrm{pt})$$

is a multiplicative map satisfying $\Delta(x) = x \times x$ for $x \in X_{\bullet}$.

Thus the induced morphism $\Delta: \mathbb{Z}\langle \mathrm{SP}^n(X,\mathrm{pt})\rangle \to \mathbb{Z}\langle \mathrm{SP}^n(X,\mathrm{pt})\rangle \otimes \mathbb{Z}\langle \mathrm{SP}^n(X,\mathrm{pt})\rangle$ is a map of algebras satisfying the formula

$$\Delta(x_q') = x_q' \otimes pt_q + pt_q \otimes x_q' + x_q' \otimes x_q' \tag{5.1.1}$$

for all $x_q \in X_q \setminus pt_q$. Clearly $\Delta(pt_q) = pt_q \otimes pt_q$.

The formal multiplicative group comultiplication in the definition 4.0.4 of Sym' immediatly implies that our isomorphism is an isomorphism of bialgebras.

The remaining part asserts that given $A = \mathbb{Z}\langle X/\operatorname{pt}\rangle \in \operatorname{sAb}'$ we have a natural morphism $\operatorname{Sym}'(A) \to \mathbb{Z}\langle A\rangle$. Here the multiplication and the comultiplication on the RHS corresponds to the group algebra structure. The formula is given by mapping e_s to e, where $e \in \mathbb{Z}\langle A\rangle$ is neutral element given by $0 \in A$. It is straighforward to check that this morphism respects bialgebra structure.

Remark 5.1.4. By the above the object $\mathbb{Z}\langle \mathrm{SP}^{\infty}(X,\mathrm{pt})\rangle \in \mathrm{sAb}$ admits an increasing and the decreasing filtrations. Note that the diagonal map does not respect the increasing filtration, meaning that the induced coalgebra structure on the normalized complex $N(\mathrm{Sym}'(\mathbb{Z}\langle X/\mathrm{pt}\rangle))$ is not filtered.

Corollary 5.1.5. For each n, the natural isomorphisms of algebras

$$\mathbb{Z}^{\mathrm{SP}^n(X,\mathrm{pt})} \simeq \mathrm{Bin}'' / \mathrm{IBin}''_{>n} (\mathbb{Z}\langle X/\,\mathrm{pt}\rangle^\vee),$$

and coalgebras:

$$\mathbb{Z}\langle \mathrm{SP}^n(X,\mathrm{pt})\rangle \simeq \mathrm{Sym}'^{\leq n}(\mathbb{Z}\langle X/\mathrm{pt}\rangle),$$

are compatible with n and functorial in X.

Since $\mathbb{Z}(\mathrm{SP}^{\infty}(X,\mathrm{pt})) = \bigoplus_{i} \mathrm{Sym}^{i} \mathbb{Z}(X/\mathrm{pt})$ splits, as a well-known corollary we have

Corollary 5.1.6. For any coeffcient ring, we have a canonical decomposition:

$$H_*(\mathrm{SP}^{\infty} X) \simeq \bigoplus_i H_*(\mathrm{SP}^n X/\mathrm{SP}^{n-1} X) \simeq H_*(X^{\wedge n}/\Sigma_n),$$

which is compatible with the Pontryagin algebra structure on the LHS. The groups $H^*(\operatorname{SP}^nX)$ satisfy Mittag-Leffler condition, hence $H^*(\operatorname{SP}^\infty X) \simeq \varprojlim_n H^*(\operatorname{SP}^nX)$.

Remark 5.1.7. In fact we have an isomorphism $\mathbb{Z}^{\operatorname{SP}^{\infty} X} \simeq \overline{\operatorname{Bin}}(\mathbb{Z}\langle X/\operatorname{pt}\rangle^{\vee})$, where $\overline{\operatorname{Bin}}(\mathbb{Z}^{S}) = \varprojlim_{n} \operatorname{Bin}'' / \operatorname{IBin}''_{>n}(\mathbb{Z}^{S})$

is the "completion" of $\operatorname{Bin}(\mathbb{Z}^S)$, i.e. infinite series of binomials. The Mittag-Leffrer condition justify the reason why we can consider binomial polynomials instead of binomial series to describe cochains $\mathbb{Z}^{\operatorname{SP}^\infty X}$. In other words, the natural map $\operatorname{Bin}(\mathbb{Z}\langle X/\operatorname{pt}\rangle^\vee) \simeq \underbrace{\operatorname{colim}_n}_{\mathbb{Z}^{\operatorname{SP}^n X}} \to \mathbb{Z}^{\operatorname{SP}^\infty X}$ is a quasi-isomorphism.

We remark the following

Proposition 5.1.8. For X as above, the natural morphism $\mathbb{L}\operatorname{Sym}'(\mathbb{Z}\langle X/\operatorname{pt}\rangle) \to \widehat{\mathbb{L}\operatorname{Sym}'}(\mathbb{Z}\langle X/\operatorname{pt}\rangle)$ is a quasi-isomorphism.

Proof. By décalage isomorphism we have $\mathbb{L}^n \operatorname{Sym}^d(P) \simeq \mathbb{L}^{n+d} \Lambda^d(P[-1])$. In our case $P := N(\mathbb{Z}\langle X/\operatorname{pt}\rangle)$ can be represented by a finite complex of free modules with bounded ranks. Hence $\mathbb{L}^n \operatorname{Sym}^d(P) = 0$ for any given n and sufficiently large d. Hence $\bigoplus_i \mathbb{L} \operatorname{Sym}^i(P) \to \prod_i \mathbb{L} \operatorname{Sym}^i(P)$ is a quasi-isomorphism, which is equivalent to the statement.

5.2 Derived functors of Bin and Sym

Now we restate the previous results in terms of derived functors and relate them with Eilenberg-Maclane spaces. Recall that Dold-Thom theorem provides a canonical, up to homotopy, equivalence $SP^{\infty}X$ and $\prod_{i} K(\bar{H}_{i}(X;\mathbb{Z}),i) =: K(\bar{H}_{*}(X;\mathbb{Z}))$, where $\bar{H}_{*}(X;\mathbb{Z}) := \bigoplus_{i} \bar{H}_{i}(X;\mathbb{Z})[i]$ is equivalent to $\bar{C}_{*}(X;\mathbb{Z})$ in D(Ab). Simplicially it is given by the morphism of monoids $SP^{\infty}X \to \mathbb{Z}\langle X/\operatorname{pt}\rangle$, such that the geometric realization of the RHS is $K(\bar{H}_{*}(X;\mathbb{Z}))$.

Definition 5.2.1. The Dold-Puppe isomorphism DP is the composition of isomorphisms in D(Ab):

$$C_*(K(\bar{H}_*(X;\mathbb{Z}))) \simeq C_*(\mathrm{SP}^{\infty} X) \simeq \mathbb{L} \operatorname{Sym}(\bar{H}_*(X;\mathbb{Z})).$$

Similarly we define DP: $C^*(K)(\bar{H}_*(X;\mathbb{Z})) \simeq \mathbb{L}\operatorname{Bin}(\bar{H}^*(X;\mathbb{Z}))$. This isomorphisms are functorial in (X,pt) .

On the other hand one can consider $C_*(K(A_*))$ and $\mathbb{L}\operatorname{Sym}(A_*)$ as functors in $A_* \in D^{\leq -1}(\operatorname{Ab})$ with values in $D(\operatorname{Ab})$. As we pointed out in the introduction this functors are *not* isomorphic in general.

Remark 5.2.2. Given (X, pt) with prescribed homology groups $A_* := \bar{H}_*(X; \mathbb{Z})$, provides via the Dold-Pupped isomorphism a splitting filtration on $H_*(K(A_*))$. The filtration is multiplicative with respect to the Pontragin product. The corresponding splitting filtration on $H^*(K(A_*))$ is *not* multiplicative in general. Moreover, the filtration provides a non-trivial invariant of a homotopy type with prescribed homology groups.

Moreover, the filtration provides a non-trivial invariant of a homotopy type with prescribed homology groups. An example is provided by setting $X_1 = S^2 \wedge S^4$ and $X_2 = \mathbb{C}P^2$. Let y_2, y_4 be generators of $H^*(X_1; \mathbb{Z})$ and t is a generator of $H^2(X_2; \mathbb{Z})$. Let $E = K(\mathbb{Z}[2] \oplus \mathbb{Z}[4]) = \mathbb{C}P^2 \times K(\mathbb{Z}, 4)$. Pick the fundamental classes $x_2, x_4 \in H^*(E; \mathbb{Z})$. By Dold-Thom theorem we have maps $f_i \colon X_i = \mathrm{SP}^1 X_i \to K(\mathbb{Z}[2] \oplus \mathbb{Z}[4])$, which are determined by pull-backs $f_1^* x_2 = y_2, f_1^* x_4 = y_4$ and $f_2^* x_2 = t, f_2^* x_4 = t^2$. Denote by $F_1^{>n}, F_2^{>n}$ the decreasing filtrations on $H^*(E)$ corresponding to $\mathrm{IBin}_{>n}''(\mathbb{Z}\langle X_i/\mathrm{pt}\rangle)$. Then $\mathbb{Q}\otimes F_1^{>1}$ is an ideal generated by $x_2^2, x_4^2, x_2 x_4$, while $\mathbb{Q}\otimes F_2^{>1}$ is generated by $x_2^2 = x_4, x_3^2$. Hence $F_1^{>-1} \neq F_2^{>-1}$.

5.3 A functorial Dold-Puppe isomorphism

There are no functorial isomorphism $H_*(K(A,1);\mathbb{Z})$ and $\mathbb{L}_*\operatorname{Sym}(A[-1])$. Here we will establish the functoriality of the Dold-Puppe isomorphism in range $D_{perf}^{<-1}(\operatorname{Ab})$ using the previous consuction of DP by restrictig to simply-connected Moore spaces.

Recall that the Eilenberg-Maclane space $K(P) = \prod_{i} K(H_i(P), i)$ can be described functorially in $P \in \mathbb{R}$

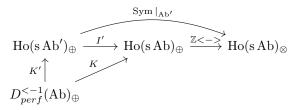
 $\operatorname{Ch}^{<0}(\operatorname{Ab})$ as geometric realization $|\mathbb{Z}\langle K(P)\rangle|$. Then, the monoidal functor $\mathbb{Z}\langle -\rangle$: $(\operatorname{Ab}, \oplus) \to (\operatorname{Ab}^{flat}, \otimes)$ allows to describe the chains $C_*(K(P))$ as $\mathbb{L}\mathbb{Z}\langle -\rangle(P)$.

Proposition 5.3.1. There is a natural isomorphism

$$C_*(K(P)) = \mathbb{L}\mathbb{Z}\langle -\rangle(P) \simeq \mathbb{L}\operatorname{Sym}(P),$$

which is natural in $P \in D^{<-1}_{perf}(Ab)$.

Proof. Theorem 3.2.1 provides the following diagram:



By Theorem 5.1.3 we have a natural equivalence Sym $|_{Ab'} \simeq \mathbb{Z}\langle - \rangle \circ I'$ of functors. By Theorem 3.2.1 the diagram commutes up to a canonical isomorphism.

The proof shows that the Dold-Puppe isomorphisms, which are by the construction multiplicative, are in fact natural in $P \in D_{perf}^{<-1}(Ab)$. As a direct corollary we have

Corollary 5.3.2. The Dold-Puppe isomorphisms of monoids in D(Ab)

$$C_*(K(P)) \simeq \mathbb{L}\operatorname{Sym}(P),$$

and

$$C^*(K(P)) \simeq \mathbb{L}\Gamma(\mathcal{RH}om(P,\mathbb{Z})) \simeq \mathbb{L}\operatorname{Bin}(\mathcal{RH}om(P,\mathbb{Z})),$$

are natural in $P \in D^{\leq -1}_{perf}(Ab)$. In particular the LHS admits a natural split filtration.

We note that the case P = A[-n] and $A \in Ab^{free,fg}$ was covered by A. Touzé in [9].

Remark 5.3.3. The isomorphism $\mathbb{L}\Gamma(P^{\vee}) \simeq \mathbb{L}\operatorname{Bin}(P^{\vee})$ follows directly by Theorem 3.3.1 by noting that $\operatorname{Bin}'' \simeq \Gamma''$.

6 Applications

6.1 Cohomology of iterated classfying stacks

Given an affine commutative group scheme G one can define the so-called iterated classifying stacks $B^nG = B(B^{n-1}G)$. Its cohomology with coefficient in the structure sheaf can be computed by the formula

$$H^*(B^nG, \mathcal{O}_{B^nG}) := \mathbb{L}\mathcal{O}_G^{\otimes -}(\mathbb{Z}[-n]).$$

Theorem 3.3.1 asserts in particular that for any formal group law G on $\mathbb{k}[t_1,\ldots,t_d]$ the cohomology of B^nG^\vee are given by $\mathbb{L}\Gamma(\mathbb{Z}^d[-n])$.

Now consider the case $G = \mathbb{G}_a$. Let us recall the décalage isomorphism (mixed cosimplicial/simplicial version is proved in [10] 4.3.2.1):

Theorem 6.1.1. There is a chain of canonical multiplicative isomorphisms:

$$\mathbb{L}^{i-2d}\operatorname{Sym}^d(A[-n]) \simeq \mathbb{L}^{i-d}\Lambda^d(A[-n-1]) \simeq \mathbb{L}^i\Gamma^d(A[-n-2])$$

Thus

$$\mathbb{L}^i\Gamma(A[-n-2])\simeq \bigoplus_d \mathbb{L}^{i-2d}\operatorname{Sym}^d(A[-n])$$

By our results

$$H^{i}(K(\mathbb{Z}, n+2); \mathbb{Z}) \simeq \mathbb{L}^{i} \operatorname{Bin}(\mathbb{Z}[-n-2]) \simeq \mathbb{L}^{i} \Gamma(\mathbb{Z}[-n]),$$

and we obtain:

Corollary 6.1.2. There is a chain of natural multiplicative isomorphisms:

$$H^{i}(K(\mathbb{Z}, n+2); \mathbb{Z}) \simeq \bigoplus_{d} \mathbb{L}^{i-2d} \operatorname{Sym}^{d}(\mathbb{Z}[-n]) \simeq \bigoplus_{d'} H^{d'}(B^{(n)}\mathbb{G}_{a}, \mathcal{O}_{B^{(n)}\mathbb{G}_{a}})_{i-d'}$$

6.2 A topological application

6.2.1 The problem

It is natural to ask if the algebra $H^*(\operatorname{SP}^n X; \mathbb{Z})$ can be recovered by the algebra $H^*(X; \mathbb{Z})$. This question was rised, e.g. in [5].

In general the answer is no. To construct a counter-example, let us mention that [7] constructed spaces X_1, X_2 such that $H^*(X_1; \mathbb{Z}) \simeq H^*(X_2; \mathbb{Z})$, but $H^*(X_1 \times X_1; \mathbb{Z}_{(5)}) \not\simeq H^*(X_2 \times X_2; \mathbb{Z}_{(5)})$. Specificall, the example is provided by 3-dimensional lens spaces $X_i = L(i; 5)$. The groups $H^p(X_i; \mathbb{Z})$ are $\mathbb{Z}, 0, \mathbb{Z}/5, \mathbb{Z}$ for $p = 0, \ldots 3$ respectively. Inspecting the spectral sequence $E_2^{pq} = H^p(\mathbb{Z}/2; H^q(X_i \times X_i; \mathbb{Z})) \Rightarrow H^{p+q}(\mathrm{SP}^2 X_i; \mathbb{Z})$ implies that the natural morphism $H^*(\mathrm{SP}^2 X_i; \mathbb{Z}_{(5)}) \to H^*(X_i \times X_i; \mathbb{Z}_{(5)})$ is an isomorphism in all degrees except 6. In particular, an isomorphism $H^*(\mathrm{SP}^2 X_1; \mathbb{Z}) \simeq H^*(\mathrm{SP}^2 X_2; \mathbb{Z})$ would imply an isomorphism $H^*(X_1 \times X_1; \mathbb{Z}_{(5)}) \simeq H^*(X_2 \times X_2)$.

On the other hand [8] had shown that it is true if the data $H^*(X;\mathbb{Z})$ is replaced by cohomological spectrum of X introduced by Whitehead [11]. Roughly speaking the cohomological spectrum of a space Z is a diagram with vertices $H^*(Z;\mathbb{Z}/m), m \leq \infty$ with morphisms given by the restrictions and bocksteins.

Theorem 6.2.1. Cohomological spectrum $SP^n X$ is determined by cohomological spectrum of X. In particular the algebra $H^*(SP^n X; \mathbb{Z})$ functorially depends on cohomological spectrum of X.

Remark 6.2.2. In the above claim $SP^n X$ can be replaced by other functors.

Quite remarkabely, D. Gugnin showed the following result:

Theorem 6.2.3 ([5]). The algebra $H^*(\operatorname{SP}^n X; \mathbb{Z})/\operatorname{Tors}$ is functorially depends on the algebra $H^*(X; \mathbb{Z})/\operatorname{Tors}$.

6.2.2 Suspension spaces case

Assume $(X, \operatorname{pt}) \in \operatorname{sSet}^{finite,pt}$ is a based space. Recall that $H^*(\operatorname{SP}^{\infty}X; \mathbb{Z}) \simeq \mathbb{L}\operatorname{Bin}''(\mathbb{Z}\langle X/\operatorname{pt}\rangle^{\vee})$ admits a canonical increasing filtration which additively splits. So the natural map $H^*(\operatorname{SP}^{\infty}X, \operatorname{SP}^nX; \mathbb{Z}) \to H^*(\operatorname{SP}^{\infty}X; \mathbb{Z})$ is an inclusion and we have an isomorphism

$$\mathbb{L}^* \operatorname{IBin}_{>n}''(\mathbb{Z}\langle X/\operatorname{pt}\rangle^{\vee}) \simeq H^*(\operatorname{SP}^{\infty} X, \operatorname{SP}^n X; \mathbb{Z})$$

. In general this decreasing filtration is not multiplicative.

The discussion above yields

Theorem 6.2.4. If $X = \Sigma Y$ is a suspension space, then $H^*(\operatorname{SP}^n X; \mathbb{Z})$ is a functor of $\bar{H}^*(X; \mathbb{Z})$ considered as a graded \mathbb{Z} -module.

Proof. We have a morphism $\Delta: X \to X \vee X$ such that the induced morphism $\bar{C}_*(X) \to \bar{C}_*(X) \oplus \bar{C}_*(X)$ is given by the diagonal in D(Ab). Then $\Delta \in sAb'$ induces a morphism $\Delta^{\vee}: \mathbb{Z}\langle X/\operatorname{pt}\rangle^{\oplus 2} \to \mathbb{Z}\langle X/\operatorname{pt}\rangle \in Ho(\operatorname{cs} Ab'')$ which is homotopy equivalent to the usual addition. In particular the additive equivalence

$$\mathbb{L}\operatorname{Bin}''(\mathbb{Z}\langle X/\operatorname{pt}\rangle^{\vee}) \simeq \mathbb{L}\Gamma''(\mathbb{Z}\langle X/\operatorname{pt}\rangle^{\vee})$$

is in fact multiplicative in $D(\mathrm{Ab})$. Then the natural isomorphism $H^*(\mathrm{SP}^nX;\mathbb{Z})\simeq \mathbb{L}^*\operatorname{Bin}''/\operatorname{IBin}''_{>n}(\mathbb{Z}\langle X/\operatorname{pt}\rangle^\vee)$ provides a natural isomorphism

$$H^*(\operatorname{SP}^n X; \mathbb{Z}) \simeq \mathbb{L}\Gamma'' / \operatorname{I}\Gamma''_{>n} (\mathbb{Z}\langle X/\operatorname{pt}\rangle^{\vee}).$$

While IBin_{>n} do not extend to functors from Ab, the RHS is given by $\mathbb{L}\Gamma/\operatorname{I}\Gamma_{>n}(\mathbb{Z}\langle X/\operatorname{pt}\rangle) \simeq \mathbb{L}\Gamma/\operatorname{I}\Gamma_{>n}(\bar{H}^*(X;\mathbb{Z}))$. So, for the suspension space X we have a natural identification:

$$H^*(\operatorname{SP}^n X; \mathbb{Z}) \simeq \mathbb{L}^*\Gamma/\operatorname{I}\Gamma_{>n}(\bar{H}^*(X; \mathbb{Z})).$$

This is a functor of $\bar{H}^*(X;\mathbb{Z})$ and this completes the proof.

As a corollary of the above proof we have

Corollary 6.2.5. For the suspension space $X = \Sigma Y$, the multiplication

$$\cup: H^*(\mathrm{SP}^{\infty}X, \mathrm{SP}^{n-1}X; \mathbb{Z}) \otimes H^*(\mathrm{SP}^{\infty}X, \mathrm{SP}^{m-1}X; \mathbb{Z}) \to H^*(\mathrm{SP}^{\infty}X, \mathrm{SP}^{\max(n,m)-1}; \mathbb{Z}),$$

naturally passes through $H^*(SP^{\infty} X, SP^{n+m-1} X; \mathbb{Z})$.

References

- [1] Albrecht Dold, Homology of Symmetric Products and Other Functors of Complexes
- [2] Torsten Ekedahl, On minimal models in integral homotopy theory
- [3] Lawrence Breen, Roman Mikhailov and Antoine Touzé, Derived Functors of The Divided Power Functors
- [4] R. Mikhailov, ON THE SPLITTING OF POLYNOMIAL FUNCTORS
- [5] Dmitry V. Gugnin, On Integral Cohomology Ring of Symmetric Products
- [6] D. Kubrak, G. Shuklin, A. Zakharov, Derived binomial rings I: integral Betti cohomology of log schemes
- [7] F.P. Palermo, The Cohomology Ring Of Product Of Complexes
- [8] V. Puppe, Über Cohomologie von symmetrischen Produkten
- [9] A. Touzé, Bar complexes and extensions of classical exponential functors
- [10] Luc Illusie, Complexe Cotangent et Déformations
- [11] J.H.C. Whitehead, On simply connected, 4-dimensional polyhedra