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6 TABLE DES MATIERES

Dans ce cours (K,+,#) désignera (R, +,x*), (C,+, %) ou (Q,+,*) mais la théorie
développée reste valable pour tout corps commutatif (K, +, ).

Ce cours reprend des parties des cours de

o LM120 écrit par H. Ledret

o LM125 2004-2009 qui reposait sur des modules d’algebre de I'université en ligne
(UeL) adaptés au programme de I’'UE. Ces modules sont diis a une équipe de collegues
de I’université Bordeaux 1 animée par J Queyrut.



Chapitre 1

Matrices

Les matrices sont des tableaux de nombres. La résolution d’un certain nombre de
problémes d’algebre linéaire se rameéne a des manipulations sur les matrices. Comme
nous le verrons dans le deuxiéme chapitre, cela est vrai pour la résolution des sytémes
linéaires.

1.1 Matrices : définitions, opérations

1.1.1 Définitions

Définition 1 Soir deux entiers n et p supérieurs ou égaux a 1. On appelle matrice de
type (n,p) a coefficients dans K, un tableau rectangulaire a n lignes et p colonnes
d’éléments de K.

Terminologie et notations :
Un tel tableau est représenté de la maniere suivante :

ay ay2 ... 4ij ... Alp

ay azp ... azj ... dyp
A:

a1 a2 ... a,'7j ai,p

an1 Qp2 ... Quj ... Qnp

Les éléments a; ; de K sont appelés les coefficients de la matrice A. L’élement q; ;
désigne le coefficient du tableau situé a I’intersection de la ligne i et de la colonne j.
On écrira aussi A = (aw)(i’j)e[l’n}x[l‘p] ou s’iln’y a pas d’ambiguité A = (a; ;). On dira
que a; ; est le terme général de la matrice A.

L’ensemble des matrices a n lignes et p colonnes a coefficients dans K est noté
M, ,(K). Les éléments de M, ,(R) (respectivement M, ,(C)) sont appelées matrices
réelles (respectivement complexes). Les inclusions Q C R C C entrainent les inclu-
sions M, ,(Q) C M, ,(R) C M, ,(C).
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1 V2

1 0

3 1 | estunélémentde M4;(R).
0,5 0

Exemple 1 La matrice A =

Définition 2 (Définition de I’egalité de deux matrices) Soientn,p,n’, p’ quatre entiers.
On considére A = (a; j) une matrice appartenant a My ,(K) et A' = (a; ;) une matrice
appartenant a M,y 7 (K). On dit que ces matrices sont égales si et seulement si

n=n,p=p
v(i,j) € [l,n] X [I,P], aij :ag,j
Matrices particulieres
Soient n et p deux entiers supérieurs ou égaux a 1.
Une matrice qui a une seule ligne est appelée matrice ligne. Si elle a p colonnes,
on la note

A= <a1,1 arn alyp)
De méme, une matrice qui a une seule colonne est appelée matrice colonne. Si elle a n
lignes, on la note
aip,
as,
A=

An,1

Définition 3 (Matrice carrée) Une matrice qui a le méme nombre de lignes et de co-
lonnes est appelée matrice carrée. Si ce nombre est I’entier n, on dit que la matrice
est d’ordre n et on note M, (K) au lieu de M, ,(K), I’ensemble des matrices carrées
d’ordre n a coefficients dans K.

Sur une matrice carrée, on a la notion de diagonale principale.

Définition 4 (Définition de la diagonale principale d’une matrice carrée) Soir

ayl ay2 ... A4y ... dip

al a2 ... A2 ... A2p
A =

al 42 ... djj ... djp

apl Qp2 ... duj ... dpp

une matrice carrée d’ordre n. Sa diagonale principale est la diagonale (a1 1,a27 ..., ay ).

1 0 9

Exemple 2 la matrice réelle [ 2 /2 2 | est carrée d’ordre 3. Les termes de sa dia-
35 9

gonale principale sont | = 1,425 = ﬁ, a3z ="9.

Il y a un certain nombre de cas particuliers de matrices carrées intéressants.
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Définition 5 (Matrices triangulaires) Une matrice carrée d’ordre n de terme général
a; j est triangulaire supérieure si pour tout entier i € [1,n| et tout entier j tel que
1 §j<i,ai,j:0.

Une matrice carrée d’ordre n de terme général a; ; est triangulaire inférieure si
pour tout entier i € [1,n] et tout entier j tel que i < j <n, a; j =0.

Une matrice carrée d’ordre n de terme général (a; ;) est diagonale si, pour tout
couple (i, j)de[l,n] x [1,n] tel que i # j, on a a; ;j = 0.

Une matrice triangulaire supérieure (respectivement inférieure) est une matrice
carrée dont tous les termes “en dessous” (respectivement “au dessus”) de la diagonale
principale sont nuls.

Une matrice diagonale est une matrice carrée dont les termes situés hors de la dia-
gonale principale sont tous nuls.

0 9
Exemple 3 La matrice réelle V2 2| est triangulaire supérieure.
9

0

S O =

0
La matrice réelle V2 est triangulaire inférieure.

5
0

V2

0

La matrice réelle est diagonale.

OO O Voo N

SO = W -

N—

Cas particulier important :
La matrice diagonale d’ordre n dont les termes de la diagonale principale sont tous
égaux a 1 est appelée matrice unité et est notée I,

Soit
1 0 ... ... 0
01 0 0
0 0O 1 0
0 0 1

Définition 6 (Transposée d’une matrice) Soit A = (a; ;) un élément de M, ,(K). On
appelle transposée de A et on note AT la matrice a p lignes et n colonnes de terme
général by défini par :
Vk, 1 <k<p, VI,1<I<n b =a.
T

10
Exemple4 (2 1 = <(1) % S)
30

Remarque 1 La iéme ligne de A devient la iéme colonne de A” .

Notation : La transposée de la matrice A se note aussi ‘A.
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1.1.2 Opérations sur les matrices

Commencons par définir la somme de deux matrices.

Soient n et p deux entiers supérieurs ou égaux a 1. On ne considere que des matrices
de méme type appartenant a M, ,(K). Sil’on a des matrices de types différents, parler
de leur somme n’a aucun sens !

Définition 7 Soient A = (a; ;) et B = (b; j) deux matrices appartenant a M, ,(K). On
appelle somme des matrices A et B, et I'on note A+ B , la matrice appartenant a
M, ,(K) de terme général la somme des termes généraux de A et B. Autrement dit on a
A+B = (cij)(ijeltnx(1.p avee

V(i,j) € [L,n] x [1,p], cij=aij+bij.

Exemple 5 Dans M> 3, on a la somme

123 101\ (224
QIO+QIO_QZQ

Proposition 1 (Propriété de la somme de deux matrices) Soient A, B et C trois éléments
de M, ,

1) Ona A+ B = B+ A (on dit que ’addition est commutative).

2)Ona(A+B)+C=A+ (B+C) (ondit que I’addition est associative).

3) Si on note 0,,, la matrice, élément de M, ,(K), dont tous les coefficients sont
nuls, ona A+0, , = A.

4)SiA=(a;j) etA' = (—ajj), onaA+A =0,).

Démonstration. 1) Si A = (a;j) et B= (b;j), A+ B est la matrice de terme général
a;j+b;;j et B+A est la matrice de terme général b; ; +a; ;. Comme on a I’égalité
a;j j+b;j=b;;+a;;dans K, on en déduit A+ B = B+ A.

2) La justification est semblable a la précédente : c’est une conséquence directe de
la propriété a+ (b+c) = (a+ b) + ¢ vraie pour tout élément a, b, et ¢ de K.

3) La justification est semblable a la précédente : c’est une conséquence directe de
la propriété a 40 = a, vraie pour tout élément a de K.

4) La justification est semblable a la précédente : c’est une conséquence directe de
la propriété a + (—a) = 0 vraie pour tout élément a de K.

Remarque 2 Lorsqu’il n’y aura pas d’ambiguité, la matrice O, , sera notée 0.

Proposition 2 La transposée de la somme de deux matrices est la somme des matrices
transposées.

La démonstration est laissée au lecteur. Elle se fonde sur la définition de la trans-
posée d’une matrice et sur celle de 1’addition de deux matrices. (]

Nous allons introduire une nouvelle opération sur M, ,(K) : la multiplication d’une
matrice par un scalaire.

Définition 8 (Multiplication d’une matrice par un scalaire) Soient A= (a; ;) une ma-
trice appartenant a My, ,(K) et un élément o de K. On désigne par 0A la matrice ap-
partenant a My, ,(K) dont le terme général est le produit par o, du terme général de A.
On a donc 0A = (0w; ;). On dit que est A est le produit de la matrice A par le scalaire
Ol
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Remarque 3 11 est clair que le fait que le produit de deux éléments de K soit encore
un élément de K, est essentiel dans cette définition.

Exemple 6 Dans M, 3(R), on a I’égalité :

S(123)_(24
010/ \02

Dans M3(C), on a

Enongons maintenant quelques propriétés de la multiplication par un scalaire.

Proposition 3 Soit A = (a; j) une matrice quelconque appartenant a M, ,(K)
a)OnalA=A.
b) Soient o et B deux éléments quelconques de K, on a a(BA) = (af)A
c) Si o est un élément quelconque de K, on a (0A)T = aAT.

Démonstration. a) provient de I’égalité dans K, valable pour toutade K : la = a.

b) Cela provient de 1’égalité dans K, valable pour tout a : a(Ba) = (0f)a

¢) Cela provient immédiatement des définitions de la transposée d’une matrice et
du produit d’une matrice par un scalaire.

Enoncons maintenant deux propriétés liant ces deux relations :

Proposition 4 Soient A = (a; j) et B = (b; j) deux matrices quelconques appartenent
a M, ,(K). Soient o et B deux scalaires. On a

a) (0.+PB)A = oA + BA.

b) (A +B) = aA +aB

Démonstration. a) En effet, le terme général de (o)A est égal a (ou+B)a; ;. D’apres
les régles de calcul dans K, (0.4 B)a;, ; est égal a oa; j + Ba; j qui est le terme général
de la matrice oA + BA.

b) La démonstration de b) est semblable a la précédente.

1.2 Produit de matrices

Soient A et B deux matrices. On suppose que le nombre de colonnes de A est égal
au nombre de lignes de B. Dans ces conditions, on va pouvoir définir le produit AB.
Soient n, p et g trois entiers supérieurs ou égaux a 1.
Définition 9 Soit A = (a; ;) une matrice a n lignes et p colonnes et soit B = (b; ;) une

matrice a p lignes et q colonnes. Alors AB est la matrice a n lignes et q colonnes dont
le terme général c; j est donné par la formule

)4
Cik= Y aijbjk
=1
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Remarque 4 On peut écrire le coefficient de facon plus développée, a savoir : .
Cik =ainbik+aizbrx+---+aijbjx+---+aiphpi.

Sous cette forme, on comprend mieux la contrainte imposée sur les nombres de co-
lonnes et de lignes de A et B respectivement. Donc, pour avoir 1’élément de la i-ieme
ligne k-ieme colonne de AB, on prend la i-ieme ligne de la matrice qui est a gauche
c’est-a-dire A, la k-ieéme colonne de la matrice qui est a droite c’est-a-dire B ; on fait le
produit du premier élément de la ligne par le premier élément de la colonne, puis du
deuxieme élément de la ligne par le deuxieme élément de la colonne et ainsi de suite
jusqu’au produit du p-ieme élément de la ligne par le p-ieme élément de la colonne et
on fait la somme de tous ces produits. Il est commode quand on débute de disposer les
calculs de la fagon suivante.

—B

X
X
X
X
|
_{_ «— AB

X X X X - —

On a fait apparaitre une ligne générique de A et une colonne générique de B avec les
coefficients qui doivent étre multipliés les uns avec les autres (représentés par des X
dans I’ordre de gauche a droite dans A et de haut en bas dans B) puis additionnés pour
donner le coefficient de AB situé a I’intersection de cette ligne et de cette colonne.
Avec un peu plus de pratique, on pose directement I’opération en ligne comme dans

I’exemple ci-dessous.
(110) - _(2 3>
234 01 5 11

Remarque 5 Ecrivons B = (b1b;.. .by) ol b; désigne la i-me colonne de B. Le pro-
duit Ab; est défini et est élément de M, 1(K). On a

AB = (AbiAb, ... Ab,).

Remarque 6 Deux erreurs grossieres a éviter. Les regles du calcul des produits de
matrices différent de celles des produits dans un corps par d’autres aspects.

1) Si AB = AC, on ne peut pas simplifier par A pour en déduire que B = C méme si
A n’est pas nulle. C’est faux en général comme le montre 1’exemple ci-dessous.

0 1\/0 1\ (0 1\/00\ (11
00/\11) \00)\11) \00)/"
ii) Si AB = 0, on ne peut pas en déduire que soit A = 0 soit B = 0. C’est faux en
général.

Si on a un exemple de ii), on a aussi un exemple de i) puisque 0 = A x 0. Il suffit
de prendre

00 10 00 10 00
A= (0 1) etB—(O O).Alors,AB— (0 1) (0 0) _(O 0)

mais ni A ni B n’est nulle. O
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Proposition 5 (Propriétés du produit des matrices) a)Associativité du produit : Soient
AeM,p, BeEM,,etCeM,,.Alors les produits AB, (AB)C, BC, A(BC) ont un sens
et I'on a I’égalité suivante dans M, ,(K) :

(AB)C = A(BC).

b) Distributivité a droite du produit par rapport a la somme : Soient A € M, ,(K),
BeM, ,(K)etCeM,,(K). Alors A+ B et les produits (A+ B)C, AC, BC ont un sens
et on a l’égalité dans M, 4(K)

(A+B)C = AC+BC.

c) Distributivité a gauche du produit par rapport a la somme : Soient A € M, ,(K),
BeM,,(K)etCeM,,K). Alors A+ B et les produits (A+ B)C, AC, BC ont un sens
et on a I’égalité dans M, 4(K)

A(B+C) = AB+AC.

d) Comportement du produit des matrices par rapport au produit par un scalaire :
Soient , A € M, ,(K), B € M, deux matrices et A un scalaire. alors les produits AB,
(M)B, A(AB) et M(AB) Alors les produits ont un sens et on a les égalités dans :

(AM)B = A(AB) = M(AB).
Démonstration. Posons A = (a; ;), B= (b; ;) et C = (c; ).

p
a) Le terme d’indice (i, j) de la matrice AB est x; ; = Zai’lblﬁk. Le terme d’indice
I=1
(i, ) de la matrice (AB)C est donc

q q
Y ik =),
k=1

P
k=1 \I[=

Zai,lbl,k> Ck,j-

=1

Le terme d’indice (/, j) de la matrice BC est y; ; =

)
by xck,j. Le terme d’indice (i, j)

k=1
p q

Yoaiir | Yobikery |-

=1 \i=1

Comme la multiplication est distributive sur I’addition et associative dans K, les termes
généraux de (AB)C et A(BC) coincident.

de la matrice A(BC) est

Les démonstrations de b) et ¢) et d) se font comme celle de I’associativité. O

Proposition 6 (Produit d’une matrice par une matrice unité) Notons I. la matrice
unité d’ordre r. Si A € M,, ,(K), on a les propriétés suivantes :

Al,=A et LA=A.
En particulier, si A est une matrice carrée d’ordre n, on a

Al, = I,A = A.
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Démonstration. Soit A € M, ,(K) de terme général a; ;. La matrice unité d’ordre p est
telle que tous les éléments de la diagonale principale sont égaux a 1, les autres étant
tous nuls. On peut formaliser cela en introduisant le symbole de Kronecker.

Si r et s sont deux entiers, on appelle symbole de Kronecker et on note J, le réel
qui vaut O si r est différent de s, et 1 si r est égal a s. Donc

Ors=0sir#s
Os=1sir=s

Alors on peut dire que le terme général de la matrice carrée d’ordre p, I, est 8,
avec r et s entiers, compris entre 1 et p.
Alors la matrice produit Af, est une matrice appartenant a M, ,(K) dont le terme

P
général c; ; est donné par la formule ¢;; = Z a; ;j8; ;. Dans cette somme i et [ sont fixés
J=1
et j prend toutes les valeurs comprises entre 1 et p. Si j est différentde /, §;; = 0, et si

jestégalal, o, =1.

Donc dans la somme qui définit ¢; ;, tous les termes correspondant a des valeurs de
Jj différentes de / sont nuls et il reste donc ¢;; = a;;8;; = a;;1 = a; ;. Donc les matrices
Al, et A ont le méme terme général et sont donc €gales.

L’égalité [,A = A se démontre de la méme fagon. ]

Proposition 7 (Produit d’une matrice par la matrice nulle) Soit A un élément de M, ,(K),
et soit 0, 4 (respectivement 0,.,) la matrice de M, 4(K) (respectivement M,,(K)) dont
tous les éléments sont nuls. On a les propriétés AO, , = 0, 4 et 0.,A = 0.

La démonstration de cette proposition est laissée au lecteur.

Proposition 8 Si le produit AB est défini, alors le produit BT AT est aussi défini et I’on
a (AB)T =BTAT.

Démonstration. Soit A = (ajj) € My, (K) et B= (bj;) € Myp(K), &0t AB € M,,,(K).
On voit donc que B! € M,,(K) et AT € M,,,,(K). Par conséquent, BT AT est bien défini
et de la méme taille que (AB)T.

Utilisons la formule générale ci-dessus.

n n n
BTAT Z BT lj AT Z Z kj ji — AB kl - ((AB)T)lk
j=1 J=1 J=1

d’ou le résultat. |

Remarque 7 ATTENTION ! Le produit matriciel n’est pas commutatif. En effet, il
peut se faire que AB soit défini mais pas BA, ou que AB et BA soient tous deux définis
mais pas de la méme taille. Mais méme dans le cas ou AB et BA sont définis et de la
méme taille, on a en général AB # BA. Considérons 1’exemple suivant.

GL)GES)-=(5 ) ms (90 L) 2)

C’est 1a la situation générale. L’ ordre des facteurs dans un produit matriciel ne doit
donc jamais étre modifié, sous peine de fausser le résultat (sauf si I’on sait que I’on
est dans un cas particulier ou deux matrices commutent, c’est-a-dire sont telles que
AB = BA. Mais c’est rare...).

En fait, le produit matriciel est le premier exemple que 1’on rencontre de produit
non commutatif. |
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1.3 Matrices carrées, matrices carrées inversibles

Dans I’ensemble M, (K) des matrices carrées d’ordre n, (c’est a dire celles qui ont
n lignes et n colonnes) a coefficients dans K, la multiplication des matrices est une
opération interne. De plus, si [,, désigne la matrice carrée unité d’ordre n,on a :

VA € M,(K), AL, =1,A = A.
On peut aussi définir les puissances successives d’une matrice.
Définition 10 Pour tout A € M, (K), on définit les puissances successives de A par

AY =1, et APT1 = AAP = APA pour tout p € N.

Exemple 7 On cherche a calculer A” avec A =

—_—
—

1
1 |. On calcule A% et A3 et on
1

obtient

333
A’= (3 3 3] =34, A’=34.4=3%A.
333

L observation de ces premigres puissances permet de penser que la formule est : AP =
3p 3P 3P
3PA = | 37 37 3P ]. Démontrons ce résultat par récurrence.
3p 3P 3P
Il est vrai pour p = 0. On le suppose vrai pour un entier p et on va le démontrer par
récurrence pour p+ 1. On a, d’apres la définition,

3P 3P 3P 111 3p+l 3ptl 3ptl
APTZ=APHIA= (3P 3P 3P| |1 1 1| = [3rFT! 3t 3ptl
3P 3P 3P 111 3p+l 3ptl 3ptl

Donc la propriété est démontrée.

Remarque 8 Ce n’est pas toujours simple de calculer la puissance d’une matrice car la
formule de récurrence n’est pas toujours aussi apparente que dans 1’exemple qui vient
d’étre traité. Il existe des méthodes plus systématiques, mais qui sortent du cadre de ce
cours. Nous verrons cependant des méthodes qui marchent dans des cas favorables.

Remarque 9 Comme la multiplication n’est pas commutative, les identités binomiales
usuelles sont fausses. En particulier, (A + B)? # A% +2AB + B?, mais bien (A + B)? =
A?+AB+BA+B. O

On a cependant :

Proposition 9 (Calcul de (A + B)" lorsque AB = BA) Soient A et B deux éléments de
M, (K) qui commutent c’est & dire tels que AB = BA. Alors, pour tout entier m, supérieur
ou égal a 1, on a la formule

m
(A—FB)m _ ZCZAn17kBk
k=0

on Ck désigne le coefficient du binome.
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La démonstration se fait par récurrence en utilisant les propriétés bien connues du
A k=1 kK _ ck k _ cm—k
bindme, a savoir C, | +C,, |, =C, etC, =Cp™".

1111 0111
. 0121 0021 .
Exemple 8 Soit M = 0013 .Onpose N=M—-1I= 0003 . La matrice
0001 0000
N est nilpotente (c’est a dire Ik € N | N¥ = 0) comme le montrent les calculs suivants :
0024 0006
2 0006 3 [0000 4
NM=1looo00|™M=|o000]| N =0
0000 0000

Comme on a M = I+ N et les matrices N et I commutent, on peut appliquer la formule
du bindme de Newton. Si k est supérieur ou égale a 3, en utilisant le fait que N* = 0 si
k > 4, on obtient

k
Mk = Y NI
=0

3
- yan
=0

= I+ kN 4 S N2 KEEDR2) 53

D’ou

K k(> —k+1)
2k k(3k—2)

1 3k
0 1

On vérifie immédiatement que cette formule est aussi vraie pour k = 0,1 ou 2.

1k
« o1
M=10 0
00

Définition 11 On dit que A € M,,(K) est inversible si et seulement si il existe une ma-
trice A" € My, (K) telle que AA' =A'A =1,

Notation :

e Onnote A’ = A~!, et, plus généralement, A~ = (A~1)? pour tout p € N quand A
est inversible.

e L’ensemble des matrices inversibles de M, (K) est noté GL,(K).

Exemple 9 Soit /,, la matrice carrée unité d’ordre n. C’est une matrice inversible (immédiat
a partir de 1’égalité 1,1, = I,,).

Exemple 10 La matrice nulle , d’ordre n avec n quelconque, n’est pas inversible. En
effet on sait que, pour tout matrice M de M,(K), on a MO, = 0,M = 0,,. Comme la
matrice nulle est différente de la matrice unité, on peut conclure.

11 . . . . e
). Etudier si A est inversible, c’est étudier 1’existence

Exemple 11 Soit A = (O 0

d’une matrice B = (Z ccl) a coefficients dans K, telle que AB=BA=101.0rAB=1,

(69696

équivaut a I’égalité :
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qui équivaut a :

at+b c+d\ (10
0 0 ) \01)°

Or les matrices (a—(&)—b c—&(;d) et (é ?) ne sont pas égales, puisque les coeffi-

cients de la deuxieme colonne, deuxieme ligne sont différents.
Donc il n’existe pas de matrice B telle que AB = BA = I, et A n’est pas inversible.

Exemple 12 Soit A = <(1) }) Etudier si A est inversible, c’est étudier 1’existence

d’une matrice B = C> a coefficients dans K, telle que AB=BA=1,. OrAB=1,

(696

Cette égalité équivaut au systéme : .

équivaut a I’égalité :

a+b=1
c+d=0
b=0
d=1
Sa résolution est immédiate :a=1,b=0,c=—-1,d=1

1 —
0 1
convient, il faut montrer 1’égalité BA = I, dont la vérification est laissée au lecteur.

(1) _11) , telle que AB=BA =

Il n’y a donc qu’une seule matrice possible B = . Pour prouver qu’elle

On a donc trouvé une matrice carrée d’ordre 2, B = <

I,. La matrice A est donc inversible.

On a remarqué, en cours de calcul, qu’il n’y avait qu’une seule solution possible.
En fait c’est une propriété générale.

Remarque 10 La méthode de Gauss fournira une méthode pour calculer I'inverse
d’une matrice.

Proposition 10 Si A est inversible, alors son inverse est unique.

Démonstration. La méthode classique pour mener a bien une telle démonstration est
de supposer I’existence de deux matrices B; et B, satisfaisant aux conditions imposées
et de démontrer que By = B;.

Soit donc B telle que AB| = B1A = I, et B; telle que ABy = BA = I,,. Calculons
B>(ABy). D’une part, comme AB| = I,, on a B(AB;) = B. D’autre part, comme le
produit des matrices est associatif, on a By(AB;) = (BA)B = I,B; = B;. Donc B| =
B>. O

Pour ceux qui connaissent la théorie des groupes, les points a) et b) de la proposition
suivante montre que 1’ensemble non vide GL(n,K) est un groupe pour la multiplication.
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Proposition 11 Soient A et B deux matrices de GL,(K).
a) A~" est inversible et ona (A"~ = A.
b) AB est inversible et on a (AB) "' =B 'A~1,
c) AT est inversible et on a et (AT)~! = (A=1)T.

Démonstration. a) découle de I'identité AA~! =A~"1A=1,.
b) En utilisant I’associativité de la multiplication des matrices, on montre

(AB)(B'A™YY= (B 'A" Y (4B) =1,.

La formule pour I’inverse du produit a lieu dans n’importe quel groupe.
¢) Pour la transposée, on remarque que comme I, = AA~! et que I’ =1,,0on a

In — (AAfl)T — (Afl)TAT.

De méme, le fait que I, = A~'A implique que I, = AT (A=1)T, donc AT est inversible
et on a pour inverse la transposée de A~!. (]

Si M est une matrice quelconque de M,,(K), nous avons vu que la relation MA = MB
ol A, et B sont des éléments de M, (K) n’entraine pas forcément 1’égalité A = B. En
revanche, si M est une matrice inversible, on a la proposition suivante :

Proposition 12 (Simplification par une matrice inversible) Soient A et B deux ma-
trices de M, (K) et M une matrice inversible de M,,(K). Alors 1’égalité MA = MB im-
plique I’égalité A = B. On dit que M est un élément régulier de M,(K).

Démonstration. Ce résultat est immédiat : si on multiplie a gauche 1’égalité MA = MB
par M~!, on obtient I’égalité : M—! (MA) = M~'(MB). Soit en utilisant I’associativité
du produit des matrices (M~'M)A = (M~'M)B, ce qui donne d’apres la définition de
I'inverse [,A =1,Bd’ou A = B.

1.4 Algorithme de Gauss sur les matrices

L’algorithme de Gauss (ou encore du pivot de Gauss) est fondé sur les notions de
matrices échelonnées réduites et d’opérations élémentaires sur les lignes.

Définition 12 Une matrice A est dite échelonnée si et seulement si elle a les deux
propriétés suivantes

1) Si une ligne est entiérement nulle, toutes les lignes situées en dessous sont
également entierement nulles.

2) Dans chaque ligne non entierement nulle (a partir de la deuxieme), le premier
coefficient non nul en comptant a partir de la gauche est situé strictement a droite du
premier coefficient non nul de la ligne précédente.

On dit qu’une matrice est échelonnée réduite si et seulement elle a en plus les deux
propriétés suivantes

3) Le premier coefficient non nul d’une ligne en comptant a partir de la gauche
vaut 1.

4) Et c’est le seul élément non nul de sa colonne.

Remarque 11 Grace a 1), on voit que 2) a un sens : si une ligne contient un élément
non nul, alors la ligne précédente contient aussi un élément non nul, sinon cela contre-
dirait 1). Par ailleurs, toujours a cause de 2) et de 1), on voit que tous les coefficients
situés dans la méme colonne qu’un tel premier élément non nul d’une ligne et en des-
sous de cet élément, sont nuls. O
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Définition 13 Soit U une matrice échelonnée réduite. Les positions de pivot de U sont
les emplacements (au sens du couple (numéro de ligne, numéro de colonne)) des coef-
ficients valant 1 du point 3) de la définition 12.

Exemple 13
2 -3 2 1
01 —4 8
A=10 0 0 5/2
00 0 O
00 0 O

est échelonnée mais n’est pas échelonnée réduite. La matrice

10 2 025
B=|01 -20 16
00 0 1 1

est échelonnée réduite et ses positions de pivot sont (1,1), (2,2) et (3,4). On reconnait
(a I’ceil) les matrices échelonnées a la disposition caractéristique des zéros en escalier
descendant du haut a gauche vers le bas a droite. O

Définition 14 On appelle opérations élémentaires sur les lignes les trois opérations
suivantes :

i) Echanger deux lignes (échange).

ii) Multiplier une ligne par une constante non nulle (homothétie).

iii) Remplacer une ligne par elle-méme plus un multiple d’une autre ligne (substi-
tution).

Les opérations ii) et iii) sont a entendre colonne par colonne.

Exemple 14 Considérons la matrice

1 2
A= 0 2
-10

— B~ W
S N B

L’échange des lignes 2 et 3 de A produit la nouvelle matrice

1 234
A=[-1010
0 246

Multiplier la ligne 1 de A par 5 produit la nouvelle matrice

5 10 15 20
A'=10 2 4 6
-1 0 1 0

Remplacer 1la ligne 2 de A par elle-méme plus (—1)x la ligne 1 produit la nouvelle
matrice

234
A=1-1012
010
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Plus généralement, remplacer la ligne i par elle-méme plus Ax la ligne k revient a
remplacer dans la colonne j le coefficient a;; par a;; + Aay; pour tous les j de 1 a n.

Il faut bien remarquer qu’en effectuant une opération élémentaire, on ne mélange
Jjamais les colonnes. Ce que contient une colonne apres I’opération ne dépend que de
ce qu’elle contenait avant I’opération. O

Les matrices obtenues apres une opération élémentaire ne sont pas égales a la ma-
trice de départ. On introduit donc une nouvelle notion.

Notation Soient A et B deux matrices de méme taille m x n. Si B se déduit de A par
une suite finie d’opérations élémentaires, on notera A ~ B.

Proposition 13 /. Si A est un élément de M,y ,, on a A ~ A (on dit que la relation ~
est reflexive).

2. Soient A, B et C trois éléments de M, . Si A ~ B et B~ C alors A ~ C (on dit
que la relation ~ est transitive).

3. Si A ~ B alors B ~ A (on dit que la relation ~ est symétrique ).

Remarque 12 Une relation binaire possédant les trois propriétés, réflexive, symétrique
et transitive est appelée relation d’équivalence. Donc la relation binaire ~ définie sur
M,, »(K) est une relation d’équivalence sur M, ,(K).

Démonstration. Cette relation est réflexive. En effet, on a A ~ A puisque A se déduit
de A par une suite de zéro opérations élémentaires.

Elle est transitive. En effet, si A ~ B et B ~ C, alors on déduit C de A en effectuant
d’abord la suite d’opérations élémentaires qui passe de A a B, puis celle qui passe de B
acC.

Elle est enfin symétrique. Ce dernier point est un peu plus délicat. Il repose sur le
fait que les trois opérations élémentaires sont inversibles, c’est-a-dire que 1’on peut
revenir en arriére par une autre opération élémentaire. Ce fait est évident pour les
opérations d’échange et d’homothétie. En effet, il suffit de rééchanger les mémes lignes
dans le cas de I’échange, et de multiplier la ligne par I’inverse de la constante non nulle
dans le cas de I’homothétie pour se retrouver dans la configuration de départ. Dans le
cas de la substitution, supposons que 1’on ait remplacé la ligne i par elle-méme plus A x
la ligne , c’est-a-dire remplacé le coefficient a;; par a;; = a;j+Aaj, j=1,...,n. Pour
revenir en arriere, il suffit d’effectuer la substitution remplagant la ligne i par elle-méme
moins Lx la ligne k. En effet, on remplace ainsi a;; par a;; — Aax; = a;j, j=1,...,n.
Soient maintenant deux matrices telles que A ~ B. On passe de B a A en effectuant
les opérations €lémentaires inverses de celles qui permettent de passer de A a B dans

I’ordre inverse, c’est-a-dire que B ~ A. O

Théoreme 1 Etant donnée une matrice A, il existe une unique matrice échelonnée
réduite U obtenue a partir de A par des opérations élémentaires sur les lignes.

Démonstration. Ce théoreme est en deux parties, une partie d’existence (il existe U
échelonnée réduite obtenue a partir de A par des opérations élémentaires sur les lignes)
et une partie unicité (c’est la seule).

Commencons par I’existence, laquelle se démontre grace a 1’algorithme de Gauss
proprement dit. L’idée générale de 1’algorithme de Gauss consiste a utiliser des substi-
tutions de lignes pour placer des zéros la ot il faut de fagon a créer d’abord une forme
échelonnée, puis une forme échelonnée réduite. Soit A une matrice m X n quelconque.
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Passage a une forme échelonnée.

Etape 1 : Choix du pivot. On commence par inspecter la premiére colonne. Soit
elle ne contient que des zéros, auquel cas on passe directement a I’étape 3, soit elle
contient au moins un terme non nul. On choisit alors un tel terme, que 1’on appelle le
pivot. Si c’est le terme a1 on passe directement a 1’étape 2, si c’est un terme a;; avec
i # 1, on échange les lignes 1 et i et on passe a 1’étape 2.

Au terme de 1’étape 1, on a obtenu une matrice de la forme

O a] 2 e alj e aln
0 a22 e az] . e azn
=A
0 alz e al] e aln
0 am2 e am] e amn
dans le premier cas, ou bien
/ /! / /
app Ay ccco dyyo oot 4y,
/ / /
ap dp a; ayy
/ / / / ~A
a; ap a;j i
/ / / /
Am1 Q2 """ Gy " Omp

avec a|; # 0 dans le deuxiéme cas.

Etape 2 : Elimination. On ne touche plus  la ligne 1, et on se sert du pivot pour
éliminer tous les termes a/,, i > 2. Pour cela, il suffit de remplacer la ligne i par elle-
méme moins % x laligne 1, ceci pouri=2,...,m.

Au terme de I’étape 2, on a obtenu une matrice de la forme

/ / /! /!
app dp o0 dpy ot Ay
/! 1 1
0 a22 .. az] ... a2n
: " " p ~A
0 alz .o alJ .o aln
1 1 /"
0 a, - Apj " A

Etape 3 : Boucle. Au début de 1’étape 3, on a obtenu dans tous les cas de figure une

matrice de la forme | 1 | |

app dyp o 4yt dgy
1 1 1
O a22 e az‘/ . a2n
: 3 | ~a
0 alz . e aij ... ain
1 1 1
0 a, - Apj " A
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dont la premiere colonne est bien celle d’une matrice échelonnée. On va donc conserver
cette premiere colonne. Si a{l # 0, on conserve aussi la premiére ligne, et 1’on va
boucler sur I’étape 1 en I’appliquant a la sous-matrice (m — 1) x (n— 1) qui reste

1

1 1
ax ay Ao
1 1 1
ap a;j i
1 1 1
) amj Amn
Si a}l =0, on boucle sur I’étape 1 en I’appliquant a la sous-matrice m x (n— 1)
1 1 1
O
a22 e a2] e azn
1 1 1
ap aij Ain
1 1 1
A amj A

Au terme de cette deuxieme itération de la boucle, on aura obtenu une matrice de

la forme
1 1

11
I N U A
2 2 2
0 a22 e azj e azn
: ; A
0 O a;; aj,
2 2
0 O ay, i A

et ainsi de suite.

Comme chaque itération de la boucle travaille sur une matrice qui a une colonne de
moins que la précédente, il est clair qu’au bout d’au plus n — 1 itérations de la boucle,
on aura ainsi obtenue une matrice échelonnée.

Passage a une forme échelonnée réduite.

Etape 1 : Homothéties. On repere le premier élément non nul de chaque ligne non
nulle, et on multiplie cette ligne par I'inverse de cet élément. Ceci crée une matrice
échelonnée avec des 1 en position de pivot.

Etape 2 : Elimination. On élimine les termes situés au dessus des positions de
pivot comme précédemment, en procédant a partir du bas a droite de la matrice. Ceci
ne modifie pas la structure échelonnée de la matrice en raison de la disposition des
z€ros dont on part. Cette étape requiert en général beaucoup moins de calculs que
I’élimination de la premiere partie de 1’algorithme, car les pivots valent 1 et il y a peu
de termes a modifier.

Voir plus loin un exemple de I’algorithme de Gauss en action.

Nous admettrons la partie unicité du théoréme.

Remarque 13 Le théoréeme précédent nous dit que I’on ne peut obtenir qu’une seule
matrice échelonnée réduite a partir de A par des opérations élémentaires sur les lignes.
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En revanche, on peut obtenir une infinité de matrices échelonnées a partir de A par des
opérations élémentaires sur les lignes.

Exemple 15 Soit
1 2
A= 0 2
-10

— AW
S N B

Passage a une forme échelonnée.

Premiére itération de la boucle, étape 1. Le choix du pivot est tout fait, on garde
ayl = 1.

Premiere itération de la boucle, étape 2. On remplace la ligne 2 par elle-méme
moins 0x la ligne 1 (c’est-a-dire qu’on ne fait rien sur cette ligne qui contient déja un
zéro en bonne position) et la ligne 3 par elle-méme moins (—1) X la ligne 1. On obtient

1234
A~ 10246
0244

- N B~ W

Deuxieme itération de la boucle, étape 1.
a%z =2.

Deuxieme itération de la boucle, étape 2. On remplace la ligne 3 par elle-méme
moins (2/2)x la ligne 1. On obtient

e choix du pivot est tout fait, on garde

123 4
A~1024 6
000 -2
Cette matrice est échelonnée (m — 1 =3 — 1 = 2 itérations maximum).
Passage a une forme échelonnée réduite.
Etape 1, homothéties. On multiplie la ligne 1 par 1, la ligne 2 par 1/2 et la ligne 3
par —1/2 et I’on obtient
1234
A~[0123
0001
Etape 2, premiére itération. On ne touche plus 2 la ligne 3 et on remplace la ligne
2 par elle-méme moins 3x la ligne 3 et la ligne 1 par elle-méme moins 4x la ligne 3.
On obtient

123
A~ |01 2
000

=)

Etape 2, deuxiéme itération. On ne touche plus 2 la ligne 2 et on remplace la ligne
1 par elle-méme moins 2x la ligne 2. On obtient

10 -1
A~ 101 2
00 O

— O O

qui est bien échelonnée réduite.

Le théoréme 1 permet d’étendre un certain nombre de définitions aux matrices
quelconques.
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Définition 15 Soit A une matrice quelconque et U I’unique matrice échelonnée réduite
obtenue a partir de A par des opérations élémentaires sur les lignes. Les positions,
colonnes et lignes de pivot de A sont les positions, colonnes et lignes de pivot de U.

Attention ! Les positions de pivot ne sont en général pas apparentes sur la matrice
A. Pour les déterminer, Il faut effectivement calculer la matrice U, ou au moins une
matrice échelonnée obtenue a partir de A par des opérations élémentaires sur les lignes.
Ainsi, dans I’exemple 15, on voit trois positions de pivot : (1,1), (2,2) et (3,4) sur la
matrice échelonnée réduite que 1’on ne pouvait pas deviner sur la matrice A elle-méme.

1.5 Interprétation matricielle de la méthode de Gauss

Nous allons voir que I’algorithme de Gauss de réduction d’une matrice m X n a la
forme échelonnée réduite s’interprete en termes de produits matriciels.

Définition 16 On appelle matrice élémentaire foute matrice qui résulte de I’applica-
tion d’une opération élémentaire sur les lignes a la matrice identité I,.

Exemple 16 Dans le cas 3 x 3,

o
|

10
01
00

—_— o O

L’échange des lignes 1 et 3 donne la matrice élémentaire

0
E=10
1

(= ]
S O~

Le remplacement de la ligne 2 par elle-méme plus 2 fois la ligne 1 donne la matrice
élémentaire

1
E=|2
0

S = O
— O O

La multiplication de la ligne 3 par 5 donne la matrice élémentaire
100
E=(010
005
Et ainsi de suite. U

L’interprétation matricielle de la méthode de Gauss est fondée sur la remarque sui-
vante.

Proposition 14 Soit A une matrice m x n et E une matrice élémentaire. La matrice EA
est celle qui résulte de I’application de la méme opération élémentaire a la matrice A.
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Démonstration. Ecrivons les matrices A et E comme une ligne de n matrices colonnes
soitA=(a; a -+ ap)etE=(g; & --- &).Onsaitque EA= (Ea; Eay --- Eay).
11 suffit par conséquent de vérifier quel est I’effet de la multiplication par E sur une
matrice-colonne x. Soit e; la matrice colonne ayant un 1 sur la ieme ligne et des O

ailleurs. On a I, = (ey, ..., en), donc par définition d’une matrice élémentaire, Ee; est
le vecteur obtenu par 1’opération élémentaire considérée appliquée au vecteur e;. Soit
X1
X2 m
x=1 . .Onax:Zx,-e,-.Ona
: i=1
Xm

m m m
Ex=F <Zx,~ei> = Zx,Ee,' = Zx,{i,'.
i=1 i=1 i=1

Ex n’est autre que la matrice colonne obtenue par 1’opération élémentaire considérée
appliquée a la matrice colonne x. U

Proposition 15 Une matrice élémentaire est inversible.

Démonstration. Nous avons trois cas a traiter.

Premier cas : La matrice élémentaire est obtenue a partir de la matrice I,, par une
homothétie. Soit A un réel non nul. Notons E(L; x A) la matrice élémentaire obtenue &
partir de I,, en multipliant la i¢éme ligne par A. En appliquant la proposition précédente
a la matrice A = E(L; x ), on obtient la relation :

E(Ll' X %)E(Li X 7L) :Im.

La relation ci dessus appliquée a % nous donne

E(L,' X }L)E(Li X %) = Im.
On en déduit que E(L; x A) est inversible d’inverse E(L; X %)
Deuxieme cas : La matrice élémentaire est obtenue a partir de la matrice I, par un
échange.
Notons E(L; «— L j) la matrice élémentaire obtenue a partir de ,, en échangeant
les ieme et jeme lignes. En appliquant la proposition précédente a la matrice A =
E(L; «— L;), on obtient la relation :

E(Li <—>Lj)E(Lj — Li) =1,.

On en déduit que E(L; «— L;) est inversible d’inverse elle-méme.

Troisieme cas : La matrice élémentaire est obtenue a partir de la matrice I, par une
substitution. Soit A un réel. Notons E(L; «— L; +AL;) la matrice élémentaire obtenue
a partir de I, en ajoutant & la i¢me ligne la jieme ligne multipliée par A. En appliquant
la proposition précédente a la matrice A = E(L; < L; — AL;), on obtient la relation :

E(Li «— Li+AL))E(L; < Li —AL;) = I,,.
La relation ci dessus appliquée & —A nous donne
E(Li «— Li—AL))E(L; «— Li+AL;j) = I,.
On en déduit que E(L; «— L; +AL;) est inversible d’inverse E(L; +— L; —AL;).00
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Théoreme 2 Soit A € My, (K) et U € My, (K) 'unique matrice échelonnée réduite
obtenue a partir de A par des opérations élémentaires sur les lignes. Alors il existe une
matrice M € GL,(K) telle que

U=MA<=A=M"U.

Démonstration. D’apres la proposition précédente, chaque étape de 1’algorithme de
Gauss s’interprete matriciellement comme la multiplication a gauche de la matrice ob-
tenue a 1’étape précédente par une matrice élémentaire. Ainsi on a

lere étape : A| = EjA.

2eme étape Ay =FE)A| = Ez(E]A) = (E2E1 )A.

Par récurrence, a la fin de I’algorithme, on a

peme étape : U =A, =E,A,_| = (E,Ep_1---E2E1)A.

On pose donc M = E,E), 1 ---E>E1. Comme chacune des opérations €l€émentaires
est inversible, chaque matrice élémentaire Ey appartient & GL,,(K), d’ou M € GL,(K).
(]

Théoreme 3 Soit A € M,,(K) et U I’unique matrice échelonnée réduite obtenue a par-
tir de A par des opérations élémentaires sur les lignes. La matrice A est inversible si et
seulement si U est égale a I,.

Démonstration. On conserve les notations du théoréme précédent. Si U =1, alors A =
M~ est inversible puique M € GL,(K). Si U # I,, 1a derniére ligne de U est nulle.
Donc, pour toute matrice carrée V, la derniere ligne de UV est nulle. On n’aura donc
jamais UV = I,,. Donc U n’est pas inversible. Alors, A n’est pas inversible non plus car,
si A était inversible, on aurait U = MA et U serait inversible comme produit de matrices
inversibles. O

Remarque 14 A est une matrice carrée inversible si et seulement si U = I,. On a alors
M = A~'. On retrouve donc le calcul de A" par la méthode de Gauss en utilisant
A= (A I,.). Eneffet, U= MA = (MA MI,) = (I, A™"). O

Exemple 17 Dans le calcul qui suit, on adopte les notations suivantes pour les opérations
élémentaires :
e un échange entre la ieme ligne et la jieme ligne de la matrice sera noté€ L; «— L;
e si on multiplie la i€me ligne par le facteur non nul A, on écrit L; x A (homothétie).
o si on ajoute A fois la iéme ligne a la jieme ligne, on notera L; «+— L;+AL; (sub-
stitution).

01
Considérons la matrice A= | 1 0 . Montrons qu’elle est inversible et calcu-
11

lons son inverse.

011/100 101010

10101 0]~[011/100] (L L)
110001 110001

101/010 10 1]0 1 0
011/100|~f01 1|1 0 0)(I3—1Ls5—Ly)
110001 01 —1/0 =11
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10 10 1 0 10 110 10
01 11 0 0)]~[01 1|1 0 0f(Lye—Lz—Ly)
01 —1[0 —1 1 00 —2[—-1 —11
10 1]0 1 0 101/01 0
01 1|1 0 0]~[011{10 0](Lsx3)

1 1 -1
01 —2[—-1 —11 00111 3t
101/01 0 100?1%%
01110 0|~[010 2 *?1 3 | (i —Li—Ls et Ly — L, —L3)

1 1 -1 =

00111 3t oo1 I I =1
Donc A est inversible et

1

A7l =

[\)\P—‘N\b—‘lx)“
ro1—9] Lroi—
o
v Lor—roi—
L

1.6 Matrices semblables

Les matrices considérées dans ce paragraphe sont des matrices carrées, éléments
de M,(K).

1.6.1 Définition et propriétés

Définition 17 Soient A et B deux matrices de M,,(K). On dit que A est semblable &
B si et seulement si il existe une matrice inversible P appartenant a M, (K) telle que
A=PBP!,

Remarque 15 On en déduit immédiatement que si A est une matrice quelconque de
M, (K) et P une matrice inversible de M, (K), A est semblable 2 P~!AP.

Proposition 16 La relation binaire ” étre semblable a ...”, définie sur M, (K), est ap-
pelée relation de similitude. Elle possede les propriétés suivantes :

1.Si A est une matrice de M,,(K), A est semblable a elle méme (on dit que la relation
est réflexive).

2. Soient A et B deux matrices de M,(K). Si A est semblable a B, alors B est sem-
blable a A (on dit que la relation est symétrique).

3. Soient A,B et C trois matrices de M,(K). Si A est semblable a B, et B est sem-
blable a C, alors A est semblable a C (on dit que la relation est transitive).

Autrement dit, la relation binaire définie sur M,(K) ” A est semblable a B ” est une
relation d’équivalence sur M,(K).

Vocabulaire :
Compte tenu de ces propriétés, on peut dire indifféremment que la matrice A est
semblable a la matrice B ou que les matrices A et B sont semblables.

Démonstration. Les démonstrations sont basées sur les propriétés des matrices inver-
sibles.

1. Comme la matrice unité /, est inversible, d’inverse I, I'=1p, on peut écrire
I,AI, = A, ce qui prouve que A est semblable a elle-méme (P = I,,).

2. Soient A et B deux matrices de M,(K). Si A est semblable a B, il existe une ma-
trice inversible P de M, (K) telle que A = PBP~!. Si on multiplie les deux membres de
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cette égalité, a gauche par P~ et a droite par P, on obtient ’égalité B= P~ 'AP. Comme
P! est inversible d’inverse P, ona B = P~'A(P~')~!. Cela permet de conclure.

3. Soient A, B et C trois matrices de M,(K). Si A est semblable a B, et B est sem-
blable & C, il existe deux matrices inversibles P et Q de M,,(K) telles que A = PBP~! et
B=QCQ~!. AlorsonaA =PQCQ~'P~!. Or on a vu, dans les propriétés des matrices
inversibles, que si P et Q sont des matrices inversibles, la matrice PQ 1’est aussi et
(PQ)~! = QP! L’égalité précédente peut donc s’écrire A = (PQ)C(PQ)~!; cela
prouve que A et C sont semblables.

1.6.2 Application au calcul des puissances d’une matrice

La notion de matrices semblables a aussi une utilisation intéressante pour le calcul
des puissances de matrices en partant du constat que plus une matrice est simple (c’est-
a-dire avec beaucoup de zéros) plus le calcul est facile.

Pour s’en convaincre on peut considérer I’exemple des matrices diagonales et établir
le résultat suivant

Proposition 17 (Puissances d’une matrice diagonale) Soit

(03] 0o ... ... 0
0 ap O ... O
D=|: Lo e
0O ... 0 Ol—1 0
0O ... ... 0 o

une matrice diagonale d’ordre n. Alors, pour tout entier positif p, on a

af 0 ... ... 0
0o 0 ... 0
DP=|: - .
0 ... 0, 0
0 ... ... 0 of

On démontre cette formule en faisant une démonstration par récurrence sur p.
Comme annoncé, on va donner une formule liant les puissances de deux matrices
semblables.

Théoreme 4 (Relation entre les puissances de deux matrices semblables) Soient A
et B deux matrices semblables, c’est-a-dire telles qu’il existe une matrice inversible P
telle que A = P~'BP. Alors pour tout entier positif p, on a AP = P~'BPP, et donc AP
et B? sont semblables.

Démonstration. On démontre encore cette formule par récurrence sur p.

Si p =1, la formule est triviale (c’est la formule traduisant le fait que A et B sont
semblables).

Supposons la propriété vraie pour p = k — 1 ¢’est-a-dire A*~! = PB*"1P~1 Alors
ona

AR = A1 = (PB 1PN (PBP7Y) = PB* 1 (P71P)BP! = PBf P!
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et la propriété est vraie pour p = k.

Remarque 16 On a vu dans le paragraphe consacré aux matrices carrées que I’on avait
un procédé simple pour calculer les puissances d’une matrice de la forme Al + N o N
est une matrice nilpotente de M,(K).

Par conséquent on aura une méthode systématique pour calculer les puissances
d’une matrice semblable a une matrice de la forme Al + N ol N est une matrice nilpo-
tente de M, (K). Ce résultat est trés utile.

Dans le dernier chapitre de ce cours, nous apprendrons a caractériser les matrices
semblables a une matrice diagonale et nous donnerons aussi un exemple de calcul des
puissances d’une telle matrice.
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Chapitre 2

Systemes linéaires

Les systemes linéaires interviennent dans de nombreux contextes d’applications de
I’algebre linéaire (sciences de I’ingénieur, météorologie, économie, mais aussi codes de
transmission d’information et cryptographie). Pour ce qui concerne les mathématiques,
ils forment la base calculatoire de 1’algebre linéaire. Ils permettent également de traiter
une bonne partie de la théorie de 1’algebre linéaire en dimension finie.

2.1 Définition

Soit n € N* un entier naturel supérieur ou égal a 1. Une équation linéaire a n
inconnues x1,xy, . ..,X, est une équation de la forme

axy+axxy+---+ayx, =b,

ol ay,ap,...,a, et b sont des éléments de K donnés.
Soit m € N* un autre entier naturel supérieur ou égal a 1.

Définition 18 Un systeme de m équations linéaires & n inconnues, ou systéme linéaire,
est une liste de m équations linéaires.

On écrit usuellement de tels systemes en m lignes placées les unes sous les autres.
Exemple 18 Voici un systéme de 2 équations a 3 inconnues a coefficients dans R.

2x1 —xp +%X3 = 8,
X1 —4X3 = 7.

On aurait pu I’écrire tout aussi bien

2x1 —X7 —I—%X3 = 87
x1 +0xxy —4dx3 = —7.

31
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La forme générale d’un systéme linéaire de m équations a n inconnues, ou encore
systeme m X n, est la suivante

ayxy +apxy +apxy + - +apx, = by (<— équation 1)
anxy +anxy; +axpxz + -+ +apmx, = by (« équation 2)
ajix;1 +apxy +apxy + -+ +apx, = b; (<— équation i)
amiX1 +ampxy +awsxs + -+ +apuXn = by («— équation m)
Les nombres a;;,i=1,...,m, j=1,...,n, sont les coefficients du syst¢tme. Ce sont
des données. Les nombres b;, i = 1,...,m, constituent le second membre du systeme et

sont également des données.

Il convient de bien observer comment on a rangé le systeme en lignes (une ligne
par équation) numérotées de 1 a m par ’indice i, et en colonnes : les termes corres-
pondant 2 une méme inconnue x; sont alignés verticalement les uns sous les autres.
L’indice j varie de 1 a n. Il y a donc n colonnes a gauche des signes d’égalité, plus
une colonne supplémentaire a droite pour le second membre. La notation avec double
indice a;; correspond a ce rangement : le premier indice (ici i) est le numéro de ligne
et le second indice (ici j) est le numéro de colonne. 1l est extrémement important de
toujours respecter cette convention.

Dans I’exemple 18, on a m = 2 (nombre d’équations = nombre de lignes), n = 3
(nombre d’inconnues = nombre de colonnes a gauche du signe =) eta;; =2, a0 = —1,
a;3=3/2,a31=1,a2p=0,a3=—4,b1 =8et by = —7.

Définition 19 Une solution du systéme linéaire est une liste de n nombres réels (sy, sz, . ..

(un n-uplet) tels que si ’'on substitue s; pour xi, sy pour xp, etc., dans le systeme
linéaire, on obtient une égalité. L’ensemble des solutions du systeme est [’ensemble de
tous ces n-uplets.

Ainsi, (5,13/2,3) est une solution du systéme linéaire de 1’exemple 18. En régle
générale, on s’attache a déterminer ’ensemble des solutions d’un systéme linéaire.
C’est ce que I’on appelle résoudre le systeéme linéaire. Ceci amene a poser la définition
suivante.

Définition 20 On dit que deux systémes linéaires sont équivalents s’ils ont le méme
ensemble de solutions.

A partir de 13, le jeu pour résoudre un systéme linéaire donné consistera a le
transformer en un systéme équivalent dont la résolution sera plus simple que celle du
systeme de départ. Nous verrons plus loin comment procéder de fagon systématique
pour arriver a ce but.

Remarque 17 Deux systemes équivalents ont toujours visiblement le méme nombre
d’inconnues. Par contre, ils n’ont pas forcément le méme nombre d’équations. Dans ce
dernier cas, on peut toujours ajouter au systeme avec le moins d’équations le nombre
manquant a I’aide d’équations triviales

Oxx;+0xx+---+0xx, =0,

lesquelles ne modifient clairement pas I’ensemble des solutions. (]

7sn)
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Exemple 19 Résolution dans le cas d’un systeme 2 x 2 a coefficients réels. Considérons
le systeme suivant

X1 —2)62 = —1,
—x1 +3x = 3.

Si x; et xo désigne les coordonnées cartésiennes d’un point du plan, on reconnait deux
équations de droite, une par ligne du systéme. Par conséquent, toute solution (sy,s2)
du systeme correspond aux coordonnées d’un point d’intersection des deux droites. On
se ramene donc a un probleme géométrique trés simple dans ce cas particulier. Dans
cet exemple, les deux droites se coupent au point de coordonnées (3,2). On a obtenu
I’ensemble des solutions S = {(3,2)} constitué ici d’un seul élément (on calcule cette
solution tres simplement en additionnant les deux équations, puis en remplacant la
valeur de x; ainsi trouvée).
11 aurait pu tout aussi bien se produire que les deux droites soient paralleles, comme
dans I’exemple suivant
X1 —2x = —1,
{ —x1 +2xp = 3.

Dans ce cas, les deux droites ne se coupent pas, donc le systeme n’a pas de solution.
L’ensemble des solutions est I’ensemble vide S = 0. Ceci se voit algébriquement en re-
marquant que le membre de gauche de la premiere ligne est égal a I’opposé du membre
de gauche de la premiere ligne. Comme 1 # 3, il est impossible de satisfaire en méme
temps les deux équations linéaires.

Enfin, la troisieme et derniere possibilité géométrique est que les deux droites soient

confondues.
x; —2x = —1,
—x1 +2x, = 1.

On a alors une infinité de solutions S = {coordonnées des points de la droite}.

Ces trois cas de figure obtenus dans le cas de systemes 2 x 2 recouvrent en fait
la situation générale, comme on le démontrera plus loin. On a en effet 1’alternative
suivante pour I’ensemble des solutions d’un systeme linéaire général m X n.

a) Soit il n’y a aucune solution, § = @. Dans ce cas, on dit que le systeme est
incompatible.

b) Soit il y a une solution unique, S = {(s1,s2,...,5,)} 'ensemble des solutions
contient un seul n-uplet. Dans ce cas, on dit que le systeme est compatible.

¢) Soit il y a une infinité de solutions, et on dit aussi dans ce cas que le systeme est
compatible.

Un cas particulier important est celui des systémes homogenes pour lesquels by =
by = ... = b, =0, c’est-a-dire dont le second membre est nul. De tels systemes sont
toujours compatibles car ils admettent toujours la solution s; = s, = ... =5, = 0. Cette
solution est appelée solution triviale. Géométriquement dans le cas 2 X 2, un systeme
homogene correspond a deux droites qui passent par 1’origine des coordonnées, cette
origine (0,0) étant donc toujours solution. Dans le cas des systémes homogenes, on
s’attachera par conséquent a déterminer s’il n’y a que la solution triviale ou s’il y en a
d’autres. (|

2.2 Notation matricielle

En réfléchissant un petit peu, on se rend compte que dans la donnée d’un systeme
linéaire, seuls comptent les coefficients du systeme et le second membre. Ecrire les
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équations avec les inconnues permet de visualiser le systeme, mais n’est pas autrement
utile. Il est donc naturel d’introduire la matrice suivante :

aiy aiy -+ Ay -+ dip

ay ap -+ axj -+ A
A=

ail ap - Qi o Qi

aml Am2 -+ Amj *** dmn

appelée la matrice du systeme linéaire. Elle a m lignes et n colonnes, ¢’est une matrice

X1 bl
X2 by
m % n (a coefficients dans K). Sionposex=| . | etb=| . |, le systeme s’écrit
Xn by,
matriciellement Ax = b.
On introduit aussi
ajy app -+ ay o ap b
a) daxp -+ ayj -+ dy b
A =
aiy ap - @ o dip by
Aml Am2 -+ Amj " dmn b

On I'appelle la matrice augmentée du systéme. C’est une matrice m X (n+ 1). Elle
contient la matrice des coefficients avec une colonne supplémentaire ajoutée a sa droite
et contenant le second membre, ¢’est-a-dire toute I’information nécessaire a déterminer
le systeme.

Exemple 20 11 est treés facile de passer d’un systeme linéaire a sa matrice augmentée
et vice-versa : il suffit de lire les coefficients au bon endroit. Considérons I’exemple du
systeme 3 X 3 suivant

X1 —2xp +x3 = 0,
ZXZ —8)63 = 8,
—4x1 4+5x +9x3 = —9.
Sa matrice est
1 -2 1
A=10 2 -8
-4 5 9
et sa matrice augmentée
1 -2 1 0
A=|10 2 -8 8
-4 5 9 -9
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2.3 Systemes échelonnés réduits
Il se trouve que les systemes linéaires dont la matrice augmentée est échelonnée
réduite — appelés systemes échelonnés réduits pour aller plus vite — sont particulierement

simples a résoudre. Commencons par deux exemples.

Exemple 21 Considérons le systeme suivant dont la résolution est triviale

x1 = by,
X = by,
X, = by,.
Sa matrice augmentée
100 .- 00 b
010--00 b
. 001 --00 b3
A=, . . . .. .
000 --- 10 by
000 --- 01 by
est échelonnée réduite.
Exemple 22 Supposons que
10 2 025
A=101 =2 16
00 0 1 1

soit en fait la matrice augmentée d’un systeme linéaire. Ce systéme sera alors 3 x 4 et
s’écrira

X1 +2x3 = 25,
X2 —2)63 = 16,
X4 = 1.

Ce systeme se résout trivialement en

x; = 25—2x3,
xy = 164 2x3,
X4 = 1.

En d’autres termes, pour toute valeur de x3 réelle, les valeurs de x1, x; et x4 calculées
ci-dessus fournissent une solution du systéme, et on les a ainsi toutes obtenues. On peut
donc décrire entierement 1’ensemble des solutions

S ={(25—2x3,164+2x3,x3,1);x3 € K}.

Il s’agit d’une représentation paramétrique de S. On parle encore de solution générale
du systeme. (]
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L’exemple qui précéde montre que les inconnues d’un systeme échelonné réduit ne
jouent pas toutes le méme role. Rappelons la définition suivante.

Soit U une matrice échelonnée réduite. Les positions de pivot de U sont les em-
placements (au sens du couple (numéro de ligne, numéro de colonne)) des coefficients
valant 1 du point 3) de la définition 12.

Ainsi, dans I’exemple 22, on voit trois positions de pivot : (1,1), (2,2) et (3,4).
Le coefficient 1 situé en position (3,5) n’est pas un pivot car il n’est pas le premier
élément non nul de sa ligne.

Dans une matrice échelonnée réduite, on appelle colonnes de pivot les colonnes
qui contiennent une position de pivot et lignes de pivot les lignes qui contiennent une
position de pivot. D’apres le point 3) de la définition 12, on voit qu’il y a au plus une
position de pivot par ligne, et d’apres le point 4), au plus une position de pivot par
colonne. Par conséquent, le nombre de colonnes de pivot est égal au nombre de lignes
de pivot, tous deux étant égaux au nombre de positions de pivot.

Les positions de pivot permettent d’introduire une classification des inconnues.

Définition 21 Les inconnues correspondant a une colonne de pivot sont appelées in-
connues ou variables essentielles. Les autres sont appelées inconnues ou variables
libres.

Remarquons qu’un systeme échelonné a toujours au moins une variable essentielle,
mais qu’il n’a pas forcément de variables libres, voir le tout premier exemple de cette
section. Nous pouvons maintenant résoudre les systemes échelonnés
réduits dans tous les cas.

Théoreme 5 Un systeme échelonné réduit est compatible si et seulement si sa matrice
augmentée ne contient aucune ligne de la forme

(00 - 0 b)avech#0.

Dans ce cas, on obtient une description paramétrique de [’ensemble des solutions en
exprimant les variables essentielles en fonction du second membre et des variables
libres.

Démonstration. Supposons que la matrice augmentée du systeéme contienne une ligne
de la forme
(0 0---0 b) avec b #£ 0.

Cette ligne correspond a 1’équation linéaire

Oxx;+0xx2+---+0xx, =0,
laquelle n’a évidemment aucune solution. Le systeme est par conséquent incompatible,
S=0.

Dans le cas ot aucune ligne n’est de cette forme, alors on peut visiblement résoudre.
En effet, les éventuelles lignes nulles donnent des équations de la forme

OxXx1+0xx+---4+0xx,=0,
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qui sont toujours satisfaites. De plus, chaque ligne non nulle réécrite sous forme d’équation
prend la forme
Xiy + Bi(Xiipres) = b,

ou x;, est la /-eme variable essentielle (qui n’apparait que dans cette équation située a
la ligne 1), B;(Xjjpres) €St une somme composée de coefficients du systeme multipliés
par les variables libres (désignées collectivement par xjjpreq Mais en fait, seules celles
situées a droite de x;, interviennent) s’il y a des variables libres, B; (xjjpres) = 0 s’il n’y
en a pas, et b; est la [-eme ligne du second membre. Par conséquent,

Xiy = —Bi(Xibres) + b1,

fournit une représentation paramétrique de 1’ensemble des solutions, les variables libres
parcourant indépendamment K. (]

On a ainsi établi dans le cas des systemes échelonnés réduits I’alternative sur 1’en-
semble des solutions déja vue géométriquement dans le cas 2 x 2.

Corollaire 6 Dans le cas d’un systéme échelonné réduit m X n on a l’alternative sui-
vante.
a) Soit il n’y a aucune solution s’il y a une ligne de la forme

(O 0---0 b) avec b # 0.

b) Soit il y a une solution unique s’il n’y a pas de telle ligne ni de variables libres.
c) Soit il y a une infinité de solutions s’il n’y a pas de telle ligne mais qu’il existe
des variables libres.

2.4 Résolution des systemes par I’Algorithme de Gauss

A partir de maintenant, la stratégie pour résoudre un systéme général sera de se
ramener a un systeme échelonné réduit qui lui soit équivalent. On va pour cela raisonner
uniquement sur les matrices et utiliser I’algorithme de Gauss présenté dans le chapitre
1.

Arrétons nous quelque peu sur la notion d’algorithme. 11 s’agit d’une description
précise d’une suite d’opérations a effectuer, dans quel ordre et dans quel cas, qui aboutit
au bout d’'un nombre fini d’étapes si possible connu a I’avance au résultat voulu. Il
y a deux raisons pour introduire un algorithme dans le contexte de la résolution des
systemes linéaires.

La premiere raison est que I’on peut certes résoudre les systemes 2 x 2 ou 3 x 3
par des manipulations ad hoc des équations — résolution par rapport a une variable
puis remplacement dans les autres équations, additions ou soustractions d’équations
— menées au petit bonheur la chance et qui aboutissent a un résultat apres un plus
ou moins grand nombre d’opérations. Or I’expérience montre que ces opérations sont
le plus souvent inutiles, redondantes, et surtout cause d’erreurs de calculs. Il est bien
préférable de se laisser guider par une méthode stricte dont 1’application garantit un
nombre minimal de calculs (en général).

La seconde raison est que dans les applications pratiques de 1’algebre linéaire, les-
quelles sont extrémement nombreuses et importantes, les systemes a résoudre sont
énormes (des milliers, voire des millions d’équations et d’inconnues) et qu’il n’est pas
question d’effectuer les calculs a la main. Ce sont des ordinateurs qui s’en chargent, et
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ces derniers ont besoin de programmes, lesquels sont la traduction en tel ou tel langage
d’un algorithme.

La notion d’équivalence de matrices est directement liée a celle d’équivalence des
systemes linéaires de la Définition 20.

Proposition 18 Si les matrices augmentées de deux systemes linéaires sont équiva-
lentes, alors les systemes linéaires sont équivalents.

Démonstration. 11 suffit de le vérifier sur les opérations élémentaires, I’équivalence
des systemes se propageant visiblement de proche en proche a chacune d’entre elles.
Soient donc deux systeémes linéaires dont les matrices augmentées A = (a;j) et A’ =
(aﬁj), i=1,...,n,j=1,...,n+1 (on note a;,41 la colonne correspondant au second
membre pour simplifier la notation), different par une opération élémentaire. Notons
Sa I'ensemble des solutions du systéme associé a A et S/ I’ensemble des solutions du
systéme associé a A’. Il faut distinguer suivant les trois cas possibles.

Le cas de I’échange est clair : on intervertit I’ordre de deux équations ce qui ne
change pas I’ensemble des solutions.

Le cas de ’homothétie : agj = Aa;j avec A # 0 pour un certain i et tous j=1,...,n+
1. Soit (s1,52,...,8,) € Sa. Ce n-uplet vérifie en particulier I’équation numéro i

ais1+aps2+---+ainSp = Aip+1-

Multipliant les deux membres par A, on voit que
! / ! o

aj181+Appsy + -+ AjpSp =iy,
et comme les autres équations du systéme associé 2 A’ sont les mémes que celles de
A, on en déduit que (s1,s2,...,5,) € Sar. En d’autres termes, on vient de montrer que
Sa C Sy Inversant les roles de A et A’, on en déduit que Sy C S4, d’ou finalement
Sa = Su, les deux systemes sont équivalents.

Le cas de la substitution est treés semblable : ag ;= aij+ Aay j pour un certain i,

un certain k et tous j = 1,...,n+ 1. Soit (s1,$2,...,5,) € Sa. Ce n-uplet vérifie en
particulier les équations numéros i et k

aj1s1+aps2+ -+ ainSn = dipt1

a1+ ags2+ -+ apSn = Ak ptl
d’ot en multipliant la deuxieéme égalité par A et en additionnant
ains1+aps2 + -+ dinsn + Max1s1 +as2 + -+ + @nSn) = Qi1 + Mgt -
On factorise le membre de gauche
(ai1 +Aagr)s1 + (ai +Aaga)s2 + - - - + (@in + Mg )Sp = i1 + Mg 1,

qui n’est autre que

/ ! /! /!
ajs1+apsa+- o+ AipSp = iy

Les autres équations n’étant pas modifiées, on en déduit comme précédemment que
Sa C Sur, puis que S4 = Sy. Les deux systémes sont équivalents. ]
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Nous avons vu que toute matrice A est équivalente a une unique matrice échelonnée
réduite U. Les opérations élémentaires appliquées aux matrices augmentées produisant
des systemes équivalents entre eux, on va s’en servir pour se ramener a un systeme
échelonné réduit. Rappelons que les positions, colonnes et lignes de pivot de A sont les
positions, colonnes et lignes de pivot de U. Si A est la matrice augmentée d’un systeme
linéaire, alors les inconnues correspondant a une colonne de pivot sont appelées incon-
nues ou variables essentielles. Les autres sont appelées inconnues ou variables libres.

En regroupant tous les résultats précédents, on obtient la discussion générale de la
résolution des systemes linéaires

Théoreme 7 Un systeme linéaire est compatible si et seulement si la matrice échelonnée
réduite équivalente a sa matrice augmentée ne contient aucune ligne de la forme

(O 0---0 b) avec b # 0.

Dans ce cas, on obtient une description paramétrique de I’ensemble des solutions en
exprimant les variables essentielles en fonction du second membre et des variables
libres.

De méme,

Corollaire 8 Soit un systeme linéaire m X n quelconque, A sa matrice augmentée et U
l'unique matrice échelonnée réduite équivalente a A. On a l’alternative suivante.
a) Soit il n’y a aucune solution si U contient une ligne de la forme

(00 -+ 0 b)avech#0.

b) Soit il y a une solution unique si U ne contient aucune telle ligne et qu’il n’y a
pas de variables libres.

c) Soit il y a une infinité de solutions si U ne contient aucune telle ligne mais qu’il
existe des variables libres.

Remarque 18 On n’a décrit qu’un seul algorithme de résolution, 1’algorithme de Gauss.
Or cet algorithme est bien insuffisant pour résoudre numériquement, ¢’est-a-dire sur or-
dinateur, les énormes systémes linéaires rencontrés dans la pratique. L’ analyse numérique
matricielle est 1I’étude d’algorithmes qui généralisent celui de Gauss, ou qui sont de na-
ture totalement différente, dans le but de résoudre effectivement et efficacement de tels
systemes. C’est un vaste champ de recherche toujours trés actif de nos jours. (]

Exemple 23 Soient a,b et ¢ trois nombres réels. On considere le systeme suivant :

x +y — z =a
—X + + 2z =
2y + 2z = ¢

La matrice augmentée du systéme est

—_

i-|-

—_
[\ el
[\SIN \S]

o SR
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En faisant les opérations sur les lignes suivantes : Ly «— Ly + Ly, L3 «— L3 — 2L, puis
Ly <—— L{ — L,, on obtient

11 -1 a 11 -1 a 10 =2 —b
A~[01 1 a+b]~|01 1 a-+b ~101 1 a+b
02 2 c 00 0 ¢c—2a—2b 00 0 ¢c—2a—-2b

Le systéme est compatible si et seulement si ¢ —2a —2b = 0.
Sic—2a—2b # 0, alors le systeme n’admet pas de solution.
si ¢ —2a—2b =0, alors I’ensemble des solutions du systeme est

S={(2z—b,—z+a+b,z) | z€K}.

Remarque 19 Dans le cas d’un systeme homogene (tous les termes du second membre
sont nuls), on peut appliquer 1’algorithme de Gauss directement sur la matrice du
systeme (au lieu de la matrice augmentée).

Proposition 19 Soit un systeme linéaire donné sous sa forme matricielle SX = b ou S
est un élément de M,,(K). Il admet une solution unique si et seulement si S est inversible.

Démonstration. Si S est inversible, alors le syst¢eme admet une solution unique a savoir
x = S~!b. Réciproquement, supposons que le systéme admette une solution unique.
Soit A la matrice augmentée du systeéme. On a A = (S b). D’apres le corollaire 8, par
une succession d’ opérations élémentaires sur les lignes, on peut transformer A = (S b)
enU = (I u)ou

I1 existe donc p matrices élémentaires E1,E, ... E, telles que
E[,E[,,1 .. .E1A = (In u).

OrEpEpfl .. .ElA = (EPEP*I .. .ElS EPEP*I .. Elb) Donc EpEpfl .. .EIS:]n. Comme
chaque E; est inversible, on en déduit S = E f'E; 1 E; ! La matrice S est donc in-
versible comme produit de matrices inversibles.

Remarque 20 Si S est inversible, I'unique solution du systeme linéaire SX = b est
S71b.



Chapitre 3

Espaces vectoriels et
applications linéaires

3.1 Cours sur les espaces vectoriels (généralités)

L’ensemble des vecteurs du plan ou de I’espace est muni d’une loi de composition
interne (a savoir la somme de deux vecteurs) et d’une loi de composition externe (a
savoir la multiplication d’un vecteur par un scalaire). De plus, ces deux lois satisfont
un certains nombres de propriétés. Les espaces vectoriels généralisent cette situation.

3.1.1 Définition d’un espace vectoriel

Définition 22 Un K-espace vectoriel est un ensemble non vide E muni
o d’une loi de composition interne c’est a dire d’une application de E X E dans E

EXE — E
V,V) = v+V

e d’une loi de composition externe de domaine d’opérateurs un corps commutatif,
c’est a dire d’une application de K X E dans E

KXE — E
(a,v) — a-v

vérifiant trois groupes d’axiomes :
1) Axiomes relatifs a la loi interne
2) Axiomes relatifs a la loi externe
3) Axiomes liant les deux lois : double distributivité.

Axiomes

Dans la description des axiomes, la loi externe sur E sera notée - alors que la multi-
plication dans K sera notée x. La loi de composition interne dans E et la somme dans
K seront toutes les deux notées 4+ mais le contexte permettra de déterminer aisément
de quelle loi il s’agit.

41
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1) Axiomes relatifs a la loi interne
a) Associativité , c’est a dire que pour tous éléments u,v et w de E

(u+v)+w=u+(v+w)

b) Il existe un élément neutre , ¢’est a dire qu’il existe un élément de E, noté Og,
vérifiant :
YWeE, v+0g=0g+v=v

¢) Tout élément de E admet un symétrique, c’est a dire qu’il existe un élément v/
de E tel que
v+ =V 4+v=0g.

Cet élément V' de E est noté —v.
d) Commutativité, c’est a dire que pour tous élément u et v de E,
u+v=v-+u.

Remarque 21 S’il existe un élément neutre O vérifiant les axiomes b ci-dessus. il est
unique.

Démonstration. Soient O et 0 deux éléments vérifiant la définition de 1I’élément
neutre. On a alors : pour tout élément v de E

v+O0g=0g+v=v
v+0p=0p+v=v

Alors, la premiére propriété utilisée avec v = 0y donne
0}5 +0g =0 Jr()% = 0;5.
La deuxieme propriété utilisée avec v = Og donne
O +0, = OIE +0g =0g.

En comparant ces deux résultats, il vient Og = 0.

Remarque 22 De méme, si v est un élément de E et s’il existe un élément v/ de E
vérifiant I’axiome c, il est unique.

Démonstration. Supposons qu’il existe deux symétriques de v notés vetv'. On a :

v+v =V 4+v=0g
v+ =V'+v=0g

Caculons V' + (v+V") de deux fagons différentes en utilisant 1’associativité de la loi +
et les relations précédentes.

o +(v+V)=V+0g =V
o +(v+V) = +v)+V" douv + (v+V") =0 +V' ="

On en déduit v/ =v".
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Remarque 23 Les étudiants connaissant la théorie des groupes reconnaitront dans les
axiomes a, b, c et d ci-dessus, les axiomes caractérisant les groupes abéliens.

2 ) Axiomes relatifs a la loi externe
a) Pour tous éléments A et u de K et pour tout élément v de E, on a

(Axp)v=2~-(u-v).
b) Soit 1 I’élément neutre de la multiplication de K. Pour tout élément v de E, on a
1l-v=w.

3) Axiomes liant les deux lois : double distributivité
a) Distributivité par rapport a I’addition des scalaires : Pour tous A et u de K et pour
tout élément vde E,on a :
A - v=A-v4pu-v.

b) Distributivité par rapport a ’addition des vecteurs : Pour tout élément A de K et
pour tous éléments u et v de E, on a

A(u+v)y=A-u+i-v

Laloi interne et la loi externe doivent donc satisfaire huit axiomes pour que (E, 4+, -)
soit un espace vectoriel sur K.

Terminologie et notations

e Au lieu de K-espace vectoriel, on dit aussi espace vectoriel sur K.

e Les élements du corps K sont appelés des scalaires et les éléments de E des
vecteurs. Le corps K est appelé le corps des scalaires.

e La loi de composition interne sur E ( notée usuellement +) est appelée couram-
ment I’addition et v+ V' est appelée somme des vecteurs v et V', La loi de composition
externe sur E est appelée couramment multiplication par un scalaire. La multiplication
du vecteur v par le scalaire o sera notée ow.

e O est I’élément neutre de la loi interne de E et est appelé vecteur nul. Il ne doit
pas étre confondu avec 1’élément 0 de K. Lorsqu’il n’y aura pas de risque de confusion,
Og sera aussi noté 0.

Somme de n vecteurs

Il est possible de définir, par récurrence, 1’addition de n vecteurs, n > 2. La structure
d’espace vectoriel permet de définir 1’addition de deux vecteurs, ce qui initialise la
démonstration. Si la somme de n — 1 vecteurs est définie, alors la somme de n vecteurs
V1i,...,v, est définie par

Vit = (vt V) v
Notation : vi +vo +---+v, = Zv,-.
i=1

L’associativité de la loi + nous permet de ne pas mettre de parentheses dans la
somme Vi + -+ Vvy.
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3.1.2 Exemples

Dans tous les exemples qui suivent, la vérification des axiomes se fait simplement
et est laissée au soin des étudiants. Seules seront indiquées, dans chaque cas, les valeurs
de I’élément neutre de la loi interne et du symétrique d’un élément.

Il est important de remarquer que les regles de calcul proviennent de 1’addition et
de la multiplication des éléments du corps K qui est sous-jacent dans tous les exemples.

Exemple 24 : Le R-espace vectoriel R?
Le produit cartésien R x R est noté R?. C’est I’ensemble des couples (x,y) avec x
élément de R et y élément de R. Ceci s’écrit

R*={(x,y) [ x€R,y R}

Remarque : L’ écriture (x,y) traduit un ordre sur les élément x et y : x est la premiére
composante du couple (x,y) et y est la seconde. Le couple (1,2) est différent du couple

2.1).

e Définition de la loi interne :
Si (x,y) et (¥',)') sont deux éléments de R?,

(x,9) + (,y") = (x+x"y +y).
eDéfinition de la loi externe :
Si o est un réel et (x,y) est élément de R?,
a(x,y) = (ou, o).

L’ élément neutre de la loi interne est (0,0). Le symétrique de (x,y) est (—x,—y).

Exemple 25 : Le R-espace vectoriel R”

Cet exemple généralise le précédent. Soit n un entier supérieur ou égal a 1. Le pro-
duit cartésien de n ensembles égaux a R, R xR x --- x R est noté R”. C’est I’ensemble
des n-uplets (xi,...,x,) avec x,...,x, éléments de R. Ceci s’écrit

R" = {(x1,...,x,) | Vi, 1 <i<n,x; € R}
De méme que dans I’exemple précédent, I’écriture (xi,...,x,) traduit un ordre sur
les élément x; : x; est la iéme composante du n-uplet (x1,...,x,)
¢ Définition de la loi interne :
Si (x1,...,%,) et (x},...,x,) sont deux éléments de R”,

Oty Xn) + (X, X)) = (xp + X, X X))

eDéfinition de la loi externe :

Si o est un réel et (x,...,x,) est élément de R”,
0(4()(17...,)6") = ((XJCl,...,(XJCn)-
L’ élément neutre de la loi interne est (0,0, ...,0). Le symétrique de (xi,...,x,) est

(*)C],...,*Xn)
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Dans le cas particulier ot n = 1, nous avons défini une structure de R-espace vec-
toriel sur R. Dans ce cas particulier, la loi interne est la somme sur R et la loi externe
est la multiplication sur R.

De maniére analogue, on peut définir le C-espace vectoriel C" et plus généralement
le K-espace vectoriel K".

Exemple 26 : Le R-espace vectoriel A(R,R)
L’ensemble des applications de R dans R est noté A(R,R). Il peut &tre muni d’une
structure de R-espace vectoriel de la maniere suivante.

o Définition de la loi interne :
Soient f et g deux éléments de A(R,RR). L’application f + g est donc définie en
donnant I’image de tout élément réel x par f + g, soit :

VxeR, (f+g&)(x)=f(x)+g(x)

ot le signe + désigne la loi interne de A(R,R) dans le membre de gauche et I’addition
dans R dans le membre de droite.

e Définition de la loi externe :

Nous désignerons par - la loi externe de A(R,R) et par x la multiplication dans
R. De méme, si o est un nombre réel et f un élément de A(R,R), la fonction o - f est
définie par I’'image de tout réel x comme suit :

Vx e R, (a- f)(x) =ax f(x).
L’élément neutre pour la loi interne est I’application de R dans R définie par
VxeR, f(x)=0
C’est la fonction nulle qu’il est difficile de noter O (car alors, on serait en droit d’écrire

0(0) = 0, ce qui est difficile & décoder !). Le symétrique de 1’élément f de A(R,R) est
I’application g de R dans R définie par

VreR, g(x)= —f(x).
Le symétrique de f est noté —f.

Exemple 27 : Le R-espace vectoriel des suites réelles

L’ensemble des suites réelles, noté S = A(N,R) est I’ensemble des applications de
N dans R.

e Définition de la loi interne
Soient U = (Uy)nen et V = (V) )nen deux éléments de S, La suite U + V est la suite
W = (W,)nen définie par
VneN, W,=U,+V,

ou U, 4V, désigne la somme de U, et de V,, dans R.

o Définition de la loi externe :
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Si aest un nombre réel et U = (U, ) nen un élément de S, oU est la suite T = (7)) nen
définie par
VneN, T,=axU,

ol x désigne la multiplication dans R.

L’élément neutre de la loi interne est la suite dont tous les termes sont nuls. Le
symétrique de la suite U = (U, )nen est la suite U’ = (U})) e définie par :

VneN, U, =—U,.
Elle est notée —U.
Exemple 28 : Le R-espace vectoriel C

L’ensemble C des nombres complexes peut étre aussi muni naturellement d’une
structure de R-espace vectoriel.

e Définition de la loi interne : La loi interne est la somme dans C.

e Définition de la loi externe : La loi externe est définie de la fagon suivante :

RxC — C
(a,v) — av

ou av désigne la multiplication de o par v dans le corps des complexes C.

L’élement neutre est 0 et le symétrique du nombre complexe z est —z.

Exemple 29 : K-espace vectoriel des matrices

Soient n et p deux entiers naturels strictement positifs. L’ensemble M, ,(K) des
matrices a n lignes et p colonnes a coefficients dans K est muni d’une structure de K-
espace vectoriel.

e Définition de la loi interne : La loi interne est la somme de deux matrices.

e Définition de la loi externe : La loi externe est le produit d’une matrice par un
scalaire :
KXxXMpn(K) — Mpa(K)
(a,A) — 0A
I’ élément neutre pour la loi interne est la matrices a n lignes et p colonnes dont
tous les coefficients sont nuls. Le symétrique de la matrice A = (a; ;) est la matrice

(—aij)-

Exemple 30 : Applications d’un ensemble dans un espace vectoriel
L’exemple suivant généralise a la fois les exemples R”, A(R,R), A(N,R), M,, ,(K).

Soit X un ensemble et E un K-espace vectoriel. L’ensemble A(X,E) des applica-
tions de X dans E peut étre muni d’une structure d’espace vectoriel comme suit.

Définition de la loi interne : Soient f et g deux applications de X dans E, 1’appli-
cation f + g est définie de la facon suivante :

f+g:X — E
x = fx)+g(x)
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ol f(x)+ g(x) est la somme des éléments f(x) et g(x) dans E.

Définition de la loi externe : Si o est un élément de K et f un élément de A(X,E),
on définit I’application o - f comme suit :

a-f:X —- E
x = of(x)

L’élément neutre pour la loi interne est I’application nulle, c’est a dire celle qui, a
tout élément x de X, associe Og. Si f est un élément de A(X,E), son symétrique par
I’application interne est I’application

X — F
x = —f(x)

ol —f(x) est le symétrique de f(x) dans E.

SiX =R, K =Ret E =R, on retrouve I'exemple A(R,R). SiX =N, K =Reet
E =R, on retrouve I'exemple A(N,R). SiX ={1,...,n}, K=Ret E =R, on retrouve
I’exemple R". En effet, I’application naturelle

A(X,R) — R
fo= (f(),... f(n))

est une bijection qui identifie A(X,R) a R". On peut en fait voir que c’est un isomor-
phisme (voir définition plus loin). Si X = {1,...,n} x {1,...,p}, E = K, on retrouve
I'exemple M, ,(K). En effet, I’application naturelle

AX,R) — M,,(K)
= (fG))

est une bijection qui identifie A(X,K) a M, ,(K). On peut en fait voir que c’est un
isomorphisme.

3.1.3 Regles de calcul, combinaisons linéaires

Proposition 20 Soit E un espace vectoriel sur un corps K. On notera par Og ’élément
neutre pour la loi interne de E pour le distinguer de 1’élément 0 de K. Les propriétés
suivantes sont satisfaites :

1) L’addition est réguliere : Si u,v et w sont des vecteurs tels que

u+v=u+w, alors v=w.

2) Pour tout vecteur v de E, 0-v = Of.

3) Pour tout scalaire o, 00 = Of.

4) Pour tout vecteur vde E, (—1)v = —v.

5) L’opération (vyw) — v + (—w) s’appelle la soustraction; Le vecteur
v+ (—w) est noté v — w. Les propriétés suivantes sont satisfaites :

a) Pour tout scalaire o et tous vecteurs v et w, o(v —w) = 0v — Ow.

b) Pour tous scalaire o et 3 et tout vecteur v, (0. — )v =ow — Pv.

6) Si A est un scalaire et v un vecteur tels Av = Og, alors

soit A =0, soit v=0f.
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SYNTHESE : Les propriétés 2,3 et 6 peuvent &re résumées par le résultat fonda-
mental suivant

KV=0E<:>7\.=0 ou v=0g.

Démonstration. Les démonstrations des propriétés sont des manipulations sur les axiomes
définissant les espaces vectoriels.

Démonstration de la propriété 1 : En ajoutant aux deux membres de 1’inégalité
u+v =u-+w le symétrique de u, soit —u, on obtient 1’égalité

() (u+v) = (—) + -+ w)
ce qui, en utilisant I’associativité de 1’addition des vecteurs, permet d’obtenir
(=) +10) +v = ((—u) +u) +w.
Or (—u) +u = Og d’apres la définition du symétrique, 1’égalité devient donc
Op+v=0g+w
d’olt v =w d’apres la définition de I’élément neutre de 1’addition dans E.

Démonstration de la propriété 2 : Le point de départ de la démonstration est
I’égalité dans K
0+0=0.

D’ou, pour tout vecteur de E, 1’égalité
(0+0)v =0w.

Soit, en utilisant la distributivité de la loi externe par rapport a la loi interne et la
définition de I’élément neutre

Ov+0v=00=0v+0g.
Ce qui permet d’obtenir 1’égalité souhaitée Oxv = Of grace a la propriété 1.

Démonstration de la propriété 3 : La preuve est semblable en partant de 1’égalité
Oz +0g =0g.

Démonstration de la propriété 4 : Compte tenu de la définition du symétrique
pour I’addition d’un élément de E, il suffit, pour justifier la propriété, de calculer 1’ex-

pression v+ (—1)v. On a, en utilisant la propriété de la multiplication par 1 puis la
distributivité de 1’addition des scalaires et enfin a propriété 2 :

vt (=1)v=1lv+(-1)v=(14+(-1))v=0=0g
La loi interne étant commutative, on en déduit que (—1)v est le symétrique du vecteur v.
Démonstration de la propriété 5 :

Preuvedu a:
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Avec la notation introduite dans I’énoncé, av — ow est égal a o + (—aw). Alors,

a(v—w)+ow = af[(v+(—w))+w] (distributivité de I'addition dans E)
= a[v+((—w)+w)] (associativité de I'addition dans E)

o [v+0g] (définition du symétrique)

= ov(définition de I'élément neutre)

ce qui donne le résultat en rajoutant a chaque membre de 1’égalité le symétrique de ow.

Preuve dub :
Elle est du méme type. Le point de départ en est le calcul de (ot — B)v + Bv.

Démonstration de la propriété 6 :

Soit A un scalaire et v un vecteur tels que Av = Og. Supposons A différent de 0. Alors
A est inversible pour le produit dans le corps K. Soit A~! son inverse. En multipliant
par A~ ! les deux membres de I’égalité, il vient :

AL (w) =1 10g.
D’ou en utilisant les propriétés de la multiplication par un scalaire
(A Ay = 0p

et donc
lv= OE.

D’ottv = 0.

Combinaisons linéaires d’éléments dans un espace vectoriel

Définition 23 Soit n un entier supérieur ou égal a I et vi,vy,...,v, nvecteurs d’un es-
pace vectoriel E. Tour vecteur de la forme w = 0, vi +0pvo +- - -+ 0, vy, 01t O, O,y . . ., Ol SONE
des éléments de K est appelé combinaison linéaire des vecteurs vi,vs,...,v,. Les sca-
laires 01,0, . .., 0, sont appelés coefficients de la combinaison linéaire.

Remarque : Sin = 1, on dit que w est colinéaire a v;.
Exemples :

eDans le R-espace vectoriel R3, (3,3,1) est combinaison linéaire des vecteurs
(1,1,0) et (1,1,1) car on a I’égalité

(3,3,1) =2(1,1,0) + (1,1,1).

e Dans le R-espace vectoriel R?, le vecteur v = (2, 1) n’est pas combinaison linéaire
du vecteur v; = (1,1) car s’il I’était, il existerait un réel a tel que v = av, ce qui
équivaudrait a I’égalité (2,1) = (a, o).

e Soit E = A(R,R) le R-espace vectoriel des fonctions réelles. Soient fy, fi, f> et
/3 les fonctions définies par :

VXER, folx) =1, filx)=x, fo(x)=x"f3(x)=x
Alors la fonction f définie par

VX ER, f(x)=x"—2x* —Tx—4
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est combinaison linéaire des fonctions fy, f, f2, f3 puisque 1’on a I’égalité

f=-2L-7fi—4f.

113

e Dans M; 3(R), on considére A = (O | 3

> . On peut écrire A naturellement sous

la forme suivante :

A 100Jr 010+3001 n 000 +3000
~\000 000 000 010 001/
On a démontré que A est combinaison linéaire des matrices de type 2 x 3 dont tous les
éléments sont nuls sauf un, égal a 1.

3.2 Cours sur les espaces vectoriels (constructions)

3.2.1 Sous-espaces vectoriels

Définition 24 Soit E un K-espace vectoriel. Une partie F de E telle que
o F est non vide
o F est stable pour I’addition : Yu € F, YW e F, u+veF.
e I est stable pour la multiplication par un scalaire : VA € K,Yu € F,Au € F
est appelé sous espace vectoriel de E.

Théoreme 9 Soit E un K-espace vectoriel et F un sous espace vectoriel de K. Les lois
de composition interne et externe sur E induisent des lois de composition internes et
externes sur F. Muni de ces deux lois, F' a une structure de K-espace vectoriel.

Démonstration. La stabilité de F pour les deux lois permet de munir cet ensemble
d’une loi de composition interne et d’une loi de composition externe a opérateurs dans
K, en restreignant a F' les opérations définies dans E. Les propriétés de commutativité
et d’associativité de 1’addition, ainsi que les quatre axiomes relatifs a la loi externe sont
vérifiés, car ils sont satisfaits dans E donc en particulier dans F', qui est inclus dans E.

Il reste a montrer I’existence d’un élément neutre, et d’un symétrique pour tout
élément de F :

L’espace vectoriel E possede un élément neutre Og. Cet élément appartient a F
car pour u élément de F (I’hypothese F non vide est ici essentielle) Ou appartient a F
(stabilité de F pour la loi externe), or Ou = O, donc Og appartient a F. De plus F étant
inclus dans E, cet élément est tel que :

VueF, u+0g=0g4+u=u.

L’ élément neutre de 1’addition dans F est donc Og.

De méme F étant inclus dans E, pour tout élément u de F, il existe un élément de
E, noté —u, tel que u+ (—u) = O ; il faut donc montrer que —u appartient a F. Comme
u est élément de F, (—1)u appartient & F, d’apres la stabilité de F pour la loi externe.
Or (—1)u = —u. Donc le symétrique de u dans F est égal au symétrique de u dans E.

Remarque 24 Pour les étudiants connaissant la théorie des groupes, on peut noter que
(F,+) est un sous groupe de (E,+).
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Remarque 25 [- La démonstration précédente fait ressortir les deux points suivants :

o0r = 0OF.

o Le symétrique de u calculé dans E est le méme que le symétrique de u calculé
dans F.

2- {Og} et E sont des sous-espaces vectoriels de E.

3- Un sous-espace vectoriel de E contient nécessairement a Og. Ceci donne une
méthode simple pour prouver qu’un sous-ensemble n’est pas un sous-espace vectoriel :
si Og n’appartient pas a F alors F n’est pas un sous-espace vectoriel de E.

Méthodologie :

1- Pour répondre a une question du type ” le sous-ensemble F de 1’espace vectoriel
E est-il un sous-espace vectoriel de E ? 7, il est judicieux de vérifier que Or appartient
afF:

Si Og appartient a F, cela prouve que F est non vide et on peut poursuivre en
étudiant la stabilité de F pour les lois de E. Sinon on peut alors affirmer que F n’est
pas un sous-espace vectoriel de E.

2- Pour montrer qu’un ensemble F' est un espace vectoriel sur K, on peut chercher

un espace vectoriel E qui contient F, puis prouver que F est un sous-espace vectoriel
de E.

Exemples immédiats
e L’ensemble F = {(x,y) € R? | x = 0} est un sous-espace vectoriel de R?.
e Lensemble F = {(x,y) € R? | x =2} n’est pas un sous-espace vectoriel de R>.
e ’ensemble des fonctions continues sur R est un sous-espace vectoriel de 1’espace
vectoriel des applications de R dans R.
e [’ensemble des suites réelles convergentes est un sous-espace vectoriel de I’es-
pace vectoriel des suites réelles.
e Notons P I’ensemble des fonctions paires et I I’ensemble des fonctions impaires.
Ona
P={fcARR) VxR, f(—x) = f(x)}
I={f€AR,R)[VxeR, f(—x) = —f(x)}

P et I sont des sous espaces vectoriels de A(R,R) ;

Théoreme 10 (Caractérisation d’un sous-espace par la notion de combinaison linéaire)
Soit E un K-espace vectoriel et F une partie de E. F est un sous-espace vectoriel de E
si et seulement si :

o F est non vide

eToute combinaison linéaire de deux éléments de F appartient a F :

Y(u,v) € F2, ¥(o,B) € K>, ou-+PveEF.

Démonstration. 11 suffit de démontrer que la deuxieéme propriété est équivalente a la
stabilité de F pour les deux lois. Il est clair que si F est stable pour I’addition et la
multiplication par un scalaire alors toute combinaison linéaire de deux vecteurs de F
est dans F'. Pour établir la réciproque il suffit de choisir convenablement les coefficients
aetB: o= =1 donne la stabilité de F pour I’addition.

o quelconque, élément de K, et B = 0 donne la stabilité de F pour la loi externe. [

On peut 1égerement simplifier la caractérisation précédente de la facon suivante
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Théoreme 11 Soit E un K-espace vectoriel et F une partie de E. F est un sous-espace
vectoriel de E si et seulement si :

o F est non vide

oV(u,v) € F?, Vo€ K, oau+veF.

Exemple 31 Une fonction polyndme sur R est une fonction de R dans R telle qu’il
existe un entier k et k+ 1 éléments ay, ..., a; de R tels que :

VxeR, f(x)=ao+ax+---+axk.

On définit le degré de f comme étant le Sup{k,ar # 0} On note P(R) ’ensemble
des fonctions polynémes sur R. C’est un sous-espace vectoriel de A(R,R), I’espace
vectoriel des applications de R dans R. L’ensemble P,(IR) des fonctions polynémes de
degré inférieur ou égal a n est un sous-espace vectoriel de P(R), donc de A(R,R). En
revanche, pour n > 1, ’ensemble des fonctions polyndmes de degré exactement égal a
n n’est pas un sous-espace vectoriel de P(R). En effet ce n’est pas un ensemble stable
pour I’addition des fonctions : par exemple les fonctions f et g définies par f(x) =x+1
et g(x) = —x+ 1 sont des fonctions polynémes de degré 1, mais leur somme ne I’est
pas.
On définit de 1a mé&me facon les fonctions polyndmes sur K.

3.2.2 Sous-espace engendré par une partie finie-Intersection

Théoreme 12 (Théoréeme de structure de ’ensemble des combinaisons linéaires) Soir

{v1,...,vn} une partie finie du K-espace vectoriel E, alors I’ensemble des combinai-
sons linéaires des vecteurs {vi,...,v,} est un sous-espace vectoriel de E. C’est le
plus petit sous-espace vectoriel de E (au sens de ’inclusion) contenant les vecteurs
{vi,...,vn} : autrement dit, il est inclus dans tout sous-espace vectoriel contenant

{vlv'“avn}'

Démonstration. On appelle F I’ensemble des combinaisons linéaires des vecteurs {vy, ...

Cet ensemble est non vide, car il contient la combinaison linéaire particuliere Ov; +
.-+ 4 0v, qui vaut Og. On peut également vérifier que vy,...,v, appartiennent a F, en
effet pour tout k compris entre 1 et n, v; est combinaison linéaire de vy,...v, (il suffit
de considérer la combinaison linéaire ou tous les coefficients sont nuls sauf le kieme
qui vaut 1).

Il s’agit maintenant de prouver que F est stable par combinaison linéaire de deux
vecteurs.

Soit u et w deux vecteurs de F et deux scalaires o et B . Comme u est élément de
F, il existe des scalaires Ay, ..., A, tels que

u=MAvi+--+Avy,.
De méme, w étant élément de F , il existe des scalaires yy, ..., u, tels que
W=+ + V.
En utilisant les regles de calcul dans un espace vectoriel, on obtient :
o+ By = (0hy + Pur )vi + -+ (0hg + B )va + -+ - + (0 + Bt ) Vi

C’est une combinaison linéaire des vecteurs vy,...,Vv, donc un élément de F.
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Si G est un sous-espace vectoriel contenant {vy,...,v,} alors il est stable par com-
binaison linéaire ; il contient donc toute combinaison linéaire des vecteurs {vy,...,v, }.
Par conséquent F est inclus dans G : F est le plus petit sous-espace (au sens de 1’inclu-
sion) contenant {vi,...,v,}.

Notation
Ce sous-espace vectoriel est appelé sous-espace engendré par vy, ..., v, et est noté
vect(vy,...,vs). On a donc

uevect(vy,...,vy) <= IN,...,h) EK" Ju=Avi+ -+ Ay

Exemple 32 E étant un K-espace vectoriel, et # un élément quelconque de E, I’en-
semble F = {ow | o € K} est le sous-espace vectoriel de E engendré par u. Il est
souvent noté Ku.

Exemple 33 Soit E I’espace vectoriel des applications de R dans R et eg,e;, e, les
applications définies par :

Vx€R, eo(x) =1, ej(x) =x et er(x) =x".

Le sous-espace vectoriel de E engendré par {eg,e,ea} est 'espace vectoriel des
fonctions polyndmes de degré inférieur ou égal a 2, c’est-a-dire de la forme

f:x|—>ax2+bx+c.

Méthodologie :

On peut démontrer qu’une partie non vide F d’un espace vectoriel E est un sous-
espace vectoriel de £ en montrant que F est égal a I’ensemble des combinaisons
linéaires d’un nombre fini de vecteurs de E.

Exemple 34 Soit F = {(x,y,z) € R® | x—y—z=0}. Un triplet de R> est élément de
F si et seulement si x = y+z. Donc u est élément de F si et seulement s’il peut s’écrire
u=(y+2z,,2). Or, on al’égalité

(y+2z,y2) =y(1,1,0) +2(1,0,1).

Donc F est I’ensemble des combinaisons linéaires de {(1,1,0),(1,0,1}. C’est le sous-
espace vectoriel engendré par {(1,1,0),(1,0,1}..

Proposition 21 (Propriété de transitivité) Soir F un sous-espace engendré par n vec-

teurs . On suppose qu’il existe p vecteurs wi, ..., w, appartenant a I tels que pour tout
i compris entre 1 et n, , v; soit une combinaison linéaire de wy, ..., wy. Alors F est en-
gendré par wy,...,wp.

La démonstration est laissée a titre d’exercice.

Remarque 26 Plus généralement, on peut définir le sous-espace vectoriel engendré
par une partie quelconque (non nécessairement finie) d’un espace vectoriel.

Proposition 22 (Intersection de deux sous-espaces) Soit E un K-espace vectoriel. L’in-
tersection de deux sous-espaces vectoriels de E est un sous-espace vectoriel de E.
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Démonstration. Soit F et F, deux sous-espaces vectoriels de E. L’intersection F; N F,
n’est pas vide car O appartient a F| et F> (car ce sont des sous-espaces vectoriels de
E).

11 suffit de montrer que Fi N F; est stable par combinaison linéaire de deux vecteurs :
Soient u et v deux vecteurs de F; N F; et a, B deux scalaires. Comme u et v sont éléments
de Fy et Fy est un sous-espace vectoriel de E, le vecteur o + v appartient a Fj.

De méme u et v appartenant a F», le vecteur o + Bv appartient donc a F3. (]

Exemple 35 Soit F le sous-ensemble de R? défini par :
F={(x,y2) €R|x+y+z=0 et x+y+2z=0}.
L’ensemble F est I'intersection de Fj et B>, les sous-ensembles de R3 définis par:

Fi={(x,y,z) €R? |x+y+z=0}
B ={(x,y2) e R | x+y+2:=0}

Ce sont des sous-espaces de R3 donc F = F{ N F, est un sous-espace vectoriel de
R3.

Remarque 27 On démontre de méme que I’intersection d’une famille quelconque de
sous espaces vectoriels de E est un sous espace vectoriel de E.

Remarque 28 La réunion de deux sous-espaces vectoriels de E n’est pas en général
un sous-espace de E.

3.2.3 Somme de sous espaces vectoriels

Comme la réunion de deux sous-espaces vectoriels F; et F> n’est pas en général un
sous-espace vectoriel, il est utile de connaitre les sous-espaces vectoriels qui contiennent
a la fois les deux sous-espaces vectoriels F| et F», et en particulier le plus petit d’entre
eux (au sens de I’inclusion).

Définition 25 (Définition de la somme de deux sous-espaces) Si F et G sont deux sous
espaces vectoriels d’'un K-espace vectoriel E, [’ensemble de tous les éléments x+y ot x
est un élément de F et y un élément de G, est appelé somme des sous-espaces vectoriels
F et G. Cette somme est notée F + G. On a donc

F+G={z€E|3xeF,Iye G z=x+y}.

Proposition 23 Si F et G sont deux sous-espaces vectoriels du K-espace vectoriel E,
alors F + G est un sous-espace vectoriel de E.

Remarque 29 L’ensemble F + G contient F et contient G : en effet tout élément x
de F s’écrit x = x+ 0 avec x appartenant a F' et O appartenant a G (puisque G est un
sous-espace vectoriel), donc x appartient a F' + G. De méme pour un élément de G. On
peut montrer que F' + G est le plus petit sous espace vectoriel contenant F' et G.

Démonstration. e F + G est non vide car il contient F' et G.
e Soient u et u’ des éléments de F + G. Comme u est dans F + G, il existe x dans F
et y dans G tels que u = x+y. Comme ' est dans F + G, il existe x’ dans F ety dans
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G tels que / = X' +y'. Soient A et A’ des scalaires. En utilisant les axiomes des espaces
vectoriels, on obtient :

Me+Nu' = A +Nx)+ Ay +AY).

Comme F et G sont des sous-espaces vectoriels, Ax + A'x’ est dans F et Ay +A'y’ est
dans G. Donc Au+ Au' est dans F +G. O

Exemple 36 Déterminons F + G dans le cas ou F et G sont les sous-espaces vectoriels
de R? suivants :

F={(x,52) €R’|[y=2=0} et G={(x,5,2) €R’ [ x=2=0}

Un élément u de F + G s’écrit u = v+ w ol v est un élément de F et w un élément de
G. Donc il existe deux nombres réels x et y tels que v = (x,0,0) et w = (0,y,0). Donc
u = (x,y,0). Réciproquement un tel élément u = (x,y,0) est la somme de (x,0,0) et
de (0,,0). Donc F + G = {(x,y,z) € R* | z=0}. On voit que, dans cet exemple, tout
élément de F + G s’écrit de facon unique comme la somme d’un élément de F et d’un
élément de G.

Exemple 37 Soient F’ et G’ les deux sous-espaces vectoriels de R? suivants :
F'={(x,y,2) €R? | x=0} et G ={(x,y,2) €R®|y=0}

Dans cet exemple, montrons que F’ + G’ = R3.
Par définition de F/ + G, tout élément de F’ + G’ est dans R>. Mais réciproquement
si u = (x,y,z) est un élément quelconque de R3 :

u= (x,y,z) = (0,%2) + (X,0,0)

donc u appartient 2 F' + G'.
Remarquons que, dans cet exemple, un élément de R3 ne s’ écrit pas de facon unique
comme la somme d’un élément de F’ et d’un élément de G'. Par exemple,

(1,2,3) =(0,2,3) +(1,0,0) = (0,2,0) 4 (1,0,3).

Exemple 38 Dans le R-espace vectoriel A(R,R) des applications de R dans R, on
considere le sous-espace vectoriel des fonctions paires P et le sous espace vectoriel des
fonctions impaires I. Montrons que ? + I = A(R,R). L’inclusion Z+ I C A(R,R) est
évidente. Montrons I’inclusion inverse.

Soit f une application de R dans R. Cherchons une fonction paire o et une fonction
impaire B telles que f = o+ P. Si o et B existent, on a pour tout x de R :

f(x) = ax) +B(x)
et
J(=x) = o(—x) + B(—x) = a(x) — B(x).
Dong, si a et P existent, elles sont uniques et on a nécessairement
a:R — R

()
2
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“ B:R — R
) —f(=x)
3 .

Considérons les fonctions o et  définies ci dessus. La fonctions a est dans P et la
fonction 3 est dans I. Il est facile de voir que 'on a f = ot+ 3. Donc P+ I = A(R,R).
Nous avons montré que tout élément de A(R,R) s’écrit de fagon unique comme la
somme d’un élément de P et d’un élément de I.

Dans cette démonstration, on a montré I’unicité de o et B avant leur existence car
cela nous a permis d’avoir une expression pour o et f3.

La notion de somme de deux sous-espaces vectoriels d’un K-espace vectoriel se
généralise en la notion de somme de plusieurs sous-espaces.

Définition 26 (Définition de la somme de n sous-espaces vectoriels) Si F|,F,...,F,
sont n sous-espaces vectoriels d’'un K-espace vectoriel E, ’ensemble de toutes les
sommes X1 +Xx3+- - -+X, ol, pour tout entier p compris entre I et n, I’élément x,, appar-
tient a F), est appelé somme des sous espaces Fy,F3, ..., F, etestnoté Fi+F+---+F,

n
ou F,. On a donc
p=1

Fi+F+ - +F,={x€E|3(x1,x2,....,00) EFI XX - X Fp,x=x1+x+ - +x,}

Théoreme 13 (Théoréme de structure de la somme de n sous-espaces vectoriels) La
somme F\ + F, + - - -+ F,, des sous-espaces F,, pour p compris entre 1 et n, est un sous-
espace vectoriel de E.

La démonstration est analogue au cas n = 2.

Exemple 39 Considérons dans R* les trois sous-espaces vectoriels F, G et H, engendrés
respectivement par (1,0,0,0),(0,1,0,0),(0,0,1,0), alors tout élément de la somme
F + G+ H s’écrit sous la forme (x,y,z,0) et donc :

F+G+H ={(x,y,z,t) |t =0}.

Dans le deuxiéme exemple, nous avons vu que F’ + G’ = R mais qu’un élément de
RR? ne s’écrit pas de fagon unique comme la somme d’un élément de F’ et d’un élément
de G'. En revanche, dans le premier exemple, un élement de F + G s’écrit de facon
unique comme la somme d’un élement de F et d’un élément de G. De méme, dans le
troisiéme exemple, un élément de A(R,R) s’écrit de facon unique comme la somme
d’un élément de P et d’un élément de I. Nous sommes donc amenés a introduire la
définition suivante.

Définition 27 (Définition de la somme directe de deux sous-espaces) FErant donnés deux
sous-espaces vectoriels F et G de E, la somme F + G des sous-espaces F et G est dite
directe et s’écrit F & G si et seulement si tout élément de F + G s’écrit d’'une maniere
unique comme la somme d’un élément de F et d’un élément de G.

La somme F & G est appelée somme directe de F et G.

Notation : La notation F 4+ G = F @ G signifie que la somme F + G est directe.
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Remarque 30 On dit que I’élément u de F + G s’écrit d’'une maniere unique comme
somme d’un élément de F et d’un élément de G lorsque la propriété suivante est
vérifiée : Siu s’écritu =v+wetu =1 +w avec v,V éléments de F et w,w’ éléments
de Galorsv=Vvetw=w.

Proposition 24 Une condition nécessaire et suffisante pour que la somme de deux
sous-espaces vectoriels F et G soit directe est que O s’écrive de maniére unique
comme la somme d’un élément de F et d’un élément de G. La seule facon d’écrire
0 comme la somme d’un élément de F et d’un élément de G est alors O = O + O

Démonstration. 1l est évident que la condition est nécessaire. Montrons qu’elle est suf-
fisante. Supposons que Og s’écrive de maniere unique comme la somme d’un élément
de F et d’'un élément de G et montrons qu’il en est de méme pour tout élément de
F + G. Soit u un élément de F + G. Supposons que u s’écrive u =v+wetu=1v +w
avec v,V éléments de F et w,w' €léments de G. On a alors (v—V') 4+ (w—w') = O, ce
qui implique v —v' = 0g et w —w' = 0. On en déduit v =1 et w = w/, ce qu’il fallait
démontrer. O

Proposition 25 (Propriété caractéristique) Une condition nécessaire et suffisante pour
que la somme de deux sous-espaces vectoriels F et G soit directe est que [’intersection
de F et de G soit réduite au vecteur nul.

F+G=F&G<+<= FnG={0}.

Démonstration. Supposons que F + G = F & G. Si u est un élément quelconque de
F NG, il peut s’écrire des deux manieres suivantes comme somme d’un élément de F'
et d’un élément de G :

u=04u et u=u+0.

L’élément u étant un élément de F' N G, est donc un élément de F + G. D’apres 1’unicité

de I’écriture d’un élément de F + G, cela entraine : u=0 . Donc F NG = {0}.
Réciproquement supposons que F NG = {0}. Soit u un élément de F + G. Si u

s’écrit des deux manieres comme la somme d’un élément de F et d’un élément de G :

! / /
u=v+wietu =v +w

ot v et V' sont des éléments de F et w et w' des éléments de G, alors v—Vv' =w' —w.
Mais v — V' élément de F et w' —w est un élément de G (puisque F et G sont des sous-
espaces vectoriels) donc v—1' = w' —w est un élément de F NG, ¢’est donc I’élément
nul. On en déduit que v =1 et w = w' . L’écriture de u comme somme d’un élément
de F et d’un élément de G est donc unique.

La notion de somme directe de deux sous-espaces vectoriels d’un K-espace vecto-
riel E se généralise au cas de plusieurs sous-espaces.

Définition 28 (Définition de la somme directe de n sous-espaces vectoriels) La somme
de n sous-espaces vectoriels Fi,F,, ..., F, d’'un K-espace vectoriel E est dite directe et
s’écrit F1 ®F, ®--- ®F, si et seulement si tout élément de F\ + F>» +---+ F, s’écrit
d’une maniére unique comme somme d’éléments de F\,F,,...,F,. Ce qui s’écrit avec
les quantificateurs :

VxEF +F+-+F,3(x1,....x0) EAXFyX...Fy, x=x1+x2++xp.
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La notation 3! signifie : il existe un unique.

Exemple 40 Soit dans R* les trois sous-espaces vectoriels F, G et H, engendrés res-
pectivement par (1,0,0,0), (0,1,0,0) et (0,0,1,0). Alors tout élément u de la somme
F + G+ H s’écrit sous la forme

u=0a(1,0,0,0)+p(0,1,0,0)+7v(0,0,1,0)
donc u = (., B,7v,0). Si u s’écrivait aussi
u=0a/(1,0,0,0)+p'(0,1,0,0) +v(0,0,1,0)
alors on aurait u = (o, §’,¥,0). Mais dans R* :

(OL,B,’Y,O) = (a/aB/vyaO) == o= OL/,B = Ble: Y

donc I’écriture d’un élément de F + G + H comme somme d’éléments de F', G et H est
unique :
F+G+H=F®G®DH.

Proposition 26 La somme de n sous-espaces vectoriels F|,F;, ..., F, d’'un K-espace
vectoriel E est directe si et seulement O s’écrit d’une maniere unique comme somme
d’éléments de F1,F», ..., F,.

Démonstration. La démonstration est identique a celle donnée dans le cas de deux sous
espaces vectoriels. O

Remarque 31 ATTENTION : Dans le cas de plusieurs sous-espaces vectoriels, le fait
que les sous-espaces aient deux a deux une intersection réduite au vecteur nul n’est pas
une condition suffisante pour que la somme soit directe

Contre exemple : Dans ’espace vectoriel R?, soit F le sous-espace vectoriel en-
gendré par (1,0), G le sous-espace vectoriel engendré par (0,1) et H le sous-espace
vectoriel engendré par (1, 1). Il est immédiat que FNG = {0}, GNH ={0} et FNH =
{0} et pourtant la somme F + G + H n’est pas directe. En effet I'élément (1,1) de
F + G+ H se décompose en somme d’éléments de F, G et H de la maniere suivante :

(1,1) = (0,0) 4 (0,0) 4 (1,1)
mais aussi de la maniere suivante :

(1,1) = (1,0) +(0,1) + (0,0)
donc il n’y a pas unicité de I’écriture.

Définition 29 1) Deux sous-espaces vectoriels F et G d’un K-espace vectoriel E sont
des sous-espaces vectoriels supplémentaires de E si leur somme est directe et est
égale a l’espace vectoriel E tout entier :

E=Fa®G.

2) Si F et G sont des sous-espaces vectoriels supplémentaires du K-espace vectoriel
E, on dit que F est un supplémentaire de G, ou que G est un supplémentaire de F.



3.2. COURS SUR LES ESPACES VECTORIELS (CONSTRUCTIONS) 59

Propriétés caractéristiques :

Deux sous-espaces vectoriels F' et G d’un K-espace vectoriel E sont des sous-
espaces vectoriels supplémentaires de E si et seulement si tout élément de E s’écrit
d’une maniere unique comme la somme d’un élément de F et d’un élément de G.

Deux sous-espaces vectoriels F' et G d’un K-espace vectoriel E sont des sous-
espaces vectoriels supplémentaires de E si et seulement si E = F +G et FNG = {0}

Remarque 32 L’existence d’un supplémentaire d’un sous-espace vectoriel sera prouvée
dans le cadre des espaces vectoriels de type fini.

Remarque 33 Il n’y a pas unicité du supplémentaire d’un sous-espace vectoriel donné
(voir exemple suivant).

Exemple 41 L espace vectoriel R? est la somme directe du sous-espace vectoriel F
engendré par (1,0) et du sous-espace G engendré par (0,1), donc F et G sont des
sous-espaces vectoriels supplémentaires de R?. Mais I’espace vectoriel R? est aussi la
somme directe du sous-espace vectoriel F engendré par (1,0) et du sous-espace vecto-
riel H engendré par (1, 1), donc F et H sont aussi des sous-espaces supplémentaires de
R2.

Soit u = (x,y) un élément de R?, cherchons deux éléments v € F et w € H tels que
u=v-+w.

veEF < JaeR,v=(a,0)
weH<<—IPecR,w=(B,B)
u=v+w<= (x,y) = (0+p,p)<=P=yet a=x—y

Ceci prouve que pour tout élément u = (x,y) de R, il existe un unique élément w =
(y,y) de H et un unique élément v = (x — y,0) de F tels que u = v+ w. On a bien
R?=F@H.

Exemple 42 Soient les sous-espaces vectoriels F” et G” de R? suivants :
F"={(x,5,2) €R* |x—y—z=0} et G" ={(x,,2) €R’ |y =2=0}

Les sous-espaces vectoriels F” et G” sont des sous-espaces de R supplémentaires.
Montrons le :

11 est immédiat de vérifier que F” N G"” = {0}. En effet si I'élément u = (x,y,z)
appartient a 'intersection de F” et de G”, alors les coordonnées de u vérifient : x —y —
7 =0 (car u appartient a F"'), et y = z = 0 (car u appartient 2 G”), donc u = (0,0,0) .

Il reste & démontrer que F” + G” = R3.. Soit donc u = (x,y,z) un élément quel-
conque de R3; il faut déterminer des éléments u; de F” et ur de G” dont la somme
soit égale a u : . L’élément u; doit étre de la forme (y; +z1,y1,21) et ’'élément u; de la
forme up = (x2,0,0) . Onau = u; +uy sietseulementsiy; =y,z1 =z, =x—y—2z.
On a donc

(x,y7z) = (y+Zuy>Z) + (x_y_Z,O7O)

avec (y+2z,y,z) dans F” et (x —y—z,0,0) dans G”.
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Remarque 34 La vérification du 1) était inutile puisque la recherche de u; et de u;
montre leur unicité. Mais lorsque 1’on ne sait pas si la somme est directe ou ne 1’est
pas, il est souvent plus facile de commencer par vérifier si I’intersection est nulle ou ne
Iest pas.

3.3 Applications linéaires

3.3.1 Définition et premieres propriétes

Définition 30 Soient E et F deux K-espaces vectoriels. Une application f de E dans
F est appelée application linéaire si elle satisfait aux deux conditions suivantes :

(1) Pour tous vecteurs u et vde E, f(u+v) = f(u)+ f(v).

(2) Pour tout vecteur u de E et pour tout scalaire A de K, f(hu) = Af(u)

Autrement dit : une application est linéaire si elle ” respecte ” les deux lois d’un
espace vectoriel.

Notation :
L’ensemble des applications linéaires de E dans F est noté L(E,F) ou Lg(E,F).

Proposition 27 Soient E et F deux K-espaces vectoriels. Si [ est une application
linéaire de E dans F alors

° f(OE) =0p

e Pour tout vecteur u de E, f(—u) = —f(u) .

Démonstration. 11 suffit d’appliquer la propriété (2) de linéarité avec A = 0 puis avec
A=—1 (]

Remarque 35 La nécessité que E et F soient des espaces vectoriels sur le méme corps
K apparait clairement dans ces calculs.

Méthodologie

Soit f une application d’un espace vectoriel E dans un espace vectoriel F. Lors-
qu’on cherche a répondre a la question suivante : ”f est-elle linéaire ? ”, on peut rapi-
dement déterminer f(Of) :

si f(Og) # O, alors on peut conclure que f n’est pas linéaire. Si f(0g) = OF, on ne
peut rien conclure et il faut alors vérifier que f satisfait a chacune des deux propriétés
de linéarité.

Pour démontrer qu’une application est linéaire, on peut aussi utiliser une propriété
plus “concentrée” donnée par la caractérisation suivante :

Proposition 28 (Caractérisation d’une application linéaire) Soient E et F deux K-
espaces vectoriels et f une application de E dans F. L’application f est linéaire si et
seulement si, pour tous vecteurs u et v de E et pour tous scalaires o et B de K,

flow+PBv) = af (u) +Bf(v).
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Démonstration : Soient f une application linéaire de E dans F', u et v deux vecteurs
de E, et deux éléments o et B de K. En utilisant la propriété (1) puis la propriété (2) de
la linéarité de K, on a

flow+Bv) = flou)+f(Bv)
= of (u)+Bf(v)

Montrons la réciproque. Soit f une application de E dans F telle que, pour tous
vecteurs u et v de E et pour tous scalaires o et B de K, f(ou+ Bv) = af (u) + Bf(v).
Alors, pour tous vecteurs u et vde E, on a f(u+v) = f(u)+ f(v). (égalité (3) dans le
cas particulier oit o = 3 = 1). Pour tout vecteur u de E et pour tout scalaire o de K, on
af(ow) = of (u) (égalité (3) dans le cas particulier ot = 0).

On a une caractérisation un peu plus simple des applications linéaires.

Proposition 29 Soient E et F deux K-espaces vectoriels et f une application de E
dans F. L’application f est linéaire si et seulement si, pour tous vecteurs u et v de E et
pour tout scalaire o de K,

flow+v) = af(u) + f(v).

Proposition 30 (Image d’une combinaison linéaire) Soient E et F deux K-espaces
vectoriels et f une application linéaire de E dans F, alors

Vne N*V(\i,...,Ay) € K" V(uy,...,uy) EE"
n n
f (Z Ki“i) =Y Nif(w)
i=1 i=1
Cette proposition se démontre par récurrence sur 7.

Vocabulaire

Soient E et F' deux K-espaces vectoriels.

Une application linéaire de E dans F est aussi appelée homomorphisme d’espaces
vectoriels.

L’ensemble des applications linéaires de E dans F est noté L(E, F).

Une application linéaire bijective de E sur F' est appelée isomorphisme d’espaces
vectoriels.

Une application linéaire de E dans E est appelée endomorphisme de E.

L’ensemble des endomorphismes de E est noté L(E).

Un endomorphisme bijectif de E est appelé automorphisme de E.

L’ensemble des automorphismes de E est noté GL(E).

Exemple 43 L application f définie par
R — R?
(6,3,2) = (xy+2)

est linéaire. En effet, soient u = (x,y,z) et v = (x,),7’) deux éléments de R* et A un
réel.

Fu+v) = fx+x,Ay+y Az +7)
(A +x Ay +y +Az+7)
= Mx,y+z)+ @,y +7)

Af(u) +f(v)
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Exemple 44 Soient D(R,R) le sous-espace vectoriel de A(R,R) composé des fonc-
tions dérivables sur R. L’application d de D(R,R) dans A(R,R) définie par

d:D(R,R) — A(R,R)
f=1r

est linéaire. En effet, soient f et g deux fonctions dérivables sur R et soit & un réel, on
a

d(af+g) = (af +g) =af +¢ =ad(f)+d(g).

Exemple 45 Considérons I’application de M, ,(K) dans M, ,(K) donnée par la trans-
position.
T:Myp(K) — Mp,(K)
A — AT

T est linéaire car pour tous éléments de M, ,(K) et tout scalaire o, on a vu que
(0A+B)" = (0A)” +B" =aA” +B”.

Exemple 46 Soient £ un K-espace-vectoriel, w un vecteur non nul de E et f ’appli-
cation définie par
f:E — E
u+— ut+w

f est appelée translation de vecteur w. f(0g) =w d’ou f(0g) # Og. L’application
f n’est donc pas linéaire.

Exemple 47 Soit f 1’application définie par :

R — R

)C’—>)C2

Ff(1)=1et f(2) =4. Donc 2f(1) # f(2). Donc f n’est pas linéaire.

3.3.2 L’espace vectoriel L(E,F)

Soient E et F' deux K-espaces vectoriels. Rappelons que I’ensemble des applica-
tions de E dans F, noté A(E, F), est muni d’une loi de composition interne + et d’une
loi de composition externe définies de la fagcon suivante :

f, g étant deux éléments de A(E, F), et A étant un élément de K, pour tout vecteur
udeE

(f +8)(u) = f(u) +g(u) et (Af)(u) =Af(u).

F étant un K-espace vectoriel, I’ensemble des applications de E dans F, noté
A(E,F) estun K-espace vectoriel.

Proposition 31 Soient E et F deux K-espaces vectoriels. L’ensemble des applications
linéaires de E dans F, noté L(E,F), muni des deux lois définies précédemment, est un
K-espace vectoriel.
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Démonstration. LUensemble L(E,F) est inclus dans le K-espace vectoriel A(E,F) .
Pour montrer que L(E,F) est un K-espace vectoriel, il suffit donc de montrer que
L(E,F) est un sous-espace vectoriel de A(E,F) :

L application nulle appartient & L(E,F), donc L(E,F) est non vide. Soient f,g
deux éléments de L(E, F), et A un élément de K. Pour tous vecteurs u et v de E et pour
tous scalaires a.,  de K,

f(ow+Bv) + g(ou + Pv) (définition de £+ g)

of () +Bf(v) +ag(u) + Pg(v)(linéarité de f et g)

= o(f(u)+g(u)+PB(f(v)+g(v)) (propriétés des lois de F)
o f + &) (u) +B(f +g)(v)(définition de f + g)

(f + &) (ow+Pv)

S+ g estdonc linéaire et L(E, F) est stable pour I’addition.

(Af) (oue+Bv)

Af(ow+ Bv) (définition de Af)
Aaf(u)+Bf(v)) (linéarité de f)

= oAf(u)+ BAf(v)(propriétés des lois de F)
o(Af)(u) + B(Af)(v)(définition de A f)

Af est donc linéaire et L(E, F) est stable pour la loi externe.

L(E,F) est donc un sous-espace vectoriel de A(E,F). En particulier L(E) est un
sous-espace vectoriel de A(E,E).

Proposition 32 ( Composée de deux applications linéaires) Soient E, F,G trois K-espaces
vectoriels, f une application linéaire de E dans F et g une application linéaire de F
dans G, alors go f est une application linéaire de E dans G.

Remarque 36 En particulier, le composé de deux endomorphismes de E est un endo-
morphisme de E. Autrement dit o est une loi de composition interne sur L(E)

Démonstration. Soient u et v deux vecteurs de E, et o et B deux éléments de K.

(gof)(owm+Pv) g(f(au+Pv)) (définitionde go f)
= g(of(u)+PBf(v)) (linéarité de f)

= og(f(u))+Bg(f(v)) (lincarité de g)

Attention ! Si les espaces vectoriels E et G sont distincts, on ne peut pas définir
I’application fog.

Proposition 33 ( Propriétés de la composition d’applications linéaires) Soient E, F,
G trois K-espaces vectoriels.

LY(f1,f2) € LIE,F) X L(E,F), Vg € L(F,G), go(fi+/f2) =gofi+gofa

2'Vf€L(E7F)7 v(glng)GL(F7G)XL(FvG)a (g1+82)of:glof+820f

3.Va € K,Vf € L(E,F),Yg € L(F,G), (ag)of=go(af)=oa(gof)
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Démonstration. 1. Pour tout vecteur u de E, on a

(go(fit ) () = g((fi+fa)w))
g((fi(w) + f2(u))
g(fi(u)) +g(fa(u))

La derniere égalité utilise la linéarité de g. Les autres égalités se déduisent de la
définition de laloi o et de la loi + .

[(gofi)+(gof)l(u) = (gofi)(u)+(gof2)(u)
g(fi(u)) +g(f2(u))

Remarque : Cette démonstration utilise la linéarité de g, mais pas celles de f; et de

.

2. Pour tout vecteur u de E,

((g1+g2)0f) ()

(g1 +22)(f(u))
= g1 (f(u)+82(f(u))
= (g1of+g0f)(u)

Ces égalités se déduisent de la définition de la loi o et de la loi +.

Remarquons que la démonstration de 2. n’utilise pas de linéarité.

3. La preuve de la troisieéme propriété est laissée au lecteur. La démonstration de la
formule (og) o f = a(go f) n’utilise pas de linéarité. La démonstration de la formule
go(af)=o(gof) utilise la linéarité de g.

Proposition 34 ( Linéarité de I’application réciproque d’un isomorphisme) Soient
E et F deux K-espaces vectoriels, si f est un isomorphisme de E sur F, alors f~ est
un isomorphisme de F sur E.

Démonstration. f étant une application bijective de E sur F, f~! est une application
bijective de F sur E. Il reste donc & prouver que f~! est bien linéaire. Soient u’ et
V' deux vecteurs de F et soient o et B deux éléments de K, on pose f~! (') = u et
fY(V)=vetonaalors f(u) =u' et f(v) =+.Comme f est linéaire, on a

£ ol +BY) = £ (of () + BF(v) = " (f (oue+Bv)) = oue+ By
car f~' o f = Idg (ou Idg désigne Iapplication identique de E dans E ) donc
SN oud +BV) = of () + B (V)
f~ 1 est donc linéaire.

Vocabulaire

La proposition précédente prouve donc que s’il existe un isomorphisme de E sur
F, alors il existe aussi un isomorphisme de F' sur E. Les deux espaces vectoriels E et
F sont dits isomorphes.

3.3.3 Exemples d’endomorphismes : homothétie, projection

eHomothétie
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Soient E un K-espace-vectoriel, et A un élément de K. On définit 1’application fj
par :
f;L E — E
u — Au

/. est linéaire. En effet, soient u et v deux vecteurs de E, et o, p deux scalaires de K.
En utilisant les propriétés des lois de I’espace vectoriel E et la définiton de fj,

fulow+Bv) = Aow+By)
A(aw) +A(Pv)
(Ao)u+ (AB)v
(aM)u+ (PA)v
o(Au) 4+ B(Av)
= ofa(u) +BA(v)
/. est appelée homothétie de rapport A. Dans le cas particulier ott A = 1, fj est

I’application identité. Dans le cas particulier oit A = 0, fj, est I’application nulle.
Si k #£ 0, fy, est une bijection de E sur E (tout élément v de E admet un antécédent

unique u = X) donc c’est un automorphisme de E.

e Projection

Soient E un K-espace-vectoriel et F' et G deux sous-espaces vectoriels
supplémentaires dans E. Tout vecteur u de E s’écrit de facon unique u = v+ w avec
v élément de F et w élément de G. L'unicité de la décomposition précédente permet
de définir I’application p de E dans E telle que p(u) = v. L’application p est appelée
projection sur F parallelement a G. C’est une application linéaire.

En effet, soient deux vecteurs u et u’ de E, et deux scalaires o , B deux scalaires
de K, le vecteur u s’écrit de fagcon unique u = v+ w avec v élément de F' et w élément
de G et, par définition de p, p(u) = v. De méme, le vecteur u' s’écrit de fagon unique
u' =V +w avec V' élément de F et w’ élément de G et, par définition de p, p(u') =V .

ow+ B’ = (awv+Bv') + (aw + Bw’).

F est un sous-espace vectoriel de E, il est donc stable par combinaison linéaire et donc
le vecteur ow + Bv'appartient & F. De méme le vecteur ow + Bw’ appartient a G et,
d’apres la définition de p,on a

plow+Bu') = ow+ By = op(u) + Bp(u').

Une projection p vérifie 1’égalité p> = p. En effet, soit p la projection sur F pa-
rallelement a G, tout vecteur u de E s’écrit de facon unique u = v+ w avec v élément
de F et w élément de G. on a alors p(u) =v et p(v) =v car v=v+0 avec v élément
de F et 0 élément de G. Ainsi

Exemple 48 Nous avons vu que les sous-espaces vectoriels F” et G” de R3 suivants :
F"={(x,y,2) eR® |x—y—z=0} et G" ={(x,y,2) eR?®|y=2z=0}

sont supplémentaires dans R>. Soit p la projection sur F” parallélement 3 G”. D’aprés
les calculs faits précédemment, on a p(x,y,z) = (y+2,¥,2)-
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Exemple 49 Nous avons vu que I’ensemble des fonctions paires P et I’ensemble des
fonctions impaires I sont des sous espace vectoriels supplémentaires dans A(R,R).
Notons p la projection sur 2 paralléllement a 1. Si f est un élément de A(R,R), on a

p(f)=oou
o:R — R

S+ A=)
SO

3.3.4 Applications linéaires et sous espaces vectoriels

Soient E et F deux ensembles et f une application de E dans F. Soit A un sous-
ensemble de E. L’ensemble des images par f des éléments de A, appelé ” image de A
par f 7, est notée f(A) . C’est un sous ensemble de F. On a

fA)={yeF|IxeA, f(x) =y}

f(E) s’appelle 'image de f et est noté Imf.

Dans toute la suite, E et F' désigneront des K-espaces vectoriels.

Proposition 35 ( Structure de ’image d’un sous espace vectoriel) Soir f une appli-
cation linéaire du K-espace vectoriel E dans le K-espace vectoriel F. Si A est un sous-
espace vectoriel de E, alors f(A) est un sous-espace vectoriel de F. En particulier Imf
est un sous-espace vectoriel de F.

Démonstration. Comme A est un sous-espace vectoriel de E, il contient I’élément O,
donc f(0g) (qui est égal a Op) appartient & f(A). Donc f(A) est non vide. Ensuite
on montre que pour tout couple (y;,y2) d’éléments de f(A) et pour tout scalaire o ,
I’élément y; + oy, appartient a f(A). En effet :

y1 € f(A) < dx; GA,f(xl) =y
€ flA) <= cA flx)=y

Comme f est linéaire, on a
yi+oyr = fx1) +of(x2) = f(xr + o).

Or x1 + oy est un élément de A, car A est un sous-espace vectoriel de E, donc y; 4 0y,
est bien un élément de f(A).

Définition 31 (Définition du noyau) Soient E et F deux K-espaces vectoriels et f une
application linéaire de E dans F. Le noyau de f, noté Ker(f) , est ’ensemble des
éléments de E dont I'image est O .

Ker(f) = {x € E | f(x) = Og}

Proposition 36 Soient E et F deux K-espaces vectoriels et f une application linéaire
de E dans F. Le noyau de f est un sous-espace vectoriel de E.

Démonstration. Ker(f) est non vide car il contient Og. Soient x; et x, deux éléments de
Ker(f) et o un scalaire. Montrons que x| + otx; est élément de Ker(f). On a, en utilisant
la linéarité de f et le fait que x; et x, sont éléments de Ker(f) :

flx1 + o) = fx1) +af(x2) = OF.
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Exemple 50 Soient E un K-espace vectoriel, et A un élément de K. Considérons fj,
I’homothétie de rapport A. On a :

fiE — E
X — Ax

Si A =0, f,, est 'application nulle de E, donc Im(fy) = {Og} et Ker(fy) = E.
Si A #£0, fy est une bijection, alors Im(f)) = E, et le seul élément de E ayant pour
image Og est O, donc Ker(f)) = {Og} .

Exemple 51 Soient E un K-espace vectoriel, F et G deux sous-espaces vectoriels de
E, supplémentaires, et p la projection sur F parallelement a G. Si le vecteur u de E
s’écrit d’'une maniere unique u = ur + ug avec ur élément de F et ug élément de G,
alors p(u) = ur. Le noyau de p est I’ensemble des vecteurs u de E tels que up = 0,
c’est donc G. Montrons que I’image de p est F. Il est immédiat que I’image de p est
contenue dans F. Réciproquement tout élément de F est sa propre image, ce qui fournit
Pinclusion F C Im(p)
Ker(p) =G et Im(p) =F.

Théoreme 14 (Caractérisation des applications linéaires injectives) Soient E et F
deux K-espaces vectoriels et f une application linéaire de E dans F. L’application f
est injective si et seulement si son noyau ne contient que le vecteur nul.

Démonstration. Supposons que f soit injective et montrons que Ker(f) = {0}. Soit x
un élément de Ker(f). On a f(x) = Op. Or, comme f est linéaire, on a aussi f(0g) = OF.
De I’égalité f(x) = f(0g), on déduit x = Og car f est injective. Donc Ker(f) = {Og}.

Supposons maintenant que Ker(f) = {0}. Soient x et y deux éléments de E tels
que f(x) = f(¥). On a donc f(x) — f(y) = Op. Comme f est linéaire, on en déduit
f(x—y) =0p, c’est a dire x —y est élément de Ker(f). Donc x —y = O, soit x = y. Ce
qui acheve la démonstration du théoréme.

Remarque 37 Avec les notations du théoréme, on a comme d’habitude, f surjective si
et seulement si Im f = F.

Exemple 52 Soit f I’application de R? dans R* définie par :

fiR? - R3
(x7y) = (x,x,—x)

On montre que f est linéaire. L’image de f est ’ensemble de tous les triplets (x,x, —x)
pour x parcourant R. On a donc

Im(f) = vect((1,1,—1)).
Le noyau de f est I’ensemble des couples (0,y) pour y parcourant R. On a donc
Ker(f) = vect ((0,1)).

f n’est ni surjective, ni injective.
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Chapitre 4

Espaces vectoriels de type fini,
bases

4.1 Espaces vectoriels de type fini

4.1.1 Ensemble fini de générateurs d’un espace vectoriel

Définition 32 Soit E un espace vectoriel sur un corps K. Soit p un entier supérieur
al et p vecteurs de E, vy,...,vp. Les vecteurs vi,...,v, engendrent E si tout élément
de E est combinaison linéaire des vecteurs vi,...,vp, ce qui peut s’écrire, avec le
symbolisme mathématique :

Vx€E, 3(oy,...,0p) €K | x=0qvi+---+0,v,
Les vecteurs (vi,...,v,) engendrent E si et seulement si E = vect(vi,...,vp).

Vocabulaire :

Siles vecteurs vy, ..., v, engendrent £, ils constituent un ensemble fini de générateurs
de E ou une famille de générateurs de E. Dans ce cas, I’ensemble {vi,...,v,} est ap-
pelée aussi partie génératrice de E.

Les termes “ensemble de générateurs” ou “famille de générateurs” sont les termes
utilisés usuellement par la communauté mathématique, c’est pourquoi nous les avons
indiqués ici. Ils n’ont cependant pas le méme statut. En effet, quand on parle d’une
famille d’éléments d’un ensemble, il peut y avoir des éléments égaux et I’ordre des
éléments importe. En revanche, quand on parle d’ensemble, le mot désigne une liste
d’objets distincts et I’ordre des éléments n’importe pas.

Proposition 37 Soit E un K-espace vectoriel admettant une famille finie de générateurs
(v1,...,vp). Alors, toute partie A de E contenant les vecteurs vy,...,v, est encore une
partie génératrice de E.

Démonstration. Ceci est tout a fait immédiat en reprenant la définition de sous-espace
engendré par une partie et en utilisant le fait que les vecteurs vy, ..., v, sont des éléments
de A. (]

69
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Remarque 38 Si la famille de vecteurs (vi,...,v,) engendrent E, une sous-famille
de la famille peut ne pas engendrer E. Considérons par exemple E = R3. Soient les
vecteurs u = (1,0,0) , v=(0,1,0) et w = (0,0,1) . Ils engendrent E. En effet tout
élément (x,y,z)de R3 peut s’écrire

(x,5,2) = x(1,0,0) +(0,1,0) +2(0,0,1).

En revanche, si I’on ne considére que la partie composée des éléments (1,0,0) et
(0,1,0), elle n’engendre pas R3. 11 suffit pour justifier cette affirmation de trouver un
élément de R? qui n’est pas combinaison linéaire des vecteurs u et v . Le vecteur w, par
exemple, n’est pas une combinaison linéaire des vecteurs u et v sinon il existerait deux
réels a et b tels que

w=(0,0,1) =a(1,0,0)+5(0,1,0).

entrainant, entre autre que 0 = 1 (en regardant les troisiemes composantes).

Proposition 38 (Réduction d’une famille génératrice) Si les vecteurs vi,...,v, en-
gendrent E et si 'un des vecteurs, par exemple vy, est combinaison linéaire des autres,
alors la partie {vi,...,vp} —{vp} ={v1,...,vp_1} engendre E.

En effet, comme les vecteurs vi,...,v, engendrent E, pour tout élément x de E, il
existe des scalaires (Aq,...,A,) tels que

x=Avi+--+Apvp.

Or I’hypothese v, est combinaison linéaire des vecteurs (vq,...,v,_1) se traduit par
I’existence de scalaires (¢, ...,0,—1) tels que .

Vp =0 Vi 4+ 0p—1Vp—1-
Alors, le vecteur x s’écrit :

x=Av +"'+7»p71\)p71 +7L[,(061V1 +~--+0Lp,1vp,1).

soit

x= (A +A0) v+ A+ A1+ A0 1) vyt
ce qui prouve que x est combinaison linéaire des vecteurs vy,...,v,_1. Ceci acheve la
démonstration. Il est clair que si I’on remplace v, par n’importe lequel des vecteurs v;,
la démonstration est la méme. (]

Remarque 39 Un K-espace vectoriel quelconque ne possede pas obligatoirement de
systeme fini de générateurs. Par exemple 1’espace vectoriel réel des fonctions po-
lyndmes sur R.

Remarque 40 Soit £ un K-espace vectoriel et F un sous-espace vectoriel de E. Si
F admet une famille génératrice (vi,...,vp), il résulte de la définition (appliquée a
I’espace vectoriel F) que les vecteurs vy,...,v, sont nécessairement éléments de F.

Exemple 53 Soit le R-espace vectoriel R? et les vecteurs v = (1,0) et w = (1,1). Les
vecteurs v et w engendrent E. En effet, soit u = (x,y) un élément quelconque de R?.
Montrer que u est combinaison linéaire de v et w revient a démontrer 1’existence de
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deux réels o et B tels que u = aw + Pw. 11 s’agit donc d’étudier I’existence de solutions
du systeme :
{ o+B = «x
B =y

11 a pour solution B =y et a0 = x —y et ceci, quels que soient les réels x et y. Toujours
dans le R-espace vectoriel R?, il est facile de démontrer que {(1,0),(0,1)} est aussi
une partie génératrice de R? ((x,y) = x(1,0) +y(0,1)).

Ceci prouve qu’il peut exister plusieurs familles finies différentes, non incluses les
unes dans les autres, engendrant le méme espace vectoriel.

Exemple 54 Soit P,(R) le R-espace vectoriel des fonctions polyndmes de degré inférieur
ou égal a n. Soient les fonctions de R dans R définies pour tout x de R par :

fO(x) =1, fl(x) =X, "'7fk(x) :Xka"'afn(x) =x".
Les fonctions (fp, ..., fn) constituent une famille génératrice de P,(R).

Exemple 55 Soit £ = R considéré comme un R-espace vectoriel. Soit a un élément
non nul de R. Alors {a}, oll a est considéré comme un vecteur, est une partie génératrice
de E. En effet, soit x un élément quelconque de R. Il peut s’écrire

. | LLoXx
L’inverse de a, —, existe car a est non nul; dans cette égalité, — joue le role d’un
a

a
scalaire et a celui d’un vecteur.

Définition 33 (Définition d’un espace vectoriel de type fini) Un espace vectoriel est
dit de type fini s’il admet une famille finie de générateurs.

Exemple 56 11 résulte des trois exemples de la page précédente que R?, P,(R) et R
sont des espaces vectoriels de type fini.

Il est clair, en particulier en considérant les espaces vectoriels R? et R, qu’il peut
exister plusieurs familles finies différentes de générateurs d’un espace vectoriel de type
fini. Cela a été vu dans le cadre du premier exemple, concernant R?. En ce qui concerne
R, tout élément non nul de R est un systeme générateur de R.

De plus, si G est une famille finie de générateurs d’un espace vectoriel E, un
élément peut avoir plusieurs décompositions sur cette famille de vecteurs. Par exemple,
considérons R? et les vecteurs u = (1,0), v=(0,1) et w = (1,1) . Il résulte de ce qui
précéde que {u,v,w} est une partie génératrice de R? ( car elle contient {u,v} qui
est une partie génératrice d’apres le premier exemple). Or, si a est un réel non nul
quelconque, pour tout (x,y) de R?, il est possible d’écrire les deux décompositions
distinctes suivantes :

(x,y) =xu+yv+0w
(x,y) = (x—a)u+ (y—a)v+aw.

4.1.2 Dépendance et indépendance linéaire

Cette définition est aussi importante que la définition d’une famille génératrice.
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Définition 34 Soit E un K-espace vectoriel. Une famille (vi,v,...,v,) de E est dite
linéairement indépendante ou libre si toute combinaison linéaire nulle

Myvi+FAova+ -+ Ay, =0

est telle que tous ses coefficients sont nuls Ay = Ay = --- = A, = 0. Dans le cas contraire,
c’est-a-dire s’il existe une combinaison linéaire nulle a coefficients non tous nuls, on
dit que la famille est linéairement dépendante ou liée. Une telle combinaison linéaire
s’appelle alors une relation de dépendance linéaire entre les v;.

Par convention, on posera que 1I’ensemble vide est une famille libre.
On définit de méme la notion de partie libre ou linéairement indépendante.

Remarque 41 Toute famille (vy,vy,...,v,) contenant deux vecteurs égaux est liée. En
effet, si on suppose v = v; avec i < j, on a la relation de dépendance linéaire non
triviale

Ovy+--+0v 1 +1vi+0vip g+ +0v; 1 —1v; +0vj g+ +0vy.

Exemple 57 Dans le R-espace vectoriel R3, considérons la partie

1\ /4\ /2
AN EINE!
3/ \6/ \o

On souhaite déterminer si elle est libre ou liée. On cherche (A;,A2,23) tel que

M O+ 4h + 20 =0
2M + 5A 4+ A3 =0
3M + 6k =0

Pour cela, il suffit d’effectuer la réduction de Gauss sur la matrice associée au systeme.

142 1 4 2 1 4 2 142 10 -2
251)~(0 -3 3|~10-3 -3]~(011]~(0T1 1
360 0 -6 —6 0 0 O 000 00 O

Il y a une variable libre correspondant a la troisieme colonne sans pivot, donc la famille
est liée. On obtient toutes les relations de dépendance linéaire en résolvant le systeme
homogene, ce qui est immédiat a partir de la forme échelonnée réduite ci-dessus, x; =
2x3, X = —x3. On a donc

1 4 2 0
20612 —x3 |5 +x3[1] =10
3 6 0 0

pour tout x3 € R etil n’y a pas d’autre relation de dépendance linéaire. La partie

1\ /4\ /2
AN EINE!
3/ \6/ \o

est donc liée. O
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Exemple 58 Dans le R-espace vectoriel C, la famille (1,) est libre. En effet pour tous
scalaires a et B, on a
ol +Bi=0=oa=PB=0.

Exemple 59 Dans le R-espace vectoriel A(R,R) des applications de R dans R, on
considere la famille (cos,sin). Montrons que c’est une famille libre. Supposons que
’on ait Acos+usin = 0. Cela équivaut a

Vx € R, Acosx+ usinx=0.

. . z .7 Tc
En particulier, pour x = 0, cette égalité donne A = 0. Et pour x = > elle donne u = 0.

2

Donc la famille (cos,sin) est libre. En revanche la famille (cos?,sin?, 1) est liée car on

a la relation de dépendance linéaire cos®+sin®> —1 = 0.

Considérons le cas particulier des familles de un ou deux vecteurs.

Proposition 39 i) La famille {v} est linéairement indépendante si v # 0 et linéairement
dépendante si v = Q.

ii) La famille {vy,v,} est linéairement indépendante si et seulement si v| n’est pas
un multiple de vy et vy n’est pas un multiple de v1.

Démonstration. Le point i) est trivial. Pour le point ii), supposons d’abord la famille
liée. 1l existe donc A, A, non tous les deux nuls tels que Ajvy +Arvy = 0. Si c’est A
qui n’est pas nul, on peut diviser par A;, ce qui donne v; = —%vz et vy est un multiple
de v;. Si ¢’est A, qui n’est pas nul, alors de méme v, est un multiple de v{. On vient
de montrer que si la famille est liée, alors v; est un multiple de v, ou v, est un multiple
de vy, ce qui est la négation logique de I’assertion ”v; n’est pas un multiple de v, et v,
n’est pas un multiple de v; ”.

Réciproquement, si v; est un multiple de v;, alors il existe un scalaire u tel que
v = uva, soit 1vy + (—u)v, = 0 ce qui est une relation de dépendance linéaire entre v;
et v puisque 1 # 0. De méme, v, est un multiple de vy, alors la famille est liée, d’ou la
réciproque. O

Généralisons tout de suite le point ii) a une famille d’'un nombre quelconque de
vecteurs.

Théoréme 15 Soit E un K-espace vectoriel. Une famille F = (vi,v2,...,v,) den>?2
vecteurs de E est linéairement dépendante si et seulement si au moins un des vecteurs
de F est combinaison linéaire des autres vecteurs de F.

Démonstration. C’est essentiellement la méme démonstration que ci-dessus. Suppo-
sons d’abord ¥ liée. Il existe donc une relation de dépendance linéaire

AMyvi+Aova+ -+ A, =0,

avec Ay # 0 pour au moins un indice k. Passons tous les autres termes a droite du signe
égal. Il vient
Mvi = —Avi —Agva — -+ — Ayv,

ol v, ne figure pas au second membre. Comme A, # 0, on peut diviser cette égalité par

M et ’on obtient
A A An

V= oVl = oV = = oV,

Ak Ak Ak
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c’est-a-dire que v est combinaison linéaire des autres vecteurs de ¥, ce qui peut encore
s’écrire v € vect{F \ {w}} (la notation ensembliste A \ B désigne I’ensemble des
éléments de A qui n’appartiennent pas a B, c’est-a-dire A dont on a 6té B. C’est la
différence ensembliste).

Réciproquement, supposons que pour un certain &, on ait v, € vect{ ¥ \ {vx}}. Ceci
signifie que 1’on peut écrire

Vi =MV + vy + -+ Uy,
ol v ne figure pas au second membre. Passant v au second membre, il vient
O=pvi+uwvy+-— v+ + vy,
ce qui est une relation de dépendance linéaire pour F puisque —1 # 0. ]
Proposition 40 a) Toute partie contenant une partie liée est liée.
b) Toute partie contenue dans une partie libre est libre.

Démonstration. a) Soient A = {vy,...,v,} une partie liée et A’ = {vi,...,vp,..., v}
une partie contenant A. Il existe donc des scalaires A, A, ..., A, non tous nuls, tels que

MV +Aovp - —|—7\,pr =0.
Sil’on pose Api1 = Apyo =--- =\, =0, on peut écrire 1’égalité :
AMvi+Aova+ -+ Apvp + App Vot + -+ A, = 0.

II existe donc une combinaison linéaire nulle, des vecteurs vi,v2,...,Vp,...,Vy, & CO-
efficients non tous nuls (I’'un des A; avec i compris entre 1 et p est non nul) et par
conséquent A’ est une partie liée.

b) C’est la contraposée de a). O

Corollaire 16 Toute partie contenant le vecteur O est liée.

Proposition 41 (Adjonction d’un vecteur a une partie libre) Soient E un K-espace
vectoriel et {vi,va,...,v,} une partie libre de E. Si u est un vecteur de E tel que
{vi,v2,...,vn,u} soit une partie liée de E, alors le vecteur u est combinaison linéaire
des vecteurs vi,vy,...,vy .

Démonstration. Les vecteurs vi,va,...,v,,u sont linéairement dépendants. Il existe
donc des scalaires oy,0, ... ,0,, B non tous nuls tels que

(l) (x1v1+0c2v2+---+(xnvn+[5u20.
Le coefficient B peut-il étre nul ? Si B est nul, I’égalité (1) devient :
o vy +0ava + -+ 0oy, =0.

avec au moins un des coefficients non nul; ceci est impossible car contraire a I’hy-
pothese {vi,va,...,v,} partie libre. Donc B est non nul, il est donc inversible dans K et
on peut déduire de 1’égalité (1) 1’égalité suivante :
o o Q
U= _711)1_72‘;24_..._3”

p B

Ce qui signifie que u est combinaison linéaire des vecteurs vi,va,..., V. (]

V-
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Remarque 42 Il est intéressant de décortiquer cet énoncé : I’hypothése {vi,vy,...,v,,u}
” est une partie liée ” implique immédiatement que 1’un des vecteurs est combinai-
son linéaire des autres, et I’hypothése {vi,vy,...,v,} “est une partie libre ” permet
de conclure que c’est le vecteur que 1’on a rajouté u qui est combinaison linéaire des
autres.

Proposition 42 Soient E et F deux K-espaces vectoriels et f : E — F une application
linéaire. Soient vi,va,...,v, p vecteurs de E.

a) Si la famille (f(v1),f(v2),...,f(vp)) est libre alors la famille (vy,va,...,v,) est
libre.

b) On suppose f injective. Si la famille (vi,va,...v,) est libre,alors la famille

(f(v1)s f(v2),-.., f(vp)) est libre.
Démonstration. a) On suppose
AMvi+Agva+---+Ayv, =0.
On applique f a cette égalité, il vient (en utilisant la linéarité de f) :
MOV +Xf(v2)+--+ A, f(vy) =0

d’ol I’on déduit Aj =Xy = --- =X, =0 car la famille (f(vi),f(v2),...,f(vp)) est
libre.
b) On suppose
MfOv1)+ A2 f(v2) + -+ N f(vp) =0.

En utilisant la linéarité de f, cette égalité s’écrit
Favi+Mva+---+Apvp,) =0.
Comme f est injective, on en déduit
AMvi+Aova+---+Av, =0

ce qui implique, A; =Ay = --- = A, = 0 car la famille (v{,v2,...v,) est libre. O

4.1.3 Notion de bases dans un espace vectoriel de type fini

La notion de base généralise la notion de repéres. Dans R?, un repére est donné par
un couple de vecteurs non colinéaires. Dans R3, un repére est donné par un triplet de
vecteurs non coplanaires. Dans un repere, un vecteur se décompose suivant les vecteurs
de bases. Il en sera de méme pour les bases d’un espace vectoriel.

Définition 35 Soit E un espace vectoriel sur un corps K. Une base finie de E est un

n-uplet d’éléments de E , (v1,...,vy), ol n est un entier supérieur ou égal a 1, vérifiant
les deux conditions suivantes :
(1) La partie {vi,va,...,v,} est une partie génératrice de E.

(2) La partie {vi,va,...,v,} est une partie libre de E.

Remarque 43 11 existe une notion de base infinie. Mais cela sort du cadre de ce cours
ou ne sera traitée que la notion de base finie.
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Remarque 44 11 faut observer que la définition donnée introduit un ordre sur les vec-

teurs d’une base puisque une base est d’abord un n-uplet. Soit B = (vi,...,v,) une base
de E. 1l est clair que si I’on change I’ordre des vecteurs, c’est-a-dire si 1’on considere
(Vo(1)» -+ +»Vo(n)) OU O est une bijection de {1,...,n} dans {1,...,n}, les deux condi-

tions (1) et (2) sont évidemment satisfaites puisque

vt ={vs(1),- - Vom) }-

Alors (Vo(1);- -+, Vo(n)) €st une base de E mais elle est différente de B si o est différente
de I'identité, puisque les deux n-uplets (vi,...,vy) et (Vg(1),---,Vo(n)) sont différents.
L’importance de 1’ordre sera visible lorsque on étudiera la notion de matrice associée a
une application linéaire.

Théoreme 17 Soient E un K-espace vectoriel et vy, ...,v, nvecteurs de E. Les condi-
tions suivantes sont équivalentes :

(i) Le n-uplet (v1,...,vy,) est une base de E.

(ii) Tout vecteur de E s’écrit de maniére unique comme combinaison linéaire des
vecteurs vi,...,v, , ¢ est-a-dire que pour tout vecteur v de E, il existe un n-uplet unique
(. ..,0) de K" tel que

V=01V] +0V2 4 -+ Oy Vy.

Démonstration. Supposons que (vy,...,v,) soit une base de E. Alors, comme (vy,...,v,)
est une famille génératrice, tout vecteur v de E s’écrit comme combinaison linéaire de
v1i,...,V,. Montrons que cette écriture est unique. Supposons qu’il existe deux écritures
de v comme combinaison linéaire de vy, ..., v, a savoir

V=0V] +0vy+ -+ 0V,
v="Bvi+Bava+---+Buvn

et montrons que pour tout i dans [1,n], o; = ;. On a
(0t =Bu)vi + (02 = B2)va + -+ + (0t = Bn)vn = 0.

Comme la famille vy, .. .,v, est libre, on en déduit que, pour tout i dans [1,#], o; — B; =
0.

Supposons maintenant que tout vecteur v de E s’écrive de facon unique comme
combinaison linéaire de vy, ...,v,. Alors la famille (vy,...,v,) est génératrice. Mon-
trons qu’elle est libre. Supposons que I’on ait une relation de dépendance linéaire

Avi+Aovy+ -+ A, = 0.

Of s’écrit aussi
O =0vi+0vy+---+0v,,

Par unicité de 1’écriture de O comme combinaison linéaire de vy,...,v,, on a : pour
tout i dans [1,n], A; = 0. Donc la famille vy, ...,v, est libre. |
Vocabulaire : Si v s’écrit v = 0jvy + 0avp + - - - + O, vy, les scalaires (0, ..., 0)
s’appellent les coordonnées de v dans la base (vi,v2,...,v,). On utilisera souvent la
23]
(25)
matrice colonne [v](,, v, ,,) = [ . [ descoordonnéesde v danslabase (vi,va,...,v,).

On
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Proposition 43 L’application

x:K" — E
(0, 0,...,0) = OV + 0V + -+ 0V,

est un isomorphisme.

Démonstration. Si (dy,...,0,) et (B1,...,B,) sont deux n-uplets et si A est un scalaire,
ona

X (0, ..., 0p) =0V + vy + - - - 4 OV

XB1,--,Bn) =Bivi+Bava+- -+ Pava

Donc
(Ao +Bi)vi+ ... (Ao, +Br) = Ay (0, .., 0) +% By, Br) -

Or le membre de gauche n’est autre que
X(?\(Xl +B1,...,7\(Xn+ﬁn).

X est donc bien linéaire. De plus y est bijective car tout élément de E s’écrit de facon
unique comme combinaison linéaire des vecteurs vy,...,v,. U

Donnons maintenant des exemples. La plupart d’entre eux ont été déja cités dans
les paragraphes concernant les notions de partie génératrice finie ou de famille libre.

Exemple 60 Soient les vecteurs e; = (1,0) et ex = (0,1). Alors (e1,e2) est une base
de R? appelée base canonique de R? .

Exemple 61 Soient les vecteurs ¢; = (1,0,0,...,0),e,=(0,1,0,...,0),...,¢,=(0,0,...

Alors (eq,...,e,) est une base de R" appelée la base canonique de R”. Un élément
x = (x1,...,x,) de R" s’écrit dans la base canonique sous la forme :

X =Xx1€1 +x2e+---+xp€y.

Ce qui signifie que la i-¢me composante de x est égale a la i-eéme coordonnée de x dans
la base canonique. Le n-uplet des coordonnées de x dans la base canonique est égal a
x; cela justifie la dénomination de “’base canonique”.

Plus généralement, (ey,...,e,) est une base du K-espace vectoriel K" appelée base
canonique.

Exemple 62 On considere le R-espace vectoriel R”. Soient les vecteurs € = (1,0) et
€ = (1,1). Alors (g1,€,) est une base de R?. En effet, nous avons vu que tout élément
(x,y) de R? s’écrivait de fagon unique comme combinaison linéaire de € et de €5, &
savoir

(x,y) = (x—y)e1 +yea.
Les coordonnées de (x,y) dans la base (g1,€,) sont (x —y,y).
Cet exemple prouve qu’il peut y avoir des bases différentes sur un méme espace

vectoriel. Cependant, une remarque peut étre faite : les deux bases ont chacune deux
éléments.

,0,1).
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Exemple 63 Considérons P,(R) le R-espace vectoriel réel des fonctions polynémes
de degré inférieur ou égal a n. Etant donné un entier naturel compris entre 0 et n, on
définit f; comme suit :

Vx € R, fi(x) = x*.

Alors (fo,. .., fi) est une base de P,(R) appelée souvent base canonique de P,(R). On
sait qu’une fonction polynome sur R de degré inférieur ou égal a n est une fonction f
de R dans R telle qu’il n+ 1 éléments ag,ay, .. .a, tels que

VxR, f(x)=ao+aix+---+apx".

on a alors f = agfo+aifi +---+ +a,f, ce qui prouve que la famille (fk)ke[Ln] en-
gendre P,(R). Il est démontré dans les exercices que cette famille est libre.

Soit f: x+ f(x) = x> —x+2. Alors f s’écrit f =2fy— f1 + f>. Les coordonnées de
f dans labase (fo, f1,/2) sont (2,—1,1). Ses coordonnées dans la base (>, f1, fo) sont
(1,—1,2). Cela illustre bien I'importance de 1’ordre introduit sur les vecteurs d’une
base.

Exemple 64 (1,i) est une base de C considéré comme un R-espace vectoriel. En effet
tout nombre complexe s’écrit de facon unique sous la forme a + ib.

Exemple 65 Considérons K comme un K-espace vectoriel. Tout élément non nul de K
est une base de E. En effet, si x est un élément non nul de K, tout élément y de K peut

s’écrire y = Y x. Dans cette égalité Y joue le rdle d’un scalaire. Ceci prouve que {x}
X X
engendre K considéré comme un K-espace vectoriel. Comme x est un élément non nul
de K, {x} est une partie libre d’ou le résultat.
Si K est un corps infini (par exemple R ou C), cet exemple prouve qu’il peut y avoir
une infinité de bases sur un méme espace vectoriel.

Exemple 66 Soit r un entier compris entre 1 et n et s un entier compris entre 1 et p.
On désigne par E,; la matrice a n lignes et p colonnes dont tous les éléments sont nuls
sauf celui de la r-ieme ligne et de la s-iéme colonne qui est égal a 1. Les matrices E,.
forment une base de M, ,(K).

En effet, soit A = (a; j)un élément de M, ,(K). On peut écrire

A= Z a,;’jEi’j.
(.)€l x[1,p]

Ce qui prouve que les matrices E,.; engendrent M, ,(K). De plus, il est évident que

Z )\'i,jEi,j:>v(i7j)€[l?n]x[lap]a 7\'i,j:O~
(i.7)elln]x[1,p]

Nous allons maintenant donner deux caractérisations des bases.

Proposition 44 (Premiére caractérisation d’une base) Soit E un espace vectoriel. Un
n-uplet (vy,...v,) est une base de E si et seulement si I’ensemble {v,...v,} est une
partie libre maximale.
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Que signifie la phrase ” est une partie libre maximale” ? Cela signifie que la partie
vérifie les deux propriétés suivantes :

(a) La partie {vy,...,v,} est libre.

(b) Quel que soit le vecteur w de E — {vy,...,v,}, la partie {vi,...v,,w} n’est pas
libre.

C’est une partie maximale au sens de 1’inclusion, c’est a dire que toute partie finie
contenant strictement {v,...v, } n’est pas libre.

Démonstration. 11 s’agit en fait de démontrer que si {vy,...v,} est une partie libre, la
propriété (b) ci-dessus et la propriété ” engendre E ” sont équivalentes.

Soit donc {vy,...v,} une partie libre de vecteurs de E satisfaisant a la propriété (b)
ci-dessus. Alors, pour tout vecteur w de E — {vy,...,v,}, la partie {vy,...v,,w} n’est
pas libre, donc est lie. Or il a été vu dans le paragraphe “"Dépendance et Indépendance
linéaire”, que sous ces hypotheses, le vecteur w est combinaison linéaire des vecteurs
v1,...v,. Ceci prouve que tout élément de E est combinaison linéaire des vecteurs
{v1,...vn} qui forment donc une partie génératrice de E.

Réciproquement, supposons que vy, ... v, soit une famille libre engendrant E. Alors,
tout vecteur w de E — {vy,...,v,} est une combinaison linéaire des vecteurs {vy,...v,}
, ce qui prouve que la partie {v,...v,,w} est liée, ce qui équivaut a la propriété (b). O

Proposition 45 (Deuxieme caractérisation d’une base) Soit E un espace vectoriel.
Un n-uplet (vi,...v,) est une base de E si et seulement si I’ensemble {vy,...v,} est
une partie génératrice minimale de E.

Que signifie la phrase ” est une partie génératrice minimale” ? Cela signifie que la
partie vérifie les deux propriétés suivantes :

(a) Les vecteurs vy,...,v, engendrent E.

(b) Si on enléve un vecteur de la partie {vi,...,v,}, la partie obtenue n’est plus
génératrice.

C’est une partie minimale au sens de I’inclusion, c’est-a-dire que toute partie finie
contenue strictement dans {vy,...,v,} n’est pas une partie génératrice de E.

Démonstration. De méme que précédemment, il s’agit de montrer que si {vj,...v,}
est une partie génératrice de E, il y a équivalence entre la propriété (b) ci-dessus et la
propriété “’les vecteurs sont linéairement indépendants”. Cette preuve comporte deux
étapes.

Soit donc {vy,...v,} une partie génératrice de E, satisfaisant a la propriété (b) ci-
dessus. Supposons que les vecteurs vy, ...v, ne soient pas linéairement indépendants.
Ils sont donc linéairement dépendants ce qui signifie que I’un des vecteurs est combi-
naison linéaire des autres. Autrement dit, il existe un entier i compris entre 1 et n tel

n
que v; = Z ojv;. Compte tenu de ce qui a été vu dans le paragraphe “Ensemble fini
J=1,j#i
de générateurs d’un espace vectoriel”, cela implique que {vi,...,vi—1,Vit1,...,Vn} €st

une partie génératrice de E. Or ceci est contraire a I’hypothese (b), donc les vecteurs
sont linéairement indépendants.

Réciproquement, soit G = {vi,...v,} une partie libre engendrant E. Considérons
la partie obtenue en supprimant un vecteur de cette partie, soit v;. La partie G' =
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{Vi,...,Vi_1,Vit1,...,Vs} ne peut engendrer E car le vecteur v; ne peut étre combi-
naison linéaire des éléments de G’ puisque les vecteurs vy,...,V;_1,Vi,Viil,..,V, sont
linéairement indépendants. La propriété (b) est donc satisfaite. (I

Voyons maintenant des théorémes d’ existence d’une base finie.

Théoreme 18 (Théoreéme d’existence de parties libres et génératrices) Soit E un K-
espace vectoriel de type fini, G une partie génératrice finie de E et L une partie libre
incluse dans G. Alors, il existe une partie B vérifiant les trois propriétés suivantes :

oLCBCG

e B est libre

® B engendre E.

La démonstration que nous donnons de ce théoréme est un algorithme.

Démonstration. e ou bien L est une partie génératrice de E et c’est fini puisque c’est
une partie génératrice et libre,
e ou bien L n’est pas une partie génératrice et il existe au moins un élément g; de
G qui n’est pas combinaison linéaire des éléments de L. Alors la partie L; = LU {g}
vérifie les propriétés suivantes :
L, libre
LCL CE

On recommence le méme raisonnement a partir de L;.
e ou bien L est une partie génératrice de E et c’est fini (partie génératrice et libre),
e ou bien L n’est pas une partie génératrice de E et il existe au moins un élément
g2 de G qui n’est pas combinaison linéaire des éléments de L. Alors la partie L, =
Ly U{g2} vérifie les propriétés suivantes :

L, libre
LCLiCL,CE

L’algorithme consiste donc a construire une suite, strictement croissante pour 1’in-
clusion, de parties libres contenues dans G, ou, si L,_| n’engendre pas E, L, est obtenue
a partir de L, en lui ajoutant un vecteur g, de G tel que L,_; U{g,} soit libre. Comme
la partie G est finie, le processus s’arréte et il existe un entier s tel que L; engendre E.
Alors Lg sera une partie finie, libre et génératrice, et sera donc une base de E. O

Corollaire 19 (Théoréme d’existence d’une base) Tout espace vectoriel de type fini
(c’est-a-dire admettant une famille finie de générateurs), non réduit a {0}, admet une
base.

Démonstration. Soit G={g1,g2,...,8x} une partie génératrice non vide de E. Comme
E # {0}, il existe i compris entre 1 et n tel que g; # 0. On applique le théoreme
précédenta L = {g;} et G. O

Exemple 67 Soit P(R) le R-espace vectoriel des fonctions polynomes réelles et E le
sous-espace de P(R) engendré par les éléments f1, f2, f3, f4, f5 définies par :

VXER, fi(x) =1, A(x) =x,f3(x) =x+ 1, fs(x) = 1+x°, fs =x —x°.

Comme f est non nulle, L = {f;} est libre. Considérons f,. Comme les éléments f;
et f» sont linéairement indépendants, {1, f>} est une partie libre. Considérons f3 : ce
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vecteur est combinaison linéaire des vecteurs fj et f> car f3 = f1 + f> donc {f1, /2, f3}
est liée. Considérons alors f4. Un calcul rapide prouve que les vecteurs fi, f> et fi sont
linéairement indépendants. Alors {fi, f», f4} est une partie libre. Il ne reste que le vec-
teur f5 a considérer. Il s’agit, pour pouvoir conclure, d’étudier la linéaire indépendance
des vecteurs f1, f2, fa, fs. Or un calcul rapide montre I’égalité

fitf—fa—fs=0.

ce qui prouve que la famille { f1, f2, fa, f5} est liée. Donc avec les notations de 1’algo-
rithme s =2 et L, = {f1, f2, f4} est une base de E.

Une conséquence extrémement importante de ce qui précede est le théoreme sui-
vant :

Théoreme 20 (Théoréme de la ”’base incomplete) Soit E un K-espace vectoriel de
type fini, non réduit & {0}. Soit G une partie génératrice finie de E et L une partie libre
de E. Alors il existe une partie G' de G telle que, en notant {vi,va,...,v,} la partie
LUG, (vi,v2,...,vy) soit une base de E.

Démonstration. Pour justifier ce théoreme fondamental, il suffit d utiliser la propriété
précédente en partant de la partie G| = LU G et de la partie libre L incluse dans LUG.
d

L’ algorithme du pivot de Gauss fournit une méthode pour extraire une base d’une
famille génératrice comme le montre 1’exemple suivant.

Exemple 68 Dans le R-espace vectoriel M>(IR) des matrice carrées d’ordre 2 a coeffi-

10

_ (Lo (01 _ (33 Soit E = vect( ) 1
éy) = 01) e3 = 10) e4 = 42) O = vect(ey,ez,e3,e4) 1€ Sous espace
vectoriel de M>(R) engendré par e, ez, e3,e4.

ac
b d € vect(ey,ez,e3,e4)

. . s . 10
cients dans R, on considére les quatre éléments suivants : e} = s

= 3(7\,1,7\.2,7\,3,7\,4) cR* | (Z 2) =Nei +Aer+Azes +Ageq
a =\ + A + + 34
b =M + + A3 + 4A
4 1 3 4
=3 h M) €RT[ 0 + s+ 3
d =+ M+ + 20

ac TR . . N .
Donc (b d) appartient a vect(ej,ez,e3,e4) si et seulement si le systtme ci-dessus

a au

o

ins une solution. Résolvons ce systeme par la méthode du pivot de Gauss :

3 1103 a 1103 a
4 0 -111b—a 0-111 b-a
3 “lo o “lo o 13

2 0 1 00 13

3

1

3

0

Soo—-—~oco~g
S = = O
O W —
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1103 a 1001 b—c
0102 a+c—>b 0102 a+c—>b
0013 c 0013 c
0000d—a+b—c 000 d—a+b—c
a c
(b d) € vect(ey,e2,e3,e4) < d—a+b—c=0.
Donc

Vect(€1,€2,€3,€4) = {(Z ;) GMZ(R) | da+ch}

ac
b d
nous donne toutes les fagons d’écrire A comme combinaison linéaire de (e;,ez,e3,e4).
On a

Soit A = < ) un élément de vect (e1, ey, e3,e4). Larésolution du systéme précédent

A=(b—c—M)e1+(a—b+c—2hs)er+ (c—3\a)es + haes.

Pour chaque valeur de A4, on obtient une écriture de A comme combinaison linéaire de
(e1,e2,e3,e4). Il'y a donc une infinité de fagons d’écrire A comme combinaison linéaire
de (e1,e2,e3,e4).

Si on retire e4, ce qui correspond a prendre A4 égal & 0, on obtient

A= (b—c)ej+(a—b+c)ex+ces.

Ceci nous donne toutes les fagons d’écrire A comme combinaison linéaire de (e, ez, e3).
La matrice A s’écrit donc de fagon unique comme combinaison linéaire de (ej,e,e3).
La famille (e;,ez,e3) est donc une base de vect (eq,ez,e3,e4).

Théoreme 21 (Base d’une somme directe) Soit E un K-espace vectoriel. Soient F et
G deux sous-espaces vectoriels de E tels que E = F ® G. On suppose que F et G sont
de type fini. Soient Br = (ay,ay, . ..,a,) une base de F et (by,by,...,bs)une base de G.
Alors E est de type fini et (ay,a2,...,ar,b1,ba,...,bs) est une base de E.

Démonstration. Comme E est somme directe de F et de G, tout élément x de E s’écrit
(de maniére unique) comme somme d’un élément y de F et d’un élément z de G, soit
x =y+z. D’apres la définition de la notion de base, il existe des scalaires o1, 0y, . .., 0,
tels que :

y=0a;+0ax+---+0a,

et des scalaires By, B2, ..., Bs tels que :
2= PB1b1 4+ Boby + - + Byby.
Alors I’égalité x = y + z implique I’égalité :
X =o0uar+0pas + -+ dpa, + Brby + Paby + -+ - + Buby.

Ce qui prouve que ay,as,...,a,,b1,ba, ..., bs estune famille génératrice de E. L’espace
vectoriel E est donc de type fini puisque il existe une famille génératrice finie de E.

Il reste a montrer que ay,as,...,a,,b1,by, ..., bs est une famille libre. Soient donc
des scalaires Ay, Ao, ..., Ay U1, M2, . . ., s tels que :

Mai +haay + -+ Apar + by 4 by + -+ by = 0.
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Cette égalité peut encore s’écrire :
(Mar +Aaaz +--- +Avar) + (u1by + poby + - - - + ushy) = 0.

Comme Aja; +Aap +---+Aa, estélément de F et u1by + by + - - -+ ughy est élément
de G, on a d’apres la définition de la somme directe :

May+May+---+Aa, =0
wbr b+ +ubg =0

Or les vecteurs ay,ay,...,a, sont libres, de méme que les vecteurs by, by, ...,bs donc
Mar+hay+ -+ Ma,=0= A=A =--=A=0
by + by +-- by =0= === =0
Ce qui acheve la démonstration. (]
Remarque 45 Par abus de langage, on pourra dire que (ay,ay,...,a,,b1,by,...,by)

est la “réunion” des bases considérées.

Cette propriété se généralise au cas oll E est somme directe d’un nombre fini p de
sous-espaces vectoriels de type fini.

Théoreme 22 (Base d’une somme directe) Soir E un espace vectoriel sur un corps
K. Soient F1,F3,...,F, p sous-espaces vectoriels de E tels que E =Fi &> ®--- D F),.
On suppose que Fy,F, ..., F, sont de type fini. Soient B, = (a},d5, . .. 7a’,l_) une base

de F;. Alors E est de type fini et (a%,...,a}l,a%,...,a%z,...,a’f,...,afp) est une base de
E.

4.1.4 Dimension d’un espace vectoriel de type fini

Tout espace vectoriel de type fini, non réduit a {0} posséde des bases finies. L’ob-
jet de cette section est de prouver que le nombre d’éléments d’une base d’un espace
vectoriel est un invariant de cet espace vectoriel, ce qui permet de définir la notion de
dimension.

Pour démontrer que toutes les bases d’un espace vectoriel de type fini ont le méme
nombre d’éléments, il faut tout d’abord comparer le nombre d’éléments d’une partie
libre et d’une partie génératrice de cet espace vectoriel.

Lemme 1 Soit E un espace vectoriel de type fini, non réduit a Og, engendré par
une partie G de E ayant n éléments G = {g1,82,...,8n}- Alors toute partie F =
{ur,ua, .. .un,ups1} de n+1 éléments est liée.

Une autre facon d’exprimer le résultat de ce lemme est : "toute partie libre de E a un
nombre d’éléments inférieur a celui d’une partie génératrice de E”.

Démonstration. La preuve de ce lemme est hors programme. Elle peut se faire en rai-
sonnant par récurrence sur I’entier n.
On démontre par récurrence que pour tout la propriété suivante est vraie : “Dans un
espace vectoriel engendré par n vecteurs, toute partie ayant n+ 1 éléments est liée”.
On vérifie que la propriété est vraie pour n = 1. Soit E un espace vectoriel engendré
par un vecteur noté g, et {vi,v,} une partie de E ayant deux éléments. Les vecteurs
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v1 et vy peuvent s’écrire comme combinaisons linéaires du vecteur g, autrement dit, il
existe des scalaires oy, 0l tels que vi = a1 g1 et v; = 0lxg1. Ce qui donne la relation :
0pv] — djvy = O On suppose v, non nul (sinon il est évident que {vy,v;} est liée), le
scalaire oy est donc non nul. On a trouvé une combinaison linéaire nulle des vecteurs
v1,Vv2, avec des coefficients non tous nuls. Donc la famille {vy,v,} est liée.

On démontre maintenant que si la propriété est vraie au rang n — 1 (n > 1), alors
elle vraie pour I’entier n. Soit E un espace vectoriel engendré par n vecteurs notés
81,82,--+,8n> €t {V1,v2,..., vy, vyt } une partie de E ayant n+ 1 éléments. Tout vecteur
vj,pour j=1,2,...,n+1, est combinaison linéaire de g1,82,...,&x, il existe donc des

: J oyl J .
scalaires o}, 0, ..., 0 tels que :
oy J J
V=081 +058 + -+ 0,8

Remarque :

On est contraint d’utiliser ici deux indices i, j pour les scalaires (Attention ! j n’est
pas un exposant) car deux informations sont nécessaires : I’indice j indique qu’il s’agit
de la décomposition du vecteur v;, et i indique a quel vecteur de la partie génératrice
est associé ce coefficient.

En particulier, pour j =n—+ 1, le vecteur v, s’écrit :

1 1 1
vprr = g +os g+ +on g,

Si v,41 est nul, c’est terminé, la partie est liée; sinon, v, est non nul, et au

moins un des coefficients OL;E_H est non nul. On suppose, pour alléger 1’écriture, que

o1 est non nul (sinon il suffit de changer 1’ordre des vecteurs ). On construit une
nouvelle famille de n vecteurs de E de telle sorte que ces vecteurs soient combinai-
sons linéaires de g1, g2,...,8,—1, c’est-a-dire appartiennent au sous-espace engendré
par (g1,82,...,8n—1). Pour j=1,2,....n, on définit w; par :

n
wj= OCZHVJ - Oﬁf;vnﬂ = Z (OCZHO% - OCWZH )8k-
k=1
Le coefficient de g, est nul. Donc w; combinaison linéaire de g1,82,...,8:,—1. On a
n vecteurs qui appartiennent & un espace vectoriel engendré par n — 1 vecteurs; on
peut appliquer ’hypotheése de récurrence : la famille {wy,wy,...,w,} est liée. Par
conséquent il existe des scalaires non tous nuls Ay, Ay, ..., A, tels que :

Mwi+Rowy + -+ Ay, =0
En remplagant les w; par leur expression en fonction des vecteurs v;, on obtient :
Iy o Ay o A, — (Mo 4+ A0 = O

Le coefficient o'*! a été supposé non nul et au moins un des scalaires Aj, A, ..., A,
est non nul, on a donc une combinaison linéaire nulle des vecteurs vi,va,...,Vy, Vi1
avec des coefficients qui ne sont pas tous nuls; ceci prouve que ces vecteurs sont
linéairement dépendants. La démonstration par récurrence est ainsi achevée. (]

Théoreme 23 (Définition de la dimension) Dans un espace vectoriel de type fini E,
non réduit a {Og}, toutes les bases ont le méme nombre d’éléments. Ce nombre entier,
taille commune de toutes les bases de E, est appelé dimension de E sur K, et noté
dimgE (ou seulement dimE s’il n’y a pas ambiguité sur le corps K)
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Démonstration. L'espace vectoriel E étant de type fini et non réduit a {0}, il existe
des bases de E ayant un nombre fini d’éléments. Soient B = {uy,uy,...,u,} et B' =
{vi,v2,...,vp} deux bases de E. Si n était distinct de p ’un de ces deux entiers serait
strictement supérieur a 1’autre, par exemple n > p. Alors, d’apres le lemme précédent,
{vi,v2,...,vp} étant génératrice de E, la partie {u1,us,...,u,} serait liée, ce qui contre-
dit I’hypothese que B est une base de E. (|

Méthodologie :

Pour déterminer la dimension d’un espace vectoriel de type fini (différent de {0}),
il suffit de trouver une partie de E a la fois libre et génératrice de E, le cardinal (nombre
d’éléments) de cette partie donne la dimension de E.

Convention :
L’espace vectoriel {0} ne possede pas de base, la définition de la dimension ne peut
donc pas s’appliquer ici ; on convient de lui attribuer pour dimension O.

Vocabulaire

Par analogie avec la géométrie :

Un espace vectoriel de dimension 1 est appelé droite vectorielle.

Un espace vectoriel de dimension 2 est appelé plan vectoriel.

Dans un espace vectoriel de dimension 7, un sous-espace de dimension n — 1 est

appelé hyperplan.

Remarque 46 Dans la littérature mathématique, on rencontre souvent 1’expression
“espace vectoriel de dimension finie” au lieu de “espace vectoriel de type fini”.

Exemple 69 La base canonique de R? est ((1,0),(0,1)). Toutes les bases de R? ont
donc deux éléments. La dimension de R? est donc 2.

Plus généralement, la base canonique de K”, muni de sa structure d’espace vecto-
riel sur K, est (ej,ez,...,e,) o, pour i = 1,2,...,n, ¢; est le n-uplet dont toutes les
composantes sont nulles sauf la ieme qui vaut 1. Toutes les bases de K" ont donc n
éléments : la dimension de K" sur K est donc égale a n. En particulier R muni de sa
structure de R-espace vectoriel, et C muni de sa structure de C-espace vectoriel ont
pour dimension 1.

Exemple 70 La dimension du R-espace vectoriel P,(R) (espace des fonctions po-
lyndmes a coefficients réels de degré inférieur ou égal a n) est égale a n+ 1. La base ca-
nonique de P,(R) est (fo, fi,---,/n) o0, pour i =0,1,...,n, f; est 'application définie
sur R par :

Vx € R, fi(x) = x',

La dimension de P,(R) est n+ 1.

Exemple 71 La dimension du R-espace vectoriel C est égale a 2. Si ’ensemble des
nombres complexes C est muni de sa structure d’espace vectoriel sur R (la loi externe
est la multiplication par un scalaire réel), la base canonique de C est (1,7). La dimen-
sion de C sur R (dimgC) est donc égale a 2.

Exemple 72 Le K-espace vectoriel M, ,(K) est de dimension n X p puisque la famille
(Er,s)(”)e[l nx[1,p] €N constitue une base.
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4.1.5 Propriétés d’un espace vectoriel de dimension » (n > 0)

Lorsqu’un espace vectoriel est de type fini, le fait de connaitre sa dimension est
une information tres riche; les propriétés et théorémes suivants montrent comment
exploiter cette information.

Proposition 46 Soit E un K-espace vectoriel de dimension n non nulle, alors :
1. Toute partie libre de E a au plus n éléments.
2. Toute partie génératrice de E a au moins n éléments.

Démonstration. L’ espace vectoriel E étant de dimension n (non nulle), il existe une
partie de E ayant n éléments qui détermine une base de E, c’est-a-dire a la fois libre et
génératrice.

(1) E étant engendré par une partie ayant n éléments, toute partie libre de E a au
maximum # éléments, sinon elle est liée (conséquence du lemme).

(2) 1l existe une partie libre de E ayant n éléments, par conséquent toute partie
génératrice de £ a au minimum 7 éléments (conséquence du lemme).

Théoreme 24 Soient E un K-espace vectoriel de dimension n non nulle, et uy,uy, ..., u,
n vecteurs de E :

1. Si{uy,uy,...,u,} est une partie libre alors (u,uz,...,u,) est une base de E.

2. Si {u1,un,...,uy} est une partie génératrice de E alors (uj,ua,...,uy,) est une
base de E.

Autrement dit, lorsque le nombre de vecteurs considéré est exactement égal a la di-
mension de I’espace vectoriel, ['une des deux conditions : générateurs, ou linéairement
indépendants suffit pour que ces vecteurs déterminent une base de E.

Démonstration. C’est une conséquence immédiate du théoréme précédent. Si la di-
mension de E est égale a n toute partie libre ayant exactement n éléments est une partie
libre maximale donc détermine une base de E.

De méme, une partie génératrice de E ayant n éléments est une partie génératrice
minimale, donc détermine une base de E. O

4.1.6 Sous espaces vectoriels de type fini

Tout sous-espace vectoriel d’'un K-espace vectoriel étant lui méme un K-espace
vectoriel, la question est de savoir s’il est de type fini ou s’il ne I’est pas.

Par exemple 1’espace vectoriel des fonctions de R dans R contient des sous-espaces
vectoriels de type fini comme I’ensemble des fonctions polynomes réelles de degré
inférieur ou égal a n (n étant un nombre entier donné), mais il contient aussi des sous-
espaces vectoriels qui ne sont pas de type fini comme I’ensemble de toutes les fonctions
polyndmes réelles. Cependant, la réponse est plus précise lorsque 1’espace vectoriel
considéré est lui-méme de type fini.

Théoreme 25 Soit E un K-espace vectoriel de type fini. Alors tout sous-espace vec-
toriel F de E est de type fini, et sa dimension est inférieure ou égale a celle de E ; la
dimension de F est égale a celle de E si et seulement si le sous-espace F est égal a
I’espace E tout entier.
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Démonstration. La démonstration est triviale dans le cas ou le sous espace F' est réduit
a {0}.

Soit donc F un sous-espace vectoriel de E et soit n la dimension de E ; n est un
entier strictement positif puisque E, qui contient F, n’est pas réduit a {0}.

Soit v un élément non nul de F : {v} est une partie libre de F, donc F contient des
parties libres. Toute partie libre d’éléments de F' étant une partie libre d’éléments de E
(voir la définition des parties libres), comme E est de dimension 7, toutes les parties
libres de F ont au plus n éléments.

On considere I’ensemble A des entiers k tels qu’il existe une partie libre de F ayant
k éléments :

A= {k S N,E{f],fz, e 7fk} CF et{f1,f2,...,fk} partie libre de F}

Cet ensemble A, non vide (1 € A ), est un sous-ensemble borné de N (puisque tout
élément de A est compris entre 1 et n) donc il admet un maximum. Soit p ce maximum
et soit {vi,v2,...,v,} une partie libre de F ayant p éléments ; cette partie libre est donc
une partie libre maximale de F.

D’apres la propriété des parties libres maximales d’un espace vectoriel, la partie
{v1,v2,...,v,} est une partie génératrice de F et donc détermine une base de F.

On a ainsi démontré simultanément que

e F est de type fini (puisque {vi,v2,...,v,} est une partie génératrice de F),

e dimF = p, donc dimF < dimE (puisque toute partie libre de F a au plus n éléments).
De plus, lorsque p = n, le p-uplet (vi,vs,...,v,) , qui est une base de F, est aussi
une base de E (car {v{,v2,...,v,} est alors une partie libre de E ayant exactement n
éléments), c’est donc une base de E. Tout élément de E s’écrit comme une combinaison
linéaire de vi,v2,...,v,, donc appartienta ', d’ou E = F.

Exemple 73 Si E est un K-espace vectoriel de dimension 2, les sous-espaces vectoriels
de E sont

e soit de dimension 0, ¢’est alors le sous-espace {0},

e soit de dimension 1, ce sont tous les sous-espaces engendrés par les vecteurs non
nuls u de E,

e soit de dimension 2, c’est alors ’espace E tout entier.

Vocabulaire Dans un K-espace vectoriel £ de dimension n (n > 2), tout sous-
espace vectoriel de E de dimension 1 est appelé droite vectorielle de E, tout sous-
espace vectoriel de E de dimension 2 est appelé plan vectoriel de E, et tout sous-espace
vectoriel de E de dimension n — 1 est appelé hyperplan de E : il y a identité entre les
notions d’hyperplan et de plan vectoriel lorsque n = 3, et entre les notions d’hyperplan
et de droite vectorielle lorsque n = 2.

Dans le cas plus général ot E est un K-espace vectoriel quelconque et F' et G deux
sous-espaces vectoriels de type fini de E, la comparaison des dimensions de F et de G
ne donne pas d’information sur F et G, les dimensions peuvent étre égales sans que ces
sous-espaces soient égaux, mais si F' est contenu dans G, il peut étre considéré comme
un sous-espace vectoriel de G et le théoreme précédent permet de déduire le corollaire
suivant :

Corollaire 26 Soient F et G deux sous espaces vectoriels de type fini de E, tels que F
soit contenu dans G. Alors la dimension de F est inférieure ou égale a la dimension de
G et les dimensions de F et de G sont égales si et seulement F et G sont égaux.
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Exemple 74 Deux droites F' et G d’un K-espace vectoriel E sont soit égales, soit d’in-
tersection réduite au vecteur nul.

Exemple 75 Soient F et G les sous-espaces vectoriels de R> suivants :

F:={(x,yz2) €eR’[2x=3y+z=0}
G :=vect(u,v)onu=(1,1,1)etv=(2,1,—1)

On veut montrer que F = G. On remarque que les vecteurs u et v ne sont pas
colinéaires, donc G est de dimension 2, et de plus ils appartiennent a F, donc G est
contenu dans F. Pour trouver la dimension de F, on pourrait déterminer une base de
F, on montrerait alors que la dimension de F est 2. Mais il est plus judicieux ici de
remarquer que F est contenu strictement dans R* (par exemple : le vecteur (1,0,0)
de R3 n’est pas dans F'), donc la dimension de F est strictement inférieure a 3 ; mais
puisque F' contient G, la dimension de F est supérieure ou égale a 2 , donc la dimension
de F ne peut étre que 2.

On a donc démontré que G est contenu dans F et que F et G ont la méme dimen-
sion ; ceci entraine que F est égal a G.

Etudions maintenant la somme de deux sous espaces de type fini.

Proposition 47 Soient F et G deux sous-espaces vectoriels de type fini d’'un K-espace
vectoriel E.

I- Si fi1,f2,..., fp est une famille génératrice de F, et g1,82,...,84 une famille
génératrice de G, alors la famille f1, f2,..., fp, 81,82, - - -, 8¢ est une famille génératrice
de F +G.

2- Si, de plus, (f1,f2,...,fp) est une base de F, et (81,82,...,8,4) une base de G,
alors le p+ g-uplet (fi,f2,...,[p,81,82---,8q) est une base de F + G si et seulement
si la somme de F et de G est directe.

Démonstration. 1. Tout élément u de F' + G est la somme d’un élément v de F et d’un
élément w de G :
u=v+w.

Or v est une combinaison linéaire de fi, f, ..., f, et w est une combinaison linéaire de
81,82,---,8¢ donc u est une combinaison linéaire de fi, f2,..., f»,81,82,...,84 donc
{fi,fa,-- fp:81,82,-..,8¢} est bien une partie génératrice de F + G. On en déduit
que F + G est de type fini eton a

dim(F+G) < p+q = dimF 4 dimG.

2. Compte tenu du 1, il suffit de montrer que, lorsque {f1, f2,..., f,} est une partie
libre de F, et {g1,82,...,84} une partie libre de G, alors {f1,f2,...,/p,81,82,---,84}
est une partie libre de F + G si et seulement si F +G = F & G.

Supposons que {f1, f2,..., [, 81,82, --,8¢} soit une partie libre de F + G et mon-
trons que F + G = F @© G. Ecrivons 0 comme la somme d’un élément de F et d’un
élémentde G : O =u+vavecu € F etv € G et montrons que ¥ = v = 0g. Comme u
est dans F, il s’écrit comme combinaison linéaire de { f1, f>,..., fp} :

I, Aa, 0 hp) €EKPS u=Mfi+hafa+ o+ Ay fp
Comme v est dans G, il s’écrit comme combinaison linéaire de {g1,82,...,8¢} :

I, 2, up) €KY v=pngr + g+ + U8y
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Comme u+v=0g,ona

)Vlfl+7¥2f2+"'+)bpfp+‘ulg1 +:“282+"'+,Upgp=05.

Comme {f1, f>,...,fp:81,82,---,8¢} est une partie libre de F +G, ona A = Ay =
=Ap=uy=pmp = =py;=0.Doncu=v=0g.

Réciproquement, on suppose que F +G = F & G et on veut montrer que { fi, f>,..., f5,81,82,---,84}
est une partie libre de F 4+ G. On suppose

MAi+hfot+ 4 hpfp g +mg+ - +upgp = Op.

Or Mifi+Xafo+ -+ Apfp est un élément de F et py gy + g2+ -+ upgp est un
élément de G. Comme la somme de F' et de G est directe, on en déduit

MfA+hfot+-+A,fp =0k
H1g1+uga+ - +upgp =0p

Comme {fi,f2,...,fp} est une partie libre de F, tous les A; sont nuls. De méme
{g1,82,...,84} étant une partie libre de G donc tous les y; sont nuls. On a montré
ainsi que {f1,f2,...,fp,81,82,-..,84} est une partie libre de F + G. O

De la proposition précédente résulte le théoréme suivant :

Théoreme 27 Soient F et G deux sous-espaces vectoriels de type fini d’un K-espace
vectoriel E. Alors la somme F + G est un sous-espace vectoriel de type fini de E et sa
dimension est inférieure ou égale a la somme des dimensions de F et de G.

La dimension de F + G est égale a la somme des dimensions de F et de G si et
seulement si la somme est directe.

Démonstration. Soient {f1, fa,..., fp} et{g1,82,...,84} desbases de F et de G. D’aprés
la proposition précédente {fi, f2,...,fp.81,82,---,8¢} est une partie génératrice de
F 4+ G , donc F + G est de type fini et sa dimension est inférieure ou égale au nombre
d’éléments de la famille {fi, f2,...,fp,81,82,--.,8¢} donc inférieure ou égale a p +
q = dimF 4 dimG.

De plus,

oSi la somme F + G est directe, alors {f1, f2,...,fp,81,82,-..,8¢} est une base de
F + G. Donc la dimension de F + G est égale a p + g = dimF 4 dimG.

e Réciproquement, si la dimension de F + G est égale a p + g = dimF + dimG
Alors la famille génératrice {fi, f>,..., f».81,82,---,8¢} qui a p+ g éléments est une
famille génératrice de F + G ayant dim(F 4 G) éléments, elle détermine donc une base
de F + G. Ce qui entraine que la somme F + G est directe. O

Remarque 47 Les assertions du théoréme reste vraies pour la somme d’un nombre
quelconque de sous espaces vectoriels d’un espace vectoriel de type fini.

De la proposition précédente résulte aussi le théoreme fondamental suivant :

Théoreme 28 Tout sous-espace vectoriel d’un K-espace vectoriel de type fini admet
un supplémentaire.



90 CHAPITRE 4. ESPACES VECTORIELS DE TYPE FINI, BASES

Démonstration. Soient E un K-espace vectoriel de type fini, B = (ey,...,e,) une base
de E, F un sous-espace vectoriel de E, Br = (fi, f2,. .., fp) une base de F. La famille
ei,...,e, est donc une famille génératrice de E et la partie {fi, f2,...,f,} une partie

libre de E. On peut donc appliquer le théoreme de la base incompléte. D’apres ce
théoreéme, il existe une partie C de {ey,...,e,} telle que { f1, f>,..., fp } UC détermine
une base B’ de E. Soit G le sous-espace vectoriel de E engendré par C, alors B est a
la fois une base de E et une base de F + G. Ceci prouve bien que la somme F + G est
directeetque E=F+G=F®G. (]

Exemple 76 Soit F = {(x,y,z) € R?|2x—3y+z=0}. On a vu dans I"exemple précédent
que F =vect(u,v)ouu=(1,1,1)etv=(2,1,—1). Le sous-espace F est de dimension
2. Pour construire un supplémentaire de F, donc trouver G tel que F & G = R3, il suffit
de remarquer que ce supplémentaire est forcément de dimension 1 (voir le théoréme sur
la dimension d’une somme directe), donc qu’'une base de G n’a qu’un élément qu’on
note w, et que (u,v,w) doit étre une base de R*. N’importe quel élément de R, n’ap-
partenant pas a F' (donc forcément non nul) convient : En effet soit w n’appartenant
pas a F, alors F NRw = {0g}. donc la somme F + Rw est directe, sa dimension est
alors égale a 3, donc F @ Rw = E. Le sous-espace Rw est bien un supplémentaire de F.

On peut choisir pour w n’importe quel triplet ne vérifiant pas 1’égalité 2x —3y+z =
0. Il existe une infinité de tels triplets non colinéaires, ce qui prouve I’existence d’une
infinité de supplémentaires de F'.

4.1.7 Rang d’une famille finie de vecteurs

Soit E un K-espace vectoriel et (vq,...,v,) une famille finie de vecteurs de E. Le
sous-espace vectoriel engendré par (vi,...,v,) est de type fini (puisqu’il admet trivia-
lement une famille finie de générateurs). On peut donc donner la définition suivante :

Définition 36 (Définition du rang d’une famille finie de vecteurs) Soit E un K-espace
vectoriel et une famille finie de vecteurs de E, (vi,...,vp). Le rang de la famille
(Vi,...,vp) (on dit aussi rang des vecteurs vi,...,v,) est la dimension du sous-espace
vectoriel de E engendré par les vecteurs vy, ...,Vvp.

Notation Le rang de la famille (vi,...,v,) est noté rg(vi,...,vp).

Proposition 48 Soit E un K-espace vectoriel et (vy,...,vp) une famille de p vecteurs
non tous nuls de E. Alors :
1) Les inégalités suivantes sont satisfaites :

0<rg(vi,...,vp) < p.

2) Le rang de (vi,...,v),) est le nombre maximum d’éléments d’une famille libre
extraite de (vi,...,v,). Donc 1g(vi,...,vp) = r si et seulement il existe une famille
libre de r vecteurs extraite de (v1,...,v,) et si toute famille de q vecteurs, avec q > r,
extraite de (vi,...,vp), est liée. En particulier tg(vi,...,vp) = p si et seulement les
vecteurs (vi,...,v,) sont linéairement indépendants.

3) Si 1g(vi,...,vp) = r, toute partie libre de r éléments extraite de (vi,...,v,)
détermine une base du sous-espace vectoriel engendré par les vecteurs vi,...,vp
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4) Soient F un K-espace vectoriel et f : E — F une application linéaire. On a
linégalité
rg(f(€1)7f(€2)7 ce af(ep)) < rg(€17€27 e 7617)'

Si, de plus, f est injective, le rang des vecteurs vi,...,v, est égal au rang des vecteurs

f(vl), ce ,f(vp).

Démonstration. les points 1,2 et 3 sont immédiats. Le quatrieme point découle de la
proposition 42.

Remarque 48 Le cas ou tous les vecteurs sont nuls est immédiat : il est clair que ’on
a I’équivalence suivante :

1g(vi,...,vp) =0<=vi=1m=--=v,=0.

Remarque 49 Si E est un espace vectoriel de type fini, il est évident d’apres les pro-
priétés des sous-espaces vectoriels de type fini, que le rang d’une famille finie de vec-
teurs de E est inférieur ou égal a la dimension de E. Il est égal a la dimension de E si
et seulement si la famille engendre E.

Proposition 49 L’espace vectoriel engendré par une famille de vecteurs n’est pas mo-
difié par les trois opérations élémentaires suivantes sur les vecteurs :

— On échange deux vecteurs.

— On multiplie un vecteur de la famille par un scalaire non nul.

— On rajoute a l'un des vecteurs une combinaison linéaire des autres vecteurs

(substitution).

En particulier le rang d’une famille de vecteurs n’est pas modifié par les trois opérations
élémentaires précédentes sur les vecteurs.

Remarque 50 Cet énoncé suppose évidemment que 1’on considére une famille d’au
moins deux vecteurs. Cela ne pose aucun probléme dans la mesure ol la détermination
du rang d’une famille de vecteurs ne comportant qu’un vecteur est immédiate : ou bien
ce vecteur est nul et le rang est égal a 0 ou bien ce vecteur est non nul et le rang est égal
al.

Démonstration. Le premier point de la proposition est évident. Soit F le sous-espace
vectoriel de E engendré par les vecteurs vi,...,v,. Démontrons le deuxieéme point.
Pour simplifier I’exposition, on suppose que c’est le premier vecteur que 1’on multiplie
par un scalaire non nul A. Soit (&, ...,0,) p scalaires. L’égalité

o

x A1+ Ovy + - Oy,

vy +0Vy + - -+ Oy vy =
montre qu’une combinaison linéaire des vecteurs (vi,...,v,) est une combinaison linéaire
des vecteurs (Avy,...,v,) et vice versa. Le deuxiéme point en découle. Montrons main-
tenant le troisieme point. Comme précédemment on suppose que ¢’est au vecteur v; que
I’on rajoute une combinaison linéaire des autres. Il est clair que cela ne nuit pas a la

p
généralité de la démonstration. On pose v; = v + Zoc,-v,-. La définition de v} implique
i=2
que V| appartient au sous-espace vectoriel engendré par les vecteurs (vi,...,v,). Ona
donc 'inclusion

vect(Vy,...,v,) C vect(vi,...,vp).
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La définition de v} implique aussi 1’égalité
.
V=V — ZOC,‘V,‘
i=2

et donc, comme précédemment, 1'inclusion de vect(vi,...,v,) dans vect(v},...,v,)
D’ou I’ égalité :
/
vect(vy,...,vp) = vect(Vi,...,vp).
O

Dans la plupart des exemples, la recherche du rang concernera des vecteurs appar-
tenant a un espace vectoriel E de type fini, vecteurs que I’on exprimera donc dans une
base de E. On se place donc désormais dans cette situation. On s’appuiera alors sur la
propriété suivante :

Proposition 50 Soit E un K-espace vectoriel de type fini et n sa dimension. Soient
(e1,...,e,) une base de E et wy,...,ws des vecteurs de E, dont les coordonnées dans
la base (ey,...,e,) se présentent de la maniére suivante :

Wi = 16 +ooot ap e, oot aiiei oo+ anien
wy = Ajp2ei, +---+ ajpej +---+ apen

Wg = aj. sei; +--+ apgey

avec, i1 < iy < --- <l et, pour tous les entiers j compris entre 1 et s, ai; j non nul.
Alors les vecteurs (wy,...,ws) sont linéairement indépendants.

Démonstration. On démontre par récurrence sur s que s vecteurs wy, ..., wy satisfaisant
les hypotheses de la proposition sont linéairement indépendants.

Sis =1, on a vecteur le wy non nul. Il constitue donc une famille libre.

On suppose s > 2 et I’assertion vraie pour s — 1. Soit une combinaison linéaire nulle
des vecteurs wiy,...,wg :

AMwi+Aowy + -+ Agws = 0.

La coordonnée de A w1 +Aowa + - - + Aows = O sur le vecteur ¢;; est Aja;, 1. Comme
a;,,1 est non nul, A; = 0. On est donc ramené a la combinaison linéaire Adywy + -+ +
Asws = 0 ot les s — 1 vecteurs wy, ..., w; vérifient les hypothéses de la proposition. [

Une conséquence immédiate de cette proposition est :

Corollaire 29 Si des vecteurs wy,...,ws vérifient les hypothéses de la proposition
précédente alors leur rang est exactement égal a s.

Proposition 51 Soit E un K-espace vectoriel de dimension finie et soit B= (e1,...,e,)
une base de E. Soient v, ...,v, p vecteurs. Notons [vi|g la matrice colonne des coor-
données de v; dans la base ‘B. Le rang des vecteurs vi,...,v, dans E est le rang des
vecteurs [vilg, ..., [vp]g dans My 1 (K).

Démonstration. Cela découle du fait que I’application

E — M,(K)
v s

est un isomorphisme.
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Définition 37 On définit le rang d’une matrice comme étant le rang de ses vecteurs
colonnes.

Remarque 51 Notons M la matrice dont la j-ieme colonne est [v;]. Le rang des vec-
teurs vy, ..., v, est égal au rang de M.

D’apres la proposition 49, on ne change pas le rang d’une matrice par des opérations
élémentaires sur les colonnes.

Définition 38 On dit qu’une matrice est échelonnée par rapport aux colonnes si sa
transposée est échelonnée (par rapport aux lignes).

Soit A une matrice. L’algorithme de Gauss nous dit que, par des opérations élémentaires
sur les lignes, on peut transformer A7 en une matrice échelonnée (par rapport aux
lignes) R. Par transposition, on en déduit que, par des opérations élémentaires sur les
colonnes, on peut transformer A en la matrices R? qui est échelonée par rapport aux
colonnes. Le rang d’une matrice échelonnée par rapport aux colonnes est facile a cal-
culer (voir proposition 50).

Exemple 77 Calculons le rang de la famille des 5 vecteurs suivants de R?.

vi=(1,1,1,1)

vy =(—1,2,0,1)
v3=(3,2,-1,-3)
vs =(3,5,0,—1)
Vs = (3,8,1,1)

On est ramené a calculer le rang de la matrice

1 -1 3 3 3
1 2 2 5 8
1 0 -1 0 1
1 1 -3 -11

Pour les opérations élémentaires sur les colonnes, on utilise les mémes notations
que pour les opérations sur les lignes.

En faisant les opérations C; «— C,+Cy, C3 +— C3—3C; ,Cq «— C4 —3C1,Cs5 «—
Cs —3C}, on obtient

1 -1 3 3 3 10 0 0 0
12 2 5 8 13 -1 2 5
10 -1 0 1] 7|11 -4-3=2
11 =3 —11 12 -6 -4 -2

10 0 0 O 1 000 O
13 -1 2 5 1 -13 2 5
11 -4 -3 -2 1 41 -3 =2
12 -6 -4 =2 1 -6 2 —4 =2
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En faisant les opérations C3 «— C3 4 3C,, C4 «— C4+2C; et C5 «— C5+5C3, on
obtient

1 00 0 O 1 0 O 0 0

1 -13 2 5 1 -1 0 0 0

1 41 -3 =2 1 -4 —11 —11 =22
1 -6 2 —4 =2 1 -6 —16 —16 —32

Enfin, en faisant les opérations C4 «— C4 — C3 et C5 «—— C5 — 2C3, on obtient

1 0 O 0 0 1 0 0 00O
1 -1 0 0 0 N 1 -1 0 00
1 -4 —11 —11 =22 1 -4 —-11 00
1 -6 —16 —16 —32 1 -6 —16 00

On en déduit que le rang des vecteurs vi,vz,V3,Vv4, V5 est 3.
Remarque 52 En fait, nous avons méme démontré que
vect(vy,v2,v3,va,vs) = vect (v1,(0,—1,—4,—6),(0,0,—11,—16)).

Exemple 78 Considérons les trois vecteurs suivants dans R : v| = (1,2,1,2,0), vo =
(1,0,1,4,4) et v3 = (1,1,1,0,0). Montrons que la famille (V1,V2,V3) est libre dans R>.
Pour cela calculons le rang de cette famille de vecteurs ou, ce qui revient au méme,
celui de la matrice suivante

SN =N =
A= O~
OO = = =

Par des opérations élémentaires sur les colonnes, on obtient :

111 1 0 O 1 0 O 1 0 O
201 2 -2 —1 2 -1 -1 2 -1 0
111]~|1 0 O0f~]1 0 O |~|1 0 O
240 2 2 =2 2 1 =2 2 1 -3
040 04 0 02 0 0 2 -2

La famille (v1,V2,V3) est de rang 3, elle est donc libre dans R.

Exemple 79 Considérons les quatre vecteurs suivants dans R? : v| = (1,2,3), vp =
(2,0,6), v3 = (3,2,1) et v4 = (—1,2,2). Montrons que la famille (v1,V2,V3,V4) en-
gendre R3. Pour cela calculons le rang de cette famille de vecteurs ou, ce qui revient
au méme, celui de la matrice suivante

123 -1
202 2
361 2
Par des opérations élémentaires sur les colonnes, on obtient :
123 -1 1 0 0O 1 0 0O 1 0 0O
202 2 | ~|2 -4 —-44]~12-400|~|2-400
361 2 3 0 -85 3 0 -85 30 -80

La famille (V1,V2,V3,V4) étant de rang 3, ce qui veut exactement dire que Vect (V1,V2,V3,V4)
est un sous espace vectoriel de dimension 3 de R3. On a donc Vect (V1,V2,V3,V4) = R3.
Autrement dit la famille (V1,V2,V3,V4) engendre R3.
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4.2 Applications linéaires en dimension finie

L’ étude des propriétés des applications linéaires définies sur un espace vectoriel de
type fini conduit a des résultats tres riches et tres utilisés.

4.2.1 Construction et caractérisation

Théoreme 30 (Construction d’une application linéaire) Soient E et F deux espaces
vectoriels sur un méme corps K. On suppose que l’espace vectoriel E est de type fini.

Soit n (n > 1) sa dimension. Alors, si (ey,...,e,) est une base de E, pour tout n-uplet
(ai,...,a,) d’éléments de F, il existe une et une seule application linéaire f de E dans
F telle que :

Vie[l,n], f(e)=aj.

Remarque 53 Le théoréeme ne fait aucune hypothese sur la dimension de 1’espace vec-
toriel F, espace vectoriel d’arrivée de f.

Une application linéaire d’un espace vectoriel de type fini dans un espace vecto-
riel quelconque est entierement déterminée par les images des vecteurs d’une base de
I’espace vectoriel de départ.

Méthodologie de la preuve du théoreme :

La conclusion du théoréme comporte deux points : I’existence et ’'unicité d’une
application linéaire satisfaisant a certaines propriétés. La démonstration va donc com-
porter deux parties :

e une premiere qui consistera a prouver que si une telle application existe, elle est
unique ;

e la deuxieéme qui consistera a montrer 1’existence d’une telle application linéaire
par sa construction explicite.

Il peut paraitre curieux de commencer par 1’unicité, mais la plupart du temps, dans
une situation de ce type, c’est ce qui est fait. Cela permet en effet de déterminer, si elle
existe, la seule application qui peut convenir. Nous avons déja rencontré cette méthode
dans I’exemple 38

Démonstration.
Commencons par démontrer I’unicité. Supposons qu’il existe une application linéaire
f:E — F telle que
Vie[l,n], fle)=a;.

Soit x un élément de E. Il existe des scalaires xi,x»,...,X, uniques tels que
n

x =) xje;. Comme f est linéaire, on a
i=1

flx)= i{xif(ei) = i{xiar

Donc, si elle existe, f est unique
Démontrons maintenant 1’existence de f. Nous avons montré que la seule solution
possible au probleme posé est I’application

L:E —- F

n n
X — Zx,-ai six= Zx,-ei
i=1 i=1
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Pour achever la démonstration il s’agit de vérifier que cette application est linéaire et

qu’elle vérifie la condition imposée, a savoir : pour tout i dans [1,n], L(e;) = a;.
n n

Soient x = inel- ety = Zy,-ei deux éléments de E, et o0 un scalaire. Alors, tous
i=1 i=1
calculs faits, cela donne
n
oty =Y (o +yi)e;
i=1
et les scalaires oux; + y; sont les coordonnées de o + y dans la base (ey,...,e,). Donc
d’apres la définition de L, on a

0(.X—|-y = Zn: (x,x, —|—y, a;=0o <Zn:xia,’> + <Zn:}’iai> = (XL(X) + BL(y)'
i=1

i=1 i=1

L’application L est donc linéaire.

Pour justifier qu’elle vérifie la condition imposée, il suffit de remarquer que la i-
eme composante de ¢; sur la base (eg,...,e,) est égale a 1 et que toutes les autres sont
nulles. Alors

n
L(e;)) =la;+ Z 0a;j = a;.
J=Lj#i
Ce qui termine la preuve du théoreme. U

4.2.2 Rang d’une application linéaire

Proposition 52 Soient E et F deux espaces vectoriels sur un méme corps K et f une
application linéaire de E dans F. On suppose ’espace vectoriel E de type fini. Alors,
l’image de f est un espace vectoriel de type fini. Plus précisément, sin est la dimension
de E et (ey,...,e,) une base de E, alors (f(e1),..., f(en)) est une famille génératrice
de Im f.

Démonstration. 11 suffit de démontrer que tout élément de Im f est combinaison linéaire
des vecteurs f(ey),..., f(en).
Soit y un élément quelconque de Im f. Il existe donc un élément x de E tel que

y=f(x). Comme (e1,...,e,) est une base de E, il existe des scalaires (x1,... xn) tels

que x = Zx,e, En utilisant la linéarité de f, on en déduit f(x) Zx, , ce qui
i=1

acheve la démonstration. (]

Définition 39 (Définition du rang d’une application linéaire) Soient E et F deux es-
paces vectoriels sur un méme corps K et f une application linéaire de E dans F. On
suppose ’espace vectoriel E de type fini. La dimension de [’espace vectoriel Im f est
appelée rang de f et notée rg(f).

Remarque 54 D’apres la deuxiéme partie de la proposition précédente, la dimen-
sion de Im(f) est le rang du systéme de vecteurs f(ey),..., f(en), ce qui explique a
postériori la dénomination rang de 1’application linéaire f. Il en résulte que le rang
d’une application linéaire est inférieur ou égal a la dimension de 1’espace vectoriel de
départ. Pour déterminer une base et la dimension de I’image d’une application linéaire
dont I’espace de départ est de type fini, on détermine les vecteurs f(e1),..., f(e,) et on
peut utiliser les techniques de détermination du rang d’une famille finie de vecteurs.
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Proposition 53 Soient E et F deux espaces vectoriels et f un isomorphisme de E dans
F. Si E (respectivement F) est de type fini, alors F (respectivement E) est de type fini
et on a dimE = dimF

Démonstration. Si E est de dimension finie, alors comme F = Im(f), F est engendré
par I’image d’une base de E, on a donc dimF < dimE. De méme f~!: F — E est un
isomorphisme, donc f~!(F) = E et, d’aprés le résultat précédent, on a dimE < dimF.

Si c’est F qui est de dimension finie, on fait le méme raisonnement avec f -0

Proposition 54 Soient E et F deux K-espaces vectoriels de dimension finie et f : E —
F une application linéaire. On a

rg(f) < Inf (dim(E),dim(F)).

Démonstration. Si (ey,e,...,e,) (n=dimE)estune base de E, alors (f(e1), f(e2),..., f(en))
est une famille génératrice de Im(f). Comme Im(f) a une famille génératrice a n
éléments, sa dimension est inférieure ou égale a n.

Comme I/m(f) est un sous-espace vectoriel de F, sa dimension est inférieure ou égal a

la dimension de F.

4.2.3 Théoreme du rang

De tous ces résultats, on va déduire le théoréme dit ” Théoréme du rang ™ qui est un
résultat tout a fait fondamental dans la théorie des applications linéaires en dimension
finie. On se place toujours dans la méme situation : E et F' sont deux espaces vecto-
riels sur un méme corps K. L’espace vectoriel E est supposé de type fini et f est une
application linéaire de E dans F.

o 11 résulte des propriétés générales des applications linéaires que le noyau et
I’image d’une application linéaire sont des sous-espaces vectoriels respectivement de
I’espace de départ et de I’espace d’arrivée.

o Il résulte des propriétés des sous espaces d’un espace de type fini que le noyau
d’une application linéaire d’un espace vectoriel de type fini dans un espace quelconque
est de type fini.

e Nous savons que I’image d’une application linéaire d’un espace vectoriel de type
fini dans un espace quelconque est de type fini.

L objet du théoreme du rang est de donner une relation entre la dimension du noyau
et la dimension de I’'image de f.

Théoreme 31 (Théoréme du rang) Soient E et F deux espaces vectoriels sur un méme
corps K, E de type fini. Soit f une application linéaire de E dans F. Alors

dimE = dimKerf + dimImf.

Dans la pratique, il suffit donc de déterminer la dimension du noyau ou celle de
I’image d’une application linéaire pour avoir les deux dimensions.

Démonstration. Si f est injective, en désignant par (ej,...,e,) une base de E, nous
avons vu que la famille & n éléments (f(e;),..., f(en)) est une famille libre de F donc
une famille libre de Im(f). De plus, {f(e1),...,f(es)} est une partie génératrice de
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Im(f). Donc (f(e1),...,f(en)) est une base de Im(f). La dimension de Im f est donc
égale a n qui est la dimension de E et le théoréme du rang est vrai.

Si f n’est pas injective, le noyau de f est un sous espace de E de dimension p
avec 1 < p < n. Soit (g1,...,€,) une base de Kerf. D’apres le théoréme de la base in-
compléte, il existe n— p vecteurs €, 1,...,€, de E tels que (€1,€,...,€,) soit une base
de E. Alors Im f est engendré par les vecteurs f(€;), f(€2),...,f(€,). Mais, comme
pour tout i compris entre 1 et p on a f(g;) =0, Im f est engendrée par les vecteurs
f(eps1),..., f(€4). Montrons que ces vecteurs sont linéairement indépendants. Soient
Opil,---,0 des scalaires tels que

Opy1f(Ept1) + -+ 0 f(€) =0.
Puisque f est linéaire cette égalité équivaut a 1’égalité
f((xp+18p+1 +- (xngn) =0

qui prouve que le vecteur Olp41€p41 + - -+ + O,€, appartient au noyau de f. Il existe
donc des scalaires Aj,...,A, tels que

Opt1€pt1+ -+ 0y = ME + -+ ApEp.

Comme (g1,¢€),...,€,) est une base de E, les vecteurs €1,¢€;,...,€, sont linéairement
indépendants et par conséquent :

Vie[l,p], i=0etVic[p+1,n], a; =0.

Les vecteurs f(€,+1),..., f(€,) définissent donc une base de Im f. Le sous espace vec-
toriel Im f est donc de dimension n — p. Ce qui acheéve la démonstration. (I

On remarquera le role essentiel joué par le théoreme de la base incompleéte dans
cette démonstration.

4.2.4 Application linéaire entre deux espaces de méme dimension

Théoreme 32 Soient E et F deux espaces vectoriels de type fini sur un méme corps K.
On suppose qu’ils ont méme dimension. Soit f une application linéaire de E dans F.
Alors f est injective si et seulement si elle est surjective et donc si et seulement si elle
est bijective.

Autrement dit, dans le cas d’une application linéaire entre deux espaces de méme
dimension, il suffit pour démontrer qu’elle est bijective, de démontrer I’une des deux
propriétés injectivité ou surjectivité.

Démonstration. Cela est immédiat a partir du théoréme du rang. En effet la propriété
f injective équivaut, d’aprés le théoreme du rang, a rg(f) = dimE. D’apres I’hypothese
sur ’égalité des dimensions de E et de F, Ceci équivaut a la rg(f) = dimF. Donc
Im f = F et f est surjective. On démontre de maniere analogue que si f est surjective
alors f est injective. Cela achéve la démonstration. (]



Chapitre 5

Applications linéaires et
matrices

Les résultats qui sont développés ici, décrivant un lien entre la notion de matrice et
celle d’application linéaire, sont fondamentaux.

5.1 Matrice associée a une application linéaire

Soient E et F deux espaces vectoriels de type fini sur un méme corps K. Soit p la
dimension de E et (ey,...,e,) une base de E. Soit n la dimension de F et (fi,..., fu)
une base de F'. Soit ¢ une application linéaire de E dans F.

L’étude des propriétés des applications linéaires entre deux espaces de type fini
permet d’affirmer que :

- Iapplication linéaire est déterminée de facon unique par I’image d’une base de E,
donc par les vecteurs ¢(e;),0(e2),...0(ep).

Si j est un entier compris entre 1 et p, ¢(e;) est un vecteur de F et s’écrit de maniére
unique comme combinaison linéaire des vecteurs de la base By = (f1, f2,..., fy) de F.

11 existe n scalaires uniques ay j,az j, .. .,an,; tels que

O(ej) =aijfi+azjfo+--+anfa

Donc, Iapplication linéaire est entierement déterminée par les coefficients (a;, ;) ;. Jella)x[1,p]-
Il est donc naturel d’introduire la définition suivante :

Définition 40 On appelle matrice associée a I’application linéaire ¢ par rapport aux
bases Bg et Bp la matrice a n lignes et p colonnes dont la j-iéme colonne est constituée
par les coordonnées du vecteur ¢(e;) dans la base B = (f1, f2,. .., fx) a savoir

ar,j
a2,j

n,j

Notation : la matrice associée a I’application linéaire ¢ par rapport aux bases B, et
B sera notée [q)]gg

la notation (E, Bg) signifie que 1’on consideére ’espace vectoriel £ muni de la base
B .

99
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Remarque 55 Le type de la matrice associée a I’application linéaire ¢ par rapport
aux bases Bg et Br dépend uniquement de la dimension de E et de celle de F. En effet
cette matrice a un nombre de lignes égal a la dimension de I’espace d’arrivée de ¢ et
un nombre de colonnes égal a la dimension de I’espace de départ de 0.

2) Des bases étant choisies respectivement dans E et F, il y a unicité de la matrice
associée a §. Mais, la matrice trouvée dépend entierement de ce choix de bases.

Exemple 80 Soit L I’application linéaire de R? dans R? définie par

R3 — RZ?
(X1,X2,X3) = (x1 +x2,x1 +x3)

Soient (e1, e, e3) la base canonique de R3 et (f1, f>) la base canonique de R?. Déterminons
la matrice associée a L dans les bases (ej,e2,e3) et (f1, f2)-
Ona

0ler) = (1, 1) = fi+ fo.

La premiere colonne de la matrice [¢] (f1.f2) ) est donc <1> . De méme, on a

(e1,e2,€3 1

o(e2) = (1,0) = fi.

0

(e1,e2,€3)

La deuxiéme colonne de la matrice [¢)] U112) est done <1> .Enfinona

o(e3) = (0,1) = fa.

(f1./2)

(e1,€2,¢3)
B (110
= (10 1):
En revanche, la matrice de ¢ dans les bases (ej,ez,e3) et (f2, f1) est
(rf) _ (101
[¢](€17€2-,€3 - (1 10/

Sur cet exemple, on voit bien la nécessité de définir une base d’un espace de dimension
n comme un n-uplet et non pas comme une partie.

La troisieéme colonne de la matrice [¢] est donc (?) . Il en résulte que

On va maintenant changer la base de ’espace de départ et conserver celle de 1’es-
pace d’arrivée. Soient les vecteurs € = (1,1,0), & = (1,0,1) et g3 = (0,1,1) de R>.
On montre facilement que ces vecteurs déterminent une base de R?. On considere alors
les bases (£1,€2,€3) et (fi,f2) de R et R? respectivement. Alors L(g;) = 2f; + f>,
L&) =fi+fo, L(es) = fi+ fretona

(hf) _ (211
[L](81’82183)_ (1 21)°

Cet exemple illustre bien le fait que la matrice dépend du choix des bases.
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5.1.1 Cas d’un endomorphisme d’un espace vectoriel de dimension
n

Quelles que soient les bases choisies, la matrice associée a un endomorphisme est
une matrice carrée d’ordre n.

Il y a deux grandes catégories de choix de bases dans cette situation :

e Ou bien on prend la méme base sur E espace de départ et E espace d’arrivée
(ce qui n’avait pas de sens dans le cas général d’une application linéaire entre deux
espaces différents). Dans ce cas, la matrice associée a I’endomorphisme en choisissant
B comme base, a la fois sur E espace de départ et E espace d’arrivée, est notée [0]p .

e Ou bien on prend des bases distinctes.

Matrice associée a I’application identique

Soit donc E un espace vectoriel de dimension égale a n. L’endomorphisme considéré
est ’application identique de E, notée Idg. Soient B et B’ deux bases distinctes de E.

e Premicere situation : On se place dans le schema suivant

Idg : (E,B) — (E,B)
x — Idg(x)=x

11 est facile de voir que [¢]p = I,. Bien noter que ce résultat ne dépend de la base B

choisie sur E.

e Deuxieéme situation : on se place dans le schéma suivant :

(E,B) — (E,B)
x — Idg(x)=x

ol B et B sont deux bases différentes de E. Si B = (eq,...,e,) et B' = (¢€],...,e,), on

n
aldp(ej) =ej = Zah je’j et [IdE]gl est la matrice dont la j-itme colonne est formée de
i=1
ai,;j

a.j
3 / / / / : ’
ej par rapport a B' = (¢}, ¢, ..., e,) soit

An,j
Définition 41 Cette matrice est appelée matrice de passage de la base B' & la base B.

Elle joue un role fondamental lorsque 1’on cherche une relation entre les matrices
associées a une méme application linéaire avec des choix de bases différents.

5.2 Propriété relative a la structure d’espace vectoriel
de L(E,F).

5.2.1 Matrices associées a la somme de deux applications linéaires
et au produit d’une application linéaire par un scalaire

On sait que la somme de deux applications linéaires d’un K-espace E dans un K-
espace vectoriel F' est encore une application linéaire de E dans F'. Il en est de méme
pour le produit d’une application linéaire par un scalaire.
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Dans le contexte ol nous sommes, si les espaces vectoriels considérés sont de type
fini, la question qui se pose immédiatement est la suivante :

Quelle est la matrice associée a une somme d’applications linéaires ou au produit
d’une application linéaire par un scalaire ?

Proposition 55 Soient E et F deux espaces vectoriels de type fini sur un méme corps
K. Soient Bg, et Br des bases de E et F respectivement. Soient h et g deux applications
linéaires de E dans F et un scalaire quelconque. Alors on a :

-+ glf = W5+ [sl5
okl = o

La matrice associée a la somme de deux applications linéaires est la somme des
matrices a condition de considérer respectivement toujours la méme base sur 1’espace
de départ et la méme sur I’espace d’arrivée.

Démonstration. Soient p la dimension de E et n la dimension de F, B = (ey,...,ep)

et B = (fi,f2,.... fu)- Soient A = (a; ;) = [H]F et B = (b; ;) = [g]5".
Cela signifie que, pour tout j compris entre 1 et p on a les égalités :

h(ej) = Zaw’fi et g(ej) = wa’fi
i=1 i=1

n
d’oti I’on déduit immédiatement 1’égalité (h+g)(e;) = Z(aw- +b;j)fi.
i=1
Cela prouve, d’apres la définition de la matrice associée a une application linéaire
que le terme général de la matrice associée a f + g par rapport aux bases Bg et Br est
a; j+b; j qui est le terme général de la matrice A + B. La démonstration de la deuxieme
formule est tout a fait semblable. (]

Théoreme 33 (Théoreme d’isomorphisme entre et L(E, F) et Mimr dime(K)) Soient
E et F deux espaces vectoriels de type fini. Soit p la dimension de E et n celle de F.
Les espaces vectoriels L(E, F) et My, ,(K) sont isomorphes.

Pour prouver ce théoréme, on va construire effectivement un isomorphisme entre ces
deux espaces vectoriels.

Démonstration. La preuve repose sur le fait qu’une application linéaire définie sur un
espace de type fini est déterminée de facon unique par les images des vecteurs d’une
base.

Soit Bg = (ey,e,...,ep) une base de E et By = (fi,f>,...,f,) une base de F
D’apres la proposition précédente, I’application

L:L(E,F) — Mgimr.dime(K)
ho— [Hgr

est linéaire.
Il reste a démontrer que L est une bijection. Montrons que L est injective. Soit &
dans L(E,F) telle que [h]g; est nulle. Alors tous les coefficients de [h]gg sont nuls. On

en déduit que, pour tout j dans [1, p], h(e;) = 0. Donc h est nulle.
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Montrons que L est surjective. Soit M = (m; ;) un élément de M, ,. Il existe une
n

unique application linéaire ¢ : E — F telle que ¢(e;) = Zm,-,jf,-. OnalL(¢)=M. O
=1

=

Remarque 56 L’isomorphisme L qui vient d’étre construit dépend des bases choisies
surE et F.

La premiére conséquence de ce théoréme est un résultat sur la dimension de L(E, F).

Théoréme 34 (Dimension de L(E,F)) Soient E et F deux espaces vectoriels de type
fini, dont les dimensions sont respectivement égale a p et n. Alors L(E,F) est de type
fini et sa dimension est égale a n X p.

Démonstration. Cela découle du fait que L(E, F) est isomorphe a M, ,(K) qui est de
dimension n X p.

5.3 Produit de matrices et composition d’applications
linéaires

Théoreme 35 (Matrice associée a la composée de deux applications linéaires) Soient
E, F et G trois espaces vectoriels de type fini sur un méme corps K, de dimension
respectivement égale a p,n et q. Soient une B = (ey,...,ep) une base de E, Br =
(fi:f25--- . fn) une base de F et une base de Bg = (81,82, - -,8q) une base de G. Soient

O une application linéaire de E dans F et \y une application linéaire de F dans G. Alors
ona:

(ool = [Wl5C[ol5: .

Autrement dit, a condition de bien choisir les bases, la matrice associée a la com-
position de deux applications linéaires est le produit des matrices associées a chacune
d’elle, dans le méme ordre.

Démonstration. Un peu lourde quant aux notations, cette preuve est pourtant simple
quant aux idées car elle est uniquement basée sur la définition de la matrice associée a
une application linéaire par rapport a des bases choisies, et sur la définition du produit
de deux matrices.

La premiere étape consiste a fixer les notations
. B B
Soit A = 8], = (@ij)jeliax(1,p] B = Wl = (brs)(rs)efi g« (1.0 Les coeffi-

cients a; ; et b,; sont caractérisés par les égalité€s suivantes :
n
Vjell,pl,o(e;) =Y aijfi (1)
i=1
q
Vs € [1,n],y(fs) = Zb,,sgr (2)
r=1

La deuxiéme étape consiste a chercher la matrice associée a o ¢ par rapport aux bases
Bpr et Bg.

Exprimons, pour tout j dans [I,p], yo¢(e;) dans la base Bg car le terme de la
r-iéme ligne, j-iéme colonne de la matrice cherchée est la coordonnée de yo ¢(e;) sur
le vecteur g,.
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Les relations (1), impliquent :

yod(e)) <Zdz,]fz> =Y aiw(f).
i=1

D’ot, en utilisant les relations (2), on a pour tout j € [1, p]

qu) Zal,] (Zbrlgr> .

Les propriétés des lois d’un espace vectoriel, permettent d’écrire :

q n
=Y <Z ai,jbr,i> 8r-
r=1

n

Le coefficient de (yo¢)(e;) sur le vecteur g, de la base Bg est donc égal a Za,;jbr,,' =
~

" 1

Zb,ﬂia,‘, j (puisque les coefficients sont dans un corps commutatif).

i=1

On reconnait la exactement le terme général de la matrice BA, ce qui acheve la
démonstration. O

Exemple 81 Soient les espaces vectoriels £ = R2, F =R3 et G = R. Soient Bg =

(e1,€2), BF = (f1, /2, f3) et B = (g1) leurs bases canoniques respectives. Soit ¢ 1’ap-
10

plication linéaire de E dans F telle que [¢]§; = (1 1] ety ’application linéaire de
07

F dans G telle que [I|I] =(100).

On se propose de determmer y o ¢, application linéaire de E = R? dans R. Pour
cela, il suffit de déterminer sa matrice par rapport aux bases canoniques Br = (ej,e2)
et Bg = (g1)-

D’aprés le théoreme précédent, on a [y o ([)]BG [\p]glf [q;]gg Donc

=(10).

[y ool30 = [Wl5¢[ol5: = (1 0 0)

O = =
N - O

Cela signifie que Wod(e;) = g1 et Wod(ep) = 0. D’oli ’expression de yo o :

V(x,y) € R?, (yoo)(x,y) =x.

Cet exemple met bien en évidence le gain, en termes de quantité de calculs, réalisé en
passant par I’intermédiaire des matrices.

Dans le cas particulier de la puissance d’un endomorphisme de E, nous obtenons :

Corollaire 36 Soit E un espace vectoriel de type fini et Bg une base de E. Soit f une
application linéaire de E dans E. Alors :

vneN, [f"ls; = ([f]s:)"-
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Démonstration. La démonstration est une récurrence immédiate sur .

Théoreme 37 (Caractérisation de la matrice d’un isomorphisme) Soient E et F deux
K-espaces vectoriels de type fini, de méme dimension. Une condition nécessaire et suf-
fisante pour qu’une application ¢ linéaire de E dans F soit un isomorphisme est que la
matrice associée a ¢ par rapport a des bases Bg et B quelconques de E et F respec-
tivement, soit inversible.

De plus, si ¢ est un isomorphisme de E dans F, et si A = [¢]gg, la matrice de ¢!

par rapport aux bases By et Bg est égale a A™1, inverse de la matrice A. Cela s écrit :

CHARIN

L’hypothese E et F ont la méme dimension joue un role fondamental tout au long de
la démonstration.

Démonstration. Soit donc deux espaces vectoriels E et F' de dimension n et un isomor-
phisme ¢ de E dans F. La théorie des applications linéaires permet de dire que ¢! est
une application linéaire de F dans E. Cela peut se traduire par les égalités :

0o ' =Idp et oo =1Idg.

Ona

—1
Idg : (E,Bg) 2, (F,Br) r, (E,Bg)

—1
Idy : (F,Br) *— (E,Bp) - (F,Br)
d’ott [0~ 00]p, = [Ide]p, =1, et [¢0¢~ '], = [IdF]p, =I,. Compte tenu du théoréme
général que nous venons d’obtenir pour la matrice associée a la composée d’applica-
tions linéaires, cela donne les égalités matricielles suivantes :
(0 B 0155 = et [0l7 (07 T35 = 1o
Cela prouve que la matrice [¢] gg est inversible et que son inverse est la matrice [¢ ! ]gi .
Démontrons maintenant la réciproque : Soient E et F deux espaces vectoriels de
méme dimension égale a n, Bg et Br des bases de E et F respectivement. Soit ¢ une
application linéaire de E dans F' dont la matrice A = [¢]gg par rapport aux bases Bg
et Br est inversible. Soit Y I’application linéaire de F' dans E dont la matrice par
rapport aux bases Br et Br est AL, Alors ’égalité AA~! = A=A = I, peut s’écrire
(055 (W5t = [WI5E[0)5 = I
Or, on sait que la matrice associée a 1’application identique d’un espace vectoriel
de type fini sur lui-méme est la matrice unité a condition de prendre la méme base sur
I’espace de départ et d’arrivée. Donc la matrice I, peut étre considérée soit comme la
matrice de I’identité de E par rapport a la base B, soit comme la matrice de 1’identité
de F par rapport a la base Br. Compte tenu du théoréme sur la matrice d’une composi-
tion d’applications linéaires, cela implique

[yoolp, = [Idglp, et [poylp, = [Idr]p,

Or, des bases étant choisies, 1’application qui a une application linéaire associe sa
matrice par rapport a ces bases, est une bijection donc est en particulier injective.

Donc, des égalités précédentes, on déduit yo ¢ = Idg et ¢ oy = Idp. Cela prouve
que ¢ est inversible et que son application réciproque est égale a .
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Comme on a I’égalité A~! = [lp]gi , on obtient

ARG

Dans le cas particulier d’un endomorphisme.

Corollaire 38 Soit E un K-espace vectoriel de type fini.

Une condition nécessaire et suffisante pour qu’une application linéaire f de E dans
E soit un automorphisme est que la matrice associée a f dans une base quelconque de
E soit inversible.

De plus, si f est un automorphisme de E et si A = [fp,, la matrice de f~Vdans la
base B est égale a inverse de la matrice A. Cela s’écrit :

(f18) " = 1f ss-

5.4 Traduction matricielle de I’action d’une application
linéaire sur un vecteur

Soient E et F deux espaces vectoriels de type fini sur un méme corps K et ¢ une
application linéaire de E dans F'. Le but de ce paragraphe est de traduire 1’égalité vec-
torielle y = ¢(x) par une égalité matricielle et d’étudier des applications de ce résultat.

Notation : Soit £ un espace vectoriel de dimension finie et soit Bg = (e, e2,...,¢,)
une base de E. Soit x un élément de E. Il existe un p-uplet unique d’éléments de K,
(x1,X2,...,xp) tel que

X =x1e1+xe2+---+x,¢,.

X1
X2
La matrice colonne des coordonnées de x est noté [x|p,. On a donc [x]p, =

Ap

Proposition 56 Soit E un espace vectoriel de dimension finie et Bg une base de E.
Soit F un espace vectoriel de dimension finie et Br une base de F. Soit ¢ : E — F une
application linéaire et [q)]g; la matrice de ¢ dans les bases Bg et Bp. On a

[0(x)] 8, = (0] ¥,

Démonstration. On pose Bg = (e1,...,ep), Br = (f1,f2,---, fa)s [q)]gg =A=(a;)et
X1
X2

[X]BE =
Ap

p p p n
o(x) =9 (Zixiez) = ;Xi(b(ei) = lxi (/;1 ak,ifk) .



5.4. TRADUCTION MATRICIELLE DE L’ ACTION D’UNE APPLICATION LINEAIRE SUR UN VECTEUR107

En utilisant la commutativité de K, on a

P 4
O(x) = <Zal,ixi> fit+ (Zan,ixi> In-
i=1 i=1

)4

Y aiix;
i=1

P

Y azix;
i=1

La matrice colonne des coordonnées de ¢(x) dans labase (fi, f2,..., f,) est

, :
Y anix;
i=1

M~

aipiXi
i=1
p X
, Y axixi X
Or la matrice [¢(x)]p, = | i=1 n’estautreque A | . |. O
b Xp
Y anixi
i=1

Exemple 82 Soit E une K-espace vectoriel de dimension 3 et Bg = (ej,ez,e3) une
base de E. Les éléments de E sont donc des combinaisons linéaires de e1,e; et e3. Soit
f ’endomorphisme de E dont la matrice dans la base Bg est égale

—_ 0 N

1 1
1 1

On se propose de déterminer le noyau de f. On a
xie1 +xe3 +x3e3 € Ker(f) <= f(x1e1 +x2ex+x3e3) =0

0
< [f(x161+x262+X3e3)]BE =10
0

0
< [flg[x1e1 +x2e2 +x3€3]p, = [ O
0

X1 0
= Al x 0
X3 0

X1 + 2% + x3 =
< 2x1 + 3xp + 2x3 =
X1 + x + x3 =0

o o

On résoud ce systeme par la méthode du pivot de Gauss. On trouve

Kerf = {X161+X262+X3e3 cE ‘ x2 =0, X; +Xx3 ZO} =0= {tel —tes |tER}
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5.5 Formule de changement de bases

5.5.1 Matrice de passage d’une base a une autre

Soit E un espace vectoriel de type fini, n sa dimension. On sait que toutes les bases
de E ont n éléments.

Définition 42 Soit B une base de E. Soit B' une autre base définie par la donnée des
coordonnées de ses vecteurs dans la base B.

On appelle matrice de passage de la base B a la base B' et on note Pgy la matrice
carrée d’ordre n dont la j-iéme colonne est formée des coordonnées du j-iéme vecteur
de la base B', par rapport i la base B.

Attention a I’ordre des bases dans cette définition.

Exemple 83 Soit I’espace vectoriel réel RZ. On considére la base canonique et la base
B' = (g1,8;) avec €] = e1 +e; et €; = ep. La matrice de passage de la base B a la base

. 10 N . <
B’ est la matrice ( dont la premiere colonne est donnée par les coordonnées du

11
vecteur € sur la base (ej,ez) et la deuxieéme par les coordonnées €, de sur la base

(61,62).

On va interpréter cette matrice comme la matrice associée a 1’application identique
de E par rapport a des bases bien choisies.

Proposition 57 (Interprétation d’une matrice de passage entre deux bases) Soient B
et B' deux bases de E. La matrice de passage de B & B' est égale ¢ la matrice de I’ap-
plication identique de E, avec B' comme base de I’espace de départ et B comme base
de ’espace d’arrivée.

Remarque 57 Cette interprétation est un outil fondamental pour ce qui suit. Elle per-
met d’obtenir les résultats de fagon tres élégante et avec un minimum de calculs.

Démonstration. On pose B = (ej,es,...,e,) et B = (€},é,...,e,). On considere
Idg: (E,B)) — (E,B)
x — Idg(x)=x

n
ldg(e)) = ¢ = Y ai jei et [Id]5, est la matrice dont le j-ime colonne est formée des
Ti=l
at,j

@,j
coordonnées de e’j par rapport a B, soit | . | . Cette colonne est la j-ieme colonne de

an,j
PBB’ .

Proposition 58 (Inverse d’une matrice de passage) La matrice de passage d’une base

B ¢ une base B est inversible et son inverse est égale a la matrice de passage de la

base B' i la base B.

Démonstration. On a Pg g = [IdE]g/. Donc, d’apres le théoreme caractérisant la ma-
S . _ -1 _ - _

trice d’un isomorphisme, PBJIg, = ([1dg)3) ™" = [1d5 "5 Or Idg" = Idg. Donc PBJ;, =

[IdE]g, = PB’B' I:’
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Proposition 59 Soient B, B' et B” trois bases d’un espace vectoriel de type fini E.
Alors

PBBN - PBB/PB/BN.
Démonstration. 1dg : (E,B") — (E,B) se factorise de la fagon suivante :

(E,B") X (E,B") X (E,B).
Cette factorisation permet d’écrire 1 égalité suivante [Idg]%, = [Idg]5 (1 dE]g:,. Soit Pggr =
Ppp Pyrpr. U

Nous allons maintenant interpréter une matrice carrée inversible comme la matrice
de passage d’une base a une autre base.

Proposition 60 Soit E un K-espace vectoriel de dimension n et Bg une base de E. Soit
M une matrice carrée d’ordre n inversible. 1l existe une unique base By, de E telle que
M soit la matrice de passage de Bg a Bl.

Démonstration. On pose Bg = (e1,ea,...,e,). soit e’]» le vecteur de E dont la matrice
colonne des coordonnées dans la base Bg est la j-ieme colonne de M. Le rang de la
matrice M est le rang de la famille ¢/, ¢}, ..., ¢},. La famille ¢}, ¢}, . .., €}, étant de rang n,
elle est linéairement indépendante. Comme E est de dimension n, B, = (¢},¢5,...,¢€),)
est une base de E. Il est évident que M est la matrice de passage de la base Br a la base

Bl O

Nous allons maintenant étudier 1’effet d’un changement de bases sur les coordonées
d’un vecteur.

Proposition 61 Soit E un K-espace vectoriel de dimension n. Soit B = (e}, ez,...,ep)

et B = (€|,é),....e,) deux bases de E. Soit Pgy la matrice de passage de B a B'. Soit x
n

un vecteurde E. Si x =Y x;e;, la matrice colonne des coordonnées de x dans la base B

i=1
X1

X2
est[x]lp=| . |. De méme notons x| la matrice colonne des coordonnées de x dans

Xn
la base B'. On a la relation
[X]B = PBB/ [x]B/.

Démonstration. Py estlamatrice de Idg : (E,B') — (E,B). Ona [Idg (x)|p = [Idg]5 [x]p.
soit [)C}B = PBB’ [X]B/. O

5.5.2 Formule de changement de bases

Théoreme 39 (Formule de changement de base) Soient E et F deux K-espaces vec-
toriels de type fini, Bg et By, deux bases de E, et Br et By deux bases de F. Soit ¢ une
application linéaire de E dans F.

Alors, la matrice associée a ¢ par rapport aux bases B et Br, et la matrice as-
sociée a O par rapport aux bases By, et By, sont liées par la formule :

B}, Br 1By
[¢]3/E = Py 5, 015, Poyn, = (PBFB’F) (915, Payy,-
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Démonstration. L application ¢ : (E,B};) — (F,B}) se factorise de la fagon suivante

(E,By) 2% (E,Bg) - (F,Br) 2 (F,B})

On a donc I’égalité de matrices suivante :
B} Br (. 1B B
Oyt = el 015 1]
: 5 5
= PB};BF [q)]B;PBEB% .
Dans le cas particulier d’un endomorphisme, on obtient le théoréme suivant :

Corollaire 40 (Formule de changement de bases pour les endomorphismes) Soit E
un K-espace vectoriel de dimension n. Soient Bg et By, deux bases de E et P = Pp B,
la matrice de passage de Bg a Bj. Soit ¢ un endomorphisme de E. Notons [§]p, (res-
pectivement [§] B, ) la matrice de ¢ dans la base B (respectivement B;). On a

(0], = P~ [0]5, P

Remarque 58 Nous avons vu qu’une matrice carrée inversible pouvait étre interprétée
comme une matrice de passage. La formule de changement de bases pour les endomor-
phismes montre alors que deux matrices semblables représentent le méme endomor-
phisme dans des bases différentes.

5.6 Rang d’une matrice et applications linéaires

Rappelons le définition du rang d’une application linéaire.

Définition 43 Soient E et F deux K-espaces vectoriels de dimension finie et f une
application linéaire de E dans F. La dimension de I’espace vectoriel Im f est appelé
rang de f et est noté rg(f).

Proposition 62 Soient E et F deux K-espaces vectoriels de dimension finie et f une
application linéaire de E dans F.Soit Bg une base de E et Br une base de F. Le rang
de f est le rang de sa matrice dans les bases Bg et Br.

Démonstration. Soient B = (e, ea,...,e,) et B = (f1,f2,...,f,). Comme la fa-
mille f(e1), f(e2),...,f(e,) engendre Im f, le rang de f est le rang de la famille
fle1), f(e2),...,f(ep). D apres les résultats que nous avons vu dans le chapitre 4, le
rang de la famille f(e;), f(e2),..., f(ep) est le rang de la matrice de f dans les bases
Bpr et Br. U

Théoreme 41 (Matrice inversible et rang) Une matrice carrée d’ordre n est inver-
sible si et seulement si elle est de rang n.

Démonstration. Soit A une matrice carrée d’ordre n. Soit f I’endomorphisme de K"
dont la matrice dans la base canonique est A. On a les équivalences suivantes :

Aderangn <= fderangn
<= f surjective
<= f bijective
<= Ainversible.
Nous avons utilisé le fait qu’un endomorphisme d’un espace vectoriel de dimension

finie est bijectif si et seulement si il est surjectif et le théoréeme sur la caractérisation de
la matrice d’un isomorphisme. (]



Chapitre 6

Déterminants

Ce chapitre ne concerne que les matrices carrées. On travaillera systématiquement
dans M, (K).

6.1 Théorie des déterminants

6.1.1 Définition et premieres propriétés

Théoreme 42 (Théoreéme d’existence et d’unicité du déterminant) 1/ existe une unique
application de M,,(K) dans K, appelée déterminant, telle que

i) Le déterminant est linéaire par rapport a chaque vecteur-colonne, les autres étant
fixés.

ii) Si une matrice A a deux vecteurs colonnes égaux, alors son déterminant est nul.

iii) Le déterminant de la matrice identité I, vaut 1.

On a plusieurs notations pour les déterminants :

ai a2 - Qi
azy azx - A
detA =
Anl dp2 "** Qpn
On note a; la itme colonne de A et
detA:|a1 a --- a,,|.

Avec cette notation, la propriété i) s’écrit : pour tout A dans K,

/
ay ay ---aiy ai+MAaj apyq - an’ = |a1 a G- 4 Qip) cce an|
/
+ 7»|a1 ap ---ai—1 a; Gyl - an|-

Une application de M,(K) dans K qui satisfait la propriété i) est appelée forme
multilinéaire. Si elle satisfait ii), on dit qu’elle est alternée. Le déterminant est donc
la seule forme multilinéaire alternée qui vaut 1 sur la matrice [,,. Les autres formes
multilinéaires alternées sont les multiples scalaires du déterminant. On verra plus loin
comment on peut calculer effectivement les déterminants.

Donnons maintenant quelques propriétés importantes du déterminant.

111
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Proposition 63 Soir A une matrice n x n et A’ la matrice obtenue en échangeant deux
colonnes distinctes de A. Alors on a detA’ = — detA.

Démonstration. Soit A= (ay --- a; --- aj --- a,). On va échanger les colonnes
i et j, ce qui donne la matrice A’ = (a1 @y oceeoap e an), ou le vecteur a; se
retrouve en colonne i et le vecteur a; en colonne j (on pris ici i < j, sans perte de
généralité).

Introduisons alors une troisiéme matrice

A:(al N ai+aj cen aj_|_ai e an).
Cette matrice a deux colonnes distinctes égales, donc d’apres ii)

detA =0.

D’un autre c6té, nous pouvons développer ce déterminant en utilisant la propriété i) de
multilinéarité, c’est-a-dire linéarité par rapport a chaque colonne. Ceci donne

detA = det(a1 e cceoajtap - a,,)+det(a1 eoaj o cceoajta; e a,l)
= det(al . ai aj an)+det(al . al- ai . an)
J’_det(al e aj e aj e an)+det(al ces aj EERIs PR an)
= detA+0+0+detA’,
encore grace a i) pour les deux déterminants du milieu. (]

Proposition 64 Soit A une matrice n x n et A’ la matrice obtenue en ajoutant & une
colonne de A une combinaison linéaire des autres colonnes de A. Alors on a detA' =
detA.

Démonstration. Soit A = (a1 ceeap e a,,) et donnons nous des scalaires A;, j =
1,...,n, j #i. On pose

n
A= @ a,~+z7ujaj s Ay
=1
J#

Par linéarité par rapport a la colonne i, on en déduit

n
detA’ = detA + Z?ujdet(al ceaj e a,,) .
j=1
#i
Or chacun des déterminants apparaissant sous le signe de sommation est nul, puisqu’il
concerne une matrice dont les colonnes i et j sont égales. (]

Corollaire 43 Si une colonne de A est combinaison linéaire des autres colonnes alors
detA =0.

Démonstration. En effet, on soustrait a cette colonne la combinaison linéaire en ques-
tion, ce qui modifie pas le déterminant. La matrice obtenue a une colonne nulle, et par
linéarité par rapport a cette colonne, le déterminant est nul. (]



6.1. THEORIE DES DETERMINANTS 113

6.1.2 Déterminants de matrices particuliéres

Calculons le déterminant de matrices triangulaires en utilisant les propriétés du
déterminant.

Proposition 65 Si A est une matrice triangulaire supérieure ou inférieure, alors on a
detA =ajjay - ap,.
Autrement dit, pour une matrice triangulaire, le déterminant est égal au produit des
termes diagonaux.
Démonstration. On traite le cas des matrices triangulaires supérieures, le cas des ma-

trices triangulaires inférieures est identique. Soit donc
ap apz aiz - dp

0 axn ax -+ an

A=] 0 0 asz - as

0 0 0 - am

Par linéarité par rapport a la premiere colonne, on a

1 app aiz -+ ai
0 axp a3 -+ axn
detA =ajy 0 0 as - asn| |

0 0 0 - am
On ajoute maintenant a chaque colonne j > 2 le vecteur —aj;x la colonne 1. Ceci ne
modifie pas le déterminant d’apres la section précédente. Il vient donc

1 o0 0 -~ 0
0 ax ax -+ ax
detA =ay 0 0 axy - A3n |,
00 0 - am
Par linéarité par rapport a la deuxieme colonne, on en déduit
10 0 -~ 0
01 a3 --- an
detA = ajjax

00 azy -+ azp
00 0 - ay
et I’on continue ainsi jusqu’a avoir parcouru toutes les colonnes de la matrice. Au bout
de n étapes, on a obtenu

S O =
oS = O
- O O

0
0
0l = ay1anass - ap detl,,

detA = a11a22a33 -+ apy

000 ---1
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d’ou le résultat par iii). ]

Remarque 59 La facon de procéder doit rappeler 1’algorithme de Gauss. C’est en fait
le méme argument mais avec des substitutions de colonnes.

Notons que le résultat s’applique en particulier aux matrices diagonales, lesquelles
sont a la fois triangulaires supérieures et triangulaires inférieures.

Corollaire 44 Soit E une matrice élémentaire de la méthode de Gauss.
i) Si E est la matrice d’une substitution de lignes, alors detE = 1.
ii) Si E est la matrice d’un échange de lignes, alors detE = —1.
iii) Si E est la matrice d’une multiplication d’une ligne par A # 0, alors detE = .
Dans tous les cas, ce déterminant est non nul.

Démonstration. i) Dans ce cas, E est triangulaire inférieure ou supérieure avec des 1
sur la diagonale.

ii) Dans ce cas, E est aussi obtenue en échangeant les colonnes i et j de la matrice
I,.

iii) Matrice diagonale, tous les éléments diagonaux valent 1 sauf un qui vaut A. [J

Remarque 60 Les matrices élémentaires de la méthode de Gauss sont soit triangulaire
(substitution), soit symétriques c’est a dire égales a leur transposée (échange de lignes
et homothétie). Par conséquent, det(E;) = det(E]).

6.1.3 Démonstration du théoréme d’existence et d’unicité

Démonstration. Pour démontrer 1’existence d’un objet mathématique satisfaisant aux
conditions du théoréme - définition, on donne une formule qui, de plus, permet de
calculer effectivement le déterminant d’une matrice, et on vérifie que les propriétés ca-
ractéristiques des déterminants sont satisfaites.

Notation : Soit une matrice carrée d’ordre n. Il est évident que si 1’on supprime une
ligne et une colonne dans M, la matrice obtenue est a n — 1 lignes et colonnes. On note
la matrice obtenue en supprimant la i-eéme ligne et la j-iéme colonne M; ;. Le théoreme
d’existence peut s’énoncer de la fagon suivante :

Théoreme 45 (Existence du déterminant) Les formules suivantes :
e Si a est un élément quelconque de K, det(a) = a
o Si M = (m; ;) est une matrice carrée d’ordre n.

det(M) = (—l)Hlml”] det(M,;,l) + (—1)i+2m,’72 det(M,;Q) +-- (_1)i+nmi7n det(M,'J,)

définissent par récurrence, pour tout entier n supérieur ou égal a 1, une application de
M, (K) dans K qui satisfait aux propriétés caractérisant les déterminants.

Démonstration du théoréme d’existence du déterminant

La démonstration du théoréme d’existence du déterminant est hors programme.
Elle se fait par récurrence sur 1’ordre des matrices.

Dans le cas n = 1. Il est évident que toutes les propriétés souhaitées sont satisfaites.
Supposons maintenant que 1’application det : M, (K) — K soit définie et satisfasse les
propriétés (1), (2) et (3). Pour faciliter I’exposition, la preuve va étre faite pour i = 1.
Soit M = (m; ;) notée aussi M = (Ct,...,C,) ou C; est la j-ieme colonne de M.
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e Propriété (1). Il s’agit de vérifier que 1’application
M det(M) = (=1)%my 1 det(M1 1)+ (=1)°mi 2 det(M 2) +- -+ (= 1) "'y det(M,)

est linéaire par rapport & chaque colonne. Soit j un entier compris entre 1 et n. Montrons
que ’application

Cj — det(M) = (—1)21’f1171 det(MH) + (—l)sml)z det(MlAz) “+-4 (—1)1+”m17,, det(Ml,,,)

est linéaire. Si C; = D; + PD’, cette décomposition modifie le coefficient m; ; (m; ; =
dyj+ Bdi,j) et les matrices M x avec k # j puisque dans ces matrices la j-ieme colonne
reste). Cela donne

det(M) = (—l)lﬂmudet(Mu)—i— Z (—1)1+km1’kdet(M17k)
‘ 1<k<nk#j
= (_1)1+J(d17j+Bdi,j)det(M1sf)
+ ¥ (—1)1+km1,kdet((c}l,...,[)}.+B[>’,.17...,c,1)k)
1<k<nk+j ' '

ou é,l désigne la r-ieme colonne de M a laquelle on a supprimé la premiere ligne
et (C],... 76‘}7 ...Ch); la matrice déduite de (Cy,Ca,...,C,) en supprimant la k-iéme

colonne et la premiére ligne. Par conséquent les matrices (C1, ... ,ﬁ} + BD;I b ChYi
qui interviennent dans la somme précédente possedent n — 1 lignes et n — 1 colonnes et

on peut donc leur appliquer 1’hypothese de récurrence. D’ou

det(M) = (—1)1+jd17jdet(M17j)+ Z (—I)Hkml,kdet((C’%,...,D},...,é}l)
1 <k<mkA) k
SKSnKFE]

+ B (1)) deM )+ Y (<) e (€D C) ]
’ 1<k<mksj k
= det(Cl,...,Dj,...,Cn)—l—Bdet(Cl,...,D;,...,C,,)

Ce qui acheve la démonstration de la propriété (1).

e Propriété (2)
Si la matrice M a deux colonnes égales, par exemple C; et C avec r et s distincts,
il est clair que les colonnes obtenues en supprimant la premiere ligne, Cy et C, sont

encore égales. Donc toutes les matrices d’ordre n— 1, (Cy,...,Cy,...,Cs,...,Cy)i avec
k différent de r et s, ont deux colonnes égales. D’oul, par hypothese de récurrence,

A A

Vke {1,2,...,n} —{rs}, det(Cy,...,C,....Cs,...,Co)k = 0.

Donc
det(M) = Z (—l)1+km1kdet((é'1,...,C'j,,...,A,,)k)
1<k<n
= (=1)"mydet ((Cy,...,Cp,\...,Co)s) + (= 1) my pdet (Cy, ..., G, .., Co)r)

oit C! et C! sont égales. Supposons, par exemple, s supérieur ou égale a r. Il faut
faire s — r — 1 échanges de colonnes pour amener la s-ieme colonne a la r-ieéme place.
Compte tenu de I’hypothese de récurrence, on en déduit

A A A

det ((C1,...,Cy,,...,Co)r) = (1) det ((Cr,..., Gy Cr)y) -
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d’ou R . .
det(M) = (=1)""my det((Cy,...,Cr,,...,Cn)s)
+ (=D (=1 my et ((Cy,..., G, Gr)s) -

Puisque my , = mj s ( les colonnes de rang r et de rang s sont égales), on en déduit
det(M) =0.

e Propriété (3) Si ’on considere la matrice unité I,, ses coefficients m; ; sont tels
que :
i=j= m; j = 1
i 75 j= m; j = 0.

Donc det(l,) = (—1)'*!det(I,)1,1. Or, la matrice obtenue a partir de la matrice unité
en supprimant la premiere ligne et la premiere colonne est la matrice unité d’ordre
n— 1. En lui appliquant "hypothése de récurrence, on a det(,);,; = 1. On en déduit
det(I,) = 1. Ce qui achéve la preuve du théoréme d’existence du déterminant.

Nous admettrons 1’unicité du déterminant. [J

Remarque 61 La définition donnée ci-dessus suppose le choix d’un indice i de ligne
et peut paraitre arbitraire. Alors se pose naturellement la question : que se passe-t-il si
I’on prend une autre valeur pour i ? L'unicité du déterminant d’une matrice permet de
répondre : quelle que soit la ligne choisie, le résultat est le méme.

6.1.4 Propriétés du déterminant

Théoreme 46 On a
det(AB) = detA detB.

Démonstration. Cette démonstration est hors programme. Commencons par faire la
remarque préliminaire suivante :

Remarque préliminaire :

Si M est une matrice carrée et E une matrice élémentaire, la matrice EM7 est la ma-
trice obtenue 2 partir de M7 en faisant 1’opération élémentaire correspondante sur les
lignes. Donc, par transposition, multiplier une matrice a droite par la transposée d’une
matrice élémentaire effectue I’opération élémentaire correspondante sur les colonnes
de M. Dans le cas ou E est la matrice d’une substitution de lignes, on ne modifie pas
le déterminant puisqu’on ajoute a une colonne un multiple d’une autre colonne. Dans
la cas ou E est la matrice d’un échange de lignes, on multiplie le déterminant par —1
puisqu’on échange deux colonnes. Dans le cas ou E est la matrice d’une multiplica-
tion d’une ligne par A, on multiplie le déterminant par A par linéarité par rapport a la
colonne multipliée par A. Dans tous les cas, on a :

det(ME") = det(M) det(E).

Passons maintenant a la démonstration du théoréme. Supposons d’abord que B soit in-
versible. L’ algorithme de Gauss appliquée i la matrice B” fournit des matrices élémentaires
E;j telles que

(EpEp—1---E2E1)BT =1,.

On a alors :
B(E{E] ---El)=1I] =1,
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D’apres la remarque préliminaire appliquée p fois, on a
detB(E[ E; ---E}) = detBdet(E}) det(E,) ... det(E,) = 1

On en déduit |

det(Ep)---det(E;)det(Ey)

Posons C = AB. Par le méme raisonnement que précédemment, il vient

detB =

det(C(E{Ej ---E})) = det(E,) - - - det(E,) det(E| ) et C.

Or
C(E{E; ---E,) =A(B(E{E; ---E,)) = A,

d’ou le résultat dans ce cas.

Si B n’est pas inversible, rg B < n, il existe donc une relation de dépendance linéaire
entre les colonnes de B ( ce qui revient a dire qu’il existe une matrice colonne x telle
que Bx = 0) et donc detB = 0. Or Bx = 0 = ABx = 0. On voit que AB n’est pas
inversible non plus, d’oit det(AB) = 0 = detA det B également dans ce cas. g

Un des usages des déterminants est de caractériser les matrices inversibles.

Corollaire 47 Une matrice carrée d’ordre n, A, est inversible si et seulement si son

déterminant est non nul. De plus si A est inversible, alors det(A™!) = ﬁ.

Démonstration. Si A n’est pas inversible, alors elle est de rang strictement inférieur a

n. Il existe donc une relation de dépendance linéaire entre ses colonnes, c’est a dire

qu’au moins 1’une de ses colonnes est combinaison linéaire des autres. On en déduit

det(A) = 0. Si A est inversible, il existe une matrice A~! telle que AA~! =A~1A =1,

donc det(A)det(A~") = detl, = 1. On en déduit que det(A) est non nul et det(A~!) =
1

detA O

Corollaire 48 Deux matrices semblables ont méme déterminant.

Démonstration. Soit A’ =P~'AP avec P € GL,(R). Par multiplicativité du déterminant,
on en déduit que

detA’ = det(P~'AP) = detP~! detAdet P = detA,

puisque detP~! = 1/detP. O

Corollaire 49 On a det(AT) = detA.

Démonstration. Cette démonstration est hors programme. Soit A € M,,(K). Par ’algo-
rithme de Gauss, on a une factorisation A = MU avec U échelonnée réduite, donc en
particulier triangulaire supérieure et M~! = E; IE{ L..E ;_IIEP’ ! Par conséquent, en
AT T (1T —I\T —“INT (=1 \T ~INT (p—I\T
transposantonaaussiA’ =U" (M~")" avec (M~ ")" = (E,")" (E,_;)" -+~ (Ey )" (E; )"
Utilisant la multiplicativité du déterminant, on en déduit

detA  — detU
 detEjdetE;---detE,’
dotdAT — detU”

detET detET - ~~detEl{'
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Or U est triangulaire supérieure, son déterminant est le produit de ses termes dia-
gonaux. Par conséquent, U7 est triangulaire inférieure et son déterminant est le produit
de ces mémes termes diagonaux, c’est-a-dire detU = detU T

De méme, les matrices E; sont soit triangulaires (substitution), soit symétriques
c’est-a-dire égales a leur transposée (échange de lignes et homothétie). Par conséquent,
detE; = detE] aussi, d’ol le résultat. O

Remarque 62 Tout ce que I’on a dit des déterminants a propos des colonnes est donc
vrai pour les lignes. Ainsi, le déterminant est multilinéaire par rapport aux lignes, si une
matrice a deux lignes égales, son déterminant est nul, on ne modifie pas un déterminant
en ajoutant a une ligne une combinaison linéaire des autres lignes, etc. ([

Définition 44 Soit A une matrice n x n et A;j la matrice (n— 1) x (n — 1) obtenue
en effacant la ligne i et la colonne j de A. On appelle mineur de A relatif a a;; le
déterminant A;; = detA;;. On appelle cofacteur de A relatif a a;; le nombre C;j =
(—=D)™/A;.

Théoreme 50 (développement suivant une ligne ou une colonne) On a les formules
suivantes :

n n
Vi, detA = Z(—l)”ja,-jA,-j = ZaijC,-j
Jj=1 J=1
( developpement par rapport a la ligne i),
Vj, detA = Z jat] ij = Zal} ij

( developpement par rapport a la colonne j).

Démonstration. Nous avons déja démontré la formule de développement suivant une
ligne lors de la démonstration du théoréme d’existence et d’unicité du déterminant.
Comme detA = detA”, on en déduit la formule de développement par rapport a une
colonne.

Remarque 63 Le développement par rapport a une ligne permet de ramener le calcul
d’un déterminant n X n a celui de n déterminants (n — 1) x (n — 1). Par récurrence
descendante, on se ramene ainsi au calcul de n! déterminants 1 x 1. Il faut remarquer
que le nombre n! croit extrémement vite avec n. Ainsi, pour une modeste matrice 25 X
25,0na25!~1,5x 107,

Exemple 84 On déduit du développement par rapport a la premiere ligne des expres-
sions explicites pour les déterminants 2 x 2 et 3 x 3.
11 faut d’abord remarquer qu’un déterminant 1 x 1 est de la forme det (a) =a.Cest
en effet visiblement la seule forme multilinéaire alternée qui vaut 1 sur la matrice (1)
Considérons maintenant un déterminant 2 x 2.

a a2

=a11C11 +a12C2 = ajaxn —appay).
axy ax

En effet, A;; = (azz) etApp = (agl), d’ou Ci; = ax et Cjp = —apy;. Cette formule de
développement de déterminant est la seule formule explicite a connaitre par coeur.
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Le cas des déterminants 3 x 3 est déja beaucoup plus compliqué.

app di2 a3

a1 ax ax| = a;Cy+apCn+aiCi

aszy azp ay
_ ap ax| - |az a3 ax axn
B azn as; a3 a3 azx

= ayi(axnas —axag) —an(azazs —asas)
+a3(aziaz —azaxn)

= a11a22a33 — A11a32023 + A12031A23 — (12021433
+ajzaziaz —azazaxn.

Cette expression, qu’il est inutile de chercher a retenir, contient 6 = 3! produits de trois
coefficients de A (un par colonne) affectés des signes + ou — suivant la nature d’une
certaine permutation associée au produit en question. Pour un déterminant 4 x 4, on
aurait 24 = 4! produits de quatre coefficients de A, et pour un déterminant n X n, on
aurait n! produits de n coefficients de A affectés de signes + ou —.

Mentionnons la régle de Sarrus, une astuce mnémotechnique qui permet de re-
trouver les déterminants 3 x 3 (et seulement ceux-1a, cette reégle ne se généralise pas
a d’autres dimensions). On écrit la matrice en tableau et on lui ajoute en bas ses deux
premieres lignes. On obtient ainsi un tableau 5 x 3

app a2 4is
azy a4y a4
asy dszz dass
app di2 a3
azy azy as

Les produits de trois termes affectés du signe + apparaissent dans les trois diagonales
descendantes du haut a gauche vers le bas a droite, tandis que les produits de trois
termes affectés du signe — apparaissent dans les trois diagonales montantes du bas a
gauche vers le haut a droite.

En résumé, le développement par rapport a une ligne ou une colonne n’est utile pour
calculer explicitement un déterminant que si la matrice dont on part a des propriétés
particulieres, par exemple beaucoup de zéros, ou s’y ramene par des opérations qui ne
modifient pas le déterminant. O

Terminons cette section par deux avertissements. D une part

| det(A + B) # detA + detB. |

(o) (05

le montre amplement. Le déterminant n’est pas linéaire. En fait, il n’y a pas de formule
simple pour exprimer le déterminant d’une somme de matrices (il y a des formules
relativement compliquées). D’autre part

L’exemple suivant

| det(24) # Mdet. |
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Ici il y a une formule simple. En effet
det(AA) = det((Ml,)A) = det(Al,) detA = A" detA,

puisque Al, est diagonale et son déterminant est le produit de ses termes diagonaux,
soit ici A",

6.1.5 Interprétation géométrique des déterminants

On a une interprétation géométrique de R” pour n = 1,2,3. On va voir qu’en di-
mension 2, les déterminants sont liés aux questions de surface et en dimension 3 aux
questions de volume.

En dimension 2, deux vecteurs vy, v, déterminent un parallélogramme, alors qu’en
dimension 3, trois vecteurs vi,v;,v3 déterminent un parallélépipede.

On prendra comme unité de surface la surface du carré unité dont les cotés sont
les vecteurs de la base canonique, et comme unité de volume, le volume du cube unité
construit de la méme facon en dimension 3.

Proposition 66 La surface du parallélogramme est donnée par | det (v1 vz) |. Le vo-
lume du parallélépipéde est donné par | det (vl V2 V3) |-

a0
0d)
effet, dans ce cas on a affaire 2 un rectangle de c6tés |a| et |d|, donc de surface |ad)|,
alors que le déterminant de la matrice vaut ad.

Démonstration. Traitons le cas n = 2. Le résultat est vrai si (v1 vz) = En

o ajl a
Supposons que {vi,v,} est une famille libre. Notons (v; v2) = <a“ a12>' Si
21 ax
ay; # 0, alors v’2 =y — ;ﬂvl est un multiple de e, c’est-a-dire que sa premiere
composante est nulle. L’opération ne change ni le déterminant, ni la surface du pa-
rallélogramme. Comme la famille de départ était libre, v, # 0 et ce vecteur a une

s ' o ey . .
deuxi¢éme composante ay, non nulle. On pose alors v| = vy o, V2> ce qui produit

un vecteur multiple de e;. L’ opération ne change ni le déterminant ni la surface des pa-
rallélogrammes. On est donc ramené au premier cas d’un rectangle aux cotés parallele
aux axes, pour lequel le résultat est déja acquis.

Oy

Les diverses opérations ci-dessus ne modifient pas les surfaces.
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Si aj; =0, alors ajp # 0 puisque la famille est libre, et on échange les roles de vy
et vy.

Enfin, si la famille est liée, alors le déterminant vaut 0. Dans ce cas, le parallélogramme
est réduit a un segment et est donc de surface nulle.

Le cas tridimensionnel se traite de fagcon analogue. O

6.1.6 Déterminant d’un endomorphisme

Théoreme 51 (définition du déterminant d’un endomorphisme) Soit E un K espace
vectoriel de dimension finie et f un endomorphisme de E. Toutes les matrices associées
a f par rapport a des bases différentes ont le méme déterminant appelé déterminant de
f et noté det(f).

Démonstration. Soient B et B’ deux bases de E. Soient [f]g et [f]/; les matrices de f
respectivement par rapport a la base B et a la base B’. Soit Pg g la matrice de passage
de Balabase B'.Ona

[fle = Py [ flsPs.s.

Les matrices [f]g et [f]g étant semblables, elles ont le méme déterminant.

Théoreme 52 (Propriétés du déterminant d’un endomorphisme) Soit E un K es-
pace vectoriel de dimension finie.

1. det(Idg) = 1.

2. Soient f et g deux endomorphismes de E. On a det(f o g) = det(f) det(g).

3. Un endomorphisme f de E est inversible si et seulement si det(f) # 0.

Démonstration. 1. Soit B une base de E. On a
det(ldg) = det[ldg|g = detl, = 1.
2. fog apour matrice [f o g]lg = [f]s[g]s- On a donc :
det(f og) = det[f o g]g = det([f]s[g]s) = det([f]s) det ([g]5) = det(f) det(g).
3. On a les équivalences suivantes :

f estinversible <= [f]4 est inversible

< det([f]3) #0
= det(f) #0.

6.2 Applications des déterminants

6.2.1 Expression de I’inverse d’une matrice a I’aide du déterminant
Définition 45 On introduit la matrice des cofacteurs de A, cofA = (C;;) avec C;j =
(— l)H—J detAij.
C’est aussi une matrice n x n. Noter la disposition en échiquier des signes (—1)"*/,

commengant par un + au coin supérieur gauche

+ - . (_1)l+n

- 4+ — ... (71)2"'"

+ - 4+ .- (_1)3+Vl
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Théoreme 53 On a pour toute matrice A
A(cofA)T = (cofA)TA = (detA)I,.

En particulier, si A est inversible, alors

1

Démonstration. Posons B = A(cofA)7. Par la formule générale du produit matriciel,
(B)ij = Z aik(COfA)Zj = Z aixCi.
k=1 k=1

Si i = j, on reconnait le développement du déterminant de A par rapport a la ligne i,
donc
Vi, (B)i,' = detA.

Si i # j, on reconnait le développement par rapport a la ligne j du déterminant de la
matrice A dans laquelle la ligne j a été remplacée par la ligne i (ce qui ne change pas
les cofacteurs considérés). Donc

Vi#j, (B);j=detA=0.

On procede de méme pour (cofA)” A avec les développements par rapport aux co-
lonnes.

Dans le cas ol A est inversible, alors detA # 0 et il suffit de diviser par detA pour
obtenir la formule pour A~ O

Remarque 64 Sauf pour n = 2, ou pour des matrices tres particulieres, ce n’est pas la
bonne facon de calculer explicitement l'inverse d’une matrice. Si on a vraiment besoin
de I’inverse d’une matrice, alors on a tout intérét a utiliser la méthode de Gauss des que
n > 3. Par contre, la formule précédente est intéressante pour la théorie. O

6.2.2 Application des déterminants a I’indépendance linéaire de
vecteurs

Soit E un K-espace vectoriel de dimension n. Soit B une base de E. Soient vy, ..., v,
n vecteurs de E. Soit M la matrice de M,,(K) dont la j-iéme colonne est formée des
coordonnées du vecteur v; par rapport a la base B. On appelle déterminant des vecteurs
Vl,...,vy eton note detg(vy,...,v,) le déterminant de la matrice M.

Remarque 65 Compte tenu des propriétés du déterminant d’une matrice, on a les pro-
priétés suivantes :

e L’application (vi,...,v,) — detg(vi,...,v,) est linéaire par rapport a chaque va-
riable.
e Si deux des vecteurs de la famille sont égaux, detg(vy,...,v,)=0.

Théoreme 54 Soit E un K espace vectoriel de dimension n. Soient n vecteurs de E
et B une base de E. Ces vecteurs sont linéairement indépendants si et seulement si

detg(vi,...,vy) #0.
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Démonstration. les vecteurs vy,...,v, sont linairement indépendants si et seulement
si la famille (vi,...,v,) est de rang n. Soit M la matrice de M, (K) dont la j-itme
colonne est formée des coordonnées du vecteur v; par rapport a la base B. Le rang de
la famille (vy,...,v,) est égal le rang de la matrice M et M est de rang n si et seulement
si elle est inversible.

Définition 46 Soit n et q deux entiers naturels. Soit A = (a; j) une matrice a n lignes
et q colonnes a coefficients dans K. Soit p un entier inférieur a n et a q. On appelle
mineur d’ordre p le déterminant d’une matrice carrée d’ordre p obtenue a partir de A
en supprimant n— p lignes et g — p colonnes.

Théoreme 55 (Caractérisation de I’'indépendance linéaire de p vecteurs) Soit E un

K -espace vectoriel de dimension n et (ey,...,e,) une base de E. Soit p un entier

inférieur ou égal a n et vy,...,v, p vecteurs de E. Pour tout j compris entre 1 et n,
n

on pose v = Za,-h,-e,-. Alors les p vecteurs (v1,...,v,) sont linéairement indépendants

i=1
si et seulement si il existe un mineur d’ordre p non nul extrait de la matrice (a; ;) de
M, ,(K).

Démonstration. Supposons vi,...,v, linéairement indépendants.

Si p = n, le résultat est une conséquence immédiate de la propriété précédente.

Si p < n, on peut appliquer le théoréme de la base incomplete a la partie libre
{vi,...,vp}. Il existe donc des vecteurs €kyiyse -+ Chy tES que (vi,--.. VpyChyyys-e ,€k,)
soit une base de E. Soit la base de E obtenue en renumérotant les éléments de la base
(e1,...,e,) de la maniere suivante. Si {1,...,n} = {ki,...,kp} U{kps1,...,ky}. On
pose

Vie [1,)1], € =ey.

Alors, la matrice carrée d’ordre n des composantes des vecteurs (vy,..., v, €hyyysee e €k,)
par rapport a la base (gq,...,€,) est

Ajey 1 akp,p 0...0
N = ak]hl akpvp 0...0
akp+l )1 akp+1 P 1 0
Ak, 1 Aiey.p 0 ... 1
Son déterminant est non nul puisque les vecteurs (vi,...,vp, €hpyyse - ,ex,) forment

une base de E. On calcule le déterminant de N en développant par rapport a la derniere
colonne autant de fois que nécessaire. On voit que

Apy, 1o akpyp
det(N) = :
akl),l akp.p
gyl .- akp,p
Le mineur | : . est donc non nul.

akml . akpvl’
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Montrons maintenant la réciproque. On pose

gy, 1. akp_’p
N = :

Ak, 1 -+ Gkyp
et on suppose det(N) # 0. On considére la relation
Ayt +7\.,,v,, =0

En exprimant chaque v; dans la base (ey,...,ey,), on voit aisément que cette relation
équivaut au systeme suivant

(=)

a1,17»1 + ... + a17p7\,p =
azﬂ]kl + ...+ a27p7up =0

an’]k] + ...+ an,pkp =0

Ce qui implique
akl)lkl + ... + aklﬁplp =0
ak2,17\,1 + ...+ akzlpx,, =0
akl,lkl + ...+ akp,pkp =0
On a donc
M
cl:|=0.
Ap
Comme C est inversible, cela implique A; = --- = A, = 0. Ce qu’il fallait démontrer.

6.2.3 Application a la détermination du rang d’une matrice

Rappelons la définition du rang d’une matrice.

Définition 47 Le rang d’une matrice est le nombre maximum de vecteurs colonnes
linéairement indépendants.

Notation : le rang de la matrice A est noté rg(A).

Rappelons que 1’on ne change pas le rang d’une matrice A = (Cy,...,C,) par les
opérations élémentaires suivantes sur les colonnes :

e Permutation de deux colonnes.

e On multiplie une colonne par un scalaire non nul.

e On ajoute a une colonne un multiple d’une autre colonne.

Théoreéme 56 Le rang d’une matrice est le plus grand entier r tel qu’il existe une
matrice carrée d’ordre r extraite de M de déterminant non nul.

Démonstration. Cela découle de la caractérisation de I’'indépendance de r colonnes a
I’aide des mineurs.
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Exemple 85 Soit o0 un parametre réel. Calculons le rang de la matrice A a coefficients
réels suivante :

1121
A=112 31
11 ol
On obtient les mineurs d’ordre 3 de A en supprimant une colonnes. Calculons le mineur
121
d’ordre 3 obtenu en supprimant la premiere colonne |2 3 1|.0Ona
1 ol
121
31 2 1) |21
23 1=y 1‘ o 1‘+’3 1‘2+a'
I ol
Si a est différent de 2, le rang de la matrice A est 3. Si o0 = 2, on vérifie que les 4
mineurs d’ordre 3 de A sont nuls. Donc A est de rang inférieur ou égal a 2. Or 1 ; est

un mineur d’ordre 2 non nul. Donc si o est égal a 2, le rang de A est 2.

Proposition 67 Soit A une matrice a n lignes et p colonnes. Le rang de A est égal au
rang de sa transposée.

Démonstration. Cette démonstration est hors programme.

Les mineurs de A7 sont obtenus 2 partir des mineurs de A par transposition. Comme
les déterminants d’une matrice et de sa transposée sont égaux, la proposition découle
de la caractérisation du rang d’une matrice a I’aide des mineurs. [

Corollaire 57 On ne change pas le rang d’une matrice par les opérations élémentaires
suivantes sur les lignes :

e Permutation de deux lignes.

e On multiplie une ligne par un scalaire non nul.

e On ajoute a une ligne un multiple d’une autre ligne.

Démonstration. Faire une opération élémentaire sur les lignes de A, c’est faire une
opération élémentaire sur les colonnes de A” . Or, nous savons qu’une opération élémentaire
sur les colonnes de A” ne change pas le rang de A”. Comme le rang de A est égal au
rang de A7, le corollaire en découle.

Remarque 66 L’algorithme de Gauss permet de transformer, par une succession d’
opérations sur les lignes une matrice A en une matrice échelonnée R dont le rang est
facile a calculer. D’apres le corollaire précédent, on a rg(A) = rg(R).

Exemple 86 Calculons le rang de la matrice

1
A=| 0
-1

S NN
—_ W
S N B
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Nous avons vu dans ’exemple 2 du chapitre 1 que, par des opérations élémentaires sur
les lignes, la matrice A se transformait en la matrice
123 4
R=1024 6
000 -2

dont le rang est 3. Le rang de la matrice A est donc 3.



Chapitre 7

Diagonalisation

De nombreux problemes, dans des domaines variés et pas seulement
mathématiques, nécessitent pour leur résolution de savoir calculer des puissances de
matrices. Dans le chapitre 1, nous avons vu comment calculer les puissances d’une
matrice semblable & une matrice diagonale. Dans ce chapitre, nous nous intéresserons
au probleme suivant : Si E est un espace vectoriel de type fini, de dimension supérieure
ou égale a 1 et f un endomorphisme de E, il s’agit de déterminer s’il existe une base
de E telle que la matrice de f par rapport a cette base soit diagonale

Dans ce chapitre, nous supposerons que K est R ou C. Tant que cela sera possible,
nous traiterons simultanément le cas d’un espace vectoriel réel et celui d’un espace
vectoriel complexe. Cependant la nature du corps de base joue un role important dans
cette théorie.

7.1 Endomorphisme diagonalisable, valeur propre, vec-
teur propre

Définition 48 (Endomorphisme diagonalisable) Soit E un K-espace vectoriel de di-
mension finie et f un endomorphisme de E. On dit que f est diagonalisable s’il existe

une base de E telle que la matrice de f par rapport a cette base soit diagonale.

Plus précisément, si n est la dimension de E, un endomorphisme f de E est diago-

nalisable si et seulement s’il existe une base (ey,...,e,) de E et des éléments A1, ..., A,
de K, tels que la matrice associée a f dans la base (ey,e,...,e,) soit la matrice diago-
A O ... O
nale
: . .0
0 ... 0 A,
Remarque sur la notation : les scalaires Ap,...,A, ne sont pas nécessairement dis-
tincts.

Compte tenu de la définition de la matrice d’'un endomorphisme par rapport a une
base cela signifie que :
Vi e [Ln], f(e,') = 7\.1'61'.

Les scalaires A et les vecteurs v, liés par une relation de la forme f(v) = Av,

127
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jouent donc manifestement un réle important dans cette théorie. Cela nous conduit
a la définition des notions de valeur propre et de vecteur propre.

Définition 49 (Définition d’un vecteur propre) Soit E un K-espace vectoriel de di-
mension finie et f un endomorphisme de E.
Un vecteur v de E est appelé vecteur propre de f s’il vérifie les deux conditions :
o v est non nul,
o il existe un élément A du corps des scalaires K tel que f(v) = Av.

Définition 50 (Définition d’une valeur propre) Soit E un espace vectoriel de type
fini sur K et f un endomorphisme de E. Un élément A du corps des scalaires K est
appelé valeur propre de f s’il existe un vecteur v, non nul, tel que f(v) = Av.

Remarque 67 Attention : un vecteur propre est non nul.

Vocabulaire : Soit v un vecteur non nul et A un élément de K tels que f(v) = Av.
On dit alors que v est un vecteur propre associé a la valeur propre A. Les deux notions
de valeur propre et de vecteur propre sont donc étroitement liées.

Exemple 87 Soit E un espace vectoriel réel de dimension 2 et (e;,e;) une base de
E. On considere ’endomorphisme f de E défini par f(e;) = ez, f(ea) = ep. 1l est
immédiat que 1 est une valeur propre puisqu’il existe un vecteur non nul, a savoir e,
tel que f(e2) = e2. Le vecteur e; est un vecteur propre associée a la valeur propre 1.
Dans cet exemple, il y a une valeur propre visible mais I’existence d’autres valeurs
propres n’a pas été étudiée.

Exemple 88 Soit f un endomorphisme non injectif d’un K-espace vectoriel E. Cela
signifie que son noyau n’est pas réduit au vecteur nul, autrement dit qu’il existe un
vecteur v non nul tel que f(v) = 0. Ceci équivaut a dire que le scalaire Ok est une
valeur propre pour f.

7.1.1 Caractérisation des valeurs propres

Soit f un endomorphisme d’un K-espace vectoriel E de dimension finie égale a n
(n>1).
Un scalaire A est une valeur propre de f si et seulement si :

W eE—-{0}, fv)= <=
e E—-{0}, f(v) - Ww=0<=
WeE—{0}, (f—Mdg)v =
Ker(f — Aldg) # {0} <

1g(f —AMdg) <n<=

det(f — Aldg) =0

Nous avons donc démontré la propriété suivante :

Proposition 68 (Caractérisation d’une valeur propre) Un élément du corps de base
K de ['espace vectoriel est une valeur propre de f si et seulement si
det(f —Aldg) = 0.

Cette propriété donne donc un procédé pratique pour déterminer les valeurs propres
d’un endomorphisme.
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Exemple 89 Soit f I’endomorphisme de R? défini par f(e1) = 2e1 +ea, f(ez) = e1 +
2e; oli (eq,e;) désigne la base canonique de R?.

Pour déterminer ses valeurs propres il faut, d’apres la caractérisation précédente,
chercher les éléments A de R, tels que det(f — Aldg2) = 0. Pour cela il est naturel
d’écrire la matrice A associée a f dans la base canonique et de calculer det(A —xI,) qui
est égal a det(f — xldg2).

OnaA= (? ;) et par conséquent

det(A —xb) — ‘Zf Zix‘ — (= 1)(x—3)

Les réels 1 et 3 sont donc les valeurs propres de f.

Exemple 90 Soit g I’endomorphisme de R? défini par g(e1) = ej + e, g(ez) = —ey +
ey ol (e, ey) désigne la base canonique de R?. De méme que précédemment, on écrit

la matrice B associée a g dans la base canonique et on calcule det(B—xl). On a B =
G _11) et par conséquent det(B — xI) = l;x 1_—1x =x>—2x+2.0riln’y a

pas de réels x tels que x> — 2x + 2 soit nul (le discriminant du trindme est strictement
négatif). Donc 1I’endomorphisme g n’admet pas de valeurs propre.

Exemple 91 Soit : I’endomorphisme de R? défini par h(e1) = ey, h(ez) = e3 et h(ez) =
—ey ol (e, er,e3) désigne la base canonique de R>.

De méme que précédemment, on écrit la matrice C associée a h dans la base cano-
nique et on calcule det(C — xI3).

100
OnaC= [0 0 —1 ] etparconséquent
01 0
1-x 0 O
det(C—xB)=| 0 —x —1 |=—(x—1)(x*+1)
0 1 —x

La seule valeur réelle de x annulant det(C — x/3) est x = 1. Donc h a une seule valeur
propre qui est 1.

7.1.2 Fonction polynome caractéristique

Soit x un élément du corps de base K. On a vu apparaitre naturellement 1’expression
det(f — xIdg). Pour calculer le déterminant de I’endomorphisme de E,f — xIdg, il est
nécessaire d’introduire la matrice associée a f par rapport a une base de E. Soit donc
B une base de E et A la matrice associée a f par rapport a cette base. Alors la matrice
associée a f —xIdg est A — xIdg et par conséquent det(f — xIdg) = det(A — xI,,). Si
A= (aij)(ijepn»ona:

ay) —Xx apn aln
anz? —Xx

det(f —xldg) = det(A —xI,,) = 2.1

an,1 e Gpp—X
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L’expression explicite de ce déterminant prouve que c’est une expression polynomiale
en x, de degré n, dont le coefficient du terme de plus haut degré est égal a (—1)". Cette
remarque nous amene a la définition suivante :

Définition 51 (Fonction polynéme caractéristique) Soit f un endomorphisme d’un
K-espace vectoriel E de dimension n, entier supérieur ou égal a 1 (K est égal a R ou C).
On appelle fonction polynéme caractéristique et on note Peqr,f la fonction polynomiale
définie par

Vx € K, Pear.p(x) = det(f —xIdg).

Remarque 68 Plus précisément, on définit le polyndme caractéristique de f. De facon
un peu informelle, un polynéme a une indéterminée a coefficients dans K est une ex-
pression de la forme

P(X)=ao+a1X +aX’+ - +a,X"

avec a; € K. Si a, # 0, alors ’entier n est le degré de P. Par convention, le degré
du polynéme nul est —oo. La lettre X désigne 1’indéterminée. On peut lui donner un
sens mathématique précis, L'ensemble de tous les polynomes a une indéterminée a
coefficients dans K est noté K[X]. En fait, un polyndme a coefficients dans K définit
une application polynomiale de K dans K par

x+— P(x) =ap+aix+ax® + -+ +apx.

Si K =R ou C, on peut sans danger confondre le polyndme et la fonction polynomiale
associée.

Si K est un corps commutatif quelconque, on ne peut plus confondre un polyndme
et la fonction polynomiale qui lui est associée. Soit f un endomorphisme d’un K-espace
vectoriel de dimension finie E. Si A est la matrice de f dans une base ‘B, on définit le
polyndme caractéristique P,y de f comme étant le déterminant a coefficients dans
K[X]

a1.1—X (W) aln

det(f — XIdg) = det(A — XI,) =| ! 2 -X

an,1 e App—X

11 faut s’assurer au préalable que si A’ est la matrice de f dans une autre base B, on a
det(A —X]dE) = det(A/ —XIdE).

Définition 52 On dit qu’une fonction polyndéme de K est scindée si elle est produit de
fonctions polynémes de K de degré 1.

Exemple 92 la fonction polynomiale x*> + 1 n’est pas scindée sur R mais elle 1’est sur
C puisque 1’on peut écrire x*> + 1 = (x +i)(x —i).

Proposition 69 (Condition nécessaire de diagonalisabilité) Soit E un K-espace vec-
toriel de dimension n et f un endomorphisme de E. Si f est diagonalisable, alors sa
fonction polynéme caractéristique est scindée.



7.1. ENDOMORPHISME DIAGONALISABLE, VALEUR PROPRE, VECTEUR PROPREI131

Démonstration. Si f est diagonalisable, il existe une base de vecteurs propres pour f,

(Vi,...,vn). Si v; est vecteur propre pour la valeur propre A;, la matrice de f dans la
base (vi,...,v,) est
AL O ... 0
0 A O O
D=1 . . . .
0 0 ... A

On a Pegr f(x) = det(D — xI,,) = (A1 —x)(ha —x).... (Ay — ).

7.1.3 Caractérisation des valeurs propres d’un endomorphisme a
I’aide du polynéome caractéristique

Si P est une fonction polynomiale a coefficients dans K et si A est un élément de K,
on dit que A est une racine de P si P(A) = 0. Le théoréme suivant est une conséquence
immédiate de ce qui a été vu précédemment.

Théoreme 58 (Valeurs propres et polynome caractéristique) Soir f un endomorphisme
d’un K- espace vectoriel E de type fini. Un élément A de K est valeur propre de f si et
seulement si il est racine de la fonction polyndéme caractéristique de f.

Remarque 69 L’existence et le nombre de valeurs propres d’un endomorphisme dépendent
essentiellement du corps de base de 1’espace vectoriel. Si I’on considere, par exemple,
1’endomorphisme / de R3 défini par h(ey) = ey, h(e2) = e3 et h(e3) = —ea ot (e, ..., e3)
désigne la base canonique de R3. Sa fonction polyndme caractéristique est Pearn(x) =
(1 —x)(x>+1). Elle n’a qu’une seule racine réelle, qui est donc la seule valeur propre
de h. Mais si on considére I’endomorphisme /' de C* défini par //(e1) = ey, i (e2) = 3
et i (e3) = —ey ol (e1,e2,e3) ol (e1,e2,e3) désigne la base canonique de C>. Sa fonc-
tion polyndme caractéristique est P,y (x) = (1 —x)(x*> 4+ 1). C’est une fonction de C
dans C et elle a trois racines qui sont 1,7 et —i.

Un endomorphisme d’un espace vectoriel complexe (c’est-a-dire dont le corps de
base est C) admet toujours des valeurs propres (puisque une fonction polynéme a coef-
ficients dans C a toujours des racines d’apres le théoréeme de D’ Alembert-Gauss) alors
qu’un endomorphisme d’un espace vectoriel réel peut ne pas avoir de valeurs propres
(I’endomorphisme g des exemples précédents n’a pas de valeur propre).

7.1.4 Sous-espace propre associé a une valeur propre

Une fois déterminées les valeurs propres d’un endomorphisme, s’il y en a, on peut
rechercher les vecteurs propres associés. Cela revient a résoudre 1’équation linéaire
f(v) = Av, c’est-a-dire a déterminer Ker(f — AIdg).

Définition 53 (Sous-espace propre associé a une valeur propre) Soit f un endomor-
phisme d’un K-espace vectoriel E de type fini et A une valeur propre de f. On appelle
sous-espace propre associé a la valeur propre A le noyau de f — AMdg

Notation : Le sous espace propre associé a la valeur propre A sera noté E; .

Il résulte donc de la définition que le sous-espace propre associé a une valeur propre
A est un sous-espace vectoriel dont les éléments sont le vecteur nul et les vecteurs
propres associés a A.
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Compte tenu de cette définition on a les équivalences :

A valeur propre <= E) # {0g} <= dimE,; > 1.

7.2 Version matricielle

7.2.1 Notion de matrice diagonalisable, de valeur propre d’une ma-
trice, de vecteur propre d’une matrice

Définition 54 (Définitions et premieres propriétés) Soit M une matrice carrée d’ordre
n a coefficients dans K.

(1) On dit que M est diagonalisable si elle est semblable a une matrice diagonale
c’est-a-dire s’il existe deux matrices D et P de M,(K) telles que D soit diagonale, P
inversible et M = PDP~.

(2) Une matrice colonne V appartenant a My, 1 (K) est un vecteur propre de M si :

V#£0 et L€ K,MV =AV.

(3) Un élément A de K est une valeur propre de M s’il existe V, non nul, appartenant
aM,, tel que MV =AV.

(4) Un élément A de K est une valeur propre de M si et seulement si det(M — \l,) =
0.

(5) On appelle fonction polynéme caractéristique de M la fonction polynéme x —
det(M — x1,). On la note Pear .

(6) Un élément A de K est une valeur propre de M si et seulement c’est une racine
de la fonction polyndme caractéristique de M.

(7) Le sous-espace propre associé a la valeur propre A est égal a I’ensemble des V
appartenant a M, | (K) tels que (M —AL,)V =0, autrement dit I’ensemble des matrices

4 \21 0

V2 v 0
colonnes V.= . | tellesque (M —LAL,) | . | =

Vn Vi 0

A la matrice M, on associe I’endomorphisme Ly, de M, | (K) défini par

YW e M, (K), Ly(V)=MV.

1 0 0
0 1 0

La matrice de Ly, dans la base canonique P O P est M. Ainsi : un
0 0 1

¢lément V de M, ((K) est un vecteur propre de M si et seulement si c’est un vecteur
propre de Ly, un scalaire A est valeur propre de M si et seulement si ¢’est une valeur
propre de Ly, le polynome caractéristique de M est le polynome caractéristique de Ly,
et le sous espace propre de M associé a la valeur propre A est le sous espace propre de
Ly associé a la valeur propre A.

La proposition suivante résulte immédiatement de la définition de la fonction po-
lyndme caractéristique d’une matrice et des propriétés des déterminants.
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Proposition 70 (polynome caractéristique et matrices semblables) Soient M et N deux
matrices semblables de M, (K) alors Pearpr = Pearn.

Démonstration. Soient M et N deux matrices semblables. Il existe donc une matrice
inversible Q de M, (K) telle que M = QNQ~'. Alors M — xI, = Q(N — xI,)Q~!. Les
matrices M — xI, et N — xI,, sont donc semblables et par conséquent ont le méme
déterminant. [l

7.2.2 Relation entre endomorphisme diagonalisable et matrice dia-
gonalisable

En partant d’un endomorphisme...

Soit E un K-espace vectoriel de dimension 7 et f un endomorphisme de E. Soit
B une base de E et M la matrice associée a f dans B. Dire que f est diagonalisable
équivaut a dire qu’il existe une base B’ de E dans laquelle la matrice de f est une matrice
diagonale D. On sait que deux matrices sont associées a un méme endomorphisme par
rapport a des bases différentes si et seulement si elles sont semblables. Donc f est
diagonalisable si et seulement si M est semblable a une matrice diagonale, c’est-a-dire
si et seulement si M est diagonalisable.

En partant d’une matrice carrée...

Soit M une matrice carrée appartenant a M, (K), on peut considérer 1’unique endo-
morphisme Ly de M, 1 (K) qui lui est associé dans la base canonique. On a

LM:MnJ(K) - n,l(K)
X — MX.

Alors d’apres les définitions et les propriétés rappelées ci-dessus, M est diagonalisable
si et seulement si Ly, est diagonalisable.

Soit E un K-espace vectoriel de dimension finie. Il est immédiat que les définitions
sont telles que si M est la matrice associée a un endomorphisme f de E par rapport a
une base B, alors :

e les valeurs propres de 1’un sont les valeurs propres de I’autre (puisque det(f —
xldg) = det(M — xI,)),

e la matrice colonne V associée a un vecteur propre v de f dans la base B est un
vecteur propre de M et réciproquement le vecteur v de E qui admet comme compo-
santes dans la base B les coefficients d’une matrice colonne V vecteur propre de M est
un vecteur propre de f (puisque f(v) = Av <= MV =AV).

Par conséquent, les sous-espaces propres associés a A valeur propre respectivement
de f et M sont isomorphes, par I’isomorphisme qui associe a un vecteur la matrice
colonne de ses composantes dans la base B.

Il y a donc coincidence parfaite entre ces notions relatives a une matrice ou a un
endomorphisme. Cela justifie la similitude de vocabulaire.

Tous les théoremes qui suivent, dont la finalité est de trouver des conditions pour
qu’un endomorphisme ou une matrice soit diagonalisable, sont donc communs. Les
démonstrations théoriques sont faites la plupart du temps dans le cadre vectoriel, c’est-
a-dire pour les endomorphismes car elles s’y expriment plus simplement.

En revanche, pour faire les calculs explicites, on utilise le calcul matriciel.

Attention : une matrice a coefficients dans R peut aussi étre considérée comme une
matrice a coefficients dans C. Il faut bien préciser, pour les matrices, le corps dans
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lequel on se place. Nous verrons qu’il existe des exemples de matrices a coefficients
réels, non diagonalisables dans R et diagonalisables dans C.

Ce type de probléme ne se pose pas pour un endomorphisme car le corps de base
de I’espace vectoriel est fixé au départ.

7.3 Propriétés des sous-espaces propres

Théoréme 59 (Somme directe de sous-espaces propres) Soit f un endomorphisme
d’un espace vectoriel E de type fini qui admet au moins deux valeurs propres dis-
tinctes. Soit p un entier supérieur ou égal a 2, Ay, ..., A, des valeurs propres dis-
tinctes de f et les sous-espaces propres associés Ey ,Ey,,... By, Alors la somme
Ey, +Ey, +---+Ey, est directe, ce qui est noté

Ey, +E}\.2+...+E}\.p =E), @EKQEB"'EBELP-

Démonstration. Faisons une démonstration par récurrence. Si p = 2, soient A1, A, deux
valeurs propres distinctes de f. On va montrer que £, + E), = Ej, © E),. Pour cela,il
suffit de prouver que si v et v, sont deux vecteurs respectivement de Ej, et Ej,, alors
vi+v,=0= v, =v,=0.0r

vi+va =0= f(v1)+f(v2) = f(0) = 0.
Donc les vecteurs vy et v, vérifient les deux égalités

vi + v =0
Mvi + Avp = 0

Ces égalités impliquent 1’égalité (A, — A )vy = 0.(C’est la relation obtenue en prenant
la deuxieéme ligne moins A; fois la premiére). Or, comme d’aprés I’hypothese, A; et A,
sont deux valeurs propres distinctes, il en résulte immédiatement v, = 0. D’ou, d’apres
la premiere relation, v = 0.

Supposons le résultat acquis pour k — 1 sous-espaces propres avec k < p. Donnons-
nous x; € By, i=1,... ktelsque x; +x2 +--- +x, = 0.

Multiplions cette relation par A. 11 vient

Mext +Mex + -+ Agxg = 0.
Appliquons également a cette égalité I’endomorphisme f. Il vient
FOe)+ fe2) 4+ fla) = Mxy +Aoxa + -+ My = 0.
Soustrayons les deux égalités obtenues membre a membre. On obtient
(M= A)xt + (M —A2)x2 + -+ (A — A1) -1 = 0.

Posant y; = (Ax —A;)x; € Ey,, i =1,...,k—1, on a obtenu une décomposition du
vecteur nul sur k — 1 sous-espaces propres. Par I’hypothese de récurrence, on obtient
yi=0pouri=1,...,k— 1. Or on a pris des valeurs propres distinctes, donc A; —A; # 0.
Par conséquent, x; = 0 pour i = 1,...,k — 1. Reportant ceci dans la premiere relation,
on en déduit finalement que x; = 0, et les sous-espaces propres sont bien en somme
directe. (]
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Compte tenu du vocabulaire introduit et des résultats préliminaires qui viennent
d’étre démontrés, la définition d’endomorphisme diagonalisable peut étre traduite de la
facon suivante :

Théoreme 60 Soit f un endomorphisme d’un K-espace vectoriel E de type fini. On
suppose que f (respectivement M) posséde des valeurs propres, soit M, ..., \.. Alors
les conditions suivantes sont équivalentes :

1. L’endomorphisme f est diagonalisable.

2. Il existe une base de E formée de vecteurs propres de f.

3. L’espace vectoriel E est somme directe des sous-espaces propres, c’est-a-dire
E=E, & - OF),.

La réunion de bases des sous-espaces propres forme alors une base de E constituée
de vecteurs propres de f.

T
Remarque 70 La troisiéme condition équivaut a : dim(E) = ZdimE;H.
i=1
Le point (iii) de ce théoreme conduit immédiatement a une propriété utile dans la pra-
tique.

Proposition 71 (Condition suffisante de diagonalisation) Soit f un endomorphisme
d’un K-espace vectoriel E de dimension n (ou M une matrice carrée d’ordre n a co-
efficients dans K). Si le polynéme caractéristique de f (respectivement de M) admet n
racines distinctes, alors f (respectivement M) est diagonalisable.

Démonstration. En effet, dans ce cas I’endomorphisme f a n valeurs propres distinctes
M1, ..., M. Les sous-espaces propres Ej, en somme directe. Pour chaque espace propre,
on a dimE,, > 1. Donc

n n
n <Y dimEy, = dim(EDE,, ) < dimE =n,
i=1 i=1

n
puisque EBEM est un sous espace vectoriel de E. On en déduit que

i=1
n
dim (EDEy, ) = dim,
i=1
et donc que
n
@EM =E
i=1
d’ou la diagonalisabilité de f. U
Ce corollaire n’est qu'une condition suffisante. De nombreuses matrices avec des

valeurs propres multiples sont aussi diagonalisables.

Remarque 71 Si un endomorphisme est diagonalisable, la décomposition de 1’espace
E en somme directe de sous-espaces propres permet de mieux comprendre cet endo-
morphisme. En effet, on a déja noté que sa restriction a un sous-espace propre est
I’application linéaire la plus simple qui soit, une homothétie. (]
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Remarque 72 ATTENTION, méme sur C il existe des matrices qui ne sont pas dia-
gonalisables. Par exemple
01
(00

est triangulaire supérieure. Sa fonction polyndme caractéristique est Pegra (x) = x%. Elle
admet donc une seule valeur propre a savoir 0. Un rapide calcul montre que le sous
espace propre associé a la valeur propre 0 est de dimension 1. Donc C? ne peut pas étre
somme directe des espaces propres, et A n’est pas diagonalisable

On peut aussi le voir directement. Si A est diagonalisable, alors

()3 (09)

contradiction. Donc A n’est pas diagonalisable. (]
111
Exemple 93 Considérons lamatriceA= |1 1 1 |.On calcule sa fonction polynéme
111
caractéristique
I-x 1 1
Pya(x)=] 1 1—-x 1 |=0B—x)x*
1 1 1—x
Le sous espace propre E associée a la valeur propre 0 est le noyau. Déterminons-le :
111 X1 0
111 x»|=10
111 X3 0

Ey = {(xl,xz,x3) S R3 ‘ X1 +x4+x3= 0}.
Une base de Ej est ((1,0,—1),(0,1,—1)).
Déterminons le sous espace propre associé a la valeur propre 3. On a

21 1\ [n 0
()C],)CQ,X3) € E3 <— 1 -2 1 xn|=10
1 1 =2 X3 0

Ce qui équivaut au systeme

—2x1+x+x3 = 0
x1—2x+x3 =0
X14+x—2x3 =0

On résoud ce systeme par la méthode du pivot de Gauss et on obtient une base de E3
formée du vecteur (1,1,1). On a donc

000 1 0
1

A=P|0 O P !'avec P=1] 0
00

0
3
. 0 1 . A L
Exemple 94 Considérons A = 10/ Sa fonction polyndme caractéristique est

x% + 1. Elle n’a donc pas de valeur propre sur R. Elle n’est donc pas diagonalisable
sur R. En revanche, elle a deux valeurs propres distinctes sur C, a savoir i et —i. Elle
est donc diagonalisable sur C.
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7.4 Application au calcul des puissances d’une matrice
diagonalisable

Soit A une matrice diagonalisable. Il existe une matrice diagonale D et une matrice
inversible P telle que A = PDP~!. Nous avons vu au chapitre 1 qu’on avait alors AF =
PD*P~! et que D* était tres facile a calculer. Etudions un exemple.

Exemple 95 SoitA = . Sa fonction polyndme caractéristique est égal a Pegra (x) =

21
12
(x—1)(x—3). Il a deux valeurs propres distinctes & savoir 1 et 3. Comme on a une ma-
trice carrée d’ordre 2, elle est diagonalisable. Tous calculs faits, on a

{10\ i (11 (5 -3
AP<O 3>P avecP(_1 1) et P <§ % .

10\, /1435 —1+3F
k _ 1_ -
AP(O 3’<>P 2(—1+3k 143% )

Donc



