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Chapter 1

Towards a proof of the
Fourier-entropy conjecture?

after E. Kelman, G. Kindler, N. Lifshitz, D. Minzer, M. Safra [1]
A summary written by Alan Chang

Abstract. We sketch some ideas in recent progress towards the Fourier entropy conjecture.

1.1 Introduction

We first introduce/recall enough to state the Fourier entropy conjecture.

Definition 1.1. On the space of functions {−1, 1}n → R, we define 〈f, g〉 = Ex[f(x)g(x)] and ‖f‖p =
(Ex[f(x)p])1/p.

Theorem 1.2. For S ⊂ [n], we let χS(x) =
∏
i∈S xi. The functions (χS)S form an orthonormal basis.

Thus, we have the Fourier expansion f(x) =
∑
S⊂[n] f̂(S)χS(x), where f̂(S) = 〈f, χS〉. We also have

Parseval/Plancherel: 〈f, g〉 =
∑
S⊂[n] f̂(S)ĝ(S).

Definition 1.3 (Influence). For f, g : {−1, 1}n → R and i ∈ [n], we define

Ii[f ] = Ex

[(
f(x)− f(x⊕ ei)

2

)2
]
, I[f, g] =

∑
i∈[n]

√
Ii[f ]Ii[g], I[f ] = I[f, f ].

The key question that motivates this section is the following:

Question. If f : {−1, 1}n → {−1, 1} satisfies I[f ] ≤ K, then what can we say about f?

Here is one thing we can say.

Theorem 1.5 (KKL theorem). For all f : {−1, 1}n → {−1, 1}, there is an i ∈ [n] such that Ii[f ] ≥
e−CI[f ].

We will prove Theorem 1.5 as a corollary of Lemma 1.19, below. Note that Theorem 1.5 gives a
nontrival answer to Question 1.4 only if K . log n. (If I[f ] ≥ C ′ log n for some sufficiently large C ′, then
Theorem 1.5 only tells us that Ii[f ] ≥ 1

n , but that already follows from the pigeonhole principle.) The
difficulty of obtaining results when K & log n is known as the logarithmic barrier. The Fourier entropy
conjecture is a statement that goes beyond the logarithmic barrier.

Conjecture 1.6 (Fourier entropy conjecture). For all f : {−1, 1}n → {−1, 1},

Hshannon[f̂2] :=
∑
S

f̂(S)2 log(1/f̂(S)2) . I[f ].
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Conjecture 1.7 (Min-entropy conjecture). For all f : {−1, 1}n → {−1, 1},

H∞[f̂2] := min
S

log(1/f̂(S)2) . I[f ].

In [1], the authors almost prove the min-entropy conjecture; they are off by only a logarithmic factor.

Theorem 1.8 ([1, Theorem 1.1]). such that for all f : {−1, 1}n → {−1, 1},

H∞[f̂2] . I[f ] log(1 + I[f ]).

In these notes, we present some ideas in the proof of Theorem 1.8.

1.2 Preliminaries

Definition 1.9 (Derivative). For f : {−1, 1}n → R and i ∈ [n], we define ∂if(x) = 1
2 (f(x)− f(x⊕ ei)).

Lemma 1.10. We have ∂̂if(S) =

{
f̂(S), if i ∈ S
0, if i 6∈ S

As a consequence of Lemma 1.10, we have

∂i(f
≤d) = (∂if)≤d, Ii[f ] = ‖∂if‖22 =

∑
S3i

f̂(S)2, I[f ] =
∑
S

|S|f̂(S)2.

1.2.1 Restrictions

Given A ⊂ [n], we let Ā denote the complement of A. There is a natural bijection {−1, 1}A×{−1, 1}Ā →
{−1, 1}n, where we associate (y, z) ∈ {−1, 1}A×{−1, 1}Ā to x ∈ {−1, 1}n by xi = yi if i ∈ A and xi = zi
if i ∈ Ā.

Definition 1.11. For f : {−1, 1}n → R, A ⊂ [n], z ∈ {−1, 1}Ā, we define fĀ→z : {−1, 1}A → R by
fĀ→z(y) = f(y, z)

Lemma 1.12. 〈f, g〉 = Ez〈fĀ→z, gĀ→z〉

Proof. 〈f, g〉 = Ex[f(x)g(x)] = EzEy[f(y, z)g(y, z)] = EzEy[fĀ→z(y)gĀ→z(y)]
= Ez〈fĀ→z, gĀ→z〉.

Lemma 1.13. For S ⊂ A, ĝĀ→z(S) =
∑
T⊂Ā

ĝ(S ∪ T )χT (z)

By the lemma above and Plancherel,

Ez[ĝĀ→z(S)2] =
∑

T :T∩A=S

ĝ(T )2(1.1)

1.2.2 Partitions

Definition 1.14. A partition of [n] into m parts is I = (I1, . . . , Im), where [n] =
⊔m
j=1 Ij

We consider the uniform probability distribution over partitions of [n] into m parts.

Lemma 1.15. Let S ⊂ [n], and let µ = |S|/m. Then

Pr
I

[
∀j ∈ [m], (1− ε) |S|

m
≤ |S ∩ Ij | ≤ (1 + ε)

|S|
m

]
≥ 1− 2m exp(−ε

2|S|
3m

)

Proof. Fix j ∈ [m]. Let µ = E|S ∩ Ij | = |S|
m . By the Chernoff bound,

Pr
I

[∣∣|S ∩ Ij | − µ∣∣ ≥ εµ] ≤ 2 exp(−ε2µ/3)

Apply the union bound to conclude.
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1.2.3 Hypercontractivity

Lemma 1.16 (Bonami lemma). If f : {−1, 1}n → R has degree at most d, then ‖f‖4 ≤ 3d/2‖f‖2.

Proof. Induct on n.

The following lemma allows us to exchange maximum and expectation. The cost of this exchange is
a factor of eO(d).

Lemma 1.17. If h1, . . . , hk : {0, 1}n → R are all of degree at most d, then

Ex
[
max
i∈[k]

hi(x)2

]
≤ 3d max

i∈[k]
‖hi‖2

(
Ex

[
k∑
i=1

hi(x)2

])1/2

Proof. Use Jensen, Holder, and Lemma 1.16.

Corollary 1.18. If g : {−1, 1}n → R of degree d. Fix A ⊂ [n].

Ez
[
max
S⊂A

ĝĀ→z(S)2

]
≤ 3d‖g‖2 max

S⊂A

( ∑
T :T∩A=S

ĝ(T )2

)1/2

Proof. We apply Lemma 1.17 as follows: Let (Si)i be an enumeration of the subsets of A, and let
hi(z) = ĝĀ→z(Si). Note that deg hi ≤ d, and that

Ez
k∑
i=1

hi(z)
2 = Ez

∑
S⊂A

ĝĀ→z(S)2 =
∑
S⊂A

∑
T :T∩A=S

ĝ(T )2 =
∑
S⊂[n]

ĝ(S)2 = ‖g‖22.

The result follows from Lemma 1.17 and (1.1).

1.3 Proof ideas

Lemma 1.19. Let f : {−1, 1}n → {−1, 1} be balanced. Let d ∈ N. Let g : {−1, 1}n → R be such that
deg g ≤ d. Then

〈f, g〉 ≤ 3d/4I[f, g]

(
max
i∈[n]

Ii[f
≤d]

)1/8

.

Proof. We have

〈f, g〉 = 〈f≤d, g〉 ≤
∑
i∈[n]

〈∂if≤d, ∂ig〉 ≤
∑
i∈[n]

‖∂if≤d‖2‖∂ig‖2

and

‖∂if≤d‖22 = 〈∂if≤d, ∂if〉 ≤ ‖∂if≤d‖4‖∂if‖4/3 ≤ 3d/2‖∂if≤d‖2‖∂if‖4/3
≤ 3d/2‖∂if≤d‖1/22 ‖∂if‖

1/2
2 ‖∂if‖4/3 = 3d/2Ii[f

≤d]1/4Ii[f ].

(Since f is Boolean-valued, ∂if is {−1, 0, 1}-valued, so ‖∂if‖4/34/3 = ‖∂if‖22 = Ii[f ].) Combining the above,

〈f, g〉 ≤
∑
i∈[n]

‖∂if≤d‖2‖∂ig‖2 ≤ 3d/4
∑
i∈[n]

Ii[f
≤d]1/8Ii[f ]1/2Ii[g]1/2

As a corollary, we can deduce the KKL inequality (Theorem 1.5).
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Proof of Theorem 1.5. Let d = 2I[f ]. First,∑
|S|>d

f̂(S)2 ≤ 1

d

∑
|S|>d

|S|f̂(S)2 ≤ 1

2
, so 〈f, f≤d〉 =

∑
|S|≤d

f̂(S)2 ≥ 1

2
.(1.2)

Combining this with Lemma 1.19 gives

1

2
≤ 3d/4I[f, f≤d]

(
max
i∈[n]

Ii[f
≤d]

)1/8

≤ 3I[f ]/2I[f ]

(
max
i∈[n]

Ii[f
≤d]

)1/8

which implies max
i∈[n]

Ii[f
≤d] ≥ e−CI[f ].

The following is useful when you don’t assume anything about influences.

Lemma 1.20. Let f : {−1, 1}n → {−1, 1} be balanced. Let g : {−1, 1}n → R be of degree ≤ d. Then

〈f, g〉 ≤ δ−ddd max
S
|f̂(S)||ĝ(S)|+ δ1/83d/4I[f, g] for all δ > 0.

Proof. We may assume without loss of generality that f̂(S)ĝ(S) ≥ 0 for all S ⊂ [n]. Let HI = {i ∈ [n] :
Ii[f

≤d] ≥ δ}. (“HI” stands for “high influence.”) Since∑
i∈[n]

Ii[f
≤d] =

∑
S

|S|f̂≤d(S)2 =
∑
|S|≤d

|S|f̂(S)2 ≤ d
∑
|S|≤d

f̂(S)2 = d,

Markov’s inequality implies that |HI| ≤ d
δ . We split

〈f, g〉 =
∑
S⊂HI

f̂(S)ĝ(S) +
∑
S 6⊂HI

f̂(S)ĝ(S) ≤
∑
S⊂HI

f̂(S)ĝ(S) +
∑
i 6∈HI

∑
S3i

f̂(S)ĝ(S).

For the first term, we use the following trivial bound. (Recall that deg g ≤ d.)∑
S⊂HI

f̂(S)ĝ(S) ≤ |{S : S ⊂ HI, |S| ≤ d}|max
S⊂HI

f̂(S)ĝ(S) ≤
(
d
δ

)d
max
S⊂[n]

f̂(S)ĝ(S)

For the second term, we argue exactly as in the proof of Lemma 1.19 to get

‖∂if≤d‖2‖∂ig‖2 ≤ 3d/4Ii[f
≤d]1/8Ii[f ]1/2Ii[g]1/2 ≤ 3d/4δ1/8Ii[f ]1/2Ii[g]1/2

In the following lemma, we think of v as the degree we are restricting to.

Lemma 1.21. Let f : {−1, 1}n → {−1, 1} be balanced. Let g : {−1, 1}n → R be homogeneous of degree
d. Let v � d, δ > 0. Then

〈f, g〉 ≤ δ−veO(d) max
S⊂A

( ∑
T∩A=S

ĝ(T )2

)1/8

+ δ1/8eO(v)I[f, g]

Proof. The idea is to apply Lemma 1.15 and Corollary 1.18.

In the following, think of v as the degree we are restricting to, and δ2 as a bound on the influence of
coalitions. (The influence of the coalition A ⊂ [n] is IA[f ] =

∑
S⊃A f̂(S)2.)

Lemma 1.22 (k = 2 case of [1, Theorem 4.1]). Let f : {−1, 1}n → {−1, 1} be balanced. Let g :
{−1, 1}n → R be homogeneous of degree d. Let v ≤ d, δ > 0, δ2 ≤ δ. Then

〈f, g〉 . (2/δ2)d/vdd max
|S|=d

|f̂(S)||ĝ(S)|+ (2/δ)vvveO(d)δ
1/4
2 + δ1/8eO(v)I[f, g].

We now show that Lemma 1.22 implies a weaker version of Theorem 1.8.
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Corollary 1.23. Let f : {−1, 1}n → {−1, 1} be balanced. Then

H∞[f̂2] ≤ CI[f ]3/2(1.3)

Proof. First, note that the inequality (1.3) is equivalent to M := maxS |f̂(S)|2 ≥ exp(−CI[f ]3/2). We
begin with the same inequality as (1.2):∑

1≤d≤2I[f ]

〈f, f=d〉 = 〈f, f≤2I[f ]〉 =
∑

|S|≤2I[f ]

f̂(S)2 ≥ 1

2

Since
∑∞
d=1

1
100d2 <

1
2 , there exists some 1 ≤ d ≤ 2I[f ] such that 〈f, f=d〉 ≥ 1

100d2 . By Lemma 1.22
applied to this d, we have

1

d2
. (2/δ2)d/vddM + (2/δ)vvveO(d)δ

1/4
2 + δ1/8eO(v)I[f ](1.4)

where v, δ, δ2 are to be chosen later (depending on d). The idea for choosing these three parameters is as
follows. We choose δ small to make the third term small. Then we choose δ2 small to make the second
term small. This leaves us with only the first term, so we get a lower bound on M . However, if we choose
δ2 too small, then the lower bound on M is not very good. So we choose v so that δ2 does not need to
be too small.

First we choose δ small enough so that

log
1

δ
≈ v + log I[f ] + log d.

This choice of δ implies δ1/8eO(v)I[f ]� 1
d2 . Next we choose δ2 small enough so that

log
1

δ2
≈ v log

1

δ
+ v log v + d ≈ v2 + v log I[f ] + v log d+ d(1.5)

This choice of δ2 implies (2/δ)vvveO(d)δ
1/4
2 � 1

d2 . Thus, (1.4) implies

1

d2
. (2/δ2)d/vddM.(1.6)

By choosing v ≈
√
d and noting that d ≤ 2I[f ], (1.5) gives us log 1

δ2
. I[f ] so (1.6) becomes

1

I[f ]2
. eCI[f ]3/2(2I[f ])2I[f ]M

which implies the claim.
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Chapter 2

Learning DNF from Random Walks

after N. Bshouty, E. Mossel, R. O’Donnell and R. A. Servedio [1]
A summary written by Fan Chang

Abstract. Bshouty et al. [1] obtained the first passive learning algorithm for DNFs under
the Random Walk model and the Noise Sensitivity learning model. We summary their ideas
and mention further relevant researches.

2.1 Introduction

A concept class C is a set of Boolean functions. Every function f ∈ C is a concept. In the PAC model
developed by Valiant [8] a learner tries to approximate with high probability an unknown concept f from a
training set of N random labelled examples {(xi, f(xi))}Ni=1. The examples are given by an example oracle
EX(f,D) that returns an example (x, f(x)), where x is randomly sampled from a probability distribution
D over {±1}n. A learning algorithm A for C takes as input an accuracy parameter ε ∈ (0, 1), a confidence
parameter δ ∈ (0, 1) and the training set and outputs a hypothesis h that is a good approximation of
f with probability 1 − δ. We say that a concept class C is PAC-learnable if, for every D, f, h, δ, when
running a learning algorithm A on N ≥ NC examples generated by D, we have that, with probability at
least 1− δ, Prx∼D[h(x) 6= f(x)] ≤ ε. PAC theory introduces two parameters to classify the efficiency of
a learner. The first one, NC , is information-theoretic and determines the minimum number of examples
required to PAC-learnable the class C. We refer to NC as the sample complexity of the concept class C.
The second parameter, the time complexity, is computational and corresponds to the runtime of the best
learner for the class C. We say that a concept class is efficiently PAC-learnable if the running time of A
is polynomial in n, 1

ε and 1
δ .

Whether the class of Boolean functions that can be expressed as polynomial size formulae in DNF is
efficiently PAC-learnable from random examples on points sampled from an unknown distri-
bution, or not, is one of the central unresolved questions. The best classical algorithm for this problem

has running time 2Õ(n1/3) [6] (The notations Õ(g(n)) and Ω̃(g(n)) hide logarithmic factors).

• In uniform (or product) distribution model, a simple quasi-polynomial nO(logn) algorithm for
learning DNF expressions was found by Verbeurgt [9].

• In Membership Query model, Jackson [3] gave a polynomial time learning algorithm for DNFs
over product distributions.

• Bshouty and Feldma [2] gave a polynomial time learning algorithm polynomial-sized DNF under
a model of intermediate power between uniform-distribution learning and uniform-distribution
learning with membership queries. (non-passive)

• Bshouty et al. [1] obtained the first passive learning algorithm for DNFs under the Random Walk
model and the Noise Sensitivity learning model.

• Kalai, Samorodnitsky and Teng [5] show that DNF expressions are efficiently PAC-learnable over
smoothed product distributions.
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2.2 The Random Walk learning model

In (uniform) Random Walk (RW) model, our concept classes C and hypothesis are real-valued functions
f, h : {±1}n → R. The first labeled example is x0 ∼ {±1}n. Following this, the examples are generated
by a standard random walk on the hypercube. That is, if the jth example given to the learner is x, then
the (j + 1)th example will be chosen by selecting a coordinate i ∈ [n] uniformly at random and then
flipping xi.

An equivalent model is easier to work, called the Random Walk model with updating oracle (URK).
In URK model, again the first example is given uniformly at random. Further, the example given at
time j + 1 depends on the previous example x. The updating oracle picks a coordinate i ∈ [n] uniformly
at random, then updates the xi, producing y (updating the bit xi means replacing xi with a uniformly
random bit). Finally, the updating oracle tells the learner (i, y, f(y)). Note that the Random Walk
model is a passive model of learning; the learner sees only randomly generated examples and has no
control over the data used for learning.

Remark 2.1. • Membership queries (MQ) model is at least as powerful as RW model. In other
words, one can show that uniform-distribution learning with MQ is strictly easier than learning in
the RW model, under a standard cryptographic assumption.

• RW model is at least as easy as PAC learning under the uniform distribution. (This is because the
updating random walk on the hypercube mixes rapidly; if a learner discards O(n log n) successive
examples from the updating oracle, then the next example will be uniformly random and independent
of all previous examples).

2.3 A Noise Sensitivity learning model

Given x ∈ {±1}n and 0 ≤ γ ≤ 1, we define Nγ(x) to be the random variable taking values in {±1}n
given by flipping each coordinate of x independently with probability γ. For γ ≤ 1

2 , Nγ is equivalently
defined by updating each coordinate in x independently with probability 2γ.

As special cases, note that N0(x) is the constant random variable x, N 1
2
(x) is a uniform random

vector independent of x, and N1(x) is constantly the vector with Hamming distance n from x.

Definition 2.2. Given a Boolean function f : {±1}n → {±1} and 0 ≤ γ ≤ 1, the noise sensitivity of f
at γ is

NSγ(f) = Pr
x,y=Nγ(x)

[f(x) 6= f(y)].

For γ ∈ [0, 1
2 ], we define the γ-Noise Sensitivity learning (NS) model as follows: Given a target

function f : {±1}n → R, the learner has access to the “Noise Sensitivity oracle”, NS-EXγ(f). Every
time the learner asks for an example, NS-EXγ(f) independently chooses a random input x ∈ {±1}n,
forms y = Nγ(x), and tells the learner (x, f(x), y, f(y)). Note that this oracle is equivalent to an
“updating” Noise Sensitivity oracle, in which each coordinate of x is updated with probability 2γ.

Remark 2.3. The cases γ = 0 and γ = 1
2 are trivially equivalent to the usual PAC model under the

uniform distribution. For values γ ∈ (0, 1
2 ), learning with NS-EXγ(f) is clearly at least as easy as learning

under the uniform distribution.

Let us see the relationship between NS model and RW model:

Proposition 2.4. For any γ ∈ [0, 1
2 ], any γ-Noise Sensitivity learning algorithm can be simulated in the

Random Walk model with only a multiplicative O(n log n) slowdown in running time.

Our main theorem is the following:

Theorem 2.5 (Bshouty, Mossel, O’Donnell and A.Servedio [1]). The class of s-term DNF formulas
on n variables can be learned in the Random Walk model to accuracy ε and confidence 1 − δ in time
poly(n, s, 1

ε , log( 1
δ )).
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2.4 Performing the Bounded Sieve in the Noise Sensitivity model

We prove Theorem 2.5 by showing that polynomial-sized DNF can be learned under any γ-Noise Sensi-
tivity learning model.

Theorem 2.6. Let γ ∈ (0, 1
2 ), and let co = − log(γ( 1

2 − γ)) be a constant when γ is a constant. Then
the class of polynomial-sized DNF formulas on n variables can be learned in γ-Noise Sensitivity model
in time poly(nc0 , ε−c0 , log( 1

δ )).

To prove Theorem 2.6, we give an algorithm that, given access to the oracle NS-EXγ(f), finds all

the “large” Fourier coefficient f̂(S) which satisfy |S| ≤ O(log n).

Theorem 2.7. Let f : {±1}n → {±1} be a target function, and let γ ∈ (0, 1
2 ). Fix parameters ` ∈ [n]

and θ > 0. Then there is an algorithm with running time poly(n, [γ( 1
2 − γ)]−`, θ−1, ‖f‖∞, log( 1

δ )) which,
given access to the oracle NS-EXγ(f), with probability 1− δ return a list of subsets of [n] such that

• for each S ⊆ [n], if |S| ≤ b and f̂(S)2 ≥ θ, then S is in the list; and,

• for each set S in the list, |S| ≤ b and f̂(S)2 ≥ θ/2.

Bshouty and Feldman call the task performed by this algorithm the Bounded Sieve. It is a weak
version of the Kushilevitz–Mansour algorithm which find all large Fourier coefficients. The proof of
Theorem 2.7 need the following noise sensitivity-like quantity:

Definition 2.8. Given f : {±1}n → R, γ ∈ (0, 1
2 ), and I ⊆ [n], define

T (I)
γ (f) =

∑
S⊇I

(1− 2γ)|S|f̂(S)2.

When f and γ are clear from context, we write simply T (I).

Note that T (∅)
γ (f) = 1− 2NSγ(f). We can use the NS oracle to estimate the quantities T (I)

γ (f):

Lemma 2.9. For fixed constant γ ∈ (0, 1
2 ) and target function f : {±1}n → R, an algorithm with access

to NS-EXγ(f) can, with probability 1−δ, estimate T (I) to within ±η in running time poly(n, 1
γ|I|

, ‖f‖∞, 1
η , log( 1

δ )).

Proof. Given γ and I, consider the joint probability distribution D(I)
γ defined over pairs (x, y) ∈ ({±1}n)2

as follows: First x is chosen uniformly at random; then y is formed by updating each coordinate of x in
I with probability 1 and updating each coordinate of x not in I with probability 2γ.
Claim1. Access to these pairs and their value under f can be simulated by access to NS-EXγ(f), with
slowdown poly(γ−|I|).

Define
T ′(I) = E

(x,y)∈D(I)
γ

[f(x)f(y)].

Since we can simulate access to pairs from D(I)
γ and their values under f , we can estimate T ′(I) simply

by taking many samples and averaging. By standard arguments we can compute a ±η approximation
with probability 1− δ in running time poly(n, ‖f‖∞, 1

η , log( 1
δ )).

Claim2. T ′(I) =
∑

S∩I=∅
(1− 2γ)|S|f̂(S)2.

Let us now define T ′′(I) = T ′(∅) − T ′(I), again a quantity we can estimate in running time
poly(n, 1

γ|I|
, ‖f‖∞, 1

η , log( 1
δ )). We have

T ′′(I) =
∑
S∩I 6=∅

(1− 2γ)|S|f̂(S)2.

Thus if we compute T ′′(J) for all J ⊆ I, it is straightforward to calculate T (I) =
∑
S⊇I

(1 − 2γ)|S|f̂(S)2

using inclusion-exclusion. Since there are only 2|I| ≤ γ−|I| such subsets J , the claimed running time
follws.
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Next, we note that the sum of the T (I)
γ values across all |I| = j is not too large:

Lemma 2.10. For any f : {±1}n → R and γ ∈ (0, 1
2 ), we have∑

|I|=j

T (I)
γ ≤ ‖f‖2∞(2γ)−j .

Using these Lemmas we can now complete the proof of Theorem 2.7.

Proof of Theorem 2.7. Construction. Consider the directed graph D = (V,E) where V (D) = 2[n] and
E(D) = {I ∼ J iff I ⊂ J and |J \ I| = 1}. The vertices I are divided into n layers according to the value
of |I|.

Our Bounded Sieve algorithm for f performs a breadth-first search on this graph, starting at the
vertex I = ∅. For each active vertex in the search, the algorithm estimates T (I) and f̂(I)2.

• If the estimate of f̂(I)2 is at least θ/2 then the algorithm adds I to the list of f ’s large Fourier
coefficient.

• The breadth-first search proceeds to the neighbors of I only if |I| < ` and the estimate of T (I) is
at least (1− 2γ)`θ/2.

Claim 1. The algorithm finds with high probability
(i) all Fourier coefficients f̂(S) with f̂(S)2 ≥ θ and |S| ≤ `;
(ii) The algorithm end its search within running time poly(n, [γ( 1

2 − γ)]−`, θ−1, ‖f‖∞, log( 1
δ )).

To see the first claim, simply note that if |S| ≤ ` and f̂(S)2 ≥ θ, then this Fourier coefficient
contributes at least (1 − 2γ)`θ to the value of T (I) for all I ⊆ S. Thus by the monotonicity of T ,
the search will proceed all the way to S. So long as all estimations are taken to be sufficiently precise
(compared to the quantity (1− 2γ)`θ/2).

The second claim comes from Lemma 2.10 and some counting argument like the pigeonhole principle.

In fact, we can directly estimate T (I)
γ (f) under the Random Walk model.

2.5 Further research

A natural generalization of DNFs to Fnm was given in : for each 1 ≤ i ≤ n, choose two values 0 ≤ ai ≤
bi ≤ m − 1, and consider the rectangle:[a, b] = {x ∈ Fnm : ai ≤ xi ≤ bi,∀i}. An instance of UBOX is a
union of rectangles. So in the Boolean case, a DNF can be seen as a union of subcubes of Fn2 .

• Roch [7] proved that Harmonic Sieve can be performed efficiently in the Cyclic Random Walk
(CRW) model (In (CRW) model, the first example is uniform over Fnm and then follow a random
walk where at each step, instead of picking a uniformly random coordinate to update (flip), ac-
cording to a fixed cycle (i1, . . . , in) running through all of [n]. Thus DNFs, TOPs and UBOXs are
(δ, ε)-learnable in the CRW model. (polynomial-weight threshold-of-parity circuit (TOP))

• Roch [7] proved that UBOXs are (δ, ε)-learnable in the NS model, and RW model.

• Jackson and Wimmer [4] give a quasi-polynomial algorithm for learning TOP in the RW model.

• Jackson and Wimmer [4] proved that DNF formulas can be efficiently learned in the p-biased
version of RW model and NS model.
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[7] Sébastien Roch, On learning thresholds of parities and unions of rectangles in random walk models.
Random Structures Algorithms 31.4 (2007), pp. 406-417.

[8] Leslie G Valiant, A theory of the learnable. Communications of the ACM 27.11 (1984), pp. 1134-1142.

[9] Karsten Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time. Pro-
ceedings of the third annual workshop on Computational learning theory. 1990, pp. 314-326.

Fan Chang, shandong university
email: cf25264@163.com

11



Chapter 3

Invariance via Polynomial
Decompositions

after D. Kane [1]
A summary written by Jacob Denson

Let X ∈ RN be a random vector with independent coordinates. The invariance principle says that
if f : RN → R and ψ : R→ R are ‘regular’, then the quantities E[ψ(f(X))] depend only on very coarse
properties of the distribution of X up to a small error. A basic instance is the central limit theorem,
which says that a sum of independent random variables is approximately normally distributed, and thus
independent of all properties of those variables but their mean and variance, stated below.

Theorem 3.1 (Lindeberg). Let X and A be random vectors in RN , each having independent coordinates,
and sharing the same means and variances. Let

γ =
∑
i

E|Xi|3 + E|Ai|3.

Let f(z) = z1 + · · ·+ zN . Then for any ψ : R→ R,

|E[ψ(f(X))]− E[ψ(f(A))]| ≤ ‖D3ψ‖L∞(R) ·
γ3

6
.

One can still exploit this theorem to get transference principles which apply to less regular f , for
instance, for quantities with a simple jump discontinuity like if ψ(t) = I(t ≤ s), for which E[ψ(f(X))] =
P(f(X) ≤ s) gives the CDF of the random variable f(X), or ψ(t) = sgn(t), in which case ψ(f(X)) is
called a threshold function. To get these theorems, we apply an additional anticoncentration inequality.
Let’s see why in Lindeberg’s scenario: pick a non-negative η ∈ C∞ supported on |t| ≤ 1 and with´
η(x) dx = 1, and we define ψε = ψ∗Dilεη, then ‖D3ψ‖L∞ . ε−3, and since ψ(t) ≤ ψε(t−ε) ≤ ψ(t−2ε),

P(f(A) ≤ s) ≤ E[ψε(f(A)− ε)]
≤ E[ψε(f(X)− ε)] +O

(
ε−3γ3

)
≤ P(f(X) ≤ s+ 2ε) +O(ε−3γ3).

Similarily, one shows P(f(A) ≤ s) ≤ P(f(X) ≤ s−2ε)+O(ε−3γ3). Thus to finish this argument and show
that P(f(A) ≤ s) ≈ P(f(X) ≤ s), we must show that P(s− 2ε ≤ f(X) ≤ s+ 2ε) is small, i.e. that f(X)
does not concentrate. If for simplicity we assume f(X) and f(A) both have variance one, then we find that
P(s−2ε ≤ f(X) ≤ s+ 2ε) . ε, and plugging this in gives that |P(f(A) ≤ s)−P(f(X) ≤ s)| . ε+ ε−3γ3.

Picking ε = γ
1/4
3 gives an error O(γ

1/4
3 ). We have thus proved the Berry-Esseen theorem by means of an

anticoncentration inequality for the Gaussian.
The paper [1] we discuss here studies anticoncentration inequalities for random quantities f(X),

where f is no longer a linear sum, but a polynomial p with an independent vector as inputs. For
instance, one might want to study ψ(f(X)) with ψ(x) = sgn(x), quantities called polynomial threshold
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functions. There are results already existing in the literature that give general anticoncentration bounds
for general polynomials of a fixed degree (a result of Carbery-Wright), and this result is tight for general
polynomials. The paper [1] gives tools indicating a way to identify polynomials for which one can
improve this anticoncentration result, via a decomposition of this polynomial. One consequence is more
sophisticated invariance principles for polynomials, with better error terms if a polynomial has the right
decompositions.

In the following summary, we write X, Y and Z for standard normal vectors, and let A and B
be Bernoulli random vectors. We write γ for the normal Gaussian distribution on RN , and β for the
Bernoulli distribution on {−1,+1}N . We thus have norms Lpγ(RN ) and Lpβ(RN ) for functions f : RN → R
given by

‖f‖Lpγ = E[|f(X)|p]1/p and ‖f‖Lpβ = E[|f(A)|p]1/p.

Similarily, we have variances Varγ(f) and Varβ(f). The ith influence Infi(f) is defined as ‖∂f/∂xi‖2L2
γ
.

This agrees with the standard definition of influence that occurs in the analysis of Boolean functions, in
the case that f is a multilinear polynomial. A k-tensor on RN is a quantity of the form∑

ASdx
⊗S

where {AS} are real numbers, and S ranges over [k]S . A k-tensor valued function is

A(x) =
∑

AS(x)dx⊗S .

The magnitude |A| of a k-tensor is equal to (
∑
|AS |2)1/2, and using this we can define the Lpγ and Lpβ

norms of a k-tensor valued function in the way you would expect, i.e. as E[|A(X)|p]1/p and E[|A(B)|p]1/p.

3.1 The Main Result

For general polynomials p of a fixed degree d, Carbery-Wright showed that

P(|p(X)| ≤ ε‖p‖L2
γ
) . dε1/d.

This result is tight, for instance, if p(x) = (x1 + · · ·+xN )d, or p(x) = q1(x)7 +q2(x)7 +q1(x)2q2(x)2 +δq3,
where q1 and q2 are polynomials of degree d and δ is small. But the ε1/d error term leads to invariance
principles which have poor dependence on d, i.e. the following result.

Theorem 3.2 (Mossel, O’Donnell, Oleszkiewicz). If p is a τ -regular multilinear polynomial of degree d,
i.e. Infi(p) ≤ τVarβ(p) for all indices i, then

|P(p(X) ≤ t)− P(p(A) ≤ t| . dτ1/8d.

Given the poor dependence on d here (tight for general inputs), to obtain better invariance principles
it is useful to identify those particular scenarios in which we can improve upon the general result of
Carbery-Wright, or equivalently, to identify all obstacles which make the Carbery-Wright inequality
tight. Notice that the tight examples to Carbery-Wright are of the form h(q1, . . . , qm), where h is a
poorly behaved polynomial, and (q1, q2) has good anticoncentration results. This is indeed true of all
badly behaved counterexamples up to a small error term, which is the main result to be discussed.

We begin with some definitions. We say a vector q = (q1, . . . , qm) of polynomial functions qi : RN → R
is (ε, α) diffuse if for any a ∈ Rm,

P(|q(X)− a| ≤ ε) ≤ εmα.

Intuitively, this means the probability density of the random vector q(X) has average value at most α
on any box of sidelength α. We say a polynomial p : RN → R has a decomposition into h(q1, . . . , qm)

for h : Rm → R and qi : RN → R if p = h(q1, . . . , qm), and if, for any monomial
∏
i∈β x

β
i occuring in

h, and monomials xβ1 , . . . , xβm occuring in q1, . . . , qm respectively, deg(
∏
i∈β x

βi) ≤ deg(p). This is to
prevent some decomposition where high degree terms in the decomposition cancel each other out, which
complicates the analysis of the random variables involved. We can now state the structure result for
polynomials, which gives the main result of [1].
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Theorem 3.3. For any degree d polynomial p, and any ε,N, c > 0, there exists a degree d polynomial
p0, a polynomial vector q = (q1, . . . , qm), and a polynomial h : Rm → R such that p0 has a decomposition
into h(q1, . . . , qm), and:

• p ≈ p0 in the quantitative sense that ‖p− p0‖L2
γ
.c,d,N εN‖p‖L2

γ
.

• (q1, . . . , qm) is (ε, ε−c) diffuse, and m .c,d,N 1.

The currently known dependence on m on c, d, and N is currently very poor, i.e. that m ≤ A(d +
O(1), N/c), where A is the Ackerman function. But it is conjectured that one can find a bound which is
polynomial in (dN/c).

This structure result is closely related to the characterization of polynomials for which concentration
does not occur. A polynomial for which Theorem 2 is tight (in the sense of the dependence of the result
on τ−1/d), for an even dimension d, is the multilinear projection q of the polynomial

p(x0, . . . , xN ) = τx0 +

(
1√
N

N∑
i=1

xi

)d
= p0(x) + p1(x)d.

As N → ∞, limN→∞ ‖p − q‖L2
γ

= 0, so results like hypercontractivity imply that the distributions of

p(X)− q(X) are very close, i.e. for any δ > 0, there exists N0 > 0 such that if N ≥ N0, then

P(|p(X)− q(X)| ≥ δA) . 2−cdA
2/d

.

Now Inf0(q) = τ2, Infi(q) .d 1/N , and Varβ(q) & 1 + τ2. Thus q is τ -regular for τ . 1, and so Theorem
2 applies to p. Note that since A is {−1, 1}N+1 valued, we always have p(A) ≥ −τ . On the other hand,
if X is Gaussian, p1(X1, . . . , XN ) then we can guarantee that |p1(X1, . . . , XN )| . τ1/d with probability
& τ1/d, so |Lq1(X1, . . . , XN )| . τ1/d with probability & τ1/d. On the other hand, we guarantee that
τX0 ≤ −2τ with probability & 1. Thus by independence, both properties hold with probability & τ1/d,
and in this case p(X) ≤ −τ . Thus

|P(p(X) ≤ −τ)− P(p(A) ≤ −τ)| = P(p(X) ≤ −τ) & τ1/d.

What happened here? Even though the first coordinate has small influence, the Carbery-Wright result
was tight for the polynomial p1(X)d, i.e. the polynomial concentrated within a O(τ) neighborhood
of zero with probability Ω(τ−1/d). The Boolean polynomial p0(A)d also concentrates within a O(τ)
neighborhood of zero with probability. In this situation, p(X) ≈ τX0 and p(A) ≈ τA0, and this causes
a problem since X0 and A0 are very different probability distributions.

Theorem 3.4. We say a degree d multilinear polynomial has a (τ, α,m, ε) regular decomposition if there
exists a polynomial p0 of degree d such that

‖p− p0‖L2
β
≤ ε ·Varγ(p0(X))1/2

and p0 = h(q1, . . . , qm), where (q1, . . . , qm) is a vector of multilinear polynomials which is (τ1/5, α) diffuse
and Infj(qi) ≤ τ for all i and j. Under these conditions, for 0 < τ, ε < 1/2, we have

|P(p(A) ≤ t)− P(p(X) ≤ t)| .d,m τ1/5α log(1/τ)dm/2+1 + ε1/d log(1/ε)1/2.

For p0(x) = τx0 and p1(x) = (x1 + · · ·+xN )/
√
N , the theorem above can only apply with α = τ−1/5,

which yields a relatively useful error term of O(log(1/τ)). Thus the assumptions of this theorem avoid
this kind of concentration phenomenon. To recover Theorem 2 from this result, the regularity assumption
there implies that the polynomials (x0, x1, . . . , xn, p) are (τ1/5, O(dτ (1/d−1)/5)) diffuse, and so the theorem
above gives that

|P(p(X) ≤ t)− P(p(A) ≤ t)| .d τ1/5d log(1/t)d/2+1,

which is analogous to Theorem 2 in the sense that we still get a power of τ1/d.
Even if a polynomial does not satisfy the regularity conditions, this might only be true a ‘few

coordinates are bad’, and we can obtain a polynomial by fixing a few values of the polynomial. Results
showing this are true are called ‘regularity lemmas’. Here is a result applying to the assumptions of
Theorem 2.
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Theorem 3.5 (Diakonix, Servedio, Tan, Wan). If f = sgn(p(x)) is a polynomial threshold function of
degree d, then there exists a decision tree of depth τ−1(d log(1/τ))O(d) such that a random root of this
tree is τ -close to a τ -regular polynomial threshold function of degree d.

Thus one can make a function τ regular by ‘fixing’ τ−1(d log(1/τ))O(d) different inputs, for most
input values. [1] gets an analogous result which applies to the assumptions of the theorem above, i.e.
that there is a decision tree of depth τ−1(d log(1/τ))O(d) such that with probability 1 − τ , a random
root either has a (τ, τ−c, O(1), O(τM )) regular decomposition, or has variance less than τM times the
square of it’s L2

γ norm. To the former case, one can apply the theorem above by fixing variables. In the
latter case, the function is roughly constant, i.e. it is incredibly highly concentrated, and thus can also
be easily understood.

3.2 The Idea of the Proof

Due to space constraints, we only discuss the idea of the proof of Theorem 3. We emphasize the main
principles upon which the proof lies, and the reason for such a poor dependence of m on d, c, and N ,
without introducing too much numerology, and also concentrating on the case where p is quadratic, since
it is characteristic of the more complicated case.

The first principle is a heuristic that the author developed in a previous paper called strong anti-
concentration. The result says that for a polynomial p, with high probability we have p(X) & ∇p(X).
Intuitively this is true because if p(X) is significantly less than ∇p(X) at some value of X, a shift in
the value of X will drastically effect p(X), so that not many points will satisfy p(X) . ∇p(X) around
this bad point. A significant part of this paper is extending this intuition to tensors with polynomial
coefficients. For a k tensor A =

∑
ASdx

⊗S with low degree polynomial coefficients, the author shows
that with a good probability,

|A1 ⊗ · · · ⊗Al| & |∇A1 ∧ · · · ∧ ∇Al|

where we view ∇Ai =
∑
DjAi.

The main idea is the following. At any stage r of the algorithm, we have a decomposition p ≈
h(q1, . . . , qmr ), though not necessarily a diffuse decomposition. Thus, unless our argument is complete,
we can find x ∈ Rmr such that the diffuse property does not hold for P(|q − x| ≤ ε). By strong
anticoncentration, with large probability we have

mr∏
i=1

|qi(X)− xi| & |∇q1 ∧ · · · ∧ ∇qmr |.

Thus with significant probability the quantity |∇q1 ∧ · · · ∧ ∇qmr | is small.
Now let’s recall some multi-linear algebra. If a family of vectors v1, . . . , vmr is given, and v1∧· · ·∧vmr

is small, then this means these vectors are close to being linearly dependent. And since the {qi} are
polynomials, this means, say, we can write q1 as a function of the other qj ’s, plus the products ai and
bi introduced above, up to some small error. We then remove q1 from the equation, and introduce the
variables {ai} and {bi} into the family of qi in the algorithm above at the next stage.

How do we ensure that keeping repeating this process will eventually give us the required decompo-
sition? We associate with each stage of the algorithm a tuple of d+ 1 non-negative integers (a0, . . . , ad).
These integers change on each stage of the algorithm, but it is important that the associated polynomi-
als are decreasing at each step, if we give the set of all such polynomials a linear ordering by defining
(a0, . . . , ad) ≥ (b0, . . . , bd) if a0 ≥ b0, or a0 = b0 and a1 ≥ b1, or a0 = b0, a1 = b1, and a2 ≥ b2, and
so on, i.e. the dictionary ordering. Because the set of all tuples (a0, . . . , am) has no infinite decreasing
subsequence, like for the non-negative integers, our algorithm must eventually terminate. But for d > 0,
the number of steps before termination happens is unbounded, i.e. because at each stage of the algorithm
we must decrease some ai term, but we can increase the ai+1, . . . , ad terms by an arbitrary amount. But
we can be slightly careful about quantifying how much this happens, which gives the bounds on the
number of iterations involved, and thus the implicit constants in the algorithm, but they still grow quite
large in the parameters involved.
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Chapter 4

On Rank Vs. Communication
Complexity

after N. Nisan and A. Widgerson [2]
A summary written by Jaume de Dios Pont

Abstract. The paper studies the relationship between the communication complexity of a
boolean function and the rank of the associated matrix. It gives an example exhibiting the
largest gap known, and shows two related theorems.

4.1 Introduction and notation

The central object of study in this work is Yao’s two party communication complexity. In this com-
munication complexity model Alice and Bob want to evaluate f(x, y), for a given, known, function
f : X × Y → {0, 1}. Alice knows the value x ∈ X, and Bob y ∈ Y . The deterministic communication
complexity c(f) of f is the minimum number of bits they must share with each other to compute f(x, y),
for the hardest input (x, y):

c(F ) := min
Communication

algorhtims

max
(x,y)∈X×Y

(Bits shared)

Matrices, functions To each function f : X×Y → {0, 1} we will assoicate a matrix of size |X|×|Y |
with entries in 0, 1, such that, under the identification X ≡ {1, . . . , |X|} (resp. Y ), we have Mi,j = f(i, j).
We will use the matrix and function representation indistinguishably through the summary.

Other than the notation convenience of writing f in a matrix form, it is expected that there is a
relationship between the complexity of f and the linear algebra of Mf . It is, for example, known that

(4.1) log rankM ≤ c(M) ≤ rank f

It is expected (and posed as a question by Lovász and Saks [1]) that

Conjecture 4.1 (Lovász-Saks,Nisan-Widgerson). For every binary matrix M , c(M) = (log rankM)O(1)

.

The O(1) term in Conjecture 4.1 was known to be necessary (or at least in the form 1 + o(1) since
the work of Razborov [3], who gave a lower bound of the form C(M) ≥ log rankM log log log rankM).
We will see a stronger lower bound:

Theorem 4.2. There exist (explicit) (0, 1) matrices Mn of size 2n × 2n such that c(M) = Ω(n), but
log rankM = O(nα), for α = log3 2 = 0.63 . . . .
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The rest of the work focuses on a weaker version of Conjecture 4.1. In order to describe it we need
further notation:

Definition 4.3. A subset of the entries of M will be called monochromatic if all of its entries are either
0 or 1. A submatrix of A ⊆ M will be called monochromatic if all of its entries are either 0 or 1 (note
that a choosing submatrix A ⊆M is equivalent to choosing a product subset X ′× Y ′ ⊆ X × Y ). We will
denote by mono(M) the largest monochromatic subset of x.

Definition 4.4. As a relaxation to mono we define δ(A) the advantadge of A, as the difference |#{(i, j) :
Aij = 1} −#{(i, j) : Aij = 0}|, and the discrepancy of M as the supremmum

disc(M) := sup
A⊆M

δ(A)

|M |

where |M | is the number of entries of M .

We have the following relationship between mono, disc and c(M):

Lemma 4.5. Any matrix M is the union of at most 2c(M) monochromatic matrices. In particular,

disc(M) ≥ mono(M) ≥ 2−c(M)

or, equivalently
− log disc(M) ≤ − log mono(M) ≤ c(M)

The 2c(M) matrices arise by splitting over the the possible strings sent in the communication protocol:
Every time Alice sends a new bit to Bob (similary Bob to Alice), we split the sub-matrices at the previous
iteration depending on the value of the bit sent. The value of the bit sent can only depend on the
information Alice (resp. Bob) has:

• All the communication exchanged (which already is encoded in the particular submatrix from the
previous steps) and

• The value of x ∈ X that Alice can see.

This guarantees that each matrix is split into sub-matrices, and not merely sub-sets
.

We have now the tools necessary to make two weaker conjectures:

Conjecture 4.6. For every M , − log mono(M) ≤ (log rankM)O(1)

Conjecture 4.7. For every M , − log disc(M) ≤ (log rankM)O(1)

Lemma 4.5 shows that we have the implications Conjecture 4.1 =⇒ Conjecture 4.6 =⇒ Conjecture
4.7. The paper has two parts: Proving Conjecture 4.7 and showing that in fact Conjectures 4.1 and
4.6 are equivalent. Conjecture 4.7, moreover, shows that a weaker model of communication, namely
distributional communication complexity, where the inputs are chosen at random, and one wants to
guess the value of f(x, y) with nontrivial advantage over random guessing:

Corollary 4.8. If rank(M) = r then there is a two-bit protocol P for which, for uniformly random
inputs (x, y),

P[f(x, y) = P (x, y)] ≥ 1

2
+ Ω(r−3/2)

4.2 Low-rank high-complexity matrices

The construction is based on functions f : {0, 1}n → {0, 1} that are fully sensitive at zero (in the sense
that f(ek) 6= f(0) for any unit vector ek = (0, . . . , 0, 1, . . . 0)) and low degree (in the sense that on {0, 1}n
it is equal to a low-degree polynomial)

Lemma 4.9. Let n = 3k There exists a boolean function fk : {0, 1}n that:
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• is fully sensitive at zero

• Has degree 2k = nlog3 2

• Its polynomial representation has at most 2O(nlog3 2) monomials.

The function fk is constructed explicitly for k = 1 first, and then recursively defined as fk+1(· · · ) =
f1(fk(·), fk(·), fk(·)).

Fix f = fk for some k. To the function f : {0, 1}n → {0, 1} one associate a matrix Mf trough the
communication game coming from

Mf (x1 . . . xn, y1 . . . yn) = f(x1y1, . . . xnyn)

The rank of Mf is at most 2O(nlog3 2). This is because Mf is the sum of matrices Mi, each correspoding
to a monomial of f , which have rank 1. On the other hand, the communication complexity of f is at
least Ω(n):

Theorem 4.10. [4]Let the UDISJ problem be the following: Two players are each given a subset of
{1 . . . n}. If the sets are disjoint they must return 1, if the sets intersect at one point exactly, they must
return 0. Otherwise they may return either 0 or 1.

The communication cost of the UDISJ problem is Ω(n).

Since f is fully sensitive, a communication protocol for Mf solves the UDISJ problem by encoding
the subsets by their characteristic functions. Therefore Mf must have Ω(n) complexity cost.

4.3 Conjectures 4.1 and 4.6 are equivalent

Conjecture 4.6 states that every matrix M of rank r and m entries has a large monochromatic sub matrix
A with at least δr|M | entries, for δ := (exp(logC r))−1. Using this large submatrix one can partition M
(up to permutation)

M =

(
A B
C D

)
Since A has rank 1, we can bound rankB + rankC ≤ rankM . Assuming (without loss of generality)
that rankB ≤ rankC then rank(A|B) ≤ 2 + 1

2 rankM . We use this to define a recursive algorithm,
by spending one bit to determine whether the input belogs to (A|B) or (C|D), and inducting on the
resulting submatrix. Let L(m, r) be the number of leaves (terminal states) of this algorithm starting
with a matrix with m entries and rank r. The protocol presented gives a recurrence

L(m, r) ≤ L(m,
1

2
r + 2) + L((1− δ)m, r) + 1

from which, by induction (using the cases m = 1 and r = 1) one sees that L(m, r) ≤ exp(logk+1 r). One
can bound the amount of necessary communication by the logarithm of the number of leaves, giving the
theorem.

4.4 Conjecture 4.7 holds

In fact, we will show something slightly stronger, namely

Theorem 4.11. For every matrix M , 1/disc (M) = O(rank M3/2). Therefore

− log disc(M) ≤ 3

2
log(rank M) +O(1)

Trough this section, we change the notation to ±1-valued matrices instead of {0, 1}-valued matrices. This
has the advantadge that now

|M |disc M = max
u,v (0,1)−vectors

utMv
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The proof of the theorem goes trough the following steps:

• By choosing a square sub-matrix of the same rank if necessary, assume that M is square of size
n× n.

• If M has low rank r (number of 6= 0 eigenvalues of M tM), its l2 → l2 operator norm (largest
eigenvalue of M tM) must be large compared to its Hilbert-Schmidt norm (equal to the sum of
eigenvalues of M tM). Since the Hilbert-Schmidt norm is the sum of the entries squared, there
must be unit (in l2) vectors x, y such that xtMy is large (& nr−1/2 ).

• Pruning the entries of x, y that are ≥
√

8r/n (making them zero) does not change the value of
xtMy significantly (at most by a factor of 2, by Cauchy-Schwartz). Rescaling these pruned vectors
one can build u, v with l∞ norm equal to 1 such that utMv is large, at least 1

2 ·
n
r1/2
· n8r .

• The entries of u, v can be assumed to be ±1, as otherwise one can enlarge them to enlarge the
value of utMv.

• Let u = u+ − u− be the decomposition into two vectors of the positive and negative parts, and
similarly for v. Then utMv is the sum of 4 terms of the form ut±Mv±. At least one of those terms

must be of size n2

16r3/2
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Chapter 5

A structure theorem for Boolean
functions with small total influences

after Hamed Hatami [1]
A summary written by Jacek Jakimiuk

Abstract. We show that on every product probability space, Boolean functions with small
total influences are essentially the ones that are almost measurable with respect to certain
natural sub σ-algebras.

5.1 Introduction

We call a function Boolean if its range is {0, 1}, or equivalently, if it is an indicator of some set. The
influence of a variable on a Boolean function measures the sensitivity of the function with respect to the
changes in that variable. There are many areas where influences of Boolean functions are studied, such
as statistical physics, probability theory, computer science, combinatorics and economics. In particular,
Boolean functions with small total influence arise frequently in many situations. Our purpose is to
essentially characterize these functions. We define specific class of Boolean functions with small total
influences, those are measurable with respect to certain σ-algebras, and show that every Boolean function
with small total influence can be effectively approximated by the functions of this class.

Let us give some notations and definitions. Denote [n] = {1, . . . , n}. In this summary X = (Ω,F , µ)
is always a probability space and Xn means product space with the product measure µn. For every
x = (x1, . . . , xn) ∈ Xn and S ⊂ [n] denote as xS = (xi : i ∈ S) ∈ XS the restriction of x to the
coordinates of S. If S, T ⊂ X, S ∩ T = ∅, then (x, y) denotes the unique element z ∈ XS∪T with zS = x
and zT = y. We treat functions g : XS → R also as functions defined on Xn with g(x) = g(xS).

For measurable function f : Xn → {0, 1} we define influence of the j-th variable on f as

If (j) = P(f(x1, . . . , xj−1, xj , xj+1, . . . , xn) 6= f(x1, . . . , xj−1, yj , xj+1, . . . , xn)),

where xi, yi are iid random variables taking values in X according to its probability measure. We also
define total influence as

If =

n∑
j=1

If (j).

By measurability of f it is clear that If (j) is well defined.
We are particularly interested in the case Ω = {0, 1} with Bernoulli distribution µp defined by

µp({1}) = p and µp({0}) = 1 − p for 0 < p < 1. The p-biased distribution means product measure µnp .
We call function f : {0, 1}n → {0, 1} increasing if ∀ixi ≤ yi implies f(x) ≤ f(y). For A ⊂ [n] we say
that f : Xn → R depends only on coordinates in A if xA = yA implies f(x) = f(y).

Remark 5.1. In many situations we can assume that Ω is a finite set. Indeed, for any measurable
function f : Xn → {0, 1} and arbitrary small ε > 0 we can find a finite σ-algebra G ⊂ F and g : Ωn →
{0, 1}, measurable with respect to the product σ-algebra generated by G, such that P(f(x) 6= g(x)) < ε.
Then obviously |If − Ig| < 2nε.

21



5.2 Main results

Consider the case of the p-biased distribution. The first, intuitive attempt to characterize functions with
small total influences is to relate them with functions depending only on a few number of coordinates
(see [2], [3], [4] and [5]). Following example shows, that this attempt is not sufficient if p is small.

Example 5.2. Let p = n−1 and f = 1Ωn\{0}. Then If (1) = If (2) = . . . = If (n) ≤ 2p, so If ≤ 2. See
that f has no variable with large influence and f does not depend only on a small set of coordinates.
Indeed, take constant size set A ⊂ [n], we have E(f(x)|xA = 0) = 1− (1− p)n−|A| = 1− e−1 ± o(1) and
P(xA = 0) ≥ 1− p|A| = 1− o(1), hence ‖f − g‖1 ≥ e−1 − o(1) for every g depending only on coordinates
in A (x is treaten as random variable and all asymptotics are meant for n→∞).

Let us return to general case. We begin our attempt with defining a certain class of Boolean functions.
Let J = {JS}S⊂[n] be any set of measurable functions JS : XS → {0, 1}. Define the map JJ :
Xn → P([n]) as JJ (x) =

⋃
S⊂[n],JS(x)=1 S. Let FJ be the sub σ-algebra induced by the map x 7→

(JJ (x), xJJ (x)).

Definition 5.3. Let k > 0. A k-pseudo-junta is a function f : Xn → {0, 1} that is measurable with
respect to FJ for some J satisfying ˆ

|JJ (x)|dx ≤ k.

Example 5.4. Let A ⊂ [n], |A| ≤ k. Then every measurable Boolean function that depends only on
coordinates in A is k-pseudo-junta. Indeed, take JA ≡ 1 and JS ≡ 0 for S 6= A. Then JJ ≡ A, hence f
is measurable with respect to FJ . Obviously

´
|JJ (x)|dx = |A| ≤ k.

Above example shows that our attempt is a generalization of previous. Now we give a simple proof
that pseudo-juntas has small total influences.

Proposition 5.5. Let f be a k-pseudo-junta. Then If ≤ 2k.

Proof. Using notation from the definition of total influence, let x = (x1, . . . , xn) and x(j) = (x1, . . . , xj−1, yj , xj+1, . . . , xn).
It follows from the definition of k-pseudo-junta that if f(x) 6= f(x(j)), then j ∈ JJ (x)∪ JJ (x(j)). Hence

If =

n∑
j=1

P
(
f(x) 6= f(x(j)

)
≤

n∑
j=1

P
(
j ∈ JJ (x) ∪ JJ (x(j))

)
≤ 2

n∑
j=1

P (j ∈ JJ (x)) ≤

≤ 2

ˆ
|JJ (x)|dx ≤ 2k.

Our main result is essentialy the inverse theorem of above proposition.

Theorem 5.6. Consider a measurable function f : Xn → {0, 1}. For every ε > 0 there exists a

e1015ε−3dIfe3-pseudo-junta h : Xn → {0, 1} such that ‖f − h‖ ≤ ε.

Example 5.7. Consider f as in example 2.1. Define JS = 1xS=(1,...,1). Then JJ (x) = {i : xi = 1},
hence

´
|JJ (x)|dx = pn = 1. Furthermore, FJ is an original discrete σ-algebra, so f is measurable with

respect to it. Hence in Theorem 5.6 we can take h = f .

This result can be improved in the case of the p-biased distribution.

Theorem 5.8. Suppose that in theorem 5.6 we have X = ({0, 1}, µp). Then in the statement of Theorem

5.6 function h is a e1010ε−2dIfe2-pseudo-junta.

In fact proof in the p-biased case is much simpler than general case, but is based on the similar idea.
Therefore we firstly prove Theorem 5.8 in section 5.4, and then, in section 5.5, we prove Theorem 5.6.
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5.3 Generalized Walsh expansion

Before proving main theorems, we briefly review some basic facts about generalized Walsh expansion.
Let L2(Xn) = {f : Xn → C :

´
|f(x)|2dx <∞}.

Definition 5.9. The generalized Walsh expansion of a function f ∈ L2(Xn) is the unique expansion
f =

∑
S⊂[n] FS that satisfies the following two properties:

1. For every S ⊂ [n] the function f depends only on coordinates in S;

2.
´
FSdxi ≡ 0 for every i ∈ S ⊂ [n].

It follows from the above definition that for every T ⊂ [n] we have
´
fdx[n]\T =

∑
S⊂T FS , hence

FS(y) =
∑
T⊂S(−1)|S⊂T |

´
f(yT , x[n]\T )dx[n]\T . It shows uniqueness of generalized Walsh expansion.

It is easy to see, that functions FS are pairwise orthogonal, hence we have some nice properties such
as Parseval’s identity. We can use them to prove some connections between generalized Walsh expansion
and influence. The following identity holds:

If (i) = 2
∑
S3i
‖FS‖22.

It easily gives us

If = 2
∑
S⊂[n]

|S|‖FS‖22.

5.4 Proof of Theorem 5.8

In this summary we give only sketch of the proof. Let f =
∑
S⊂[n] FS be a generalized Walsh expansion

of f . To make the proof more clear we divide it into steps.

1. Firstly we want to simplify the expansion by removing some insignificant terms from it in such
way that remaining terms have nice properties.

2. Let S be a family of remaining terms from previous point and let g =
∑
S∈S FS . Now we want to

find set of functions J (such as in definition of pseudo-junta) such that ‖g − E(g|FJ )‖2 is small.
This is the most difficult and technical step. Here we use the fact, that in the p-biased case we

have FS(x) = f̂(S)
∏n
i=1 r(xi), where r(0) = −

√
p

1−p , r(1) =
√

1−p
p and f̂(S) are real constants

bounded dependently only on p and S.

3. Now we can easily finish the proof. We have

‖f − E(f |FJ )‖22 ≤ ‖f − E(g|FJ )‖22 ≤ 2‖f − g‖22 + 2‖g − E(g|FJ )‖22,

where the right hand of inequality is small by previous steps. It is easy to check that function h
defined by

h(x) = 1 if E(f |FJ )(x) >
1

2
, h(x) = 0 if E(f |FJ )(x) ≤ 1

2

is desired pseudo-junta.

5.5 Proof of Theorem 5.6

Again, we give only a sketch. Steps 1 and 3 from the previous proof proceed exactly in the same way,
but since in the general case functions FS are not as well behaved as in the p-biased case, we need to
modify step 2. So assume that we have functions FS and family S as in the proof of Theorem 5.8. We
define functions GS in such way that ‖GS − FS‖2 is small and GS satisfy some bounds similar to those
satisfied by FS in the p-biased case. Now we can proceed as in the previous case by defining suitable
σ-algebra and proving necessary error bounds. Again, this is the most technically difficult part of the
proof.
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Chapter 6

Learning Low-Degree Functions
From a Logarithmic Number of
Random Queries

after A. Eskenazis and P. Ivanisvili [4]
A summary written by Dylan Langharst

Abstract. We show that a bounded function f on the Hamming Cube with magnitude at

most 1 and degree at most d can be determined with g(n, ε, δ)Cd
3/2√log d random queries,

where C > 1 is a finite, universal constant, n is the dimension, ε is the L2-accuracy, 1 − δ
is the confidence and g is an explicit function.

6.1 Introduction

We first recall the classical fact from analysis: consider an integrable function f : [−π, π] → R. The
Fourier expansion of f is then given by

f(x) =
∑
j∈Z

f̂(j)ejix, f̂(j) =
1

2π

ˆ π

−π
f(x)e−jixdx.

The concept of Fourier analysis has been extended to real valued functions on the n-dimensional Hamming
Cube. That is, let f : {−1, 1}n → R. Then, the Fourier-Walsh expansion of f is given by, with
wS(x) =

∏
i∈S xi,

(6.1) f(x) =
∑

S⊂{1,...,n}

f̂(S)wS(x), f̂(S) =
1

2n

∑
y∈{−1,1}n

f(y)wS(y).

For simplicity, C will denote the set of real-valued functions on the Hamming cube. For f ∈ C, f
has degree at most d ∈ {1, . . . , n} if f̂(S) = 0 whenever |S| > d. A classical problem in the field is
the learning problem: given a source of examples (x, f(x)), x ∈ {−1, 1}n, f ∈ C, we will construct a
hypothesis function h ∈ C which approximates f up to some error. Here, we will use the random query
model, where we have N independent examples chosen uniformly at random from the Hamming Cube
{−1, 1}n, and wish to construct our (random) function h such that ‖h − f‖2L2

< ε with probability at
least 1− δ, where ε, δ ∈ (0, 1) are accuracy and confidence parameters.

This problem has been studied for decades, with various restrictions on the range of f . Let Cdb denote
the set of bounded functions f : {−1, 1}n → [−1, 1] of degree at most d. Then, the Low-Degree Algorithm
[6] shows that for f ∈ Cdb , there exists an algorithm producing an ε-approximation of f with probability

at least 1− δ using N = 2nd

ε log
(

2nd

δ

)
samples; such a result is said to be Oε,δ,d(nd log n). This estimate

was improved in [5] by deriving new bounds on the `1-size of the Fourier spectrum of bounded functions
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to then show that N = Oε,δ,d(nd−1 log n) examples suffice to learn Cdb . Our first main result shows that
N = Oε,δ,d(log n) suffices.

Theorem 6.1. Fix ε, δ ∈ (0, 1), n ∈ N, d ∈ {1, . . . , n} and a function f ∈ Cdb . If N ∈ N satisfies

N ≥ min

{
exp(Cd3/2

√
log d)

εd+1
,

4dnd

ε

}
log
(n
δ

)
for a large numerical constant C ∈ (0,∞), then N uniformly random independent queries of examples
(x, f(x)), x ∈ {−1, 1}n, suffices for the construction of a random function h ∈ C satisfying the condition
‖h− f‖2L2

< ε with probability at least 1− δ.

We next have the following result: for every K ∈ {R,C} and d ∈ N, there exists BK
d ∈ (0,∞) such

that for every n ∈ N and every coefficients cα ∈ K, α ∈ (N ∪ {0})n such that |α| ≤ d, one has

(6.2)

∑
|α|≤d

|cα|
2d
d+1


d+1
2d

≤ BK
d max


∣∣∣∣∣∣
∑
|α|≤d

cαx
α

∣∣∣∣∣∣ : x ∈ Kn, ‖x‖`n∞(K) ≤ 1

 ,

and 2d
d+1 is the smallest exponent for which the optimal constant in (6.2) is independent of the number of

variables n of the polynomial. This result called be derived from an extension of Littlewood’s 4
3 -inequality

[7] shown by Bohnenblust and Hille [2]. For the constants, BK
d , it is known that lim supd→∞

(
BR
d

)1/d
=

1 +
√

2 and BC
d ≤ C

√
d ln d for a finite constant C > 1. We will use this result in the following way:

restricting (6.2) to real multilinear polynomials, convexity shows that the maximum is obtained at some
point in x ∈ {−1, 1}n. Combining this with equation (6.1), we deduce there exists an optimal constant,

denoted B
{±1}
d and first explored in [1, p. 175], such that

(6.3)

 ∑
S⊆{1,...,n}

|f̂(S)|
2d
d+1


d+1
2d

≤ B{±1}
d ‖f‖L∞ .

It is known [3] that there exists a universal constant κ ∈ (0,∞) such that B
{±1}
d ≤ exp(κ

√
d log d). In

this work, we show the following.

Theorem 6.2. Fix ε, δ ∈ (0, 1), n ∈ N, d ∈ {1, . . . , n} and a function f :∈ Cdb . If N ∈ N satisfies

N ≥ e8d2

εd+1

(
B
{±1}
d

)2d

log
(n
δ

)
,

then given N uniformly random independent queries of pairs (x, f(x)), where x ∈ {−1, 1}n, one can
construct a random function h ∈ C satisfying ‖h− f‖2L2

< ε with probability at least 1− δ.

6.2 Proofs

Proof of Theorem 2. Fix a parameter b ∈ (0,∞) and denote by

(6.4) Nb
def
=

[
2

b2
log

(
2

δ

d∑
k=0

(
n

k

))]
.

Let X1, . . . , XNb be independent random vectors, each uniformly distributed on {−1, 1}n. For a subset
S ⊆ {1, . . . , n} with |S| ≤ d consider the empirical Walsh coefficient of f , given by

(6.5) αS =
1

Nb

Nb∑
j=1

f (Xj)wS (Xj) .

26



Since αS is a sum of bounded i.i.d. random variables and E [αS ] = f̂(S), the Chernoff bound gives

(6.6) ∀S ⊆ {1, . . . , n}, P
{∣∣∣αS − f̂(S)

∣∣∣ > b
}
≤ 2 exp

(
−Nbb2/2

)
.

Let Gb be a symbol denoting the event

|αS − f̂(S) |≤ b, for every S ⊆ {1, . . . , n} with |S| ≤ d.

Then, by using the union bound and taking into account that f has degree at most d, we get

(6.7) P {Gb} ≥ 1− 2

d∑
k=0

(
n

k

)
exp

(
−Nbb2/2

)
≥ 1− δ,

where the last inequality follows from the definition of Nb, (6.4). Next, fix an additional parameter
a ∈ (b,∞) and consider the random collection of sets given by

(6.8) Sa
def
= {S ⊆ {1, . . . , n} : |αS | ≥ a}

Observe that if the event Gb holds, then

(6.9) |f̂(S)|

≤
∣∣∣αS − f̂(S)

∣∣∣+ |αS | < a+ b ∀S /∈ Sa
≥ |αS | −

∣∣∣αS − f̂(S)
∣∣∣ ≥ a− b ∀S ∈ Sa.

Finally, consider the random function ha,b ∈ C given by

∀x ∈ {−1, 1}n, ha,b(x)
def
=

∑
S∈Sa

αSwS(x).

We deduce that

|Sa| ≤ (a− b)−
2d
d+1

∑
S∈Sa

|f̂(S)|
2d
d+1 ≤ (a− b)−

2d
d+1

∑
S⊆{1,...,n}

|f̂(S)|
2d
d+1

≤ (a− b)−
2d
d+1

(
B
{±1}
d

) 2d
d+1

,

(6.10)

where the first inequality follows from the second case of (6.9) and the third inequality follows from
(6.3). Therefore, on the event Gb, we obtain

‖ha,b − f‖2L2
=

∑
S⊆{1,...,n}

∣∣∣ĥa,b(S)− f̂(S)
∣∣∣2 =

∑
S∈Sa

∣∣∣αS − f̂(S)
∣∣∣2 +

∑
S/∈Sa

|f̂(S)|2

< |Sa| b2 + (a+ b)
2
d+1

∑
S/∈Sa

|f̂(S)|
2d
d+1

≤
(
B
{±1}
d

) 2d
d+1
(

(a− b)−
2d
d+1 b2 + (a+ b)

2
d+1

)
,

(6.11)

where the first inequality follows from the first case of (6.9) and the second inequality from (6.2) and
(6.10). Choosing a = b(1 +

√
d+ 1), we deduce that

(6.12)
∥∥∥hb(1+

√
d+1),b − f

∥∥∥2

L2

<
(
B
{±1}
d

) 2d
d+1

b
2
d+1

(
(d+ 1)−

d
d+1 + (2 +

√
d+ 1)

2
d+1

)
.

By choosing b2 ≤ e−5d−1εd+1
(
B
{±1}
d

)−2d

, (6.12) yields that
∥∥∥hb(1+

√
d+1),b − f

∥∥∥2

L2

< ε due to the

inequality

(d+ 1)−
d
d+1 + (2 +

√
d+ 1)

2
d+1 ≤

(
e4(d+ 1)

) 1
d+1 for all d ≥ 1,
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which can be readily verified from convexity or rudimentary analysis. Inserting this restriction on b into
(6.4), we obtain that, given

(6.13) N =

e6d
(
B
{±1}
d

)2d

εd+1
log

(
2

δ

d∑
k=0

(
n

k

))


random queries, the random function hb(1+
√
d+1),b satisfies

∥∥∥hb(1+
√
d+1),b − f

∥∥∥2

L2

< ε with probability at

least 1− δ. Elementary estimates such as

d∑
k=0

(
n

k

)
≤

d∑
k=0

nk

k!
=

d∑
k=0

dk

k!

(n
d

)k
≤
(en
d

)d
then yield the conclusion of the theorem.

Proof of Theorem 1. For ε < exp(C
√
d log d)
n , the result follows from the Low-Degree algorithm of [6]. For

ε ≥ exp(C
√
d log d)
n , the result follows from Theorem 2 combined with the bound B

{±1}
d ≤ exp(κ

√
d log d)

from [3].

6.3 Concluding Remarks

Recall that the Chebyshev polynomials of the first kind are a sequence of orthogonal polynomials {Td}
such that Td(cos θ) = cos(dθ). Given a function f ∈ C, its Rademacher projection on the level ` ∈
{1, . . . , n} is defined as

(6.14) Rad` f(x) =
∑

S⊆{1,...,n}
|S|=`

f̂(S)wS(x)

The following was shown, and, furthermore, is asymptotically sharp [5]: let f ∈ C be a function of degree
d. Then, for every ` ∈ {1, . . . , d},

(6.15) ‖Rad` f‖L∞ ≤


∣∣∣T (`)
d (0)

∣∣∣
`! · ‖f‖L∞ , if (d− `) is even

|T `!d−1(0)|
`! · ‖f‖L∞ , if (d− `) is odd

.

In particular, (6.15) implies that if f has degree at most d then

(6.16) ∀` ∈ {1, . . . , d}, ‖Rad` f‖L∞ ≤
d`

`!
· ‖f‖L∞ .

In the same work [5], the following was shown: if f ∈ Cdb , then for every ` ∈ {1, . . . , d} one has

(6.17)
∑

S⊆{1,...,n}

∣∣∣R̂ad`f(S)
∣∣∣ =

∑
S⊆{1,...,n}
|S|=`

|f̂(S)| ≤ n
`−1
2 d`e(

`+1
2 ).

We can use a Bohnenblust-Hille type inequality from [3] to improve (6.17).

Corollary 6.3. Let n ∈ N and d ∈ {1, . . . , n}. Then, every f ∈ Cdb satisfies

(6.18)
∑

S⊆{1,...,n}
|S|=`

|f̂(S)| ≤
(
n

`

) `−1
2`

eκ
√
` log ` d

`

`!
≤ n

`−1
2 d``−c`

for some universal constant c ∈ (0, 1).
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Proof. We see that

∑
S⊆{1,...,n}
|S|=`

|f̂(S)| ≤
(
n

`

) `−1
2`

 ∑
S⊆{1,...,n}

∣∣∣R̂ad`f(S)
∣∣∣ 2`
`+1


`+1
2`

≤
(
n

`

) `−1
2`

exp(κ
√
` log `) ‖Rad` f‖L∞

≤
(
n

`

) `−1
2`

exp(κ
√
` log `)

d`

`!
,

where the first inequality follows from Hölder’s inequality, the second from [3], and the third from (6.16).
Thus, we have established the first inequality of (6.18). The second inequality follows from (6.15) and

the elementary bound
(
n
`

)
≤
(
ne
`

)`
.

Theorem 1 shows that bounded functions f : {−1, 1}n → [−1, 1] of degree at most d can be learned
with accuracy at most ε and confidence at least 1 − δ from N = Oε,d(log(n/δ)) random queries. We
conclude by stating without proof that this estimate is sharp for small enough values of δ.

Proposition 6.4. Suppose that bounded linear functions f : {−1, 1}n → [−1, 1] can be learned with
accuracy at most 1

2 and confidence at least 1− 1
2n from N random queries. Then N > log2 n.
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Chapter 7

The Carbery-Wright inequalities for
polynomial norms and distributions

after T. Carbery and J. Wright [1]
A summary written by Caleb Marshall

Abstract. We introduce the Carbery-Wright inequalities for polynomials p : Rn → X
taking values in a Banach space. This involves the discussion of localization results for
convex bodies, an examination of classical polynomial norm inequalities, and representation
theorems for plurisubharmonic functions and their boundary values.

7.1 Introduction

Let (X, || · ||) be a (real or complex) Banach space and let Pd,n be the space of polynomials p : Rn → X
taking values in X and of degree at most d. These polynomials induce functionals p#(x) := ||p(x)||1/d on

X, and we let P#
d,n denote the space of all such functionals. For a convex body K ⊂ Rn of unit measure

and each 0 < q <∞, we define a standard Lq “norm” on P#
d,n as ||p#||q :=

( ´
K
||p(x)||

q
d dx

)1/q
. Also let

||p#||0 := exp
´
K

log p#(x)dx and take ||p#||∞ to be the usual supremum norm of p# over K.
As Pd,n is finite-dimensional, the norms || · ||q are equivalent. When r ≤ q, Hölder’s inequality gives

the inequality ||p#||r ≤ ||p#||q with optimal constant 1. This summary discusses the optimal constant
for the reverse inequality. The following is due to Carbery and Jim Wright in [1].

Theorem 7.1 (Carbery-Wright Inequality). Let p : Rn → X be a polynomial of degree at most d, let K
be a convex body in Rn of volume 1 and let 0 ≤ r ≤ q ≤ ∞. Then there exists an absolute constant C,
independent of p, d,K, n, q, r and X such that

(7.1) ||p#||q ≤ C
[
nB(n, q + 1)

] 1
q[

nB(n, r + 1)
] 1
r

||p#||r,

where B(z1, z2) :=
´ 1

0
tz1−1(1− t)z2−1dt denotes the classical beta function.

Choosing r ≤ 1 leads to a strong distributional inequality, which has many applications in convex
geometry, probability and analysis.

Theorem 7.2 (Distributional Carbery-Wright). Let p : Rn → X be a polynomial of degree at most d,
let K be a convex body in Rn of volume 1 and let 0 ≤ q ≤ ∞. Then there exists an absolute constant C,
independent of p, d,K, n, q, r and X so that for any α > 0,

(7.2) ||p#||q α−1
∣∣{x ∈ K : p#(x) ≤ α}

∣∣ ≤ Cn[nB(n, q + 1)
] 1
q
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Up to numerical estimation of the constant C, the Carbery-Wright inequalities are optimal over ar-
bitrary convex bodies. Moreover, Stirling’s approximation leads to a closed-form expression of Theorems
1 and 2 upper bounds in terms of n, q and r.

The exceedingly general results of [1] are proven in three steps.

1. An extremal result over convex bodies attributed to Kannan, Lovász, and Simonovits, which
reduces Lq estimates over K to weighted inequalities over line segments in Rn.

2. Application of classical Lq norm estimates for polynomials to prove certain weighted Lq → Lr

norm inequalities for polynomials p : R→ C.

3. Representation theorems and inequalities for the boundary values ũ
∣∣
Rn of plurisubharmonic func-

tions ũ : Cn → R. In particular, the scalar valued arguments for polynomials p : R → C are
adaptable to representations of such functions.

The following sections give an overview of these three reductions, which we frame as the central
innovations of [1].

7.2 An extremal result for convex bodies

The first reduction is an examination of localization result for convex bodies, attributed to R. Kannan,
L. Lovás and M. Simonovits in [5]. We introduce the original formulation below.

A needle N := (I, `) is a line segment [a, b] ⊂ Rn together with a nonnegative linear function
` : [a, b]→ R+, not identically zero. If f is an integrable function on I, then we define

ˆ
N

f :=

ˆ |b−a|
0

f(a+ tu)[`(a+ tu)]n−1dt,

where u := b−a
|b−a| . Kannan,Lovász, and Simonovits obtain the following duality of needles and convex

bodies in Rn.

Proposition 7.3 (Kannan-Lovász-Simonovits Localization Lemma). Let f1, f2, f3, f4 be four nonnega-
tive continous functions on Rn and let α, β > 0. Then the following are equivalent:

1. For every convex body K in Rn,(ˆ
K

f1

)α(ˆ
K

f2

)β
≤
(ˆ

K

f3

)α(ˆ
K

f4

)β
2. For every needle N in Rn,(ˆ

N

f1

)α(ˆ
N

f2

)β
≤
(ˆ

N

f3

)α(ˆ
N

f4

)β
The idea of converting estimates for convex bodies into local estimates for line segments is utilized

in many problems in convex geometry, including more recent work on the isoperimetric problem, the
problem which originally motivated [5]. As an aside, these “needle decompositions” resemble wave packet
decompositions often utilized in Euclidean harmonic analysis to quasi-localize certain norm estimates (see
[3] and [4] for examples).

7.3 The scalar valued inequalities

Carbery and Wright utilize Proposition 7.3 to reduce Theorems 1 and 2 to weighted Lq → Lr inequalities
for polynomials p : R → C. We present the reductions of Theorem 1 and Theorem 2 below, alongside
the main theorems utilized in their proof.

Theorem 1 is equivalent to the following proposition.
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Proposition 7.4. Let p : R→ C be a polynomial of degree at most d, n ∈ N and 0 ≤ q ≤ ∞. Then, for
every λ > 1 and α > 0, there is an absolute constant C independent of the above parameters such that,(´ 1

0
|p(t)|

q
d (λ− t)n−1dt´ 1

0
(λ− t)n−1dt

) 1
q

≤ C
[
nB(n, q + 1)

] 1
q[

nB(n, r + 1)
] 1
r

(´ 1

0
|p(t)| rd (λ− t)n−1dt´ 1

0
(λ− t)n−1dt

) 1
r

.

The reduction to scalar-valued inequalities allows one to apply standard Lq-norm inequalities for
univariate polynomials, such as the following elementary inequality.

Lemma 7.5. There is an absolute constant C so that if p : R→ C is a polynomial of degree at most d,
if 0 ≤ r ≤ q ≤ ∞, and if t ≥ u, then(

1

t

ˆ t

0

|p|
q
d

) 1
q

≤ C t

u

(
1

u

ˆ u

0

|p| rd
) 1
r

We call such an inequality “elementary” as it relies solely on first-principles of finite Lq norms of
polynomials, such as the inclusion of of Lq in Lr when r ≤ q and the fact that univariate polynomials of
degree at-most d satisfy a quasi-homogeneity condition of order d.

Applying the Kannan-Lovász-Simonovits localization lemma reduces Theorem 2 to the following
weighted distributional inequality.

Proposition 7.6. Let p : R → C be a polynomial of degree at most d, n ∈ N, λ ≥ 1, and 0 ≤ q ≤ ∞.
Then there exists an absolute constant C independent of the involved parameters so that for any α > 0,(´ 1

0
|p(t)|

q
d (λ− t)n−1dt´ 1

0
(λ− t)n−1dt

) 1
q α−

1
d

´ 1

0
χα(t)(λ− t)n−1dt´ 1

0
(λ− t)n−1dt

≤ Cn
[
nB(n, q + 1)

] 1
q ,

where χα(t) is the indicator function of the set {x ∈ K : |p(x)| ≥ α}.

When q =∞ and n = 1, Proposition 6 simplifies to the following.

Lemma 7.7. There is an absolute constant C so that for all polynomials p : R→ C of degree at most d
and all intervals I ⊂ R,

||p||
1
d

L∞(I) α
− 1
d

∣∣{x ∈ I : |p(x)| ≤ α}
∣∣ ≤ C∣∣I∣∣.

This easily-stated distributional inequality had been known for at least seventy years prior to the
publication of [1]. It is a consequence of the following scalar-valued Cartan inequality.

Proposition 7.8 (Cartan’s polynomial inequality, [2]). Let w1, ..., wd be d points in the complex plane
and let h > 0. Then the set of points z ∈ C such that the inequality

(7.3)

d∏
j=1

∣∣z − wj | ≤ hd
holds can be covered by at most d discs Q1, ..., Qd , whose radii sum to 2eh.

For monic polynomials p : R → C of degree k ≥ 1, inequality (7.3) implies that for any interval
I ⊂ R, ∣∣{x ∈ I : |p(x)| ≤ α}

∣∣ ≤ Cα 1
k ,

as the intersection of I with the family Qj provided by Cartan’s lemma has length at most 2 · (2eα)
1
d .

Proposition 6 for general n and q is proven by combining the Remez-type inequality for the Lq norm,
and using Lemma 7 to estimate the distribution function χα.

32



7.4 The vector valued inequalities

To obtain the general vector valued inequalities of Theorems 1 and 2, Carbery and Wright work over the
following class of functions.

Definition 7.9. A function u : Rn → R is of class L if there exists a plurisubharmonic function

ũ : Cn → R with lim sup|z|→∞
ũ(z)

log |z| ≤ 1 and u = ũ
∣∣
Rn ũ.

Functions of class L admit representations with probability measures in Cn. When n = 1, any
function u(x) of class L is representable as,

u(x) = A+

ˆ
log
∣∣x− ζ∣∣dµ(ζ)

where A ∈ C and µ is a probability measure on C. This representation applies the theory of logarithmic
potentials to the functions of class L. In particular, we have the following variant of Cartan’s Lemma.

Proposition 7.10 (Cartan’s lemma for logarithmic potentials, [6]). Let µ be a Borel probability measure
on C and set,

u(z) :=

ˆ
log
∣∣z − ζ∣∣dµ(ζ).

Then, for any 0 < α < 1, the set of points z ∈ C such that |u(z)| ≤ logα can be covered by discs Qj ⊂ C
the sum of whose radii is bounded above by 5α.

Proposition 10 allows one to prove the analogous distributional inequality of Lemma 7 for functions
exp(u) where u is of class L; a similar Remez-type inequality of Lemma 5 is also available. Reworking
Proposition 6 with a general function exp(u) : R→ C with u of class L leads to the following.

Theorem 7.11. Let u : Rn → R be a function of class L, 0 ≤ q ≤ ∞ and K be a convex body in Rn of
volume 1. Then there exists an absolute constant C independent of q,K, n and u so that∣∣∣∣eu∣∣∣∣

Lq(K)

∣∣∣∣e−u∣∣∣∣
L1,∞(K)

≤ Cn
[
nB(n, q + 1)

] 1
q

A result similar to Theorem 1, with functions exp(u) with u of class L replacing the polynomial
p : Rn → C, also holds.

To prove the Carbery-Wright inequalities in full generality, we observe that whenever p : Rn → X
is a polynomial taking values in a Banach space, then u(x) := 1

d ||p(x)|| is a function of class L. Since,

in this case, exp(u(x)) := ||p(x)|| 1d , Theorem 11 implies the distributional Carbery-Wright inequality of
Theorem 2. An analogous transference holds for the norm inequality of Theorem 1.
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Chapter 8

Learning DNF in Time 2Õ(n1/3)

after Klivans and Servedio [1]
A summary written by Shivam Nadimpalli

Abstract. We show how to represent any s-term DNF over n variables as a polynomial
threshold function of degree O(n1/3 log s), matching (up to a logarithmic factor) a lower
bound obtained by Minsky and Papert. As a consequence of this, we can obtain the fastest
known algorithm for learning polynomial sized DNFs, one of the central problems in com-
putational learning theory.

8.1 Introduction

We assume familiarity with the PAC model of learning, and refer the reader to [7] for background. We
set the stage with some preliminary definitions. A Boolean function f : {0, 1}n → {±1} is a degree-d
polynomial threshold function (PTF) if there exists a degree-d polynomial p : Rn → R such that

f(x) = sign(p(x)) for all x ∈ {0, 1}n.

Recall that a disjunctive normal form (DNF) is a Boolean function that is an “OR of ANDs,” or more
formally, is a function f : {0, 1}n → {±1} given by

f(x) =

s∨
i=1

Ti where Ti =

ti∧
j=1

li,j

where the literal li,j is either xk or ¬xk for some k ∈ [n]. We call each Ti a term, and say that f is a
s-term DNF; if ti ≤ t for all i ∈ [s], then we say that f is a s-term t-DNF. Finally, a read-once DNF is
a DNF which contains at most one occurance of each variable.

In [6], Minsky and Papert proved, among other things, that there exists a read-once DNF formula
which cannot be computed by any PTF of degree less than Ω(n1/3). Klivans and Servedio [1] show that
Minsky and Papert’s lower bound is tight up to a logarithmic factor.

Theorem 8.1. Any s-term DNF over {0, 1}n can be expressed as a polynomial threshold function of
degree O(n1/3 log s).

Theorem 8.1 immediately implies the fastest known algorithm for learning polynomial size DNFs
(i.e. DNFs with poly(n) number of terms), one of the central open problems in computational learning
theory first introduced by Valiant [3]; this is immediate from the following.

Proposition 8.2. Let C be a class of functions which can be expressed as a degree-d PTF over {0, 1}n.
Then there is a PAC learning algorithm for C which runs in time nO(d).
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Proposition 8.2 is not too difficult to prove via a “kernel trick,” viewing a degree-d PTF over {0, 1}n as
a degree-1 PTF (or a linear threshold function—LTF for short) over the space of all multilinear monomials
of degree at most d, and then recalling that it is easy to PAC learn LTFs via linear programming in
poly(n) time.

Because of Proposition 8.2, upper bounds on the degree of PTFs computing a DNF translate directly
into bounds on the running time of a DNF learning algorithm. Indeed, this sheds a new perspective on
previous algorithms for learning DNF as well:

• The main structural result of Bshouty [4] implies that any s-term DNF can be expressed as a PTF
of degree O((n log n log s)1/2); and

• The techniques of Tarui and Tsukiji [5] imply that any s-term DNF can be expressed as a PTF of
degree O(n1/2 log s).

8.2 Proving Theorem 8.1

The proof of Theorem 8.1 relies on the following theorem.

Theorem 8.3. Any s-term t-DNF can be expressed as a PTF of degree O(t1/2 log s).

We present a complete proof of Theorem 8.3 in Section 8.2.1. Theorem 8.1 follows by combining
Theorem 8.3 with a decomposition technique due to Bshouty [4], we sketch this in Section 8.2.2.

8.2.1 Representing s-term t-DNFs as PTFs

In this section we will prove Theorem 8.3. Our proof will make use of the Chebyshev polynomials of
the first kind; these polynomials have found several applications in approximation theory and numerical
analysis [8].

Proposition 8.4. The dth Chebyshev polynomial of the first kind, written Cd(x) is a univariate degree-d
polynomial which satisfies

1. |Cd(x)| ≤ 1 for all x ∈ [−1, 1], with Cd(1) = 1; and

2. C ′d(x) ≥ d2 for x > 1, with C ′d(1) = d2.

We turn to proving Theorem 8.3.

Proof of Theorem 8.3. Let f be an s-term t-DNF, i.e.

f(x) =

s∨
i=1

Ti where Ti =

ti∧
j=1

li,j

where the li,j are literals. We have ti ≤ t for all i ∈ [s]. For i ∈ [s], define Si as

Si(x) =

ti∑
j=1

ϕ(li,j) where ϕ(li,j) =

{
xk li,j = xk for some k

1− xk li,j = ¬xk for some k
.

Note that Si(x) is a degree-1 polynomial. We next define the polynomial

Qi(x) = Cd

(
Si(x)

ti

(
1 +

1

t

))
setting d := dt1/2e.

Items 1 and 2 of Fact 9 respectively imply that

1. If Si(x)/ti ∈ [0, 1− 1
t ], then |Qi(x)| ≤ 1; and

2. If Si(x)/ti = 1, then Qi(x) ≥ 2.
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Consider the polynomial threshold function sign
(
P (x)− s− 1

2

)
where we define

P (x) :=

s∑
i=1

Qi(x)log 2s.

As Qi is a polynomial of degree d = dt1/2e and each Si is of degree 1, it follows that P has degree
O(t1/2 log s). We next show that P does indeed compute f correctly. Fix an arbitrary element x ∈ {0, 1}n:

• If f(x) = 0, then Si/ti ∈ [0, 1 − 1
t ] for all i ∈ [s]; consequently, |Qi(x)| ≤ 1 for all i, and so

P (x) ≤ s.

• If f(x) = 1, then Si/ti = 1 for some i ∈ [s]; consequently Qi(x) ≥ 2, and so Qi(x)log 2s contributes
2s to P (x). As Qi(x) ≥ −1 for all i, it follows that P (x) ≥ s+ 1.

This completes the proof.

8.2.2 DNFs to Decision Trees to PTFs

In this section, we describe (at a high level) how to go from Theorem 8.3 to Theorem 8.1. Recall that
a decision tree T is a representation of a Boolean function as a binary tree whose each internal node is
labelled with a variable xi and each leaf node is labelled with a Boolean function. The value T (x) is
then computed as follows: At each internal node labelled by xi, if xi = 0 we take the left branch, and
otherwise take the right branch; at a leaf node labelled with `, we output `(x).

Lemma 8.5 (Lemma 10 of [1]). Let f : {0, 1}n → {±1} be an s-term DNF. For all t ∈ [n], f can be
expressed as a decision tree T where

• Each leaf of T contains an s-term t-DNF; and

• T has rank at most (2n/t) ln s+ 1.

We sketch the proof of Lemma 8.5: Let T1, . . . , Tp be the terms of f of size at least t. By the first
moment method, there must be some variable xi that appears (either negated or un-negated) in at least
pt
n of these terms; we start constructing T by placing xi at the root and recursing on the functions
obtained from f by restricting xi ← 0 and xi ← 1. The recursion terminates when a DNF with no terms
larger than t is obtained.

Finally, we very briefly sketch a proof of Theorem 8.1. Set t := n2/3. From Lemma 8.5 and
Theorem 8.3, we know that f can be expressed as a decision tree T of rank (2n/t) ln s + 1 where each
leaf contains a degree-O(t1/2 log s) PTF. It is straightforward to check that T can be represented as a
decision list each output of which is a leaf node of T (in this case, a degree-O(t1/2 log s) PTF). So as
to keep this summary short, we do not formally describe the decision list model; representing a decision
list as a PTF computing f is a straightforward construction that can be found in Section 3.3 of [1].
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Chapter 9

Agnostically Learning Halfspaces

after A. Kalai, A. Klivans, Y. Mansour, R. Servedio [5]
A summary written by Lucas Pesenti

Abstract. We consider the task of agnostically learning halfspaces under distributional
assumptions. Given samples from a nice distribution and arbitrary {−1, 1} labels, the goal
is to output a hypothesis that classifies the data on the true distribution nearly as well as the
best halfspace does. We present an algorithm based on polynomial regression that achieves
near-optimal sample and time complexity guarantees.

9.1 Introduction

A halfspace of Rn is a function h : Rn → {±1} of the form

h(x) = sign(〈x,u〉 − t),

where u ∈ Rn and t ∈ R. The function sign is defined by sign(z) = 1 if z ≥ 0 and sign(z) = −1 if z < 0.
We let H be the set of all halfspaces of Rn.

Learning halfspaces is a good toy model for classification that has been extensively studied in the
machine learning community since the 1950s. In the noiseless setting, that is, if the learner receives
samples of the form (x, h(x)) for an unknown h ∈ H, the problem of learning h can be reduced to finding
a feasible point in a polytope described by linear inequalities, for which there exist efficient algorithms.
We focus on a noisy version of the problem, called agnostic learning, in which the data is not necessarily
labeled according to a halfspace. The goal of the learner is to output a classifier that is competitive with
the best halfspace classifier of the data.

Formally, the learner is given i.i.d. samples (x, y) from a (partially) unknown distribution D over
(x, y) ∈ Rn×{±1}. We assume that the learner has a priori information about the marginal distribution
Dx of the examples x under D — more specifically, that x is uniform on the n-dimensional hypercube
{±1}n. On the other hand, the distribution of y given x is arbitrary.

We measure the loss err(f) ∈ [0, 1] of a hypothesis f : Rn → {±1} by the probability of missclassifi-
cation under the true distribution:

err(f) = Pr
(x,y)∼D

(f(x) 6= y).

The goal of the learner is to output a hypothesis f : Rn → {±1} that achieves error err(f) as close as
possible to

(9.1) opt = min
h∈H

err(h).

Our main focus in this note is the following algorithmic result for agnostically learning halfspaces. We
use the Õ notation to hide logarithmic factors.

38



Theorem 9.1 ([5]). Suppose that Dx is the uniform distribution on {±1}n. There is an algorithm that,

given access to m = nÕ(1/ε2) samples from D, outputs in time mO(1) a hypothesis f : Rn → {±1} with
expected error1 at most opt + ε.

Let us underline at this point that the hypothesis output by the algorithm will not necessarily be a
halfspace — we only require that it is an efficiently evaluable function (this is usually called improper
learning). In fact, here the hypothesis will be a low-degree polynomial threshold function (that is, of the
form f(x) = sign(p(x)− t), where p(x) is a low-degree polynomial).

Adversarial label noise To get some intuition for the assumptions of Theorem 9.1, consider the
following special case. Suppose that instead of getting samples (x, h(x)) from a halfspace h ∈ H, an
adversary first chooses an η-fraction of the samples and flips their label. Theorem 9.1 applies in this
setting and opt = η corresponds to the noise rate.

9.2 Agnostic learning via polynomial regression

We start by giving some intuition for the algorithm behind Theorem 9.1. Another way to write the error
of a hypothesis f : Rn → {±1} is

err(f) =
1

2
ED |f(x)− y|.

This might motivate us to look at the relaxed problem of `1-regression, namely finding f : Rn → R
minimizing 1

2 ED |f(x) − y|. One key observation is that these problems are actually equivalent — any
f : Rn → R can be rounded into a classifier g : Rn → {±1} without increasing the error. To see why
this holds, let gt(x) = sign(f(x)− t) and draw t at random from the interval [−1, 1]. Then,

(9.2) Et err(gt) =
1

2

ˆ 1

−1

ED 1sign(f(x)−t)6=y dt ≤ 1

2
ED |f(x)− y| = err(f).

In particular, there exists a threshold t ∈ [−1, 1] satisfying err(gt) ≤ err(f).
Unfortunately, solving `1-regression exactly is hard in general. We will therefore further restrict the

class of functions to optimize over. From the previous discussion, it makes sense to take this class rich
enough to capture good approximations of all halfspaces, while not blowing up the computational cost
of the regression problem. When x is uniform on the hypercube, the theory of Fourier analysis suggest
to look at low-degree polynomials.

9.2.1 The polynomial regression algorithm

We are now ready to describe the `1-polynomial regression algorithm. Given an integer d ≥ 1 (the
degree) and i.i.d. samples (xi, yi) ∼ D for 1 ≤ i ≤ m:

1. Pick the multilinear polynomial p of degree at most d that minimizes the `1-empirical error
1

2m

∑
i≤m |p(xi)− yi|.

2. Pick the threshold t ∈ R that minimizes 1
2m

∑
i≤m |sign(p(xi)− t)− yi|.

3. Output the hypothesis f(x) = sign(p(x)− t).

Complexity The optimization problem in Step 1 is equivalent to the following linear program over
variables z1, . . . , zm and {αS : |S| ≤ d}:

min
∑
i≤m

zi

s.t. zi ≥
∑
|S|≤d

αS
∏
j∈S

xij − yi for i = 1, . . . ,m

zi ≥ yi −
∑
|S|≤d

αS
∏
j∈S

xij for i = 1, . . . ,m

1A corresponding high probability statement can be obtained from Markov’s inequality.
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The time complexity of solving this linear program is poly(m,nd) under mild assumptions on the support
of D. Moreover, Step 2 of the algorithm is equivalent to finding a point t ∈ R that belongs to a maximum
number of intervals, for which there is an easy nearly linear-time algorithm.

9.2.2 Analysis of the algorithm

We now switch to the analysis of the `1-polynomial regression algorithm. We relate the error of the
hypothesis to how well the target optimal classifier can be approximated by degree-d polynomials in
`1-norm. We define the `1-norm of a function g : Rn → R as ‖g‖1 = EDx |g(x)|.

Theorem 9.2. There is a universal constant C > 0 such that the following holds. For any g : Rn →
{±1}, let ε = min ‖g − q‖1, where the minimum is over all degree-d multilinear polynomials q. Provided
that m ≥ nCd/ε2, the `1-polynomial regression algorithm achieves expected error at most err(g) + ε.

Proof. Let q be the degree-d polynomial that achieves ‖g − q‖1 = ε. First, the argument in (9.2) and
Step 1 of the algorithm ensure that

(9.3)
1

m

∑
i≤m

1f(xi)6=yi ≤
1

2m

∑
i≤m

|p(xi)− yi| ≤ 1

2m

∑
i≤m

|q(xi)− yi|.

We use standard arguments to argue about uniform concentration of the left-hand side. The VC-
dimension of degree-d polynomial threshold functions is at most nO(d), so if m = nO(d)/ε2,

ED⊗m

 1

m

∑
i≤m

1f(xi)6=yi

 ≥ ED⊗m err(f)− ε

2
.

On the other hand, the expected value of the right-hand side of (9.3) is

1

2
ED |q(x)− y| ≤ 1

2
ED |q(x)− g(x)|+ 1

2
ED |g(x)− y| = ε

2
+ err(g).

Putting everything together, we get ED⊗m err(f) ≤ err(g) + ε.

9.2.3 Proof of Theorem 9.1

To deduce Theorem 9.1 from Theorem 9.2, it remains to bound the approximability of halfspaces by
low-degree polynomials. The following is based on an observation of [4] to improve the initial result of
[6].

Theorem 9.3. Assume that Dx is the uniform distribution on {±1}n. For any h ∈ H and ε > 0, there
exists a multinear polynomial p of degree Õ(1/ε2) such that ‖h− p‖1 ≤ ε.

We briefly sketch the idea that underlies the proof of Theorem 9.3. We first compare h(x) to its noisy
version h̃(x) = E [h(y) |x], where every entry of y is the corresponding entry of x flipped independently
with probability ε2. The high-degree part of h̃ is killed by the noise, so that h̃ is well-approximated by
its low-degree part. At this point, it essentially only remains to bound the noisy approximation error
E |h(x) − h̃(x)| ≤ E |h(x) − h(y)|. This last quantity, called noise sensitivity of h, is at most O(ε) for
any halfspace — this follows from a careful charging argument on the set of coordinates that are flipped
by the noise.

Proof of Theorem 9.1. Apply Theorem 9.2 with g being the optimal halfspace in (9.1). By Theorem 9.3,
one can set the parameter d of the polynomial regression algorithm to d = Õ(1/ε2) to get a hypothesis

achieving expected error opt + ε in sample and time complexity nÕ(1/ε2).
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9.3 Hardness based on learning parity with noise

In this section, we follow an argument of [5] that gives evidence that the complexity of Theorem 9.1 may

not be improvable to nO(1/ε2−β) with β > 0. The idea of [5] is based on an interesting reduction from
learning parity with noise, a long-standing open problem in theoretical computer science.

In the learning parity with noise problem, there is an unknown parity function f(x) =
∏
i∈S xi

with S ⊆ {1, . . . , n}. The learner receives samples of the form (x, y) with x ∼ {±1}n, y = f(x) with
probability 0.9 and y = −f(x) with probability 0.1. The goal of the learner is to recover S.

Despite a lot of effort in the cryptography and complexity theory communities, the best algorithm for
learning parity with noise [1] still requires time 2O(n/ logn). We show that further improving Theorem 9.1
would result in a subexponential time algorithm for the problem.

Theorem 9.4. Agnostically learning halfspaces in time nO(1/ε2−β) implies learning parity with noise in

time 2Õ(n1−β/2).

Proof sketch. Fix i ∈ {1, . . . , n}. We try to identify whether i ∈ S by agnostically learning a halfspace
on the samples (x−i, y) (where x−i ∈ Rn−1 is x with the i-th coordinate removed). Setting ε = Θ(1/

√
n)

allows to distinguish between the following two cases:

• If i ∈ S, any function of x−i has error equal to 1
2 .

• If i /∈ S, then h(x−i) = sign(
∑
j∈S xj) has error 1

2 − Ω( 1√
n

).

9.4 Generalizations and optimality

Learning other classes The framework we have described in Section 9.2 is not restricted to learning
halfspaces. In fact, we can apply the `1-polynomial regression algorithm and Theorem 9.2 to any class
of Boolean-valued functions. Interestingly, this is essentially the best agnostic learning algorithm for any
such class in the powerful statistical query model [2].

Error measurement The results we have stated in this note focus on the error being measured
additively. If we ask instead for a hypothesis with error 1.001opt + ε, we can do better — a boosted
version of the polynomial regression algorithm achieves agnostic learning in poly(n, 1/ε) time [3].

Other distributions The same analysis works for agnostically learning halfspaces when x is uni-
form on the sphere, or from a log-concave distribution [5]. Related algorithms also handle the case of
adversarially corrupted x’s, but the bounds obtained in [5] for this model are far from optimal.
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Chapter 10

The Correct Exponent for the
Gotsman-Linial Conjecture

after D. M. Kane [6]
A summary written by Seung-Yeon Ryoo

Abstract. The asymptotic Gotsman-Linial conjecture claims that a degree-d polynomial
threshold function in n > 1 variables has average sensitivity at most O(d

√
n). We out-

line the proof of the partial result due to Kane (2012) that gives an upper bound of√
n(log n)O(d log d)2O(d2 log d).

10.1 Statement of the conjecture and the main result

Definition 10.1. Let f : {−1, 1}n → {−1, 1} be a boolean function defined on the hypercube.

1. For i = 1, · · · , n, the i-th influence of f is defined as

Infi(f) =
1

4
E
[
|f(A)− f(Ai)|2

]
,

where A is a Bernoulli random vector, i.e., it is chosen uniformly randomly on {−1, 1}n, and Ai

is obtained by negating the i-th entry of A.

2. The average sensitivity or total influence of f is defined as

AS(f) :=

n∑
i=1

Infi(f).

3. For d ∈ Z>0, the function f is a degree-d polynomial threshold function if f(x) = sgn p(x) for
some degree-d real polynomial p.

Gotsman and Linial [4] conjectured the following regarding the maximum average sensitivity of
polynomial threshold functions.

Conjecture 10.2 (Gotsman-Linial conjecture). Let f be a degree-d polynomial threshold function in
n > 1 variables. Then

AS(f) ≤ 2−n+1
d−1∑
k=0

(
n

b(n− k)/2c

)(
n− bn− k

2
c
)
.

The right-hand side in the Gotsman-Linial conjecture is the average sensitivity of the sign of the
polynomial function pn,d (

∑n
i=1 xi), where pn,d is the monic univariate polynomial of degree-d with non-

repeated roots at the d integers closest to 0 of opposite parity from n. One can easily see that this term
is of order Θ(d

√
n) for n = Ω(d2).

The Gotsman-Linial conjecture has been shown to be false in [2]. However, the following weaker
version of the Gotsman-Linial conjecture still stands.
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Conjecture 10.3 (Asymptotic Gotsman-Linial conjecture). Let f be a degree-d polynomial threshold
function in n variables. Then

AS(f) = O(d
√
n).

The text under consideration proves the following statement. Previously, the best-known upper
bound was Oc,d(n

5/6+c), due to Kane [5].

Theorem 10.4 ([6, Theorem 2]). Let f be a degree-d polynomial threshold function in n > 1 variables.
Then

AS(f) ≤
√
n(log n)O(d log d)2O(d2 log d).

In particular, this obtains the correct exponent of n. The author claims without proof in a talk the
stronger statement

AS(f) ≤ Od(
√
n)(log n)O(log d).

10.2 Sketch of the proof

Due to page limitations we will sketch the proof of the weaker bound

AS(f) ≤
√
n exp(O(d log log n)2).

Below, A will denote an n-dimensional Bernoulli random vector and X will denote an independent
n-dimensional standard Gaussian random vector.

A very high-level description of the proof method is to approximate the distribution of p(A) by that
of p(X), and then to use anticoncentration of p(X) to argue that p(X) doesn’t change sign that often.

The classical anticoncentration result due to Carbery and Wright [1] that

Pr [|p(X)| ≤ ε|p|2] = O(dε1/d), ε > 0

is insufficient for the purposes of proving Theorem 10.4 (here |p|2 = (E[|p(X)|2])1/2), because of the
power in ε. Instead, the author comes up with the following well-behaved alternative.

Lemma 10.5 ([6, Lemma 9]). If p is a degree-d real polynomial, then

Pr [|p(X)| ≤ ε|∇p(X)|] = O(d2ε).

“Nice” polynomials of Bernoulli random vectors behave similarly to polynomials of Gaussian random
vectors. The definition of “nice” is as follows.

Definition 10.6. A real polynomial p in n variables is τ -regular, τ > 0, if

Infi(p) ≤ τ Var(p(A)), i = 1, · · · , n.

For regular and multilinear polynomials we have the following.

Theorem 10.7 ([7, Theorem 2.1]). If p is a degree-d, τ -regular, and multilinear polynomial, then

|Pr[p(A) > 0]− Pr[p(X) > 0]| = O(dτ1/8d).

Combining Lemma 10.5 and Theorem 10.7, we have the following.

Proposition 10.8. If p is a degree-d, τ -regular, multilinear polynomial, then

Pr[|p(A)| < ε|∇p(A)|] = O(d2ε) +O(dτ1/8d), ε > 0.

We need to reduce to the regular case. (It is straightforward that we can reduce to the multilinear
case.) We do this by conditioning on the values of the high-influence coordinates.

Proposition 10.9 ([3, Theorem 1]). Let f be a degree-d polynomial threshold function and τ > 0. After
conditioning on the values of τ−1O(d log(τ−1))O(d) coordinates (chosen adaptively), with probability at
least 1− τ the restricted function is τ -close to a τ -regular degree-d polynomial threshold function.
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Here, we say that two boolean functions f, g : {−1, 1}n → {−1, 1} are τ -close if Pr[f(A) 6= f(B)] <
τ . Proposition 10.9 can be stated more precisely by stating that there is a decision tree of depth
τ−1O(d log(τ−1))O(d), the leaves of which are assigned polynomial threshold functions, such that a ran-
dom path reaches a leaf, with probability 1 − τ , with assigned polynomial threshold function that is
τ -close to a τ -regular degree-d polynomial threshold function.

Let f be a degree-d polynomial threshold function. By Proposition 10.9, we may adaptively condition
on τ−1O(d log(τ−1))O(d) coordinates; this process of changing the fixed coordinates gives a contribution
of τ−1O(d log(τ−1))O(d) to the average sensitivity. Let us now consider the average sensitivity of the
restricted function. It is irregular with probability at most τ , and these cases gives contribution O(nτ)
to the average sensitivity. For the other cases, it is τ -close to a τ -regular polynomial threshold function,
so the sensitivity is at most O(nτ) more than that of a τ -regular polynomial threshold function.

We have just proven that if f is a degree-d polynomial threshold in n variables, then AS(f) is at
most τ−1O(d log(τ−1))O(d) + O(nτ) more than the maximum average sensitivity of τ -regular degree-d
polynomial threshold functions in n variables. We will put τ = n−1/2. It remains to bound the average
sensitivity of an n−1/2-regular degree-d polynomial threshold function in n variables.

Here is a first attempt. Let p be a τ(= n−1/2)-regular degree-d multilinear polynomial in n variables.
Since |p(A)−p(Ai)| = 2|Dip(A)|, AS(sgn p) is bounded by the expected number of i so that 2|Dip(A)| ≥
|p(A)|. Thus

AS(sgn p) ≤ E

[
min

(
n,

n∑
i=1

4|Dip(A)|2

|p(A)|2

)]
= E

[
min

(
n,

4|∇p(A)|2

|p(A)|2

)]

≤ 1 +

n∑
k=1

Pr
[
|p(A)| ≤ 2k−1/2|∇p(A)|

]
Proposition 10.8

≤
n∑
k=1

[
O(

d2

√
k

) +O(dτ1/8d)

]
= O(d2

√
n) +O(dnτ1/8d).

The problem with this argument is that the error from using Proposition 10.8 is very large. The idea to
get over this obstacle is to split the coordinates into b = n1/Θ(d) equally sized blocks. Then

AS(f) =
∑

blocks i

E[AS(f |Ai )],

where f |Ai : {−1, 1}i → {−1, 1} is the function obtained from f by fixing the coordinates of {1, · · · , n}\ i
to those obtained from A. Likewise, for a real polynomial function p : {−1, 1}n → R and a block i we

define the restricted polynomial p|Ai .
Let C be an appropriate constant.

Definition 10.10. A degree-d polynomial p is good if

Var(p) > |p|22(C log n)−d,

and is bad otherwise.

Definition 10.11. Fix a degree-d real polynomial p and a block decomposition of {1, · · · , n}. Given the

value of A, a block i is good if p|Ai is good, and is bad otherwise.

If p is a bad polynomial, then sgn p(A) = sgnE[p(A)] with probability 1−O(n−2), so that AS(f) =
O(n−1). We thus only need to consider contributions from good blocks, i.e., blocks such that if f is
restricted to it then f is good.

Let p be a good polynomial. Since E[|∇p(A)|2] ≥ Var(p), we may apply the Paley-Zygmund inequality
to obtain that with probability at least 9−d/2 we have |∇p(A)|2 > Var(p)/2. On the other hand, with
probability at least 1 − 9−d/4 we have |p(A)| < (Cd)d/2|p|2. Therefore, with probability at least 9−d/4
we have |∇p(A)|2 > (Cd log n)−d|p(A)|2.
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Therefore, the expected number of good blocks is at most 2O(d) times the expected number of blocks
i such that |∇ip(A)|2 > (Cd log n)−d|p(A)|2. We estimate

2−O(d)E[#{good blocks}] ≤ E

[
min

(
b,
∑

blocks i

O(d log n)d|∇ip(A)|2

|p(A)|2

)]

= E
[
min

(
b,
O(d log n)d|∇p(A)|2

|p(A)|2

)]
≤ 1 +

b∑
k=1

Pr(|p(A)| ≤ k−1/2O(d log n)d/2|∇p(A)|)

Proposition 10.8

≤
b∑

k=1

(
O((d log n)d/2d2k−1/2) +O(dτ1/8d)

)
≤ O(d log n)d/2(

√
b+ bτ1/8d).

Let MAS(d, n) denote the maximum of AS(f) over degree-d polynomial threshold functions f in n
variables. For a τ -regular polynomial threshold function f , we have that

AS(f) ≤O(1) + E[#{good blocks}] MAS(d, n/b)

≤O(d log n)d/2(
√
b+ bn−1/16d) MAS(d, n/b).

Letting b = n1/8d and considering the
√
nO(log n)O(d) error involved in the approximation to regular

functions, we have that

MAS(d, n) = O(d log n)O(d)n1/16d MAS(d, n1−1/8d) +
√
nO(log n)O(d).

Iterating this recursion gives

MAS(d, n) ≤
√
n exp

(
O(d log log n)2

)
.

The more precise statement of Theorem 10.4 is obtained by keeping more careful track of the “good-
ness”. Very roughly, this means that one defines for each nonzero polynomial p the quantity

α(p) := E
[
min

(
1,
|∇p(A)|2

|p(A)|2

)]
and keeps track of the value of α(p).
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Chapter 11

Pseudorandom Generators from the
2nd Fourier Level via Polarizing
Random Walks

work of Chattopadhyay et al. [2, 1, 3]
A summary written by Joseph Slote

Abstract. Pseudorandom generators (PRGs) are central objects in complexity theory. We
describe a recent framework for their construction via polarizing random walks in the solid
hypercube, effective against function classes with L1-bounded second-level Fourier coeffi-
cients. By these constructions, a self-contained conjecture about the second-level Fourier
coefficients of F2 polynomials would imply a PRG against constant depth circuits with parity
gates, an important open problem in circuit complexity.

11.1 Introduction

Let Un denote the uniform distribution over {−1, 1}n. Pseudorandom generators, or PRGs, are deter-
ministic functions that induce sparse distributions on {−1, 1}n which nonetheless “look like Un” to a
fixed class of statistical tests (Boolean functions).

Definition 11.1. A pseudorandom generator with seed length s is a function g : {−1, 1}s → {−1, 1}n.
For F a set of functions from {−1, 1}n to {−1, 1}, we say g has error ε against F if for all f ∈ F ,∣∣E[f(g(Us))]− E[f(Un)]

∣∣ ≤ ε.
PRGs have countless applications, from the derandomization of probabilistic algorithms to providing

a basis for private key cryptography. In the context of learning theory, PRGs can be used to prove
hardness results: roughly, if data is labeled in a way that appears random, there is little chance the
labeling function can be learned.1 In typical applications one wishes to simultaneously minimize seed
length and error, goals that are in tension to various degrees depending on the target class of functions
F .

A powerful method for creating PRGs was recently introduced by Chattopadhyay et al. in [1] which
leads to very good PRGs for function classes possessing bounded Fourier tails. This tail restriction was
then dramatically relaxed in [2], building on the work of [3].

Concretely, define the L1,2 Fourier tail of f : {−1, 1}n → {−1, 1} as

L1,2[f ] =
∑

i<j∈[n]

|f̂({i, j})| =
∑

i<j∈[n]

|Ex∼Un [f(x)xixj ]|.

1See the excellent survey of Vadhan [4].
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For i ∈ [n] and x ∈ {−1, 1}n let yi(x) (resp. ȳi(x)) be the vector x except with the ith coordinate set to
1 (resp. −1). So yi and ȳi are functions from {−1, 1}n−1 to {−1, 1}n. A function family F = ∪n≥0Fn
is closed under restrictions if for all f ∈ F and for every coordinate i in the domain of f we have f ◦ yi
and f ◦ ȳi ∈ F . Then we have the theorem:

Theorem 11.2 ([2, Thm. 2]). Let F be a family be closed under restrictions such that for some
t ≥ 1,L1,2[f ] ≤ t for all f ∈ F . Then for any ε > 0 there exists an explicit PRG for F with error ε and
seed length poly(t, log n, 1/ε).

This leads to the exciting conjecture,

Conjecture 11.3. Let Polyn,d denote those Boolean functions computed by n-variate F2 polynomials p
of degree d. Then L1,2[Polyn,d] ∈ O(d2).

Combined with Theorem 11.2, this conjecture would imply PRGs against AC0[⊕], a longstanding open
problem.

The proof of Theorem 11.2 is in three steps. First, we find that a weaker, real-valued notion of a PRG,
called a fractional PRG, can be amplified into a standard PRG via random walk techniques. We then
show an L1,2 bound on F is sufficient for a simple kind of random variable (a low-covariance multivariate
Gaussian) to be a fractional PRG against F . Finally, we confirm that this multivariate Gaussian can be
(approximately) implemented as a function of a uniform distribution over a small space.

We’ll focus on the first two steps of this process, which include nice ideas about random walks as well
as some very clever random restriction arguments. The third step [2, pg. 22:6] essentially follows from
black-box constructions of good linear codes—which are used to map a log(n)-variate zero-covariance
Gaussian to an n-variate Gaussian with mild covariance—and well-studied methods for discretely ap-
proximating univariate Gaussians.

11.2 PRGs from fractional PRGs

Definition 11.4. A p-noticeable fractional PRG with error ε is a random variable X on [−1, 1]n such
that |E[f(X)]− f(0)| ≤ ε and E[X2

(i)] ≥ p for all coordinates i ∈ [n].

We use a fractional PRG X to drive a random walk from the origin of the solid hypercube. We’ll
see that after a short time the walk polarizes towards a corner of the cube and so we may take the PRG
output to be the closest vertex x ∈ {±1}n.

Now we construct the walk. For y ∈ [−1, 1]n define δ : [−1, 1]n → [0, 1] coordinatewise by δi(y) =

1 − |yi|. For X1, X2, . . .
iid∼ X define the random variables Yi with Y1 = X1 and for i > 1, Yi =

Yi−1 + δ(Yi−1) ◦Xi where ◦ here denotes coordinatewise multiplication. In other words, 2δi(y) is the ith

sidelength of the largest box By that fits inside [−1, 1]n and is centered at y, and Yi takes a random step
within BYi−1

according to an appropriately rescaled sample from X.
It turns out that after a short time, rounding this random walk to {−1, 1}n yields a good PRG.

Theorem 11.5 ([1]). Suppose F is closed under restrictions and X is a symmetric p-noticeable fractional
PRG for F with error ε and seed length s. Then for t ∈ O(log(n/ε)/p), G = sgn(Yt) is a PRG for F
with error (1 + t)ε and seed length ts.

The proof is by two lemmas: first the amplification lemma shows that the random walk Y1, Y2, . . .
quickly polarizes to a corner of the hypercube, and second the rounding lemma shows that rounding Yt
doesn’t increase the PRG error too much.

Lemma 11.6 (Amplification). The tth walk step Yt is a (1− q)-noticeable fractional PRG with error tε
and q = 2−Ω(pt).

Proof. First we estimate the error of Yt, which amounts the showing the random walk has small drift.
The necessary claim is:

Claim. For all f ∈ F and y ∈ [−1, 1]n,
∣∣f(y)− E[f(y + δ(y) ◦X)]

∣∣ ≤ ε.
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This is shown using a carefully chosen random restriction. Let µf be the distribution over g ∈ F
defined coordinatewise as follows. On input x, for each i ∈ [n], replace xi with sgn(yi) with probability
|yi|, and otherwise leave it be. Because F is downward-closed, we have g ∈ F for all g ∈ Supp(µf ),
and in particular E[g(0) − g(X)] ≤ ε. But we also have for any x, Eg∼µf [g(x)] = f(y + δ(y) ◦ x) by
multilinearity of f . Hence:

|f(y)− E[f(y + δ(y) ◦X)]| = |Eg∼µf [g(0)]− Eg∼µf [g(X)]|
= |Eg∼µf [g(0)− g(X)]| ≤ ε.3

An iterated triangle inequality then gives |f(0)− E[f(Yt)]| ≤ tε.
Claim. E[Y 2

t ] ≥ 1− 4 exp(−tp/4).

We’ll show this coordinatewise. For any coordinate j, let xi be the jth coordinate of Xi, and likewise
for yi with Yi. Then yi = yi−1 + (1 − |yi−1|)xi. Let zi = 1 − |yi|. Then zi ∈ [0, 1] always; we’ll find zi
decays to 0 exponentially quickly. We have the recurrence

zi = 1− |yi−1 + zi−1xi|
≤ 1− sgn(yi−1)sgn(yi−1 + zi−1xi)|yi−1 + zi−1xi|
= 1− sgn(yi−1)(yi−1 + zi−1xi)

= zi−1(1− xi sgn(yi−1))

The coordinate yi−1 is a symmetric random variable, so sgn(yi−1) is independent from |yi−1| and thus
from zi−1 too. We may therefore estimate:

E
[√

zi

]
≤ E

[√
zi−1

]
E
[√

1− xisgn(yi−1)
]

≤ E
[√

zi−1

]
E
[
1− 1

2
(xisgn(yi−1))

2

]
= E

[√
zi−1

] (
1− p

2

)
≤ E

[√
zi−1

]
e−p/2

and so E[
√
zt] ≤ exp(−tp/2). Markov’s inequality gives Pr[zt ≥ exp(−tp/2)] ≤ exp(−tp/4)], so we may

bound
1− E[y2

i ] ≤ 2(E[zi]) ≤ 2(exp(−tp/2) · 1 + 1 · exp(−tp/4)) ≤ 4 exp(−tp/4).

Applying this argument to every coordinate completes the claim and the lemma.

Given a fractional PRG X with error ε, a natural way to turn it into a PRG is to take a sample
x ∼ X and then form the unique distribution Wx over {−1, 1}n with E[Wx] = x and sample from that.
By the multilinearity of f , we’d have

|E[f(Un)]− Ex∼XE[f(Wx)]| = |E[f(Un)]− E[f(X)]| ≤ ε,

but this requires at least n bits of randomness. However, as long as X is very noticeable, sgn(x) is a
good approximation for Wx.

Lemma 11.7 (Rounding). If Y is a (1−q)-noticeable fractional PRG for F with error ε, then sgn(Y ) ∈
{−1, 1}n is a PRG for F with error ε+ qn.

Proof. We compute:

|f(Un)− E[f(sgn(Y ))]| ≤ |f(0)− E[f(Y )]|+ |E[f(Y )]− E[f(sgn(Y ))]

≤ ε+

n∑
i=1

2 Pr[WY 6= sgn(Y ) on coord i]

≤ ε+ n(1− |Y(i)|) ≤ ε+ nq.
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11.3 Gaussians are fractional PRGs against F with L1,2 bounded

Define trnc : R→ [−1, 1] by trnc(x) = min(1,max(−1, x)).

Theorem 11.8 ([2, Thm. 9]). Let G be an n-variate Gaussian with zero mean, at most σ2 variance in
each coordinate, and all covariances bounded by δ. Suppose F is a family closed under restrictions with
L1,2[F ] ≤ t. Then trnc(G) is a σ2-noticeable fractional PRG for F with error ε ≤ 4δt+ 4n exp(−σ2/8).

We give a streamlined sketch of the proof; a full version is worked out in [2, §A]. By standard

properties of Gaussians, any Z ∼ G is distributed exactly as
∑m
i=1 pZi for Z1, Z2 . . .

iid∼ G and p = 1/
√
m.

This is an m-step random walk, and we find it fruitful to examine the hybrids Hi =
∑i
j=1 pZj . Each

pZi has much smaller variance than G and known results about Brownian motion entail that with
all-but-negligible probability, for all i, Hi ∈ [−1/2, 1/2]n—a subcube we’ll call the “good zone.”

It turns out that when Hi is in the good zone, for a carefully chosen distribution of random restrictions
ρ, we have the identity

f(Hi+1)− f(Hi) = Eρ[fdρ(2pZi+1)− fdρ(0)]

(Claim 19). Isserlis’ Theorem on Gaussian moments then allows us to control the magnitude of the RHS
of this expression in terms of L1,2[f ] = t, giving

|f(Hi+1)− f(Hi)| ≤ p2δt+O(p4n4δ4)

(Claims 18 & 20).
An iterated triangle inequality takes this bound on the ith increment to a bound on the error for the

whole walk, and after giving a crude upper bound on the PRG’s performance when Hi leaves the good
zone (and dealing with the trnc function in Claim 17), we find

|E[f(trnc(Hm))]− f(0)| ≤
∞∑
k=1

e−km/(16n)mnk + 4δt+O(n4δ2/m) + 4ne−1/8δ2 .

Taking m→∞ gives the theorem.
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Chapter 12

Noise stability of functions with low
influences: Invariance and optimality

after E. Mossel, R. O’Donnell and K. Oleszkiewicz [5]
A summary written by Stratos Tsoukanis

Abstract. This text is a summary of the the sections 1 2, and 3 up to theorem 3.18 of
the work “Noise stability of functions with low influences: Invariance and optimality” by
E. Mossel, R. O’Donnell and K. Oleszkiewicz. In these sections, the authors introduce some
very interesting conjectures that can be proved using the invariance theorem 12.14 and they
give a formal proof of that theorem.

12.1 Introduction

The paper I will present focuses mainly on Boolean functions of low influence. Boolean functions are
functions f : {−1, 1}n → {−1, 1} and they are usually used in theoretical computer science. we say that
a Boolean function f has low “influence”, if E[Vari[f ]] << Var[f ], ∀i ∈ [n]. Functions of low influence
are some of the fundamental tools in discrete Fourier analysis. In this paper, the authors show that
under some mild conditions the distribution of multilinear polynomials with low influences and bounded
degree is essentially invariant for all product spaces. In later chapters, two conjectures, “Majority is
Stablest” and “It Ain’t Over Till It’s Over” are proved as consequences of the invariance principle, but
I will focus mostly on the proof of the invariance principle.

12.1.1 Setup and notation

Let (Ω1), . . . , (Ωn) be a sequence of probability space, Ω = Ω1 × · · · × Ωn and f ∈ L2(Ω).

Definition 12.1. The “influence” of the i-th component on f is defined by Infi(f) = Eµ[Varµi [f ]]

Definition 12.2. For any 0 ≤ ρ ≤ 1 we define the operator Tρ, where

(Tρf)(Ω1, . . . ,Ωn) = E[f(Ω′1, . . . ,Ω
′
n)],

where Ω′i are independent random variables equal Ωi with probability ρ and randomly drawn from µi with
probability 1− ρ.

Using the operator Tρ now we are able to define the noise stability of a function f .

Definition 12.3. The noise stability of a function f at ρ ∈ [0, 1] is defined by Sρ(f) = Eµ[f · Tρf ]

Using the important notions of influence and noice stability we can state some important results
now.
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12.1.2 Important results involving low influences functions

Theorem 12.4 (Invariance Principle). Let X1, . . . , Xn be independent random variables satisfying E[Xi] =
0, E[X2

i ] = 1 and E[X3
i ] ≤ β. Let Q be a degree d multilinear polynomial of the form Q(X1, . . . , Xn) =∑

S⊂[n] cS
∏
i∈S Xi, with ∑

|S|>0

c2S = 1 and
∑
S3i

c2S ≤ τ, ∀i ∈ [n].

Then
sup
t
|P [Q(X1, . . . , Xn) ≤ t]− P [Q(G1, . . . , Gn) ≤ t]| ≤ O(dβ1/3τ1/8d),

where G1, . . . , Gn are independent standard Gaussians.

If we have information for the upper bound β of E[Xq
i ] for some q ∈ (2, 3) instead of 3, then using a dif-

ferent approach we have can replace the upper bound of the previous theorem byO(dβd/qd+1τ1/8dτ (q−2)/(2qd+2)).
Using this invariance theorem we can prove two famous conjectures from theoretical computer science

and social choice theory.
The “Majority is Stablest” [4] conjecture, states that for 0 ≤ ρ ≤ 1 and fixed ε > 0, then there

exists t > 0 such that if f : {0, 1}n → [−1, 1] satisfies E[f ] = 0 and Infi(f) ≤ τ , ∀i, then Sρ(f) ≤
(2/π)arcsinρ+ ε.

The “It Ain’t Over Till It’s Over” [1] conjecture, states that for 0 ≤ ρ ≤ 1 and fixed ε > 0, there
exists δ > 0 and τ > 0 such that if f : {0, 1}n → [−1, 1] satisfies E[f ] = 0 and Infi(f) ≤ τ , ∀i, then f
has the following property. If V is a random subset of [n] in which each i is included independently with
probability ρ, and if the bits (xi)i∈V are chosen uniformly at random, then

PV,(xi)i∈V [|E[f |(xi)i∈V ]| > 1− δ] ≤ ε.

12.2 Applications of invariance theorem

12.2.1 Majority is Stablest

“Majority is Stablest” conjecture was first in 2007, but the motivation for getting sharp bounds on the
noise stability of low-influence came in 2002 by two different papers. The first important result was
stated by Kalai and it referred as “Arrow’s Impossibility Theorem” [3] Suppose n voters rank three
candidates, A, B, and C, and f is a social choice function which is applied to A vs B, A vs C, B vs
C preferences to determine who is globally preferred by each pair. The theorem states that ice states
that under some mild restrictions on f , the only functions that never admit nonrational outcomes given
rational voters are the dictator function.

The second result was stated by Khot also in 2002 [2] and it was related to theoretical computer
science. Constraint satisfaction problems (k-CSPs) are mathematical questions where a set of k objects
whose state must satisfy a number of constraints or limitations, for example “Max-2Lin(2)” ) is the
problem of finding a solution to an overconstrained system of linear equations modulo 2 in which each
equation has exactly two variables. We say that a k-CSP has (c,s)-hardness” if the problem of finding an
algorithm that satisfies an s-fraction of the constraints given that optimal assignment satisfies a c-fraction
of the constraints is NP-hard.

Khot showed by using “Unique Games Conjecture” and a sharp inequality about low influence
finctions from Bourgain-01.

Theorem 12.5. If f : {−1, 1}n → {−1, 1} satisfies E[f ] = 0 and Infi(f) ≤ 10−d for all i ∈ [d], then∑
|S|>d

f̂2(S) ≥ d−1/2−O(
√

log log d/ log d) = d−1/2−0(1)

A corollary of Bourgain theorem is the following.

Corollary 12.6. If f : {−1, 1}n → {−1, 1} satisfies E[f ] = 0 and Infi(f) ≤ 2−O(1/ε) for all i ∈ [d], then

§1−ε(f) ≤ 1− ε1/2+o(1)

Using this result, Khot showed (1− ε, 1− ε1/2+o(1))-hardnes for “Max-2Lin(2)” problem
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12.2.2 Consquence of “Majority is Stablest”

A generalization of the “Majority is Stablest” is the following.

Theorem 12.7. Let f : Ω1 × · · · ×Ωn → [0, 1] be a function on a discrete product probability space and
assume that for each i the minimum probability of any atom in Ωi is at least a ≤ 1/2. Further assume
that Infi(f) ≤ τ for all i. Let µ = E[f ]. Then for any 0 ≤ ρ < 1,

Sρ(f) ≤ lim
n→∞

Sρ(Thr(µ)
n ) +O(log(

log log(1/τ)

log(1/τ)
))

Where, Thr(µ)
n : {−1, 1}n → {0, 1} denotes the symmetric threshold function of the form f(x1, . . . , xn) =

1/2 + (1/2)Sgn(
∑
xi − r) for r ∈ R and expectation closest to µ .

A consquence of this theorem is the followng result

Corollary 12.8. “Max-2Lin(2)” has (1− ε, 1−O(ε1/2))-hardness.

12.2.3 “It Ain’t Over Till It’s Over”

A generalization of “It Ain’t Over Till It’s Over” conjecture is the following.

Theorem 12.9. Let 0 < ρ < 1, and let f : Ω1 × · · · × Ωn → [0, 1] be a function on a discrete product
probability space; assume that for each i the minimum probability of any atom in Ωi is at least a ≤ 1/2.
Then there exist ε(ρ, µ) > 0 such that if

ε < ε(ρ, µ) and Infi(f) ≤ εO(1/
√

log(1/ε)) ∀i and µ = E[f ],

then,
P [Vρf > 1− δ] ≤ ε and P [Vρf > δ] ≤ ε

provided 0 < µ < 1 and δ < ερ/(1−ρ)+O(1/
√

log(1/ε), where the O(·) hides a constant depending only on α,
µ and ρ.

12.3 Proof of the main theorem

First lets introduce some definitions that will help us to prove the invariant theorem.

Definition 12.10. We call a finite collection of orthonormal real random variables, one of which is the
constant 1, an orthonormal ensemble.

Definition 12.11. Let X be a sequence of ensembles. For 1 ≤ p ≤ q < ∞ and 0 < η < 1, we say that
X is (p, q, η)-hypercontractive if

||(TηQ)(X )||q ≤ ||X )||q
for every multilinear polynomial Q.

Recall that random variable Y is (p, q, η)-hypercontractive for 1 ≤ p ≤ q <∞ and 0 < η < 1 if

||α+ ηY ||q ≤ ||α+ Y ||p for all α ∈ R

Definition 12.12. The d-low-degree influence of the i-th ensemble of QX is

Inf
(≤d)
i (QX ) =

∑
σ:||σ||≤d
σi>0

c2σ

Definition 12.13. Let X be a sequence of ensembles. For 1 ≤ p ≤ q < ∞ and 0 < η < 1, we say that
X is (p, q, η)-hypercontractive if

||(TnQ)(X )||q ≤ ||Q(X )||p
for every multilinear polynomial Q over X
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Now we are ready to state the main theorem. The invariance theorem as it is stated has 4 different
variants which have similar hypotheses.

The following hypothesis is a generalization of the other so we will show the proof of the principle
just for that.

Hypothesis. Let r ≥ 3 be an integer, and let X and Y be independent sequences of n ensembles that
are (2, r, η)-hypercontractive. Assume also that for all 1 ≤ i ≤ n and for every sequence (sk)∞k=1 with∑∞
k=1 sK < r the sequences X and Y satisfy the condition

E[
∏

k:sk>0

Xsk
i,k] = E[

∏
k:sk>0

Xsk
i,k]

Theorem 12.14. Assume Hypothesis holds. Assume also thatVar[Q] ≤ 1, deg(Q) ≤ d and Infi(Q) ≤ t
for all i. Let Ψ : R → R with |Ψ(r)| ≤ B uniformly. Then |E[ψ(Q(X ))] − E[ψ(Q(Y))]| ≤ ε, where
ε = (2B/r!)dη−rdτ r/2−1

Now lets see a summary of the proof. First we will show three propositions that we will need for the
proof of main theorem.

Proposition 12.15. Suppose Q is multilinear polynomial of the form
∑
σ cσxσ then∑

i

Inf≤di (Q) ≤ dVar[Q]

Proposition 12.16. Let X be a sequence of n1 ensembles and Y an independent sequence of n2 ensem-
bles. Assume both are (p, q, η)-hypercontractive. Then the sequence of ensembles X∪Y = (X1, . . . ,Xn1 ,Y1, . . . ,Yn2),
is also (p, q, η)-hypercontractive

Proposition 12.17. Suppose X is a (2, q, η)-hypercontractive sequence of ensembles and Q is a multi-
linear polynomial over X of degree d. Then

||Q(X )||q ≤ η−d||Q(X )||2

Sketch of proof: Let Z(i) be the sequence of ensembles (X1, . . . ,Xi,Yi+1, . . . ,Yn) and Q(i) = Q(Z(i)).
Let also

Q̃ =
∑
σ:σi=0 cσZ

(i)
σ , R =

∑
σ:σi>0 cσXi,σiZ

(i)
σ\i , S =

∑
σ:σi>0 cσYi,σiZ

(i)
σ\i

If we prove that

|E[ψ(Q(i−1)]− E[ψ(Q(i)]| ≤
(

2B

r!
η−rd

)
Infi(Q)r/2.∀i ∈ [n]

Then by using 12.15 and the fact that Var[Q] ≤ 1 our main theorem is proved.
From Taylor theorem we have that

(12.1) |E[ψ(Q̃ + R)−
r−1∑
k=0

E[
ψ(k)(Q̃)Rk

k!
]| ≤ B

r!
E[|R|r]

(12.2) |E[ψ(Q̃ + S)−
r−1∑
k=0

E[
ψ(k)(Q̃)Sk

k!
]| ≤ B

r!
E[|S|r]

Using the fact that Z(i)
σ\i and Q̃ are independent we have that

(12.3) E[ψ(k)(Q̃Rk) = E[ψ(k)(Q̃Sk)

So combining relations 12.1,12.2,12.3 we get
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|E[ψ(Q̃ + R)− E[ψ(Q̃ + S)| ≤ B

r!
(E[|R|r] + E[|S|r]).

Now, by propositions 12.16 and 12.17 we have that

E[|R|r] ≤ η−rdE[R2]r/2 and E[|S|r] ≤ η−rdE[S2]r/2

But,
E[S2] = E[R2] = Infi(Q)

.
So combining the previous relations we have that

|E[ψ(Q̃ + R)− ψ(Q̃ + S)]| ≤
(

2B

r!
η−rd

)
Infi(Q)r/2

So the invariance theorem is proved,(Notice that Q(i−1) = Q̃ + R and Q(i) = Q̃ + S).
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Chapter 13

Majority is Stablest: Discrete and
SoS

after A. De, E. Mossel and J. Neeman [3]
A summary written by Dimitris Vardakis

Abstract. This text is a summary of the the sections 1.1, 2, 3 and 4 of the work “Majority
is Stablest: Discrete and SoS” by A. De, E. Mossel, and J. Neeman. In these sections, we
will cover the “discrete proofs” of Borell’s Inequality the and Majority-is-Stablest Theorem,
which are done by induction on the dimension.

13.1 Introduction

The “Majority is Stablest” Theorem, proved in [6], is a positive answer to two conjectures, one in hardness
of approximation [5] and one in social choice theory [4]. Its proof was based on Gaussian analysis and a
form of “Invariance Principle”, which was used to connect the Gaussian setting with the discrete nature
of the theorem.

Since the “Majority is Stablest” Theorem concerns function on the Hamming cube {−1, 1}n, it is
natural to ask whether there exists a purely “discrete proof”. It turns out that it is possible to prove
it without relying on any other elaborate machinery by induction on dimension. After all, many results
about functions on the Hamming cube can be proven using induction thanks to their discrete nature.

13.1.1 Functions with low-influence variables

Boolean functions f : {−1, 1}n → {−1, 1} play an important role in discrete Fourier analysis. Of
particular interest are functions with low “influence”. For X ∈ {−1, 1}n let X−i be

X−i = (X1, . . . , Xi−1,−Xi, Xi+1, . . . , Xn).

Then, the i-th influence of f is
Infif = P[f(X) 6= f(X−i)]

where X ∼ {−1, 1}n, that is where X is uniformly distributed on the Hamming cube.
Functions of low influence are important tools in hyper-contractive estimates and social choice theory.

Two characteristic examples are the dictator functions fj (j ∈ [n]) given by fj(x) = xj with influence
Infifj equal to 1 when j = i and 0 when j 6= i, and the majority function Majn(x) = sgn(

∑n
i=1 xi) (for

odd n) with InfiMajn = O(n−1/2).
The “Majority is Stablest” Theorem states that the expectation of f(x)f(y) cannot be much higher

than the corresponding value for the majority function when x and y are “ρ-correlated”. Formally, we
have the following definitions are result:

Definition 13.1. The vectors x, y ∈ {−1, 1}n are ρ-correlated with ρ ∈ [−1, 1] when the vectors (xi, yi)
are independent identically distributed random variables with E[xi] = E[yi] = 0 and E[xiyi] = ρ. We
write x ∼ρ y.
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Definition 13.2. The noise stability of f : {−1, 1}n → R at ρ ∈ (−1, 1) is defined as

Stabρf = Ex∼ρy[f(x)f(y)].

Theorem 13.3 (Majority is Stablest [6]). Let ρ ∈ [0, 1] and ε > 0. Then, there exists τ > 0 so that for
any f : {−1, 1}n → [0, 1] with E[f ] = 1/2 and maxi Infif ≤ τ it holds

Stabρf ≤
(

1− arccos ρ

π

)
+ ε.

Observe also the (decreasing) limit

lim
n→∞

Stabρ(Majn) = 1− arccos ρ

π
,

which suggests that no low-influence function can be much more noise-stable than the majority function.

Here, by induction on dimension we will slightly generalise this theorem to functions of any expecta-
tion where the right-hand side is replaced by the corresponding quantity for the shifted majority of the
same expectation. We will use hypercontractivity to bound certain error terms.

Additionally, we will present an independent proof of Borell’s Inequality using similar techniques
(but not hypercontractivity). Note that “Majority is Stablest” Theorem implies Borrel’s result.

13.2 Tensorisation Theorem

First, we need to introduce the appropriate functions.

Let Φ : R→ (0, 1) be the cumulative distribution function of a standard normal variable. For every
ρ ∈ [−1, 1], we define Jρ : (0, 1)2 → [0, 1] as

Jρ(x, y) = P[X ≤ Φ−1(x), Y ≤ Φ−1(y)]

where X,Y are jointly normally distributed random variables with covariance matrix

Cov(X,Y ) =

(
1 ρ
ρ 1

)
.

Note that Jρ(
1
2 ,

1
2 ) = 1

2 + arcsin(ρ)
π = limn→∞ Stabρ(Majn). Thus, Jρ is the right function to work with

towards generalising the “Majority is Stablest” Theorem.
Ideally, we would like to have an inequality of the form

E[Jρ(f(X), g(Y ))] ≤ Jρ(Ef,Eg)

but this won’t be possible without the appearance of certain error terms.

Definition 13.4. For f : {−1, 1}n → R, S ⊂ [n] and X ∈ {−1, 1}S we define fX : {−1, 1}[n]\S → R the
restriction of f on {X}.

Claim.

∆n(f) =

n∑
i=1

E|fi − fi−1|3

where fi(X1, . . . , Xi) = E[f | X1, . . . , Xi].

The symbols ∆n will appear in the error terms and measure the “Lipschitzness” of a function. It
will be important that they are of 3rd order.

Theorem 13.6. Let ε > 0, 0 < ρ < 1, and consider two ρ-correlated variables X,Y ∈ {−1, 1}n. Then,
there exist constants C, c > 0 dependent only on ρ such that for any functions f, g : {−1, 1}n → [ε, 1− ε]

E[Jρ(f(X), g(Y ))] ≤ Jρ(Ef,Eg) + Cε−c(∆n(f) + ∆n(g)).
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13.2.1 The base case

We will prove Theorem 13.6 by induction on n. Here we show the base case for n = 1:

Claim. Let ε > 0 and 0 < ρ < 1. There exist Cρ, cρ > 0 such that for any random ρ-correlated variables
X,Y ∈ [ε, 1− ε] it holds

E[Jρ(X,Y )] ≤ Jρ(EX,EY ) + Cρε
−cρ(E|X − EX|3 + E|Y − EY |3).

The proof of this is based on the Taylor expansion of Jρ(x, y) along with two basic facts about its
2nd and 3rd derivatives:

Claim. For any (x, y) ∈ (0, 1)2 and 0 < ρ < 1 the matrix

Mρ(x, y) =

(
∂2Jρ
∂x2 ρ

∂2Jρ
∂x∂y

ρ
∂2Jρ
∂x∂y

∂2Jρ
∂y2

)
(x, y)

is negative semi-definite.

Proof of Claim 13.7. Using the Taylor expansion of Jρ around the point (EX,EY ), we can write EJρ as

EJρ(X,Y ) = d0 + d1 + d2 + d3 + . . . .

Set x̃ = X − EX and ỹ = Y − EY . Then, d0 = Jρ(EX,EY ), and

d1 =
∂Jρ
∂x

(EX,EY )Ex̃+
∂Jρ
∂y

(EX,EY )Eỹ = 0.

The second order term is non-positive:

d2 =
1

2
E

(x̃, ỹ)

(
∂2Jρ
∂x2

∂2Jρ
∂x∂y

∂2Jρ
∂x∂y

∂2Jρ
∂y2

)
|(EX,EY )

(
x̃
ỹ

) =
1

2
(x̃, x̃)Mρ(EX,EY )

(
x̃
x̃

)
≤ 0.

Calculating the 3rd order derivatives of Jρ we find that

d3 ≤ Cρε−cρ(Ex̃+ Eỹ).

13.2.2 The inductive step

Now, we finish with Theorem 13.6.

Proof of Theorem 13.6. Assuming the theorem holds true for n − 1, set X ′ = (X1 . . . , Xn−1) and Y ′ =
(Y1, . . . , Yn−1), and consider the functions f, g : {−1, 1}n → [ε, 1 − ε]. Applying our assumption to fXn
and gYn , we get

EX′,Y ′ [Jρ(fXn , gYn)] ≤ Jρ(E[fXn | Xn],E[gYn | Yn]) + Cρε
−cρ(∆n−1(fXn) + ∆n−1(gYn)).

Averaging over Xn and Yn, and using Claim 13.7, we have

EJρ(f, g) ≤ Jρ(Ef,Eg) + Cρε
−cρ
(

∆1(E[fXn | Xn])

+ ∆1(E[gYn | Yn]) + EXn [∆n−1(fXn)] + EYn [∆n−1(gYn)]
)
.

The error terms in the parenthesis equal exactly ∆n(f) + ∆n(g) by Claim 13.5 and the theorem is
proved.
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13.3 Borell’s Inequality

Theorem 13.9 (Borell’s Inequality). Let ρ ≥ 0 and consider two Gaussian vectors G1, G2 ∈ Rd with
joint distribution

(G1, G2) ∼ N
(

0,

(
I ρI
ρI I

))
.

For any f1, f2 : Rd → [0, 1] it holds that

EJρ(f1(G1), f2(G2)) ≤ Jρ(Ef1(G1),Ef2(G2)).

Borell’s Inequality follows trivially from the “Majority is Stablest” Theorem. Here we have an
independent proof based on Theorem 13.6. This will entail the following crude estimate of ∆n, which
will need to be improved for the proof of “Majority is Stablest” Theorem.

Claim. For X ∈ {−1, 1}n and any f : Rn → R it holds that

∆n(f) ≤ 1

8

n∑
i=1

E|f(X)− f(X−i)|3.

Proof. Conditioning on Xn, this follows using induction and Jensen’s inequality.

Proof of Borell’s Inequality. First, we write G1, G2 as the limits of the averages of independent random
variables Xi, Yi ∈ {−1, 1}. All the limits exist thanks to central limit theorems.

Set n = md and X = (X1, . . . , Xn) so that

Gn1 :=
1√
m

 m∑
i=1

Xi,

2m∑
i=m+1

Xi, . . . ,

md∑
i=(d−1)m+1

Xi

 d→ G1,

and similarly for G2 and Y .
Suppose f1, f2 are Lipschitz functions taking values in [ε, 1− ε] and define g1, g2 so that

g1(X) = f1(Gn1 ) and g2(Y ) = f2(Gn2 ).

Then, Theorem 13.6 gives

(13.1) EJρ(g1(X), g2(Y )) ≤ Jρ(Eg1,Eg2) + Cρε
−cρ(∆n(g1) + ∆n(g2)).

Also, by Claim 13.10 and because f1, f2 are Lipschitz, ∆n(gj) = O(m−1/2); note n goes to infinity while
m→∞. Therefore passing to the limit, (13.1) gives

EJρ(f1(G1), f2(G2)) ≤ Jρ(Ef1(G1),Ef2(G2)).

This proves the theorem for Lipschitz functions with values in [ε, 1 − ε]. But with this we can
approximate any other functions f1, f2 : Rd → [0, 1] and the inequality holds as is.

13.4 Majority is Stablest

To improve the bound of Claim 13.10 we will need to express ∆n(f) in terms of the Fourier coefficients
of f . Then, using the hypercontractivity theorem, the error terms will be small whenever the influences
of f are small.
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Fourier analysis

Consider {−1, 1}n equipped with the uniform measure. For any S ⊂ [n] the character functions are
given by χS(x) =

∏
i∈S xi. Then, every function f : {−1, 1}n → R can be written in the form

f(x) =
∑
S⊂[n]

f̂(S)χS(x), where f̂(S) = Ex∼{−1,1}n [f(x)χS(x)]

are the Fourier coefficients of f .
The i-th influence of f can be written as Infif =

∑
S3i f̂(S)2, and also Varf =

∑
S 6=∅ f̂(S)2.

The noise operator Tρ is defined by

Tρf(x) := Ey∼ρxf(y) =
∑
S⊂[n]

ρ|S|f̂(S)χS(x).

It also holds that Stabρf = 〈f, Tρf〉.

Next, we state some auxiliary yet important properties including ∆n and f ’s and Tρf ’s Fourier
coefficients.

The first claim, the description of the error term ∆n(f), is an easy case of induction:

Claim. Let Si = {i+ 1, . . . , n}. Then,

(13.2) ∆n(f) =

n∑
i=1

EX∈{−1,1}Si |f̂X(i)|3.

The next two claims follow directly from the definition and properties of the Fourier coefficients and
Tρf . Those along with the Bonami-Beckner Hypercontractivity Theorem will give us a more precise
bound from the one used to prove Borell’s Inequality.

Claim. For any disjoint S,U ⊂ [n], and any x ∈ {−1, 1}S and i ∈ U , we have

(13.3) EX∈{−1,1}S |f̂X(U)|2 ≤ Infif.

Moreover, if Si = {i+ 1, . . . , n}, then

(13.3’)

n∑
i=1

EX∈{−1,1}Si |f̂X(i)|2 = Varf.

Claim. Let σ ∈ (0, 1). For any disjoint S,U ⊂ [n]

(13.4) ̂(Tσf)x(U) = σ|U |Tσ(f̂x(U))

as polynomials in x ∈ {−1, 1}S.

Theorem 13.14 (Hypercontractivity [1, 2]). Let f : {−1, 1}n → R and 1 ≤ q ≤ p. Then, for any
ρ ≤

√
(q − 1)/(p− 1)

(13.5) ‖Tρf‖p ≤ ‖f‖q.

Now, set q = 2 and p = 1 + σ−2 for 0 < σ < 1. Let f : {−1, 1}n → [−1, 1] and consider f̂x(i) as a
function of x ∈ {−1, 1}Si where Si = {i+ 1, . . . , n}. Applying in order Claim 13.13, Theorem 13.14 and
(13.3), we get

E| ̂(Tσf)X(i))|p = σpE|Tσ(f̂X(i))|p ≤ (E|f̂X(i)|2)p/2 ≤ Infi(f)
p−2
2 E|f̂X(i)|2

Summing over all i ∈ [n], (13.3’) gives us that

n∑
i=1

EX∈{−1,1}Si | ̂(Tσf)X(i)|p ≤ (max
i

Infif)
p−2
2 Varf.

The above along with (13.2) imply the following:
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Claim. If p = 1 + σ−2 ≤ 3 it holds

(13.6) ∆n(Tσf) ≤ (max
i

Infif)
1−σ2

2σ2 .

And now, we are ready to state and prove the “Majority is Stablest” Theorem:

Theorem 13.16 (Majority is Stablest). For any ρ ∈ (0, 1) there exists constant Cρ > 0 (dependent only
on ρ) such that for any function f : {−1, 1}n → [0, 1] with maxi Infif ≤ τ

Stabρf ≤ Jρ(Ef,Ef) + Cρ
log log(1/τ)

log(1/τ)
.

Proof. First, we deal with functions f : {−1, 1}n → [ε, 1 − ε]. Towards this, consider X,Y to two ρ-
correlated uniformly random variables on {−1, 1}n. If we apply Theorem 13.6 to Tσf for appropriate
σ ≥ √ρ and Claim 13.15 (in this order), then for some exponent σ̃ we have

EJρ(Tσf(X), Tσf(Y )) ≤ Jρ(E[Tσf ],E[Tσf ]) + Cε−c∆n(Tσf) ≤ Jρ(Ef,Ef) + Cε−cτ σ̃,

where c and C depend only on ρ. Since xy ≤ Jρ(x, y), we get

Stabρσ2f = E[Tσf(X)Tσf(Y )] ≤ Jρ(Ef,Ef) + Cε−cτ σ̃

and with appropriate relabelling

(13.7) Stabρf ≤ Jρσ−2(Ef,Ef) + Cε−cτ σ̃.

In order to pass to functions f : {−1, 1}n → [0, 1] let f ε be the truncation of f to [ε, 1− ε]; it holds
that |f − f ε| ≤ ε and E|f − Ef ε| ≤ ε. Lipschitz properties of Jρ(x, y) and elementary computations
imply, through (13.7), that

Stabρf ≤ Stabρf
ε + 2ε ≤ Jρσ−2(Ef,Ef) + 4ε+ Cε−cτ σ̃.

Next, notice that Jρσ−2(x, y) ≤ Jρ(x, y) +Oρ(σ̃), and by carefully choosing ε we have

Stabρf ≤ Jρ(Ef,Ef) + C(σ̃ + τ σ̃).

Finally, when τ is small, it is possible to pick σ —and thus σ̃— so that

σ̃ + τ σ̃ ≤ log log(1/τ)

log(1/τ)

and the theorem is proved.
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Chapter 14

Low Degree Learning and the Metric
Entropy of Polynomials

after A. Eskenazis, P. Ivanisvili, and L. Streck [2]
A summary written by Thomas Winckelman

Abstract. We investigate how many data points are needed to recover a function on
Hn = {±1}n. Since exact recovery is achieved by |Hn| = 2n data points, the paradigm is to
achieve non-exponential dependence on n at the expense of assumptions on the function and
“probably only epsilon.” The term “metric entropy” refers to a general argument for deriving
lower bounds based on covering/packing numbers. We survey results for approximating real-
valued functions on Hn, and we outline the metric entropy argument.

14.1 Real-Valued Functions on the Hamming Cube

The set Hn := {±1}n is a group with operation (x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn) and identity
(1, . . . , 1). The characters of Hn are, precisely, the Walsh functions, defined wS(x) :=

∏
j∈S xj for each

S ⊆ [n]. Therefore, given g : Hn → R, we use the Fourier notation ĝ(S) := 〈g, wS〉L2(Hn) where L2(Hn)
is always with respect to the uniform probability measure on Hn. We call the real values {ĝ(S) : S ⊆ [n]}
the Walsh coefficients of g. For further discussion, see, for instance, section E of [4].

Obs. Every function Hn → R extends uniquely to a multi-linear polynomial on Rn with real
coefficients, that is, a function of the form p(x) =

∑
S⊆[n] aS

∏
j∈S xj . Indeed, take aS to the Walsh

coefficients.

Def. Given a function f : Hn → R, a collection S of subsets of [n], and η ≥ 0, we define the statement
that f is η-concentrated on S to mean∑

S 6∈S

∣∣f̂(S)
∣∣2 ≤ η.

Remark: In the extreme case, a function f which depends on only k variables is 0-concentrated on
the collection of sets {S ⊆ σ}, where σ ⊆ [n] is the set of indices of the variables on which f depends.

Convention. We let Fn,d(t) denote the functions f : Hn → R which are t-concentrated on the
collection of sets {|S| ≤ d}. We call Fn,d := Fn,d(0), and we refer to functions f ∈ Fn,d as having
degree at most d.
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14.2 Select Concepts and Results from Learning Theory

Since functions f : Hn → R correspond to polynomials, results on polynomial interpolation are applica-
ble. In general, however, the multi-variate case is difficult, which is why we focus on the more specific
setting of functions f : Hn → R. To begin, we present some baseline observations for context.

Thm (Exact Deterministic Learning I; [2]). A function f ∈ Fn,d is completely determined
by the points x ∈ Hn with at most d negative coordinates, of which there are Q := Qn,d :=

∑
k≤d

(
n
k

)
∈[

(n/d)d, (en/d)d
]
. In fact, for a fixed enumeration {x(1), . . . , x(Q)} of these points, there is an honest-to-

goodness formula for the function which maps each tuple (a1, ..., aQ) ∈ RQ to the unique f ∈ Fn,d that
satisfies f(x(k)) = ak for all k ∈ [Q].

Def (Query Complexity). Given F ⊆ L2(Hn) and ε ≥ 0, we write Q(F , ε) to denote the smallest
positive integer Q such that there exists a function H : (Hn × R)Q → L2(Hn) along with a point
x(1) ∈ Hn and functions ϕ1, . . . , ϕQ−1 each mapping ϕq : (Hn × R)q → Hn such that, for any given
f ∈ F , if xq+1 = ϕq[(x

(1), f(x(1))), . . . , (x(q), f(x(q)))] for every q < Q, then∥∥∥f − H
[
(x(1), f(x(1))), . . . , (x(Q), f(x(Q)))

]∥∥∥2

L2(Hn)
≤ ε.

Remark: The intention is that x(q+1) is allowed to depend on x(1), . . . , x(q) and on f(x(1)), . . . , f(x(q)),
but not on anything more. The function ϕq merely serves to formalize this.

Remark: Such an integer Q always exists, and is at most 2n.
Remark: The function ε 7→ Q(F , ε2) is analogous the inverse function of what is calledm-th minimal

adaptive intrinsic error in optimal recovery. However, in optimal recovery, more diverse measurements
are typically allowed, not merely point evaluations.

Thm (Exact Deterministic Learning II; [2]). While the above theorem says that Q(Fn,d, 0) ≤∑
k≤d

(
n
k

)
, it is in fact true that Q(Fn,d, 0) =

∑
k≤d

(
n
k

)
.

Remark: The statement “Q(Fn,d, 0) ≤
∑
k≤d

(
n
k

)
,” by itself, does not tell the complete story. For

instance, it actually did not matter in original theorem the order in which the data points are given.

Def (Randomized Query Complexity). Given F ⊆ L2(Hn) and ε ≥ 0 and δ ∈ [0, 1], we write
Qr(F , ε, δ) to denote the infimum of the set of integers Q > 0 for which there exists a (Borel) function
H : (Hn × R)Q → L2(Hn) such that, for any f ∈ F , if X1, . . . , XQ are drawn uniformly IID from Hn,

P
(∥∥f − H

[
(X1, f(X1)), . . . , (XQ, f(XQ))

]∥∥2

L2(Hn)
≤ ε
)
≥ 1− δ.

Remark: As a sanity check, the assumption that H is Borel ensures that the thing of which we’re
taking the probability is, indeed, a random variable.

Remark: This is very analogous to the notion of sample complexity in statistical learning theory.
However, in statistical learning theory, more diverse probability distributions are typically allowed, not
merely uniform.

Obs. Given B ⊆ F and 0 ≤ ε ≤ E and 0 ≤ δ ≤ ∆ ≤ 1, we have Qr(B, E,∆) ≤ Qr(F , ε, δ) and
Q(B, E) ≤ Q(F , ε).

14.3 Upper Bounds

An intuitive means of attempting to reconstruct a function g : Hn → C based only on a finite data set
D = {(X1, Y1), . . . , (XQ, YQ)} ⊆ (Hn × R)Q is to estimate each of g’s Walsh coefficients by taking the
empirical counterparts

αS(D) :=
1

Q

Q∑
j=1

YjwS(Xj).
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In fact, the below two theorems are each proven constructively, by exhibiting a quite practical algorithm
based on this notion of coefficient estimation.

Obs (Uniform Distribution is Special). If Xj has the uniform distribution and g(Xj) is a
version of E(Yj | Xj) for every j, then αS(D) is an unbiased estimator of ĝ(S). This unbiasedness is used
in order to apply concentration inequalities, thus explaining the role of the uniform distribution.

Remark: Since E(Yj | Xj) = g(Xj) is the key property, not Yj = g(Xj), the algorithms implicit in
the following proofs are even somewhat robust to noisy measurements.

Thm (Random Learning; [1]). Call U := {f ∈ L2(Hn) : ‖f‖L2(Hn) ≤ 1}. There is C > 0 such
that, for all ε, δ > 0 and d ∈ [n], we have

Qr
(
U ∩ Fn,d, ε, δ

)
≤ min

{
exp
(
Cd1.5

√
ln(d)

)
εd+1

,
4dnd

ε

}
ln(n/δ).

Thm (Robust Random Learning; [2]). Let R, η, t ≥ 0 and m ∈ [n]. Let L be a non-empty
collection of subsets of [n]. Let F be a collection of functions Hn → R such that each f ∈ F is t-
concentrated on L, satisfies ‖f‖H2(Hn) ≤ R, and is η-concentrated on some (unknown) collection S of
subsets of [n] for which |S| ≤ m. Then, for every ε, δ > 0, we have

Qr
(
F ,min{R2, η + t+ ε}, δ

)
≤

⌈
18R2m

ε
ln(2|L|/δ)

⌉
.

Remark: Even in the extreme case L = 2[n], our requirement on Q is still only Q & R2mn
ε ln(2/δ)

where m is the smallest cardinality such that every f ∈ F is η-concentrated on asomecollection of that
cardinality. Thus, the dependence on n is only linear, though scales like the number m of “non-negligible”
Walsh coefficients of functions in the class F .

Remark: The parameters L and δ are chosen by the user, however, crucially, S is not. The idea is
that L is overly conservative in the sense that, even while g is t-concentrated on L, there might still be
a much smaller (unknown) set S on which g is η-concentrated. Logically, “∃L : ∀f : ∃S.”

Cor (Boolean Case; [2]). Using deep structural results regarding the existence of collections on
which degree d and/or Boolean functions are concentrated, we can extract many further estimates, For
instance,

Qr
(
Bn,d, ε, δ

)
≤ 36

d 2d
2

ε
ln(n/δ)

where Bn,d denotes the ±1-valued functions on Hn of degree at most d.

14.4 Lower Bounds

A reasonable notion of query complexity can be defined in numerous different ways, and variations of
this definition appear throughout applied mathematics, as already remarked. What unifies these diverse
concepts is the notion of a “best possible worst case scenario.” Indeed, in our definitions, idealized
algorithms are allowed, as are the most pathaological f which F has to offer. Subjectively, this can make
upper bounds on query complexity more “impressive” than lower bounds, especially if the upper bound
is realized through a concrete algorithm, as has been the case for all the estimates presented thus far,
though the opaque notation “Qr(F , ε, δ)” fails to reflect this.

Lower bounds are most convincing when the cause for failure is some non-pathological f . This can
be achieved by lower-bounding Qr(B, ε, δ) of a class B which does not contain any pathologies. Indeed,
we will derive lower bounds on query complexity for the relatively “nice” classes of Boolean functions.
Since errors are measured as metric distances, packing numbers emerge as a useful tool for estimating
complexity. This principle is difficult to articulate in general, yet widespread (for a recent example in
the context of shallow ReLU networks, see [3]). Here is a specific instance of the principle.
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Prop (Metric Entropy Bound Argument; [2]). Let B be any collection of functions Hn →
{±1}. For all ε, δ > 0, the packing numbers satisfy

Q(B, ε) ≥ log2

(
M
(
B, ‖ · ‖L2(Hn), 2

√
ε
))
, and

Qr(B, ε, δ) ≥ log2

(
M
(
B, ‖ · ‖L2(Hn), 2

√
ε
))

+ log2(1− δ).

Remark: As is usually the case with such terse notation, in fact, much more can be said. For
instance, the latter bound is still true even if the variables X1, . . . , XQ are allowed to have any joint
distribution.

Remark: Sharp bounds on the packing number often boil down to combinatorial bottlenecks, the
study of which is, basically, “discrepancy theory.”

Obs. The set Wn,d := {wS : |S| ≤ d} is discrete, by orthogonality, with ‖f − g‖L2(Hn) =
√

2 for

any distinct f, g ∈ Wn,d. Therefore, whenever ε <
√

2, we have M
(
Wn,d, ‖ · ‖L2(Hn), ε

)
= |Wn,d| =∑

k≤d
(
n
k

)
≥ (n/d)d.

Cor. Our bound Qr(U ∩ Fn,d, ε, δ) ≤ exp
(
Cd1.5

√
ln(d)

)
ln(n/δ)/εd+1 is “asymptotically sharp in n”

in the sense that, fixing ε, δ, d > 0, if ε < 1/
√

2,

lim sup
n→∞

exp
(
Cd1.5

√
ln(d)

)
ln(n/δ)/εd+1

Qr(U ∩ Fn,d, ε, δ)
≤

exp
(
Cd1.5

√
ln(d)

)
d εd+1

< ∞.

Indeed, U∩Fn,d ⊇ Wn,d, so that Qr(U∩Fn,d, ε, δ) ≥ d log2(n/d)+log2(1−δ), but log2(x/δ)/log2(x/d)→
1 as x→∞, by L’ Hôspital’s rule.
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Chapter 15

On the Gaussian noise sensitivity
and Gaussian surface area of
polynomial threshold functions

after D. Kane [1]
A summary written by Qiang Wu

Abstract. In this note, we summarize the main results and its proof ideas in [1], where
Kane proved sharp results of Gaussian noise sensitivity for general degree-d polynomial
threshold functions. Furthermore, this result was used to establish some sharp results about
the Gaussian surface area.

15.1 Introduction

Polynomial threshold functions are a class of binary-valued functions associated with some polynomial.
It plays an important role in several different subjects, such as in learning theory, theoretical computer
science etc. To understand the noise sensitivity of those functions is a fundamental problem. To begin
with, let us present the precise definitions of the related concepts first.

Definition 15.1 (Polynomial threshold functions). A given function f : RN → {−1,+1} is called a
polynomial threshold function if

f(x) = sign(p(x))

for some polynomial p(x). If the degree of associated p(x) is at most d, we call f(x) is a degree-d
polynomial threshold function.

If one restricts the domain from RN to {−1,+1}N , PTFs become particular standard boolean func-
tions. For general boolean functions, an important question is about its noise sensitivity. Specifically,
the question is asking how stable of the function’s value under a small perturbation of the argument x.
In this article, we will instead focus on the notion of Gaussian noise sensitivity to deal with continuous
inputs. The special properties of Gaussian also enable us to exploit the symmetry and thus can obtain
some sharp results. Here is a formal definition of the Gaussian noise sensitivity.

Definition 15.2 (Gaussian noise sensitivity). Given noise rate ε > 0, for a PTF f , the Gaussian noise
sensitivity is

GNSε(f) := P(f(X) 6= f(Z)),(15.1)

where Z := (1− ε) ·X +
√

2ε− ε2Y , and X,Y are independent N -dimensional Gaussian vectors.
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One of the main results in the paper [1] is a sharp asymptotic bound on the Gaussian noise sensitivity
of PTFs. It turns out that the noise sensitivity has some intimate connections with the Gaussian surface
area. Heuristically, noise sensitivity characterizes the probability of X near the boundary, where a small
perturbation will push the function over the boundary. This in particular is related the the area of the
boundary surface.

In general, the Gaussian surface area of a set A ⊆ RN is defined as

Γ(A) := lim
δ→0

inf
1

δ
· P(X ∈ Aδ \A) for X Gaussian vector,(15.2)

where the set Aδ := {x ∈ RN : d(x,A) ≤ δ} is the augmented set of A within distance δ. In particular,
for PTF f , the Gaussian surface area is

Γ(f) := Γ(f−1(1)).

15.2 Main results

The first main result is about the Gaussian noise sensitivity.

Theorem 15.3 ([1]-Theorem 1.1). If f is a degree-d PTF, then

GNSε(f) ≤ d arcsin(
√

2ε− ε2)

π
∼ d
√

2ε

π
= O(d

√
ε).(15.3)

Furthermore the above bound is asymptotically tight as ε → 0 for threshold functions of any square free
product of homogeneous linear functions.

Due to the intimate connection of Gaussian surface area and Gaussian noise sensitivity, similar tight
bound for surface area can also be obtained.

Theorem 15.4 ([1]-Theorem 1.2). If f is a degree-d PTF, then

Γ(f) ≤ d√
2π
.(15.4)

Furthermore the above bound is optimal for threshold functions of any square free product of homogeneous
linear functions.

Before discussing the proof details, let us briefly mention one notable conjecture by Gotsman and
Linial [2] about the average noise sensitivity of PTFs.

15.3 Connections to Gotsman-Linial conjecture

Consider PTFs on the hypercube {−1,+1}N , we introduced the noise sensitivity of PTFs, the average
noise sensitivity can be heuristically defined as the expected number of bits flipped that will change the
function’s value. Specifically, Gotman-Linial conjecture says that the average noise sensitivity of degree-d
PTFs is maximized by product of linear threshold functions cutting the middle d layers of the hypercube.
This original statement was recently refuted in [3]. However, a weaker form about the asymptotic bound
is expected to be true and still open. For more details about this conjecture, see [3, 4] and references
therein.

15.4 Proof of Theorem 15.3

The idea of the proof heavily depends on the Gaussianity assumption, in particular, the key step using
symmetrization to simplify the problem is based on the rotational invariance property of Gaussian
distribution. We start with reformulating the original problem.
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Step 1: Rewrite

GNSε(f) = P(f(X) 6= f(Z)) = P(f(X) 6= f(cos(θ)X + sin(θ)Y )),

where θ = arcsin(
√

2ε− ε2). For notation convenience, let Xθ := cos(θ)X + sin(θ)Y .
Step 2: Instead of directly computing the probability over all X,Y , one can utilize the rotational

invariance property of Gaussian. This implies for any fixed φ ∈ [0, 2π],

GNSε(f) = P(f(Xφ) 6= f(Xφ+θ)).

One way to look at this property is selecting the independent Gaussians as Xφ and Xφ+π/2, then it’s
easy to verify Xφ+θ = cos(θ)Xφ + sin(θ)Xφ+π/2. Therefore

GNSε(f) =
1

2π

ˆ 2π

0

P(f(Xφ) 6= f(Xφ+θ))dφ.

Step 3: One observation is that in order to evaluate the above integral, one needs to understand the
event f(Xφ) 6= f(Xφ+θ). Recall f is binary-valued, then the problem reduces to counting the number of
sign changes of f in [φ, φ+ θ]. therefore

GNSε(f) =
1

2π
EX,Y

ˆ 2π

0

1f(Xφ)6=f(Xφ+θ)dφ ≤
θ

2π
EX,Y [W ],

where W is a random variable representing the number of sign changes of f(Xφ) for φ ∈ [0, 2π].
Step 4: Since f is a degree-d PTF, that is, there exists a degree-d polynomial p(x) such that

f(x) = sign(p(x)). Notice that the number of zeros of p(x) relates to the number of sign changes. For
p(cos(φ)X + sin(φ)Y ), this can be treated as the intersections of p(ax + by) = 0 and a2 + b2 = 1, by
Bezout’s Theorem 1, there can be at most 2d solutions. Thus

GNSε(f) ≤ dθ

π
.

A final remark is in some cases, the number of sign changes can be less than 2d, then the bound will not
be sharp for those functions. But for functions as product of d homogeneous linear functions, the bound
is asymptotic sharp.

15.5 Proof of the Gaussian surface area

The following key lemma basically relates the Gaussian noise sensitivity and Gaussian surface area.

Lemma 15.5 ([1]-Lemma 3.1). For PTF f , and X,Y are independent Gaussians, then

lim
ε→0

P(f(X) = −1, f(X + εY ) = 1)

ε
=

Γ(f)√
2π

The left hand side is some sort of noise sensitivity but not exactly. The right hand side is exactly
the Gaussian surface area. It needs to further formalize the relation of LHS and the Gaussian noise
sensitivity. Before that, we roughly sketch the idea of the proof for Lemma 15.5.

Suppose X is in distance t from the boundary, it is expected that the probability is roughly Γ(f)dt.
To compute the LHS probability, one needs the size of εY ’s projection onto the normal direction to
the boundary is larger than t, otherwise X + εY can not be pushed over the boundary. Thus the LHS
probability is ˆ

εy>t>0

φ(y)Γ(f)dtdy =

ˆ ∞
0

εΓ(f)yφ(y)dy =
Γ(f)ε√

2π
,

where φ(y) is the Gaussian density function.

1Bezout’s theorem is a classical result in algebraic geometry, which asserts that for two nonzero polynomials
P,Q with no common factor, the number of intersections of P (x, y) = 0 and Q(x, y) = 0 can be at most
degree(P ) · degree(Q).
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15.6 Proof of Theorem 15.4

The proof can be roughly divided into following steps.
Step 1: First it is clear to notice that for a given PTF f , Γ(f) = Γ(−f). Since in any case, it

measures the boundary between f−1(−1) and f−1(1).
Step 2: To bound the LHS probability P(f(X) 6= f(X + εY )), we are seeking for a connection to

the standard Gaussian noise sensitivity. Recall

GNSε(f) = P(f(X) 6= f(Z)) for Z = cos(θ)X + sin(θ)Y.

Taking θ = arctan(ε), then X + εY = rZ with r =
√

1 + ε2. Finally

P(f(X) 6= f(X + εY )) ≤ P(f(X) 6= f(Z)) + P(f(Z) 6= f(rZ))

The first term can be bounded using Gaussian noise sensitivity, and the second term also can be controlled
using the Gaussian symmetry. We skip the details here. Eventually, the bound is

P(f(X) 6= f(X + εY )) ≤ dε

π
+
dε2

4

√
n

π
.

Step 3: Finally, collecting all the previous results,

Γ(f) =
1

2
(Γ(f) + Γ(−f))

=

√
π

2
· lim
ε→0

P(f(X) = −1, f(X + εY ) = 1) + P(f(X) = 1, f(X + εY ) = −1)

ε

=

√
π

2
· lim
ε→0

P(f(X) 6= (X + εY ))

ε
≤ d√

2π

where the first equality utilized the symmetry property in Step 1. The second step is based on the
identity in Lemma 15.5, finally the conclusion in Step 2 gives the desired bound.
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