Feuille 11

Espaces vectoriels et applications linéaires (suite)

Exercice 1. On considère les trois vecteurs de \mathbb{R}^3 : $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ x \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, à quelles conditions sur $x \in \mathbb{R}$ forment-ils une base de \mathbb{R}^3 ?

Exercice 2. 1. Montrer que $P = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x + 2y - 4z = 0 \right\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Quelle est sa dimension? Déterminer une base de P

- 2. Montrer que $D = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x-y+z=0 \text{ et } x+y-z=0 \right\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Quelle est sa dimension? Déterminer une base de D.
- 3. Montrer que $H = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \mid x+y+z+t=0 \right\}$ est un sous-espace vectoriel de \mathbb{R}^4 . Quelle est sa dimension? Déterminer une base de H

Exercice 3. Considérons l'ensemble $\mathbb{R}[X]$ des polynômes à coefficients réels.

- 1. Montrer que l'addition des polynômes et la multiplication des polynômes par un réel font de cet ensemble un \mathbb{R} -espace vectoriel.
- 2. Montrer que le sous-ensemble $\mathbb{R}_2[X]$ des polynômes de degré ≤ 2 est un sous-espace vectoriel.
- 3. Montrer que $P_1 = X + 1$, $P_2 = X^2 2X$ et $P_3 = X 1$ forment une base de $\mathbb{R}_2[X]$.
- 4. En déduire la dimension de $\mathbb{R}_2[X]$.
- 5. Déterminer les coordonnées dans la base (P_1, P_2, P_3) du polynôme $P = X^2$.

Exercice 4. Pour chacune des équations différentielles linéaires d'ordre 2 suivantes, déterminer l'ensemble des solutions réelles (on commencera par trouver une base de l'espace vectoriel des solutions de l'équation homogène puis on trouvera une solution particulière) :

1.
$$y'' - 2y' + y = e^{2x}$$
; 2. $y'' - 2y' + y = e^{x}$; 3. $y'' - 4y' + 8y = \cos(x)$; 4. $y'' - 3y' + 2y = 2x^{2} + 1$.

Exercice 5. Soient \mathbb{K} un corps (\mathbb{R} ou \mathbb{C}) et $\mathcal{M} = \mathcal{M}_n(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices $n \times n$ à coefficients dans \mathbb{K} . On fixe une matrice $A \in \mathcal{M}$ et on considère la fonction g_A de \mathcal{M} dans \mathcal{M} définie par $B \to g_A(B) = AB$.

- 1. Montrer que g_A est une application linéaire.
- 2. Si A est inversible, montrer que g_A est un automorphisme de \mathcal{M} .
- 3. Si il existe $C \in \mathcal{M}$ tel que CA = Id (la matrice identité de \mathcal{M}), montrer que g_A est injective, en déduire qu'elle est surjective et que C est l'inverse de A.
- 4. Caractériser le noyau de g_A et en déduire la dimension de ce noyau et le rang de g_A .
- 5. Si la dimension du noyau de A est égal à n-1 montrer qu'il existe x et y non nuls dans \mathbb{R}^n tels que $A=x^ty$ et caractériser l'image de g_A .
- 6. Si n = 2, montrer que les matrices :

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \ , \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \ , \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \ , \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \ ,$$

forment une base de $\mathcal{M}_2(\mathbb{K})$ et écrire la matrice qui représente l'expression de g_A dans cette base.

Exercice 6. Soient $a \in \mathbb{R}$ et la matrice $A(a) = \begin{pmatrix} a & 1 \\ 1 & a \end{pmatrix}$.

- 1. Montrer qu'il existe $c_1 = c_1(a)$ et $c_2 = c_2(a)$ tels que $A(a) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $A(a) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
- 2. Montrer que les vecteurs $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ forment une base de \mathbb{R}^2 et discuter en fonction de a des valeurs des quantités $\operatorname{rg}(A(a))$ et $\dim(\ker(A(a)))$.
- 3. Recommencer pour la matrice $A(a) = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$.
- 4. Généraliser.

Exercice 7. Soit f une application linéaire de \mathbb{R}^n dans \mathbb{R}^n qui vérifie f(f(x)) = f(x) pour tout $x \in \mathbb{R}^n$.

- 1. Pour $x \in \mathbb{R}^n$, montrer que $x f(x) \in \ker(f)$.
- 2. Montrer que $im(f) \cap ker(f) = \{0\}.$
- 3. Pour $x \in \mathbb{R}^n$, montrer qu'il existe $y \in \text{im}(f)$ et $z \in \text{ker}(f)$ tels que x = y + z.
- 4. Montrer que la décomposition précédente est unique et que f(x) = y, on dit que f est le projecteur sur im(f) parallèlement à ker(f).
- 5. Si n = 2 et $A = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ montrer que $A^2 = A$ et que $f_A(f_A(x)) = f_A(x)$ pour tout $x \in \mathbb{R}^2$. Représenter dans le plan im (f_A) , ker (f_A) et l'action de f_A .