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2.3 Systèmes échelonnés réduits . . . . . . . . . . . . . . . . . . . . . . 35
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du polynôme caractéristique . . . . . . . . . . . . . . . . . . 131
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7.3 Propriétés des sous-espaces propres . . . . . . . . . . . . . . . . . . 134
7.4 Application au calcul des puissances d’une matrice diagonalisable . . 137



6 TABLE DES MATIÈRES

Dans ce cours (K,+,⇤) désignera (R,+,⇤), (C,+,⇤) ou (Q,+,⇤) mais la théorie
développée reste valable pour tout corps commutatif (K,+,⇤).

Ce cours reprend des parties des cours de
• LM120 écrit par H. Ledret
• LM125 2004-2009 qui reposait sur des modules d’algèbre de l’université en ligne

(UeL) adaptés au programme de l’UE. Ces modules sont dûs à une équipe de collègues
de l’université Bordeaux 1 animée par J Queyrut.



Chapitre 1

Matrices

Les matrices sont des tableaux de nombres. La résolution d’un certain nombre de
problèmes d’algèbre linéaire se ramène à des manipulations sur les matrices. Comme
nous le verrons dans le deuxième chapitre, cela est vrai pour la résolution des sytèmes
linéaires.

1.1 Matrices : définitions, opérations

1.1.1 Définitions

Définition 1 Soit deux entiers n et p supérieurs ou égaux à 1. On appelle matrice de
type (n, p) à coefficients dans K, un tableau rectangulaire à n lignes et p colonnes
d’éléments de K.

Terminologie et notations :
Un tel tableau est représenté de la manière suivante :

A =

0

BBBBBB@

a1,1 a1,2 . . . a1, j . . . a1,p
a2,1 a2,2 . . . a2, j . . . a2,p
. . . . . . . . . . . . . . . . . .
ai,1 ai,2 . . . ai, j . . . ai,p
. . . . . . . . . . . . . . . . . .
an,1 an,2 . . . an, j . . . an,p

1

CCCCCCA

Les éléments ai, j de K sont appelés les coefficients de la matrice A. L’élement ai, j
désigne le coefficient du tableau situé à l’intersection de la ligne i et de la colonne j.
On écrira aussi A = (ai, j)(i, j)2[1,n]⇥[1,p] ou s’il n’y a pas d’ambiguité A = (ai, j). On dira
que ai, j est le terme général de la matrice A.

L’ensemble des matrices à n lignes et p colonnes à coefficients dans K est noté
Mn,p(K). Les éléments de Mn,p(R) (respectivement Mn,p(C)) sont appelées matrices
réelles (respectivement complexes). Les inclusions Q ⇢ R ⇢ C entrainent les inclu-
sions Mn,p(Q)⇢Mn,p(R)⇢Mn,p(C).

7



8 CHAPITRE 1. MATRICES

Exemple 1 La matrice A =

0

BBBB@

1
p

2
1 0
3 1

0,5 0

1

CCCCA
est un élément de M4,2(R).

Définition 2 (Définition de l’egalité de deux matrices) Soient n, p,n0, p0 quatre entiers.
On considère A = (ai, j) une matrice appartenant à Mn,p(K) et A0 = (a0i, j) une matrice
appartenant à Mn0,p0(K). On dit que ces matrices sont égales si et seulement si

n = n0, p = p0
8(i, j) 2 [1,n]⇥ [1, p], ai, j = a0i, j

Matrices particulières
Soient n et p deux entiers supérieurs ou égaux à 1.
Une matrice qui a une seule ligne est appelée matrice ligne. Si elle a p colonnes,

on la note
A =

�
a1,1 a1,2 . . . a1,p

�

De même, une matrice qui a une seule colonne est appelée matrice colonne. Si elle a n
lignes, on la note

A =

0

BBB@

a1,1
a2,1
...

an,1

1

CCCA

Définition 3 (Matrice carrée) Une matrice qui a le même nombre de lignes et de co-
lonnes est appelée matrice carrée. Si ce nombre est l’entier n, on dit que la matrice
est d’ordre n et on note Mn(K) au lieu de Mn,n(K), l’ensemble des matrices carrées
d’ordre n à coefficients dans K.

Sur une matrice carrée, on a la notion de diagonale principale.

Définition 4 (Définition de la diagonale principale d’une matrice carrée) Soit

A =

0

BBBBBB@

a1,1 a1,2 . . . a1, j . . . a1,n
a2,1 a2,2 . . . a2, j . . . a2,p
. . . . . . . . . . . . . . . . . .
ai,1 ai,2 . . . ai, j . . . ai,p
. . . . . . . . . . . . . . . . . .
an,1 an,2 . . . an, j . . . an,n

1

CCCCCCA

une matrice carrée d’ordre n. Sa diagonale principale est la diagonale (a1,1,a2,2 . . . ,an,n).

Exemple 2 la matrice réelle

0

@
1 0 9
2
p

2 2
3 5 9

1

A est carrée d’ordre 3. Les termes de sa dia-

gonale principale sont a1,1 = 1,a2,2 =
p

2,a3,3 = 9.

Il y a un certain nombre de cas particuliers de matrices carrées intéressants.
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Définition 5 (Matrices triangulaires) Une matrice carrée d’ordre n de terme général
ai, j est triangulaire supérieure si pour tout entier i 2 [1,n] et tout entier j tel que
1 j < i, ai, j = 0.

Une matrice carrée d’ordre n de terme général ai, j est triangulaire inférieure si
pour tout entier i 2 [1,n] et tout entier j tel que i < j  n, ai, j = 0.

Une matrice carrée d’ordre n de terme général (ai, j) est diagonale si, pour tout
couple (i, j)de[1,n]⇥ [1,n] tel que i 6= j, on a ai, j = 0.

Une matrice triangulaire supérieure (respectivement inférieure) est une matrice
carrée dont tous les termes ”en dessous” (respectivement ”au dessus”) de la diagonale
principale sont nuls.

Une matrice diagonale est une matrice carrée dont les termes situés hors de la dia-
gonale principale sont tous nuls.

Exemple 3 La matrice réelle

0

@
1 0 9
0
p

2 2
0 0 9

1

A est triangulaire supérieure.

La matrice réelle

0

@
1 0 0
2
p

2 0
3 5 9

1

A est triangulaire inférieure.

La matrice réelle

0

@
1 0 0
0
p

2 0
0 0 9

1

A est diagonale.

Cas particulier important :
La matrice diagonale d’ordre n dont les termes de la diagonale principale sont tous

égaux à 1 est appelée matrice unité et est notée In
Soit

In =

0

BBBBB@

1 0 . . . . . . 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0
0 . . . . . . 0 1

1

CCCCCA

Définition 6 (Transposée d’une matrice) Soit A = (ai, j) un élément de Mn,p(K). On
appelle transposée de A et on note AT la matrice à p lignes et n colonnes de terme
général bk,l défini par :

8k, 1 k  p, 8l,1 l  n bk,l = al,k.

Exemple 4

0

@
1 0
2 1
3 0

1

A
T

=
✓

1 2 3
0 1 0

◆
.

Remarque 1 La ième ligne de A devient la ième colonne de AT .

Notation : La transposée de la matrice A se note aussi tA.
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1.1.2 Opérations sur les matrices
Commençons par définir la somme de deux matrices.
Soient n et p deux entiers supérieurs ou égaux à 1. On ne considère que des matrices

de même type appartenant à Mn,p(K). Si l’on a des matrices de types différents, parler
de leur somme n’a aucun sens !

Définition 7 Soient A = (ai, j) et B = (bi, j) deux matrices appartenant à Mn,p(K). On
appelle somme des matrices A et B, et l’on note A + B , la matrice appartenant à
Mn,p(K) de terme général la somme des termes généraux de A et B. Autrement dit on a
A+B = (ci, j)(i, j)2[1,n]⇥[1,p] avec

8(i, j) 2 [1,n]⇥ [1, p], ci, j = ai, j +bi, j.

Exemple 5 Dans M2,3, on a la somme
✓

1 2 3
0 1 0

◆
+
✓

1 0 1
0 1 0

◆
=
✓

2 2 4
0 2 0

◆

Proposition 1 (Propriété de la somme de deux matrices) Soient A, B et C trois éléments
de Mn,p

1) On a A+B = B+A (on dit que l’addition est commutative).
2) On a (A+B)+C = A+(B+C) (on dit que l’addition est associative).
3) Si on note 0n,p la matrice, élément de Mn,p(K), dont tous les coefficients sont

nuls, on a A+0n,p = A.
4) Si A = (ai, j) et A0 = (�ai, j), on a A+A0 = 0n,p.

Démonstration. 1) Si A = (ai, j) et B = (bi, j), A + B est la matrice de terme général
ai, j + bi, j et B + A est la matrice de terme général bi, j + ai, j. Comme on a l’égalité
ai, j +bi, j = bi, j +ai, j dans K, on en déduit A+B = B+A.

2) La justification est semblable à la précédente : c’est une conséquence directe de
la propriété a+(b+ c) = (a+b)+ c vraie pour tout élément a, b, et c de K.

3) La justification est semblable à la précédente : c’est une conséquence directe de
la propriété a+0 = a, vraie pour tout élément a de K.

4) La justification est semblable à la précédente : c’est une conséquence directe de
la propriété a+(�a) = 0 vraie pour tout élément a de K.

Remarque 2 Lorsqu’il n’y aura pas d’ambiguité, la matrice 0n,p sera notée 0.

Proposition 2 La transposée de la somme de deux matrices est la somme des matrices
transposées.

La démonstration est laissée au lecteur. Elle se fonde sur la définition de la trans-
posée d’une matrice et sur celle de l’addition de deux matrices. ⇤

Nous allons introduire une nouvelle opération sur Mn,p(K) : la multiplication d’une
matrice par un scalaire.

Définition 8 (Multiplication d’une matrice par un scalaire) Soient A =(ai, j) une ma-
trice appartenant à Mn,p(K) et un élément a de K. On désigne par aA la matrice ap-
partenant à Mn,p(K) dont le terme général est le produit par a du terme général de A.
On a donc aA = (aai, j). On dit que est aA est le produit de la matrice A par le scalaire
a.
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Remarque 3 Il est clair que le fait que le produit de deux éléments de K soit encore
un élément de K, est essentiel dans cette définition.

Exemple 6 Dans M2,3(R), on a l’égalité :

2
✓

1 2 3
0 1 0

◆
=
✓

2 4 6
0 2 0

◆
.

Dans M3(C), on a

i

0

@
1 1 1
1 1 1
1 1 1

1

A=

0

@
i i i
i i i
i i i

1

A

Énonçons maintenant quelques propriétés de la multiplication par un scalaire.

Proposition 3 Soit A = (ai, j) une matrice quelconque appartenant à Mn,p(K)
a) On a 1A = A.
b) Soient a et b deux éléments quelconques de K, on a a(bA) = (ab)A
c) Si a est un élément quelconque de K, on a (aA)T = aAT .

Démonstration. a) provient de l’égalité dans K, valable pour tout a de K : 1a = a.
b) Cela provient de l’égalité dans K, valable pour tout a : a(ba) = (ab)a
c) Cela provient immédiatement des définitions de la transposée d’une matrice et

du produit d’une matrice par un scalaire.

Énonçons maintenant deux propriétés liant ces deux relations :

Proposition 4 Soient A = (ai, j) et B = (bi, j) deux matrices quelconques appartenent
à Mn,p(K). Soient a et b deux scalaires. On a

a) (a+b)A = aA+bA.
b) a(A+B) = aA+aB

Démonstration. a) En effet, le terme général de (a+b)A est égal à (a+b)ai, j. D’après
les règles de calcul dans K, (a + b)ai, j est égal à aai, j + bai, j qui est le terme général
de la matrice aA+bA.

b) La démonstration de b) est semblable à la précédente.

1.2 Produit de matrices
Soient A et B deux matrices. On suppose que le nombre de colonnes de A est égal

au nombre de lignes de B. Dans ces conditions, on va pouvoir définir le produit AB.
Soient n, p et q trois entiers supérieurs ou égaux à 1.

Définition 9 Soit A = (ai, j) une matrice à n lignes et p colonnes et soit B = (bi, j) une
matrice à p lignes et q colonnes. Alors AB est la matrice à n lignes et q colonnes dont
le terme général ci, j est donné par la formule

ci,k =
p

Â
j=1

ai, jb j,k
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Remarque 4 On peut écrire le coefficient de façon plus développée, à savoir : .

ci,k = ai,1b1,k +ai,2b2,k + · · ·+ai, jb j,k + · · ·+ai,pbp,k.

Sous cette forme, on comprend mieux la contrainte imposée sur les nombres de co-
lonnes et de lignes de A et B respectivement. Donc, pour avoir l’élément de la i-ième
ligne k-ième colonne de AB, on prend la i-ième ligne de la matrice qui est à gauche
c’est-à-dire A, la k-ième colonne de la matrice qui est à droite c’est-à-dire B ; on fait le
produit du premier élément de la ligne par le premier élément de la colonne, puis du
deuxième élément de la ligne par le deuxième élément de la colonne et ainsi de suite
jusqu’au produit du p-ième élément de la ligne par le p-ième élément de la colonne et
on fait la somme de tous ces produits. Il est commode quand on débute de disposer les
calculs de la façon suivante.

0

BB@

⇥
⇥
⇥
⇥

1

CCA  B

A!

0

BB@⇥ ⇥ ⇥ ⇥

1

CCA

0

BB@

|
|

� � � | � �
|

1

CCA  AB

On a fait apparaı̂tre une ligne générique de A et une colonne générique de B avec les
coefficients qui doivent être multipliés les uns avec les autres (représentés par des ⇥
dans l’ordre de gauche à droite dans A et de haut en bas dans B) puis additionnés pour
donner le coefficient de AB situé à l’intersection de cette ligne et de cette colonne.

Avec un peu plus de pratique, on pose directement l’opération en ligne comme dans
l’exemple ci-dessous.

✓
1 1 0
2 3 4

◆0

@
1 2
1 1
0 1

1

A=
✓

2 3
5 11

◆
.

Remarque 5 Écrivons B = (b1b2 . . .bq) où bi désigne la i-ème colonne de B. Le pro-
duit Abi est défini et est élément de Mn,1(K). On a

AB = (Ab1Ab2 . . .Abq).

Remarque 6 Deux erreurs grossières à éviter. Les règles du calcul des produits de
matrices diffèrent de celles des produits dans un corps par d’autres aspects.

i) Si AB = AC, on ne peut pas simplifier par A pour en déduire que B = C même si
A n’est pas nulle. C’est faux en général comme le montre l’exemple ci-dessous.

✓
0 1
0 0

◆✓
0 1
1 1

◆
=
✓

0 1
0 0

◆✓
0 0
1 1

◆
=
✓

1 1
0 0

◆
.

ii) Si AB = 0, on ne peut pas en déduire que soit A = 0 soit B = 0. C’est faux en
général.

Si on a un exemple de ii), on a aussi un exemple de i) puisque 0 = A⇥ 0. Il suffit
de prendre

A =
✓

0 0
0 1

◆
et B =

✓
1 0
0 0

◆
. Alors, AB =

✓
0 0
0 1

◆✓
1 0
0 0

◆
=
✓

0 0
0 0

◆

mais ni A ni B n’est nulle. ⇤
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Proposition 5 (Propriétés du produit des matrices) a) Associativité du produit : Soient
A 2Mn,p, B 2Mp,q et C 2Mq,r . Alors les produits AB, (AB)C, BC, A(BC) ont un sens
et l’on a l’égalité suivante dans Mn,r(K) :

(AB)C = A(BC).

b) Distributivité à droite du produit par rapport à la somme : Soient A 2Mn,p(K),
B 2Mn,p(K) et C 2Mp,q(K). Alors A+B et les produits (A+B)C, AC, BC ont un sens
et on a l’égalité dans Mn,q(K)

(A+B)C = AC +BC.

c) Distributivité à gauche du produit par rapport à la somme : Soient A 2Mn,p(K),
B 2Mn,p(K) et C 2Mp,q(K). Alors A+B et les produits (A+B)C, AC, BC ont un sens
et on a l’égalité dans Mn,q(K)

A(B+C) = AB+AC.

d) Comportement du produit des matrices par rapport au produit par un scalaire :
Soient , A 2Mn,p(K), B 2Mp,q deux matrices et l un scalaire. alors les produits AB,
(lA)B, A(lB) et l(AB) Alors les produits ont un sens et on a les égalités dans :

(lA)B = A(lB) = l(AB).

Démonstration. Posons A = (ai, j), B = (bi, j) et C = (ci, j).

a) Le terme d’indice (i, j) de la matrice AB est xi,k =
p

Â
l=1

ai,lbl,k. Le terme d’indice

(i, j) de la matrice (AB)C est donc

q

Â
k=1

xi,kck, j =
q

Â
k=1

 
p

Â
l=1

ai,lbl,k

!
ck, j.

Le terme d’indice (l, j) de la matrice BC est yl, j =
p

Â
k=1

bl,kck, j. Le terme d’indice (i, j)

de la matrice A(BC) est
p

Â
l=1

ai,l

 
q

Â
k=1

bl,kck, j

!
.

Comme la multiplication est distributive sur l’addition et associative dans K, les termes
généraux de (AB)C et A(BC) coincident.

Les démonstrations de b) et c) et d) se font comme celle de l’associativité. ⇤

Proposition 6 (Produit d’une matrice par une matrice unité) Notons Ir la matrice
unité d’ordre r. Si A 2Mn,p(K), on a les propriétés suivantes :

AIp = A et InA = A.

En particulier, si A est une matrice carrée d’ordre n, on a

AIn = InA = A.
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Démonstration. Soit A 2Mn,p(K) de terme général ai, j. La matrice unité d’ordre p est
telle que tous les éléments de la diagonale principale sont égaux à 1, les autres étant
tous nuls. On peut formaliser cela en introduisant le symbole de Kronecker.

Si r et s sont deux entiers, on appelle symbole de Kronecker et on note dr,s le réel
qui vaut 0 si r est différent de s, et 1 si r est égal à s. Donc

dr,s = 0 si r 6= s
dr,s = 1 si r = s

Alors on peut dire que le terme général de la matrice carrée d’ordre p, Ip, est dr,s
avec r et s entiers, compris entre 1 et p.

Alors la matrice produit AIp est une matrice appartenant à Mn,p(K) dont le terme

général ci,l est donné par la formule ci,l =
p

Â
j=1

ai, jd j,l . Dans cette somme i et l sont fixés

et j prend toutes les valeurs comprises entre 1 et p. Si j est différent de l, d j,l = 0, et si
j est égal à l, dl,l = 1 .

Donc dans la somme qui définit ci,l , tous les termes correspondant à des valeurs de
j différentes de l sont nuls et il reste donc ci,l = ai,ldl,l = ai,l1 = ai,l . Donc les matrices
AIp et A ont le même terme général et sont donc égales.

L’égalité InA = A se démontre de la même façon. ⇤

Proposition 7 (Produit d’une matrice par la matrice nulle) Soit A un élément de Mn,p(K),
et soit 0p,q (respectivement 0r,n) la matrice de Mp,q(K) (respectivement Mr,n(K)) dont
tous les éléments sont nuls. On a les propriétés A0p,q = 0n,q et 0r,nA = 0r,p.

La démonstration de cette proposition est laissée au lecteur.

Proposition 8 Si le produit AB est défini, alors le produit BT AT est aussi défini et l’on
a (AB)T = BT AT .

Démonstration. Soit A = (ai j) 2Mmn(K) et B = (b jk) 2Mnp(K), d’où AB 2Mmp(K).
On voit donc que BT 2Mpn(K) et AT 2Mnm(K). Par conséquent, BT AT est bien défini
et de la même taille que (AB)T .

Utilisons la formule générale ci-dessus.

(BT AT )ik =
n

Â
j=1

(BT )i j(AT ) jk =
n

Â
j=1

b jiak j =
n

Â
j=1

ak jb ji = (AB)ki = ((AB)T )ik

d’où le résultat. ⇤

Remarque 7 ATTENTION ! Le produit matriciel n’est pas commutatif. En effet, il
peut se faire que AB soit défini mais pas BA, ou que AB et BA soient tous deux définis
mais pas de la même taille. Mais même dans le cas où AB et BA sont définis et de la
même taille, on a en général AB 6= BA. Considérons l’exemple suivant.

✓
5 1
3 �2

◆✓
2 0
4 3

◆
=
✓

14 3
�2 �6

◆
mais

✓
2 0
4 3

◆✓
5 1
3 �2

◆
=
✓

10 2
29 �2

◆
.

C’est là la situation générale. L’ordre des facteurs dans un produit matriciel ne doit
donc jamais être modifié, sous peine de fausser le résultat (sauf si l’on sait que l’on
est dans un cas particulier où deux matrices commutent, c’est-à-dire sont telles que
AB = BA. Mais c’est rare...).

En fait, le produit matriciel est le premier exemple que l’on rencontre de produit
non commutatif. ⇤
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1.3 Matrices carrées, matrices carrées inversibles
Dans l’ensemble Mn(K) des matrices carrées d’ordre n, (c’est à dire celles qui ont

n lignes et n colonnes) à coefficients dans K, la multiplication des matrices est une
opération interne. De plus, si In désigne la matrice carrée unité d’ordre n , on a :

8A 2Mn(K), AIn = InA = A.

On peut aussi définir les puissances successives d’une matrice.

Définition 10 Pour tout A 2 Mn(K), on définit les puissances successives de A par
A0 = In et Ap+1 = AAp = ApA pour tout p 2 N.

Exemple 7 On cherche à calculer Ap avec A =

0

@
1 1 1
1 1 1
1 1 1

1

A. On calcule A2 et A3 et on

obtient

A2 =

0

@
3 3 3
3 3 3
3 3 3

1

A= 3A, A3 = 3A.A = 32A.

L’observation de ces premières puissances permet de penser que la formule est : Ap+1 =

3pA =

0

@
3p 3p 3p

3p 3p 3p

3p 3p 3p

1

A. Démontrons ce résultat par récurrence.

Il est vrai pour p = 0. On le suppose vrai pour un entier p et on va le démontrer par
récurrence pour p+1. On a, d’après la définition,

Ap+2 = Ap+1A =

0

@
3p 3p 3p

3p 3p 3p

3p 3p 3p

1

A

0

@
1 1 1
1 1 1
1 1 1

1

A=

0

@
3p+1 3p+1 3p+1

3p+1 3p+1 3p+1

3p+1 3p+1 3p+1

1

A .

Donc la propriété est démontrée.

Remarque 8 Ce n’est pas toujours simple de calculer la puissance d’une matrice car la
formule de récurrence n’est pas toujours aussi apparente que dans l’exemple qui vient
d’être traité. Il existe des méthodes plus systématiques, mais qui sortent du cadre de ce
cours. Nous verrons cependant des méthodes qui marchent dans des cas favorables.

Remarque 9 Comme la multiplication n’est pas commutative, les identités binomiales
usuelles sont fausses. En particulier, (A+B)2 6= A2 +2AB+B2, mais bien (A+B)2 =
A2 +AB+BA+B2. ⇤

On a cependant :

Proposition 9 (Calcul de (A+B)n lorsque AB = BA) Soient A et B deux éléments de
Mn(K) qui commutent c’est à dire tels que AB = BA. Alors, pour tout entier m, supérieur
ou égal à 1, on a la formule

(A+B)m =
m

Â
k=0

Ck
mAm�kBk

où Ck
m désigne le coefficient du binôme.
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La démonstration se fait par récurrence en utilisant les propriétés bien connues du
binôme, à savoir Ck�1

m�1 +Ck
m�1 = Ck

m et Ck
m = Cm�k

m .

Exemple 8 Soit M =

0

BB@

1 1 1 1
0 1 2 1
0 0 1 3
0 0 0 1

1

CCA. On pose N = M� I =

0

BB@

0 1 1 1
0 0 2 1
0 0 0 3
0 0 0 0

1

CCA. La matrice

N est nilpotente (c’est à dire 9k 2N | Nk = 0) comme le montrent les calculs suivants :

N2 =

0

BB@

0 0 2 4
0 0 0 6
0 0 0 0
0 0 0 0

1

CCA ,N3 =

0

BB@

0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA et N4 = 0

Comme on a M = I +N et les matrices N et I commutent, on peut appliquer la formule
du binôme de Newton. Si k est supérieur ou égale à 3, en utilisant le fait que Nk = 0 si
k � 4, on obtient

Mk =
k

Â
l=0

Cl
kNlIk�l

n

=
3

Â
l=0

Cl
kNl

= I4 + kN + k(k�1)
2! N2 + k(k�1)(k�2)

3! N3

D’où

Mk =

0

BB@

1 k k2 k(k2� k +1)
0 1 2k k(3k�2)
0 0 1 3k
0 0 0 1

1

CCA .

On vérifie immédiatement que cette formule est aussi vraie pour k = 0,1 ou 2.

Définition 11 On dit que A 2Mn(K) est inversible si et seulement si il existe une ma-
trice A0 2Mn(K) telle que AA0 = A0A = In.

Notation :
• On note A0 = A�1, et, plus généralement, A�p = (A�1)p pour tout p 2N quand A

est inversible.
• L’ensemble des matrices inversibles de Mn(K) est noté GLn(K).

Exemple 9 Soit In la matrice carrée unité d’ordre n. C’est une matrice inversible (immédiat
à partir de l’égalité InIn = In).

Exemple 10 La matrice nulle , d’ordre n avec n quelconque, n’est pas inversible. En
effet on sait que, pour tout matrice M de Mn(K), on a M0n = 0nM = 0n. Comme la
matrice nulle est différente de la matrice unité, on peut conclure.

Exemple 11 Soit A =
✓

1 1
0 0

◆
. Etudier si A est inversible, c’est étudier l’existence

d’une matrice B =
✓

a c
b d

◆
à coefficients dans K, telle que AB = BA = I2. Or AB = I2

équivaut à l’égalité : ✓
1 1
0 0

◆✓
a c
b d

◆
=
✓

1 0
0 1

◆
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qui équivaut à :

✓
a+b c+d

0 0

◆
=
✓

1 0
0 1

◆
.

Or les matrices
✓

a+b c+d
0 0

◆
et
✓

1 0
0 1

◆
ne sont pas égales, puisque les coeffi-

cients de la deuxième colonne, deuxième ligne sont différents.
Donc il n’existe pas de matrice B telle que AB = BA = I2 et A n’est pas inversible.

Exemple 12 Soit A =
✓

1 1
0 1

◆
. Etudier si A est inversible, c’est étudier l’existence

d’une matrice B =
✓

a c
b d

◆
à coefficients dans K, telle que AB = BA = I2. Or AB = I2

équivaut à l’égalité : ✓
1 1
0 1

◆✓
a c
b d

◆
=
✓

1 0
0 1

◆

Cette égalité équivaut au système : .
8
>><

>>:

a+b = 1
c+d = 0
b = 0
d = 1

Sa résolution est immédiate : a = 1, b = 0, c =�1, d = 1

Il n’y a donc qu’une seule matrice possible B =
✓

1 �1
0 1

◆
. Pour prouver qu’elle

convient, il faut montrer l’égalité BA = I2 dont la vérification est laissée au lecteur.

On a donc trouvé une matrice carrée d’ordre 2, B =
✓

1 �1
0 1

◆
, telle que AB = BA =

I2. La matrice A est donc inversible.

On a remarqué, en cours de calcul, qu’il n’y avait qu’une seule solution possible.
En fait c’est une propriété générale.

Remarque 10 La méthode de Gauss fournira une méthode pour calculer l’inverse
d’une matrice.

Proposition 10 Si A est inversible, alors son inverse est unique.

Démonstration. La méthode classique pour mener à bien une telle démonstration est
de supposer l’existence de deux matrices B1 et B2 satisfaisant aux conditions imposées
et de démontrer que B1 = B2.

Soit donc B1 telle que AB1 = B1A = In et B2 telle que AB2 = B2A = In. Calculons
B2(AB1). D’une part, comme AB1 = In, on a B2(AB1) = B2. D’autre part, comme le
produit des matrices est associatif, on a B2(AB1) = (B2A)B1 = InB1 = B1. Donc B1 =
B2. ⇤

Pour ceux qui connaissent la théorie des groupes, les points a) et b) de la proposition
suivante montre que l’ensemble non vide GL(n,K) est un groupe pour la multiplication.
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Proposition 11 Soient A et B deux matrices de GLn(K).
a) A�1 est inversible et on a (A�1)�1 = A.
b) AB est inversible et on a (AB)�1 = B�1A�1.
c) AT est inversible et on a et (AT )�1 = (A�1)T .

Démonstration. a) découle de l’identité AA�1 = A�1A = In.
b) En utilisant l’associativité de la multiplication des matrices, on montre

(AB)(B�1A�1) = (B�1A�1)(AB) = In.

La formule pour l’inverse du produit a lieu dans n’importe quel groupe.
c) Pour la transposée, on remarque que comme In = AA�1 et que IT

n = In, on a

In = (AA�1)T = (A�1)T AT .

De même, le fait que In = A�1A implique que In = AT (A�1)T , donc AT est inversible
et on a pour inverse la transposée de A�1. ⇤

Si M est une matrice quelconque de Mn(K), nous avons vu que la relation MA = MB
où A, et B sont des éléments de Mn(K) n’entraı̂ne pas forcément l’égalité A = B. En
revanche, si M est une matrice inversible, on a la proposition suivante :

Proposition 12 (Simplification par une matrice inversible) Soient A et B deux ma-
trices de Mn(K) et M une matrice inversible de Mn(K). Alors l’égalité MA = MB im-
plique l’égalité A = B. On dit que M est un élément régulier de Mn(K).

Démonstration. Ce résultat est immédiat : si on multiplie à gauche l’égalité MA = MB
par M�1, on obtient l’égalité : M�1(MA) = M�1(MB). Soit en utilisant l’associativité
du produit des matrices (M�1M)A = (M�1M)B, ce qui donne d’après la définition de
l’inverse InA = InB d’où A = B.

1.4 Algorithme de Gauss sur les matrices
L’algorithme de Gauss (ou encore du pivot de Gauss) est fondé sur les notions de

matrices échelonnées réduites et d’opérations élémentaires sur les lignes.

Définition 12 Une matrice A est dite échelonnée si et seulement si elle a les deux
propriétés suivantes

1) Si une ligne est entièrement nulle, toutes les lignes situées en dessous sont
également entièrement nulles.

2) Dans chaque ligne non entièrement nulle (à partir de la deuxième), le premier
coefficient non nul en comptant à partir de la gauche est situé strictement à droite du
premier coefficient non nul de la ligne précédente.

On dit qu’une matrice est échelonnée réduite si et seulement elle a en plus les deux
propriétés suivantes

3) Le premier coefficient non nul d’une ligne en comptant à partir de la gauche
vaut 1.

4) Et c’est le seul élément non nul de sa colonne.

Remarque 11 Grâce à 1), on voit que 2) a un sens : si une ligne contient un élément
non nul, alors la ligne précédente contient aussi un élément non nul, sinon cela contre-
dirait 1). Par ailleurs, toujours à cause de 2) et de 1), on voit que tous les coefficients
situés dans la même colonne qu’un tel premier élément non nul d’une ligne et en des-
sous de cet élément, sont nuls. ⇤
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Définition 13 Soit U une matrice échelonnée réduite. Les positions de pivot de U sont
les emplacements (au sens du couple (numéro de ligne, numéro de colonne)) des coef-
ficients valant 1 du point 3) de la définition 12.

Exemple 13

A =

0

BBBB@

2 �3 2 1
0 1 �4 8
0 0 0 5/2
0 0 0 0
0 0 0 0

1

CCCCA

est échelonnée mais n’est pas échelonnée réduite. La matrice

B =

0

@
1 0 2 0 25
0 1 �2 0 16
0 0 0 1 1

1

A

est échelonnée réduite et ses positions de pivot sont (1,1), (2,2) et (3,4). On reconnaı̂t
(à l’œil) les matrices échelonnées à la disposition caractéristique des zéros en escalier
descendant du haut à gauche vers le bas à droite. ⇤

Définition 14 On appelle opérations élémentaires sur les lignes les trois opérations
suivantes :

i) Échanger deux lignes (échange).
ii) Multiplier une ligne par une constante non nulle (homothétie).
iii) Remplacer une ligne par elle-même plus un multiple d’une autre ligne (substi-

tution).

Les opérations ii) et iii) sont à entendre colonne par colonne.

Exemple 14 Considérons la matrice

A =

0

@
1 2 3 4
0 2 4 6
�1 0 1 0

1

A .

L’échange des lignes 2 et 3 de A produit la nouvelle matrice

A0 =

0

@
1 2 3 4
�1 0 1 0
0 2 4 6

1

A .

Multiplier la ligne 1 de A par 5 produit la nouvelle matrice

A00 =

0

@
5 10 15 20
0 2 4 6
�1 0 1 0

1

A .

Remplacer la ligne 2 de A par elle-même plus (�1)⇥ la ligne 1 produit la nouvelle
matrice

A000 =

0

@
1 2 3 4
�1 0 1 2
�1 0 1 0

1

A .
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Plus généralement, remplacer la ligne i par elle-même plus l⇥ la ligne k revient à
remplacer dans la colonne j le coefficient ai j par ai j +lak j pour tous les j de 1 à n.

Il faut bien remarquer qu’en effectuant une opération élémentaire, on ne mélange
jamais les colonnes. Ce que contient une colonne après l’opération ne dépend que de
ce qu’elle contenait avant l’opération. ⇤

Les matrices obtenues après une opération élémentaire ne sont pas égales à la ma-
trice de départ. On introduit donc une nouvelle notion.

Notation Soient A et B deux matrices de même taille m⇥n. Si B se déduit de A par
une suite finie d’opérations élémentaires, on notera A⇠ B.

Proposition 13 1. Si A est un élément de Mm,n, on a A ⇠ A (on dit que la relation ⇠
est reflexive).

2. Soient A, B et C trois éléments de Mm,n. Si A ⇠ B et B ⇠C alors A ⇠C (on dit
que la relation ⇠ est transitive).

3. Si A⇠ B alors B⇠ A (on dit que la relation ⇠ est symétrique ).

Remarque 12 Une relation binaire possédant les trois propriétés, réflexive, symétrique
et transitive est appelée relation d’équivalence. Donc la relation binaire ⇠ définie sur
Mm,n(K) est une relation d’équivalence sur Mm,n(K).

Démonstration. Cette relation est réflexive. En effet, on a A ⇠ A puisque A se déduit
de A par une suite de zéro opérations élémentaires.

Elle est transitive. En effet, si A⇠ B et B⇠C, alors on déduit C de A en effectuant
d’abord la suite d’opérations élémentaires qui passe de A à B, puis celle qui passe de B
à C.

Elle est enfin symétrique. Ce dernier point est un peu plus délicat. Il repose sur le
fait que les trois opérations élémentaires sont inversibles, c’est-à-dire que l’on peut
revenir en arrière par une autre opération élémentaire. Ce fait est évident pour les
opérations d’échange et d’homothétie. En effet, il suffit de rééchanger les mêmes lignes
dans le cas de l’échange, et de multiplier la ligne par l’inverse de la constante non nulle
dans le cas de l’homothétie pour se retrouver dans la configuration de départ. Dans le
cas de la substitution, supposons que l’on ait remplacé la ligne i par elle-même plus l⇥
la ligne k, c’est-à-dire remplacé le coefficient ai j par a0i j = ai j +lak j, j = 1, . . . ,n. Pour
revenir en arrière, il suffit d’effectuer la substitution remplaçant la ligne i par elle-même
moins l⇥ la ligne k. En effet, on remplace ainsi a0i j par a0i j�lak j = ai j, j = 1, . . . ,n.
Soient maintenant deux matrices telles que A ⇠ B. On passe de B à A en effectuant
les opérations élémentaires inverses de celles qui permettent de passer de A à B dans
l’ordre inverse, c’est-à-dire que B⇠ A. ⇤

Théorème 1 Étant donnée une matrice A, il existe une unique matrice échelonnée
réduite U obtenue à partir de A par des opérations élémentaires sur les lignes.

Démonstration. Ce théorème est en deux parties, une partie d’existence (il existe U
échelonnée réduite obtenue à partir de A par des opérations élémentaires sur les lignes)
et une partie unicité (c’est la seule).

Commençons par l’existence, laquelle se démontre grâce à l’algorithme de Gauss
proprement dit. L’idée générale de l’algorithme de Gauss consiste à utiliser des substi-
tutions de lignes pour placer des zéros là où il faut de façon à créer d’abord une forme
échelonnée, puis une forme échelonnée réduite. Soit A une matrice m⇥n quelconque.
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Passage à une forme échelonnée.
Étape 1 : Choix du pivot. On commence par inspecter la première colonne. Soit

elle ne contient que des zéros, auquel cas on passe directement à l’étape 3, soit elle
contient au moins un terme non nul. On choisit alors un tel terme, que l’on appelle le
pivot. Si c’est le terme a11 on passe directement à l’étape 2, si c’est un terme ai1 avec
i 6= 1, on échange les lignes 1 et i et on passe à l’étape 2.

Au terme de l’étape 1, on a obtenu une matrice de la forme
0

BBBBBBBB@

0 a12 · · · a1 j · · · a1n
0 a22 · · · a2 j · · · a2n
...

...
...

...
0 ai2 · · · ai j · · · ain
...

...
...

...
0 am2 · · · am j · · · amn

1

CCCCCCCCA

= A

dans le premier cas, ou bien
0

BBBBBBBB@

a011 a012 · · · a01 j · · · a01n
a021 a022 · · · a02 j · · · a02n

...
...

...
...

a0i1 a0i2 · · · a0i j · · · a0in
...

...
...

...
a0m1 a0m2 · · · a0m j · · · a0mn

1

CCCCCCCCA

⇠ A

avec a011 6= 0 dans le deuxième cas.
Étape 2 : Élimination. On ne touche plus à la ligne 1, et on se sert du pivot pour

éliminer tous les termes a0i1, i � 2. Pour cela, il suffit de remplacer la ligne i par elle-
même moins a0i1

a011
⇥ la ligne 1, ceci pour i = 2, . . . ,m.

Au terme de l’étape 2, on a obtenu une matrice de la forme
0

BBBBBBBB@

a011 a012 · · · a01 j · · · a01n
0 a0022 · · · a002 j · · · a002n
...

...
...

...
0 a00i2 · · · a00i j · · · a00in
...

...
...

...
0 a00m2 · · · a00m j · · · a00mn

1

CCCCCCCCA

⇠ A

Étape 3 : Boucle. Au début de l’étape 3, on a obtenu dans tous les cas de figure une
matrice de la forme 0

BBBBBBBBB@

a1
11 a1

12 · · · a1
1 j · · · a1

1n
0 a1

22 · · · a1
2 j · · · a1

2n
...

...
...

...
0 a1

i2 · · · a1
i j · · · a1

in
...

...
...

...
0 a1

m2 · · · a1
m j · · · a1

mn

1

CCCCCCCCCA

⇠ A
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dont la première colonne est bien celle d’une matrice échelonnée. On va donc conserver
cette première colonne. Si a1

11 6= 0, on conserve aussi la première ligne, et l’on va
boucler sur l’étape 1 en l’appliquant à la sous-matrice (m�1)⇥ (n�1) qui reste

0

BBBBBB@

a1
22 · · · a1

2 j · · · a1
2n

...
...

...
a1

i2 · · · a1
i j · · · a1

in
...

...
...

a1
m2 · · · a1

m j · · · a1
mn

1

CCCCCCA
.

Si a1
11 = 0, on boucle sur l’étape 1 en l’appliquant à la sous-matrice m⇥ (n�1)

0

BBBBBBBBB@

a1
12 · · · a1

1 j · · · a1
1n

a1
22 · · · a1

2 j · · · a1
2n

...
...

...
a1

i2 · · · a1
i j · · · a1

in
...

...
...

a1
m2 · · · a1

m j · · · a1
mn

1

CCCCCCCCCA

.

Au terme de cette deuxième itération de la boucle, on aura obtenu une matrice de
la forme 0

BBBBBBBBB@

a1
11 a1

12 · · · a1
1 j · · · a1

1n
0 a2

22 · · · a2
2 j · · · a2

2n
...

...
...

...
0 0 · · · a2

i j · · · a2
in

...
...

...
...

0 0 · · · a2
m j · · · a2

mn

1

CCCCCCCCCA

⇠ A

et ainsi de suite.
Comme chaque itération de la boucle travaille sur une matrice qui a une colonne de

moins que la précédente, il est clair qu’au bout d’au plus n�1 itérations de la boucle,
on aura ainsi obtenue une matrice échelonnée.
Passage à une forme échelonnée réduite.

Étape 1 : Homothéties. On repère le premier élément non nul de chaque ligne non
nulle, et on multiplie cette ligne par l’inverse de cet élément. Ceci crée une matrice
échelonnée avec des 1 en position de pivot.

Étape 2 : Élimination. On élimine les termes situés au dessus des positions de
pivot comme précédemment, en procédant à partir du bas à droite de la matrice. Ceci
ne modifie pas la structure échelonnée de la matrice en raison de la disposition des
zéros dont on part. Cette étape requiert en général beaucoup moins de calculs que
l’élimination de la première partie de l’algorithme, car les pivots valent 1 et il y a peu
de termes à modifier.

Voir plus loin un exemple de l’algorithme de Gauss en action.
Nous admettrons la partie unicité du théorème.

Remarque 13 Le théorème précédent nous dit que l’on ne peut obtenir qu’une seule
matrice échelonnée réduite à partir de A par des opérations élémentaires sur les lignes.
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En revanche, on peut obtenir une infinité de matrices échelonnées à partir de A par des
opérations élémentaires sur les lignes.

Exemple 15 Soit

A =

0

@
1 2 3 4
0 2 4 6
�1 0 1 0

1

A .

Passage à une forme échelonnée.
Première itération de la boucle, étape 1. Le choix du pivot est tout fait, on garde

a11 = 1.
Première itération de la boucle, étape 2. On remplace la ligne 2 par elle-même

moins 0⇥ la ligne 1 (c’est-à-dire qu’on ne fait rien sur cette ligne qui contient déjà un
zéro en bonne position) et la ligne 3 par elle-même moins (�1)⇥ la ligne 1. On obtient

A⇠

0

@
1 2 3 4
0 2 4 6
0 2 4 4

1

A .

Deuxième itération de la boucle, étape 1. Le choix du pivot est tout fait, on garde
a1

22 = 2.
Deuxième itération de la boucle, étape 2. On remplace la ligne 3 par elle-même

moins (2/2)⇥ la ligne 1. On obtient

A⇠

0

@
1 2 3 4
0 2 4 6
0 0 0 �2

1

A .

Cette matrice est échelonnée (m�1 = 3�1 = 2 itérations maximum).
Passage à une forme échelonnée réduite.
Étape 1, homothéties. On multiplie la ligne 1 par 1, la ligne 2 par 1/2 et la ligne 3

par �1/2 et l’on obtient

A⇠

0

@
1 2 3 4
0 1 2 3
0 0 0 1

1

A .

Étape 2, première itération. On ne touche plus à la ligne 3 et on remplace la ligne
2 par elle-même moins 3⇥ la ligne 3 et la ligne 1 par elle-même moins 4⇥ la ligne 3.
On obtient

A⇠

0

@
1 2 3 0
0 1 2 0
0 0 0 1

1

A .

Étape 2, deuxième itération. On ne touche plus à la ligne 2 et on remplace la ligne
1 par elle-même moins 2⇥ la ligne 2. On obtient

A⇠

0

@
1 0 �1 0
0 1 2 0
0 0 0 1

1

A

qui est bien échelonnée réduite.

Le théorème 1 permet d’étendre un certain nombre de définitions aux matrices
quelconques.
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Définition 15 Soit A une matrice quelconque et U l’unique matrice échelonnée réduite
obtenue à partir de A par des opérations élémentaires sur les lignes. Les positions,
colonnes et lignes de pivot de A sont les positions, colonnes et lignes de pivot de U.

Attention ! Les positions de pivot ne sont en général pas apparentes sur la matrice
A. Pour les déterminer, Il faut effectivement calculer la matrice U , ou au moins une
matrice échelonnée obtenue à partir de A par des opérations élémentaires sur les lignes.
Ainsi, dans l’exemple 15, on voit trois positions de pivot : (1,1), (2,2) et (3,4) sur la
matrice échelonnée réduite que l’on ne pouvait pas deviner sur la matrice A elle-même.

1.5 Interprétation matricielle de la méthode de Gauss
Nous allons voir que l’algorithme de Gauss de réduction d’une matrice m⇥n à la

forme échelonnée réduite s’interprète en termes de produits matriciels.

Définition 16 On appelle matrice élémentaire toute matrice qui résulte de l’applica-
tion d’une opération élémentaire sur les lignes à la matrice identité Im.

Exemple 16 Dans le cas 3⇥3,

I3 =

0

@
1 0 0
0 1 0
0 0 1

1

A .

L’échange des lignes 1 et 3 donne la matrice élémentaire

E =

0

@
0 0 1
0 1 0
1 0 0

1

A .

Le remplacement de la ligne 2 par elle-même plus 2 fois la ligne 1 donne la matrice
élémentaire

E =

0

@
1 0 0
2 1 0
0 0 1

1

A .

La multiplication de la ligne 3 par 5 donne la matrice élémentaire

E =

0

@
1 0 0
0 1 0
0 0 5

1

A .

Et ainsi de suite. ⇤

L’interprétation matricielle de la méthode de Gauss est fondée sur la remarque sui-
vante.

Proposition 14 Soit A une matrice m⇥n et E une matrice élémentaire. La matrice EA
est celle qui résulte de l’application de la même opération élémentaire à la matrice A.
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Démonstration. Écrivons les matrices A et E comme une ligne de n matrices colonnes
soit A =

�
a1 a2 · · · an

�
et E =

�
e1 e2 · · · en

�
. On sait que EA =

�
Ea1 Ea2 · · · Ean

�
.

Il suffit par conséquent de vérifier quel est l’effet de la multiplication par E sur une
matrice-colonne x. Soit ei la matrice colonne ayant un 1 sur la ième ligne et des 0
ailleurs. On a Im = (e1, . . . ,em), donc par définition d’une matrice élémentaire, Eei est
le vecteur obtenu par l’opération élémentaire considérée appliquée au vecteur ei. Soit

x =

0

BBB@

x1
x2
...

xm

1

CCCA
. On a x =

m

Â
i=1

xiei. On a

Ex = E

 
m

Â
i=1

xiei

!
=

m

Â
i=1

xiEei =
m

Â
i=1

xiei.

Ex n’est autre que la matrice colonne obtenue par l’opération élémentaire considérée
appliquée à la matrice colonne x. ⇤

Proposition 15 Une matrice élémentaire est inversible.

Démonstration. Nous avons trois cas à traiter.
Premier cas : La matrice élémentaire est obtenue à partir de la matrice Im par une

homothétie. Soit l un réel non nul. Notons E(Li⇥l) la matrice élémentaire obtenue à
partir de Im en multipliant la ième ligne par l. En appliquant la proposition précédente
à la matrice A = E(Li⇥l), on obtient la relation :

E(Li⇥
1
l

)E(Li⇥l) = Im.

La relation ci dessus appliquée à 1
l nous donne

E(Li⇥l)E(Li⇥
1
l

) = Im.

On en déduit que E(Li⇥l) est inversible d’inverse E(Li⇥ 1
l ).

Deuxième cas : La matrice élémentaire est obtenue à partir de la matrice Im par un
échange.

Notons E(Li ! L j) la matrice élémentaire obtenue à partir de Im en échangeant
les ième et jème lignes. En appliquant la proposition précédente à la matrice A =
E(Li ! L j), on obtient la relation :

E(Li ! L j)E(L j ! Li) = Im.

On en déduit que E(Li ! L j) est inversible d’inverse elle-même.
Troisième cas : La matrice élémentaire est obtenue à partir de la matrice Im par une

substitution. Soit l un réel. Notons E(Li � Li +lL j) la matrice élémentaire obtenue
à partir de Im en ajoutant à la ième ligne la jième ligne multipliée par l. En appliquant
la proposition précédente à la matrice A = E(Li � Li�lL j), on obtient la relation :

E(Li � Li +lL j)E(Li � Li�lL j) = Im.

La relation ci dessus appliquée à �l nous donne

E(Li � Li�lL j)E(Li � Li +lL j) = Im.

On en déduit que E(Li � Li +lL j) est inversible d’inverse E(Li � Li�lL j).⇤
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Théorème 2 Soit A 2 Mmn(K) et U 2 Mmn(K) l’unique matrice échelonnée réduite
obtenue à partir de A par des opérations élémentaires sur les lignes. Alors il existe une
matrice M 2 GLm(K) telle que

U = MA() A = M�1U.

Démonstration. D’après la proposition précédente, chaque étape de l’algorithme de
Gauss s’interprète matriciellement comme la multiplication à gauche de la matrice ob-
tenue à l’étape précédente par une matrice élémentaire. Ainsi on a

1ère étape : A1 = E1A.
2ème étape : A2 = E2A1 = E2(E1A) = (E2E1)A.
Par récurrence, à la fin de l’algorithme, on a
pème étape : U = Ap = EpAp�1 = (EpEp�1 · · ·E2E1)A.
On pose donc M = EpEp�1 · · ·E2E1. Comme chacune des opérations élémentaires

est inversible, chaque matrice élémentaire Ek appartient à GLm(K), d’où M 2GLm(K).
⇤

Théorème 3 Soit A 2Mn(K) et U l’unique matrice échelonnée réduite obtenue à par-
tir de A par des opérations élémentaires sur les lignes. La matrice A est inversible si et
seulement si U est égale à In.

Démonstration. On conserve les notations du théorème précédent. Si U = In alors A =
M�1 est inversible puique M 2 GLn(K). Si U 6= In, la dernière ligne de U est nulle.
Donc, pour toute matrice carrée V , la dernière ligne de UV est nulle. On n’aura donc
jamais UV = In. Donc U n’est pas inversible. Alors, A n’est pas inversible non plus car,
si A était inversible, on aurait U = MA et U serait inversible comme produit de matrices
inversibles. ⇤

Remarque 14 A est une matrice carrée inversible si et seulement si U = In. On a alors
M = A�1. On retrouve donc le calcul de A�1 par la méthode de Gauss en utilisant
Ã =

�
A Im

�
. En effet, Ũ = MÃ =

�
MA MIn

�
=
�
In A�1�. ⇤

Exemple 17 Dans le calcul qui suit, on adopte les notations suivantes pour les opérations
élémentaires :

• un échange entre la ième ligne et la jième ligne de la matrice sera noté Li ! L j
• si on multiplie la ième ligne par le facteur non nul l, on écrit Li⇥l (homothétie).
• si on ajoute l fois la ième ligne à la jième ligne, on notera L j � L j +lLi (sub-

stitution).

Considérons la matrice A =

0

@
0 1 1
1 0 1
1 1 0

1

A. Montrons qu’elle est inversible et calcu-

lons son inverse.
0

@
0 1 1
1 0 1
1 1 0

������

1 0 0
0 1 0
0 0 1

1

A⇠

0

@
1 0 1
0 1 1
1 1 0

������

0 1 0
1 0 0
0 0 1

1

A(L1 ! L2)

0

@
1 0 1
0 1 1
1 1 0

������

0 1 0
1 0 0
0 0 1

1

A⇠

0

@
1 0 1
0 1 1
0 1 �1

������

0 1 0
1 0 0
0 �1 1

1

A(L3 � L3�L1)
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0

@
1 0 1
0 1 1
0 1 �1

������

0 1 0
1 0 0
0 �1 1

1

A⇠

0

@
1 0 1
0 1 1
0 0 �2

������

0 1 0
1 0 0
�1 �1 1

1

A(L3 � L3�L2)

0

@
1 0 1
0 1 1
0 1 �2

������

0 1 0
1 0 0
�1 �1 1

1

A⇠

0

@
1 0 1
0 1 1
0 0 1

������

0 1 0
1 0 0
1
2

1
2
�1
2

1

A(L3⇥ 1
2 )

0

@
1 0 1
0 1 1
0 0 1

������

0 1 0
1 0 0
1
2

1
2
�1
2

1

A⇠

0

@
1 0 0
0 1 0
0 0 1

������

�1
2

1
2

1
2

1
2

�1
2

1
2

1
2

1
2

�1
2

1

A(L1 � L1�L3 et L2 � L2�L3)

Donc A est inversible et

A�1 =

0

@
�1
2

1
2

1
2

1
2

�1
2

1
2

1
2

1
2

�1
2

1

A .

1.6 Matrices semblables
Les matrices considérées dans ce paragraphe sont des matrices carrées, éléments

de Mn(K).

1.6.1 Définition et propriétés
Définition 17 Soient A et B deux matrices de Mn(K). On dit que A est semblable à
B si et seulement si il existe une matrice inversible P appartenant à Mn(K) telle que
A = PBP�1.

Remarque 15 On en déduit immédiatement que si A est une matrice quelconque de
Mn(K) et P une matrice inversible de Mn(K), A est semblable à P�1AP.

Proposition 16 La relation binaire ” être semblable à ...”, définie sur Mn(K), est ap-
pelée relation de similitude. Elle possède les propriétés suivantes :

1.Si A est une matrice de Mn(K), A est semblable à elle même (on dit que la relation
est réflexive).

2. Soient A et B deux matrices de Mn(K). Si A est semblable à B, alors B est sem-
blable à A (on dit que la relation est symétrique).

3. Soient A,B et C trois matrices de Mn(K). Si A est semblable à B, et B est sem-
blable à C, alors A est semblable à C (on dit que la relation est transitive).

Autrement dit, la relation binaire définie sur Mn(K) ” A est semblable à B ” est une
relation d’équivalence sur Mn(K).

Vocabulaire :
Compte tenu de ces propriétés, on peut dire indifféremment que la matrice A est

semblable à la matrice B ou que les matrices A et B sont semblables.

Démonstration. Les démonstrations sont basées sur les propriétés des matrices inver-
sibles.

1. Comme la matrice unité In est inversible, d’inverse I�1
n = In, on peut écrire

InAIn = A, ce qui prouve que A est semblable à elle-même (P = In).
2. Soient A et B deux matrices de Mn(K). Si A est semblable à B, il existe une ma-

trice inversible P de Mn(K) telle que A = PBP�1. Si on multiplie les deux membres de
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cette égalité, à gauche par P�1 et à droite par P, on obtient l’égalité B = P�1AP. Comme
P�1 est inversible d’inverse P, on a B = P�1A(P�1)�1. Cela permet de conclure.

3. Soient A,B et C trois matrices de Mn(K). Si A est semblable à B, et B est sem-
blable à C, il existe deux matrices inversibles P et Q de Mn(K) telles que A = PBP�1 et
B = QCQ�1. Alors on a A = PQCQ�1P�1. Or on a vu, dans les propriétés des matrices
inversibles, que si P et Q sont des matrices inversibles, la matrice PQ l’est aussi et
(PQ)�1 = Q�1P�1. L’égalité précédente peut donc s’écrire A = (PQ)C(PQ)�1 ; cela
prouve que A et C sont semblables.

1.6.2 Application au calcul des puissances d’une matrice

La notion de matrices semblables a aussi une utilisation intéressante pour le calcul
des puissances de matrices en partant du constat que plus une matrice est simple (c’est-
à-dire avec beaucoup de zéros) plus le calcul est facile.

Pour s’en convaincre on peut considérer l’exemple des matrices diagonales et établir
le résultat suivant

Proposition 17 (Puissances d’une matrice diagonale) Soit

D =

0

BBBBB@

a1 0 . . . . . . 0
0 a2 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 an�1 0
0 . . . . . . 0 an

1

CCCCCA

une matrice diagonale d’ordre n. Alors, pour tout entier positif p, on a

Dp =

0

BBBBB@

ap
1 0 . . . . . . 0

0 ap
2 0 . . . 0

...
. . . . . . . . .

...
0 . . . 0 ap

n�1 0
0 . . . . . . 0 ap

n

1

CCCCCA
.

On démontre cette formule en faisant une démonstration par récurrence sur p.
Comme annoncé, on va donner une formule liant les puissances de deux matrices

semblables.

Théorème 4 (Relation entre les puissances de deux matrices semblables) Soient A
et B deux matrices semblables, c’est-à-dire telles qu’il existe une matrice inversible P
telle que A = P�1BP. Alors pour tout entier positif p, on a Ap = P�1BpP, et donc Ap

et Bp sont semblables.

Démonstration. On démontre encore cette formule par récurrence sur p.
Si p = 1, la formule est triviale (c’est la formule traduisant le fait que A et B sont

semblables).
Supposons la propriété vraie pour p = k�1 c’est-à-dire Ak�1 = PBk�1P�1. Alors

on a

Ak = Ak�1A = (PBk�1P�1)(PBP�1) = PBk�1(P�1P)BP�1 = PBkP�1
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et la propriété est vraie pour p = k.

Remarque 16 On a vu dans le paragraphe consacré aux matrices carrées que l’on avait
un procédé simple pour calculer les puissances d’une matrice de la forme lI +N où N
est une matrice nilpotente de Mn(K).

Par conséquent on aura une méthode systématique pour calculer les puissances
d’une matrice semblable à une matrice de la forme lI +N où N est une matrice nilpo-
tente de Mn(K). Ce résultat est très utile.

Dans le dernier chapitre de ce cours, nous apprendrons à caractériser les matrices
semblables à une matrice diagonale et nous donnerons aussi un exemple de calcul des
puissances d’une telle matrice.
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Chapitre 2

Systèmes linéaires

Les systèmes linéaires interviennent dans de nombreux contextes d’applications de
l’algèbre linéaire (sciences de l’ingénieur, météorologie, économie, mais aussi codes de
transmission d’information et cryptographie). Pour ce qui concerne les mathématiques,
ils forment la base calculatoire de l’algèbre linéaire. Ils permettent également de traiter
une bonne partie de la théorie de l’algèbre linéaire en dimension finie.

2.1 Définition

Soit n 2 N⇤ un entier naturel supérieur ou égal à 1. Une équation linéaire à n
inconnues x1,x2, . . . ,xn est une équation de la forme

a1x1 +a2x2 + · · ·+anxn = b,

où a1,a2, . . . ,an et b sont des éléments de K donnés.
Soit m 2 N⇤ un autre entier naturel supérieur ou égal à 1.

Définition 18 Un système de m équations linéaires à n inconnues, ou système linéaire,
est une liste de m équations linéaires.

On écrit usuellement de tels systèmes en m lignes placées les unes sous les autres.

Exemple 18 Voici un système de 2 équations à 3 inconnues à coefficients dans R.

⇢
2x1 �x2 + 3

2 x3 = 8,
x1 �4x3 = �7.

On aurait pu l’écrire tout aussi bien

⇢
2x1 �x2 + 3

2 x3 = 8,
x1 +0⇥ x2 �4x3 = �7.

⇤

31
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La forme générale d’un système linéaire de m équations à n inconnues, ou encore
système m⇥n, est la suivante

8
>>>>>>>><

>>>>>>>>:

a11x1 +a12x2 +a13x3 + · · · +a1nxn = b1 ( équation 1)
a21x1 +a22x2 +a23x3 + · · · +a2nxn = b2 ( équation 2)

...
...

...
... =

...
ai1x1 +ai2x2 +ai3x3 + · · · +ainxn = bi ( équation i)

...
...

...
... =

...
am1x1 +am2x2 +am3x3 + · · · +amnxn = bm ( équation m)

Les nombres ai j, i = 1, . . . ,m, j = 1, . . . ,n, sont les coefficients du système. Ce sont
des données. Les nombres bi, i = 1, . . . ,m, constituent le second membre du système et
sont également des données.

Il convient de bien observer comment on a rangé le système en lignes (une ligne
par équation) numérotées de 1 à m par l’indice i, et en colonnes : les termes corres-
pondant à une même inconnue x j sont alignés verticalement les uns sous les autres.
L’indice j varie de 1 à n. Il y a donc n colonnes à gauche des signes d’égalité, plus
une colonne supplémentaire à droite pour le second membre. La notation avec double
indice ai j correspond à ce rangement : le premier indice (ici i) est le numéro de ligne
et le second indice (ici j) est le numéro de colonne. Il est extrêmement important de
toujours respecter cette convention.

Dans l’exemple 18, on a m = 2 (nombre d’équations = nombre de lignes), n = 3
(nombre d’inconnues = nombre de colonnes à gauche du signe =) et a11 = 2, a12 =�1,
a13 = 3/2, a21 = 1, a22 = 0, a23 =�4, b1 = 8 et b2 =�7.

Définition 19 Une solution du système linéaire est une liste de n nombres réels (s1,s2, . . . ,sn)
(un n-uplet) tels que si l’on substitue s1 pour x1, s2 pour x2, etc., dans le système
linéaire, on obtient une égalité. L’ensemble des solutions du système est l’ensemble de
tous ces n-uplets.

Ainsi, (5,13/2,3) est une solution du système linéaire de l’exemple 18. En règle
générale, on s’attache à déterminer l’ensemble des solutions d’un système linéaire.
C’est ce que l’on appelle résoudre le système linéaire. Ceci amène à poser la définition
suivante.

Définition 20 On dit que deux systèmes linéaires sont équivalents s’ils ont le même
ensemble de solutions.

À partir de là, le jeu pour résoudre un système linéaire donné consistera à le
transformer en un système équivalent dont la résolution sera plus simple que celle du
système de départ. Nous verrons plus loin comment procéder de façon systématique
pour arriver à ce but.

Remarque 17 Deux systèmes équivalents ont toujours visiblement le même nombre
d’inconnues. Par contre, ils n’ont pas forcément le même nombre d’équations. Dans ce
dernier cas, on peut toujours ajouter au système avec le moins d’équations le nombre
manquant à l’aide d’équations triviales

0⇥ x1 +0⇥ x2 + · · ·+0⇥ xn = 0,

lesquelles ne modifient clairement pas l’ensemble des solutions. ⇤
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Exemple 19 Résolution dans le cas d’un système 2⇥2 à coefficients réels. Considérons
le système suivant ⇢

x1 �2x2 = �1,
�x1 +3x2 = 3.

Si x1 et x2 désigne les coordonnées cartésiennes d’un point du plan, on reconnaı̂t deux
équations de droite, une par ligne du système. Par conséquent, toute solution (s1,s2)
du système correspond aux coordonnées d’un point d’intersection des deux droites. On
se ramène donc à un problème géométrique très simple dans ce cas particulier. Dans
cet exemple, les deux droites se coupent au point de coordonnées (3,2). On a obtenu
l’ensemble des solutions S = {(3,2)} constitué ici d’un seul élément (on calcule cette
solution très simplement en additionnant les deux équations, puis en remplaçant la
valeur de x2 ainsi trouvée).

Il aurait pu tout aussi bien se produire que les deux droites soient parallèles, comme
dans l’exemple suivant ⇢

x1 �2x2 = �1,
�x1 +2x2 = 3.

Dans ce cas, les deux droites ne se coupent pas, donc le système n’a pas de solution.
L’ensemble des solutions est l’ensemble vide S = /0. Ceci se voit algébriquement en re-
marquant que le membre de gauche de la première ligne est égal à l’opposé du membre
de gauche de la première ligne. Comme 1 6= 3, il est impossible de satisfaire en même
temps les deux équations linéaires.

Enfin, la troisième et dernière possibilité géométrique est que les deux droites soient
confondues. ⇢

x1 �2x2 = �1,
�x1 +2x2 = 1.

On a alors une infinité de solutions S = {coordonnées des points de la droite}.
Ces trois cas de figure obtenus dans le cas de systèmes 2⇥ 2 recouvrent en fait

la situation générale, comme on le démontrera plus loin. On a en effet l’alternative
suivante pour l’ensemble des solutions d’un système linéaire général m⇥n.

a) Soit il n’y a aucune solution, S = /0. Dans ce cas, on dit que le système est
incompatible.

b) Soit il y a une solution unique, S = {(s1,s2, . . . ,sn)} l’ensemble des solutions
contient un seul n-uplet. Dans ce cas, on dit que le système est compatible.

c) Soit il y a une infinité de solutions, et on dit aussi dans ce cas que le système est
compatible.

Un cas particulier important est celui des systèmes homogènes pour lesquels b1 =
b2 = . . . = bm = 0, c’est-à-dire dont le second membre est nul. De tels systèmes sont
toujours compatibles car ils admettent toujours la solution s1 = s2 = . . . = sn = 0. Cette
solution est appelée solution triviale. Géométriquement dans le cas 2⇥ 2, un système
homogène correspond à deux droites qui passent par l’origine des coordonnées, cette
origine (0,0) étant donc toujours solution. Dans le cas des systèmes homogènes, on
s’attachera par conséquent à déterminer s’il n’y a que la solution triviale ou s’il y en a
d’autres. ⇤

2.2 Notation matricielle
En réfléchissant un petit peu, on se rend compte que dans la donnée d’un système

linéaire, seuls comptent les coefficients du système et le second membre. Écrire les
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équations avec les inconnues permet de visualiser le système, mais n’est pas autrement
utile. Il est donc naturel d’introduire la matrice suivante :

A =

0

BBBBBBBB@

a11 a12 · · · a1 j · · · a1n
a21 a22 · · · a2 j · · · a2n

...
...

...
...

ai1 ai2 · · · ai j · · · ain
...

...
...

...
am1 am2 · · · am j · · · amn

1

CCCCCCCCA

appelée la matrice du système linéaire. Elle a m lignes et n colonnes, c’est une matrice

m⇥ n (à coefficients dans K). Si on pose x =

0

BBB@

x1
x2
...

xn

1

CCCA
et b =

0

BBB@

b1
b2
...

bn

1

CCCA
, le système s’écrit

matriciellement Ax = b.
On introduit aussi

Ã =

0

BBBBBBBB@

a11 a12 · · · a1 j · · · a1n b1
a21 a22 · · · a2 j · · · a2n b2

...
...

...
...

...
ai1 ai2 · · · ai j · · · ain bi
...

...
...

...
...

am1 am2 · · · am j · · · amn bm

1

CCCCCCCCA

On l’appelle la matrice augmentée du système. C’est une matrice m⇥ (n + 1). Elle
contient la matrice des coefficients avec une colonne supplémentaire ajoutée à sa droite
et contenant le second membre, c’est-à-dire toute l’information nécessaire à déterminer
le système.

Exemple 20 Il est très facile de passer d’un système linéaire à sa matrice augmentée
et vice-versa : il suffit de lire les coefficients au bon endroit. Considérons l’exemple du
système 3⇥3 suivant 8

<

:

x1 �2x2 +x3 = 0,
2x2 �8x3 = 8,

�4x1 +5x2 +9x3 = �9.

Sa matrice est

A =

0

@
1 �2 1
0 2 �8
�4 5 9

1

A

et sa matrice augmentée

Ã =

0

@
1 �2 1 0
0 2 �8 8
�4 5 9 �9

1

A .

⇤
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2.3 Systèmes échelonnés réduits
Il se trouve que les systèmes linéaires dont la matrice augmentée est échelonnée

réduite — appelés systèmes échelonnés réduits pour aller plus vite — sont particulièrement
simples à résoudre. Commençons par deux exemples.

Exemple 21 Considérons le système suivant dont la résolution est triviale
8
>>><

>>>:

x1 = b1,
x2 = b2,

. . .
...

...
xn = bn.

Sa matrice augmentée

Ã =

0

BBBBBBB@

1 0 0 · · · 0 0 b1
0 1 0 · · · 0 0 b2
0 0 1 · · · 0 0 b3
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 bn�1
0 0 0 · · · 0 1 bn

1

CCCCCCCA

est échelonnée réduite.

Exemple 22 Supposons que

A =

0

@
1 0 2 0 25
0 1 �2 0 16
0 0 0 1 1

1

A

soit en fait la matrice augmentée d’un système linéaire. Ce système sera alors 3⇥4 et
s’écrira 8

<

:

x1 +2x3 = 25,
x2 �2x3 = 16,

x4 = 1.

Ce système se résout trivialement en
8
<

:

x1 = 25�2x3,
x2 = 16+2x3,
x4 = 1.

En d’autres termes, pour toute valeur de x3 réelle, les valeurs de x1, x2 et x4 calculées
ci-dessus fournissent une solution du système, et on les a ainsi toutes obtenues. On peut
donc décrire entièrement l’ensemble des solutions

S = {(25�2x3,16+2x3,x3,1);x3 2 K}.

Il s’agit d’une représentation paramétrique de S. On parle encore de solution générale
du système. ⇤
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L’exemple qui précède montre que les inconnues d’un système échelonné réduit ne
jouent pas toutes le même rôle. Rappelons la définition suivante.

Soit U une matrice échelonnée réduite. Les positions de pivot de U sont les em-
placements (au sens du couple (numéro de ligne, numéro de colonne)) des coefficients
valant 1 du point 3) de la définition 12.

Ainsi, dans l’exemple 22, on voit trois positions de pivot : (1,1), (2,2) et (3,4).
Le coefficient 1 situé en position (3,5) n’est pas un pivot car il n’est pas le premier
élément non nul de sa ligne.

Dans une matrice échelonnée réduite, on appelle colonnes de pivot les colonnes
qui contiennent une position de pivot et lignes de pivot les lignes qui contiennent une
position de pivot. D’après le point 3) de la définition 12, on voit qu’il y a au plus une
position de pivot par ligne, et d’après le point 4), au plus une position de pivot par
colonne. Par conséquent, le nombre de colonnes de pivot est égal au nombre de lignes
de pivot, tous deux étant égaux au nombre de positions de pivot.

Les positions de pivot permettent d’introduire une classification des inconnues.

Définition 21 Les inconnues correspondant à une colonne de pivot sont appelées in-
connues ou variables essentielles. Les autres sont appelées inconnues ou variables
libres.

Remarquons qu’un système échelonné a toujours au moins une variable essentielle,
mais qu’il n’a pas forcément de variables libres, voir le tout premier exemple de cette
section. Nous pouvons maintenant résoudre les systèmes échelonnés
réduits dans tous les cas.

Théorème 5 Un système échelonné réduit est compatible si et seulement si sa matrice
augmentée ne contient aucune ligne de la forme

�
0 0 · · · 0 b

�
avec b 6= 0.

Dans ce cas, on obtient une description paramétrique de l’ensemble des solutions en
exprimant les variables essentielles en fonction du second membre et des variables
libres.

Démonstration. Supposons que la matrice augmentée du système contienne une ligne
de la forme �

0 0 · · · 0 b
�

avec b 6= 0.

Cette ligne correspond à l’équation linéaire

0⇥ x1 +0⇥ x2 + · · ·+0⇥ xn = b,

laquelle n’a évidemment aucune solution. Le système est par conséquent incompatible,
S = /0.

Dans le cas où aucune ligne n’est de cette forme, alors on peut visiblement résoudre.
En effet, les éventuelles lignes nulles donnent des équations de la forme

0⇥ x1 +0⇥ x2 + · · ·+0⇥ xn = 0,
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qui sont toujours satisfaites. De plus, chaque ligne non nulle réécrite sous forme d’équation
prend la forme

xil +Bl(xlibres) = bl ,

où xil est la l-ème variable essentielle (qui n’apparaı̂t que dans cette équation située à
la ligne l), Bl(xlibres) est une somme composée de coefficients du système multipliés
par les variables libres (désignées collectivement par xlibres mais en fait, seules celles
situées à droite de xil interviennent) s’il y a des variables libres, Bl(xlibres) = 0 s’il n’y
en a pas, et bl est la l-ème ligne du second membre. Par conséquent,

xil =�Bl(xlibres)+bl ,

fournit une représentation paramétrique de l’ensemble des solutions, les variables libres
parcourant indépendamment K. ⇤

On a ainsi établi dans le cas des systèmes échelonnés réduits l’alternative sur l’en-
semble des solutions déjà vue géométriquement dans le cas 2⇥2.

Corollaire 6 Dans le cas d’un système échelonné réduit m⇥ n on a l’alternative sui-
vante.

a) Soit il n’y a aucune solution s’il y a une ligne de la forme
�
0 0 · · · 0 b

�
avec b 6= 0.

b) Soit il y a une solution unique s’il n’y a pas de telle ligne ni de variables libres.
c) Soit il y a une infinité de solutions s’il n’y a pas de telle ligne mais qu’il existe

des variables libres.

2.4 Résolution des systèmes par l’Algorithme de Gauss
À partir de maintenant, la stratégie pour résoudre un système général sera de se

ramener à un système échelonné réduit qui lui soit équivalent. On va pour cela raisonner
uniquement sur les matrices et utiliser l’algorithme de Gauss présenté dans le chapitre
1.

Arrêtons nous quelque peu sur la notion d’algorithme. Il s’agit d’une description
précise d’une suite d’opérations à effectuer, dans quel ordre et dans quel cas, qui aboutit
au bout d’un nombre fini d’étapes si possible connu à l’avance au résultat voulu. Il
y a deux raisons pour introduire un algorithme dans le contexte de la résolution des
systèmes linéaires.

La première raison est que l’on peut certes résoudre les systèmes 2⇥ 2 ou 3⇥ 3
par des manipulations ad hoc des équations — résolution par rapport à une variable
puis remplacement dans les autres équations, additions ou soustractions d’équations
— menées au petit bonheur la chance et qui aboutissent à un résultat après un plus
ou moins grand nombre d’opérations. Or l’expérience montre que ces opérations sont
le plus souvent inutiles, redondantes, et surtout cause d’erreurs de calculs. Il est bien
préférable de se laisser guider par une méthode stricte dont l’application garantit un
nombre minimal de calculs (en général).

La seconde raison est que dans les applications pratiques de l’algèbre linéaire, les-
quelles sont extrêmement nombreuses et importantes, les systèmes à résoudre sont
énormes (des milliers, voire des millions d’équations et d’inconnues) et qu’il n’est pas
question d’effectuer les calculs à la main. Ce sont des ordinateurs qui s’en chargent, et
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ces derniers ont besoin de programmes, lesquels sont la traduction en tel ou tel langage
d’un algorithme.

La notion d’équivalence de matrices est directement liée à celle d’équivalence des
systèmes linéaires de la Définition 20.

Proposition 18 Si les matrices augmentées de deux systèmes linéaires sont équiva-
lentes, alors les systèmes linéaires sont équivalents.

Démonstration. Il suffit de le vérifier sur les opérations élémentaires, l’équivalence
des systèmes se propageant visiblement de proche en proche à chacune d’entre elles.
Soient donc deux systèmes linéaires dont les matrices augmentées A = (ai j) et A0 =
(a0i j), i = 1, . . . ,n, j = 1, . . . ,n + 1 (on note ai,n+1 la colonne correspondant au second
membre pour simplifier la notation), diffèrent par une opération élémentaire. Notons
SA l’ensemble des solutions du système associé à A et SA0 l’ensemble des solutions du
système associé à A0. Il faut distinguer suivant les trois cas possibles.

Le cas de l’échange est clair : on intervertit l’ordre de deux équations ce qui ne
change pas l’ensemble des solutions.

Le cas de l’homothétie : a0i j = lai j avec l 6= 0 pour un certain i et tous j = 1, . . . ,n+
1. Soit (s1,s2, . . . ,sn) 2 SA. Ce n-uplet vérifie en particulier l’équation numéro i

ai1s1 +ai2s2 + · · ·+ainsn = ai,n+1.

Multipliant les deux membres par l, on voit que

a0i1s1 +a0i2s2 + · · ·+a0insn = a0i,n+1,

et comme les autres équations du système associé à A0 sont les mêmes que celles de
A, on en déduit que (s1,s2, . . . ,sn) 2 SA0 . En d’autres termes, on vient de montrer que
SA ⇢ SA0 . Inversant les rôles de A et A0, on en déduit que SA0 ⇢ SA, d’où finalement
SA = SA0 , les deux systèmes sont équivalents.

Le cas de la substitution est très semblable : a0i j = ai j + lak j pour un certain i,
un certain k et tous j = 1, . . . ,n + 1. Soit (s1,s2, . . . ,sn) 2 SA. Ce n-uplet vérifie en
particulier les équations numéros i et k

ai1s1 +ai2s2 + · · ·+ainsn = ai,n+1

ak1s1 +ak2s2 + · · ·+aknsn = ak,n+1

d’où en multipliant la deuxième égalité par l et en additionnant

ai1s1 +ai2s2 + · · ·+ainsn +l(ak1s1 +ak2s2 + · · ·+aknsn) = ai,n+1 +lak,n+1.

On factorise le membre de gauche

(ai1 +lak1)s1 +(ai2 +lak2)s2 + · · ·+(ain +lakn)sn = ai,n+1 +lak,n+1,

qui n’est autre que
a0i1s1 +a0i2s2 + · · ·+a0insn = a0i,n+1.

Les autres équations n’étant pas modifiées, on en déduit comme précédemment que
SA ⇢ SA0 , puis que SA = SA0 . Les deux systèmes sont équivalents. ⇤
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Nous avons vu que toute matrice A est équivalente à une unique matrice échelonnée
réduite U . Les opérations élémentaires appliquées aux matrices augmentées produisant
des systèmes équivalents entre eux, on va s’en servir pour se ramener à un système
échelonné réduit. Rappelons que les positions, colonnes et lignes de pivot de A sont les
positions, colonnes et lignes de pivot de U . Si A est la matrice augmentée d’un système
linéaire, alors les inconnues correspondant à une colonne de pivot sont appelées incon-
nues ou variables essentielles. Les autres sont appelées inconnues ou variables libres.

En regroupant tous les résultats précédents, on obtient la discussion générale de la
résolution des systèmes linéaires

Théorème 7 Un système linéaire est compatible si et seulement si la matrice échelonnée
réduite équivalente à sa matrice augmentée ne contient aucune ligne de la forme

�
0 0 · · · 0 b

�
avec b 6= 0.

Dans ce cas, on obtient une description paramétrique de l’ensemble des solutions en
exprimant les variables essentielles en fonction du second membre et des variables
libres.

De même,

Corollaire 8 Soit un système linéaire m⇥n quelconque, A sa matrice augmentée et U
l’unique matrice échelonnée réduite équivalente à A. On a l’alternative suivante.

a) Soit il n’y a aucune solution si U contient une ligne de la forme
�
0 0 · · · 0 b

�
avec b 6= 0.

b) Soit il y a une solution unique si U ne contient aucune telle ligne et qu’il n’y a
pas de variables libres.

c) Soit il y a une infinité de solutions si U ne contient aucune telle ligne mais qu’il
existe des variables libres.

Remarque 18 On n’a décrit qu’un seul algorithme de résolution, l’algorithme de Gauss.
Or cet algorithme est bien insuffisant pour résoudre numériquement, c’est-à-dire sur or-
dinateur, les énormes systèmes linéaires rencontrés dans la pratique. L’analyse numérique
matricielle est l’étude d’algorithmes qui généralisent celui de Gauss, ou qui sont de na-
ture totalement différente, dans le but de résoudre effectivement et efficacement de tels
systèmes. C’est un vaste champ de recherche toujours très actif de nos jours. ⇤

Exemple 23 Soient a,b et c trois nombres réels. On considère le système suivant :
8
<

:

x + y � z = a
�x + + 2z = b

2y + 2z = c

La matrice augmentée du système est

Ã =

0

@
1 1 �1 a
�1 0 2 b
0 2 2 c

1

A .
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En faisant les opérations sur les lignes suivantes : L2 � L2 +L1, L3 � L3�2L2 puis
L1 � L1�L2, on obtient

Ã⇠

0

@
1 1 �1 a
0 1 1 a+b
0 2 2 c

1

A⇠

0

@
1 1 �1 a
0 1 1 a+b
0 0 0 c�2a�2b

1

A⇠

0

@
1 0 �2 �b
0 1 1 a+b
0 0 0 c�2a�2b

1

A .

Le système est compatible si et seulement si c�2a�2b = 0.
Si c�2a�2b 6= 0, alors le système n’admet pas de solution.
si c�2a�2b = 0, alors l’ensemble des solutions du système est

S = {(2z�b,�z+a+b,z) | z 2 K}.

Remarque 19 Dans le cas d’un système homogène (tous les termes du second membre
sont nuls), on peut appliquer l’algorithme de Gauss directement sur la matrice du
système (au lieu de la matrice augmentée).

Proposition 19 Soit un système linéaire donné sous sa forme matricielle SX = b où S
est un élément de Mn(K). Il admet une solution unique si et seulement si S est inversible.

Démonstration. Si S est inversible, alors le système admet une solution unique à savoir
x = S�1b. Réciproquement, supposons que le système admette une solution unique.
Soit A la matrice augmentée du système. On a A = (S b). D’après le corollaire 8, par
une succession d’ opérations élémentaires sur les lignes, on peut transformer A = (S b)
en U = (I u) où

u =

0

BBB@

u1
u2
...

un

1

CCCA
.

Il existe donc p matrices élémentaires E1,E2, . . .Ep telles que

EpEp�1 . . .E1A = (In u).

Or EpEp�1 . . .E1A =(EpEp�1 . . .E1S EpEp�1 . . .E1b). Donc EpEp�1 . . .E1S = In. Comme
chaque Ei est inversible, on en déduit S = E�1

1 E�1
2 . . .E�1

p . La matrice S est donc in-
versible comme produit de matrices inversibles.

Remarque 20 Si S est inversible, l’unique solution du système linéaire SX = b est
S�1b.



Chapitre 3

Espaces vectoriels et
applications linéaires

3.1 Cours sur les espaces vectoriels (généralités)
L’ensemble des vecteurs du plan ou de l’espace est muni d’une loi de composition

interne (à savoir la somme de deux vecteurs) et d’une loi de composition externe (à
savoir la multiplication d’un vecteur par un scalaire). De plus, ces deux lois satisfont
un certains nombres de propriétés. Les espaces vectoriels généralisent cette situation.

3.1.1 Définition d’un espace vectoriel
Définition 22 Un K-espace vectoriel est un ensemble non vide E muni

• d’une loi de composition interne c’est à dire d’une application de E⇥E dans E

E⇥E ! E
(n,n0) 7! n+n0

• d’une loi de composition externe de domaine d’opérateurs un corps commutatif,
c’est à dire d’une application de K⇥E dans E

K⇥E ! E
(a,n) 7! a ·n

vérifiant trois groupes d’axiomes :
1) Axiomes relatifs à la loi interne
2) Axiomes relatifs à la loi externe
3) Axiomes liant les deux lois : double distributivité.

Axiomes
Dans la description des axiomes, la loi externe sur E sera notée · alors que la multi-

plication dans K sera notée ⇥. La loi de composition interne dans E et la somme dans
K seront toutes les deux notées + mais le contexte permettra de déterminer aisément
de quelle loi il s’agit.

41
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1) Axiomes relatifs à la loi interne

a) Associativité , c’est à dire que pour tous éléments u,v et w de E

(u+ v)+w = u+(v+w)

b) Il existe un élément neutre , c’est à dire qu’il existe un élément de E, noté 0E ,
vérifiant :

8v 2 E, v+0E = 0E + v = v

c) Tout élément de E admet un symétrique, c’est à dire qu’il existe un élément v0
de E tel que

v+ v0 = v0+ v = 0E .

Cet élément v0 de E est noté �v.

d) Commutativité, c’est à dire que pour tous élément u et v de E,

u+ v = v+u.

Remarque 21 S’il existe un élément neutre 0E vérifiant les axiomes b ci-dessus. il est
unique.

Démonstration. Soient 0E et 00E deux éléments vérifiant la définition de l’élément
neutre. On a alors : pour tout élément v de E

v+0E = 0E + v = v
v+00E = 00E + v = v

Alors, la première propriété utilisée avec v = 00E donne

00E +0E = 0E +00E = 00E .

La deuxième propriété utilisée avec v = 0E donne

0E +00E = 00E +0E = 0E .

En comparant ces deux résultats, il vient 0E = 00E .

Remarque 22 De même, si v est un élément de E et s’il existe un élément v0 de E
vérifiant l’axiome c, il est unique.

Démonstration. Supposons qu’il existe deux symétriques de v notés v et v0. On a :

v+ v0 = v0+ v = 0E
v+ v00 = v00+ v = 0E

Caculons v0+(v+ v00) de deux façons différentes en utilisant l’associativité de la loi +
et les relations précédentes.

•v0+(v+ v00) = v0+0E = v0
•v0+(v+ v00) = (v0+ v)+ v00 d0oùv0+(v+ v00) = 0E + v00 = v00.

On en déduit v0 = v00.
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Remarque 23 Les étudiants connaissant la théorie des groupes reconnaitront dans les
axiomes a, b, c et d ci-dessus, les axiomes caractérisant les groupes abéliens.

2 ) Axiomes relatifs à la loi externe
a) Pour tous éléments l et µ de K et pour tout élément v de E, on a

(l⇥µ) · v = l · (µ · v).

b) Soit 1 l’élément neutre de la multiplication de K. Pour tout élément v de E, on a

1 · v = v.

3) Axiomes liant les deux lois : double distributivité
a) Distributivité par rapport à l’addition des scalaires : Pour tous l et µ de K et pour

tout élément v de E, on a :
(l+µ) · v = l · v+µ · v.

b) Distributivité par rapport à l’addition des vecteurs : Pour tout élément l de K et
pour tous éléments u et v de E, on a

l · (u+ v) = l ·u+l · v.

La loi interne et la loi externe doivent donc satisfaire huit axiomes pour que (E,+, ·)
soit un espace vectoriel sur K.

Terminologie et notations
• Au lieu de K-espace vectoriel, on dit aussi espace vectoriel sur K.
• Les élements du corps K sont appelés des scalaires et les éléments de E des

vecteurs. Le corps K est appelé le corps des scalaires.
• La loi de composition interne sur E ( notée usuellement +) est appelée couram-

ment l’addition et v+ v0 est appelée somme des vecteurs v et v0. La loi de composition
externe sur E est appelée couramment multiplication par un scalaire. La multiplication
du vecteur v par le scalaire a sera notée av.

• 0E est l’élément neutre de la loi interne de E et est appelé vecteur nul. Il ne doit
pas être confondu avec l’élément 0 de K. Lorsqu’il n’y aura pas de risque de confusion,
0E sera aussi noté 0.

Somme de n vecteurs

Il est possible de définir, par récurrence, l’addition de n vecteurs, n� 2. La structure
d’espace vectoriel permet de définir l’addition de deux vecteurs, ce qui initialise la
démonstration. Si la somme de n�1 vecteurs est définie, alors la somme de n vecteurs
v1, . . . ,vn est définie par

v1 + v2 + · · ·+ vn = (v1 + v2 + · · ·+ vn�1)+ vn.

Notation : v1 + v2 + · · ·+ vn =
n

Â
i=1

vi.

L’associativité de la loi + nous permet de ne pas mettre de parenthèses dans la
somme v1 + · · ·+ vn.
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3.1.2 Exemples
Dans tous les exemples qui suivent, la vérification des axiomes se fait simplement

et est laissée au soin des étudiants. Seules seront indiquées, dans chaque cas, les valeurs
de l’élément neutre de la loi interne et du symétrique d’un élément.

Il est important de remarquer que les règles de calcul proviennent de l’addition et
de la multiplication des éléments du corps K qui est sous-jacent dans tous les exemples.

Exemple 24 : Le R-espace vectoriel R2

Le produit cartésien R⇥R est noté R2. C’est l’ensemble des couples (x,y) avec x
élément de R et y élément de R. Ceci s’écrit

R2 = {(x,y) | x 2 R,y 2 R}.

Remarque : L’écriture (x,y) traduit un ordre sur les élément x et y : x est la première
composante du couple (x,y) et y est la seconde. Le couple (1,2) est différent du couple
(2,1).

• Définition de la loi interne :
Si (x,y) et (x0,y0) sont deux éléments de R2,

(x,y)+(x0,y0) = (x+ x0,y+ y0).

•Définition de la loi externe :
Si a est un réel et (x,y) est élément de R2,

a(x,y) = (ax,ay).

L’élément neutre de la loi interne est (0,0). Le symétrique de (x,y) est (�x,�y).

Exemple 25 : Le R-espace vectoriel Rn

Cet exemple généralise le précédent. Soit n un entier supérieur ou égal à 1. Le pro-
duit cartésien de n ensembles égaux à R, R⇥R⇥ · · ·⇥R est noté Rn. C’est l’ensemble
des n-uplets (x1, . . . ,xn) avec x1, . . . ,xn éléments de R. Ceci s’écrit

Rn = {(x1, . . . ,xn) | 8i,1 i n,xi 2 R}.
De même que dans l’exemple précédent, l’écriture (x1, . . . ,xn) traduit un ordre sur

les élément xi : xi est la ième composante du n-uplet (x1, . . . ,xn)

• Définition de la loi interne :
Si (x1, . . . ,xn) et (x01, . . . ,x

0
n) sont deux éléments de Rn,

(x1, . . . ,xn)+(x01, . . . ,x
0
n) = (x1 + x01, . . . ,xn + x0n)

•Définition de la loi externe :
Si a est un réel et (x1, . . . ,xn) est élément de Rn,

a(x1, . . . ,xn) = (ax1, . . . ,axn).

L’élément neutre de la loi interne est (0,0, . . . ,0). Le symétrique de (x1, . . . ,xn) est
(�x1, . . . ,�xn).
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Dans le cas particulier où n = 1, nous avons défini une structure de R-espace vec-
toriel sur R. Dans ce cas particulier, la loi interne est la somme sur R et la loi externe
est la multiplication sur R.

De manière analogue, on peut définir le C-espace vectoriel Cn et plus généralement
le K-espace vectoriel Kn.

Exemple 26 : Le R-espace vectoriel A(R,R)
L’ensemble des applications de R dans R est noté A(R,R). Il peut être muni d’une

structure de R-espace vectoriel de la manière suivante.

• Définition de la loi interne :
Soient f et g deux éléments de A(R,R). L’application f + g est donc définie en

donnant l’image de tout élément réel x par f +g, soit :

8x 2 R, ( f +g)(x) = f (x)+g(x)

où le signe + désigne la loi interne de A(R,R) dans le membre de gauche et l’addition
dans R dans le membre de droite.

• Définition de la loi externe :
Nous désignerons par · la loi externe de A(R,R) et par ⇥ la multiplication dans

R. De même, si a est un nombre réel et f un élément de A(R,R), la fonction a · f est
définie par l’image de tout réel x comme suit :

8x 2 R, (a · f )(x) = a⇥ f (x).

L’élément neutre pour la loi interne est l’application de R dans R définie par

8x 2 R, f (x) = 0

C’est la fonction nulle qu’il est difficile de noter 0 (car alors, on serait en droit d’écrire
0(0) = 0, ce qui est difficile à décoder !). Le symétrique de l’élément f de A(R,R) est
l’application g de R dans R définie par

8x 2 R, g(x) =� f (x).

Le symétrique de f est noté � f .

Exemple 27 : Le R-espace vectoriel des suites réelles
L’ensemble des suites réelles, noté S = A(N,R) est l’ensemble des applications de

N dans R.

• Définition de la loi interne
Soient U = (Un)n2N et V = (Vn)n2N deux éléments de S, La suite U +V est la suite

W = (Wn)n2N définie par
8n 2 N, Wn = Un +Vn

où Un +Vn désigne la somme de Un et de Vn dans R.

• Définition de la loi externe :
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Si a est un nombre réel et U = (Un)n2N un élément de S, aU est la suite T = (Tn)n2N
définie par

8n 2 N, Tn = a⇥Un

où ⇥ désigne la multiplication dans R.

L’élément neutre de la loi interne est la suite dont tous les termes sont nuls. Le
symétrique de la suite U = (Un)n2N est la suite U 0 = (U 0n)n2N définie par :

8n 2 N, U 0n =�Un.

Elle est notée �U .

Exemple 28 : Le R-espace vectoriel C
L’ensemble C des nombres complexes peut être aussi muni naturellement d’une

structure de R-espace vectoriel.

• Définition de la loi interne : La loi interne est la somme dans C.

• Définition de la loi externe : La loi externe est définie de la façon suivante :

R⇥C ! C
(a,n) 7! an

où an désigne la multiplication de a par n dans le corps des complexes C.

L’élement neutre est 0 et le symétrique du nombre complexe z est �z.

Exemple 29 : K-espace vectoriel des matrices
Soient n et p deux entiers naturels strictement positifs. L’ensemble Mn,p(K) des

matrices à n lignes et p colonnes à coefficients dans K est muni d’une structure de K-
espace vectoriel.

• Définition de la loi interne : La loi interne est la somme de deux matrices.

• Définition de la loi externe : La loi externe est le produit d’une matrice par un
scalaire :

K⇥Mp,n(K) ! Mp,n(K)
(a,A) 7! aA

l’ élément neutre pour la loi interne est la matrices à n lignes et p colonnes dont
tous les coefficients sont nuls. Le symétrique de la matrice A = (ai, j) est la matrice
(�ai, j).

Exemple 30 : Applications d’un ensemble dans un espace vectoriel
L’exemple suivant généralise à la fois les exemples Rn, A(R,R), A(N,R), Mn,p(K).

Soit X un ensemble et E un K-espace vectoriel. L’ensemble A(X ,E) des applica-
tions de X dans E peut être muni d’une structure d’espace vectoriel comme suit.

Définition de la loi interne : Soient f et g deux applications de X dans E, l’appli-
cation f +g est définie de la façon suivante :

f +g : X ! E
x 7! f (x)+g(x)
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où f (x)+g(x) est la somme des éléments f (x) et g(x) dans E.

Définition de la loi externe : Si a est un élément de K et f un élément de A(X ,E),
on définit l’application a · f comme suit :

a · f : X ! E
x 7! a f (x)

L’élément neutre pour la loi interne est l’application nulle, c’est à dire celle qui, à
tout élément x de X , associe 0E . Si f est un élément de A(X ,E), son symétrique par
l’application interne est l’application

X ! E
x 7! � f (x)

où � f (x) est le symétrique de f (x) dans E.

Si X = R, K = R et E = R, on retrouve l’exemple A(R,R). Si X = N, K = R et
E = R, on retrouve l’exemple A(N,R). Si X = {1, . . . ,n}, K = R et E = R, on retrouve
l’exemple Rn. En effet, l’application naturelle

A(X ,R) 7! Rn

f 7! ( f (1), . . . , f (n))

est une bijection qui identifie A(X ,R) à Rn. On peut en fait voir que c’est un isomor-
phisme (voir définition plus loin). Si X = {1, . . . ,n}⇥ {1, . . . , p}, E = K, on retrouve
l’exemple Mn,p(K). En effet, l’application naturelle

A(X ,R) 7! Mn,p(K)
f 7! ( f (i, j))

est une bijection qui identifie A(X ,K) à Mn,p(K). On peut en fait voir que c’est un
isomorphisme.

3.1.3 Règles de calcul, combinaisons linéaires
Proposition 20 Soit E un espace vectoriel sur un corps K. On notera par 0E l’élément
neutre pour la loi interne de E pour le distinguer de l’élément 0 de K. Les propriétés
suivantes sont satisfaites :

1) L’addition est régulière : Si u,v et w sont des vecteurs tels que

u+ v = u+w, alors v = w.

2) Pour tout vecteur v de E, 0 · v = 0E.
3) Pour tout scalaire a, a0E = 0E.
4) Pour tout vecteur v de E, (�1)v =�v.
5) L’opération (v,w) 7! v + (�w) s’appelle la soustraction ; Le vecteur

v+(�w) est noté v�w. Les propriétés suivantes sont satisfaites :
a) Pour tout scalaire a et tous vecteurs v et w, a(v�w) = av�aw.
b) Pour tous scalaire a et b et tout vecteur v, (a�b)v = av�bv.
6) Si l est un scalaire et v un vecteur tels lv = 0E, alors

soit l = 0, soit v = 0E .
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SYNTHÈSE : Les propriétés 2,3 et 6 peuvent êre résumées par le résultat fonda-
mental suivant

lv = 0E () l = 0 ou v = 0E .

Démonstration. Les démonstrations des propriétés sont des manipulations sur les axiomes
définissant les espaces vectoriels.

Démonstration de la propriété 1 : En ajoutant aux deux membres de l’inégalité
u+ v = u+w le symétrique de u, soit �u, on obtient l’égalité

(�u)+(u+ v) = (�u)+(u+w)

ce qui, en utilisant l’associativité de l’addition des vecteurs, permet d’obtenir

((�u)+u)+ v = ((�u)+u)+w.

Or (�u)+u = 0E d’après la définition du symétrique, l’égalité devient donc

0E + v = 0E +w

d’où v = w d’après la définition de l’élément neutre de l’addition dans E.

Démonstration de la propriété 2 : Le point de départ de la démonstration est
l’égalité dans K

0+0 = 0.

D’où, pour tout vecteur de E, l’égalité

(0+0)v = 0v.

Soit, en utilisant la distributivité de la loi externe par rapport à la loi interne et la
définition de l’élément neutre

0v+0v = 0v = 0v+0E .

Ce qui permet d’obtenir l’égalité souhaitée 0Kv = 0E grâce à la propriété 1.

Démonstration de la propriété 3 : La preuve est semblable en partant de l’égalité
0E +0E = 0E .

Démonstration de la propriété 4 : Compte tenu de la définition du symétrique
pour l’addition d’un élément de E, il suffit, pour justifier la propriété, de calculer l’ex-
pression v + (�1)v. On a, en utilisant la propriété de la multiplication par 1 puis la
distributivité de l’addition des scalaires et enfin a propriété 2 :

v+(�1)v = 1v+(�1)v = (1+(�1))v = 0v = 0E

La loi interne étant commutative, on en déduit que (�1)v est le symétrique du vecteur v.

Démonstration de la propriété 5 :

Preuve du a :
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Avec la notation introduite dans l’énoncé, av�aw est égal à av+(�aw). Alors,

a(v�w)+aw = a [(v+(�w))+w] (distributivité de l0addition dans E)
= a [v+((�w)+w)] (associativité de l0addition dans E)
= a [v+0E ] (définition du symétrique)
= av(définition de l0élément neutre)

ce qui donne le résultat en rajoutant à chaque membre de l’égalité le symétrique de av.

Preuve du b :
Elle est du même type. Le point de départ en est le calcul de (a�b)v+bv.

Démonstration de la propriété 6 :
Soit l un scalaire et v un vecteur tels que lv = 0E . Supposons l différent de 0. Alors

l est inversible pour le produit dans le corps K. Soit l�1 son inverse. En multipliant
par l�1 les deux membres de l’égalité, il vient :

l�1(lv) = l�10E .

D’où en utilisant les propriétés de la multiplication par un scalaire

(l�1l)v = 0E

et donc
1v = 0E .

D’où v = 0E .

Combinaisons linéaires d’éléments dans un espace vectoriel
Définition 23 Soit n un entier supérieur ou égal à 1 et v1,v2, . . . ,vn n vecteurs d’un es-
pace vectoriel E. Tour vecteur de la forme w = a1v1 +a2v2 +· · ·+anvn où a1,a2, . . . ,ansont
des éléments de K est appelé combinaison linéaire des vecteurs v1,v2, . . . ,vn. Les sca-
laires a1,a2, . . . ,an sont appelés coefficients de la combinaison linéaire.

Remarque : Si n = 1, on dit que w est colinéaire à v1.

Exemples :
•Dans le R-espace vectoriel R3, (3,3,1) est combinaison linéaire des vecteurs

(1,1,0) et (1,1,1) car on a l’égalité

(3,3,1) = 2(1,1,0)+(1,1,1).

• Dans le R-espace vectoriel R2, le vecteur v = (2,1) n’est pas combinaison linéaire
du vecteur v1 = (1,1) car s’il l’était, il existerait un réel a tel que v = av1, ce qui
équivaudrait à l’égalité (2,1) = (a,a).

• Soit E = A(R,R) le R-espace vectoriel des fonctions réelles. Soient f0, f1, f2 et
f3 les fonctions définies par :

8x 2 R, f0(x) = 1, f1(x) = x, f2(x) = x2, f3(x) = x3

Alors la fonction f définie par

8x 2 R, f (x) = x3�2x2�7x�4
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est combinaison linéaire des fonctions f0, f1, f2, f3 puisque l’on a l’égalité

f = f3�2 f2�7 f1�4 f0.

• Dans M2,3(R), on considère A =
✓

1 1 3
0 1 3

◆
. On peut écrire A naturellement sous

la forme suivante :

A =
✓

1 0 0
0 0 0

◆
+
✓

0 1 0
0 0 0

◆
+3
✓

0 0 1
0 0 0

◆
+
✓

0 0 0
0 1 0

◆
+3
✓

0 0 0
0 0 1

◆
.

On a démontré que A est combinaison linéaire des matrices de type 2⇥3 dont tous les
éléments sont nuls sauf un, égal à 1.

3.2 Cours sur les espaces vectoriels (constructions)
3.2.1 Sous-espaces vectoriels
Définition 24 Soit E un K-espace vectoriel. Une partie F de E telle que

• F est non vide
• F est stable pour l’addition : 8u 2 F, 8v 2 F, u+ v 2 F.
• F est stable pour la multiplication par un scalaire : 8l 2 K,8u 2 F,lu 2 F
est appelé sous espace vectoriel de E.

Théorème 9 Soit E un K-espace vectoriel et F un sous espace vectoriel de K. Les lois
de composition interne et externe sur E induisent des lois de composition internes et
externes sur F. Muni de ces deux lois, F a une structure de K-espace vectoriel.

Démonstration. La stabilité de F pour les deux lois permet de munir cet ensemble
d’une loi de composition interne et d’une loi de composition externe à opérateurs dans
K, en restreignant à F les opérations définies dans E. Les propriétés de commutativité
et d’associativité de l’addition, ainsi que les quatre axiomes relatifs à la loi externe sont
vérifiés, car ils sont satisfaits dans E donc en particulier dans F , qui est inclus dans E.

Il reste à montrer l’existence d’un élément neutre, et d’un symétrique pour tout
élément de F :

L’espace vectoriel E possède un élément neutre 0E . Cet élément appartient à F
car pour u élément de F (l’hypothèse F non vide est ici essentielle) 0u appartient à F
(stabilité de F pour la loi externe), or 0u = 0E , donc 0E appartient à F . De plus F étant
inclus dans E, cet élément est tel que :

8u 2 F, u+0E = 0E +u = u.

L’élément neutre de l’addition dans F est donc 0E .
De même F étant inclus dans E, pour tout élément u de F , il existe un élément de

E, noté�u, tel que u+(�u) = 0E ; il faut donc montrer que�u appartient à F . Comme
u est élément de F , (�1)u appartient à F , d’après la stabilité de F pour la loi externe.
Or (�1)u =�u. Donc le symétrique de u dans F est égal au symétrique de u dans E.

Remarque 24 Pour les étudiants connaissant la théorie des groupes, on peut noter que
(F,+) est un sous groupe de (E,+).
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Remarque 25 1- La démonstration précédente fait ressortir les deux points suivants :
•0E = 0F .
• Le symétrique de u calculé dans E est le même que le symétrique de u calculé

dans F.
2- {0E} et E sont des sous-espaces vectoriels de E.
3- Un sous-espace vectoriel de E contient nécessairement à 0E. Ceci donne une

méthode simple pour prouver qu’un sous-ensemble n’est pas un sous-espace vectoriel :
si 0E n’appartient pas à F alors F n’est pas un sous-espace vectoriel de E.

Méthodologie :
1- Pour répondre à une question du type ” le sous-ensemble F de l’espace vectoriel

E est-il un sous-espace vectoriel de E ? ”, il est judicieux de vérifier que 0E appartient
à F :

Si 0E appartient à F , cela prouve que F est non vide et on peut poursuivre en
étudiant la stabilité de F pour les lois de E. Sinon on peut alors affirmer que F n’est
pas un sous-espace vectoriel de E.

2- Pour montrer qu’un ensemble F est un espace vectoriel sur K, on peut chercher
un espace vectoriel E qui contient F , puis prouver que F est un sous-espace vectoriel
de E.

Exemples immédiats
• L’ensemble F = {(x,y) 2 R2 | x = 0} est un sous-espace vectoriel de R2.
• L’ensemble F = {(x,y) 2 R2 | x = 2} n’est pas un sous-espace vectoriel de R2.
• L’ensemble des fonctions continues sur R est un sous-espace vectoriel de l’espace

vectoriel des applications de R dans R.
• L’ensemble des suites réelles convergentes est un sous-espace vectoriel de l’es-

pace vectoriel des suites réelles.
• Notons P l’ensemble des fonctions paires et I l’ensemble des fonctions impaires.

On a
P = { f 2 A(R,R) | 8x 2 R, f (�x) = f (x)}
I = { f 2 A(R,R) | 8x 2 R, f (�x) =� f (x)}

P et I sont des sous espaces vectoriels de A(R,R) ;

Théorème 10 (Caractérisation d’un sous-espace par la notion de combinaison linéaire)
Soit E un K-espace vectoriel et F une partie de E. F est un sous-espace vectoriel de E
si et seulement si :

• F est non vide
•Toute combinaison linéaire de deux éléments de F appartient à F :

8(u,v) 2 F2, 8(a,b) 2 K2, au+bv 2 F.

Démonstration. Il suffit de démontrer que la deuxième propriété est équivalente à la
stabilité de F pour les deux lois. Il est clair que si F est stable pour l’addition et la
multiplication par un scalaire alors toute combinaison linéaire de deux vecteurs de F
est dans F . Pour établir la réciproque il suffit de choisir convenablement les coefficients
a et b : a = b = 1 donne la stabilité de F pour l’addition.

a quelconque, élément de K, et b = 0 donne la stabilité de F pour la loi externe. ⇤

On peut légèrement simplifier la caractérisation précédente de la façon suivante
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Théorème 11 Soit E un K-espace vectoriel et F une partie de E. F est un sous-espace
vectoriel de E si et seulement si :

• F est non vide
•8(u,v) 2 F2, 8a 2 K, au+ v 2 F.

Exemple 31 Une fonction polynôme sur R est une fonction de R dans R telle qu’il
existe un entier k et k +1 éléments a0, . . . ,ak de R tels que :

8x 2 R, f (x) = a0 +a1x+ · · ·+akxk.

On définit le degré de f comme étant le Sup{k,ak 6= 0} On note P(R) l’ensemble
des fonctions polynômes sur R. C’est un sous-espace vectoriel de A(R,R), l’espace
vectoriel des applications de R dans R. L’ensemble Pn(R) des fonctions polynômes de
degré inférieur ou égal à n est un sous-espace vectoriel de P(R), donc de A(R,R). En
revanche, pour n� 1, l’ensemble des fonctions polynômes de degré exactement égal à
n n’est pas un sous-espace vectoriel de P(R). En effet ce n’est pas un ensemble stable
pour l’addition des fonctions : par exemple les fonctions f et g définies par f (x) = x+1
et g(x) = �x + 1 sont des fonctions polynômes de degré 1, mais leur somme ne l’est
pas.

On définit de la même façon les fonctions polynômes sur K.

3.2.2 Sous-espace engendré par une partie finie-Intersection
Théorème 12 (Théorème de structure de l’ensemble des combinaisons linéaires) Soit
{v1, . . . ,vn} une partie finie du K-espace vectoriel E, alors l’ensemble des combinai-
sons linéaires des vecteurs {v1, . . . ,vn} est un sous-espace vectoriel de E. C’est le
plus petit sous-espace vectoriel de E (au sens de l’inclusion) contenant les vecteurs
{v1, . . . ,vn} : autrement dit, il est inclus dans tout sous-espace vectoriel contenant
{v1, . . . ,vn}.

Démonstration. On appelle F l’ensemble des combinaisons linéaires des vecteurs {v1, . . . ,vn}.
Cet ensemble est non vide, car il contient la combinaison linéaire particulière 0v1 +
· · ·+ 0vn qui vaut 0E . On peut également vérifier que v1, . . . ,vn appartiennent à F , en
effet pour tout k compris entre 1 et n, vk est combinaison linéaire de v1, . . .vn (il suffit
de considérer la combinaison linéaire où tous les coefficients sont nuls sauf le kième
qui vaut 1).

Il s’agit maintenant de prouver que F est stable par combinaison linéaire de deux
vecteurs.

Soit u et w deux vecteurs de F et deux scalaires a et b . Comme u est élément de
F , il existe des scalaires l1, . . . ,ln tels que

u = l1v1 + · · ·+lnvn.

De même, w étant élément de F , il existe des scalaires µ1, . . . ,µn tels que

w = µ1v1 + · · ·+µnvn.

En utilisant les règles de calcul dans un espace vectoriel, on obtient :

au+bv = (al1 +bµ1)v1 + · · ·+(al2 +bµ2)v2 + · · ·+(aln +bµn)vn.

C’est une combinaison linéaire des vecteurs v1, . . . ,vn donc un élément de F .
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Si G est un sous-espace vectoriel contenant {v1, . . . ,vn} alors il est stable par com-
binaison linéaire ; il contient donc toute combinaison linéaire des vecteurs {v1, . . . ,vn}.
Par conséquent F est inclus dans G : F est le plus petit sous-espace (au sens de l’inclu-
sion) contenant {v1, . . . ,vn}.

Notation
Ce sous-espace vectoriel est appelé sous-espace engendré par v1, . . . ,vn et est noté

vect(v1, . . . ,vn). On a donc

u 2 vect(v1, . . . ,vn)()9(l1, . . . ,ln) 2 Kn | u = l1v1 + · · ·+lnvn.

Exemple 32 E étant un K-espace vectoriel, et u un élément quelconque de E, l’en-
semble F = {au | a 2 K} est le sous-espace vectoriel de E engendré par u. Il est
souvent noté Ku.

Exemple 33 Soit E l’espace vectoriel des applications de R dans R et e0,e1,e2 les
applications définies par :

8x 2 R, e0(x) = 1, e1(x) = x et e2(x) = x2.

Le sous-espace vectoriel de E engendré par {e0,e1,e2} est l’espace vectoriel des
fonctions polynômes de degré inférieur ou égal à 2, c’est-à-dire de la forme

f : x 7! ax2 +bx+ c.

Méthodologie :
On peut démontrer qu’une partie non vide F d’un espace vectoriel E est un sous-

espace vectoriel de E en montrant que F est égal à l’ensemble des combinaisons
linéaires d’un nombre fini de vecteurs de E.

Exemple 34 Soit F = {(x,y,z) 2 R3 | x� y� z = 0}. Un triplet de R3 est élément de
F si et seulement si x = y+ z. Donc u est élément de F si et seulement s’il peut s’écrire
u = (y+ z,y,z). Or, on a l’égalité

(y+ z,y,z) = y(1,1,0)+ z(1,0,1).

Donc F est l’ensemble des combinaisons linéaires de {(1,1,0),(1,0,1}. C’est le sous-
espace vectoriel engendré par {(1,1,0),(1,0,1}..

Proposition 21 (Propriété de transitivité) Soit F un sous-espace engendré par n vec-
teurs . On suppose qu’il existe p vecteurs w1, . . . ,wp appartenant à F tels que pour tout
i compris entre 1 et n, , vi soit une combinaison linéaire de w1, . . . ,wp. Alors F est en-
gendré par w1, . . . ,wp.

La démonstration est laissée à titre d’exercice.

Remarque 26 Plus généralement, on peut définir le sous-espace vectoriel engendré
par une partie quelconque (non nécessairement finie) d’un espace vectoriel.

Proposition 22 (Intersection de deux sous-espaces) Soit E un K-espace vectoriel. L’in-
tersection de deux sous-espaces vectoriels de E est un sous-espace vectoriel de E.
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Démonstration. Soit F1 et F2 deux sous-espaces vectoriels de E. L’intersection F1\F2
n’est pas vide car 0E appartient à F1 et F2 (car ce sont des sous-espaces vectoriels de
E).

Il suffit de montrer que F1\F2 est stable par combinaison linéaire de deux vecteurs :
Soient u et v deux vecteurs de F1\F2 et a,b deux scalaires. Comme u et v sont éléments
de F1 et F1 est un sous-espace vectoriel de E, le vecteur au+bv appartient à F1.

De même u et v appartenant à F2, le vecteur au+bv appartient donc à F2. ⇤

Exemple 35 Soit F le sous-ensemble de R3 défini par :

F = {(x,y,z) 2 R3 | x+ y+ z = 0 et x+ y+2z = 0}.

L’ensemble F est l’intersection de F1 et F2, les sous-ensembles de R3 définis par :

F1 = {(x,y,z) 2 R3 | x+ y+ z = 0}
F2 = {(x,y,z) 2 R3 | x+ y+2z = 0}

Ce sont des sous-espaces de R3 donc F = F1 \F2 est un sous-espace vectoriel de
R3.

Remarque 27 On démontre de même que l’intersection d’une famille quelconque de
sous espaces vectoriels de E est un sous espace vectoriel de E.

Remarque 28 La réunion de deux sous-espaces vectoriels de E n’est pas en général
un sous-espace de E.

3.2.3 Somme de sous espaces vectoriels
Comme la réunion de deux sous-espaces vectoriels F1 et F2 n’est pas en général un

sous-espace vectoriel, il est utile de connaı̂tre les sous-espaces vectoriels qui contiennent
à la fois les deux sous-espaces vectoriels F1 et F2, et en particulier le plus petit d’entre
eux (au sens de l’inclusion).

Définition 25 (Définition de la somme de deux sous-espaces) Si F et G sont deux sous
espaces vectoriels d’un K-espace vectoriel E, l’ensemble de tous les éléments x+y où x
est un élément de F et y un élément de G, est appelé somme des sous-espaces vectoriels
F et G . Cette somme est notée F +G. On a donc

F +G = {z 2 E | 9x 2 F,9y 2 G,z = x+ y}.

Proposition 23 Si F et G sont deux sous-espaces vectoriels du K-espace vectoriel E,
alors F +G est un sous-espace vectoriel de E.

Remarque 29 L’ensemble F + G contient F et contient G : en effet tout élément x
de F s’écrit x = x + 0 avec x appartenant à F et 0 appartenant à G (puisque G est un
sous-espace vectoriel), donc x appartient à F +G. De même pour un élément de G. On
peut montrer que F +G est le plus petit sous espace vectoriel contenant F et G.

Démonstration. • F +G est non vide car il contient F et G.
• Soient u et u0 des éléments de F +G. Comme u est dans F +G, il existe x dans F

et y dans G tels que u = x + y. Comme u0 est dans F +G, il existe x0 dans F et y0 dans
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G tels que u0 = x0+y0. Soient l et l0 des scalaires. En utilisant les axiomes des espaces
vectoriels, on obtient :

lu+l0u0 = (lx+l0x0)+(ly+l0y0).

Comme F et G sont des sous-espaces vectoriels, lx + l0x0 est dans F et ly + l0y0 est
dans G. Donc lu+l0u0 est dans F +G. ⇤

Exemple 36 Déterminons F +G dans le cas où F et G sont les sous-espaces vectoriels
de R3 suivants :

F = {(x,y,z) 2 R3 | y = z = 0} et G = {(x,y,z) 2 R3 | x = z = 0}

Un élément u de F + G s’écrit u = v + w où v est un élément de F et w un élément de
G. Donc il existe deux nombres réels x et y tels que v = (x,0,0) et w = (0,y,0). Donc
u = (x,y,0). Réciproquement un tel élément u = (x,y,0) est la somme de (x,0,0) et
de (0,y,0). Donc F +G = {(x,y,z) 2 R3 | z = 0}. On voit que, dans cet exemple, tout
élément de F +G s’écrit de façon unique comme la somme d’un élément de F et d’un
élément de G.

Exemple 37 Soient F 0 et G0 les deux sous-espaces vectoriels de R3 suivants :

F 0 = {(x,y,z) 2 R3 | x = 0} et G0 = {(x,y,z) 2 R3 | y = 0}

Dans cet exemple, montrons que F 0+G0 = R3.
Par définition de F 0+G0, tout élément de F 0+G0 est dans R3. Mais réciproquement

si u = (x,y,z) est un élément quelconque de R3 :

u = (x,y,z) = (0,y,z)+(x,0,0)

donc u appartient à F 0+G0.
Remarquons que, dans cet exemple, un élément de R3 ne s’écrit pas de façon unique

comme la somme d’un élément de F 0 et d’un élément de G0. Par exemple,

(1,2,3) = (0,2,3)+(1,0,0) = (0,2,0)+(1,0,3).

Exemple 38 Dans le R-espace vectoriel A(R,R) des applications de R dans R, on
considère le sous-espace vectoriel des fonctions paires P et le sous espace vectoriel des
fonctions impaires I . Montrons que P +I = A(R,R). L’inclusion P +I ⇢ A(R,R) est
évidente. Montrons l’inclusion inverse.

Soit f une application de R dans R. Cherchons une fonction paire a et une fonction
impaire b telles que f = a+b. Si a et b existent, on a pour tout x de R :

f (x) = a(x)+b(x)

et
f (�x) = a(�x)+b(�x) = a(x)�b(x).

Donc, si a et b existent, elles sont uniques et on a nécessairement

a : R ! R

x 7! f (x)+ f (�x)
2
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et
b : R ! R

x 7! f (x)� f (�x)
2

.

Considérons les fonctions a et b définies ci dessus. La fonctions a est dans P et la
fonction b est dans I . Il est facile de voir que l’on a f = a+b. Donc P +I = A(R,R).
Nous avons montré que tout élément de A(R,R) s’écrit de façon unique comme la
somme d’un élément de P et d’un élément de I .

Dans cette démonstration, on a montré l’unicité de a et b avant leur existence car
cela nous a permis d’avoir une expression pour a et b.

La notion de somme de deux sous-espaces vectoriels d’un K-espace vectoriel se
généralise en la notion de somme de plusieurs sous-espaces.

Définition 26 (Définition de la somme de n sous-espaces vectoriels) Si F1,F2, . . . ,Fn
sont n sous-espaces vectoriels d’un K-espace vectoriel E, l’ensemble de toutes les
sommes x1 +x2 + · · ·+xn où, pour tout entier p compris entre 1 et n, l’élément xp appar-
tient à Fp est appelé somme des sous espaces F1,F2, . . . ,Fn et est noté F1 +F2 + · · ·+Fn

ou
n

Â
p=1

Fp. On a donc

F1 +F2 + · · ·+Fn = {x2 E | 9(x1,x2, . . . ,xn)2 F1⇥F2⇥ · · ·⇥Fn,x = x1 +x2 + · · ·+xn}

Théorème 13 (Théorème de structure de la somme de n sous-espaces vectoriels) La
somme F1 +F2 + · · ·+Fn des sous-espaces Fp, pour p compris entre 1 et n, est un sous-
espace vectoriel de E.

La démonstration est analogue au cas n = 2.

Exemple 39 Considérons dans R4 les trois sous-espaces vectoriels F,G et H, engendrés
respectivement par (1,0,0,0),(0,1,0,0),(0,0,1,0), alors tout élément de la somme
F +G+H s’écrit sous la forme (x,y,z,0) et donc :

F +G+H = {(x,y,z, t) | t = 0}.

Dans le deuxième exemple, nous avons vu que F 0+G0 = R3 mais qu’un élément de
R3 ne s’écrit pas de façon unique comme la somme d’un élément de F 0 et d’un élément
de G0. En revanche, dans le premier exemple, un élement de F + G s’écrit de façon
unique comme la somme d’un élement de F et d’un élément de G. De même, dans le
troisième exemple, un élément de A(R,R) s’écrit de façon unique comme la somme
d’un élément de P et d’un élément de I . Nous sommes donc amenés à introduire la
définition suivante.

Définition 27 (Définition de la somme directe de deux sous-espaces) Etant donnés deux
sous-espaces vectoriels F et G de E, la somme F +G des sous-espaces F et G est dite
directe et s’écrit F�G si et seulement si tout élément de F +G s’écrit d’une manière
unique comme la somme d’un élément de F et d’un élément de G.

La somme F�G est appelée somme directe de F et G.

Notation : La notation F +G = F�G signifie que la somme F +G est directe.
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Remarque 30 On dit que l’élément u de F + G s’écrit d’une manière unique comme
somme d’un élément de F et d’un élément de G lorsque la propriété suivante est
vérifiée : Si u s’écrit u = v+w et u = v0+w0 avec v,v0 éléments de F et w,w0 éléments
de G alors v = v0 et w = w0.

Proposition 24 Une condition nécessaire et suffisante pour que la somme de deux
sous-espaces vectoriels F et G soit directe est que 0E s’écrive de manière unique
comme la somme d’un élément de F et d’un élément de G. La seule façon d’écrire
0E comme la somme d’un élément de F et d’un élément de G est alors 0E = 0E +0E

Démonstration. Il est évident que la condition est nécessaire. Montrons qu’elle est suf-
fisante. Supposons que 0E s’écrive de manière unique comme la somme d’un élément
de F et d’un élément de G et montrons qu’il en est de même pour tout élément de
F +G. Soit u un élément de F +G. Supposons que u s’écrive u = v+w et u = v0+w0
avec v,v0 éléments de F et w,w0 éléments de G. On a alors (v� v0)+(w�w0) = 0E , ce
qui implique v� v0 = 0E et w�w0 = 0E . On en déduit v = v0 et w = w0, ce qu’il fallait
démontrer. ⇤

Proposition 25 (Propriété caractéristique) Une condition nécessaire et suffisante pour
que la somme de deux sous-espaces vectoriels F et G soit directe est que l’intersection
de F et de G soit réduite au vecteur nul.

F +G = F�G() F \G = {0}.

Démonstration. Supposons que F + G = F �G. Si u est un élément quelconque de
F \G, il peut s’écrire des deux manières suivantes comme somme d’un élément de F
et d’un élément de G :

u = 0+u et u = u+0.

L’élément u étant un élément de F\G, est donc un élément de F +G. D’après l’unicité
de l’écriture d’un élément de F +G, cela entraı̂ne : u=0 . Donc F \G = {0}.

Réciproquement supposons que F \G = {0}. Soit u un élément de F + G. Si u
s’écrit des deux manières comme la somme d’un élément de F et d’un élément de G :

u = v+w ; et u0 = v0+w0

où v et v0 sont des éléments de F et w et w0 des éléments de G, alors v� v0 = w0 �w.
Mais v� v0 élément de F et w0 �w est un élément de G (puisque F et G sont des sous-
espaces vectoriels) donc v� v0 = w0 �w est un élément de F \G, c’est donc l’élément
nul. On en déduit que v = v0 et w = w0 . L’écriture de u comme somme d’un élément
de F et d’un élément de G est donc unique.

La notion de somme directe de deux sous-espaces vectoriels d’un K-espace vecto-
riel E se généralise au cas de plusieurs sous-espaces.

Définition 28 (Définition de la somme directe de n sous-espaces vectoriels) La somme
de n sous-espaces vectoriels F1,F2, . . . ,Fn d’un K-espace vectoriel E est dite directe et
s’écrit F1�F2� · · ·�Fn si et seulement si tout élément de F1 + F2 + · · ·+ Fn s’écrit
d’une manière unique comme somme d’éléments de F1,F2, . . . ,Fn. Ce qui s’écrit avec
les quantificateurs :

8x 2 F1 +F2 + · · ·+Fn,9!(x1, . . . ,xn) 2 F1⇥F2⇥ . . .Fn, x = x1 + x2 + · · ·+ xn.
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La notation 9! signifie : il existe un unique.

Exemple 40 Soit dans R4 les trois sous-espaces vectoriels F , G et H, engendrés res-
pectivement par (1,0,0,0), (0,1,0,0) et (0,0,1,0). Alors tout élément u de la somme
F +G+H s’écrit sous la forme

u = a(1,0,0,0)+b(0,1,0,0)+ g(0,0,1,0)

donc u = (a,b,g,0). Si u s’écrivait aussi

u = a0(1,0,0,0)+b0(0,1,0,0)+ g0(0,0,1,0)

alors on aurait u = (a0,b0,g0,0). Mais dans R4 :

(a,b,g,0) = (a0,b0,g0,0) =) a = a0,b = b0,g = g0

donc l’écriture d’un élément de F +G+H comme somme d’éléments de F , G et H est
unique :

F +G+H = F�G�H.

Proposition 26 La somme de n sous-espaces vectoriels F1,F2, . . . ,Fn d’un K-espace
vectoriel E est directe si et seulement 0E s’écrit d’une manière unique comme somme
d’éléments de F1,F2, . . . ,Fn.

Démonstration. La démonstration est identique à celle donnée dans le cas de deux sous
espaces vectoriels. ⇤

Remarque 31 ATTENTION : Dans le cas de plusieurs sous-espaces vectoriels, le fait
que les sous-espaces aient deux à deux une intersection réduite au vecteur nul n’est pas
une condition suffisante pour que la somme soit directe

Contre exemple : Dans l’espace vectoriel R2, soit F le sous-espace vectoriel en-
gendré par (1,0), G le sous-espace vectoriel engendré par (0,1) et H le sous-espace
vectoriel engendré par (1,1). Il est immédiat que F\G = {0}, G\H = {0} et F\H =
{0} et pourtant la somme F + G + H n’est pas directe. En effet l’élément (1,1) de
F +G+H se décompose en somme d’éléments de F , G et H de la manière suivante :

(1,1) = (0,0)+(0,0)+(1,1)

mais aussi de la manière suivante :

(1,1) = (1,0)+(0,1)+(0,0)

donc il n’y a pas unicité de l’écriture.

Définition 29 1) Deux sous-espaces vectoriels F et G d’un K-espace vectoriel E sont
des sous-espaces vectoriels supplémentaires de E si leur somme est directe et est
égale à l’espace vectoriel E tout entier :

E = F�G.

2) Si F et G sont des sous-espaces vectoriels supplémentaires du K-espace vectoriel
E, on dit que F est un supplémentaire de G, ou que G est un supplémentaire de F.
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Propriétés caractéristiques :
Deux sous-espaces vectoriels F et G d’un K-espace vectoriel E sont des sous-

espaces vectoriels supplémentaires de E si et seulement si tout élément de E s’écrit
d’une manière unique comme la somme d’un élément de F et d’un élément de G.

Deux sous-espaces vectoriels F et G d’un K-espace vectoriel E sont des sous-
espaces vectoriels supplémentaires de E si et seulement si E = F + G et F \G = {0}
.

Remarque 32 L’existence d’un supplémentaire d’un sous-espace vectoriel sera prouvée
dans le cadre des espaces vectoriels de type fini.

Remarque 33 Il n’y a pas unicité du supplémentaire d’un sous-espace vectoriel donné
(voir exemple suivant).

Exemple 41 L’espace vectoriel R2 est la somme directe du sous-espace vectoriel F
engendré par (1,0) et du sous-espace G engendré par (0,1), donc F et G sont des
sous-espaces vectoriels supplémentaires de R2. Mais l’espace vectoriel R2 est aussi la
somme directe du sous-espace vectoriel F engendré par (1,0) et du sous-espace vecto-
riel H engendré par (1,1), donc F et H sont aussi des sous-espaces supplémentaires de
R2.

Soit u = (x,y) un élément de R2, cherchons deux éléments v 2 F et w 2 H tels que
u = v+w.

v 2 F ()9a 2 R,v = (a,0)
w 2 H()9b 2 R,w = (b,b)
u = v+w() (x,y) = (a+b,b)() b = y et a = x� y

Ceci prouve que pour tout élément u = (x,y) de R2, il existe un unique élément w =
(y,y) de H et un unique élément v = (x� y,0) de F tels que u = v + w. On a bien
R2 = F�H.

Exemple 42 Soient les sous-espaces vectoriels F 00 et G00 de R3 suivants :

F 00 = {(x,y,z) 2 R3 | x� y� z = 0} et G00 = {(x,y,z) 2 R3 | y = z = 0}

Les sous-espaces vectoriels F 00 et G00 sont des sous-espaces de R3 supplémentaires.
Montrons le :

Il est immédiat de vérifier que F 00 \G00 = {0}. En effet si l’élément u = (x,y,z)
appartient à l’intersection de F 00 et de G00, alors les coordonnées de u vérifient : x�y�
z = 0 (car u appartient à F 00), et y = z = 0 (car u appartient à G00), donc u = (0,0,0) .

Il reste à démontrer que F 00+ G00 = R3.. Soit donc u = (x,y,z) un élément quel-
conque de R3 ; il faut déterminer des éléments u1 de F 00 et u2 de G00 dont la somme
soit égale à u : . L’élément u1 doit être de la forme (y1 + z1,y1,z1) et l’élément u2 de la
forme u2 = (x2,0,0) . On a u = u1 +u2 si et seulement si y1 = y, z1 = z, x2 = x�y� z.
On a donc

(x,y,z) = (y+ z,y,z)+(x� y� z,0,0)

avec (y+ z,y,z) dans F 00 et (x� y� z,0,0) dans G00.
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Remarque 34 La vérification du 1) était inutile puisque la recherche de u1 et de u2
montre leur unicité. Mais lorsque l’on ne sait pas si la somme est directe ou ne l’est
pas, il est souvent plus facile de commencer par vérifier si l’intersection est nulle ou ne
l’est pas.

3.3 Applications linéaires

3.3.1 Définition et premières propriétes
Définition 30 Soient E et F deux K-espaces vectoriels. Une application f de E dans
F est appelée application linéaire si elle satisfait aux deux conditions suivantes :

(1) Pour tous vecteurs u et v de E, f (u+ v) = f (u)+ f (v).
(2) Pour tout vecteur u de E et pour tout scalaire l de K, f (lu) = l f (u)

Autrement dit : une application est linéaire si elle ” respecte ” les deux lois d’un
espace vectoriel.

Notation :
L’ensemble des applications linéaires de E dans F est noté L(E,F) ou LK(E,F).

Proposition 27 Soient E et F deux K-espaces vectoriels. Si f est une application
linéaire de E dans F alors

• f (0E) = 0F
• Pour tout vecteur u de E, f (�u) =� f (u) .

Démonstration. Il suffit d’appliquer la propriété (2) de linéarité avec l = 0 puis avec
l =�1. ⇤

Remarque 35 La nécessité que E et F soient des espaces vectoriels sur le même corps
K apparaı̂t clairement dans ces calculs.

Méthodologie
Soit f une application d’un espace vectoriel E dans un espace vectoriel F . Lors-

qu’on cherche à répondre à la question suivante : ” f est-elle linéaire ? ”, on peut rapi-
dement déterminer f (0E) :

si f (0E) 6= 0F , alors on peut conclure que f n’est pas linéaire. Si f (0E) = 0F , on ne
peut rien conclure et il faut alors vérifier que f satisfait à chacune des deux propriétés
de linéarité.

Pour démontrer qu’une application est linéaire, on peut aussi utiliser une propriété
plus ”concentrée” donnée par la caractérisation suivante :

Proposition 28 (Caractérisation d’une application linéaire) Soient E et F deux K-
espaces vectoriels et f une application de E dans F. L’application f est linéaire si et
seulement si, pour tous vecteurs u et v de E et pour tous scalaires a et b de K,

f (au+bv) = a f (u)+b f (v).
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Démonstration : Soient f une application linéaire de E dans F , u et v deux vecteurs
de E, et deux éléments a et b de K. En utilisant la propriété (1) puis la propriété (2) de
la linéarité de K, on a

f (au+bv) = f (au)+ f (bv)
= a f (u)+b f (v)

Montrons la réciproque. Soit f une application de E dans F telle que, pour tous
vecteurs u et v de E et pour tous scalaires a et b de K, f (au + bv) = a f (u)+ b f (v).
Alors, pour tous vecteurs u et v de E, on a f (u+ v) = f (u)+ f (v). (égalité (3) dans le
cas particulier où a = b = 1). Pour tout vecteur u de E et pour tout scalaire a de K, on
a f (au) = a f (u) (égalité (3) dans le cas particulier où b = 0).

On a une caractérisation un peu plus simple des applications linéaires.

Proposition 29 Soient E et F deux K-espaces vectoriels et f une application de E
dans F. L’application f est linéaire si et seulement si, pour tous vecteurs u et v de E et
pour tout scalaire a de K,

f (au+ v) = a f (u)+ f (v).

Proposition 30 (Image d’une combinaison linéaire) Soient E et F deux K-espaces
vectoriels et f une application linéaire de E dans F, alors

8n 2 N⇤,8(l1, . . . ,ln) 2 Kn,8(u1, . . . ,un) 2 En

f

 
n

Â
i=1

liui

!
=

n

Â
i=1

li f (ui)

Cette proposition se démontre par récurrence sur n.

Vocabulaire
Soient E et F deux K-espaces vectoriels.
Une application linéaire de E dans F est aussi appelée homomorphisme d’espaces

vectoriels.
L’ensemble des applications linéaires de E dans F est noté L(E,F).
Une application linéaire bijective de E sur F est appelée isomorphisme d’espaces

vectoriels.
Une application linéaire de E dans E est appelée endomorphisme de E.
L’ensemble des endomorphismes de E est noté L(E).
Un endomorphisme bijectif de E est appelé automorphisme de E.
L’ensemble des automorphismes de E est noté GL(E).

Exemple 43 L’application f définie par

f : R3 ! R2

(x,y,z) 7! (x,y+ z)

est linéaire. En effet, soient u = (x,y,z) et v = (x0,y0,z0) deux éléments de R3 et l un
réel.

f (lu+ v) = f (lx+ x0,ly+ y0,lz+ z0)
= (lx+ x0,ly+ y0+lz+ z0)
= l(x,y+ z)+(x0,y0+ z0)
= l f (u)+ f (v)
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Exemple 44 Soient D(R,R) le sous-espace vectoriel de A(R,R) composé des fonc-
tions dérivables sur R. L’application d de D(R,R) dans A(R,R) définie par

d : D(R,R) ! A(R,R)
f 7! f 0

est linéaire. En effet, soient f et g deux fonctions dérivables sur R et soit a un réel, on
a

d(a f +g) = (a f +g)0 = a f 0+g0 = ad( f )+d(g).

Exemple 45 Considérons l’application de Mn,p(K) dans Mp,n(K) donnée par la trans-
position.

T : Mn,p(K) ! Mp,n(K)
A 7! AT

T est linéaire car pour tous éléments de Mn,p(K) et tout scalaire a, on a vu que

(aA+B)T = (aA)T +BT = aAT +BT .

Exemple 46 Soient E un K-espace-vectoriel, w un vecteur non nul de E et f l’appli-
cation définie par

f : E ! E
u 7! u+w

f est appelée translation de vecteur w. f (0E) = w d’où f (0E) 6= 0E . L’application
f n’est donc pas linéaire.

Exemple 47 Soit f l’application définie par :

R ! R
x 7! x2

f (1) = 1 et f (2) = 4. Donc 2 f (1) 6= f (2). Donc f n’est pas linéaire.

3.3.2 L’espace vectoriel L(E,F)
Soient E et F deux K-espaces vectoriels. Rappelons que l’ensemble des applica-

tions de E dans F , noté A(E,F), est muni d’une loi de composition interne + et d’une
loi de composition externe définies de la façon suivante :

f ,g étant deux éléments de A(E,F), et l étant un élément de K, pour tout vecteur
u de E

( f +g)(u) = f (u)+g(u) et (l f )(u) = l f (u).

F étant un K-espace vectoriel, l’ensemble des applications de E dans F , noté
A(E,F) est un K-espace vectoriel.

Proposition 31 Soient E et F deux K-espaces vectoriels. L’ensemble des applications
linéaires de E dans F, noté L(E,F), muni des deux lois définies précédemment, est un
K-espace vectoriel.
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Démonstration. L’ensemble L(E,F) est inclus dans le K-espace vectoriel A(E,F) .
Pour montrer que L(E,F) est un K-espace vectoriel, il suffit donc de montrer que
L(E,F) est un sous-espace vectoriel de A(E,F) :

L’application nulle appartient à L(E,F), donc L(E,F) est non vide. Soient f ,g
deux éléments de L(E,F), et l un élément de K. Pour tous vecteurs u et v de E et pour
tous scalaires a, b de K,

( f +g)(au+bv) = f (au+bv)+g(au+bv)(définition de f+g)
= a f (u)+b f (v)+ag(u)+bg(v)(linéarité de f et g)
= a( f (u)+g(u))+b( f (v)+g(v))(propriétés des lois de F)
= a( f +g)(u)+b( f +g)(v)(définition de f+g)

f +g est donc linéaire et L(E,F) est stable pour l’addition.

(l f )(au+bv) = l f (au+bv) (définition de lf)
= l(a f (u)+b f (v)) (linéarité de f)
= al f (u)+bl f (v)(propriétés des lois de F)
= a(l f )(u)+b(l f )(v)(définition de l f )

l f est donc linéaire et L(E,F) est stable pour la loi externe.
L(E,F) est donc un sous-espace vectoriel de A(E,F). En particulier L(E) est un

sous-espace vectoriel de A(E,E).

Proposition 32 ( Composée de deux applications linéaires) Soient E,F,G trois K-espaces
vectoriels, f une application linéaire de E dans F et g une application linéaire de F
dans G, alors g� f est une application linéaire de E dans G.

Remarque 36 En particulier, le composé de deux endomorphismes de E est un endo-
morphisme de E. Autrement dit � est une loi de composition interne sur L(E)

Démonstration. Soient u et v deux vecteurs de E, et a et b deux éléments de K.

(g� f )(au+bv) = g( f (au+bv)) (définition de g� f )
= g(a f (u)+b f (v)) (linéarité de f)
= ag( f (u))+bg( f (v)) (linéarité de g)

Attention ! Si les espaces vectoriels E et G sont distincts, on ne peut pas définir
l’application f �g.

Proposition 33 ( Propriétés de la composition d’applications linéaires) Soient E, F,
G trois K-espaces vectoriels.

1. 8( f1, f2) 2 L(E,F)⇥L(E,F), 8g 2 L(F,G), g� ( f1 + f2) = g� f1 +g� f2

2. 8 f 2 L(E,F), 8(g1,g2) 2 L(F,G)⇥L(F,G), (g1 +g2)� f = g1 � f +g2 � f

3. 8a 2 K,8 f 2 L(E,F),8g 2 L(F,G), (ag)� f = g� (a f ) = a(g� f )
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Démonstration. 1. Pour tout vecteur u de E, on a

(g� ( f1 + f2))(u) = g(( f1 + f2)(u))
= g(( f1(u)+ f2(u))
= g( f1(u))+g( f2(u))

La dernière égalité utilise la linéarité de g. Les autres égalités se déduisent de la
définition de la loi � et de la loi + .

[(g� f1)+(g� f2)](u) = (g� f1)(u)+(g� f2)(u)
= g( f1(u))+g( f2(u))

Remarque : Cette démonstration utilise la linéarité de g, mais pas celles de f1 et de
f2.

2. Pour tout vecteur u de E,

((g1 +g2)� f )(u) = (g1 +g2)( f (u))
= g1 ( f (u))+g2 ( f (u))
= (g1 � f +g2 � f )(u)

Ces égalités se déduisent de la définition de la loi � et de la loi +.
Remarquons que la démonstration de 2. n’utilise pas de linéarité.
3. La preuve de la troisième propriété est laissée au lecteur. La démonstration de la

formule (ag)� f = a(g � f ) n’utilise pas de linéarité. La démonstration de la formule
g� (a f ) = a(g� f ) utilise la linéarité de g.

Proposition 34 ( Linéarité de l’application réciproque d’un isomorphisme) Soient
E et F deux K-espaces vectoriels, si f est un isomorphisme de E sur F, alors f�1 est
un isomorphisme de F sur E.

Démonstration. f étant une application bijective de E sur F , f�1 est une application
bijective de F sur E. Il reste donc à prouver que f�1 est bien linéaire. Soient u0 et
v0 deux vecteurs de F et soient a et b deux éléments de K, on pose f�1(u0) = u et
f�1(v0) = v et on a alors f (u) = u0 et f (v) = v0. Comme f est linéaire, on a

f�1(au0+bv0) = f�1 (a f (u)+b f (v)) = f�1 ( f (au+bv)) = au+bv

car f�1 � f = IdE ( où IdE désigne l’application identique de E dans E ) donc

f�1(au0+bv0) = a f�1(u0)+b f�1(v0)

f�1 est donc linéaire.

Vocabulaire
La proposition précédente prouve donc que s’il existe un isomorphisme de E sur

F , alors il existe aussi un isomorphisme de F sur E. Les deux espaces vectoriels E et
F sont dits isomorphes.

3.3.3 Exemples d’endomorphismes : homothétie, projection
•Homothétie
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Soient E un K-espace-vectoriel, et l un élément de K. On définit l’application fl
par :

fl : E ! E
u 7! lu

fl est linéaire. En effet, soient u et v deux vecteurs de E, et a, b deux scalaires de K.
En utilisant les propriétés des lois de l’espace vectoriel E et la définiton de fl

fl(au+bv) = l(au+bv)
= l(au)+l(bv)
= (la)u+(lb)v
= (al)u+(bl)v
= a(lu)+b(lv)
= a fl(u)+b fl(v)

fl est appelée homothétie de rapport l. Dans le cas particulier où l = 1, fl est
l’application identité. Dans le cas particulier où l = 0, fl est l’application nulle.

Si k 6= 0, fl est une bijection de E sur E (tout élément v de E admet un antécédent

unique u =
1
l

) donc c’est un automorphisme de E.

• Projection
Soient E un K-espace-vectoriel et F et G deux sous-espaces vectoriels

supplémentaires dans E. Tout vecteur u de E s’écrit de façon unique u = v + w avec
v élément de F et w élément de G. L’unicité de la décomposition précédente permet
de définir l’application p de E dans E telle que p(u) = v. L’application p est appelée
projection sur F parallèlement à G. C’est une application linéaire.

En effet, soient deux vecteurs u et u0 de E, et deux scalaires a , b deux scalaires
de K, le vecteur u s’écrit de façon unique u = v+w avec v élément de F et w élément
de G et, par définition de p, p(u) = v. De même, le vecteur u0 s’écrit de façon unique
u0 = v0+w0 avec v0 élément de F et w0 élément de G et, par définition de p, p(u0) = v0 .

au+bu0 = (av+bv0)+(aw+bw0).

F est un sous-espace vectoriel de E, il est donc stable par combinaison linéaire et donc
le vecteur av + bv0appartient à F . De même le vecteur aw + bw0 appartient à G et,
d’après la définition de p,on a

p(au+bu0) = av+bv0 = ap(u)+bp(u0).

Une projection p vérifie l’égalité p2 = p. En effet, soit p la projection sur F pa-
rallèlement à G, tout vecteur u de E s’écrit de façon unique u = v + w avec v élément
de F et w élément de G. on a alors p(u) = v et p(v) = v car v = v + 0 avec v élément
de F et 0 élément de G. Ainsi

p2(u) = p(p(u)) = p(v) = v = p(u).

Exemple 48 Nous avons vu que les sous-espaces vectoriels F 00 et G00 de R3 suivants :

F 00 = {(x,y,z) 2 R3 | x� y� z = 0} et G00 = {(x,y,z) 2 R3 | y = z = 0}

sont supplémentaires dans R3. Soit p la projection sur F 00 parallèlement à G00. D’après
les calculs faits précédemment, on a p(x,y,z) = (y+ z,y,z).
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Exemple 49 Nous avons vu que l’ensemble des fonctions paires P et l’ensemble des
fonctions impaires I sont des sous espace vectoriels supplémentaires dans A(R,R).
Notons p la projection sur P parallèllement à I . Si f est un élément de A(R,R), on a
p( f ) = a où

a : R ! R

x 7! f (x)+ f (�x)
2

.

3.3.4 Applications linéaires et sous espaces vectoriels
Soient E et F deux ensembles et f une application de E dans F . Soit A un sous-

ensemble de E. L’ensemble des images par f des éléments de A, appelé ” image de A
par f ”, est notée f (A) . C’est un sous ensemble de F . On a

f (A) = {y 2 F | 9x 2 A, f (x) = y}.

f (E) s’appelle l’image de f et est noté Imf.

Dans toute la suite, E et F désigneront des K-espaces vectoriels.

Proposition 35 ( Structure de l’image d’un sous espace vectoriel) Soit f une appli-
cation linéaire du K-espace vectoriel E dans le K-espace vectoriel F. Si A est un sous-
espace vectoriel de E, alors f (A) est un sous-espace vectoriel de F. En particulier Imf
est un sous-espace vectoriel de F.

Démonstration. Comme A est un sous-espace vectoriel de E, il contient l’élément 0E ,
donc f (0E) (qui est égal à 0F ) appartient à f (A). Donc f (A) est non vide. Ensuite
on montre que pour tout couple (y1,y2) d’éléments de f (A) et pour tout scalaire a ,
l’élément y1 +ay2 appartient à f (A). En effet :

y1 2 f (A)()9x1 2 A, f (x1) = y1
y2 2 f (A)()9x2 2 A, f (x2) = y2

Comme f est linéaire, on a

y1 +ay2 = f (x1)+a f (x2) = f (x1 +ax2).

Or x1 +ax2 est un élément de A, car A est un sous-espace vectoriel de E, donc y1 +ay2
est bien un élément de f (A).

Définition 31 (Définition du noyau) Soient E et F deux K-espaces vectoriels et f une
application linéaire de E dans F. Le noyau de f , noté Ker(f) , est l’ensemble des
éléments de E dont l’image est 0F .

Ker(f) = {x 2 E | f(x) = 0F}

Proposition 36 Soient E et F deux K-espaces vectoriels et f une application linéaire
de E dans F. Le noyau de f est un sous-espace vectoriel de E.

Démonstration. Ker(f) est non vide car il contient 0E . Soient x1 et x2 deux éléments de
Ker(f) et a un scalaire. Montrons que x1 +ax2 est élément de Ker(f). On a, en utilisant
la linéarité de f et le fait que x1 et x2 sont éléments de Ker(f) :

f (x1 +ax2) = f (x1)+a f (x2) = 0F .
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Exemple 50 Soient E un K-espace vectoriel, et l un élément de K. Considérons fl
l’homothétie de rapport l. On a :

fl : E ! E
x 7! lx

Si l = 0, fl est l’application nulle de E, donc Im(f0) = {0E} et Ker( f0) = E.
Si l 6= 0, fl est une bijection, alors Im(fl) = E , et le seul élément de E ayant pour

image 0E est 0E, donc Ker(fl) = {0E} .

Exemple 51 Soient E un K-espace vectoriel, F et G deux sous-espaces vectoriels de
E, supplémentaires, et p la projection sur F parallèlement à G. Si le vecteur u de E
s’écrit d’une manière unique u = uF + uG avec uF élément de F et uG élément de G,
alors p(u) = uF . Le noyau de p est l’ensemble des vecteurs u de E tels que uF = 0,
c’est donc G. Montrons que l’image de p est F . Il est immédiat que l’image de p est
contenue dans F . Réciproquement tout élément de F est sa propre image, ce qui fournit
l’inclusion F ⇢ Im(p)

Ker(p) = G et Im(p) = F.

Théorème 14 (Caractérisation des applications linéaires injectives) Soient E et F
deux K-espaces vectoriels et f une application linéaire de E dans F. L’application f
est injective si et seulement si son noyau ne contient que le vecteur nul.

Démonstration. Supposons que f soit injective et montrons que Ker(f) = {0}. Soit x
un élément de Ker(f). On a f (x) = 0F . Or, comme f est linéaire, on a aussi f (0E) = 0F .
De l’égalité f (x) = f (0E), on déduit x = 0E car f est injective. Donc Ker(f) = {0E}.

Supposons maintenant que Ker(f) = {0}. Soient x et y deux éléments de E tels
que f (x) = f (y). On a donc f (x)� f (y) = 0F . Comme f est linéaire, on en déduit
f (x� y) = 0F , c’est à dire x� y est élément de Ker(f). Donc x� y = 0E , soit x = y. Ce
qui achève la démonstration du théorème.

Remarque 37 Avec les notations du théorème, on a comme d’habitude, f surjective si
et seulement si Im f = F .

Exemple 52 Soit f l’application de R2 dans R3 définie par :

f : R2 ! R3

(x,y) 7! (x,x,�x)

On montre que f est linéaire. L’image de f est l’ensemble de tous les triplets (x,x,�x)
pour x parcourant R. On a donc

Im(f) = vect((1,1,�1)) .

Le noyau de f est l’ensemble des couples (0,y) pour y parcourant R. On a donc

Ker(f) = vect((0,1)) .

f n’est ni surjective, ni injective.
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Chapitre 4

Espaces vectoriels de type fini,
bases

4.1 Espaces vectoriels de type fini

4.1.1 Ensemble fini de générateurs d’un espace vectoriel
Définition 32 Soit E un espace vectoriel sur un corps K. Soit p un entier supérieur
à 1 et p vecteurs de E, v1, . . . ,vp. Les vecteurs v1, . . . ,vp engendrent E si tout élément
de E est combinaison linéaire des vecteurs v1, . . . ,vp, ce qui peut s’écrire, avec le
symbolisme mathématique :

8x 2 E, 9(a1, . . . ,ap) 2 K p | x = a1v1 + · · ·+apvp

Les vecteurs (v1, . . . ,vp) engendrent E si et seulement si E = vect(v1, . . . ,vp).

Vocabulaire :
Si les vecteurs v1, . . . ,vp engendrent E, ils constituent un ensemble fini de générateurs

de E ou une famille de générateurs de E. Dans ce cas, l’ensemble {v1, . . . ,vp} est ap-
pelée aussi partie génératrice de E.

Les termes ”ensemble de générateurs” ou ”famille de générateurs” sont les termes
utilisés usuellement par la communauté mathématique, c’est pourquoi nous les avons
indiqués ici. Ils n’ont cependant pas le même statut. En effet, quand on parle d’une
famille d’éléments d’un ensemble, il peut y avoir des éléments égaux et l’ordre des
éléments importe. En revanche, quand on parle d’ensemble, le mot désigne une liste
d’objets distincts et l’ordre des éléments n’importe pas.

Proposition 37 Soit E un K-espace vectoriel admettant une famille finie de générateurs
(v1, . . . ,vp). Alors, toute partie A de E contenant les vecteurs v1, . . . ,vp est encore une
partie génératrice de E.

Démonstration. Ceci est tout à fait immédiat en reprenant la définition de sous-espace
engendré par une partie et en utilisant le fait que les vecteurs v1, . . . ,vp sont des éléments
de A. ⇤

69
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Remarque 38 Si la famille de vecteurs (v1, . . . ,vp) engendrent E, une sous-famille
de la famille peut ne pas engendrer E. Considérons par exemple E = R3. Soient les
vecteurs u = (1,0,0) , v = (0,1,0) et w = (0,0,1) . Ils engendrent E. En effet tout
élément (x,y,z)de R3 peut s’écrire

(x,y,z) = x(1,0,0)+ y(0,1,0)+ z(0,0,1).

En revanche, si l’on ne considère que la partie composée des éléments (1,0,0) et
(0,1,0), elle n’engendre pas R3. Il suffit pour justifier cette affirmation de trouver un
élément de R3 qui n’est pas combinaison linéaire des vecteurs u et v . Le vecteur w, par
exemple, n’est pas une combinaison linéaire des vecteurs u et v sinon il existerait deux
réels a et b tels que

w = (0,0,1) = a(1,0,0)+b(0,1,0).

entrainant, entre autre que 0 = 1 (en regardant les troisièmes composantes).

Proposition 38 (Réduction d’une famille génératrice) Si les vecteurs v1, . . . ,vp en-
gendrent E et si l’un des vecteurs, par exemple vp, est combinaison linéaire des autres,
alors la partie {v1, . . . ,vp}�{vp} = {v1, . . . ,vp�1} engendre E.

En effet, comme les vecteurs v1, . . . ,vp engendrent E, pour tout élément x de E, il
existe des scalaires (l1, . . . ,lp) tels que

x = l1v1 + · · ·+lpvp.

Or l’hypothèse vp est combinaison linéaire des vecteurs (v1, . . . ,vp�1) se traduit par
l’existence de scalaires (a1, . . . ,ap�1) tels que .

vp = a1v1 + · · ·+ap�1vp�1.

Alors, le vecteur x s’écrit :

x = l1v1 + · · ·+lp�1vp�1 +lp (a1v1 + · · ·+ap�1vp�1) .

soit
x = (l1 +lpa1)v1 + · · ·+(lp�1 +lpap�1)vp�1

ce qui prouve que x est combinaison linéaire des vecteurs v1, . . . ,vp�1. Ceci achève la
démonstration. Il est clair que si l’on remplace vp par n’importe lequel des vecteurs vi,
la démonstration est la même. ⇤

Remarque 39 Un K-espace vectoriel quelconque ne possède pas obligatoirement de
système fini de générateurs. Par exemple l’espace vectoriel réel des fonctions po-
lynômes sur R.

Remarque 40 Soit E un K-espace vectoriel et F un sous-espace vectoriel de E. Si
F admet une famille génératrice (v1, . . . ,vp), il résulte de la définition (appliquée à
l’espace vectoriel F) que les vecteurs v1, . . . ,vp sont nécessairement éléments de F .

Exemple 53 Soit le R-espace vectoriel R2 et les vecteurs v = (1,0) et w = (1,1). Les
vecteurs v et w engendrent E. En effet, soit u = (x,y) un élément quelconque de R2.
Montrer que u est combinaison linéaire de v et w revient à démontrer l’existence de
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deux réels a et b tels que u = av+bw. Il s’agit donc d’étudier l’existence de solutions
du système : ⇢

a+b = x
b = y

Il a pour solution b = y et a = x� y et ceci, quels que soient les réels x et y. Toujours
dans le R-espace vectoriel R2, il est facile de démontrer que {(1,0),(0,1)} est aussi
une partie génératrice de R2 ((x,y) = x(1,0)+ y(0,1)).

Ceci prouve qu’il peut exister plusieurs familles finies différentes, non incluses les
unes dans les autres, engendrant le même espace vectoriel.

Exemple 54 Soit Pn(R) le R-espace vectoriel des fonctions polynômes de degré inférieur
où égal à n. Soient les fonctions de R dans R définies pour tout x de R par :

f0(x) = 1, f1(x) = x, . . . , fk(x) = xk, . . . , fn(x) = xn.

Les fonctions ( f0, . . . , fn) constituent une famille génératrice de Pn(R).

Exemple 55 Soit E = R considéré comme un R-espace vectoriel. Soit a un élément
non nul de R. Alors {a}, où a est considéré comme un vecteur, est une partie génératrice
de E. En effet, soit x un élément quelconque de R. Il peut s’écrire

x =
x
a

a.

L’inverse de a,
1
a

, existe car a est non nul ; dans cette égalité,
x
a

joue le rôle d’un
scalaire et a celui d’un vecteur.

Définition 33 (Définition d’un espace vectoriel de type fini) Un espace vectoriel est
dit de type fini s’il admet une famille finie de générateurs.

Exemple 56 Il résulte des trois exemples de la page précédente que R2, Pn(R) et R
sont des espaces vectoriels de type fini.

Il est clair, en particulier en considérant les espaces vectoriels R2 et R, qu’il peut
exister plusieurs familles finies différentes de générateurs d’un espace vectoriel de type
fini. Cela a été vu dans le cadre du premier exemple, concernant R2. En ce qui concerne
R, tout élément non nul de R est un système générateur de R.

De plus, si G est une famille finie de générateurs d’un espace vectoriel E, un
élément peut avoir plusieurs décompositions sur cette famille de vecteurs. Par exemple,
considérons R2 et les vecteurs u = (1,0), v = (0,1) et w = (1,1) . Il résulte de ce qui
précède que {u,v,w} est une partie génératrice de R2 ( car elle contient {u,v} qui
est une partie génératrice d’après le premier exemple). Or, si a est un réel non nul
quelconque, pour tout (x,y) de R2, il est possible d’écrire les deux décompositions
distinctes suivantes :

(x,y) = xu+ yv+0w
(x,y) = (x�a)u+(y�a)v+aw.

4.1.2 Dépendance et indépendance linéaire
Cette définition est aussi importante que la définition d’une famille génératrice.
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Définition 34 Soit E un K-espace vectoriel. Une famille (v1,v2, . . . ,vn) de E est dite
linéairement indépendante ou libre si toute combinaison linéaire nulle

l1v1 +l2v2 + · · ·+lnvn = 0

est telle que tous ses coefficients sont nuls l1 = l2 = · · ·= ln = 0. Dans le cas contraire,
c’est-à-dire s’il existe une combinaison linéaire nulle à coefficients non tous nuls, on
dit que la famille est linéairement dépendante ou liée. Une telle combinaison linéaire
s’appelle alors une relation de dépendance linéaire entre les v j.

Par convention, on posera que l’ensemble vide est une famille libre.
On définit de même la notion de partie libre ou linéairement indépendante.

Remarque 41 Toute famille (v1,v2, . . . ,vn) contenant deux vecteurs égaux est liée. En
effet, si on suppose vi = v j avec i < j, on a la relation de dépendance linéaire non
triviale

0v1 + · · ·+0vi�1 +1vi +0vi+1 + · · ·+0v j�1�1.v j +0v j+1 + · · ·+0vn.

Exemple 57 Dans le R-espace vectoriel R3, considérons la partie
8
<

:

0

@
1
2
3

1

A ,

0

@
4
5
6

1

A ,

0

@
2
1
0

1

A

9
=

; .

On souhaite déterminer si elle est libre ou liée. On cherche (l1,l2,l3) tel que
8
<

:

l1 + 4l2 + 2l3 = 0
2l1 + 5l2 + l3 = 0
3l1 + 6l2 = 0

Pour cela, il suffit d’effectuer la réduction de Gauss sur la matrice associée au système.
0

@
1 4 2
2 5 1
3 6 0

1

A⇠

0

@
1 4 2
0 �3 �3
0 �6 �6

1

A⇠

0

@
1 4 2
0 �3 �3
0 0 0

1

A⇠

0

@
1 4 2
0 1 1
0 0 0

1

A⇠

0

@
1 0 �2
0 1 1
0 0 0

1

A

Il y a une variable libre correspondant à la troisième colonne sans pivot, donc la famille
est liée. On obtient toutes les relations de dépendance linéaire en résolvant le système
homogène, ce qui est immédiat à partir de la forme échelonnée réduite ci-dessus, x1 =
2x3, x2 =�x3. On a donc

2x3

0

@
1
2
3

1

A� x3

0

@
4
5
6

1

A+ x3

0

@
2
1
0

1

A=

0

@
0
0
0

1

A

pour tout x3 2 R et il n’y a pas d’autre relation de dépendance linéaire. La partie
8
<

:

0

@
1
2
3

1

A ,

0

@
4
5
6

1

A ,

0

@
2
1
0

1

A

9
=

;

est donc liée. ⇤
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Exemple 58 Dans le R-espace vectoriel C, la famille (1, i) est libre. En effet pour tous
scalaires a et b, on a

a1+bi = 0 =) a = b = 0.

Exemple 59 Dans le R-espace vectoriel A(R,R) des applications de R dans R, on
considère la famille (cos,sin). Montrons que c’est une famille libre. Supposons que
l’on ait lcos+µsin = 0. Cela équivaut à

8x 2 R, lcosx+µsinx = 0.

En particulier, pour x = 0, cette égalité donne l = 0. Et pour x =
p
2

, elle donne µ = 0.

Donc la famille (cos,sin) est libre. En revanche la famille (cos2,sin2,1) est liée car on
a la relation de dépendance linéaire cos2 +sin2�1 = 0.

Considérons le cas particulier des familles de un ou deux vecteurs.

Proposition 39 i) La famille {v} est linéairement indépendante si v 6= 0 et linéairement
dépendante si v = 0.

ii) La famille {v1,v2} est linéairement indépendante si et seulement si v1 n’est pas
un multiple de v2 et v2 n’est pas un multiple de v1.

Démonstration. Le point i) est trivial. Pour le point ii), supposons d’abord la famille
liée. Il existe donc l1,l2 non tous les deux nuls tels que l1v1 + l2v2 = 0. Si c’est l1
qui n’est pas nul, on peut diviser par l1, ce qui donne v1 =�l2

l1
v2 et v1 est un multiple

de v2. Si c’est l2 qui n’est pas nul, alors de même v2 est un multiple de v1. On vient
de montrer que si la famille est liée, alors v1 est un multiple de v2 ou v2 est un multiple
de v1, ce qui est la négation logique de l’assertion ”v1 n’est pas un multiple de v2 et v2
n’est pas un multiple de v1 ”.

Réciproquement, si v1 est un multiple de v2, alors il existe un scalaire µ tel que
v1 = µv2, soit 1v1 +(�µ)v2 = 0 ce qui est une relation de dépendance linéaire entre v1
et v2 puisque 1 6= 0. De même, v2 est un multiple de v1, alors la famille est liée, d’où la
réciproque. ⇤

Généralisons tout de suite le point ii) à une famille d’un nombre quelconque de
vecteurs.

Théorème 15 Soit E un K-espace vectoriel. Une famille F = (v1,v2, . . . ,vn) de n� 2
vecteurs de E est linéairement dépendante si et seulement si au moins un des vecteurs
de F est combinaison linéaire des autres vecteurs de F .

Démonstration. C’est essentiellement la même démonstration que ci-dessus. Suppo-
sons d’abord F liée. Il existe donc une relation de dépendance linéaire

l1v1 +l2v2 + · · ·+lnvn = 0,

avec lk 6= 0 pour au moins un indice k. Passons tous les autres termes à droite du signe
égal. Il vient

lkvk =�l1v1�l2v2� · · ·�lnvn,

où vk ne figure pas au second membre. Comme lk 6= 0, on peut diviser cette égalité par
lk et l’on obtient

vk =�l1

lk
v1�

l2

lk
v2� · · ·� ln

lk
vn,



74 CHAPITRE 4. ESPACES VECTORIELS DE TYPE FINI, BASES

c’est-à-dire que vk est combinaison linéaire des autres vecteurs de F , ce qui peut encore
s’écrire vk 2 vect{F \ {vk}} (la notation ensembliste A \ B désigne l’ensemble des
éléments de A qui n’appartiennent pas à B, c’est-à-dire A dont on a ôté B. C’est la
différence ensembliste).

Réciproquement, supposons que pour un certain k, on ait vk 2 vect{F \{vk}}. Ceci
signifie que l’on peut écrire

vk = µ1v1 +µ2v2 + · · ·+µnvn,

où vk ne figure pas au second membre. Passant vk au second membre, il vient

0 = µ1v1 +µ2v2 + · · ·� vk + · · ·+µnvn,

ce qui est une relation de dépendance linéaire pour F puisque �1 6= 0. ⇤

Proposition 40 a) Toute partie contenant une partie liée est liée.
b) Toute partie contenue dans une partie libre est libre.

Démonstration. a) Soient A = {v1, . . . ,vp} une partie liée et A0 = {v1, . . . ,vp, . . . ,vn}
une partie contenant A. Il existe donc des scalaires l1,l2, . . . ,lp non tous nuls, tels que

l1v1 +l2v2 + · · ·+lpvp = 0.

Si l’on pose lp+1 = lp+2 = · · · = ln = 0, on peut écrire l’égalité :

l1v1 +l2v2 + · · ·+lpvp +lp+1vp+1 + · · ·+lnvn = 0.

Il existe donc une combinaison linéaire nulle, des vecteurs v1,v2, . . . ,vp, . . . ,vn, à co-
efficients non tous nuls (l’un des li avec i compris entre 1 et p est non nul) et par
conséquent A0 est une partie liée.

b) C’est la contraposée de a). ⇤

Corollaire 16 Toute partie contenant le vecteur 0E est liée.

Proposition 41 (Adjonction d’un vecteur à une partie libre) Soient E un K-espace
vectoriel et {v1,v2, . . . ,vn} une partie libre de E. Si u est un vecteur de E tel que
{v1,v2, . . . ,vn,u} soit une partie liée de E, alors le vecteur u est combinaison linéaire
des vecteurs v1,v2, . . . ,vn .

Démonstration. Les vecteurs v1,v2, . . . ,vn,u sont linéairement dépendants. Il existe
donc des scalaires a1,a2, . . . ,an,b non tous nuls tels que

(1) a1v1 +a2v2 + · · ·+anvn +bu = 0.

Le coefficient b peut-il être nul ? Si b est nul, l’égalité (1) devient :

a1v1 +a2v2 + · · ·+anvn = 0.

avec au moins un des coefficients non nul ; ceci est impossible car contraire à l’hy-
pothèse {v1,v2, . . . ,vn} partie libre. Donc b est non nul, il est donc inversible dans K et
on peut déduire de l’égalité (1) l’égalité suivante :

u =�a1

b
v1�

a2

b
v2 + · · ·� an

b
vn.

Ce qui signifie que u est combinaison linéaire des vecteurs v1,v2, . . . ,vn. ⇤
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Remarque 42 Il est intéressant de décortiquer cet énoncé : l’hypothèse {v1,v2, . . . ,vn,u}
” est une partie liée ” implique immédiatement que l’un des vecteurs est combinai-
son linéaire des autres, et l’hypothèse {v1,v2, . . . ,vn} ”est une partie libre ” permet
de conclure que c’est le vecteur que l’on a rajouté u qui est combinaison linéaire des
autres.

Proposition 42 Soient E et F deux K-espaces vectoriels et f : E! F une application
linéaire. Soient v1,v2, . . . ,vp p vecteurs de E.

a) Si la famille ( f (v1), f (v2), . . . , f (vp)) est libre alors la famille (v1,v2, . . . ,vp) est
libre.

b) On suppose f injective. Si la famille (v1,v2, . . .vp) est libre,alors la famille
( f (v1), f (v2), . . . , f (vp)) est libre.

Démonstration. a) On suppose

l1v1 +l2v2 + · · ·+lpvp = 0.

On applique f à cette égalité, il vient (en utilisant la linéarité de f ) :

l1 f (v1)+l2 f (v2)+ · · ·+lp f (vp) = 0

d’où l’on déduit l1 = l2 = · · · = lp = 0 car la famille ( f (v1), f (v2), . . . , f (vp)) est
libre.

b) On suppose
l1 f (v1)+l2 f (v2)+ · · ·+lp f (vp) = 0.

En utilisant la linéarité de f , cette égalité s’écrit

f (l1v1 +l2v2 + · · ·+lpvp) = 0.

Comme f est injective, on en déduit

l1v1 +l2v2 + · · ·+lpvp = 0

ce qui implique, l1 = l2 = · · · = lp = 0 car la famille (v1,v2, . . .vp) est libre. ⇤

4.1.3 Notion de bases dans un espace vectoriel de type fini
La notion de base généralise la notion de repères. Dans R2, un repère est donné par

un couple de vecteurs non colinéaires. Dans R3, un repère est donné par un triplet de
vecteurs non coplanaires. Dans un repère, un vecteur se décompose suivant les vecteurs
de bases. Il en sera de même pour les bases d’un espace vectoriel.

Définition 35 Soit E un espace vectoriel sur un corps K. Une base finie de E est un
n-uplet d’éléments de E , (v1, . . . ,vn), où n est un entier supérieur ou égal à 1, vérifiant
les deux conditions suivantes :

(1) La partie {v1,v2, . . . ,vn} est une partie génératrice de E.
(2) La partie {v1,v2, . . . ,vn} est une partie libre de E.

Remarque 43 Il existe une notion de base infinie. Mais cela sort du cadre de ce cours
où ne sera traitée que la notion de base finie.
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Remarque 44 Il faut observer que la définition donnée introduit un ordre sur les vec-
teurs d’une base puisque une base est d’abord un n-uplet. Soit B = (v1, . . . ,vn) une base
de E. Il est clair que si l’on change l’ordre des vecteurs, c’est-à-dire si l’on considère
(vs(1), . . . ,vs(n)) où s est une bijection de {1, . . . ,n} dans {1, . . . ,n}, les deux condi-
tions (1) et (2) sont évidemment satisfaites puisque

{v1, . . . ,vn} = {vs(1), . . . ,vs(n)}.

Alors (vs(1), . . . ,vs(n)) est une base de E mais elle est différente de B si s est différente
de l’identité, puisque les deux n-uplets (v1, . . . ,vn) et (vs(1), . . . ,vs(n)) sont différents.
L’importance de l’ordre sera visible lorsque on étudiera la notion de matrice associée à
une application linéaire.

Théorème 17 Soient E un K-espace vectoriel et v1, . . . ,vn n vecteurs de E. Les condi-
tions suivantes sont équivalentes :

(i) Le n-uplet (v1, . . . ,vn) est une base de E.
(ii) Tout vecteur de E s’écrit de manière unique comme combinaison linéaire des

vecteurs v1, . . . ,vn ; c’est-à-dire que pour tout vecteur v de E, il existe un n-uplet unique
(a1, . . . ,an) de Kn tel que

v = a1v1 +a2v2 + · · ·+anvn.

Démonstration. Supposons que (v1, . . . ,vn) soit une base de E. Alors, comme (v1, . . . ,vn)
est une famille génératrice, tout vecteur v de E s’écrit comme combinaison linéaire de
v1, . . . ,vn. Montrons que cette écriture est unique. Supposons qu’il existe deux écritures
de v comme combinaison linéaire de v1, . . . ,vn à savoir

v = a1v1 +a2v2 + · · ·+anvn
v = b1v1 +b2v2 + · · ·+bnvn

et montrons que pour tout i dans [1,n], ai = bi. On a

(a1�b1)v1 +(a2�b2)v2 + · · ·+(an�bn)vn = 0.

Comme la famille v1, . . . ,vn est libre, on en déduit que, pour tout i dans [1,n], ai�bi =
0.

Supposons maintenant que tout vecteur v de E s’écrive de façon unique comme
combinaison linéaire de v1, . . . ,vn. Alors la famille (v1, . . . ,vn) est génératrice. Mon-
trons qu’elle est libre. Supposons que l’on ait une relation de dépendance linéaire

l1v1 +l2v2 + · · ·+lnvn = 0E .

0E s’écrit aussi
0E = 0v1 +0v2 + · · ·+0vn,

Par unicité de l’écriture de 0E comme combinaison linéaire de v1, . . . ,vn, on a : pour
tout i dans [1,n], li = 0. Donc la famille v1, . . . ,vn est libre. ⇤

Vocabulaire : Si v s’écrit v = a1v1 + a2v2 + · · ·+ anvn, les scalaires (a1, . . . ,an)
s’appellent les coordonnées de v dans la base (v1,v2, . . . ,vn). On utilisera souvent la

matrice colonne [v](v1,v2,...,vn) =

0

BBB@

a1
a2
...

an

1

CCCA
des coordonnées de v dans la base (v1,v2, . . . ,vn).
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Proposition 43 L’application

c : Kn ! E
(a1,a2, . . . ,an) 7! a1v1 +a2v2 + · · ·+anvn

est un isomorphisme.

Démonstration. Si (a1, . . . ,an) et (b1, . . . ,bn) sont deux n-uplets et si l est un scalaire,
on a

c(a1, . . . ,an) = a1v1 +a2v2 + · · ·+anvn
c(b1, . . . ,bn) = b1v1 +b2v2 + · · ·+bnvn

Donc
(la1 +b1)v1 + . . .(lan +bn) = lc(a1, . . . ,an)+c(b1, . . . ,bn) .

Or le membre de gauche n’est autre que

c(la1 +b1, . . . ,lan +bn) .

c est donc bien linéaire. De plus c est bijective car tout élément de E s’écrit de façon
unique comme combinaison linéaire des vecteurs v1, . . . ,vn. ⇤

Donnons maintenant des exemples. La plupart d’entre eux ont été déjà cités dans
les paragraphes concernant les notions de partie génératrice finie ou de famille libre.

Exemple 60 Soient les vecteurs e1 = (1,0) et e2 = (0,1). Alors (e1,e2) est une base
de R2 appelée base canonique de R2 .

Exemple 61 Soient les vecteurs e1 =(1,0,0, . . . ,0), e2 =(0,1,0, . . . ,0), . . . ,en =(0,0, . . . ,0,1).
Alors (e1, . . . ,en) est une base de Rn appelée la base canonique de Rn. Un élément
x = (x1, . . . ,xn) de Rn s’écrit dans la base canonique sous la forme :

x = x1e1 + x2e2 + · · ·+ xnen.

Ce qui signifie que la i-ème composante de x est égale à la i-ème coordonnée de x dans
la base canonique. Le n-uplet des coordonnées de x dans la base canonique est égal à
x ; cela justifie la dénomination de ”base canonique”.

Plus généralement, (e1, . . . ,en) est une base du K-espace vectoriel Kn appelée base
canonique.

Exemple 62 On considère le R-espace vectoriel R2. Soient les vecteurs e1 = (1,0) et
e2 = (1,1). Alors (e1,e2) est une base de R2. En effet, nous avons vu que tout élément
(x,y) de R2 s’écrivait de façon unique comme combinaison linéaire de e1 et de e2, à
savoir

(x,y) = (x� y)e1 + ye2.

Les coordonnées de (x,y) dans la base (e1,e2) sont (x� y,y).

Cet exemple prouve qu’il peut y avoir des bases différentes sur un même espace
vectoriel. Cependant, une remarque peut être faite : les deux bases ont chacune deux
éléments.
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Exemple 63 Considérons Pn(R) le R-espace vectoriel réel des fonctions polynômes
de degré inférieur ou égal à n. Étant donné un entier naturel compris entre 0 et n, on
définit fk comme suit :

8x 2 R, fk(x) = xk.

Alors ( f0, . . . , fk) est une base de Pn(R) appelée souvent base canonique de Pn(R). On
sait qu’une fonction polynôme sur R de degré inférieur ou égal à n est une fonction f
de R dans R telle qu’il n+1 éléments a0,a1, . . .an tels que

8x 2 R, f (x) = a0 +a1x+ · · ·+anxn.

on a alors f = a0 f0 + a1 f1 + · · ·++an fn, ce qui prouve que la famille ( fk)k2[1,n] en-
gendre Pn(R). Il est démontré dans les exercices que cette famille est libre.

Soit f : x 7! f (x) = x2�x+2. Alors f s’écrit f = 2 f0� f1 + f2. Les coordonnées de
f dans la base ( f0, f1, f2) sont (2,�1,1). Ses coordonnées dans la base ( f2, f1, f0) sont
(1,�1,2). Cela illustre bien l’importance de l’ordre introduit sur les vecteurs d’une
base.

Exemple 64 (1, i) est une base de C considéré comme un R-espace vectoriel. En effet
tout nombre complexe s’écrit de façon unique sous la forme a+ ib.

Exemple 65 Considérons K comme un K-espace vectoriel. Tout élément non nul de K
est une base de E. En effet, si x est un élément non nul de K, tout élément y de K peut
s’écrire y =

y
x

x. Dans cette égalité
y
x

joue le rôle d’un scalaire. Ceci prouve que {x}
engendre K considéré comme un K-espace vectoriel. Comme x est un élément non nul
de K, {x} est une partie libre d’où le résultat.

Si K est un corps infini (par exemple R ou C), cet exemple prouve qu’il peut y avoir
une infinité de bases sur un même espace vectoriel.

Exemple 66 Soit r un entier compris entre 1 et n et s un entier compris entre 1 et p.
On désigne par Er,s la matrice à n lignes et p colonnes dont tous les éléments sont nuls
sauf celui de la r-ième ligne et de la s-ième colonne qui est égal à 1. Les matrices Er,s
forment une base de Mn,p(K).

En effet, soit A = (ai, j)un élément de Mn,p(K). On peut écrire

A = Â
(i, j)2[1,n]⇥[1,p]

ai, jEi, j.

Ce qui prouve que les matrices Er,s engendrent Mn,p(K). De plus, il est évident que

Â
(i, j)2[1,n]⇥[1,p]

li, jEi, j =)8(i, j) 2 [1,n]⇥ [1, p], li, j = 0.

Nous allons maintenant donner deux caractérisations des bases.

Proposition 44 (Première caractérisation d’une base) Soit E un espace vectoriel. Un
n-uplet (v1, . . .vn) est une base de E si et seulement si l’ensemble {v1, . . .vn} est une
partie libre maximale.
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Que signifie la phrase ” est une partie libre maximale” ? Cela signifie que la partie
vérifie les deux propriétés suivantes :

(a) La partie {v1, . . . ,vn} est libre.
(b) Quel que soit le vecteur w de E�{v1, . . . ,vn}, la partie {v1, . . .vn,w} n’est pas

libre.

C’est une partie maximale au sens de l’inclusion, c’est à dire que toute partie finie
contenant strictement {v1, . . .vn} n’est pas libre.

Démonstration. Il s’agit en fait de démontrer que si {v1, . . .vn} est une partie libre, la
propriété (b) ci-dessus et la propriété ” engendre E ” sont équivalentes.

Soit donc {v1, . . .vn} une partie libre de vecteurs de E satisfaisant à la propriété (b)
ci-dessus. Alors, pour tout vecteur w de E� {v1, . . . ,vn}, la partie {v1, . . .vn,w} n’est
pas libre, donc est liée. Or il a été vu dans le paragraphe ”Dépendance et Indépendance
linéaire”, que sous ces hypothèses, le vecteur w est combinaison linéaire des vecteurs
v1, . . .vn. Ceci prouve que tout élément de E est combinaison linéaire des vecteurs
{v1, . . .vn} qui forment donc une partie génératrice de E.

Réciproquement, supposons que v1, . . .vn soit une famille libre engendrant E. Alors,
tout vecteur w de E�{v1, . . . ,vn} est une combinaison linéaire des vecteurs {v1, . . .vn}
, ce qui prouve que la partie {v1, . . .vn,w} est liée, ce qui équivaut à la propriété (b). ⇤

Proposition 45 (Deuxième caractérisation d’une base) Soit E un espace vectoriel.
Un n-uplet (v1, . . .vn) est une base de E si et seulement si l’ensemble {v1, . . .vn} est
une partie génératrice minimale de E.

Que signifie la phrase ” est une partie génératrice minimale” ? Cela signifie que la
partie vérifie les deux propriétés suivantes :

(a) Les vecteurs v1, . . . ,vn engendrent E.
(b) Si on enlève un vecteur de la partie {v1, . . . ,vn}, la partie obtenue n’est plus

génératrice.
C’est une partie minimale au sens de l’inclusion, c’est-à-dire que toute partie finie

contenue strictement dans {v1, . . . ,vn} n’est pas une partie génératrice de E.

Démonstration. De même que précédemment, il s’agit de montrer que si {v1, . . .vn}
est une partie génératrice de E, il y a équivalence entre la propriété (b) ci-dessus et la
propriété ”les vecteurs sont linéairement indépendants”. Cette preuve comporte deux
étapes.

Soit donc {v1, . . .vn} une partie génératrice de E, satisfaisant à la propriété (b) ci-
dessus. Supposons que les vecteurs v1, . . .vn ne soient pas linéairement indépendants.
Ils sont donc linéairement dépendants ce qui signifie que l’un des vecteurs est combi-
naison linéaire des autres. Autrement dit, il existe un entier i compris entre 1 et n tel

que vi =
n

Â
j=1, j 6=i

a jv j. Compte tenu de ce qui a été vu dans le paragraphe ”Ensemble fini

de générateurs d’un espace vectoriel”, cela implique que {v1, . . . ,vi�1,vi+1, . . . ,vn} est
une partie génératrice de E. Or ceci est contraire à l’hypothèse (b), donc les vecteurs
sont linéairement indépendants.

Réciproquement, soit G = {v1, . . .vn} une partie libre engendrant E. Considérons
la partie obtenue en supprimant un vecteur de cette partie, soit vi. La partie G0 =
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{v1, . . . ,vi�1,vi+1, . . . ,vn} ne peut engendrer E car le vecteur vi ne peut être combi-
naison linéaire des éléments de G0 puisque les vecteurs v1, . . . ,vi�1,vi,vi+1, . . . ,vn sont
linéairement indépendants. La propriété (b) est donc satisfaite. ⇤

Voyons maintenant des théorèmes d’ existence d’une base finie.

Théorème 18 (Théorème d’existence de parties libres et génératrices) Soit E un K-
espace vectoriel de type fini, G une partie génératrice finie de E et L une partie libre
incluse dans G. Alors, il existe une partie B vérifiant les trois propriétés suivantes :

•L⇢ B⇢ G
• B est libre
• B engendre E.

La démonstration que nous donnons de ce théorème est un algorithme.

Démonstration. • ou bien L est une partie génératrice de E et c’est fini puisque c’est
une partie génératrice et libre,

• ou bien L n’est pas une partie génératrice et il existe au moins un élément g1 de
G qui n’est pas combinaison linéaire des éléments de L. Alors la partie L1 = L[{g1}
vérifie les propriétés suivantes :

L1 libre
L ( L1 ⇢ E

On recommence le même raisonnement à partir de L1.
• ou bien L1 est une partie génératrice de E et c’est fini (partie génératrice et libre),
• ou bien L1 n’est pas une partie génératrice de E et il existe au moins un élément

g2 de G qui n’est pas combinaison linéaire des éléments de L1. Alors la partie L2 =
L1[{g2} vérifie les propriétés suivantes :

L2 libre
L ( L1 ( L2 ⇢ E

L’algorithme consiste donc à construire une suite, strictement croissante pour l’in-
clusion, de parties libres contenues dans G, où, si Lr�1 n’engendre pas E, Lr est obtenue
à partir de Lr�1 en lui ajoutant un vecteur gr de G tel que Lr�1[{gr} soit libre. Comme
la partie G est finie, le processus s’arrête et il existe un entier s tel que Ls engendre E.
Alors Ls sera une partie finie, libre et génératrice, et sera donc une base de E. ⇤

Corollaire 19 (Théorème d’existence d’une base) Tout espace vectoriel de type fini
(c’est-à-dire admettant une famille finie de générateurs), non réduit à {0}, admet une
base.

Démonstration. Soit G = {g1,g2, . . . ,gn} une partie génératrice non vide de E. Comme
E 6= {0}, il existe i compris entre 1 et n tel que gi 6= 0. On applique le théorème
précédent à L = {gi} et G. ⇤

Exemple 67 Soit P(R) le R-espace vectoriel des fonctions polynômes réelles et E le
sous-espace de P(R) engendré par les éléments f1, f2, f3, f4, f5 définies par :

8x 2 R, f1(x) = 1, f2(x) = x, f3(x) = x+1, f4(x) = 1+ x3, f5 = x� x3.

Comme f1 est non nulle, L = { f1} est libre. Considérons f2. Comme les éléments f1
et f2 sont linéairement indépendants, { f1, f2} est une partie libre. Considérons f3 : ce
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vecteur est combinaison linéaire des vecteurs f1 et f2 car f3 = f1 + f2 donc { f1, f2, f3}
est liée. Considérons alors f4. Un calcul rapide prouve que les vecteurs f1, f2 et f4 sont
linéairement indépendants. Alors { f1, f2, f4} est une partie libre. Il ne reste que le vec-
teur f5 à considérer. Il s’agit, pour pouvoir conclure, d’étudier la linéaire indépendance
des vecteurs f1, f2, f4, f5. Or un calcul rapide montre l’égalité

f1 + f2� f4� f5 = 0.

ce qui prouve que la famille { f1, f2, f4, f5} est liée. Donc avec les notations de l’algo-
rithme s = 2 et L2 = { f1, f2, f4} est une base de E.

Une conséquence extrêmement importante de ce qui précède est le théorème sui-
vant :

Théorème 20 (Théorème de la ”base incomplète”) Soit E un K-espace vectoriel de
type fini, non réduit à {0}. Soit G une partie génératrice finie de E et L une partie libre
de E. Alors il existe une partie G0 de G telle que, en notant {v1,v2, . . . ,vn} la partie
L[G0, (v1,v2, . . . ,vn) soit une base de E.

Démonstration. Pour justifier ce théorème fondamental, il suffit d’utiliser la propriété
précédente en partant de la partie G1 = L[G et de la partie libre L incluse dans L[G.
⇤

L’algorithme du pivot de Gauss fournit une méthode pour extraire une base d’une
famille génératrice comme le montre l’exemple suivant.

Exemple 68 Dans le R-espace vectoriel M2(R) des matrice carrées d’ordre 2 à coeffi-

cients dans R, on considère les quatre éléments suivants : e1 =
✓

1 0
1 0

◆
,

e2 =
✓

1 0
0 1

◆
, e3 =

✓
0 1
1 0

◆
, e4 =

✓
3 3
4 2

◆
. Soit E = vect(e1,e2,e3,e4) le sous espace

vectoriel de M2(R) engendré par e1,e2,e3,e4.✓
a c
b d

◆
2 vect(e1,e2,e3,e4)

()9(l1,l2,l3,l4) 2 R4 |
✓

a c
b d

◆
= l1e1 +l2e2 +l3e3 +l4e4

()9(l1,l2,l3,l4) 2 R4 |

8
>><

>>:

a = l1 + l2 + + 3l4
b = l1 + + l3 + 4l4
c = + l3 + 3l4
d = + l2 + + 2l4

Donc
✓

a c
b d

◆
appartient à vect(e1,e2,e3,e4) si et seulement si le système ci-dessus

a au moins une solution. Résolvons ce système par la méthode du pivot de Gauss :0

BB@

1 1 0 3 a
1 0 1 4 b
0 0 1 3 c
0 1 0 2 d

1

CCA⇠

0

BB@

1 1 0 3 a
0 �1 1 1 b�a
0 0 1 3 c
0 1 0 2 d

1

CCA⇠

0

BB@

1 1 0 3 a
0 �1 1 1 b�a
0 0 1 3 c
0 0 1 3 d�a+b

1

CCA

⇠

0

BB@

1 1 0 3 a
0 �1 1 1 b�a
0 0 1 3 c
0 0 0 0 d�a+b� c

1

CCA⇠

0

BB@

1 1 0 3 a
0 �1 0 �2 b�a� c
0 0 1 3 c
0 0 0 d�a+b� c

1

CCA⇠
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0

BB@

1 1 0 3 a
0 1 0 2 a+ c�b
0 0 1 3 c
0 0 0 0 d�a+b� c

1

CCA⇠

0

BB@

1 0 0 1 b� c
0 1 0 2 a+ c�b
0 0 1 3 c
0 0 0 d�a+b� c

1

CCA .

✓
a c
b d

◆
2 vect(e1,e2,e3,e4)() d�a+b� c = 0.

Donc
vect(e1,e2,e3,e4) =

⇢✓
a c
b d

◆
2M2(R) | d�a+b� c = 0

�
.

Soit A =
✓

a c
b d

◆
un élément de vect(e1,e2,e3,e4). La résolution du système précédent

nous donne toutes les façons d’écrire A comme combinaison linéaire de (e1,e2,e3,e4).
On a

A = (b� c�l4)e1 +(a�b+ c�2l4)e2 +(c�3l4)e3 +l4e4.

Pour chaque valeur de l4, on obtient une écriture de A comme combinaison linéaire de
(e1,e2,e3,e4). Il y a donc une infinité de façons d’écrire A comme combinaison linéaire
de (e1,e2,e3,e4).

Si on retire e4, ce qui correspond à prendre l4 égal à 0, on obtient

A = (b� c)e1 +(a�b+ c)e2 + ce3.

Ceci nous donne toutes les façons d’écrire A comme combinaison linéaire de (e1,e2,e3).
La matrice A s’écrit donc de façon unique comme combinaison linéaire de (e1,e2,e3).
La famille (e1,e2,e3) est donc une base de vect(e1,e2,e3,e4).

Théorème 21 (Base d’une somme directe) Soit E un K-espace vectoriel. Soient F et
G deux sous-espaces vectoriels de E tels que E = F�G. On suppose que F et G sont
de type fini. Soient BF = (a1,a2, . . . ,ar) une base de F et (b1,b2, . . . ,bs)une base de G.
Alors E est de type fini et (a1,a2, . . . ,ar,b1,b2, . . . ,bs) est une base de E.

Démonstration. Comme E est somme directe de F et de G, tout élément x de E s’écrit
(de manière unique) comme somme d’un élément y de F et d’un élément z de G, soit
x = y+z. D’après la définition de la notion de base, il existe des scalaires a1,a2, . . . ,ar
tels que :

y = a1a1 +a2a2 + · · ·+arar

et des scalaires b1,b2, . . . ,bs tels que :

z = b1b1 +b2b2 + · · ·+bsbs.

Alors l’égalité x = y+ z implique l’égalité :

x = a1a1 +a2a2 + · · ·+arar +b1b1 +b2b2 + · · ·+bnbs.

Ce qui prouve que a1,a2, . . . ,ar,b1,b2, . . . ,bs est une famille génératrice de E. L’espace
vectoriel E est donc de type fini puisque il existe une famille génératrice finie de E.

Il reste à montrer que a1,a2, . . . ,ar,b1,b2, . . . ,bs est une famille libre. Soient donc
des scalaires l1,l2, . . . ,lr,µ1,µ2, . . . ,µs tels que :

l1a1 +l2a2 + · · ·+lrar +µ1b1 +µ2b2 + · · ·+µsbs = 0.
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Cette égalité peut encore s’écrire :

(l1a1 +l2a2 + · · ·+lrar)+(µ1b1 +µ2b2 + · · ·+µsbs) = 0.

Comme l1a1 +l2a2 + · · ·+lrar est élément de F et µ1b1 +µ2b2 + · · ·+µsbs est élément
de G, on a d’après la définition de la somme directe :

l1a1 +l2a2 + · · ·+lrar = 0
µ1b1 +µ2b2 + · · ·+µsbs = 0

Or les vecteurs a1,a2, . . . ,ar sont libres, de même que les vecteurs b1,b2, . . . ,bs donc

l1a1 +l2a2 + · · ·+lrar = 0 =) l1 = l2 = · · · = lr = 0
µ1b1 +µ2b2 + · · ·+µrbr = 0 =) µ1 = µ2 = · · · = µr = 0

Ce qui achève la démonstration. ⇤

Remarque 45 Par abus de langage, on pourra dire que (a1,a2, . . . ,ar,b1,b2, . . . ,bs)
est la ”réunion” des bases considérées.

Cette propriété se généralise au cas où E est somme directe d’un nombre fini p de
sous-espaces vectoriels de type fini.

Théorème 22 (Base d’une somme directe) Soit E un espace vectoriel sur un corps
K. Soient F1,F2, . . . ,Fp p sous-espaces vectoriels de E tels que E = F1�F2� · · ·�Fp.
On suppose que F1,F2, . . . ,Fp sont de type fini. Soient BFi = (ai

1,a
i
2, . . . ,a

i
ri
) une base

de Fi. Alors E est de type fini et (a1
1, . . . ,a

1
r1

,a2
1, . . . ,a

2
r2

, . . . ,ap
1 , . . . ,ap

rp) est une base de
E.

4.1.4 Dimension d’un espace vectoriel de type fini
Tout espace vectoriel de type fini, non réduit à {0} possède des bases finies. L’ob-

jet de cette section est de prouver que le nombre d’éléments d’une base d’un espace
vectoriel est un invariant de cet espace vectoriel, ce qui permet de définir la notion de
dimension.

Pour démontrer que toutes les bases d’un espace vectoriel de type fini ont le même
nombre d’éléments, il faut tout d’abord comparer le nombre d’éléments d’une partie
libre et d’une partie génératrice de cet espace vectoriel.

Lemme 1 Soit E un espace vectoriel de type fini, non réduit à 0E, engendré par
une partie G de E ayant n éléments G = {g1,g2, . . . ,gn}. Alors toute partie F =
{u1,u2, . . .un,un+1} de n+1 éléments est liée.

Une autre façon d’exprimer le résultat de ce lemme est : ”toute partie libre de E a un
nombre d’éléments inférieur à celui d’une partie génératrice de E”.

Démonstration. La preuve de ce lemme est hors programme. Elle peut se faire en rai-
sonnant par récurrence sur l’entier n.

On démontre par récurrence que pour tout la propriété suivante est vraie : ”Dans un
espace vectoriel engendré par n vecteurs, toute partie ayant n+1 éléments est liée”.

On vérifie que la propriété est vraie pour n = 1. Soit E un espace vectoriel engendré
par un vecteur noté g1, et {v1,v2} une partie de E ayant deux éléments. Les vecteurs
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v1 et v2 peuvent s’écrire comme combinaisons linéaires du vecteur g1, autrement dit, il
existe des scalaires a1, a2 tels que v1 = a1g1 et v2 = a2g1. Ce qui donne la relation :
a2v1�a1v2 = 0E On suppose v2 non nul (sinon il est évident que {v1,v2} est liée), le
scalaire a2 est donc non nul. On a trouvé une combinaison linéaire nulle des vecteurs
v1,v2, avec des coefficients non tous nuls. Donc la famille {v1,v2} est liée.

On démontre maintenant que si la propriété est vraie au rang n� 1 (n � 1), alors
elle vraie pour l’entier n. Soit E un espace vectoriel engendré par n vecteurs notés
g1,g2, . . . ,gn, et {v1,v2, . . . ,vn,vn+1} une partie de E ayant n+1 éléments. Tout vecteur
v j, pour j = 1,2, . . . ,n+1, est combinaison linéaire de g1,g2, . . . ,gn, il existe donc des
scalaires a j

1,a
j
2, . . . ,a

j
n tels que :

v j = a j
1g1 +a j

2g2 + · · ·+a j
ngn.

Remarque :
On est contraint d’utiliser ici deux indices i, j pour les scalaires (Attention ! j n’est

pas un exposant) car deux informations sont nécessaires : l’indice j indique qu’il s’agit
de la décomposition du vecteur v j, et i indique à quel vecteur de la partie génératrice
est associé ce coefficient.

En particulier, pour j = n+1, le vecteur vn+1 s’écrit :

vn+1 = an+1
1 g1 +an+1

2 g2 + · · ·+an+1
n gn.

Si vn+1 est nul, c’est terminé, la partie est liée ; sinon, vn+1 est non nul, et au
moins un des coefficients an+1

j est non nul. On suppose, pour alléger l’écriture, que
an+1

n est non nul (sinon il suffit de changer l’ordre des vecteurs ). On construit une
nouvelle famille de n vecteurs de E de telle sorte que ces vecteurs soient combinai-
sons linéaires de g1,g2, . . . ,gn�1, c’est-à-dire appartiennent au sous-espace engendré
par (g1,g2, . . . ,gn�1). Pour j = 1,2, . . . ,n, on définit w j par :

w j = an+1
n v j�a j

nvn+1 =
n

Â
k=1

(an+1
n a j

k�a j
nan+1

k )gk.

Le coefficient de gn est nul. Donc w j combinaison linéaire de g1,g2, . . . ,gn�1. On a
n vecteurs qui appartiennent à un espace vectoriel engendré par n� 1 vecteurs ; on
peut appliquer l’hypothèse de récurrence : la famille {w1,w2, . . . ,wn} est liée. Par
conséquent il existe des scalaires non tous nuls l1, l2, . . . ,ln tels que :

l1w1 +l2w2 + · · ·+lnwn = 0

En remplaçant les w j par leur expression en fonction des vecteurs vi, on obtient :

an+1
n l1v1 +an+1

n l2v2 + · · ·+an+1
n lnvn� (l1a1

n + · · ·+lnan
n)vn+1 = 0E

Le coefficient an+1
n a été supposé non nul et au moins un des scalaires l1,l2, . . . ,ln

est non nul, on a donc une combinaison linéaire nulle des vecteurs v1,v2, . . . ,vn,vn+1
avec des coefficients qui ne sont pas tous nuls ; ceci prouve que ces vecteurs sont
linéairement dépendants. La démonstration par récurrence est ainsi achevée. ⇤

Théorème 23 (Définition de la dimension) Dans un espace vectoriel de type fini E,
non réduit à {0E}, toutes les bases ont le même nombre d’éléments. Ce nombre entier,
taille commune de toutes les bases de E, est appelé dimension de E sur K, et noté
dimKE (ou seulement dimE s’il n’y a pas ambiguı̈té sur le corps K)
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Démonstration. L’espace vectoriel E étant de type fini et non réduit à {0}, il existe
des bases de E ayant un nombre fini d’éléments. Soient B = {u1,u2, . . . ,un} et B0 =
{v1,v2, . . . ,vp} deux bases de E. Si n était distinct de p l’un de ces deux entiers serait
strictement supérieur à l’autre, par exemple n > p. Alors, d’après le lemme précédent,
{v1,v2, . . . ,vp} étant génératrice de E, la partie {u1,u2, . . . ,un} serait liée, ce qui contre-
dit l’hypothèse que B est une base de E. ⇤

Méthodologie :
Pour déterminer la dimension d’un espace vectoriel de type fini (différent de {0}),

il suffit de trouver une partie de E à la fois libre et génératrice de E, le cardinal (nombre
d’éléments) de cette partie donne la dimension de E.

Convention :
L’espace vectoriel {0} ne possède pas de base, la définition de la dimension ne peut

donc pas s’appliquer ici ; on convient de lui attribuer pour dimension 0.

Vocabulaire
Par analogie avec la géométrie :
Un espace vectoriel de dimension 1 est appelé droite vectorielle.
Un espace vectoriel de dimension 2 est appelé plan vectoriel.
Dans un espace vectoriel de dimension n, un sous-espace de dimension n� 1 est

appelé hyperplan.

Remarque 46 Dans la littérature mathématique, on rencontre souvent l’expression
”espace vectoriel de dimension finie” au lieu de ”espace vectoriel de type fini”.

Exemple 69 La base canonique de R2 est ((1,0),(0,1)). Toutes les bases de R2 ont
donc deux éléments. La dimension de R2 est donc 2.

Plus généralement, la base canonique de Kn, muni de sa structure d’espace vecto-
riel sur K, est (e1,e2, . . . ,en) où, pour i = 1,2, . . . ,n, ei est le n-uplet dont toutes les
composantes sont nulles sauf la ième qui vaut 1. Toutes les bases de Kn ont donc n
éléments : la dimension de Kn sur K est donc égale à n. En particulier R muni de sa
structure de R-espace vectoriel, et C muni de sa structure de C-espace vectoriel ont
pour dimension 1.

Exemple 70 La dimension du R-espace vectoriel Pn(R) (espace des fonctions po-
lynômes à coefficients réels de degré inférieur ou égal à n) est égale à n+1. La base ca-
nonique de Pn(R) est ( f0, f1, . . . , fn) où, pour i = 0,1, . . . ,n, fi est l’application définie
sur R par :

8x 2 R, fi(x) = xi.

La dimension de Pn(R) est n+1.

Exemple 71 La dimension du R-espace vectoriel C est égale à 2. Si l’ensemble des
nombres complexes C est muni de sa structure d’espace vectoriel sur R (la loi externe
est la multiplication par un scalaire réel), la base canonique de C est (1, i). La dimen-
sion de C sur R (dimRC) est donc égale à 2.

Exemple 72 Le K-espace vectoriel Mn,p(K) est de dimension n⇥ p puisque la famille
(Er,s)(r,s)2[1,n]⇥[1,p] en constitue une base.
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4.1.5 Propriétés d’un espace vectoriel de dimension n (n > 0)
Lorsqu’un espace vectoriel est de type fini, le fait de connaı̂tre sa dimension est

une information très riche ; les propriétés et théorèmes suivants montrent comment
exploiter cette information.

Proposition 46 Soit E un K-espace vectoriel de dimension n non nulle, alors :
1. Toute partie libre de E a au plus n éléments.
2. Toute partie génératrice de E a au moins n éléments.

Démonstration. L’espace vectoriel E étant de dimension n (non nulle), il existe une
partie de E ayant n éléments qui détermine une base de E, c’est-à-dire à la fois libre et
génératrice.

(1) E étant engendré par une partie ayant n éléments, toute partie libre de E a au
maximum n éléments, sinon elle est liée (conséquence du lemme).

(2) Il existe une partie libre de E ayant n éléments, par conséquent toute partie
génératrice de E a au minimum n éléments (conséquence du lemme).

Théorème 24 Soient E un K-espace vectoriel de dimension n non nulle, et u1,u2, . . . ,un
n vecteurs de E :

1. Si {u1,u2, . . . ,un} est une partie libre alors (u1,u2, . . . ,un) est une base de E.
2. Si {u1,u2, . . . ,un} est une partie génératrice de E alors (u1,u2, . . . ,un) est une

base de E.
Autrement dit, lorsque le nombre de vecteurs considéré est exactement égal à la di-

mension de l’espace vectoriel, l’une des deux conditions : générateurs, ou linéairement
indépendants suffit pour que ces vecteurs déterminent une base de E.

Démonstration. C’est une conséquence immédiate du théorème précédent. Si la di-
mension de E est égale à n toute partie libre ayant exactement n éléments est une partie
libre maximale donc détermine une base de E.

De même, une partie génératrice de E ayant n éléments est une partie génératrice
minimale, donc détermine une base de E. ⇤

4.1.6 Sous espaces vectoriels de type fini
Tout sous-espace vectoriel d’un K-espace vectoriel étant lui même un K-espace

vectoriel, la question est de savoir s’il est de type fini ou s’il ne l’est pas.
Par exemple l’espace vectoriel des fonctions de R dans R contient des sous-espaces

vectoriels de type fini comme l’ensemble des fonctions polynômes réelles de degré
inférieur ou égal à n (n étant un nombre entier donné), mais il contient aussi des sous-
espaces vectoriels qui ne sont pas de type fini comme l’ensemble de toutes les fonctions
polynômes réelles. Cependant, la réponse est plus précise lorsque l’espace vectoriel
considéré est lui-même de type fini.

Théorème 25 Soit E un K-espace vectoriel de type fini. Alors tout sous-espace vec-
toriel F de E est de type fini, et sa dimension est inférieure ou égale à celle de E ; la
dimension de F est égale à celle de E si et seulement si le sous-espace F est égal à
l’espace E tout entier.
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Démonstration. La démonstration est triviale dans le cas où le sous espace F est réduit
à {0}.

Soit donc F un sous-espace vectoriel de E et soit n la dimension de E ; n est un
entier strictement positif puisque E, qui contient F , n’est pas réduit à {0}.

Soit v un élément non nul de F : {v} est une partie libre de F , donc F contient des
parties libres. Toute partie libre d’éléments de F étant une partie libre d’éléments de E
(voir la définition des parties libres), comme E est de dimension n, toutes les parties
libres de F ont au plus n éléments.

On considère l’ensemble A des entiers k tels qu’il existe une partie libre de F ayant
k éléments :

A = {k 2 N,9{ f1, f2, . . . , fk}⇢ F et{ f1, f2, . . . , fk} partie libre de F}

Cet ensemble A, non vide (1 2 A ), est un sous-ensemble borné de N (puisque tout
élément de A est compris entre 1 et n) donc il admet un maximum. Soit p ce maximum
et soit {v1,v2, . . . ,vp} une partie libre de F ayant p éléments ; cette partie libre est donc
une partie libre maximale de F .

D’après la propriété des parties libres maximales d’un espace vectoriel, la partie
{v1,v2, . . . ,vp} est une partie génératrice de F et donc détermine une base de F .

On a ainsi démontré simultanément que
• F est de type fini (puisque {v1,v2, . . . ,vp} est une partie génératrice de F),
• dimF = p, donc dimF dimE (puisque toute partie libre de F a au plus n éléments).

De plus, lorsque p = n, le p-uplet (v1,v2, . . . ,vp) , qui est une base de F , est aussi
une base de E (car {v1,v2, . . . ,vp} est alors une partie libre de E ayant exactement n
éléments), c’est donc une base de E. Tout élément de E s’écrit comme une combinaison
linéaire de v1,v2, . . . ,vp, donc appartient à F , d’où E = F .

Exemple 73 Si E est un K-espace vectoriel de dimension 2, les sous-espaces vectoriels
de E sont

• soit de dimension 0, c’est alors le sous-espace {0},
• soit de dimension 1, ce sont tous les sous-espaces engendrés par les vecteurs non

nuls u de E,
• soit de dimension 2, c’est alors l’espace E tout entier.

Vocabulaire Dans un K-espace vectoriel E de dimension n (n � 2), tout sous-
espace vectoriel de E de dimension 1 est appelé droite vectorielle de E, tout sous-
espace vectoriel de E de dimension 2 est appelé plan vectoriel de E, et tout sous-espace
vectoriel de E de dimension n� 1 est appelé hyperplan de E : il y a identité entre les
notions d’hyperplan et de plan vectoriel lorsque n = 3, et entre les notions d’hyperplan
et de droite vectorielle lorsque n = 2.

Dans le cas plus général où E est un K-espace vectoriel quelconque et F et G deux
sous-espaces vectoriels de type fini de E, la comparaison des dimensions de F et de G
ne donne pas d’information sur F et G, les dimensions peuvent être égales sans que ces
sous-espaces soient égaux, mais si F est contenu dans G, il peut être considéré comme
un sous-espace vectoriel de G et le théorème précédent permet de déduire le corollaire
suivant :

Corollaire 26 Soient F et G deux sous espaces vectoriels de type fini de E, tels que F
soit contenu dans G. Alors la dimension de F est inférieure ou égale à la dimension de
G et les dimensions de F et de G sont égales si et seulement F et G sont égaux.
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Exemple 74 Deux droites F et G d’un K-espace vectoriel E sont soit égales, soit d’in-
tersection réduite au vecteur nul.

Exemple 75 Soient F et G les sous-espaces vectoriels de R3 suivants :

F := {(x,y,z) 2 R3 | 2x�3y+ z = 0}
G := vect(u,v) où u = (1,1,1) et v = (2,1,�1)

On veut montrer que F = G. On remarque que les vecteurs u et v ne sont pas
colinéaires, donc G est de dimension 2, et de plus ils appartiennent à F , donc G est
contenu dans F . Pour trouver la dimension de F , on pourrait déterminer une base de
F , on montrerait alors que la dimension de F est 2. Mais il est plus judicieux ici de
remarquer que F est contenu strictement dans R3 (par exemple : le vecteur (1,0,0)
de R3 n’est pas dans F), donc la dimension de F est strictement inférieure à 3 ; mais
puisque F contient G, la dimension de F est supérieure ou égale à 2 , donc la dimension
de F ne peut être que 2.

On a donc démontré que G est contenu dans F et que F et G ont la même dimen-
sion ; ceci entraine que F est égal à G.

Étudions maintenant la somme de deux sous espaces de type fini.

Proposition 47 Soient F et G deux sous-espaces vectoriels de type fini d’un K-espace
vectoriel E.

1- Si f1, f2, . . . , fp est une famille génératrice de F, et g1,g2, . . . ,gq une famille
génératrice de G, alors la famille f1, f2, . . . , fp,g1,g2, . . . ,gq est une famille génératrice
de F +G.

2- Si, de plus, ( f1, f2, . . . , fp) est une base de F, et (g1,g2, . . . ,gq) une base de G,
alors le p+q-uplet ( f1, f2, . . . , fp,g1,g2, . . . ,gq) est une base de F +G si et seulement
si la somme de F et de G est directe.

Démonstration. 1. Tout élément u de F +G est la somme d’un élément v de F et d’un
élément w de G :

u = v+w.

Or v est une combinaison linéaire de f1, f2, . . . , fp et w est une combinaison linéaire de
g1,g2, . . . ,gq donc u est une combinaison linéaire de f1, f2, . . . , fp,g1,g2, . . . ,gq donc
{ f1, f2, . . . , fp,g1,g2, . . . ,gq} est bien une partie génératrice de F + G. On en déduit
que F +G est de type fini et on a

dim(F+G) p+q = dimF+dimG.

2. Compte tenu du 1, il suffit de montrer que, lorsque { f1, f2, . . . , fp} est une partie
libre de F , et {g1,g2, . . . ,gq} une partie libre de G, alors { f1, f2, . . . , fp,g1,g2, . . . ,gq}
est une partie libre de F +G si et seulement si F +G = F�G.

Supposons que { f1, f2, . . . , fp,g1,g2, . . . ,gq} soit une partie libre de F +G et mon-
trons que F + G = F �G. Écrivons 0E comme la somme d’un élément de F et d’un
élément de G : 0E = u+ v avec u 2 F et v 2 G et montrons que u = v = 0E . Comme u
est dans F , il s’écrit comme combinaison linéaire de { f1, f2, . . . , fp} :

9(l1,l2, . . . ,lp) 2 K p, u = l1 f1 +l2 f2 + · · ·+lp fp.

Comme v est dans G, il s’écrit comme combinaison linéaire de {g1,g2, . . . ,gq} :

9(µ1,µ2, . . . ,µp) 2 Kq, v = µ1g1 +µ2g2 + · · ·+µqgq.
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Comme u+ v = 0E , on a

l1 f1 +l2 f2 + · · ·+lp fp +µ1g1 +µ2g2 + · · ·+µpgp = 0E .

Comme { f1, f2, . . . , fp,g1,g2, . . . ,gq} est une partie libre de F + G, on a l1 = l2 =
· · · = lp = µ1 = µ2 = · · · = µq = 0. Donc u = v = 0E .

Réciproquement, on suppose que F +G = F�G et on veut montrer que { f1, f2, . . . , fp,g1,g2, . . . ,gq}
est une partie libre de F +G. On suppose

l1 f1 +l2 f2 + · · ·+lp fp +µ1g1 +µ2g2 + · · ·+µpgp = 0E .

Or l1 f1 + l2 f2 + · · ·+ lp fp est un élément de F et µ1g1 + µ2g2 + · · ·+ µpgp est un
élément de G. Comme la somme de F et de G est directe, on en déduit

⇢
l1 f1 +l2 f2 + · · ·+lp fp = 0E
µ1g1 +µ2g2 + · · ·+µpgp = 0E

Comme { f1, f2, . . . , fp} est une partie libre de F , tous les li sont nuls. De même
{g1,g2, . . . ,gq} étant une partie libre de G donc tous les µi sont nuls. On a montré
ainsi que { f1, f2, . . . , fp,g1,g2, . . . ,gq} est une partie libre de F +G. ⇤

De la proposition précédente résulte le théorème suivant :

Théorème 27 Soient F et G deux sous-espaces vectoriels de type fini d’un K-espace
vectoriel E. Alors la somme F +G est un sous-espace vectoriel de type fini de E et sa
dimension est inférieure ou égale à la somme des dimensions de F et de G.

La dimension de F + G est égale à la somme des dimensions de F et de G si et
seulement si la somme est directe.

Démonstration. Soient { f1, f2, . . . , fp} et {g1,g2, . . . ,gq} des bases de F et de G. D’après
la proposition précédente { f1, f2, . . . , fp,g1,g2, . . . ,gq} est une partie génératrice de
F + G , donc F + G est de type fini et sa dimension est inférieure ou égale au nombre
d’éléments de la famille { f1, f2, . . . , fp,g1,g2, . . . ,gq} donc inférieure ou égale à p +
q = dimF+dimG.

De plus,
•Si la somme F +G est directe, alors { f1, f2, . . . , fp,g1,g2, . . . ,gq} est une base de

F +G. Donc la dimension de F +G est égale à p+q = dimF+dimG.

• Réciproquement, si la dimension de F + G est égale à p + q = dimF + dimG
Alors la famille génératrice { f1, f2, . . . , fp,g1,g2, . . . ,gq} qui a p + q éléments est une
famille génératrice de F +G ayant dim(F+G) éléments, elle détermine donc une base
de F +G. Ce qui entraine que la somme F +G est directe. ⇤

Remarque 47 Les assertions du théorème reste vraies pour la somme d’un nombre
quelconque de sous espaces vectoriels d’un espace vectoriel de type fini.

De la proposition précédente résulte aussi le théorème fondamental suivant :

Théorème 28 Tout sous-espace vectoriel d’un K-espace vectoriel de type fini admet
un supplémentaire.
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Démonstration. Soient E un K-espace vectoriel de type fini, B = (e1, . . . ,en) une base
de E, F un sous-espace vectoriel de E, BF = ( f1, f2, . . . , fp) une base de F . La famille
e1, . . . ,en est donc une famille génératrice de E et la partie { f1, f2, . . . , fp} une partie
libre de E. On peut donc appliquer le théorème de la base incomplète. D’après ce
théorème, il existe une partie C de {e1, . . . ,en} telle que { f1, f2, . . . , fp}[C détermine
une base B0 de E. Soit G le sous-espace vectoriel de E engendré par C, alors B0 est à
la fois une base de E et une base de F +G. Ceci prouve bien que la somme F +G est
directe et que E = F +G = F�G. ⇤

Exemple 76 Soit F = {(x,y,z)2R3 | 2x�3y+z = 0}. On a vu dans l’exemple précédent
que F = vect(u,v) où u = (1,1,1) et v = (2,1,�1). Le sous-espace F est de dimension
2. Pour construire un supplémentaire de F , donc trouver G tel que F�G = R3, il suffit
de remarquer que ce supplémentaire est forcément de dimension 1 (voir le théorème sur
la dimension d’une somme directe), donc qu’une base de G n’a qu’un élément qu’on
note w, et que (u,v,w) doit être une base de R3. N’importe quel élément de R3, n’ap-
partenant pas à F (donc forcément non nul) convient : En effet soit w n’appartenant
pas à F , alors F \Rw = {0E}. donc la somme F + Rw est directe, sa dimension est
alors égale à 3, donc F�Rw = E. Le sous-espace Rw est bien un supplémentaire de F .

On peut choisir pour w n’importe quel triplet ne vérifiant pas l’égalité 2x�3y+z =
0. Il existe une infinité de tels triplets non colinéaires, ce qui prouve l’existence d’une
infinité de supplémentaires de F .

4.1.7 Rang d’une famille finie de vecteurs
Soit E un K-espace vectoriel et (v1, . . . ,vp) une famille finie de vecteurs de E. Le

sous-espace vectoriel engendré par (v1, . . . ,vp) est de type fini (puisqu’il admet trivia-
lement une famille finie de générateurs). On peut donc donner la définition suivante :

Définition 36 (Définition du rang d’une famille finie de vecteurs) Soit E un K-espace
vectoriel et une famille finie de vecteurs de E, (v1, . . . ,vp). Le rang de la famille
(v1, . . . ,vp) (on dit aussi rang des vecteurs v1, . . . ,vp) est la dimension du sous-espace
vectoriel de E engendré par les vecteurs v1, . . . ,vp.

Notation Le rang de la famille (v1, . . . ,vp) est noté rg(v1, . . . ,vp).

Proposition 48 Soit E un K-espace vectoriel et (v1, . . . ,vp) une famille de p vecteurs
non tous nuls de E. Alors :

1) Les inégalités suivantes sont satisfaites :

0 < rg(v1, . . . ,vp) p.

2) Le rang de (v1, . . . ,vp) est le nombre maximum d’éléments d’une famille libre
extraite de (v1, . . . ,vp). Donc rg(v1, . . . ,vp) = r si et seulement il existe une famille
libre de r vecteurs extraite de (v1, . . . ,vp) et si toute famille de q vecteurs, avec q > r,
extraite de (v1, . . . ,vp), est liée. En particulier rg(v1, . . . ,vp) = p si et seulement les
vecteurs (v1, . . . ,vp) sont linéairement indépendants.

3) Si rg(v1, . . . ,vp) = r, toute partie libre de r éléments extraite de (v1, . . . ,vp)
détermine une base du sous-espace vectoriel engendré par les vecteurs v1, . . . ,vp
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4) Soient F un K-espace vectoriel et f : E ! F une application linéaire. On a
l’inégalité

rg( f (e1), f (e2), . . . , f (ep)) rg(e1,e2, . . . ,ep).

Si, de plus, f est injective, le rang des vecteurs v1, . . . ,vp est égal au rang des vecteurs
f (v1), . . . , f (vp).

Démonstration. les points 1,2 et 3 sont immédiats. Le quatrième point découle de la
proposition 42.

Remarque 48 Le cas où tous les vecteurs sont nuls est immédiat : il est clair que l’on
a l’équivalence suivante :

rg(v1, . . . ,vp) = 0() v1 = v2 = · · · = vp = 0.

Remarque 49 Si E est un espace vectoriel de type fini, il est évident d’après les pro-
priétés des sous-espaces vectoriels de type fini, que le rang d’une famille finie de vec-
teurs de E est inférieur ou égal à la dimension de E. Il est égal à la dimension de E si
et seulement si la famille engendre E.

Proposition 49 L’espace vectoriel engendré par une famille de vecteurs n’est pas mo-
difié par les trois opérations élémentaires suivantes sur les vecteurs :

– On échange deux vecteurs.
– On multiplie un vecteur de la famille par un scalaire non nul.
– On rajoute à l’un des vecteurs une combinaison linéaire des autres vecteurs

(substitution).
En particulier le rang d’une famille de vecteurs n’est pas modifié par les trois opérations
élémentaires précédentes sur les vecteurs.

Remarque 50 Cet énoncé suppose évidemment que l’on considère une famille d’au
moins deux vecteurs. Cela ne pose aucun problème dans la mesure où la détermination
du rang d’une famille de vecteurs ne comportant qu’un vecteur est immédiate : ou bien
ce vecteur est nul et le rang est égal à 0 ou bien ce vecteur est non nul et le rang est égal
à 1.

Démonstration. Le premier point de la proposition est évident. Soit F le sous-espace
vectoriel de E engendré par les vecteurs v1, . . . ,vp. Démontrons le deuxième point.
Pour simplifier l’exposition, on suppose que c’est le premier vecteur que l’on multiplie
par un scalaire non nul l. Soit (a1, . . . ,ap) p scalaires. L’égalité

a1v1 +a2v2 + · · ·+anvn =
a1

l
lv1 +a2v2 + · · ·+anvn

montre qu’une combinaison linéaire des vecteurs (v1, . . . ,vp) est une combinaison linéaire
des vecteurs (lv1, . . . ,vp) et vice versa. Le deuxième point en découle. Montrons main-
tenant le troisième point. Comme précédemment on suppose que c’est au vecteur v1 que
l’on rajoute une combinaison linéaire des autres. Il est clair que cela ne nuit pas à la

généralité de la démonstration. On pose v01 = v1 +
p

Â
i=2

aivi. La définition de v01 implique

que v01 appartient au sous-espace vectoriel engendré par les vecteurs (v1, . . . ,vp). On a
donc l’inclusion

vect(v01, . . . ,vp)⇢ vect(v1, . . . ,vp).



92 CHAPITRE 4. ESPACES VECTORIELS DE TYPE FINI, BASES

La définition de v01 implique aussi l’égalité

v1 = v01�
p

Â
i=2

aivi

et donc, comme précédemment, l’inclusion de vect(v1, . . . ,vp) dans vect(v01, . . . ,vp)
D’où l’ égalité :

vect(v1, . . . ,vp) = vect(v01, . . . ,vp).

⇤
Dans la plupart des exemples, la recherche du rang concernera des vecteurs appar-

tenant à un espace vectoriel E de type fini, vecteurs que l’on exprimera donc dans une
base de E. On se place donc désormais dans cette situation. On s’appuiera alors sur la
propriété suivante :

Proposition 50 Soit E un K-espace vectoriel de type fini et n sa dimension. Soient
(e1, . . . ,en) une base de E et w1, . . . ,ws des vecteurs de E, dont les coordonnées dans
la base (e1, . . . ,en) se présentent de la manière suivante :

w1 = ai1,1ei1 + · · ·+ ai2,1ei2 + · · ·+ ais,1eis + · · ·+ an,1en
w2 = ai2,2ei2 + · · ·+ ais,2eis + · · ·+ an,2en
... =

. . .
ws = ais,seis + · · ·+ an,sen

avec, i1 < i2 < · · · < is et, pour tous les entiers j compris entre 1 et s, ai j , j non nul.
Alors les vecteurs (w1, . . . ,ws) sont linéairement indépendants.

Démonstration. On démontre par récurrence sur s que s vecteurs w1, . . . ,ws satisfaisant
les hypothèses de la proposition sont linéairement indépendants.

Si s = 1, on a vecteur le w1 non nul. Il constitue donc une famille libre.
On suppose s� 2 et l’assertion vraie pour s�1. Soit une combinaison linéaire nulle

des vecteurs w1, . . . ,ws :

l1w1 +l2w2 + · · ·+lsws = 0.

La coordonnée de l1w1 + l2w2 + · · ·+ lsws = 0 sur le vecteur ei1 est l1ai1,1. Comme
ai1,1 est non nul, l1 = 0. On est donc ramené à la combinaison linéaire l2w2 + · · ·+
lsws = 0 où les s�1 vecteurs w2, . . . ,ws vérifient les hypothèses de la proposition. ⇤

Une conséquence immédiate de cette proposition est :

Corollaire 29 Si des vecteurs w1, . . . ,ws vérifient les hypothèses de la proposition
précédente alors leur rang est exactement égal à s.

Proposition 51 Soit E un K-espace vectoriel de dimension finie et soit B = (e1, . . . ,en)
une base de E. Soient v1, . . . ,vp p vecteurs. Notons [vi]B la matrice colonne des coor-
données de vi dans la base B . Le rang des vecteurs v1, . . . ,vp dans E est le rang des
vecteurs [v1]B , . . . , [vp]B dans Mn,1(K).

Démonstration. Cela découle du fait que l’application

E ! Mn,1(K)
v 7! [v]B

est un isomorphisme.
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Définition 37 On définit le rang d’une matrice comme étant le rang de ses vecteurs
colonnes.

Remarque 51 Notons M la matrice dont la j-ième colonne est [v j]B . Le rang des vec-
teurs v1, . . . ,vp est égal au rang de M.

D’après la proposition 49, on ne change pas le rang d’une matrice par des opérations
élémentaires sur les colonnes.

Définition 38 On dit qu’une matrice est échelonnée par rapport aux colonnes si sa
transposée est échelonnée (par rapport aux lignes).

Soit A une matrice. L’algorithme de Gauss nous dit que, par des opérations élémentaires
sur les lignes, on peut transformer AT en une matrice échelonnée (par rapport aux
lignes) R. Par transposition, on en déduit que, par des opérations élémentaires sur les
colonnes, on peut transformer A en la matrices RT qui est échelonée par rapport aux
colonnes. Le rang d’une matrice échelonnée par rapport aux colonnes est facile à cal-
culer (voir proposition 50).

Exemple 77 Calculons le rang de la famille des 5 vecteurs suivants de R4.

v1 = (1,1,1,1)
v2 = (�1,2,0,1)
v3 = (3,2,�1,�3)
v4 = (3,5,0,�1)
v5 = (3,8,1,1)

On est ramené à calculer le rang de la matrice
0

BB@

1 �1 3 3 3
1 2 2 5 8
1 0 �1 0 1
1 1 �3 �1 1

1

CCA

Pour les opérations élémentaires sur les colonnes, on utilise les mêmes notations
que pour les opérations sur les lignes.

En faisant les opérations C2 �C2 +C1, C3 �C3�3C1 , C4 �C4�3C1, C5 �
C5�3C1, on obtient

0

BB@

1 �1 3 3 3
1 2 2 5 8
1 0 �1 0 1
1 1 �3 �1 1

1

CCA⇠

0

BB@

1 0 0 0 0
1 3 �1 2 5
1 1 �4 �3 �2
1 2 �6 �4 �2

1

CCA

On échange C2 et C3 pour éviter d’introduire des fractions. On obtient :
0

BB@

1 0 0 0 0
1 3 �1 2 5
1 1 �4 �3 �2
1 2 �6 �4 �2

1

CCA⇠

0

BB@

1 0 0 0 0
1 �1 3 2 5
1 �4 1 �3 �2
1 �6 2 �4 �2

1

CCA
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En faisant les opérations C3 �C3 +3C2, C4 �C4 +2C2 et C5 �C5 +5C2, on
obtient 0

BB@

1 0 0 0 0
1 �1 3 2 5
1 �4 1 �3 �2
1 �6 2 �4 �2

1

CCA⇠

0

BB@

1 0 0 0 0
1 �1 0 0 0
1 �4 �11 �11 �22
1 �6 �16 �16 �32

1

CCA .

Enfin, en faisant les opérations C4 �C4�C3 et C5 �C5�2C3, on obtient
0

BB@

1 0 0 0 0
1 �1 0 0 0
1 �4 �11 �11 �22
1 �6 �16 �16 �32

1

CCA⇠

0

BB@

1 0 0 0 0
1 �1 0 0 0
1 �4 �11 0 0
1 �6 �16 0 0

1

CCA .

On en déduit que le rang des vecteurs v1,v2,v3,v4,v5 est 3.

Remarque 52 En fait, nous avons même démontré que

vect(v1,v2,v3,v4,v5) = vect(v1,(0,�1,�4,�6),(0,0,�11,�16)) .

Exemple 78 Considérons les trois vecteurs suivants dans R5 : n1 = (1,2,1,2,0) , n2 =
(1,0,1,4,4) et n3 = (1,1,1,0,0). Montrons que la famille (n1,n2,n3) est libre dans R5.
Pour cela calculons le rang de cette famille de vecteurs ou, ce qui revient au même,
celui de la matrice suivante 0

BBBB@

1 1 1
2 0 1
1 1 1
2 4 0
0 4 0

1

CCCCA
.

Par des opérations élémentaires sur les colonnes, on obtient :
0

BBBB@

1 1 1
2 0 1
1 1 1
2 4 0
0 4 0

1

CCCCA
⇠

0

BBBB@

1 0 0
2 �2 �1
1 0 0
2 2 �2
0 4 0

1

CCCCA
⇠

0

BBBB@

1 0 0
2 �1 �1
1 0 0
2 1 �2
0 2 0

1

CCCCA
⇠

0

BBBB@

1 0 0
2 �1 0
1 0 0
2 1 �3
0 2 �2

1

CCCCA

La famille (n1,n2,n3) est de rang 3, elle est donc libre dans R5.

Exemple 79 Considérons les quatre vecteurs suivants dans R3 : n1 = (1,2,3) , n2 =
(2,0,6), n3 = (3,2,1) et n4 = (�1,2,2). Montrons que la famille (n1,n2,n3,n4) en-
gendre R3. Pour cela calculons le rang de cette famille de vecteurs ou, ce qui revient
au même, celui de la matrice suivante

0

@
1 2 3 �1
2 0 2 2
3 6 1 2

1

A .

Par des opérations élémentaires sur les colonnes, on obtient :
0

@
1 2 3 �1
2 0 2 2
3 6 1 2

1

A⇠

0

@
1 0 0 0
2 �4 �4 4
3 0 �8 5

1

A⇠

0

@
1 0 0 0
2 �4 0 0
3 0 �8 5

1

A⇠

0

@
1 0 0 0
2 �4 0 0
3 0 �8 0

1

A .

La famille (n1,n2,n3,n4) étant de rang 3, ce qui veut exactement dire que Vect (n1,n2,n3,n4)
est un sous espace vectoriel de dimension 3 de R3. On a donc Vect (n1,n2,n3,n4) = R3.
Autrement dit la famille (n1,n2,n3,n4) engendre R3.
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4.2 Applications linéaires en dimension finie
L’étude des propriétés des applications linéaires définies sur un espace vectoriel de

type fini conduit à des résultats très riches et très utilisés.

4.2.1 Construction et caractérisation
Théorème 30 (Construction d’une application linéaire) Soient E et F deux espaces
vectoriels sur un même corps K. On suppose que l’espace vectoriel E est de type fini.
Soit n (n � 1) sa dimension. Alors, si (e1, . . . ,en) est une base de E, pour tout n-uplet
(a1, . . . ,an) d’éléments de F, il existe une et une seule application linéaire f de E dans
F telle que :

8i 2 [1,n], f (ei) = ai.

Remarque 53 Le théorème ne fait aucune hypothèse sur la dimension de l’espace vec-
toriel F , espace vectoriel d’arrivée de f .

Une application linéaire d’un espace vectoriel de type fini dans un espace vecto-
riel quelconque est entièrement déterminée par les images des vecteurs d’une base de
l’espace vectoriel de départ.

Méthodologie de la preuve du théorème :
La conclusion du théorème comporte deux points : l’existence et l’unicité d’une

application linéaire satisfaisant à certaines propriétés. La démonstration va donc com-
porter deux parties :

• une première qui consistera à prouver que si une telle application existe, elle est
unique ;

• la deuxième qui consistera à montrer l’existence d’une telle application linéaire
par sa construction explicite.

Il peut paraı̂tre curieux de commencer par l’unicité, mais la plupart du temps, dans
une situation de ce type, c’est ce qui est fait. Cela permet en effet de déterminer, si elle
existe, la seule application qui peut convenir. Nous avons déjà rencontré cette méthode
dans l’exemple 38

Démonstration.
Commençons par démontrer l’unicité. Supposons qu’il existe une application linéaire

f : E! F telle que
8i 2 [1,n], f (ei) = ai.

Soit x un élément de E. Il existe des scalaires x1,x2, . . . ,xn uniques tels que

x =
n

Â
i=1

xiei. Comme f est linéaire, on a

f (x) =
n

Â
i=1

xi f (ei) =
n

Â
i=1

xiai.

Donc, si elle existe, f est unique
Démontrons maintenant l’existence de f . Nous avons montré que la seule solution

possible au problème posé est l’application

L : E ! F

x 7!
n

Â
i=1

xiai si x =
n

Â
i=1

xiei
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Pour achever la démonstration il s’agit de vérifier que cette application est linéaire et
qu’elle vérifie la condition imposée, à savoir : pour tout i dans [1,n], L(ei) = ai.

Soient x =
n

Â
i=1

xiei et y =
n

Â
i=1

yiei deux éléments de E, et a un scalaire. Alors, tous

calculs faits, cela donne

ax+ y =
n

Â
i=1

(axi + yi)ei

et les scalaires axi + yi sont les coordonnées de ax + y dans la base (e1, . . . ,en). Donc
d’après la définition de L, on a

L(ax+ y) =
n

Â
i=1

(axi + yi)ai = a

 
n

Â
i=1

xiai

!
+

 
n

Â
i=1

yiai

!
= aL(x)+bL(y).

L’application L est donc linéaire.
Pour justifier qu’elle vérifie la condition imposée, il suffit de remarquer que la i-

ème composante de ei sur la base (e1, . . . ,en) est égale à 1 et que toutes les autres sont
nulles. Alors

L(ei) = 1ai +
n

Â
j=1, j 6=i

0a j = ai.

Ce qui termine la preuve du théorème. ⇤

4.2.2 Rang d’une application linéaire
Proposition 52 Soient E et F deux espaces vectoriels sur un même corps K et f une
application linéaire de E dans F. On suppose l’espace vectoriel E de type fini. Alors,
l’image de f est un espace vectoriel de type fini. Plus précisément, si n est la dimension
de E et (e1, . . . ,en) une base de E, alors ( f (e1), . . . , f (en)) est une famille génératrice
de Im f .

Démonstration. Il suffit de démontrer que tout élément de Im f est combinaison linéaire
des vecteurs f (e1), . . . , f (en).

Soit y un élément quelconque de Im f . Il existe donc un élément x de E tel que
y = f (x). Comme (e1, . . . ,en) est une base de E, il existe des scalaires (x1, . . . ,xn) tels

que x =
n

Â
i=1

xiei. En utilisant la linéarité de f , on en déduit f (x) =
n

Â
i=1

xi f (ei), ce qui

achève la démonstration. ⇤

Définition 39 (Définition du rang d’une application linéaire) Soient E et F deux es-
paces vectoriels sur un même corps K et f une application linéaire de E dans F. On
suppose l’espace vectoriel E de type fini. La dimension de l’espace vectoriel Im f est
appelée rang de f et notée rg( f ).

Remarque 54 D’après la deuxième partie de la proposition précédente, la dimen-
sion de Im( f ) est le rang du système de vecteurs f (e1), . . . , f (en), ce qui explique à
postériori la dénomination rang de l’application linéaire f . Il en résulte que le rang
d’une application linéaire est inférieur ou égal à la dimension de l’espace vectoriel de
départ. Pour déterminer une base et la dimension de l’image d’une application linéaire
dont l’espace de départ est de type fini, on détermine les vecteurs f (e1), . . . , f (en) et on
peut utiliser les techniques de détermination du rang d’une famille finie de vecteurs.
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Proposition 53 Soient E et F deux espaces vectoriels et f un isomorphisme de E dans
F. Si E (respectivement F) est de type fini, alors F (respectivement E) est de type fini
et on a dimE = dimF

Démonstration. Si E est de dimension finie, alors comme F = Im( f ), F est engendré
par l’image d’une base de E, on a donc dimF  dimE. De même f�1 : F ! E est un
isomorphisme, donc f�1(F) = E et, d’après le résultat précédent, on a dimE dimF.

Si c’est F qui est de dimension finie, on fait le même raisonnement avec f�1. ⇤

Proposition 54 Soient E et F deux K-espaces vectoriels de dimension finie et f : E!
F une application linéaire. On a

rg( f ) In f (dim(E),dim(F)) .

Démonstration. Si (e1,e2, . . . ,en) (n = dimE) est une base de E, alors ( f (e1), f (e2), . . . , f (en))
est une famille génératrice de Im( f ). Comme Im( f ) a une famille génératrice à n
éléments, sa dimension est inférieure ou égale à n.
Comme Im( f ) est un sous-espace vectoriel de F , sa dimension est inférieure ou égal à
la dimension de F .

4.2.3 Théorème du rang
De tous ces résultats, on va déduire le théorème dit ” Théorème du rang ” qui est un

résultat tout à fait fondamental dans la théorie des applications linéaires en dimension
finie. On se place toujours dans la même situation : E et F sont deux espaces vecto-
riels sur un même corps K. L’espace vectoriel E est supposé de type fini et f est une
application linéaire de E dans F .

• Il résulte des propriétés générales des applications linéaires que le noyau et
l’image d’une application linéaire sont des sous-espaces vectoriels respectivement de
l’espace de départ et de l’espace d’arrivée.

• Il résulte des propriétés des sous espaces d’un espace de type fini que le noyau
d’une application linéaire d’un espace vectoriel de type fini dans un espace quelconque
est de type fini.

• Nous savons que l’image d’une application linéaire d’un espace vectoriel de type
fini dans un espace quelconque est de type fini.

L’objet du théorème du rang est de donner une relation entre la dimension du noyau
et la dimension de l’image de f .

Théorème 31 (Théorème du rang) Soient E et F deux espaces vectoriels sur un même
corps K, E de type fini. Soit f une application linéaire de E dans F. Alors

dimE = dimKerf+dimImf.

Dans la pratique, il suffit donc de déterminer la dimension du noyau ou celle de
l’image d’une application linéaire pour avoir les deux dimensions.

Démonstration. Si f est injective, en désignant par (e1, . . . ,en) une base de E, nous
avons vu que la famille à n éléments ( f (e1), . . . , f (en)) est une famille libre de F donc
une famille libre de Im( f ). De plus, { f (e1), . . . , f (en)} est une partie génératrice de
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Im( f ). Donc ( f (e1), . . . , f (en)) est une base de Im( f ). La dimension de Im f est donc
égale à n qui est la dimension de E et le théorème du rang est vrai.

Si f n’est pas injective, le noyau de f est un sous espace de E de dimension p
avec 1  p  n. Soit (e1, . . . ,ep) une base de Kerf. D’après le théorème de la base in-
complète, il existe n� p vecteurs ep+1, . . . ,en de E tels que (e1,e2, . . . ,en) soit une base
de E. Alors Im f est engendré par les vecteurs f (e1), f (e2), . . . , f (en). Mais, comme
pour tout i compris entre 1 et p on a f (ei) = 0, Im f est engendrée par les vecteurs
f (ep+1), . . . , f (en). Montrons que ces vecteurs sont linéairement indépendants. Soient
ap+1, . . . ,an des scalaires tels que

ap+1 f (ep+1)+ · · ·+an f (en) = 0.

Puisque f est linéaire cette égalité équivaut à l’égalité

f (ap+1ep+1 + · · ·+anen) = 0

qui prouve que le vecteur ap+1ep+1 + · · ·+ anen appartient au noyau de f . Il existe
donc des scalaires l1, . . . ,lp tels que

ap+1ep+1 + · · ·+anen = l1e1 + · · ·+lpep.

Comme (e1,e2, . . . ,en) est une base de E, les vecteurs e1,e2, . . . ,en sont linéairement
indépendants et par conséquent :

8i 2 [1, p], li = 0 et 8i 2 [p+1,n], ai = 0.

Les vecteurs f (ep+1), . . . , f (en) définissent donc une base de Im f . Le sous espace vec-
toriel Im f est donc de dimension n� p. Ce qui achève la démonstration. ⇤

On remarquera le rôle essentiel joué par le théorème de la base incomplète dans
cette démonstration.

4.2.4 Application linéaire entre deux espaces de même dimension
Théorème 32 Soient E et F deux espaces vectoriels de type fini sur un même corps K.
On suppose qu’ils ont même dimension. Soit f une application linéaire de E dans F.
Alors f est injective si et seulement si elle est surjective et donc si et seulement si elle
est bijective.

Autrement dit, dans le cas d’une application linéaire entre deux espaces de même
dimension, il suffit pour démontrer qu’elle est bijective, de démontrer l’une des deux
propriétés injectivité ou surjectivité.

Démonstration. Cela est immédiat à partir du théorème du rang. En effet la propriété
f injective équivaut, d’après le théorème du rang, à rg( f ) = dimE. D’après l’hypothèse
sur l’égalité des dimensions de E et de F , Ceci équivaut à la rg( f ) = dimF. Donc
Im f = F et f est surjective. On démontre de manière analogue que si f est surjective
alors f est injective. Cela achève la démonstration. ⇤



Chapitre 5

Applications linéaires et
matrices

Les résultats qui sont développés ici, décrivant un lien entre la notion de matrice et
celle d’application linéaire, sont fondamentaux.

5.1 Matrice associée à une application linéaire
Soient E et F deux espaces vectoriels de type fini sur un même corps K. Soit p la

dimension de E et (e1, . . . ,ep) une base de E. Soit n la dimension de F et ( f1, . . . , fn)
une base de F . Soit f une application linéaire de E dans F .

L’étude des propriétés des applications linéaires entre deux espaces de type fini
permet d’affirmer que :

- l’application linéaire est déterminée de façon unique par l’image d’une base de E,
donc par les vecteurs f(e1),f(e2), . . .f(ep).

Si j est un entier compris entre 1 et p, f(e j) est un vecteur de F et s’écrit de manière
unique comme combinaison linéaire des vecteurs de la base BF = ( f1, f2, . . . , fn) de F.

Il existe n scalaires uniques a1, j,a2, j, . . . ,an, j tels que

f(e j) = a1, j f1 +a2, j f2 + · · ·+an, j fn.

Donc, l’application linéaire est entièrement déterminée par les coefficients (ai, j)(i, j)2[1,n]⇥[1,p].
Il est donc naturel d’introduire la définition suivante :

Définition 40 On appelle matrice associée à l’application linéaire f par rapport aux
bases BE et BF la matrice à n lignes et p colonnes dont la j-ième colonne est constituée
par les coordonnées du vecteur f(e j) dans la base BF = ( f1, f2, . . . , fn) à savoir

0

BBB@

a1, j
a2, j

...
an, j

1

CCCA
.

Notation : la matrice associée à l’application linéaire f par rapport aux bases BE et
BF sera notée [f]BF

BE
la notation (E,BE) signifie que l’on considère l’espace vectoriel E muni de la base

BE .

99



100 CHAPITRE 5. APPLICATIONS LINÉAIRES ET MATRICES

Remarque 55 Le type de la matrice associée à l’application linéaire f par rapport
aux bases BE et BF dépend uniquement de la dimension de E et de celle de F. En effet
cette matrice a un nombre de lignes égal à la dimension de l’espace d’arrivée de f et
un nombre de colonnes égal à la dimension de l’espace de départ de f.

2) Des bases étant choisies respectivement dans E et F, il y a unicité de la matrice
associée à f. Mais, la matrice trouvée dépend entièrement de ce choix de bases.

Exemple 80 Soit L l’application linéaire de R3 dans R2 définie par

R3 ! R2

(x1,x2,x3) 7! (x1 + x2,x1 + x3)

Soient (e1,e2,e3) la base canonique de R3 et ( f1, f2) la base canonique de R2. Déterminons
la matrice associée à L dans les bases (e1,e2,e3) et ( f1, f2).

On a
f(e1) = (1,1) = f1 + f2.

La première colonne de la matrice [f]( f1, f2)
(e1,e2,e3) est donc

✓
1
1

◆
. De même, on a

f(e2) = (1,0) = f1.

La deuxième colonne de la matrice [f]( f1, f2)
(e1,e2,e3) est donc

✓
1
0

◆
. Enfin on a

f(e3) = (0,1) = f2.

La troisième colonne de la matrice [f]( f1, f2)
(e1,e2,e3) est donc

✓
0
1

◆
. Il en résulte que

[f]BF
BE

=
✓

1 1 0
1 0 1

◆
.

En revanche, la matrice de f dans les bases (e1,e2,e3) et ( f2, f1) est

[f]( f2, f1)
(e1,e2,e3

=
✓

1 0 1
1 1 0

◆
.

Sur cet exemple, on voit bien la nécessité de définir une base d’un espace de dimension
n comme un n-uplet et non pas comme une partie.

On va maintenant changer la base de l’espace de départ et conserver celle de l’es-
pace d’arrivée. Soient les vecteurs e1 = (1,1,0), e2 = (1,0,1) et e3 = (0,1,1) de R3.
On montre facilement que ces vecteurs déterminent une base de R3. On considère alors
les bases (e1,e2,e3) et ( f1, f2) de R3 et R2 respectivement. Alors L(e1) = 2 f1 + f2,
L(e2) = f1 + f2, L(e3) = f1 + f2 et on a

[L]( f1, f2)
(e1,e2,e3) =

✓
2 1 1
1 2 1

◆
.

Cet exemple illustre bien le fait que la matrice dépend du choix des bases.
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5.1.1 Cas d’un endomorphisme d’un espace vectoriel de dimension
n

Quelles que soient les bases choisies, la matrice associée à un endomorphisme est
une matrice carrée d’ordre n.

Il y a deux grandes catégories de choix de bases dans cette situation :
• Ou bien on prend la même base sur E espace de départ et E espace d’arrivée

(ce qui n’avait pas de sens dans le cas général d’une application linéaire entre deux
espaces différents). Dans ce cas, la matrice associée à l’endomorphisme en choisissant
B comme base, à la fois sur E espace de départ et E espace d’arrivée, est notée [f]B .

• Ou bien on prend des bases distinctes.

Matrice associée à l’application identique
Soit donc E un espace vectoriel de dimension égale à n. L’endomorphisme considéré

est l’application identique de E, notée IdE . Soient B et B0 deux bases distinctes de E.
• Première situation : On se place dans le schema suivant

IdE : (E,B) ! (E,B)
x 7! IdE(x) = x

Il est facile de voir que [f]B = In. Bien noter que ce résultat ne dépend de la base B
choisie sur E.

• Deuxième situation : on se place dans le schéma suivant :

(E,B) ! (E,B0)
x 7! IdE(x) = x

où B et B0 sont deux bases différentes de E. Si B = (e1, . . . ,en) et B0 = (e01, . . . ,e
0
n), on

a IdE(e j) = e j =
n

Â
i=1

ai, je0j et [IdE ]B0B est la matrice dont la j-ième colonne est formée de

e j par rapport à B0 = (e01,e
0
2, . . . ,e

0
n) soit

0

BBB@

a1, j
a2, j

...
an, j

1

CCCA

Définition 41 Cette matrice est appelée matrice de passage de la base B0 à la base B.

Elle joue un rôle fondamental lorsque l’on cherche une relation entre les matrices
associées à une même application linéaire avec des choix de bases différents.

5.2 Propriété relative à la structure d’espace vectoriel
de L(E,F).

5.2.1 Matrices associées à la somme de deux applications linéaires
et au produit d’une application linéaire par un scalaire

On sait que la somme de deux applications linéaires d’un K-espace E dans un K-
espace vectoriel F est encore une application linéaire de E dans F . Il en est de même
pour le produit d’une application linéaire par un scalaire.
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Dans le contexte où nous sommes, si les espaces vectoriels considérés sont de type
fini, la question qui se pose immédiatement est la suivante :

Quelle est la matrice associée à une somme d’applications linéaires ou au produit
d’une application linéaire par un scalaire ?

Proposition 55 Soient E et F deux espaces vectoriels de type fini sur un même corps
K. Soient BE et BF des bases de E et F respectivement. Soient h et g deux applications
linéaires de E dans F et un scalaire quelconque. Alors on a :

[h+g]FF
BE

= [h]BF
BE

+[g]BF
BE

[ah]BF
BE

= a[h]BF
BE

.

La matrice associée à la somme de deux applications linéaires est la somme des
matrices à condition de considérer respectivement toujours la même base sur l’espace
de départ et la même sur l’espace d’arrivée.

Démonstration. Soient p la dimension de E et n la dimension de F , BE = (e1, . . . ,ep)
et BF = ( f1, f2, . . . , fn). Soient A = (ai, j) = [h]BF

BE
et B = (bi, j) = [g]BF

BE
.

Cela signifie que, pour tout j compris entre 1 et p on a les égalités :

h(e j) =
n

Â
i=1

ai, j fi et g(e j) =
n

Â
i=1

bi, j fi

d’où l’on déduit immédiatement l’égalité (h+g)(e j) =
n

Â
i=1

(ai, j +bi, j) fi.

Cela prouve, d’après la définition de la matrice associée à une application linéaire
que le terme général de la matrice associée à f +g par rapport aux bases BE et BF est
ai, j +bi, j qui est le terme général de la matrice A+B. La démonstration de la deuxième
formule est tout à fait semblable. ⇤

Théorème 33 (Théorème d’isomorphisme entre et L(E,F) et MdimF,dimE(K)) Soient
E et F deux espaces vectoriels de type fini. Soit p la dimension de E et n celle de F.
Les espaces vectoriels L(E,F) et Mn,p(K) sont isomorphes.

Pour prouver ce théorème, on va construire effectivement un isomorphisme entre ces
deux espaces vectoriels.

Démonstration. La preuve repose sur le fait qu’une application linéaire définie sur un
espace de type fini est déterminée de façon unique par les images des vecteurs d’une
base.

Soit BE = (e1,e2, . . . ,ep) une base de E et BF = ( f1, f2, . . . , fn) une base de F
D’après la proposition précédente, l’application

L : L(E,F) ! MdimF,dimE(K)
h 7! [h]BF

BE

est linéaire.
Il reste à démontrer que L est une bijection. Montrons que L est injective. Soit h

dans L(E,F) telle que [h]BF
BE

est nulle. Alors tous les coefficients de [h]BF
BE

sont nuls. On
en déduit que, pour tout j dans [1, p], h(e j) = 0. Donc h est nulle.
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Montrons que L est surjective. Soit M = (mi, j) un élément de Mn,p. Il existe une

unique application linéaire f : E! F telle que f(e j) =
n

Â
i=1

mi, j fi. On a L(f) = M. ⇤

Remarque 56 L’isomorphisme L qui vient d’être construit dépend des bases choisies
sur E et F.

La première conséquence de ce théorème est un résultat sur la dimension de L(E,F).

Théorème 34 (Dimension de L(E,F)) Soient E et F deux espaces vectoriels de type
fini, dont les dimensions sont respectivement égale à p et n. Alors L(E,F) est de type
fini et sa dimension est égale à n⇥ p.

Démonstration. Cela découle du fait que L(E,F) est isomorphe à Mn,p(K) qui est de
dimension n⇥ p.

5.3 Produit de matrices et composition d’applications
linéaires

Théorème 35 (Matrice associée à la composée de deux applications linéaires) Soient
E, F et G trois espaces vectoriels de type fini sur un même corps K, de dimension
respectivement égale à p,n et q. Soient une BE = (e1, . . . ,ep) une base de E, BF =
( f1, f2, . . . , fn) une base de F et une base de BG = (g1,g2, . . . ,gq) une base de G. Soient
f une application linéaire de E dans F et y une application linéaire de F dans G. Alors
on a :

[y�f]BG
BE

= [y]BG
BF

[f]BF
BE

.

Autrement dit, à condition de bien choisir les bases, la matrice associée à la com-
position de deux applications linéaires est le produit des matrices associées à chacune
d’elle, dans le même ordre.

Démonstration. Un peu lourde quant aux notations, cette preuve est pourtant simple
quant aux idées car elle est uniquement basée sur la définition de la matrice associée à
une application linéaire par rapport à des bases choisies, et sur la définition du produit
de deux matrices.

La première étape consiste à fixer les notations
Soit A = [f]BF

BE
= (ai, j)(i, j)2[1,n]⇥[1,p] et B = [y]BG

BF
= (br,s)(r,s)2[1,q]⇥[1,n]. Les coeffi-

cients ai, j et br,s sont caractérisés par les égalités suivantes :

8 j 2 [1, p],f(e j) =
n

Â
i=1

ai, j fi (1)

8s 2 [1,n],y( fs) =
q

Â
r=1

br,sgr (2)

La deuxième étape consiste à chercher la matrice associée à y�f par rapport aux bases
BE et BG.

Exprimons, pour tout j dans [1, p], y � f(e j) dans la base BG car le terme de la
r-ième ligne, j-ième colonne de la matrice cherchée est la coordonnée de y�f(e j) sur
le vecteur gr.
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Les relations (1), impliquent :

y�f(e j) = y

 
n

Â
i=1

ai, j fi

!
=

n

Â
i=1

ai, jy( fi).

D’où, en utilisant les relations (2), on a pour tout j 2 [1, p]

y�f(e j) =
n

Â
i=1

ai, j

 
q

Â
r=1

br,igr

!
.

Les propriétés des lois d’un espace vectoriel, permettent d’écrire :

y�f(e j) =
q

Â
r=1

 
n

Â
i=1

ai, jbr,i

!
gr.

Le coefficient de (y�f)(e j) sur le vecteur gr de la base BG est donc égal à
n

Â
i=1

ai, jbr,i =

n

Â
i=1

br,iai, j (puisque les coefficients sont dans un corps commutatif).

On reconnaı̂t là exactement le terme général de la matrice BA, ce qui achève la
démonstration. ⇤

Exemple 81 Soient les espaces vectoriels E = R2, F = R3 et G = R. Soient BE =
(e1,e2), BF = ( f1, f2, f3) et BG = (g1) leurs bases canoniques respectives. Soit f l’ap-

plication linéaire de E dans F telle que [f]BF
BE

=

0

@
1 0
1 1
0 7

1

A et y l’application linéaire de

F dans G telle que [y]BG
BF

=
�
1 0 0

�
.

On se propose de déterminer y � f, application linéaire de E = R2 dans R. Pour
cela, il suffit de déterminer sa matrice par rapport aux bases canoniques BE = (e1,e2)
et BG = (g1).

D’après le théorème précédent, on a [y�f]BG
BE

= [y]BG
BF

[f]BF
BE

Donc

[y�f]BG
BE

= [y]BG
BF

[f]BF
BE

=
�
1 0 0

�
0

@
1 0
1 1
0 7

1

A=
�
1 0

�
.

Cela signifie que y�f(e1) = g1 et y�f(e2) = 0. D’où l’expression de y�f :

8(x,y) 2 R2, (y�f)(x,y) = x.

Cet exemple met bien en évidence le gain, en termes de quantité de calculs, réalisé en
passant par l’intermédiaire des matrices.

Dans le cas particulier de la puissance d’un endomorphisme de E, nous obtenons :

Corollaire 36 Soit E un espace vectoriel de type fini et BE une base de E. Soit f une
application linéaire de E dans E. Alors :

8n 2 N, [ f n]BE = ([ f ]BE )n .
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Démonstration. La démonstration est une récurrence immédiate sur n.

Théorème 37 (Caractérisation de la matrice d’un isomorphisme) Soient E et F deux
K-espaces vectoriels de type fini, de même dimension. Une condition nécessaire et suf-
fisante pour qu’une application f linéaire de E dans F soit un isomorphisme est que la
matrice associée à f par rapport à des bases BE et BF quelconques de E et F respec-
tivement, soit inversible.

De plus, si f est un isomorphisme de E dans F, et si A = [f]BF
BE

, la matrice de f�1

par rapport aux bases BF et BE est égale à A�1, inverse de la matrice A. Cela s’écrit :
⇣
[f]BF

BE

⌘�1
= [f�1]BE

BF
.

L’hypothèse E et F ont la même dimension joue un rôle fondamental tout au long de
la démonstration.

Démonstration. Soit donc deux espaces vectoriels E et F de dimension n et un isomor-
phisme f de E dans F . La théorie des applications linéaires permet de dire que f�1 est
une application linéaire de F dans E. Cela peut se traduire par les égalités :

f�f�1 = IdF et f�1 �f = IdE .

On a
IdE : (E,BE)

f�! (F,BF)
f�1
�! (E,BE)

IdF : (F,BF)
f�1
�! (E,BE)

f�! (F,BF)

d’où [f�1 �f]BE = [IdE ]BE = In et [f�f�1]BF = [IdF ]BF = In. Compte tenu du théorème
général que nous venons d’obtenir pour la matrice associée à la composée d’applica-
tions linéaires, cela donne les égalités matricielles suivantes :

[f�1]BE
BF

[f]BF
BE

= In et [f]BF
BE

[f�1]BE
BF

= In.

Cela prouve que la matrice [f]BF
BE

est inversible et que son inverse est la matrice [f�1]BE
BF

.
Démontrons maintenant la réciproque : Soient E et F deux espaces vectoriels de

même dimension égale à n, BE et BF des bases de E et F respectivement. Soit f une
application linéaire de E dans F dont la matrice A = [f]BF

BE
par rapport aux bases BE

et BF est inversible. Soit y l’application linéaire de F dans E dont la matrice par
rapport aux bases BF et BE est A�1. Alors l’égalité AA�1 = A�1A = In peut s’écrire
[f]BF

BE
[y]BE

BF
= [y]BE

BF
[f]BF

BE
= In.

Or, on sait que la matrice associée à l’application identique d’un espace vectoriel
de type fini sur lui-même est la matrice unité à condition de prendre la même base sur
l’espace de départ et d’arrivée. Donc la matrice In peut être considérée soit comme la
matrice de l’identité de E par rapport à la base BE , soit comme la matrice de l’identité
de F par rapport à la base BF . Compte tenu du théorème sur la matrice d’une composi-
tion d’applications linéaires, cela implique

[y�f]BE = [IdE ]BE et [f�y]BF = [IdF ]BF

Or, des bases étant choisies, l’application qui à une application linéaire associe sa
matrice par rapport à ces bases, est une bijection donc est en particulier injective.

Donc, des égalités précédentes, on déduit y�f = IdE et f�y = IdF . Cela prouve
que f est inversible et que son application réciproque est égale à y.
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Comme on a l’égalité A�1 = [y]BE
BF

, on obtient

⇣
[f]BF

BE

⌘�1
= [f�1]BE

BF
.

⇤
Dans le cas particulier d’un endomorphisme.

Corollaire 38 Soit E un K-espace vectoriel de type fini.
Une condition nécessaire et suffisante pour qu’une application linéaire f de E dans

E soit un automorphisme est que la matrice associée à f dans une base quelconque de
E soit inversible.

De plus, si f est un automorphisme de E et si A = [ f ]BE , la matrice de f�1 dans la
base BE est égale à inverse de la matrice A. Cela s’écrit :

([ f ]BE )�1 = [ f�1]BE .

5.4 Traduction matricielle de l’action d’une application
linéaire sur un vecteur

Soient E et F deux espaces vectoriels de type fini sur un même corps K et f une
application linéaire de E dans F . Le but de ce paragraphe est de traduire l’égalité vec-
torielle y = f(x) par une égalité matricielle et d’étudier des applications de ce résultat.

Notation : Soit E un espace vectoriel de dimension finie et soit BE = (e1,e2, . . . ,ep)
une base de E. Soit x un élément de E. Il existe un p-uplet unique d’éléments de K,
(x1,x2, . . . ,xp) tel que

x = x1e1 + x2e2 + · · ·+ xnen.

La matrice colonne des coordonnées de x est noté [x]BE . On a donc [x]BE =

0

BBB@

x1
x2
...

xp

1

CCCA

Proposition 56 Soit E un espace vectoriel de dimension finie et BE une base de E.
Soit F un espace vectoriel de dimension finie et BF une base de F. Soit f : E! F une
application linéaire et [f]BF

BE
la matrice de f dans les bases BE et BF . On a

[f(x)]BF = [f]BF
BE

[x]BE .

Démonstration. On pose BE = (e1, . . . ,ep), BF = ( f1, f2, . . . , fn), [f]BF
BE

= A = (ai, j) et

[x]BE =

0

BBB@

x1
x2
...

xp

1

CCCA
.

f(x) = f

 
p

Â
i=1

xiei

!
=

p

Â
i=1

xif(ei) =
p

Â
i=1

xi

 
n

Â
k=1

ak,i fk

!
.
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En utilisant la commutativité de K, on a

f(x) =

 
p

Â
i=1

a1,ixi

!
f1 + · · ·+

 
p

Â
i=1

an,ixi

!
fn.

La matrice colonne des coordonnées de f(x) dans la base ( f1, f2, . . . , fn) est

0

BBBBBBBBBB@

p

Â
i=1

a1,ixi

p

Â
i=1

a2,ixi

...
p

Â
i=1

an,ixi

1

CCCCCCCCCCA

.

Or la matrice [f(x)]BF =

0

BBBBBBBBBB@

p

Â
i=1

a1,ixi

p

Â
i=1

a2,ixi

...
p

Â
i=1

an,ixi

1

CCCCCCCCCCA

n’est autre que A

0

BBB@

x1
x2
...

xp

1

CCCA
. ⇤

Exemple 82 Soit E une K-espace vectoriel de dimension 3 et BE = (e1,e2,e3) une
base de E. Les éléments de E sont donc des combinaisons linéaires de e1,e2 et e3. Soit
f l’endomorphisme de E dont la matrice dans la base BE est égale

[ f ]BE = A =

0

@
1 2 1
2 3 2
1 1 1

1

A

On se propose de déterminer le noyau de f . On a

x1e1 + x2e2 + x3e3 2 Ker(f) () f (x1e1 + x2e2 + x3e3) = 0

() [ f (x1e1 + x2e2 + x3e3)]BE =

0

@
0
0
0

1

A

() [ f ]BE [x1e1 + x2e2 + x3e3]BE =

0

@
0
0
0

1

A

() A

0

@
x1
x2
x3

1

A

0

@
0
0
0

1

A

()

8
<

:

x1 + 2x2 + x3 = 0
2x1 + 3x2 + 2x3 = 0
x1 + x2 + x3 = 0

On résoud ce système par la méthode du pivot de Gauss. On trouve

Kerf = {x1e1 +x2e2 +x3e3 2 E | x2 = 0, x1 +x3 = 0} = 0 = {te1� te3 | t 2 R}
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5.5 Formule de changement de bases
5.5.1 Matrice de passage d’une base à une autre

Soit E un espace vectoriel de type fini, n sa dimension. On sait que toutes les bases
de E ont n éléments.

Définition 42 Soit B une base de E. Soit B0 une autre base définie par la donnée des
coordonnées de ses vecteurs dans la base B.

On appelle matrice de passage de la base B à la base B0 et on note PBB0 la matrice
carrée d’ordre n dont la j-ième colonne est formée des coordonnées du j-ième vecteur
de la base B0, par rapport à la base B.

Attention à l’ordre des bases dans cette définition.

Exemple 83 Soit l’espace vectoriel réel R2. On considère la base canonique et la base
B0 = (e1,e2) avec e1 = e1 + e2 et e2 = e2. La matrice de passage de la base B à la base

B0 est la matrice
✓

1 0
1 1

◆
dont la première colonne est donnée par les coordonnées du

vecteur e1 sur la base (e1,e2) et la deuxième par les coordonnées e2 de sur la base
(e1,e2).

On va interpréter cette matrice comme la matrice associée à l’application identique
de E par rapport à des bases bien choisies.

Proposition 57 (Interprétation d’une matrice de passage entre deux bases) Soient B
et B0 deux bases de E. La matrice de passage de B à B0 est égale à la matrice de l’ap-
plication identique de E, avec B0 comme base de l’espace de départ et B comme base
de l’espace d’arrivée.

Remarque 57 Cette interprétation est un outil fondamental pour ce qui suit. Elle per-
met d’obtenir les résultats de façon très élégante et avec un minimum de calculs.

Démonstration. On pose B = (e1,e2, . . . ,en) et B0 = (e01,e
0
2, . . . ,e

0
n). On considère

IdE : (E,B0) ! (E,B)
x 7! IdE(x) = x

IdE(e0j) = e0j =
n

Â
i=1

ai, jei et [Id]BB0 est la matrice dont le j-ième colonne est formée des

coordonnées de e0j par rapport à B, soit

0

BBB@

a1, j
a2, j

...
an, j

1

CCCA
. Cette colonne est la j-ième colonne de

PBB0 . ⇤

Proposition 58 (Inverse d’une matrice de passage) La matrice de passage d’une base
B à une base B0 est inversible et son inverse est égale à la matrice de passage de la
base B0 à la base B.

Démonstration. On a PB,B0 = [IdE ]BB0 . Donc, d’après le théorème caractérisant la ma-
trice d’un isomorphisme, P�1

B,B0 =
�
[IdE ]BB0

��1 = [Id�1
E ]B0B . Or Id�1

E = IdE . Donc P�1
B,B0 =

[IdE ]B0B = PB0B. ⇤
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Proposition 59 Soient B, B0 et B00 trois bases d’un espace vectoriel de type fini E.
Alors

PBB00 = PBB0PB0B00 .

Démonstration. IdE : (E,B00)! (E,B) se factorise de la façon suivante :

(E,B00) IdE�! (E,B0) IdE�! (E,B).

Cette factorisation permet d’écrire l’égalité suivante [IdE ]BB00 = [IdE ]BB0 [IdE ]B0B00 . Soit PBB00 =
PBB0PB0B00 . ⇤

Nous allons maintenant interpréter une matrice carrée inversible comme la matrice
de passage d’une base à une autre base.

Proposition 60 Soit E un K-espace vectoriel de dimension n et BE une base de E. Soit
M une matrice carrée d’ordre n inversible. Il existe une unique base B0E de E telle que
M soit la matrice de passage de BE à B0E.

Démonstration. On pose BE = (e1,e2, . . . ,en). soit e0j le vecteur de E dont la matrice
colonne des coordonnées dans la base BE est la j-ième colonne de M. Le rang de la
matrice M est le rang de la famille e01,e

0
2, . . . ,e

0
n. La famille e01,e

0
2, . . . ,e

0
n étant de rang n,

elle est linéairement indépendante. Comme E est de dimension n, B0E = (e01,e
0
2, . . . ,e

0
n)

est une base de E. Il est évident que M est la matrice de passage de la base BE à la base
B0E . ⇤

Nous allons maintenant étudier l’effet d’un changement de bases sur les coordonées
d’un vecteur.

Proposition 61 Soit E un K-espace vectoriel de dimension n. Soit B = (e1,e2, . . . ,en)
et B0 = (e01,e

0
2, . . . ,e

0
n) deux bases de E. Soit PBB0 la matrice de passage de B à B0. Soit x

un vecteur de E. Si x =
n

Â
i=1

xiei, la matrice colonne des coordonnées de x dans la base B

est [x]B =

0

BBB@

x1
x2
...

xn

1

CCCA
. De même notons [x]B0 la matrice colonne des coordonnées de x dans

la base B0. On a la relation
[x]B = PBB0 [x]B0 .

Démonstration. PBB0 est la matrice de IdE : (E,B0)! (E,B). On a [IdE(x)]B = [IdE ]BB0 [x]B0 ,
soit [x]B = PBB0 [x]B0 . ⇤

5.5.2 Formule de changement de bases
Théorème 39 (Formule de changement de base) Soient E et F deux K-espaces vec-
toriels de type fini, BE et B0E deux bases de E, et BF et B0F deux bases de F. Soit f une
application linéaire de E dans F.

Alors, la matrice associée à f par rapport aux bases BE et BF , et la matrice as-
sociée à f par rapport aux bases B0E et B0F sont liées par la formule :

[f]B
0
F

B0E
= PB0F BF [f]BF

BE
PBE B0E

=
⇣

PBF B0F

⌘�1
[f]BF

BE
PBE B0E

.
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Démonstration. L’application f : (E,B0E)! (F,B0F) se factorise de la façon suivante

(E,B0E) IdE�! (E,BE)
f�! (F,BF) IdF�! (F,B0F)

On a donc l’égalité de matrices suivante :

[f]B
0
F

B0E
= [IdF ]B

0
F

BF
[f]BF

BE
[IdE ]BE

B0E
= PB0F BF [f]BF

BE
PBE B0E

.

Dans le cas particulier d’un endomorphisme, on obtient le théorème suivant :

Corollaire 40 (Formule de changement de bases pour les endomorphismes) Soit E
un K-espace vectoriel de dimension n. Soient BE et B0E deux bases de E et P = PBE B0E
la matrice de passage de BE à B0E. Soit f un endomorphisme de E. Notons [f]BE (res-
pectivement [f]B0E ) la matrice de f dans la base BE (respectivement B0E). On a

[f]B0E = P�1[f]BE P.

Remarque 58 Nous avons vu qu’une matrice carrée inversible pouvait être interprétée
comme une matrice de passage. La formule de changement de bases pour les endomor-
phismes montre alors que deux matrices semblables représentent le même endomor-
phisme dans des bases différentes.

5.6 Rang d’une matrice et applications linéaires
Rappelons le définition du rang d’une application linéaire.

Définition 43 Soient E et F deux K-espaces vectoriels de dimension finie et f une
application linéaire de E dans F. La dimension de l’espace vectoriel Im f est appelé
rang de f et est noté rg( f ).

Proposition 62 Soient E et F deux K-espaces vectoriels de dimension finie et f une
application linéaire de E dans F.Soit BE une base de E et BF une base de F. Le rang
de f est le rang de sa matrice dans les bases BE et BF .

Démonstration. Soient BE = (e1,e2, . . . ,ep) et BF = ( f1, f2, . . . , fn). Comme la fa-
mille f (e1), f (e2), . . . , f (ep) engendre Im f , le rang de f est le rang de la famille
f (e1), f (e2), . . . , f (ep). D’après les résultats que nous avons vu dans le chapitre 4, le
rang de la famille f (e1), f (e2), . . . , f (ep) est le rang de la matrice de f dans les bases
BE et BF . ⇤

Théorème 41 (Matrice inversible et rang) Une matrice carrée d’ordre n est inver-
sible si et seulement si elle est de rang n.

Démonstration. Soit A une matrice carrée d’ordre n. Soit f l’endomorphisme de Kn

dont la matrice dans la base canonique est A. On a les équivalences suivantes :

A de rang n () f de rang n
() f surjective
() f bijective
() A inversible.

Nous avons utilisé le fait qu’un endomorphisme d’un espace vectoriel de dimension
finie est bijectif si et seulement si il est surjectif et le théorème sur la caractérisation de
la matrice d’un isomorphisme. ⇤



Chapitre 6

Déterminants

Ce chapitre ne concerne que les matrices carrées. On travaillera systématiquement
dans Mn(K).

6.1 Théorie des déterminants
6.1.1 Définition et premières propriétés
Théorème 42 (Théorème d’existence et d’unicité du déterminant) Il existe une unique
application de Mn(K) dans K, appelée déterminant, telle que

i) Le déterminant est linéaire par rapport à chaque vecteur-colonne, les autres étant
fixés.

ii) Si une matrice A a deux vecteurs colonnes égaux, alors son déterminant est nul.
iii) Le déterminant de la matrice identité In vaut 1.

On a plusieurs notations pour les déterminants :

detA =

���������

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

���������

.

On note ai la ième colonne de A et

detA =
��a1 a2 · · · an

�� .

Avec cette notation, la propriété i) s’écrit : pour tout l dans K,

��a1 a2 · · ·ai�1 ai +la0i ai+1 · · · an
�� =

��a1 a2 · · ·ai�1 ai ai+1 · · · an
��

+ l
��a1 a2 · · ·ai�1 a0i ai+1 · · · an

�� .

Une application de Mn(K) dans K qui satisfait la propriété i) est appelée forme
multilinéaire. Si elle satisfait ii), on dit qu’elle est alternée. Le déterminant est donc
la seule forme multilinéaire alternée qui vaut 1 sur la matrice In. Les autres formes
multilinéaires alternées sont les multiples scalaires du déterminant. On verra plus loin
comment on peut calculer effectivement les déterminants.

Donnons maintenant quelques propriétés importantes du déterminant.

111
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Proposition 63 Soit A une matrice n⇥n et A0 la matrice obtenue en échangeant deux
colonnes distinctes de A. Alors on a detA0 =�detA.

Démonstration. Soit A =
�
a1 · · · ai · · · a j · · · an

�
. On va échanger les colonnes

i et j, ce qui donne la matrice A0 =
�
a1 · · · a j · · · ai · · · an

�
, où le vecteur a j se

retrouve en colonne i et le vecteur ai en colonne j (on pris ici i < j, sans perte de
généralité).

Introduisons alors une troisième matrice

Ã =
�
a1 · · · ai +a j · · · a j +ai · · · an

�
.

Cette matrice a deux colonnes distinctes égales, donc d’après ii)

det Ã = 0.

D’un autre côté, nous pouvons développer ce déterminant en utilisant la propriété i) de
multilinéarité, c’est-à-dire linéarité par rapport à chaque colonne. Ceci donne

det Ã = det
�
a1 · · · ai · · · a j +ai · · · an

�
+det

�
a1 · · · a j · · · a j +ai · · · an

�

= det
�
a1 · · · ai · · · a j · · · an

�
+det

�
a1 · · · ai · · · ai · · · an

�

+det
�
a1 · · · a j · · · a j · · · an

�
+det

�
a1 · · · a j · · · ai · · · an

�

= detA+0+0+detA0,

encore grâce à i) pour les deux déterminants du milieu. ⇤

Proposition 64 Soit A une matrice n⇥ n et A0 la matrice obtenue en ajoutant à une
colonne de A une combinaison linéaire des autres colonnes de A. Alors on a detA0 =
detA.

Démonstration. Soit A =
�
a1 · · · ai · · · an

�
et donnons nous des scalaires l j, j =

1, . . . ,n, j 6= i. On pose

A0 =

 
a1 · · · ai +

n

Â
j=1
j 6=i

l ja j · · · an

!
.

Par linéarité par rapport à la colonne i, on en déduit

detA0 = detA+
n

Â
j=1
j 6=i

l j det
�
a1 · · · a j · · · an

�
.

Or chacun des déterminants apparaissant sous le signe de sommation est nul, puisqu’il
concerne une matrice dont les colonnes i et j sont égales. ⇤

Corollaire 43 Si une colonne de A est combinaison linéaire des autres colonnes alors
detA = 0.

Démonstration. En effet, on soustrait à cette colonne la combinaison linéaire en ques-
tion, ce qui modifie pas le déterminant. La matrice obtenue a une colonne nulle, et par
linéarité par rapport à cette colonne, le déterminant est nul. ⇤
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6.1.2 Déterminants de matrices particulières
Calculons le déterminant de matrices triangulaires en utilisant les propriétés du

déterminant.

Proposition 65 Si A est une matrice triangulaire supérieure ou inférieure, alors on a

detA = a11a22 · · ·ann.

Autrement dit, pour une matrice triangulaire, le déterminant est égal au produit des
termes diagonaux.

Démonstration. On traite le cas des matrices triangulaires supérieures, le cas des ma-
trices triangulaires inférieures est identique. Soit donc

A =

0

BBBBB@

a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

1

CCCCCA
.

Par linéarité par rapport à la première colonne, on a

detA = a11

�����������

1 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

�����������

.

On ajoute maintenant à chaque colonne j � 2 le vecteur �a1 j⇥ la colonne 1. Ceci ne
modifie pas le déterminant d’après la section précédente. Il vient donc

detA = a11

�����������

1 0 0 · · · 0
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

�����������

.

Par linéarité par rapport à la deuxième colonne, on en déduit

detA = a11a22

�����������

1 0 0 · · · 0
0 1 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

�����������

,

et l’on continue ainsi jusqu’à avoir parcouru toutes les colonnes de la matrice. Au bout
de n étapes, on a obtenu

detA = a11a22a33 · · ·ann

�����������

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

�����������

= a11a22a33 · · ·ann det In,
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d’où le résultat par iii). ⇤

Remarque 59 La façon de procéder doit rappeler l’algorithme de Gauss. C’est en fait
le même argument mais avec des substitutions de colonnes.

Notons que le résultat s’applique en particulier aux matrices diagonales, lesquelles
sont à la fois triangulaires supérieures et triangulaires inférieures.

Corollaire 44 Soit E une matrice élémentaire de la méthode de Gauss.
i) Si E est la matrice d’une substitution de lignes, alors detE = 1.
ii) Si E est la matrice d’un échange de lignes, alors detE =�1.
iii) Si E est la matrice d’une multiplication d’une ligne par l 6= 0, alors detE = l.
Dans tous les cas, ce déterminant est non nul.

Démonstration. i) Dans ce cas, E est triangulaire inférieure ou supérieure avec des 1
sur la diagonale.

ii) Dans ce cas, E est aussi obtenue en échangeant les colonnes i et j de la matrice
In.

iii) Matrice diagonale, tous les éléments diagonaux valent 1 sauf un qui vaut l. ⇤

Remarque 60 Les matrices élémentaires de la méthode de Gauss sont soit triangulaire
(substitution), soit symétriques c’est à dire égales à leur transposée (échange de lignes
et homothétie). Par conséquent, det(Ei) = det(ET

i ).

6.1.3 Démonstration du théorème d’existence et d’unicité
Démonstration. Pour démontrer l’existence d’un objet mathématique satisfaisant aux
conditions du théorème - définition, on donne une formule qui, de plus, permet de
calculer effectivement le déterminant d’une matrice, et on vérifie que les propriétés ca-
ractéristiques des déterminants sont satisfaites.

Notation : Soit une matrice carrée d’ordre n. Il est évident que si l’on supprime une
ligne et une colonne dans M, la matrice obtenue est à n�1 lignes et colonnes. On note
la matrice obtenue en supprimant la i-ème ligne et la j-ième colonne Mi, j. Le théorème
d’existence peut s’énoncer de la façon suivante :

Théorème 45 (Existence du déterminant) Les formules suivantes :
• Si a est un élément quelconque de K, det(a) = a
• Si M = (mi, j) est une matrice carrée d’ordre n.

det(M) = (�1)i+1mi,1 det(Mi,1)+(�1)i+2mi,2 det(Mi,2)+ · · ·+(�1)i+nmi,n det(Mi,n)

définissent par récurrence, pour tout entier n supérieur ou égal à 1, une application de
Mn(K) dans K qui satisfait aux propriétés caractérisant les déterminants.

Démonstration du théorème d’existence du déterminant
La démonstration du théorème d’existence du déterminant est hors programme.

Elle se fait par récurrence sur l’ordre des matrices.
Dans le cas n = 1. Il est évident que toutes les propriétés souhaitées sont satisfaites.

Supposons maintenant que l’application det : Mn�1(K)!K soit définie et satisfasse les
propriétés (1), (2) et (3). Pour faciliter l’exposition, la preuve va être faite pour i = 1.
Soit M = (mi, j) notée aussi M = (C1, . . . ,Cn) où Cj est la j-ième colonne de M.
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• Propriété (1). Il s’agit de vérifier que l’application

M 7! det(M)= (�1)2m1,1 det(M1,1)+(�1)3m1,2 det(M1,2)+· · ·+(�1)1+nm1,n det(M1,n)

est linéaire par rapport à chaque colonne. Soit j un entier compris entre 1 et n. Montrons
que l’application

Cj 7! det(M)= (�1)2m1,1 det(M1,1)+(�1)3m1,2 det(M1,2)+· · ·+(�1)1+nm1,n det(M1,n)

est linéaire. Si Cj = D j +bD0j, cette décomposition modifie le coefficient m1, j (m1, j =
d1, j +bd01, j) et les matrices M1,k avec k 6= j puisque dans ces matrices la j-ième colonne
reste). Cela donne

det(M) = (�1)1+ jm1, j det(M1, j)+ Â
1kn,k 6= j

(�1)1+km1,k det(M1,k)

= (�1)1+ j(d1, j +bd01, j)det(M1, j)
+ Â

1kn,k 6= j
(�1)1+km1,k det

⇣
(Ĉ1

1 , . . . , D̂1
j +bD̂

01
j , . . . ,Ĉ1

n)k

⌘

où Ĉ1
r désigne la r-ième colonne de M à laquelle on a supprimé la première ligne

et (Ĉ1
1 , . . . ,Ĉ1

j , . . .Ĉ1
n)k la matrice déduite de (C1,C2, . . . ,Cn) en supprimant la k-ième

colonne et la première ligne. Par conséquent les matrices (Ĉ1
1 , . . . , D̂1

j + bD̂
01
j , . . . ,Ĉ1

n)k
qui interviennent dans la somme précédente possèdent n�1 lignes et n�1 colonnes et
on peut donc leur appliquer l’hypothèse de récurrence. D’où

det(M) =

"
(�1)1+ jd1, j det(M1, j)+ Â

1kn,k 6= j
(�1)1+km1,k det

⇣
(Ĉ1

1 , . . . , D̂1
j , . . . ,Ĉ1

n

⌘

k

#

+ b

"
(�1)1+ jd01, j det(M1, j)+ Â

1kn,k 6= j
(�1)1+km1,k det

⇣
(Ĉ1

1 , . . . , D̂
01
j , . . . ,Ĉ1

n

⌘

k

#

= det(C1, . . . ,D j, . . . ,Cn)+bdet(C1, . . . ,D0j, . . . ,Cn)

Ce qui achève la démonstration de la propriété (1).

• Propriété (2)
Si la matrice M a deux colonnes égales, par exemple Cr et Cs avec r et s distincts,

il est clair que les colonnes obtenues en supprimant la première ligne, Ĉs et Ĉr sont
encore égales. Donc toutes les matrices d’ordre n�1, (Ĉ1, . . . ,Ĉr, . . . ,Ĉs, . . . ,Ĉn)k avec
k différent de r et s, ont deux colonnes égales. D’où, par hypothèse de récurrence,

8k 2 {1,2, . . . ,n}�{r,s}, det(Ĉ1, . . . ,Ĉr, . . . ,Ĉs, . . . ,Ĉn)k = 0.

Donc

det(M) = Â
1kn

(�1)1+km1k det
�
(Ĉ1, . . . ,Ĉ j, , . . . ,Ĉn)k

�

= (�1)1+sm1,s det
�
(Ĉ1, . . . ,Ĉr, , . . . ,Ĉn)s

�
+(�1)1+rm1,r det

�
(Ĉ1, . . . ,Ĉs, , . . . ,Ĉn)r

�

où Ĉ1
s et Ĉ1

r sont égales. Supposons, par exemple, s supérieur ou égale à r. Il faut
faire s� r�1 échanges de colonnes pour amener la s-ième colonne à la r-ième place.
Compte tenu de l’hypothèse de récurrence, on en déduit

det
�
(Ĉ1, . . . ,Ĉs, , . . . ,Ĉn)r

�
= (�1)s�r�1 det

�
(Ĉ1, . . . ,Ĉr, , . . . ,Ĉn)s

�
.
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d’où
det(M) = (�1)1+sm1,s det

�
(Ĉ1, . . . ,Ĉr, , . . . ,Ĉn)s

�

+ (�1)1+r(�1)s�r�1m1,r det
�
(Ĉ1, . . . ,Ĉr, , . . . ,Ĉn)s

�
.

Puisque m1,r = m1,s ( les colonnes de rang r et de rang s sont égales), on en déduit
det(M) = 0.

• Propriété (3) Si l’on considère la matrice unité In, ses coefficients mi, j sont tels
que :

i = j =) mi, j = 1
i 6= j =) mi, j = 0.

Donc det(In) = (�1)1+1 det(In)1,1. Or, la matrice obtenue à partir de la matrice unité
en supprimant la première ligne et la première colonne est la matrice unité d’ordre
n� 1. En lui appliquant l’hypothèse de récurrence, on a det(In)1,1 = 1. On en déduit
det(In) = 1. Ce qui achève la preuve du théorème d’existence du déterminant.

Nous admettrons l’unicité du déterminant. ⇤

Remarque 61 La définition donnée ci-dessus suppose le choix d’un indice i de ligne
et peut paraı̂tre arbitraire. Alors se pose naturellement la question : que se passe-t-il si
l’on prend une autre valeur pour i ? L’unicité du déterminant d’une matrice permet de
répondre : quelle que soit la ligne choisie, le résultat est le même.

6.1.4 Propriétés du déterminant
Théorème 46 On a

det(AB) = detAdetB.

Démonstration. Cette démonstration est hors programme. Commençons par faire la
remarque préliminaire suivante :

Remarque préliminaire :
Si M est une matrice carrée et E une matrice élémentaire, la matrice EMT est la ma-

trice obtenue à partir de MT en faisant l’opération élémentaire correspondante sur les
lignes. Donc, par transposition, multiplier une matrice à droite par la transposée d’une
matrice élémentaire effectue l’opération élémentaire correspondante sur les colonnes
de M. Dans le cas où E est la matrice d’une substitution de lignes, on ne modifie pas
le déterminant puisqu’on ajoute à une colonne un multiple d’une autre colonne. Dans
la cas où E est la matrice d’un échange de lignes, on multiplie le déterminant par �1
puisqu’on échange deux colonnes. Dans le cas où E est la matrice d’une multiplica-
tion d’une ligne par l, on multiplie le déterminant par l par linéarité par rapport à la
colonne multipliée par l. Dans tous les cas, on a :

det(MET ) = det(M)det(E).

Passons maintenant à la démonstration du théorème. Supposons d’abord que B soit in-
versible. L’algorithme de Gauss appliquée à la matrice BT fournit des matrices élémentaires
E j telles que

(EpEp�1 · · ·E2E1)BT = In.

On a alors :
B(ET

1 ET
2 · · ·ET

p ) = IT
n = In
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D’après la remarque préliminaire appliquée p fois, on a

detB(ET
1 ET

2 · · ·ET
p ) = detBdet(E1)det(E2) . . .det(Ep) = 1

On en déduit
detB =

1
det(Ep) · · ·det(E2)det(E1)

.

Posons C = AB. Par le même raisonnement que précédemment, il vient

det(C(ET
1 ET

2 · · ·ET
p )) = det(Ep) · · ·det(E2)det(E1)detC.

Or
C(ET

1 ET
2 · · ·ET

p ) = A(B(ET
1 ET

2 · · ·ET
p )) = A,

d’où le résultat dans ce cas.
Si B n’est pas inversible, rgB < n, il existe donc une relation de dépendance linéaire

entre les colonnes de B ( ce qui revient à dire qu’il existe une matrice colonne x telle
que Bx = 0) et donc detB = 0. Or Bx = 0 =) ABx = 0. On voit que AB n’est pas
inversible non plus, d’où det(AB) = 0 = detAdetB également dans ce cas. ⇤

Un des usages des déterminants est de caractériser les matrices inversibles.

Corollaire 47 Une matrice carrée d’ordre n, A, est inversible si et seulement si son
déterminant est non nul. De plus si A est inversible, alors det(A�1) = 1

detA .

Démonstration. Si A n’est pas inversible, alors elle est de rang strictement inférieur à
n. Il existe donc une relation de dépendance linéaire entre ses colonnes, c’est à dire
qu’au moins l’une de ses colonnes est combinaison linéaire des autres. On en déduit
det(A) = 0. Si A est inversible, il existe une matrice A�1 telle que AA�1 = A�1A = In,
donc det(A)det(A�1) = det In = 1. On en déduit que det(A) est non nul et det(A�1) =

1
detA . ⇤

Corollaire 48 Deux matrices semblables ont même déterminant.

Démonstration. Soit A0= P�1AP avec P2GLn(R). Par multiplicativité du déterminant,
on en déduit que

detA0 = det(P�1AP) = detP�1 detAdetP = detA,

puisque detP�1 = 1/detP. ⇤

Corollaire 49 On a det(AT ) = detA.

Démonstration. Cette démonstration est hors programme. Soit A 2Mn(K). Par l’algo-
rithme de Gauss, on a une factorisation A = M�1U avec U échelonnée réduite, donc en
particulier triangulaire supérieure et M�1 = E�1

1 E�1
2 · · ·E�1

p�1E�1
p . Par conséquent, en

transposant on a aussi AT =UT (M�1)T avec (M�1)T =(E�1
p )T (E�1

p�1)
T · · ·(E�1

2 )T (E�1
1 )T .

Utilisant la multiplicativité du déterminant, on en déduit
8
>><

>>:

detA =
detU

detE1 detE2 · · ·detEp
,

detAT =
detUT

detET
1 detET

2 · · ·detET
p

.
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Or U est triangulaire supérieure, son déterminant est le produit de ses termes dia-
gonaux. Par conséquent, UT est triangulaire inférieure et son déterminant est le produit
de ces mêmes termes diagonaux, c’est-à-dire detU = detUT .

De même, les matrices Ei sont soit triangulaires (substitution), soit symétriques
c’est-à-dire égales à leur transposée (échange de lignes et homothétie). Par conséquent,
detEi = detET

i aussi, d’où le résultat. ⇤

Remarque 62 Tout ce que l’on a dit des déterminants à propos des colonnes est donc
vrai pour les lignes. Ainsi, le déterminant est multilinéaire par rapport aux lignes, si une
matrice a deux lignes égales, son déterminant est nul, on ne modifie pas un déterminant
en ajoutant à une ligne une combinaison linéaire des autres lignes, etc. ⇤

Définition 44 Soit A une matrice n⇥ n et Ai j la matrice (n� 1)⇥ (n� 1) obtenue
en effaçant la ligne i et la colonne j de A. On appelle mineur de A relatif à ai j le
déterminant Di j = detAi j. On appelle cofacteur de A relatif à ai j le nombre Ci j =
(�1)i+ jDi j .

Théorème 50 (développement suivant une ligne ou une colonne) On a les formules
suivantes :

8i, detA =
n

Â
j=1

(�1)i+ jai jDi j =
n

Â
j=1

ai jCi j

(développement par rapport à la ligne i),

8 j, detA =
n

Â
i=1

(�1)i+ jai jDi j =
n

Â
i=1

ai jCi j

(développement par rapport à la colonne j).

Démonstration. Nous avons déja démontré la formule de développement suivant une
ligne lors de la démonstration du théorème d’existence et d’unicité du déterminant.
Comme detA = detAT , on en déduit la formule de développement par rapport à une
colonne.

Remarque 63 Le développement par rapport à une ligne permet de ramener le calcul
d’un déterminant n⇥ n à celui de n déterminants (n� 1)⇥ (n� 1). Par récurrence
descendante, on se ramène ainsi au calcul de n! déterminants 1⇥ 1. Il faut remarquer
que le nombre n! croı̂t extrêmement vite avec n. Ainsi, pour une modeste matrice 25⇥
25, on a 25!⇡ 1,5⇥1025.

Exemple 84 On déduit du développement par rapport à la première ligne des expres-
sions explicites pour les déterminants 2⇥2 et 3⇥3.

Il faut d’abord remarquer qu’un déterminant 1⇥1 est de la forme det
�
a
�
= a. C’est

en effet visiblement la seule forme multilinéaire alternée qui vaut 1 sur la matrice
�
1
�
.

Considérons maintenant un déterminant 2⇥2.
����
a11 a12
a21 a22

����= a11C11 +a12C12 = a11a22�a12a21.

En effet, A11 =
�
a22
�

et A12 =
�
a21
�
, d’où C11 = a22 et C12 = �a21. Cette formule de

développement de déterminant est la seule formule explicite à connaı̂tre par cœur.
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Le cas des déterminants 3⇥3 est déjà beaucoup plus compliqué.
������

a11 a12 a13
a21 a22 a23
a31 a32 a33

������
= a11C11 +a12C12 +a13C13

= a11

����
a22 a23
a32 a33

�����a12

����
a21 a23
a31 a33

����+a13

����
a21 a22
a31 a32

����
= a11(a22a33�a32a23)�a12(a21a33�a31a23)

+a13(a21a32�a31a22)
= a11a22a33�a11a32a23 +a12a31a23�a12a21a33

+a13a21a32�a13a31a22.

Cette expression, qu’il est inutile de chercher à retenir, contient 6 = 3! produits de trois
coefficients de A (un par colonne) affectés des signes + ou � suivant la nature d’une
certaine permutation associée au produit en question. Pour un déterminant 4⇥ 4, on
aurait 24 = 4! produits de quatre coefficients de A, et pour un déterminant n⇥ n, on
aurait n! produits de n coefficients de A affectés de signes + ou �.

Mentionnons la règle de Sarrus, une astuce mnémotechnique qui permet de re-
trouver les déterminants 3⇥ 3 (et seulement ceux-là, cette règle ne se généralise pas
à d’autres dimensions). On écrit la matrice en tableau et on lui ajoute en bas ses deux
premières lignes. On obtient ainsi un tableau 5⇥3

a11 a12 a13
a21 a22 a23
a31 a32 a33
a11 a12 a13
a21 a22 a23

Les produits de trois termes affectés du signe + apparaissent dans les trois diagonales
descendantes du haut à gauche vers le bas à droite, tandis que les produits de trois
termes affectés du signe � apparaissent dans les trois diagonales montantes du bas à
gauche vers le haut à droite.

En résumé, le développement par rapport à une ligne ou une colonne n’est utile pour
calculer explicitement un déterminant que si la matrice dont on part a des propriétés
particulières, par exemple beaucoup de zéros, ou s’y ramène par des opérations qui ne
modifient pas le déterminant. ⇤

Terminons cette section par deux avertissements. D’une part

det(A+B) 6= detA+detB.

L’exemple suivant

A =
✓

1 0
0 1

◆
, B =

✓
�1 0
0 �1

◆

le montre amplement. Le déterminant n’est pas linéaire. En fait, il n’y a pas de formule
simple pour exprimer le déterminant d’une somme de matrices (il y a des formules
relativement compliquées). D’autre part

det(lA) 6= ldetA.
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Ici il y a une formule simple. En effet

det(lA) = det((lIn)A) = det(lIn)detA = ln detA,

puisque lIn est diagonale et son déterminant est le produit de ses termes diagonaux,
soit ici ln.

6.1.5 Interprétation géométrique des déterminants
On a une interprétation géométrique de Rn pour n = 1,2,3. On va voir qu’en di-

mension 2, les déterminants sont liés aux questions de surface et en dimension 3 aux
questions de volume.

En dimension 2, deux vecteurs v1,v2 déterminent un parallélogramme, alors qu’en
dimension 3, trois vecteurs v1,v2,v3 déterminent un parallélépipède.

On prendra comme unité de surface la surface du carré unité dont les côtés sont
les vecteurs de la base canonique, et comme unité de volume, le volume du cube unité
construit de la même façon en dimension 3.

Proposition 66 La surface du parallélogramme est donnée par |det
�
v1 v2

�
|. Le vo-

lume du parallélépipède est donné par |det
�
v1 v2 v3

�
|.

Démonstration. Traitons le cas n = 2. Le résultat est vrai si
�
v1 v2

�
=
✓

a 0
0 d

◆
. En

effet, dans ce cas on a affaire à un rectangle de côtés |a| et |d|, donc de surface |ad|,
alors que le déterminant de la matrice vaut ad.

Supposons que {v1,v2} est une famille libre. Notons
�
v1 v2

�
=
✓

a11 a12
a21 a22

◆
. Si

a11 6= 0, alors v02 = v2 � a12
a11

v1 est un multiple de e2, c’est-à-dire que sa première
composante est nulle. L’opération ne change ni le déterminant, ni la surface du pa-
rallélogramme. Comme la famille de départ était libre, v02 6= 0 et ce vecteur a une
deuxième composante a022 non nulle. On pose alors v01 = v1 � a21

a022
v02, ce qui produit

un vecteur multiple de e1. L’opération ne change ni le déterminant ni la surface des pa-
rallélogrammes. On est donc ramené au premier cas d’un rectangle aux côtés parallèle
aux axes, pour lequel le résultat est déjà acquis.

’

v

v

v
v

O Ox

Oy

1

1’

2

2

Les diverses opérations ci-dessus ne modifient pas les surfaces.
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Si a11 = 0, alors a12 6= 0 puisque la famille est libre, et on échange les rôles de v1
et v2.

Enfin, si la famille est liée, alors le déterminant vaut 0. Dans ce cas, le parallélogramme
est réduit à un segment et est donc de surface nulle.

Le cas tridimensionnel se traite de façon analogue. ⇤

6.1.6 Déterminant d’un endomorphisme
Théorème 51 (définition du déterminant d’un endomorphisme) Soit E un K espace
vectoriel de dimension finie et f un endomorphisme de E. Toutes les matrices associées
à f par rapport à des bases différentes ont le même déterminant appelé déterminant de
f et noté det( f ).

Démonstration. Soient B et B 0 deux bases de E. Soient [ f ]B et [ f ]0B les matrices de f
respectivement par rapport à la base B et à la base B 0. Soit PB,B 0 la matrice de passage
de B à la base B 0. On a

[ f ]B 0 = P�1
B,B 0 [ f ]B PB,B 0 .

Les matrices [ f ]B et [ f ]B 0 étant semblables, elles ont le même déterminant.

Théorème 52 (Propriétés du déterminant d’un endomorphisme) Soit E un K es-
pace vectoriel de dimension finie.

1. det(IdE) = 1.
2. Soient f et g deux endomorphismes de E. On a det( f �g) = det( f )det(g).
3. Un endomorphisme f de E est inversible si et seulement si det( f ) 6= 0.

Démonstration. 1. Soit B une base de E. On a

det(IdE) = det[IdE ]B = det In = 1.

2. f �g a pour matrice [ f �g]B = [ f ]B [g]B . On a donc :

det( f �g) = det[ f �g]B = det([ f ]B [g]B) = det([ f ]B)det([g]B) = det( f )det(g).

3. On a les équivalences suivantes :

f est inversible () [ f ]B est inversible
() det([ f ]B) 6= 0
() det( f ) 6= 0.

6.2 Applications des déterminants
6.2.1 Expression de l’inverse d’une matrice à l’aide du déterminant
Définition 45 On introduit la matrice des cofacteurs de A, cofA = (Ci j) avec Ci j =
(�1)i+ j detAi j.

C’est aussi une matrice n⇥n. Noter la disposition en échiquier des signes (�1)i+ j,
commençant par un + au coin supérieur gauche

0

BBB@

+ � + · · · (�1)1+n

� + � · · · (�1)2+n

+ � + · · · (�1)3+n

...
...

...
...

1

CCCA
.
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Théorème 53 On a pour toute matrice A

A(cofA)T = (cofA)T A = (detA)In.

En particulier, si A est inversible, alors

A�1 =
1

detA
(cofA)T .

Démonstration. Posons B = A(cofA)T . Par la formule générale du produit matriciel,

(B)i j =
n

Â
k=1

aik(cofA)T
k j =

n

Â
k=1

aikCjk.

Si i = j, on reconnaı̂t le développement du déterminant de A par rapport à la ligne i,
donc

8i, (B)ii = detA.

Si i 6= j, on reconnaı̂t le développement par rapport à la ligne j du déterminant de la
matrice Ã dans laquelle la ligne j a été remplacée par la ligne i (ce qui ne change pas
les cofacteurs considérés). Donc

8i 6= j, (B)i j = det Ã = 0.

On procède de même pour (cofA)T A avec les développements par rapport aux co-
lonnes.

Dans le cas où A est inversible, alors detA 6= 0 et il suffit de diviser par detA pour
obtenir la formule pour A�1. ⇤

Remarque 64 Sauf pour n = 2, ou pour des matrices très particulières, ce n’est pas la
bonne façon de calculer explicitement l’inverse d’une matrice. Si on a vraiment besoin
de l’inverse d’une matrice, alors on a tout intérêt à utiliser la méthode de Gauss dès que
n� 3. Par contre, la formule précédente est intéressante pour la théorie. ⇤

6.2.2 Application des déterminants à l’indépendance linéaire de
vecteurs

Soit E un K-espace vectoriel de dimension n. Soit B une base de E. Soient v1, . . . ,vn
n vecteurs de E. Soit M la matrice de Mn(K) dont la j-ième colonne est formée des
coordonnées du vecteur v j par rapport à la base B . On appelle déterminant des vecteurs
v1, . . . ,vn et on note detB(v1, . . . ,vn) le déterminant de la matrice M.

Remarque 65 Compte tenu des propriétés du déterminant d’une matrice, on a les pro-
priétés suivantes :

• L’application (v1, . . . ,vn) 7! detB(v1, . . . ,vn) est linéaire par rapport à chaque va-
riable.

• Si deux des vecteurs de la famille sont égaux, detB(v1, . . . ,vn)=0.

Théorème 54 Soit E un K espace vectoriel de dimension n. Soient n vecteurs de E
et B une base de E. Ces vecteurs sont linéairement indépendants si et seulement si
detB(v1, . . . ,vn) 6= 0.
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Démonstration. les vecteurs v1, . . . ,vn sont linéairement indépendants si et seulement
si la famille (v1, . . . ,vn) est de rang n. Soit M la matrice de Mn(K) dont la j-ième
colonne est formée des coordonnées du vecteur v j par rapport à la base B . Le rang de
la famille (v1, . . . ,vn) est égal le rang de la matrice M et M est de rang n si et seulement
si elle est inversible.

Définition 46 Soit n et q deux entiers naturels. Soit A = (ai, j) une matrice à n lignes
et q colonnes à coefficients dans K. Soit p un entier inférieur à n et à q. On appelle
mineur d’ordre p le déterminant d’une matrice carrée d’ordre p obtenue à partir de A
en supprimant n� p lignes et q� p colonnes.

Théorème 55 (Caractérisation de l’indépendance linéaire de p vecteurs) Soit E un
K -espace vectoriel de dimension n et (e1, . . . ,en) une base de E. Soit p un entier
inférieur ou égal à n et v1, . . . ,vp p vecteurs de E. Pour tout j compris entre 1 et n,

on pose v j =
n

Â
i=1

ai, jei. Alors les p vecteurs (v1, . . . ,vp) sont linéairement indépendants

si et seulement si il existe un mineur d’ordre p non nul extrait de la matrice (ai, j) de
Mn,p(K).

Démonstration. Supposons v1, . . . ,vp linéairement indépendants.
Si p = n, le résultat est une conséquence immédiate de la propriété précédente.
Si p < n, on peut appliquer le théorème de la base incomplète à la partie libre

{v1, . . . ,vp}. Il existe donc des vecteurs ekp+1 , . . . ,ekn tels que (v1, . . . ,vp,ekp+1 , . . . ,ekn)
soit une base de E. Soit la base de E obtenue en renumérotant les éléments de la base
(e1, . . . ,en) de la manière suivante. Si {1, . . . ,n} = {k1, . . . ,kp}[ {kp+1, . . . ,kn}. On
pose

8i 2 [1,n], ei = eki .

Alors, la matrice carrée d’ordre n des composantes des vecteurs (v1, . . . ,vp,ekp+1 , . . . ,ekn)
par rapport à la base (e1, . . . ,en) est

N =

0

BBBBBBBB@

ak1,1 . . . akp,p 0 . . . 0
...

. . .
...

...
. . .

...
akp,1 . . . akp,p 0 . . . 0

akp+1,1 . . . akp+1,p 1 . . . 0
...

. . .
...

...
. . .

...
akn,1 . . . akn,p 0 . . . 1

1

CCCCCCCCA

.

Son déterminant est non nul puisque les vecteurs (v1, . . . ,vp,ekp+1 , . . . ,ekn) forment
une base de E. On calcule le déterminant de N en développant par rapport à la dernière
colonne autant de fois que nécessaire. On voit que

det(N) =

�������

ak1,1 . . . akp,p
...

. . .
...

akp,1 . . . akp,p

�������
.

Le mineur

�������

ak1,1 . . . akp,p
...

. . .
...

akp,1 . . . akp,p

�������
est donc non nul.
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Montrons maintenant la réciproque. On pose

N =

0

B@
ak1,1 . . . akp,p

...
. . .

...
akp,1 . . . akp,p

1

CA

et on suppose det(N) 6= 0. On considère la relation

l1v1 + · · ·+lpvp = 0

En exprimant chaque vi dans la base (e1, . . . ,en), on voit aisément que cette relation
équivaut au système suivant

8
>>><

>>>:

a1,1l1 + . . . + a1,plp = 0
a2,1l1 + . . . + a2,plp = 0

...
...

...
...

...
...

...
an,1l1 + . . . + an,plp = 0

Ce qui implique 8
>>><

>>>:

ak1,1l1 + . . . + ak1,plp = 0
ak2,1l1 + . . . + ak2,plp = 0

...
...

...
...

...
...

...
ak1,1l1 + . . . + akp,plp = 0

On a donc

C

0

B@
l1
...

lp

1

CA= 0.

Comme C est inversible, cela implique l1 = · · · = lp = 0. Ce qu’il fallait démontrer.

6.2.3 Application à la détermination du rang d’une matrice
Rappelons la définition du rang d’une matrice.

Définition 47 Le rang d’une matrice est le nombre maximum de vecteurs colonnes
linéairement indépendants.

Notation : le rang de la matrice A est noté rg(A).

Rappelons que l’on ne change pas le rang d’une matrice A = (C1, . . . ,Cn) par les
opérations élémentaires suivantes sur les colonnes :

• Permutation de deux colonnes.
• On multiplie une colonne par un scalaire non nul.
• On ajoute à une colonne un multiple d’une autre colonne.

Théorème 56 Le rang d’une matrice est le plus grand entier r tel qu’il existe une
matrice carrée d’ordre r extraite de M de déterminant non nul.

Démonstration. Cela découle de la caractérisation de l’indépendance de r colonnes à
l’aide des mineurs.
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Exemple 85 Soit a un paramètre réel. Calculons le rang de la matrice A à coefficients
réels suivante :

A =

0

@
1 1 2 1
1 2 3 1
1 1 a 1

1

A

On obtient les mineurs d’ordre 3 de A en supprimant une colonnes. Calculons le mineur

d’ordre 3 obtenu en supprimant la première colonne

������

1 2 1
2 3 1
1 a 1

������
. On a

������

1 2 1
2 3 1
1 a 1

������
=
����
3 1
a 1

�����2
����
2 1
a 1

����+
����
2 1
3 1

����=�2+a.

Si a est différent de 2, le rang de la matrice A est 3. Si a = 2, on vérifie que les 4

mineurs d’ordre 3 de A sont nuls. Donc A est de rang inférieur ou égal à 2. Or
����
1 1
1 2

���� est

un mineur d’ordre 2 non nul. Donc si a est égal à 2, le rang de A est 2.

Proposition 67 Soit A une matrice à n lignes et p colonnes. Le rang de A est égal au
rang de sa transposée.

Démonstration. Cette démonstration est hors programme.
Les mineurs de AT sont obtenus à partir des mineurs de A par transposition. Comme

les déterminants d’une matrice et de sa transposée sont égaux, la proposition découle
de la caractérisation du rang d’une matrice à l’aide des mineurs. ⇤

Corollaire 57 On ne change pas le rang d’une matrice par les opérations élémentaires
suivantes sur les lignes :

• Permutation de deux lignes.
• On multiplie une ligne par un scalaire non nul.
• On ajoute à une ligne un multiple d’une autre ligne.

Démonstration. Faire une opération élémentaire sur les lignes de A, c’est faire une
opération élémentaire sur les colonnes de AT . Or, nous savons qu’une opération élémentaire
sur les colonnes de AT ne change pas le rang de AT . Comme le rang de A est égal au
rang de AT , le corollaire en découle.

Remarque 66 L’algorithme de Gauss permet de transformer, par une succession d’
opérations sur les lignes une matrice A en une matrice échelonnée R dont le rang est
facile à calculer. D’après le corollaire précédent, on a rg(A) = rg(R).

Exemple 86 Calculons le rang de la matrice

A =

0

@
1 2 3 4
0 2 4 6
�1 0 1 0

1

A .
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Nous avons vu dans l’exemple 2 du chapitre 1 que, par des opérations élémentaires sur
les lignes, la matrice A se transformait en la matrice

R =

0

@
1 2 3 4
0 2 4 6
0 0 0 �2

1

A

dont le rang est 3. Le rang de la matrice A est donc 3.



Chapitre 7

Diagonalisation

De nombreux problèmes, dans des domaines variés et pas seulement
mathématiques, nécessitent pour leur résolution de savoir calculer des puissances de
matrices. Dans le chapitre 1, nous avons vu comment calculer les puissances d’une
matrice semblable à une matrice diagonale. Dans ce chapitre, nous nous intéresserons
au problème suivant : Si E est un espace vectoriel de type fini, de dimension supérieure
ou égale à 1 et f un endomorphisme de E, il s’agit de déterminer s’il existe une base
de E telle que la matrice de f par rapport à cette base soit diagonale

Dans ce chapitre, nous supposerons que K est R ou C. Tant que cela sera possible,
nous traiterons simultanément le cas d’un espace vectoriel réel et celui d’un espace
vectoriel complexe. Cependant la nature du corps de base joue un rôle important dans
cette théorie.

7.1 Endomorphisme diagonalisable, valeur propre, vec-
teur propre

Définition 48 (Endomorphisme diagonalisable) Soit E un K-espace vectoriel de di-
mension finie et f un endomorphisme de E. On dit que f est diagonalisable s’il existe
une base de E telle que la matrice de f par rapport à cette base soit diagonale.

Plus précisément, si n est la dimension de E, un endomorphisme f de E est diago-
nalisable si et seulement s’il existe une base (e1, . . . ,en) de E et des éléments l1, . . . ,ln
de K, tels que la matrice associée à f dans la base (e1,e2, . . . ,en) soit la matrice diago-

nale

0

BBBB@

l1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 ln

1

CCCCA

Remarque sur la notation : les scalaires l1, . . . ,ln ne sont pas nécessairement dis-
tincts.

Compte tenu de la définition de la matrice d’un endomorphisme par rapport à une
base cela signifie que :

8i 2 [1,n], f (ei) = liei.

Les scalaires l et les vecteurs v, liés par une relation de la forme f (v) = lv,

127
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jouent donc manifestement un rôle important dans cette théorie. Cela nous conduit
à la définition des notions de valeur propre et de vecteur propre.

Définition 49 (Définition d’un vecteur propre) Soit E un K-espace vectoriel de di-
mension finie et f un endomorphisme de E.

Un vecteur v de E est appelé vecteur propre de f s’il vérifie les deux conditions :
• v est non nul,
• il existe un élément l du corps des scalaires K tel que f (v) = lv.

Définition 50 (Définition d’une valeur propre) Soit E un espace vectoriel de type
fini sur K et f un endomorphisme de E. Un élément l du corps des scalaires K est
appelé valeur propre de f s’il existe un vecteur v, non nul, tel que f (v) = lv.

Remarque 67 Attention : un vecteur propre est non nul.

Vocabulaire : Soit v un vecteur non nul et l un élément de K tels que f (v) = lv.
On dit alors que v est un vecteur propre associé à la valeur propre l. Les deux notions
de valeur propre et de vecteur propre sont donc étroitement liées.

Exemple 87 Soit E un espace vectoriel réel de dimension 2 et (e1,e2) une base de
E. On considère l’endomorphisme f de E défini par f (e1) = e2, f (e2) = e2. Il est
immédiat que 1 est une valeur propre puisqu’il existe un vecteur non nul, à savoir e2,
tel que f (e2) = e2. Le vecteur e2 est un vecteur propre associée à la valeur propre 1.
Dans cet exemple, il y a une valeur propre visible mais l’existence d’autres valeurs
propres n’a pas été étudiée.

Exemple 88 Soit f un endomorphisme non injectif d’un K-espace vectoriel E. Cela
signifie que son noyau n’est pas réduit au vecteur nul, autrement dit qu’il existe un
vecteur v non nul tel que f (v) = 0. Ceci équivaut à dire que le scalaire 0K est une
valeur propre pour f .

7.1.1 Caractérisation des valeurs propres
Soit f un endomorphisme d’un K-espace vectoriel E de dimension finie égale à n

(n� 1).
Un scalaire l est une valeur propre de f si et seulement si :

9v 2 E�{0}, f (v) = lv()
9v 2 E�{0}, f (v)�lv = 0()
9v 2 E�{0}, ( f �lIdE)v =()
Ker(f�lIdE) 6= {0}()
rg( f �lIdE) < n()
det( f �lIdE) = 0

Nous avons donc démontré la propriété suivante :

Proposition 68 (Caractérisation d’une valeur propre) Un élément du corps de base
K de l’espace vectoriel est une valeur propre de f si et seulement si
det( f �lIdE) = 0.

Cette propriété donne donc un procédé pratique pour déterminer les valeurs propres
d’un endomorphisme.
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Exemple 89 Soit f l’endomorphisme de R2 défini par f (e1) = 2e1 + e2, f (e2) = e1 +
2e2 où (e1,e2) désigne la base canonique de R2.

Pour déterminer ses valeurs propres il faut, d’après la caractérisation précédente,
chercher les éléments l de R, tels que det( f � lIdR2) = 0. Pour cela il est naturel
d’écrire la matrice A associée à f dans la base canonique et de calculer det(A�xI2) qui
est égal à det( f � xIdR2).

On a A =
✓

2 1
1 2

◆
et par conséquent

det(A� xI2) =
����
2� x 1

1 2� x

����= (x�1)(x�3)

Les réels 1 et 3 sont donc les valeurs propres de f .

Exemple 90 Soit g l’endomorphisme de R2 défini par g(e1) = e1 +e2, g(e2) =�e1 +
e2 où (e1,e2) désigne la base canonique de R2. De même que précédemment, on écrit
la matrice B associée à g dans la base canonique et on calcule det(B� xI2). On a B =✓

1 �1
1 1

◆
et par conséquent det(B� xI2) =

����
1� x �1

1 1� x

���� = x2 � 2x + 2. Or il n’y a

pas de réels x tels que x2� 2x + 2 soit nul (le discriminant du trinôme est strictement
négatif). Donc l’endomorphisme g n’admet pas de valeurs propre.

Exemple 91 Soit h l’endomorphisme de R3 défini par h(e1) = e1, h(e2) = e3 et h(e3) =
�e2 où (e1,e2,e3) désigne la base canonique de R3.

De même que précédemment, on écrit la matrice C associée à h dans la base cano-
nique et on calcule det(C� xI3).

On a C =

0

@
1 0 0
0 0 �1
0 1 0

1

A et par conséquent

det(C� xI3) =

������

1� x 0 0
0 �x �1
0 1 �x

������
=�(x�1)(x2 +1)

La seule valeur réelle de x annulant det(C�xI3) est x = 1. Donc h a une seule valeur
propre qui est 1.

7.1.2 Fonction polynôme caractéristique
Soit x un élément du corps de base K. On a vu apparaitre naturellement l’expression

det( f � xIdE). Pour calculer le déterminant de l’endomorphisme de E, f � xIdE , il est
nécessaire d’introduire la matrice associée à f par rapport à une base de E. Soit donc
B une base de E et A la matrice associée à f par rapport à cette base. Alors la matrice
associée à f � xIdE est A� xIdE et par conséquent det( f � xIdE) = det(A� xIn). Si
A = (ai, j)(i, j)2[1,n], on a :

det( f � xIdE) = det(A� xIn) =

����������

a1,1� x a1,2 . . . a1,n

a2,1 a2,2� x
...

...
. . .

...
an,1 . . . . . . an,n� x

����������
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L’expression explicite de ce déterminant prouve que c’est une expression polynômiale
en x, de degré n, dont le coefficient du terme de plus haut degré est égal à (�1)n. Cette
remarque nous amène à la définition suivante :

Définition 51 (Fonction polynôme caractéristique) Soit f un endomorphisme d’un
K-espace vectoriel E de dimension n, entier supérieur ou égal à 1 (K est égal à R ou C).
On appelle fonction polynôme caractéristique et on note Pcar, f la fonction polynômiale
définie par

8x 2 K, Pcar, f (x) = det( f � xIdE).

Remarque 68 Plus précisément, on définit le polynôme caractéristique de f . De façon
un peu informelle, un polynôme à une indéterminée à coefficients dans K est une ex-
pression de la forme

P(X) = a0 +a1X +a2X2 + · · ·+anXn

avec ai 2 K. Si an 6= 0, alors l’entier n est le degré de P. Par convention, le degré
du polynôme nul est �•. La lettre X désigne l’indéterminée. On peut lui donner un
sens mathématique précis, L’ensemble de tous les polynômes à une indéterminée à
coefficients dans K est noté K[X ]. En fait, un polynôme à coefficients dans K définit
une application polynomiale de K dans K par

x 7! P(x) = a0 +a1x+a2x2 + · · ·+anxn.

Si K = R ou C, on peut sans danger confondre le polynôme et la fonction polynomiale
associée.

Si K est un corps commutatif quelconque, on ne peut plus confondre un polynôme
et la fonction polynomiale qui lui est associée. Soit f un endomorphisme d’un K-espace
vectoriel de dimension finie E. Si A est la matrice de f dans une base B , on définit le
polynôme caractéristique Pcar, f de f comme étant le déterminant à coefficients dans
K[X ]

det( f �XIdE) = det(A�XIn) =

����������

a1,1�X a1,2 . . . a1,n

a2,1 a2,2�X
...

...
. . .

...
an,1 . . . . . . an,n�X

����������

.

Il faut s’assurer au préalable que si A0 est la matrice de f dans une autre base B 0, on a
det(A�XIdE) = det(A0 �XIdE).

Définition 52 On dit qu’une fonction polynôme de K est scindée si elle est produit de
fonctions polynômes de K de degré 1.

Exemple 92 la fonction polynomiale x2 +1 n’est pas scindée sur R mais elle l’est sur
C puisque l’on peut écrire x2 +1 = (x+ i)(x� i).

Proposition 69 (Condition nécessaire de diagonalisabilité) Soit E un K-espace vec-
toriel de dimension n et f un endomorphisme de E. Si f est diagonalisable, alors sa
fonction polynôme caractéristique est scindée.
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Démonstration. Si f est diagonalisable, il existe une base de vecteurs propres pour f ,
(v1, . . . ,vn). Si vi est vecteur propre pour la valeur propre li, la matrice de f dans la
base (v1, . . . ,vn) est

D =

0

BBB@

l1 0 . . . 0
0 l2 0 0
...

...
. . .

...
0 0 . . . ln

1

CCCA
.

On a Pcar, f (x) = det(D� xIn) = (l1� x)(l2� x) . . .(ln� x).

7.1.3 Caractérisation des valeurs propres d’un endomorphisme à
l’aide du polynôme caractéristique

Si P est une fonction polynomiale à coefficients dans K et si l est un élément de K,
on dit que l est une racine de P si P(l) = 0. Le théorème suivant est une conséquence
immédiate de ce qui a été vu précédemment.

Théorème 58 (Valeurs propres et polynôme caractéristique) Soit f un endomorphisme
d’un K- espace vectoriel E de type fini. Un élément l de K est valeur propre de f si et
seulement si il est racine de la fonction polynôme caractéristique de f .

Remarque 69 L’existence et le nombre de valeurs propres d’un endomorphisme dépendent
essentiellement du corps de base de l’espace vectoriel. Si l’on considère, par exemple,
l’endomorphisme h de R3 défini par h(e1)= e1, h(e2)= e3 et h(e3)=�e2 où (e1, . . . ,e3)
désigne la base canonique de R3. Sa fonction polynôme caractéristique est Pcar,h(x) =
(1� x)(x2 +1). Elle n’a qu’une seule racine réelle, qui est donc la seule valeur propre
de h. Mais si on considère l’endomorphisme h0 de C3 défini par h0(e1) = e1, h0(e2) = e3
et h0(e3) =�e2 où (e1,e2,e3) où (e1,e2,e3) désigne la base canonique de C3. Sa fonc-
tion polynôme caractéristique est Pcar,h0(x) = (1� x)(x2 + 1). C’est une fonction de C
dans C et elle a trois racines qui sont 1, i et �i.

Un endomorphisme d’un espace vectoriel complexe (c’est-à-dire dont le corps de
base est C) admet toujours des valeurs propres (puisque une fonction polynôme à coef-
ficients dans C a toujours des racines d’après le théorème de D’Alembert-Gauss) alors
qu’un endomorphisme d’un espace vectoriel réel peut ne pas avoir de valeurs propres
(l’endomorphisme g des exemples précédents n’a pas de valeur propre).

7.1.4 Sous-espace propre associé à une valeur propre
Une fois déterminées les valeurs propres d’un endomorphisme, s’il y en a, on peut

rechercher les vecteurs propres associés. Cela revient à résoudre l’équation linéaire
f (v) = lv, c’est-à-dire à déterminer Ker(f�lIdE).

Définition 53 (Sous-espace propre associé à une valeur propre) Soit f un endomor-
phisme d’un K-espace vectoriel E de type fini et l une valeur propre de f . On appelle
sous-espace propre associé à la valeur propre l le noyau de f �lIdE

Notation : Le sous espace propre associé à la valeur propre l sera noté El.

Il résulte donc de la définition que le sous-espace propre associé à une valeur propre
l est un sous-espace vectoriel dont les éléments sont le vecteur nul et les vecteurs
propres associés à l.
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Compte tenu de cette définition on a les équivalences :

l valeur propre() El 6= {0E}() dimEl � 1.

7.2 Version matricielle

7.2.1 Notion de matrice diagonalisable, de valeur propre d’une ma-
trice, de vecteur propre d’une matrice

Définition 54 (Définitions et premières propriétés) Soit M une matrice carrée d’ordre
n à coefficients dans K.

(1) On dit que M est diagonalisable si elle est semblable à une matrice diagonale
c’est-à-dire s’il existe deux matrices D et P de Mn(K) telles que D soit diagonale, P
inversible et M = PDP�1.

(2) Une matrice colonne V appartenant à Mn,1(K) est un vecteur propre de M si :

V 6= 0 et 9l 2 K,MV = lV.

(3) Un élément l de K est une valeur propre de M s’il existe V , non nul, appartenant
à Mn,1 tel que MV = lV .

(4) Un élément l de K est une valeur propre de M si et seulement si det(M�lIn) =
0.

(5) On appelle fonction polynôme caractéristique de M la fonction polynôme x 7!
det(M� xIn). On la note Pcar,M.

(6) Un élément l de K est une valeur propre de M si et seulement c’est une racine
de la fonction polynôme caractéristique de M.

(7) Le sous-espace propre associé à la valeur propre l est égal à l’ensemble des V
appartenant à Mn,1(K) tels que (M�lIn)V = 0, autrement dit l’ensemble des matrices

colonnes V =

0

BBB@

v1
v2
...

vn

1

CCCA
telles que (M�lIn)

0

BBB@

v1
v2
...

vn

1

CCCA
=

0

BBB@

0
0
...
0

1

CCCA

A la matrice M, on associe l’endomorphisme LM de Mn,1(K) défini par

8V 2Mn,1(K), LM(V ) = MV.

La matrice de LM dans la base canonique

0

BBB@

0

BBB@

1
0
...
0

1

CCCA
,

0

BBB@

0
1
...
0

1

CCCA
, . . . ,

0

BBB@

0
0
...
1

1

CCCA

1

CCCA
est M. Ainsi : un

élément V de Mn,1(K) est un vecteur propre de M si et seulement si c’est un vecteur
propre de LM , un scalaire l est valeur propre de M si et seulement si c’est une valeur
propre de LM , le polynôme caractéristique de M est le polynôme caractéristique de LM
et le sous espace propre de M associé à la valeur propre l est le sous espace propre de
LM associé à la valeur propre l.

La proposition suivante résulte immédiatement de la définition de la fonction po-
lynôme caractéristique d’une matrice et des propriétés des déterminants.
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Proposition 70 (polynôme caractéristique et matrices semblables) Soient M et N deux
matrices semblables de Mn(K) alors Pcar,M = Pcar,N.

Démonstration. Soient M et N deux matrices semblables. Il existe donc une matrice
inversible Q de Mn(K) telle que M = QNQ�1. Alors M� xIn = Q(N� xIn)Q�1. Les
matrices M � xIn et N � xIn sont donc semblables et par conséquent ont le même
déterminant. ⇤

7.2.2 Relation entre endomorphisme diagonalisable et matrice dia-
gonalisable

En partant d’un endomorphisme...
Soit E un K-espace vectoriel de dimension n et f un endomorphisme de E. Soit

B une base de E et M la matrice associée à f dans B. Dire que f est diagonalisable
équivaut à dire qu’il existe une base B0 de E dans laquelle la matrice de f est une matrice
diagonale D. On sait que deux matrices sont associées à un même endomorphisme par
rapport à des bases différentes si et seulement si elles sont semblables. Donc f est
diagonalisable si et seulement si M est semblable à une matrice diagonale, c’est-à-dire
si et seulement si M est diagonalisable.

En partant d’une matrice carrée...
Soit M une matrice carrée appartenant à Mn(K), on peut considérer l’unique endo-

morphisme LM de Mn,1(K) qui lui est associé dans la base canonique. On a

LM : Mn,1(K) ! Mn,1(K)
X 7! MX .

Alors d’après les définitions et les propriétés rappelées ci-dessus, M est diagonalisable
si et seulement si LM est diagonalisable.

Soit E un K-espace vectoriel de dimension finie. Il est immédiat que les définitions
sont telles que si M est la matrice associée à un endomorphisme f de E par rapport à
une base B, alors :

• les valeurs propres de l’un sont les valeurs propres de l’autre (puisque det( f �
xIdE) = det(M� xIn)),

• la matrice colonne V associée à un vecteur propre v de f dans la base B est un
vecteur propre de M et réciproquement le vecteur v de E qui admet comme compo-
santes dans la base B les coefficients d’une matrice colonne V vecteur propre de M est
un vecteur propre de f (puisque f (v) = lv()MV = lV ).

Par conséquent, les sous-espaces propres associés à l valeur propre respectivement
de f et M sont isomorphes, par l’isomorphisme qui associe à un vecteur la matrice
colonne de ses composantes dans la base B.

Il y a donc coı̈ncidence parfaite entre ces notions relatives à une matrice ou à un
endomorphisme. Cela justifie la similitude de vocabulaire.

Tous les théorèmes qui suivent, dont la finalité est de trouver des conditions pour
qu’un endomorphisme ou une matrice soit diagonalisable, sont donc communs. Les
démonstrations théoriques sont faites la plupart du temps dans le cadre vectoriel, c’est-
à-dire pour les endomorphismes car elles s’y expriment plus simplement.

En revanche, pour faire les calculs explicites, on utilise le calcul matriciel.

Attention : une matrice à coefficients dans R peut aussi être considérée comme une
matrice à coefficients dans C. Il faut bien préciser, pour les matrices, le corps dans
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lequel on se place. Nous verrons qu’il existe des exemples de matrices à coefficients
réels, non diagonalisables dans R et diagonalisables dans C.

Ce type de problème ne se pose pas pour un endomorphisme car le corps de base
de l’espace vectoriel est fixé au départ.

7.3 Propriétés des sous-espaces propres
Théorème 59 (Somme directe de sous-espaces propres) Soit f un endomorphisme
d’un espace vectoriel E de type fini qui admet au moins deux valeurs propres dis-
tinctes. Soit p un entier supérieur ou égal à 2, l1, . . . ,lp des valeurs propres dis-
tinctes de f et les sous-espaces propres associés El1 ,El2 , . . . ,Elp . Alors la somme
El1 +El2 + · · ·+Elp est directe, ce qui est noté

El1 +El2 + · · ·+Elp = El1 �El2 � · · ·�Elp .

Démonstration. Faisons une démonstration par récurrence. Si p = 2, soient l1,l2 deux
valeurs propres distinctes de f . On va montrer que El1 +El2 = El1 �El2 . Pour cela,il
suffit de prouver que si v1 et v2 sont deux vecteurs respectivement de El1 et El2 , alors
v1 + v2 = 0 =) v1 = v2 = 0. Or

v1 + v2 = 0 =) f (v1)+ f (v2) = f (0) = 0.

Donc les vecteurs v1 et v2 vérifient les deux égalités
⇢

v1 + v2 = 0
l1v1 + l2v2 = 0

Ces égalités impliquent l’égalité (l2�l1)v2 = 0.(C’est la relation obtenue en prenant
la deuxième ligne moins l1 fois la première). Or, comme d’après l’hypothèse, l1 et l2
sont deux valeurs propres distinctes, il en résulte immédiatement v2 = 0. D’où, d’après
la première relation, v1 = 0.

Supposons le résultat acquis pour k�1 sous-espaces propres avec k p. Donnons-
nous xi 2 Eli , i = 1, . . . ,k tels que x1 + x2 + · · ·+ xk = 0.

Multiplions cette relation par lk. Il vient

lkx1 +lkx2 + · · ·+lkxk = 0.

Appliquons également à cette égalité l’endomorphisme f . Il vient

f (x1)+ f (x2)+ · · ·+ f (xk) = l1x1 +l2x2 + · · ·+lkxk = 0.

Soustrayons les deux égalités obtenues membre à membre. On obtient

(lk�l1)x1 +(lk�l2)x2 + · · ·+(lk�lk�1)xk�1 = 0.

Posant yi = (lk�li)xi 2 Eli , i = 1, . . . ,k� 1, on a obtenu une décomposition du
vecteur nul sur k� 1 sous-espaces propres. Par l’hypothèse de récurrence, on obtient
yi = 0 pour i = 1, . . . ,k�1. Or on a pris des valeurs propres distinctes, donc lk�li 6= 0.
Par conséquent, xi = 0 pour i = 1, . . . ,k� 1. Reportant ceci dans la première relation,
on en déduit finalement que xk = 0, et les sous-espaces propres sont bien en somme
directe. ⇤
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Compte tenu du vocabulaire introduit et des résultats préliminaires qui viennent
d’être démontrés, la définition d’endomorphisme diagonalisable peut être traduite de la
façon suivante :

Théorème 60 Soit f un endomorphisme d’un K-espace vectoriel E de type fini. On
suppose que f (respectivement M) possède des valeurs propres, soit l1, . . . ,lr. Alors
les conditions suivantes sont équivalentes :

1. L’endomorphisme f est diagonalisable.
2. Il existe une base de E formée de vecteurs propres de f .
3. L’espace vectoriel E est somme directe des sous-espaces propres, c’est-à-dire

E = El1 � · · ·�Elr .

La réunion de bases des sous-espaces propres forme alors une base de E constituée
de vecteurs propres de f .

Remarque 70 La troisième condition équivaut à : dim(E) =
r

Â
i=1

dimEli .

Le point (iii) de ce théorème conduit immédiatement à une propriété utile dans la pra-
tique.

Proposition 71 (Condition suffisante de diagonalisation) Soit f un endomorphisme
d’un K-espace vectoriel E de dimension n (ou M une matrice carrée d’ordre n à co-
efficients dans K). Si le polynôme caractéristique de f (respectivement de M) admet n
racines distinctes, alors f (respectivement M) est diagonalisable.

Démonstration. En effet, dans ce cas l’endomorphisme f a n valeurs propres distinctes
l1, . . . ,ln. Les sous-espaces propres Eli en somme directe. Pour chaque espace propre,
on a dimEli � 1. Donc

n
n

Â
i=1

dimEli = dim
⇣ nM

i=1
Eli

⌘
 dimE = n,

puisque
nM

i=1
Eli est un sous espace vectoriel de E. On en déduit que

dim
⇣ nM

i=1
Eli

⌘
= dimE,

et donc que
nM

i=1
Eli = E

d’où la diagonalisabilité de f . ⇤
Ce corollaire n’est qu’une condition suffisante. De nombreuses matrices avec des

valeurs propres multiples sont aussi diagonalisables.

Remarque 71 Si un endomorphisme est diagonalisable, la décomposition de l’espace
E en somme directe de sous-espaces propres permet de mieux comprendre cet endo-
morphisme. En effet, on a déjà noté que sa restriction à un sous-espace propre est
l’application linéaire la plus simple qui soit, une homothétie. ⇤
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Remarque 72 ATTENTION, même sur C il existe des matrices qui ne sont pas dia-
gonalisables. Par exemple

A =
✓

0 1
0 0

◆

est triangulaire supérieure. Sa fonction polynôme caractéristique est Pcar,A(x) = x2. Elle
admet donc une seule valeur propre à savoir 0. Un rapide calcul montre que le sous
espace propre associé à la valeur propre 0 est de dimension 1. Donc C2 ne peut pas être
somme directe des espaces propres, et A n’est pas diagonalisable

On peut aussi le voir directement. Si A est diagonalisable, alors

A =
✓

0 1
0 0

◆
= P

✓
0 0
0 0

◆
P�1 =

✓
0 0
0 0

◆
,

contradiction. Donc A n’est pas diagonalisable. ⇤

Exemple 93 Considérons la matrice A =

0

@
1 1 1
1 1 1
1 1 1

1

A. On calcule sa fonction polynôme

caractéristique

Pcar,A(x) =

������

1� x 1 1
1 1� x 1
1 1 1� x

������
= (3� x)x2.

Le sous espace propre E0 associée à la valeur propre 0 est le noyau. Déterminons-le :
0

@
1 1 1
1 1 1
1 1 1

1

A

0

@
x1
x2
x3

1

A=

0

@
0
0
0

1

A .

E0 = {(x1,x2,x3) 2 R3 | x1 + x2 + x3 = 0}.
Une base de E0 est ((1,0,�1),(0,1,�1)).

Déterminons le sous espace propre associé à la valeur propre 3. On a

(x1,x2,x3) 2 E3()

0

@
�2 1 1
1 �2 1
1 1 �2

1

A

0

@
x1
x2
x3

1

A=

0

@
0
0
0

1

A .

Ce qui équivaut au système
8
<

:

�2x1 + x2 + x3 = 0
x1�2x2 + x3 = 0
x1 + x2�2x3 = 0

On résoud ce système par la méthode du pivot de Gauss et on obtient une base de E3
formée du vecteur (1,1,1). On a donc

A = P

0

@
0 0 0
0 0 0
0 0 3

1

AP�1 avec P =

0

@
1 0 1
0 1 1
�1 �1 1

1

A .

Exemple 94 Considérons A =
✓

0 1
�1 0

◆
. Sa fonction polynôme caractéristique est

x2 + 1. Elle n’a donc pas de valeur propre sur R. Elle n’est donc pas diagonalisable
sur R. En revanche, elle a deux valeurs propres distinctes sur C, à savoir i et �i. Elle
est donc diagonalisable sur C.
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7.4 Application au calcul des puissances d’une matrice
diagonalisable

Soit A une matrice diagonalisable. Il existe une matrice diagonale D et une matrice
inversible P telle que A = PDP�1. Nous avons vu au chapitre 1 qu’on avait alors Ak =
PDkP�1 et que Dk était très facile à calculer. Etudions un exemple.

Exemple 95 Soit A =
✓

2 1
1 2

◆
. Sa fonction polynôme caractéristique est égal à Pcar,A(x)=

(x�1)(x�3). Il a deux valeurs propres distinctes à savoir 1 et 3. Comme on a une ma-
trice carrée d’ordre 2, elle est diagonalisable. Tous calculs faits, on a

A = P
✓

1 0
0 3

◆
P�1 avec P =

✓
1 1
�1 1

◆
et P�1 =

✓ 1
2 �

1
2

1
2

1
2

◆
.

Donc

Ak = P
✓

1 0
0 3k

◆
P�1 =

1
2

✓
1+3k �1+3k

�1+3k 1+3k

◆
.


