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Chapter 1

Every decision tree has an influential
variable

after R. O’Donnell, M. Saks, O. Schramm, R.A. Servedio [5]
A summary written by Antonio Ismael Cano Mármol

Abstract. We outline the proof of the OSSS inequality. As an application we give a random
decision tree complexity lower bound. Moreover, we introduce an inductive proof [4] of the
main inequality.

1.1 Introduction and comparison with previous work

For some p ∈ (0, 1), let {−1, 1}n(p) denote the discrete cube endowed with the p−biased product measure

µ(p)(x) = p|{i : xi=1}| (1− p)|{i : xi=−1}|.

We will write {−1, 1}n instead when referring to the case p = 1/2.
Any boolean function f : {−1, 1}n(p) → {−1, 1} has an associated influence vector (Inf1(f), . . . , Infn(f)),

where Inf i(f) measures to what extent the value of f depends on variable i, or formally,

Inf i(f) = Pr
x∈{−1,1}n

(p)

[f(x) 6= f(x[n]\{i} − xiei)]

= 2 Pr
x∈{−1,1}n(p)
zi∈{−1,1}

[f(x) 6= f(x[n]\{i} + ziei)].

Here, we denote xS =
∑
i∈S xiei for any S ⊆ [n] = {1, . . . , n}. The concept of variable influence was

introduced by Ben-Or and Linial [1] in a paper in which they made the observation that any balanced
function f : {−1, 1}n → {−1, 1} (i.e. E[f ] = 0) satisfies Infmax(f) := maxi∈[n] Inf i(f) ≥ 1

n . Indeed,
this fact follows from the Efron-Stein inequality,

(1.1) Var[f ] ≤
n∑
i=1

Inf i(f),

which relates the influences to the variance Var[f ] = E[f2] − E[f ]2. Later, Kahn, Kalai and Linial [3]
confirmed a conjecture from [1] by proving that for any near-balanced function (i.e. if |f−1(−1)|/2n and
|f−1(1)|/2n are Ω(1)) it holds

(1.2) Infmax(f) ≥ Ω
( log(n)

n

)
.

This inequality motivates asking about a lower bound in terms of complexity of boolean functions, in
particular, decision tree complexity.
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A deterministic decision tree (DDT) for a boolean function f : {−1, 1}n(p) → {−1, 1} is a ‘deter-
ministic adaptive strategy for reading variables so as to determine the value of f ’. Given a function
f : {−1, 1}n(p) → {−1, 1} we define the DDT complexity of f as

D(f) = min
T DDT for f

max
x∈{−1,1}n

(p)

[# coordinates queried by T on x].

Moreover, we define
δi(T ) = Pr

x∈{−1,1}n
(p)

[T queries x] and

∆(T ) =

n∑
i=1

δi(T ) = E
x∈{−1,1}n

(p)

[# coords queried by T on x].

Also, let ∆(f) denote the minimum of ∆(T ) over all DDTs T for f . It is worth mentioning that
∆(f) ≤ D(f). Any near-balanced function such that D(f) ≤ d depends on at most 2d variables, so (1.2)
implies Infmax(f) ≥ Ω(d/2d). However, a partial improvement can be obtained.

Theorem 1.1. Let f : {−1, 1}n(p) → {−1, 1}, and let T be a DDT for f , then

(1.3) Var[f ] ≤
n∑
i=1

δi(T ) Inf i(f).

This inequality improves (1.1) and can be generalized to more general contexts. An easy computation
yields

∆(f) ≥ Var[f ]

Infmax(f)
,

so when ∆(f) ≤ d or D(f) ≤ d and f is near-balanced, we obtain Infmax(f) ≥ Ω(1/d), which improves
(1.2) if ∆(f) = o(n/ log(n)). The inequality (1.3) seems to be the first quantitatively strong influence
lower bound in the literature that takes into account the computational complexity of f .

1.2 Randomized decision tree complexity lower bounds

Given a function f : {−1, 1}n(p) → {−1, 1}, a randomized decision tree (RDT) T for f is a probability
distribution over DDTs T for f . For a RDT T computing f , we define the RDT complexity of f as

R(f) = min
T RDTs forf

E
T∼T

max
x∈{−1,1}n

(p)

[#coords queried by T on x].

It is easy to check that R(f) ≤ D(f), but a reverse inequality is quite subtle. It is well known that
R(f) ≥ Ω(

√
D(f)) [2], and the largest known separation is the case D(f) = n and R(f) ≤ nβ with

β ' 0.753, which holds for a specific monotone transitive function.
We say that a boolean function f is monotone if f(x) ≤ f(y) whenever x ≤ y, under componentwise

partial order. On the other hand, we say f is transitive if for each pair i, j ∈ [n] there exists a permutation
σ of [n] satisfying

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) for any x and σ(i) = j.

An interesting subclass of transitive boolean functions is that of graph properties: a property of
v−vertex graphs is a set of graphs on a vertex set V = {1, . . . , v} that is invariant under vertex relabelings.

Then each graph G can be indentified with a vector xG ∈ {−1, 1}(
v
2), and each property P, with a function

fP such that fP(xG) = 1 if and only if G satisfies P.
Several lower bounds for the RDT complexity of monotone graph properties have been obtained along

the last four decades, but the following lower bound relies on purely probabilistic results and improve
them (under some assumptions), and, for monotone transtive functions, is essentially as good as the best
unconditional known bound.
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Theorem 1.2. Let f : {−1, 1}n(p) → {−1, 1} be a nonconstant monotone transitive function, where p is
the critical probability of f . Then

(1.4) R(f) ≥ ∆(f) ≥ n2/3

(4p(1− p))1/3
.

If f corresponds to a v−vertex graph property, then

(1.5) R(f) ≥ ∆(f) ≥ (v − 1)4/3

(16p(1− p))1/3
.

Since E[f ] is a strictly increasing continuous function on p, there exists p ∈ (0, 1) such that E[f ]. For
that p, and since f is transitive, Theorem 1.1 yields 1 ≤ (Inf(f)/n) ∆(f), where Inf(f) :=

∑n
i=1 Inf i(f).

Moreover, using that for any p ∈ (0, 1) and any monotone f : {−1, 1}n(p) → {−1, 1}, it holds Inf(f) ≤
2
√
p(1− p)∆(f), we obtain (1.4). The identity n =

(
v
2

)
yields (1.5).

1.3 The main inequality

Theorem 1.1 can be formulated and proved in a more general context than the p−biased boolean cube.
Indeed, let (Ω, µ) = (Ω1 × . . .×Ωn, µ1 × . . .× µn) be a n−wise product probability space, and let (Z, d)
be a metric space. We will consider functions f : Ω → Z. Then a DDT for f is a rooted directed tree
that satisfies

• each internal node v is labeled by a coordinate iv ∈ [n],

• each leaf is labeled by an element of Z,

• the emanating edges from an internal node v are in one-to-one correspondence with Ωiv ,

• the nodes along every root-leaf path are distinct.

Then, replacing {−1, 1}n(p) by (Ω, µ), analogous definitions hold for D(f), R(f), ∆(f) and probabil-

ities δi(T ) for a DDT T . On the other hand, variation and influences are defined as follows

Vr[f ] = E
(x,y)∈(Ω,Ω)

[d(f(x), f(y))], Inf i(f) = E
(x,zi)∈Ω×Ωi

[d(f(x), f(x[n]\{i} + zi)].

When Ω = {−1, 1}n(p), and Z = {−1, 1} is equipped with the distance d(z, z′) = |z − z′| = 2 1z 6=z′ , the
boolean case is involved.

Theorem 1.3 (OSSS inequality). Let f : Ω→ (Z, d), and let T be a DDT computing f . Then

(1.6) Vr[f ] ≤
n∑
i=1

δi(T ) Inf i(f).

Let x and y be random inputs chosen indepently from Ω. Let s be the number of coordinates queried
by T on x, and let i1, . . . , is, is+1, . . . , in be the sequence of those coordinates with it = ∅ whenever t > s.
For t ≥ 0, define the set J [t] := {s ≥ r > t} and the input u[t] := xJ[t] + y[n]\J[t]. Since y = u[s] and
f(x) = f(u[0]) (T computes f), and since d is a distance, then

Vr[f ] = E[d(f(x), f(y))] = E[d(f(u[0]), f(u[t]))]

≤ E
[ n∑
t=1

d(f(u[t− 1]), f(u[t]))
]

=

n∑
t=1

n∑
i=1

E
[
d(f(u[t− 1]), f(u[t])) 1{it=i}

]
Linearity of expectation and 1{t≤s} =

∑n
i=1 1{it=i} implies the previous identity. Now, consider the

sequence of values (xi1 , xi2 , . . . , xmin{t−1,s}) read by T by time t−1 on input x. This sequence determines
it. Then, it is easy to show that variables y and (xj : j 6= i1, . . . , imin{t−1,s}) are independent with
respect to conditional distribution on (x1, . . . , xmin{t−1,s}), and their respective conditional distributions
coincide with their original ones. Therefore, for any i, t ∈ [n],

E[d(f(u[t− 1]), f(u[t]))1{it=i} | (xi1 , . . . , xmin{t−1,s})] = 1{it=i}Inf i(f)
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since u[t − 1] and u[t] only differ on their itth coordinate, which are xit and yit respectively. Taking
expectation and summing in t gives

n∑
t=1

E
[
d(f(u[t− 1]), f(u[t]))1{it=i}

]
=

n∑
t=1

Pr[it = i] Inf i(f) = δi(T ) Inf i(f).

So summing in i yields the desired result.
It turns out that inequality (1.6) is tight since identity holds for separated trees. Moreover, a two-

function version of Theorem 1.3 can be proved and used to obtain a estimation for the complexity of
approximations of a given function g. Finally, it admits a version when Z is a semimetric space in which
the constant on right hand side of (1.6) is greater than one.

1.4 An inductive proof of OSSS inequality

Another proof can be obtained through a inductive argument [4]. Indeed, a two-function version can be
proved: let f, g : {−1, 1}n → {−1, 1} and T a DDT for f . Then

(1.7) |Cov[f, g]| ≤
n∑
i=1

δi(T ) Inf i(g)

where Cov[f, g] = E[(f −Ef)(g −Eg)]. The proof is based on martigale differences: for i ∈ [n], define

ci(f) = ci(f ;x1, . . . , xn) = E[f |(x1, . . . , xi)]−E[f |(x1, . . . , xi−1)].

It is easy to check that Cov[f, g] =
∑n
i=1 E[ci(f)ci(g)] and E[cn(f)cn(g)] ≤ Infn(f), Infn(g). The

base case n = 1 supposes a simple verification. Let T be a DDT for f whose root has label xn. Let
T−1 and T1 be the left and right subtree. Then for i 6= n, δi(T ) = 1/2 (δi(T−1) + δi(T1)), Inf i(g) =
1/2 (Inf i(g−1) + Inf i(g1)) and ci(f) = 1/2 (ci(f−1) + ci(f1)). Therefore,

|Cov[f, g]| ≤ 1

4

∑
a,b∈{−1,1}

∣∣∣ n−1∑
i=1

E[ci(fa)ci(gb)]
∣∣∣+ |E[cn(f)cn(g)]|

=
1

4

n−1∑
i=1

|Cov[fa, gb]|+ |E[cn(f)cn(g)]|.

So, since δn(T ) = 1 and by induction hypothesis, (1.7) follows.
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Chapter 2

A proof of the sensitivity conjecture

after H. Huang [1]
A summary written by Jaume de Dios Pont

Abstract. The sensitivity theorem (former sensitivity conjecture) relates ways to quantify
the complexity, or lack of smoothness a function f : {−1, 1}n → {−1, 1}, the sensitivity s(f)
and the degree of f when thought as a polynomial. We provide a self-contained proof of
this result.

2.1 Introduction

Let f : {−1, 1}n → {−1, 1} be a function on the n-dimensional hypercube. We define the sensitivity of
f at x, which we will write s(f, x) as the number of inputs y ∈ {−1, 1}n that differ from x at exactly
one co-ordinate such that f(x) 6= f(y). We define the sensitivity of f , or s(f) as the maximum of the
sensitivity of f over all of its inputs.

This is a notion of complexity, or lack of smoothness for functions on the hypercube. Multiple other
notions of complexity for boolean functions have been studied and related to each other through the
years. Amongst those we can highlight the block sensitivity and the degree.

Block Sensitivity bs(f)

Given a subset I of [n] := {1, . . . , n}, and binary string x = (x1, . . . xn) ∈ Qn we define TIx as

(TIx)j := xj(−1)1I(j) =

{
−xj if j ∈ I
xj if j ∈ [n] \ I

For a boolean function f : {−1, 1}n → {−1, 1} and a point x in {0, 1}n the quantity bs(f, x) (block
sensitivity at x) counts how many disjoint subsets I1, I2, . . . , Ibs(f,x) of [n] one can simultaneously find
such that f(x) 6= f(TIkx). In particular, bs(f, x) ≥ s(f, x), since s(f, x) adds the further constraint that
|Ik| = 1.

We define the block sensitivity of f , or bs(f) as the maximum of the sensitivity of f over all of its
inputs.

The degree deg(f)

A function f : {−1, 1}n → {−1, 1} can be thought as the restriction of a polynomial Pf : Rn → R.
Since xk = xk−2 for x ∈ −1, 1, one can restrict Pf to be in the class of polynomials that are multi-
linear, that is, linear in each of their n variables. These polynomials are a basis for the set of functions
f : {−1, 1}n → R, ans in particular, Pf is determined uniquely by f .

The degree deg(f) of Pf is another measure of complexity for boolean functions.
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These last two quantities are closely related to each other. Nisan and Szegedy [2] show that b(s) ≤
2 deg(f)2 (which is Topic 12 in this school). This was later improved to bs(s) ≤ deg(f)2 by Tal [3]. Our
goal in the rest of these notes will be to show that deg(f) ≤ s(f)2, showing that the three quantities are
polynomially related.

2.2 The induced subgraph problem

Gotsman and Linial [4] reduced the problem of relating the sensitivity and the degree to that of under-
standing the degree of certain induced subgraphs of the hypercube graph Qn, which has as vertices the
elements of {−1, 1}n, and edges joining vertices that differ only on one bit (coordinate).

Given a graph G, we denote by ∆(G) the maximun of the degrees of the vertices of G. Gotsman and
Linial showed the following:

Theorem 2.1 ([4] , Theorem 2.1). The following are equivalent for any monotone function h : N→ R

(GL1) For any induced subgraph H of Qn with Q(H) 6= 2n−1 we have

max(∆(G−H),∆(H)) ≥ h(n).

(GL2) For any boolean function f we have s(f) ≥ h(deg(f))

Now, relating the sensitivity and the degree is related to computing the degree of certain induced
subgraphs. Huang showed the following holds:

Theorem 2.2 ([1], Theorem 1.1). If H is an induced subgraph of Qn with strictly more than 2n−1

vertices, then the degree of H is at least
√
n. Therefore, for any boolean function f : {−1, 1}n → {−1, 1}

s(f) ≥ deg(f)

Combining this with the inequality deg(f) ≥ bs(f)2, one obtains a polynomial (fourth power) relation
between bs(f) and s(f). This is not expected to be sharp: for the best known counterexamples only give
a quadratic relation.

2.3 Proof of Theorem 2.2

The proof is a sleek modification the so called ”spectral method” for graphs. We will first understand
the method in the general setting, and then addapt it to our scenario. The goal is to bound (from below)
the maximum degree of a graph using the following two tools:

Lemma 2.3. Let G be an undirected graph with adjacency matrix A. Let B be a symmetric matrix such
that |Bij | ≤ Aij. Then the degree of G is at least the largest eigenvalue (in absolute value) of B.

Proof. The largest eigenvalue is the l2 → l2 operator norm of B, and the degree of G bounds the l1 → L∞

(and l1 → L∞ by symmetry) norm of B. In particular, the lemma follows from Schur’s test.
For a more direct proof, let v be an eigenvector associated to the largest eigenvalue of B, and assume

vk is the largest component (in magnitude) of v. Then

|λvk| = |(Av)k| =

∣∣∣∣∣∣
n∑
j=1

Bkjvj

∣∣∣∣∣∣ ≤ |vk|
n∑
j=1

Akj ≤ |vk|deg(G)

and the inequality follows by dividing by |vk| on both sides.

For the second tool, we define a principal submatrix of B as one that is obtained by removing the
same set of rows and columns from B.

Lemma 2.4 (Cauchy’s Interlace Theorem). Let B be a symmetric n × n real matrix with eigenvalues
β1 ≥ λ2 · · · ≥ βn. Let B̃ be an m×m principal submatrix of B, with eigenvalues β̃1 ≥ · · · ≥ β̃m. Then

(2.1) βi ≥ β̃i ≥ βn−m+i
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This follows essentially from the Courant-Fischer characterization of the eigenvalues of a symmetric
matrix. The term Cauchy’s Interlace Theorem is sometimes used for the case m = n − 1. The other
cases can be deduced from this one by induction removing one row/column after the other.

Combining this two pieces of information we get immediate bounds to the maximum degree ∆(H)
of a subgraph as follows:

Corollary 2.5. Let G be a graph with n vertices and adjacency matrix A. If B is a n× n matrix with
|Bij | ≤ |Aij | and eigenvalues λ1 ≥ · · · ≥ λn then any induced subgraph H ≤ G with cardinality > k will
have maximum degree ∆(H) at least λn−k+1.

Proof. Apply Lemma 2.3 to H. The adjacency AH matrix of H is a principal submatrix of A. Construct
the matrix BH by removing/keeping the same rows as columns from B as was done to construct AH
from A. Applying Cauchy’s Interlace Theorem (Lemma 2.4) with data H,AH , BH gives the proof.

Application of the spectral method to the hypercube

If the vertices of the hypercube graph Qn are sorted in lexicographic order, the adjacency matrices An
on Qn satisfy the following recurrence relation

A1 =

(
1 0
0 1

)
, An =

(
An−1 I2n−1

I2n−1 An−1

)
in other words, the cube Qn is formed by getting two copies of Qn−1 (corresponding to the sub-matrices
An−1) and joining the two copies of each vertex in each cube (giving rise to the I2n−1 matrices).

We will build the matrices Bn (in the spirit of Lemma 2.3) similarly, by the recurrence relation

B1 =

(
1 0
0 −1

)
, Bn =

(
Bn−1 I2n−1

I2n−1 −Bn−1

)
.

This construction already guarantees that |(Bn)ij | ≤ (An)ij , one of the conditions to apply Lemma 2.3.
Moreover, it has particularly nice spectral properties:

Proposition 2.6. The matrices Bn have the following properties:

1. B2
n = n · I2n

2. tr(Bn) = 0

3. Exactly half of the eigenvalues of Bn are
√
n. The other half are −

√
n.

Proof sketch. The first equality is proven by induction on n, using the recursive definition of Bn. It
already implies that all the eigenvalues are ±

√
n. The second equality follows by direct inspection. Since

the trace is the sum of the eigenvalues, half of them must be
√
n and half −

√
n.

These are all the tools we need to show Theorem 2.2 (assuming Theorem 2.1, which will be proven
in the next section):

Proof of Theorem 2.2. We can apply Corollary 2.5 to the matrices Bn (using that |(Bn)ij | ≤ (An)ij . If
j > 2n−1 then 2n − j + 1 ≤ 2n−1. The first 2n−1 eigenvalues of Bn are

√
n. Therefore the maximum

vertex degree of any vertex-induced subgraph with j > 2n−1 verices will be at least the (2n − j + 1)-th
largest eigeivalue of Bn, that is,

√
n.

2.4 The subgraph problem and the degree bounds

The goal of this section is to give a proof of Theorem 2.1, following the origina proof in [4]. The first step
is to simplify the statements (GL1) and (GL2) of the theorem to simpler, but equivalent, statements.
On one hand (GL1) can be transformed into a statement about sensitivity by studying the indicator
function of the vertices of H. On the other hand (GL2) can be reduced to the case when the degree of
f is maximal. That makes Theorem 2.1 equivalent to the following proposition:

8



Proposition 2.7. The following are equivalent for any monotone function h : N→ R

(GL1′) For any boolean function g with mean not equal to zero there is x with s(g, x) ≤ n− h(n).

(GL2′) For any n ≥ 0 and any boolean function f : Qn → {−1, 1} s(f) < h(n) implies d(f) < n.

Proof. We will see the equivalence by relating the functions in the statements by g(x) = f(x)p(x), where
p((x1, x2, . . . , xn)) =

∏n
i=1 xi. This also implies f(x) = g(x)p(x). There are two key relations between f

and g:

(A) The function g has mean zero if and only if f has degree n. This is because for any multi-index
I ⊂ [n] multiplication by p sends xI to its complement: xIp(x) = x[n]\I . Then g has a non-zero constant
coefficient if and only if f has a degree n coefficient (coeficients are degree 1 in each separate xi).

(B) It holds that s(g, x) = n− s(f, x). It holds that p(x)− = p(Tix), and therefore f(x) = f(Tix) if
and only if g(x)− = g(Tix) (and viceversa).

(1′) =⇒ (2′) If d(f) = n then g does not have mean zero by (A). In particular, s(g, x) ≤ n− h(n)
at some point x. This implies that s(f(x)) ≥ h(n).

(2′) =⇒ (1′) If s(g, x) > n − h(n) for all x, then s(f) < h(n) by (B). By (2’) therefore d(f) < n.
Now, by (A) that shows that g has mean zero.
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Chapter 3

Quantum Mechanics Helps in
Searching for a Needle in a Haystack

after L. K. Grover [1]
A summary written by Valeria Fragkiadaki

Abstract. Quantum mechanics can speed up a range of search applications over unsorted
data. For example, there is a quantum algorithm that can obtain one’s phone number over
a phone directory of N names arranged randomly in only O(

√
N) accesses to the database

compared to at least 0.5N accesses needed by any classical algorithm.

This Letter presents a quantum mechanical algorithm for the following search problem that is poly-
nomially faster than any classical algorithm. Search problem: Suppose there is an unsorted database
containing N items and we want to find one out of them that satisfies a given condition. We can check
if an item satisfies the condition in one step. The most efficient classical algorithm for this examines the
items one by one requiring an average of 0.5N items to be examined before finding the desired one.

However, quantum mechanical systems can be in superpositions of states and simultaneously exam-
ine multiple items allowing a certain probability of examining the desired object. This Letter shows
that using the same amount of hardware as in the classical case, but having the input and output in
superspositions of states, we can find an object in O(

√
N) quantum mechanical steps instead of O(N)

classical steps.

3.1 Quantum mechanical algorithms

In a quantum computer the logic circuitry and time steps are essentially classical, the biggest difference
are the memory bits that hold the variables. A classical bit can have state 0 or 1, while a quantum bit can
have a state which could be 0 or 1 (computational basis vectors), but it could also be in a superposition
state (linear combination of states): ψ = α0 + β1, where α, β ∈ C and |α|2 + |β|2 = 1. We say that α, β
are the amplitudes of the states 0 and 1 respectively.

The quantum mechanical operations that can be performed are unitary operations, i.e. unitary
matrices, that act on a small number of bits, i.e. vectors, in each step. The quantum search algorithm
of this letter is a sequence of the following three unitary operations on a pure state followed by a
measurement operation:

The Walsh-Hadamard operation performed on a single bit is represented by the matrix

M =
1√
2

(
1 1
1 −1

)
,

i.e. a bit in the state 0 =

(
1
0

)
is transformed into a superposition in the two states (1/

√
2)0+(1/

√
2)1 =(

1/
√

2

1/
√

2

)
. Similarly, a bit in the state 1 =

(
0
1

)
is transformed into

(
1/
√

2

−1/
√

2

)
, i.e. the magnitude of the
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amplitude in each state is 1/
√

2, but the phase of the amplitude (a constant multiplier of the form eiθ)
in the state 1 is inverted. Now for the first operation we need, consider the possible states of the system
to be N := 2n so they can be described by n bits. Then, we can perform the transformation M on each
bit independently in sequence, thus changing the state of the system. If we start the system with all n

bits in the first state, i.e. x = 0 ⊗ 0 ⊗ · · · ⊗ 0, we get a configuration ψ = 2−n/2
∑2n−1
x=0 x, where x is

the binary representation of x. This way we can create a superposition in which the amplitude of the
system being in any of the 2n basic states is equal.

Next consider the case when the starting state x is another one of the 2n possible states (not the
0⊗ 0⊗ · · ·⊗ 0). Performing the transformation M on each bit we get a superposition of states described
by all possible n bit binary strings with amplitude of each state having the same magnitude of 2−n/2

and sign either + or −. The sign of each state y is determined by the parity of the bitwise dot product
of x and y, i.e. (−1)x·y. This describes the Walsh-Hadamard transformation on n bits.

The third transformation that we will need is the selective rotation of the phase of the amplitude in
certain states. The transformation describing this for a 2-state system is of the form(

eiφ1 0
0 eiφ2

)
, φ1, φ2 ∈ R.

3.2 The abstracted problem

Let a system have N = 2n states which are labelled S1, S2, ..., SN and are represented as n bit strings.
Let there be a unique state, say Sν , that satisfies the condition C(Sν) = 1, whereas for all other states
S, C(S) = 0. Assuming that for each S, the condition C(S) can be evaluated in unit time, the problem
is to identify the state Sν .

3.3 Algorithm

(i) Initialize the system to the superposition (1/
√
N, 1/

√
N, ..., 1/

√
N) as discussed in subsection 3.1.

This superposition can be obtained in O(logN) steps.

(ii) Repeat the following unitary operations O(
√
N) times:

(a) Let the system be in any state S:
If C(S) = 1, rotate the phase by π radians
If C(S) = 0, leave the system unaltered

(b) Apply the diffusion transform D which is defined by the matrix D as follows:

Dij =
2

N
, if i 6= j, and Dii = −1 +

2

N
.

(iii) Measure the resulting state. This will be the state Sν with a probability of at least 0.5.

3.4 Convergence

The loop in step (ii) above is the heart of the algorithm. Each iteration of this loop increases the
amplitude in the desired state by O(1/

√
N), as a result in O(

√
N) repetitions of the loop, the amplitude

and hence the probability in the desired state reaches O(1). In order to see that the amplitude increases
by O(1/

√
N) in each repetition, we first show that the diffusion transform D is equivalent to the inversion

about average operation which is a unitary operation.
Let α denote the average amplitude over all states Si, i.e. if αi is the amplitude in the i-th state, then

α = 1
N

∑N
i=1 αi. Now, observe that the diffusion transform, D, defined in (b) can be represented in the

form D = −I + 2P , where I is the identity matrix and P is a projection matrix with Pi,j = 1/N, ∀i, j.
Notice also that P 2 = P and that P acting on any vector v gives a vector each of whose components is
equal to the average of all components. Thus, when D acts on an arbitrary vector v we get

Dv = (−I + 2P )v = −v + 2Pv.
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Since each component of the vector Pv is A, where A is the average of all components of the vector v,
the i-th component of Dv is

(3.1) (Dv)i = −vi + 2A = A+ (A− vi)

which is precisely the inversion about average.
Next consider what happens when we apply this operation to a vector with each of the components,

except one, having an amplitude equal to C/
√
N where 1/2 ≤ C ≤ 1; the one component that is

different has an amplitude of −
√

1− (N − 1)C
2

N , which is approximately −
√

1− C2. Then, the average

A of all components is approximately equal to C/
√
N , thus each of the (N − 1) components which are

approximately equal to the average do not change significantly, while by (3.1), the component that was
negative becomes positive and its magnitude increases by 2C/

√
N .

Now, in the algorithm of subsection 3.3, in the loop of step (ii), first the amplitude in the selected
state, Sν , is inverted. Then, the inversion about average operation is carried out, giving an increase in
the amplitude of Sν by 2C/

√
N in each iteration. Therefore, as long as the magnitude of the amplitude

in Sν is less than 1/
√

2, i.e.
√

1− C2 ≤ 1√
2
, C ≥ 1√

2
and the increase in its magnitude is greater than

1/
√

2N . Thus, there exists an M ≤
√
N such that in M repetitions of the loop in step (ii), the magnitude

of the amplitude in Sν will exceed 1/
√

2. Thus, measuring now the state of the system we get Sν with
a probability ≥ 1/2.

3.5 Implementation

As mentioned in subsection 3.1 quantum mechanical operations that can be carried out in a controlled
way are unitary operations that act on a small number of bits in each step, like for example the Walsh-
Hadamard transformation with matrix say W and the phase rotation with matrix say R. We show that
the diffusion transform D = −I + 2P , where Pij = 1/N , ∀i, j, can be implemented as a product of three
such unitary transformations, namely, D = WRW , where

Rij = 0 if i 6= j, Rii = 1 if i = 0, Rii = −1 if i 6= 0,

and Wij = 2−n/2(−1)i·j as discussed in subsection 3.1.
Writing R = R1 + R2, where R1 = −I and R2,00 = 2, R2,ij = 0 if (i, j) 6= (0, 0), we show that

D = WR1W + WR2W . But since MM = I, where M is the matrix defined in subsection 3.1, we
have WW = I and hence D1 := WR1W = −I. Next, we evaluate D2 := WR2W by standard matrix
multiplication and get

D2,ad =
∑
b,c

WabR2,bcWc,d = 2Wa0W0d =
2

2n
(−1)a0+0d =

2

N
.

Therefore, we get WR1W +WR2W = −I + 2P = D.
Thus, the only operations required for this quantum search algorithm are the Walsh-Hadamard

transform and the conditional phase shift operation, and this makes the algorithm rather simple compared
to many other known algorithms.

The author wishes to acknowledge Peter Shor, Ethan Bernstein, Gilles Brassard, Norm Margolus,
and John Preskill for helpful comments.

Bibliography

[1] Lov K. Grover, Quantum Mechanics Helps in Searching for a Needle in a Haystack Physical Review
Letters, Volume 79, Number 2 (1997).

Valeria Fragkiadaki, TAMU
email: valeria96@tamu.edu

12



Chapter 4

On the distribution of the Fourier
spectrum of Boolean functions

after J. Bourgain [1]
A summary written by Christina Giannitsi

Abstract. We present a summary of Bourgain’s result on the tail distribution of the Fourier
spectrum of Boolean functions f defined on {−1, 1}N . Specifically, for a fixed positive integer
k, and as long as f is not determined by a bounded number of variables, we have that∑

|S|>k

|f̂(S)|2 & k−
1
2−ε.

At the end we discuss the sharpness of the result by examining the majority function.

4.1 Introduction

We are studying the Fourier transform of Boolean functions, which are functions which, in one dimension,
assume values from a two element set {−1, 1}, and are generalized in higher dimensions as f : {−1, 1}N →
{0, 1}. N is often called the arity of the function, [2].

The study of Boolean functions was popularized by their contributions to areas like complexity
theory and computer science, where major results were discovered by studying their Fourier transforms.
Bourgain references the work of Friedgut [3], who discovered a sharp bound for indicators of monotone
subsets of {−1, 1}N , as well as the works of Kahn, Kalai, and Linial who studied how variables can
influence these functions. Again, here, the analysis of the Fourier transform is crucial to obtaining the
desired results.

Heuristically, the idea is that the higher the complexity of the property that f defines, the more
spread out the support of the Fourier transform suppf̂ has to be. An application of this idea is the topic
of Bourgain’s paper [1], where we particularly see that the tail distribution of the Fourier transform of
a function f which is not essentially determined by a few variables is bounded below, as described in
Theorem 4.1.

Johan H̊astad, and his work with Boolean functions in [4] and [5], was the one to initially raise the
question about the tail distributions, however his original estimate was of the order C−k.

Throughout this summary we shall use 1A to denote the usual indicator function of a subset A of
the real numbers R or the integers Z. We also use [1, N ] = {1, 2, . . . , N} for the interval of integers.

Moreover, any logarithms that appear are base 2. Finally, f̂ to denote the Fourier transform of a Boolean
function f . Specifically, for a real function f : {−1, 1}N → {−1, 1} let

f =
∑

f̂(S)wS

be its Fourier expansions, where

wS(x1, x2, . . . , xN ) = (−1)
∑

i∈S xi

13



4.2 The main result

Bourgain’s main result is Proposition 1 of [1], which is presented below.

Theorem 4.1. Let f = 1A be the indicator of a set A ⊆ {−1, 1}N and fix ε > 0. Let k be a positive
integer and γ a fixed constant. Assume that∑

|f̂(S)|<γ4−k2

|f̂(S)|2 > γ2(4.1)

Then ∑
|S|>k

|f̂(S)|2 & k−
1
2−ε(4.2)

The implied constant Cε in (4.2) depends on ε but is independent of k.

We shall devote the rest of the section to a brief sketch of the proof.
The first step is to define a subinterval I0 of [1,N] that contains integers for which the quantity∑
|S|>k |f̂(S)|2 is “large” as long as S contains that integer. We can then bound the size of I0 and use

that bound to show that, on I0, and provided that (4.1) holds,∑
|S|>k, S⊂I0

|f̂(S)|2 < γ2/100.

We then focus on its complement I ′0 = [1, N ] \ I0, and use the aforementioned estimate to show that
when restricted on I ′0, ∑

|S|>k, S∩I′0 6=∅

|f̂(S)|2 > γ2/2.

The next step is to consider dyadic sums defined as

ρt :=
∑

2t≤|S∩I′0|<2t+1

|f̂(S)|2,

and to show that for an arbitrary 0 ≤ t0 ≤ log k and 1 < p < 2 there holds

(4.3)
∑
|S|>k

|f̂(S)|2 & min

{
ρ

2/p
t0 , (p− 1)

p
2−p

(
2t0ρt0∑
t≤log k 2tρt

)
)

p
2−p ρt0

}
.

Proving (4.3) is the biggest part of the proof, and involves carefully decomposing x = (x1, x2) so that
x1 ∈ {−1, 1}I1 , for a subset I1 of I ′0 that satisfies certain growth criteria, as well as bounds for the
expectations of the sizes of various intersection with S. Now, considering f as a function of two variables,
we study its Fourier transforms with respect to each of them and attempt to obtain bounds for them.
Working on the Fourier side, it is possible to ultimately obtain (4.3).

The last step is to consider two cases, one for
∑
t≤log k 2tρt <

√
k and one for

∑
t≤log k 2tρt ≥

√
k,

and show that in either case, the right hand-side of (4.3) satisfies the desired lower bound of (4.2), which
completes the proof.

4.3 The majority function as an example of sharpness

Bourgain presents the following Corollary as an immediate consequence of Theorem 4.1:

Corollary 4.2. Let f = 1A be the indicator of a set A ⊆ {−1, 1}N that satisfies

|A| (1− |A|) > 1

10
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Let K be a positive integer and assume that

max
|S|≤k

|f̂(S)| < 4−k
2−1.

Then ∑
|S|>k

|f̂(S)|2 & k−
1
2−ε(4.4)

We now discuss how Bourgain established that the lower bound as presented in (4.4) is a sharp one.
Indeed, consider the {−1, 1}-valued majority function on {−1, 1}N , defined as

f(ε) := sign(ε1 + ε2 + · · ·+ εN )

It is shown in [7] that the majority function satisfies

|f̂(S)|2 ∼
(
N

n

)−1

n−3/2, for |S| = n > 0,

and therefore one can easily see that ∑
|S|=k

|f̂(S)|2 ∼ k−3/2,

∑
|S|>k

|f̂(S)|2 ∼ k−1/2.
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Chapter 5

Noise Stability of Weighted Majority

after Y. Peres [Y04]
A summary written by Felipe Gonçalves

Abstract. It is shown in [Y04] that in a threshold activation control system with a linear
weighted majority function, boolean noise with probability ε produces a difference in decision
with probability O(

√
ε).

5.1 Main Results

Noise sensibility of boolean functions has attracted a lot of attention in the last decades. In [Y04], Y.
Peres studies noise sensitivity of the majority function

f(x) = sgn

(
N∑
i=1

wixi − t

)

defined for x ∈ {−1, 1}N , where wi ∈ R are given weights, t ∈ R is some given threshold and sgn (y) =
y/|y| for y 6= 0 and normalized so that sgn (0) = 0. The main result of the paper [Y04] is the following.

Theorem 5.1. Let X = (X1, ..., XN ) be uniformly distributed in {−1, 1}N . Let σ = (σ1, ..., σN ) be
i.i.d. real random variables, all independent of X, and such that ε = P[σ1 = −1] = 1 − P[σ1 = 1] for
0 < ε ≤ 1/2. Then

P[f(X) 6= f(σX)] ≤ 1.92
√
ε,(5.1)

where σX = (σ1X1, ..., σNXN ). In fact we have the stronger estimate

P[f(X) 6= f(σX)] ≤ 2

m
E[|Bm −m/2|] + (1− (1− ε)N )

(
N

N/2

)
2−N(5.2)

where m = bε−1c and Bm ≡ Bin(m, 1/2).

Remark 5.2. This theorem is an improvement of a result of Benjamini, G. Kalai and O. Schramm
[BKS01], where they show that

P[f(X) 6= f(σX)] ≤ Cε1/4

and asked if the exponent 1/4 can be improved. Indeed, the exponent 1/2 in Theorem 5.1 is optimal since
for the classical majority function (wi = 1 for all i) we have [G66]

lim
N→∞

P[f(X) 6= f(σX)] = π−1 arccos(1− 2ε) =
2
√
ε

π
+O(ε3/2).

16



Remark 5.3. Indeed inequality (5.2) implies (5.1) by the following argument. We can assume ε < 1/
√

2.
Since

(
N
N/2

)
2−N ≤

√
2/(πN), bε−1c ≥ 4/(5ε) and E[|Bm −m/2|] ≤

√
Var[Bm] =

√
m/4 we obtain

P[f(X) 6= f(σX)] ≤ m−1/2 + (1− (1− ε)N )
√

2/(πN)

≤
√
ε
(√

5/4 +
√

2/π
)

< 1.92
√
ε,

where above we used that 1− (1− ε)N ≤ min(1, εN) ≤
√
Nε.

Remark 5.4. The Central Limit Theorem implies that 1√
m
E[Bm −m/2]→ 1/

√
2π as ε→ 0 and so

lim sup
N→∞

sup
t,w1,...,wN

P[f(X) 6= f(σX)] ≤ (
√

2/π + oε(1))
√
ε.

Hence we cannot replace 1.92 by anything smaller than
√

2/π = 0.797....

5.2 Proof of the Main Result

First note that we can assume that t = 0 and wi > 0. The main idea is to write P[f(X) 6= f(σX)] as an
expectation. Let m = bε−1c, consider a partition of [N ] into m + 1 sets Aj for j = 0, ...,m and define
the sums

fAj
(x) =

∑
i∈Aj

wixi,

with the convention that f∅ = 0. We then select the sets Aj randomly by setting Aj = {i ∈ [N ] : τi = j},
where τ1, ..., τN are i.i.d. distributions such that P[τi = j] = ε and P[τi = 0] = 1 − εm. Y. Peres then
shows the key identity

P[f(X) 6= f(σX)] =
2

m
E

 ∑
1≤j≤m : fAj

(X) 6=0

(
1

2
− 1{sgn f(X)=−sgn fAj

(X)}

) .
Let Q be the quantity above inside the expectation. If f(X) = 0 then

Q =
1

2
#{1 ≤ j ≤ m : fAj

(X) 6= 0} ≤ 1

2
#{1 ≤ j ≤ m : Aj 6= ∅}

and if sgn f(X) = ±1 then

Q = −1

2
#{1 ≤ j ≤ m : fAj

(X) = ∓1}+
1

2
#{1 ≤ j ≤ m : fAj

(X) = ±1}

≤
∣∣∣∣#{1 ≤ j ≤ m : fAj

(X) = 1} − 1

2
#{1 ≤ j ≤ m : fAj

(X) 6= 0}
∣∣∣∣ .

Observing that #{1 ≤ j ≤ m : fAj (X) = 1} ≡ Bin(`, 1
2 ) with ` = #{1 ≤ j ≤ m : fAj (X) 6= 0} we

conclude

P[f(X) 6= f(σX)] ≤ 2

m
E[|Bin(`, 1

2 )− `/2|] + P[A1 6= ∅]P[f(X) 6= 0]

≤ 2

m
E[|Bin(m, 1

2 )−m/2|] + (1− (1− ε)N )P[f(X) 6= 0],

where above we use that E[|Bin(`, 1
2 ) − `/2|] increases with `. Since wi > 0 for all i, the collection of

subsets D ⊂ [N ] such that f(1D − 1Dc) = 0 is an anti-chain (no set is a proper subset of another)
and Sperner’s Theorem guarantees that this collection has at most

(
N
N/2

)
elements. Finally, noting that

f(X) = 0 iff f(1D − 1Dc) = 0 for D = {i : Xi = 1} we conclude P[f(X) 6= 0] ≤ 2−N
(
N
N/2

)
. This finishes

the proof.
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Chapter 6

Quantum Lower Bounds by
Polynomials

after R. Beals, H. Buhrman, R. Cleave, M. Mosca and R. De Wolf. [1]
A summary written by Dylan Langharst

Abstract. We analyze a black-box model and determine the number of input variables a
quantum algorithm in said model requires to compute Boolean functions on {0, 1}N . We
show the exponential speed increase for partial functions from certain algorithms cannot be
obtained for any total function. In the exact, zero-error and bounded-error settings, asymp-
totic estimates for T are given. These results are a quantum extension of the polynomial
method.

6.1 Introduction and Definitions

A boolean variable is a variable that takes on values 0, 1; an N -tuple of Boolean variables shall be
denoted X = (x0, x1, . . . , xN−1). A black-box model is a form of computation where, given the input i,
the black-box outputs the bit xi. Accessing the bits xi only through a black-box is called a query. A
function f : {0, 1}N → {0, 1} is a Boolean function, and is called a property of X. The goal of this paper
is to compute such properties using as few queries as possible. Quantum mechanics allows a drastic
increase in the efficiency of algorithms design to accomplish this task. For example, the computation

ORN (X) = x0 ∨ x1,∨ · · · ∨ xN−1

determines if any of bits xi of X contain a 1, and classically (i.e. deterministic-ally or probabilistic-ally)
has a computation time of Θ(

√
N). However, by using the concept of superposition, Grover [2] was able

to construct a quantum algorithm using only O(
√
N) queries; different i can be in super-positions, and

so a query can access different input bits xi, each with some probability amplitude, simultaneously.
A promise is a model with some constraint. For example: consider the black-box model with N =

n2n, then, query X n times. This creates a function, X̃ : {0, 1}n → {0, 1}n. Suppose we have the
constraint, or promise, that there exists an s ∈ {0, 1}n such that X̃(i) = X̃(j) if, and only if, i =
j + s mod 2 component wise. Simon’s problem is, given this scenario, one must compute if s is the
n-tuple of 0’s. The quantum algorithm for such a task requires O(n) applications of X̃, while classically,
Ω(
√

2n) queries are required. The fact that there is a promise means that Simon’s problem is partial, as
the associated f : {0, 1}N → {0, 1} is not defined on all X ∈ {0, 1}N , but only on those that satisfy the
promise.

The goal of this paper is to establish upper and lower bounds for the black-box complexity of several
functions and classes of functions in the quantum computing setting. In particular, it will be shown
that the exponential speed-up, discussed in the example of the Simon problem, cannot be obtained for
a quantum algorithm for an arbitrary total function; like in the ORN (X) example, only a polynomial
speed-up is possible in general. The main step is the translation of quantum algorithms that make T
queries into multi-linear polynomials of degree at most 2T over N variables; this is a quantum extension

19



of the polynomial method. Three different settings for computing f on {0, 1}N in the black-box model
will be discussed:

The exact setting where an algorithm must return f(X) with certainty for every X; the zero-error
setting where, for every X, the result ”inconclusive” can have probability at most 1/2; when a result is
returned, it must be exact; and the two-sided bounded-error setting, or Monte Carlo algorithm, where,
for every X, an algorithm must return the correct answer with probability > 2/3.

Throughout, X will be an N -tuple, and with N an arbitrary positive integer unless specified. The
Hamming weight of X is the number of 1’s of X, denoted |X|. We say f is symmetric if f(X) depends
only on |X|. We will be interested in symmetric functions, non-symmetric functions and the functions
AND, OR, PARITY, and MAJORITY. These functions are defined as follows: ORN (X) = 1 iff |X| > 0,
ANDN (X) = 1 iff |X| = N , PARITYN (X) = 1 iff |X| = 1 mod 2, and MAJN (X) = 1 iff |X| > N/2.

A multilinear N -variate polynomial p : RN → R represents a function f if p(X) = f(X) for all
X ∈ {0, 1}N . If such a p exists then it is unique and has degree ≤ N ; the degree is deg(f). If
|p(X) − f(X)| ≤ 1

3 for all X ∈ {0, 1}N , then we say p approximates f , and ˜deg(f) is the degree of a
minimum-degree polynomial p that approximates f. If SN is the symmetry group of {0, 1, . . . , N − 1}
and π is any permutation, then π(X) = {xπ(0), . . . , xπ(N−1)} and the symmetrization of a polynomial p
is given by

(6.1) psym(X) =

∑
π∈SN

p(π(X))

N !

6.2 Quantum Networks

Throughout we will assume f is a Boolean function on N -tuples X, and a black-box on i returns the bit
xi of X. A classical algorithm that computes f using black-box queries is a decision tree. The cost is
the number of queries made on the worst-case input X. A quantum network with T queries is a string
of unitary operations that changes the state of a quantum bit, or qubit, in the form

U0, O1, U1, O2, . . . UT−1, OT , UT

where Ui are arbitrary unitary transformations and Oj are unitary transformations corresponding to
queries on X. If there are m qubits, and each qubit has base states |0〉 and |1〉, then there are 2m basis
states for each basis state of computation, denoted |0〉, |1〉, . . . , |2m − 1〉. If K = {0, 1, . . . , 2m − 1}, then
a superposition state φ is given by φ〉 =

∑
k∈K αk|k〉, αk ∈ C and

∑
k∈K |αk|2 = 1; the probability of

measuring |k〉 is |αk|2. The initial state will always be taken to be |0〉. Unitary operations act in the
following way: let

⊕
= addition mod 2 = exclusive-or. Then, if i is dlogNe bits, b is one bit and z is

m− dlogNe − 1 bits, Oj sends |i, b, z〉 to Oj |i, b, z〉 = |i, b
⊕
xi, z〉. All Oj are equal.

The right-most qubit of the final state of a network is the output bit. If this output equals f(X)
with certainty for every X, then the network computes f exactly. If the output equals f(X) with
probability at least 2/3, then the bounded error probability is said to be at most 1/3. For the zero-
error setting, the two rightmost qubits are observed. If the first qubit is 0, then the network outputs
”inconclusive”. Otherwise, the second qubit should contain f(X) with certainty. The minimum number
of queries required by a quantum network to compute f will be denoted QE(f), Q0(f) and Q2(f) for
exact, zero-error and bounded-error settings respectively.

6.3 General Lower Bounds on the Number of Queries

6.3.1 Peremptory Lemmas

Lemma 6.1. Let N be a quantum network that makes T queries to a black-box X. Then, there exists
complex-valued N -variate multilinear polynomials p0, . . . , p2m−1, each of degree at most T , such that the
final state of the network is the superposition state∑

k∈K

pk(X)|k〉

for any black-box X.
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The main argument is that, if the amplitude of |i, 0, z〉 is α and the amplitude of |i, 1, z, 〉 is β before
a query, then after a query the amplitudes are (1− x1)α+ xiβ and x1α+ (1− xi)β respectively (which
are polynomials of degree 1); then, continue counting after each query. Furthermore, by splitting each
polynomial pk into real and imaginary parts, one obtains the following lemma:

Lemma 6.2. Let N be a quantum network that makes T queries to a black-box X, and B be a set of
basis states. Then, there exists a real-valued multilinear polynomial P (X) of degree at most 2T which
equals the probability that observing the final state of the network with black-box X yields a state from
B.

6.3.2 The exact and zero-error settings

Theorem 6.3. If f is a Boolean function, then QE(f) ≥ deg(f)/2

Proof. Suppose a quantum network computes f using exactly T = QE(f) queries. Then, its acceptance
polynomial has degree deg(f). But from Lemma 6.2, this is bounded above by 2T , and the conclusion
follows.

In [5], Nisan and Szegedy showed that, if f is a Boolean function that depends on N variables, then
deg(f) ≥ logN −O(log logN). Combining this and Theorem 6.3, we obtain the following.

Corollary 6.4. If f depends on N variables, then QE(f) ≥ logN/2−O(log logN).

Suppose p : Rn → R is a multilinear polynomial. Then, it was shown in [3] that there exists a
polynomial q : R→ R of degree at most deg(p) such that psym(X) = q(|X|) for all X ∈ {0, 1}N . Letting
T = Q0(f) and using this fact and Lemma 6.2 on the set of basis states that have 11 as the rightmost
bits, one obtains the following.

Theorem 6.5. If f is non-constant and symmetric, then Q0(f) ≥ (N + 1)/4.

We conclude this section by remarking that the above yields like ORN , ANDN , etc. require at least
(N+1)/4 queries to be computed exactly or with zero-error on a quantum network. Thus, since N queries
always suffice (even classically) one has, for all non-constant symmetric f that QE(f), QO(f) ∈ Θ(N).

6.3.3 Lower Bounds for Bounded-Error Quantum Computation

From the definition of bounded error, one immediately obtains the following.

Theorem 6.6. If f is a Boolean function, then Q2(f) ≥ ˜deg(f)/2.

In the case of symmetric f , we can do better. Let f be symmetric, and denote fk = f(X) for |X| = k.
Define

(6.2) Γ(f) = min{|2k −N + 1| : fk 6= fk+1 and 0 ≤ k ≤ N − 1}.

Then, in [6], Paturi showed that, if f is a non-constant symmetric Boolean function on {0, 1}N , then
˜deg(f) ∈ Θ(

√
N(N − Γ(f))). Using this, one can show the following:

Theorem 6.7. If f is non-constant and symmetric, then Q2(f) ∈ Θ(
√
N(N − Γ(f))).

6.3.4 Lower Bounds from Block Sensitivity

In Section 6.3, we saw that the minimum number of queries for a quantum network in various settings
is bounded below by degrees of polynomials. Instead of polynomials, one can introduce another method
for bounding these quantities. Let f : {0, 1}N → {0, 1} be a Boolean function, X ∈ {0, 1}N and
B ⊂ {0, . . . , N − 1} a set of indices. Let XB denote the string obtained from X by flipping the variables
in B. We say f is sensitivity to B is f(X) 6= f(XB). The block sensitivity bSx(f) of f on X is the
maximum number t for which there exist t disjoint sets of indices B1, . . . , Bt such that f is sensitive to
each Bi on X. The block sensitivity of f is

bs(f) = max
X∈{0,1}N

bsX (f).

Through a series of counting arguments, one can show the following.
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Theorem 6.8. If f is a Boolean function, then

QE(f) ≥
√
bs(f)

8
and Q2(f) ≥

√
bs(f)

16
.

6.4 Polynomial Relation for Classical and Quantum Complexity
and Specific Functions

Let D(f) be the decision tree complexity D(f) of f , that is the cost of the best decision tree that (clas-
sically) computes f . Similarly, let R(f) be the worst-case number of queries for randomized algorithms
that computes (classically) f(X) with error probability ≤ 1/3 for all X. We will state, without proof,
various relations between D(f), R(f), QE(f), Q0(f), and Q2(f).

Theorem 6.9. Let f : {0, 1}N → {0, 1} be a Boolean function, X ∈ {0, 1}N . Then, the following hold
(some of which are already known):

1. D(f) ∈ O(R(f)3), shown by Nisan in [4]

2. D(f) ≤ bs(f)3

3. bs(f) ≤ 16Q2(f)2 (Theorem 6.8)

4. D(f) ≤ 4096Q2(f)6

5. If f is monotone, then D(f) ≤ 256Q2(f)4

6. D(f) ≤ 32QE(f)4

7. ˜deg(f) ≤ D(f) ≤ 216 ˜deg(f)6

8. Q2(f) ≤ Q0(f) ≤ QE(f) ≤ D(f) ≤ N

9. Q2(f) ≤ R(f) ≤ D(f) ≤ N

We remark that Item Four in Theorem 6.9 implies that if a quantum algorithm computes f with
bounded-error probability using T queries, then the corresponding classical algorithm needs at most
O(T 6) queries. Item Five states, if f is monotonically increasing (decreasing), that is changing any input
bit from 0 to 1 causes an increase (decrease), then one only needs O(T 4) queries. Furthermore, if f is
symmetric, then Theorem 6.7 yields Q2(f) ∈ Ω(

√
N) and so the classical algorithm only needs O(T 2)

queries. We conclude by stating the following calculations for specific functions.

Exact (QE(f)) Zero-error (Q0(f)) Bounded-error (Q2(f))

ORN ,ANDN N N Θ(
√
N)

PARITYN dN/2e dN/2e dN/2e
MAJN Θ(

√
N) Θ(

√
N) Θ(

√
N)
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Chapter 7

Complexity measures and decision
tree complexity: a survey

after H. Buhrman and R. de Wolf [1]
A summary written by Haojian Li

Abstract. We introduce various complexity measures of Boolean functions and compare
their relations. We survey how they give bounds to the complexity measures of deterministic,
randomized, and quantum decision trees of Boolean functions.

7.1 Complexity Measures of Boolean Functions

A Boolean function is a function f : {0, 1}n → {0, 1}. We call x = x1 . . . xn ∈ {0, 1}n a Boolean input.
Let xi and |x| denote the i-th bit and the Hamming weight of x (the number of 1’s), respectively. For
S ⊂ {1, . . . , n}, we use the notation xS to mean x with the i-th input flipped for i ∈ S and abbreviate
x{i} to xi. The certificate for an input x ∈ {0, 1}n to a Boolean function is an index set S ⊂ {1, . . . , n}
such that xi = yi for all i ∈ S implies that f(x) = f(y). Certificate complexity C(f) of f is defined as
C(f) = maxx Cx(f), where Cx(f) is the size of the smallest certificate S for x. Certificate complexity
captures how many input bits that one must query to ascertain the output of the function. Sensitivity
s(f) of f is the maximum of the numbers of i-th bits such that f(xi) 6= f(x) for any Boolean input
x ∈ {0, 1}n. Sensitivity describes how unstable the output of the function is to perturbations (changes)
to the bits in the input. Block sensitivity bs(f) of f is defined as bs(f) = maxx bsx(f), where bsx(f)
is the maximum number b of disjoint sets B1, . . . , Bb ⊂ {1, . . . , n} for which f(x) 6= f(xBj ). A simple
relationship between certificate complexity and sensitivity is that

s(f) ≤ bs(f) ≤ C(f).(7.1)

It was also proved in [2] that

C(f) ≤ s(f) bs(f).(7.2)

A long-standing conjecture is whether block sensitivity can bounded by a polynomial in sensitivity.

Conjecture 7.1 (Sensitivity conjecture). Does there exist a universal constant k > 0 such that for all
Boolean functions f ,

bs(f) = O(s(f)k).

The monomialXS of the index set S ⊂ {1, . . . , n} is defined as the product of variablesXS =
∏
i∈S xi. If a

function p : Rn → C can be written p(x) =
∑
S cSXS for cS ∈ C, then we call p a multilinear polynomial

with degree deg(p) = max{|S| |cS 6= 0}. A polynomial p : Rn → R represents f if p(x) = f(x) on
all Boolean inputs x. Every Boolean function can be represented by a unique multilinear polynomial
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p : Rn → R, and we define the degree deg(f) as the degree deg(p) of the multilinear polynomial p that
represents f . It was proved in [3] that

deg(f) ≥ log n−O(log log n)(7.3)

if f depends on all n variables. The approximate degree d̃eg(f) of f is defined as the minimum degree
of any multilinear polynomial p : Rn → R such that |p(x)− f(x)| ≤ 1

3 for any Boolean input x ∈ {0, 1}n.
Ambainis ([4]) proved that almost all functions f have high approximate degree

d̃eg(f) ≥ n/2−O(
√
n log n).(7.4)

In 1994, Nisan and Szegedy ([3]) pointed out that

bs(f) ≤ 2 deg(f)2(7.5)

and

bs(f) ≤ 6 d̃eg(f)2(7.6)

for any Boolean function f . They also put forth the conjecture that sensitivity is bounded below by a
polynomial of any other complexity measure, which has been resolved recently in [5].

Theorem 7.2. For any Boolean function f , s(f) ≥
√
deg(f).

7.2 Decision Trees

A deterministic decision tree for a Boolean function f : {0, 1}n → {0, 1} is a rooted ordered binary tree,
where each internal node is assigned with an input bit xi and each leaf is assigned with either 0 or 1. We
proceed the computation by querying the input bit assigned to the root, which lead to the left (right)
sub-tree if the returned value is 0 (1, respectively). We repeat the procedure recursively till we reach
the leaf. A decision tree is said to compute f if the outputs of the tree coincide with the outputs of f
for all Boolean inputs. Decision tree complexity D(f) of f is the minimal depth of trees that compute
f . We can add randomness to the decision tree by including a coin flip node with bias p ∈ (0, 1) .
We reach the left (right) sub-tree if the outcome of the coin flip is head (tail). Such a tree is said to
compute f with bounded-error if the outcome of the tree equals f(x) with probability at least 2/3 for all
Boolean inputs x. The corresponding tree complexity R2(f) is the minimal depth of trees that compute
f with bounded-error. The quantum decision tree is usually referred to as quantum query algorithm
or quantum black-box algorithm in the literature, where we work with qubits instead of classical binary
bits. A T -quantum decision tree is defined by a initial state |0〉 and a series unitary transformations
U0, O, U1, . . . , 0, UT , where O is the query unitary transformation. Here Ui are independent of the choice
of the Boolean input. The output of the quantum decision tree only depend on querying the input T
times via O. The quantum decision tree is said to compute the function f exactly if the output of the
quantum algorithm coincide with f(x) for any Boolean input x. It is said to compute the function f
with bounded-error if the output of the quantum algorithm equals f(x) with probability at least 2/3 for
any Boolean input x. Let QE(f) and Q2(f) be the minimal number of queries if a quantum decision
tree that compute f exactly and with bounded-error, respectively. Every T -query deterministic decision
tree can be simulated by a T -query quantum decision tree without error, and every T -query randomized
decision tree can be simulated by a T -query quantum decision tree with bounded-error. Thus we have

Q2(f) ≤ R2(f) ≤ D(f) ≤ n(7.7)

and

Q2(f) ≤ QE(f) ≤ D(f) ≤ n(7.8)

for any Boolean function f .
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7.3 Applications to Decision Tree Complexity

A natural question is how the complexity measures C(f), s(f), bs(f), deg(f), and d̃eg(f) of Boolean
functions are related to the decision trees complexity D(f), R2(f), QE(f), and Q2(f). It has been proved
that those complexity measures are all polynomially related. We first summarize relationship between
the deterministic decision tree complexity D(f) and the complexity measures of Boolean functions f .
For any Boolean function f , we have

1. s(f) ≤ bs(f) ≤ D(f) and deg(f) ≤ D(f);

2. D(f) ≤ s(f)bs(f)2 ≤ bs(f)3 ([2]);

3. D(f) = O(d̃eg(f)6) ([3]).

It still remains unknown whether we can bound D(f) by block sensitivity quadratically. Let f :

{0, 1}k2 → {0, 1} be the AND of k ORs of k variables each, then D(f) = bs(f)2 = n. Thus the
optimal scenario is D(f) = bs(f)2 for any Boolean function f .

Conjecture 7.3. Does D(f) = O(bs(f)2) for every Boolean function f?

Degree of any Boolean function f is bounded above by R2(f) cubically: ([2])

D(f) ≤ 27R2(f)3.(7.9)

This gap is not optimal, and biggest gap between D(f) and R2(f) still remains a conjecture. R2(f) is
bounded below by approximate degree and block sensitivity ([2]):

d̃eg(f) ≤ R2(f)(7.10)

and

bs(f) ≤ 3R2(f).(7.11)

QE(f) and Q2(f) are the quantum analogue of D(f) and R2(f), respectively, and the biggest gap between
QE(f) and Q2(f) remains unknown as well.

Conjecture 7.4. What are the biggest gaps between the classical D(f), R2(f) and their quantum ana-
logue QE(f), Q2(f)?

Following the spirit of the proof of deg(f) ≤ D(f), we can show that

deg(f) ≤ 2QE(f)(7.12)

and

d̃eg(f) ≤ 2Q2(f)(7.13)

for any Boolean function. Another conjecture is whether QE(f) = O(deg(f)) and Q2(f) = O(d̃eg(f))
for any Boolean function f.
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Chapter 8

Vector-valued Talagrand influence
inequalities

after D. Cordero-Erausquin and A. Eskenazis [2]
A summary written by Sang Woo Ryoo

Abstract. Talagrand’s influence inequality is an enhancement of the discrete Poincaré in-
equality for real-valued functions on the discrete hypercube. We state and prove Talagrand-
type inequalities for functions on the discrete hypercube taking values in Banach spaces of
Rademacher or martingale type 2. The proof builds upon the work of Ivanisvili, van Handel,
and Volberg (2020), who proved the discrete Poincaré inequality for functions taking values
in Banach spaces of Rademacher type 2, and uses Bonami’s hypercontractive inequality and
a vector-valued Littlewood-Paley-Stein due to Xu (2020).

8.1 Introduction

Let Cn = {−1, 1}n be the discrete hypercube, and let σn be the uniform probability measure on Cn. If
(E, ‖ · ‖E) is a Banach space and p ≥ 1, then we denote the Lp(σn;E) norm of a function f : Cn → E by

‖f‖Lp(σn;E) =

(∫
Cn

‖f(ε)‖pEdσn(ε)

)1/p

.

We define the i-th partial discrete derivative of f by

∂if(ε) =
f(ε)− f(ε1, · · · ,−εi, · · · , εn)

2
.

When E = C, the discrete Poincaré inequality tells us that for f : Cn → C,

(8.1) ‖f − Eσnf‖2L2(σn;C) ≤
n∑
i=1

‖∂if‖2L2(σn;C).

Talagrand’s influence inequality [5] provides an asymptotic improvement over the discrete Poincaré in-
equality: there exists C > 0 such that for all f : Cn → C,

(8.2) ‖f − Eσn;Cf‖2L2(σn;C) ≤ C
n∑
i=1

‖∂if‖2L2(σn;C)

1 + log(‖∂if‖L2(σn;C)/‖∂if‖L1(σn;C))
.

One may inquire whether analogous phenomena happen for general Banach spaces E. At the very
least, we should require (8.1) to be true (up to constant factors) for linear functions f(ε) =

∑n
i=1 εixi,

xi ∈ E: there should exist T > 0 such that

(8.3)

∫
Cn

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2

E

dσn(ε) ≤ T 2
n∑
i=1

‖xi‖2E , ∀n ∈ N, x1, · · · , xn ∈ E.
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We say that E has Rademacher type 2 with constant T if (8.3) holds. The recent breakthrough of
Ivanisvili, van Handel, and Volberg [3] asserts that then the discrete Poincaré inequality holds:

Theorem 8.1 ([3]). There is a universal constant C > 0 such that the following is true. Let (E, ‖ · ‖E)
be a Banach space having Rademacher type 2 with constant T . Then for any n ∈ N, f : Cn → E,

‖f − Eσn
f‖2L2(σn;E) ≤ CT

2
n∑
i=1

‖∂if‖2L2(σn;E).

Cordero-Erausquin and Eskenazis [2] enhance the approach of [3] to prove a near-optimal analogue
of Talagrand’s influence inequality.

Theorem 8.2 ([2], Theorem 1). Let (E, ‖ · ‖E) be a Banach space with Rademacher type 2. Then, there
exists C(E) ∈ (0,∞) such that for every ε ∈ (0, 1), n ∈ N, and f : Cn → E,

(8.4) ‖f − Eσnf‖
2
L2(σn,E) ≤

C(E)

ε

n∑
i=1

‖∂if‖2L2(σn;E)

1 + log1−ε (‖∂if‖L2(σn;E)/‖∂if‖L1(σn;E)

) .
The choice of ε = 1/σ(f), where σ(f) := maxi log log

(
e+ ‖∂if‖L2(σn;E)/‖∂if‖L1(σn;E)

)
, gives

‖f − Eσn
f‖2L2(σn,E) ≤ C(E)σ(f)

n∑
i=1

‖∂if‖2L2(σn;E)

1 + log
(
‖∂if‖L2(σn;E)/‖∂if‖L1(σn;E)

) .
It is unknown whether the proper Talagrand influence inequality (8.2) holds for Banach spaces with

Rademacher type 2. It does hold, however, under the stronger assumption that E has martingale type
2, i.e., there exists M > 0 such that for every n ∈ N, probability space (Ω,F , µ), and filtration {Fi}ni=0

of σ-algebras, every E-valued martingale {Mi : Ω→ E}ni=0 adapted to {Fi}ni=0 satisfies

‖Mn −M0‖2L2(µ;E) ≤M
2

n∑
i=1

‖Mi −Mi−1‖2L2(µ;E).

Theorem 8.3 ([2], Theorem 2). Let E be a Banach space with martingale type 2. Then, there exists
C(E) ∈ (0,∞) such that for every n ∈ N and f : Cn → E,

(8.5) ‖f − Eσn
f‖2L2(σn,E) ≤ C(E)

n∑
i=1

‖∂if‖2L2(σn;E)

1 + log
(
‖∂if‖L2(σn;E)/‖∂if‖L1(σn;E)

) .
We will prove Theorem 8.2 in section 8.2 and Theorem 8.3 in section 8.3.

8.2 Proof of Theorem 8.2

We will first sketch the proof of Theorem 8.1 given by [3], and then describe the modifications made by
[2] which lead to Theorem 8.2.

We consider the heat flow on Cn relative to the Laplacian ∆ = −
∑n
i=1 ∂

2
i =

∑n
i=1 ∂i. The heat

kernel at time t is given by the random vector

ξ(t) = (ξ1(t), · · · , ξn(t)) ∈ Cn, P{ξi(t) = ±1} =
1± e−t

2

whose coordinates are independent, so that the time-t evolute of f : Cn → E is Ptf(ε) = Eξ(t)f(εξ). We
also denote the centered normalization δ(t) = (δ1(t), · · · , δn(t)) of ξ(t):

δi(t) =
ξi(t)− Eξi(t)√

Varξi(t)
=
ξi(t)− e−t√

1− e−2t
, i = 1, · · · , n.

The key idea of [2] is as follows. First, we have the identity

∂

∂t
Ptf(ε) = − 1√

e2t − 1
Eξ(t)

[
n∑
i=1

δi(t)∂if(εξ(t))

]
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by a straightforward computation, and so by convexity

∥∥∥∥ ∂∂tPtf
∥∥∥∥
L2(σn;E)

=
1√

e2t − 1

Eε,ξ(t)

∥∥∥∥∥
n∑
i=1

δi(t)∂if(ε)

∥∥∥∥∥
2

E

1/2

,

where we used that (ε, ξ(t))
d
= (ε, εξ(t)). Due to a result by Ledoux and Talagrand [4, Proposition 9.11],

since δi are centered and normalized, we may use the type condition on the expectation with a slightly
worse constant:

Eε,ξ(t)

∥∥∥∥∥
n∑
i=1

δi(t)∂if(ε)

∥∥∥∥∥
2

E

≤ (2T )2
n∑
i=1

‖∂if‖2L2(σn;E),

and so

(8.6)

∥∥∥∥ ∂∂tPtf
∥∥∥∥
L2(σn;E)

≤ 2T√
e2t − 1

(
n∑
i=1

‖∂if‖2L2(σn;E)

)1/2

.

Therefore

‖f − Eσnf‖L2(σn;E) ≤
∫ ∞

0

∥∥∥∥ ∂∂tPtf
∥∥∥∥
L2(σn;E)

dt

≤ 2T

(
n∑
i=1

‖∂if‖2L2(σn;E)

)1/2 ∫ ∞
0

dt√
e2t − 1

= CT

(
n∑
i=1

‖∂if‖2L2(σn;E)

)1/2

.

The idea of [2] is to replace f by Ptf in (8.6):

‖∆P2tf‖L2(σn;E) ≤
2T√
e2t − 1

(
n∑
i=1

‖Pt∂if‖2L2(σn;E)

)1/2

(we replace ∂
∂t

by ∆ to avoid confusion, and we used the fact that Pt and ∂t commute), and then apply
Bonami’s hypercontractive inequality [1]

‖Ptg‖L2(σn;E) ≤ ‖g‖L1+e−2t (σn;E), ∀g : Cn → E,

to obtain

(8.7) ‖∆P2tf‖L2(σn;E) ≤
2T√
e2t − 1

(
n∑
i=1

‖∂if‖2L1+e−2t (σn;E)

)1/2

.

Then

‖f − Eσnf‖L2(σn;E)

≤ 2

∫ ∞
0

‖∆P2tf‖L2(σn;E) dt

≤ 4T

∫ ∞
0

(
n∑
i=1

‖∂if‖2L1+e−2t (σn;E)

)1/2
dt√
e2t − 1

≤ 4T

(∫ ∞
0

n∑
i=1

‖∂if‖2L1+e−2t (σn;E)

dt

(e2t − 1)ε

)1/2(∫ ∞
0

dt

(e2t − 1)1−ε

)1/2

.
T√
ε

(
n∑
i=1

∫ ∞
0

‖∂if‖2L1+e−2t (σn;E)t
−εe−εtdt

)1/2

(∵ e2t − 1 ≥ tet).
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One can show by calculus that for any g : Cn → E,∫ ∞
0

‖g‖2L1+e−2t (σn;E)t
−εe−εtdt .

‖g‖2L2(σn;E)

1 + log1−ε(‖g‖L2(σn;E)/‖g‖L1(σn;E))
.

Thus (8.4) follows.

8.3 Proof of Theorem 8.3

The starting point of the proof is the following vector-valued Littlewood-Paley-Stein inequality due to
Xu [6]:

Theorem 8.4 ([6], Theorem 2). Let (E, ‖ · ‖E) be a Banach space with martingale type 2. Then there
exists C(E) > 0 such that for a symmetric diffusion semigroup {Tt}t≥0 on a probability space (Ω, µ),
every function f : Ω→ E satisfies

‖f − Eµf‖2L2(µ;E) ≤ C(E)2

∫ ∞
0

‖t∂tTtf‖2L2(µ;E)

dt

t
.

We now proceed with (8.7):

‖f − Eσn
f‖2L2(σn;E) ≤ 4C(E)2

∫ ∞
0

‖t∆P2tf‖2L2(σn;E)

dt

t

(8.7), 2t≤et−e−t

≤ 8C(E)2T 2

∫ ∞
0

e−t
n∑
i=1

‖∂if‖2L1+e−2t (σn;E)dt.

One can show by calculus that for any g : Cn → E,∫ ∞
0

‖g‖2L1+e−2t (σn;E)e
−tdt .

‖g‖2L2(σn;E)

1 + log(‖g‖L2(σn;E)/‖g‖L1(σn;E))
.

Thus (8.5) follows.
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Chapter 9

On Russo’s Approximate Zero One
Law

after M. Talagrand [1]
A summary written by Yonathan Stone

Abstract. We outline a paper by Michel Talagrand in which he proves the existence of
a ‘threshold’ effect for the measures of sufficiently nice subsets of the discrete cube as the
mass of the cube becomes more concentrated towards a single vertex. Some of the more
informative proofs are explained in detail while others are more tersely summarized.

Given p ∈ [0, 1], consider the product measure µp on the discrete cube {0, 1}n in which 0 is given
weight 1− p and 1 is given weight p, i.e., considering x = (x1, ..., xn) ∈ {0, 1}n, and writing |x| =

∑
xi,

we have that µp({x}) = (1 − p)n−|x|p|x|. In his paper “On Russo’s Approximate Zero-One Law,”
Michel Talagrand investigates a so-called “threshhold effect” in this measure, namely that for specific
types of subsets A of the discrete cube, the measure µp(A) increases from near 0 to near 1 as p varies
within a very small neighborhood of [0, 1]. In all cases, we assume A to be a monotone subset of the
discrete cube, that is that for any point x ∈ A, any other point y ∈ {0, 1}n whose coordinates pointwise
dominate those of x must also be in A. On a purely intuitive level, this threshold effect has been
demonstrated to exist for subsets that are essentially determined by very few coordinates1. The author
expands on a result by Russo in which the threshold effect exists as soon as A depends little on any
given coordinate, although he adapts Russo’s definition as follows. Given x = (x1, ..., xn) ∈ {0, 1}n, let
Ui(x) = (x1, ..., xi−1, 1−xi, xi+1, ..., xn) and set Ai = {x ∈ {0, 1}n;x ∈ A,Ui(x) /∈ A}. Since by definition
a monotone subset A of the discrete cube must contain Ui(x) if xi = 0 and x ∈ A, the set Ai gives us
some idea of which points in A are in A without their existence being required by the presence of the
point “directly underneath x” in the ith coordinate direction. This encodes the idea of “points in A that
don’t depend on the ith coordinate”. This brings us to the primary result Talagrand presents in the
paper

Theorem. There exists a universal constant K, such that, for any p and any monotone subset A of
{0, 1}n, we have

(9.1) µp(A)(1− µp(A)) ≤ K(1− p) log
2

p(1− p)
∑
i≤n

µp(Ai)

log[1/((1− p)µp(Ai))]

which gives rise to the following corollaries:

Corollary. Let ε = sup
i
µp(Ai). Then

dµp(A)

dp

log(1/ε)

Kp(1− p) log [2/(p(1− p))]
µp(A)(1− µp(A)).

1It is useful to think about this in terms of the rule regarding monotone subsets and then finding the minimal
number of points needed to generate the entire subset using this rule.
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Corollary. Let ε′ = sup
0≤p≤1

sup
i
µp(Ai). Then, for p1 < p2, we have

µp1(A)(1− µp2(A)) ≤ (ε′)(p2−p1)/K′ ,

where K ′ is universal.

Corollary. We have

sup
i≤n

µp(Ai) ≥
1

K ′(1− p)
U log

1

U
,

where K’ is universal and where U = µp(A)(1− µp(A))/(n log(2/p(1− p)))

In essence all these corrolaries illustrate that the presence of a threshold effect (encoded as the
restrictions on the quantity µp(A)(1 − µp(A)) is more quantifiable the less A depends on any given
coordinate (the dependence on the i-th coordinate is itself encoded by the magnitudes µp(Ai). In the
case where p = 1

2 = µp(A), one can prove Corollary 3 using harmonic analysis. Talagrand adapts these
ideas in order to prove an analogous result in this more general setting where the techniques of harmonic
analysis are unavailable. Moreover, since Theorem 1 doesn’t concern itself with the specifics of the set
A too much, it can be derived from the following more general result concerning functions on {0, 1}n:
Given f : {0, 1}n → R, set ∆if(x) = (1−p)(f(x)−f(Ui(x))) if xi = 1, and ∆if(x) = p(f(x)−f(Ui(x)))
if xi = 0. Then

Theorem. For some numerical constant K and each function f : {0, 1}n → R such that
∫
fdµp = 0,

we have

(9.2) ||f ||22 ≤ K log
2

p(1− p)
∑
i

||∆if ||22
log(e||∆if ||2/||∆if ||1)

.

Here ||f ||q denotes the Lq(µp) norm. Theorem 1 is an immediate consequence of Theorem 2 as
soon as one observes that for f = 1A − µp(A), we have ||f ||22 = µp(A)(1 − µp(A)) and ||∆if ||qq =
p−1µp(Ai)(p(1− p)q + (1− p)pq). In addition Talagrand proves another estimate that improves upon the
result in Theorem 2, although Theorem 2 is still included for its ease of understanding and sufficiency

in deducing Theorem 1. For this, let ϕ(x) = x2

log(e+x) for x ≥ 1. For a function f we will consider the

following Orlicz norm:

||f ||ϕ = inf

{
c > 0;

∫
ϕ

(
f

c

)
≤ 1

}
which is used in the following result:

Theorem. There is a universal constant K such that for each f : {0, 1}n → R with
∫
fdµp = 0, we

have

||f ||22 ≤ K log
2

p(1− p)
∑
i

||∆if ||2ϕ.

The introduction concludes with a proof of the following claim:

Claim. For each p, the estimate in Theorem 1 is sharp.

Proof. Case 1: p < 1
2 . Let k ≥ 1 and assume that r = p−k is an integer. For n = kr consider points in

{0, 1}n as r k-tuples of coordinates. Let A denote the set of points in {0, 1}n such that at least one k-tuple
of coordinates consists of 1’s only. We can compute that µp(A) = (1−pk)r, which we note approximates
e−1 closely for sufficiently large r. This tells us that the left hand side of (9.1) is of constant order. Fur-
thermore, we have that for each i, µp(Ai) = pk(1−pk)r−1, which by the same logic as above approximates
pk

e , which means that nµp(Ai) is of order k. Furthermore, given that log (1/(1− p)µp(Ai)) ' k log(1/p),
which gives us that the RHS of (9.1) is also of order 1.
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As a tool in some of proofs, Talagrand introduces the following collection of functions on L2(µp).
Given a subset S ⊆ {1, ..., n}, write

rS(x) =
∏
i∈S

ri(x)

where

ri(x) =


√

1−p
p if xi = 1

−
√

p
1−p

.

Noting that r∅ ≡ 1, we have that {rS}S⊆{1,...,n} forms an orthogonal basis for L2(µp). Given g =
∑
aSrS

such that a∅ =
∫
gdµp = 0 define

M(g)2 =
∑
S

a2
S

|S|
.

The quantity M(g) is important to the results presented in the paper (specifically Theorem 2) insofar
that for f on {0, 1}n with

∫
fdµp = 0, we can write f =

∑
S bSrS , b∅ = 0. We note that ∆i has been

defined in such a way that ∆i(rS) = 0 if i /∈ S and ∆i(rS) = rS if i ∈ S. Thus, a series of computations
allows us to deduce that

(9.3) ||f ||22 =
∑
S

b2S =
∑
i

M(∆if)2

Talagrand then proceeds to prove the following important property for the basis {rS}S⊆{1,...,n}.

Lemma. For q ≥ 2 and set θ = 1√
p(1−p)

. Then for any k and numbers {aS}|S|=k, we have

(9.4)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|S|=k

aSrS

∣∣∣∣∣∣
∣∣∣∣∣∣
q

≤ (q − 1)k/2θk

∑
|S|=k

a2
S

 1
2

Proof. Step 1: Consider the space {−1, 1} equipped with the uniform measure λ, and for S ⊆ {1, ..., n},
set

wS(ε) =
∏
i∈S

εi.

We have that the wS form an orthonormal basis for L2(λ), and moreover, we have by results from Fourier
analysis that the operator

(9.5) Tδ :
∑

bSwS →
∑

bSδ
|S|wS

is of norm 1 from L2(λ) to Lq(λ) for δ = 1√
q−1

.

Step 2: Equip the space H = {0, 1}n×{0, 1}n×{−1, 1}n with the measure ν = µp⊗µp⊗λ and consider
the function

hS(x, y, ε) = gS(x, y)wS(ε)
∏
i∈S

(ri(x)− ri(y))εi.

By some simple computations, it follows that

(9.6)
∣∣∣∣∣∣∑ aSgS

∣∣∣∣∣∣
Lq(µp⊗µp)

=
∣∣∣∣∣∣∑ aShS

∣∣∣∣∣∣
Lq(ν)

Furthermore, applying the results from Step 1 to bS = aSgS(x, y) = aS
∏
i∈S

(ri(x) − ri(y)), noting that

|ri(x)− ri(y)| ≤ θ, and some further computations yield that

(9.7)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|S|=k

aShS

∣∣∣∣∣∣
∣∣∣∣∣∣
Lq(ν)

≤ θk(q − 1)k/2

∑
|S|=k

a2
S

1/2

.
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Step 3: The result follows by combining the estimates obtained in Part 2 as well as the observation that∣∣∣∣∣∣∑ aSrS

∣∣∣∣∣∣
Lq(µp)

≤
∣∣∣∣∣∣∑ aSgS

∣∣∣∣∣∣
Lq(µp⊗µp)

.

Using duality via Hölder’s inequality, one can obtain the following result from the previous Lemma:

Proposition. Let g : {0, 1}n → R and set aS =
∫
rSgdµ. Then∑

|S|=k

a2
S ≤ (q − 1)kθ2k||g||2q′ ,

where q′ is the conjugate exponent of q.

Equation (3) combined with the next statement are sufficient to prove Theorem 2 (and by extension
Theorem 1):

Proposition. For some universal constant K, if
∫
gdµp = 0, we have

(9.8) M(g)2 ≤ K log
2

p(1− p)
||g||22

log(||g||2/(e||g||1))

Proof. The proof of this proposition involves considering the result from Proposition 1 for the case

q = 3, q′ = 3
2 . We also observe that for the sequence xk = (2θ2)k

k and for any integer m,
∑
k≤m

xk ≤ 2xm by

previous observations. Thus, combining the results from our application of Prop 1 and this observation,
we obtain the following:

M(g)2 ≤
∑
k≤m

xk||g||23/2 +
∑
|S|>m

a2
S

|S|
≤ 1

m+ 1

(
4mxm + ||g||22

)
One can then cleverly choose m as the largest integer such that (2θ2)m||g||23/2 ≤ ||g||

2
2.2 This results in

the observation that (2θ2)m+1||g||23/2 ≥ ||g||
2
2, i.e.

m+ 1 ≥
2 log(||g||2/||g||3/2)

log 2θ2

Using both this and our initial constraint on m, we can plug this into what we have so far for M(g)2 to
get

M(g)2 ≤ K log 2θ2

log(e||g||2/||g||3/2)
||g||22

We finally obtain the desired result by noting that

||g||2
||g||1

≤
(
||g||2
||g||3/2

)3

which is in itself a simple consequence of the Cauchy-Schwarz Inequality.

The remainder of the section is dedicated to the proof of Theorem 3, which itself involves exploiting
a few key properties of the Orlicz norm || · ||ϕ. These are the following:

Lemma. For a function f :

||f ||2ϕ ≤
K||f ||22

log(e||f ||2/||f ||1)
.

2Note that since the total measure of {0, 1}n for µp is 1, the Lp norm of a function is monotone increasing in
p. This combined with the observation that for m = 0, (2θ2)m = 1 and that the (2θ2)m are increasing in m, we
know we can find such an integer m
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This allows us to improve upon Proposition 2 as follows:

Proposition. For a universal constant K, we have

(9.9) M(g)2 ≤ K||g||2ϕ log
2

p(1− p)
.

The proof of this proposition involves manipulating the following family of seminorms. Given h =∑
hSrS , with h∅ = 0, define:

Ml(h)2 =
∑

2l≤k<2l+1, |S|=k

h2
S

|S|
.

The remaining proof proceeds similarly to using Proposition 1 to prove Proposition 2. Theorem 3
immediately follows via an application of Propsosition 3 to Equation (3).
The remainder of the paper concerns deriving the corollaries of Theorem 1.

Proof of Corollary 1. The only thing required beyond Theorem 1 is what is commonly referred to as
“Russo’s formula”, that is:

dµp(A)

dp
=

1

p

∑
i≤n

µp(Ai),

from which the remaining derivations are straightforward.

The computations to derive Corollary 2 follows from an application of Corollary 1 to the expression

d

dp
(g(µp(A)))

where g(x) = log(x/(1− x)).
Finally, Corollary 3 is a consequence of Theorem 1 and the observation that x log(1/x) is increasing for
x < 1 as well as the fact that for x ≤ 1

2

y

log(1/y)
≥ x =⇒ y ≥ x

K
log(1/x).
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Chapter 10

On the Fourier tails of bounded
functions over the discrete cube

after I. Dinur, E. Friedgut, G. Kindler and R. O’Donnell [1]
A summary written by Alberto Takase

Abstract. This is a terse summary. The main theorem is stated along with related theo-
rems. The proof of the main theorem is outlined.

10.1 Main Theorem and Related Theorems

Let f : {−1, 1}n → R be a function. Define f̂ : P({1, . . . , n})→ R by

f =
∑
S f̂(S)χS ,

where χS : {−1, 1}n → {−1, 1} : x 7→
∏
i∈S xi. Here f̂ is called the Fourier transform of f . Also here χS

is called the character of S. The following theorem is the main theorem, and the related theorems are
listed afterwards.

Theorem 10.1 (2007 [1]). Assume f has codomain [−1, 1] and∑
#(S)>k|f̂(S)|2 ≤ e−O(k2 log k)/r

for some k ∈ {1, . . . , n} and for some r > 0. Then there exists a function g : {−1, 1}n → R such that g
depends on at most 2O(k)/r2 coordinates and∑

S |f̂(S)− ĝ(S)|2 ≤ r.

Furthermore, this theorem is tight, except, possibly, for the log k in the exponent; see Theorem 2 within
[1].

Theorem 10.2 (2002 [2]). Assume f has codomain {−1, 1} and∑
#(S)>k|f̂(S)|2 > (k/r)−1/2−o(1)

for some k ∈ {1, . . . , n} and for some r > 0. Then there exists a function g : {−1, 1}n → R such that g
depends on at most 2O(k)/rO(1) coordinates and∑

S |f̂(S)− ĝ(S)|2 ≤ r.

Theorem 10.3 (2002 [3]). Assume f has codomain {−1, 1} and∑
#(S)>1|f̂(S)|2 ≤ r

for some r > 0. Then there exists a function g : {−1, 1}n → R such that g depends on at most 1
coordinate and ∑

S |f̂(S)− ĝ(S)|2 ≤ O(r).
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Theorem 10.4 (1998 [4]). Assume f has codomain {−1, 1} and∑
S |f̂(S)|2#(S) ≤ k

for some k ∈ {1, . . . , n}. Then for each r > 0, there exists a function g : {−1, 1}n → R such that g
depends on at most 2O(k/r) coordinates and∑

S |f̂(S)− ĝ(S)|2 ≤ r.

10.2 Proof of Main Theorem

Let f : {−1, 1}n → R be a function. Define f̂ : P({1, . . . , n})→ R by

f =
∑
S f̂(S)χS ,

where χS : {−1, 1}n → {−1, 1} : x 7→
∏
i∈S xi. Assume f has codomain [−1, 1] and∑

#(S)>k|f̂(S)|2 ≤ e−O(k2 log k)/r

for some k ∈ {1, . . . , n} and for some r > 0. Without loss of generality, 1 > r > 0. Define g : {−1, 1}n →
R by

g =
∑

#(S)≤k f̂(S)χS .

Lemma 10.5 (Theorem 7 within [1]). There exists C > 0 such that for each T ⊆ {1, . . . , n} with∑
S\T 6=∅|ĝ(S)|2 ≥ r and for each t ≥

√
r, if∑
S3i|ĝ(S)|2 ≤ r2t−2C−k

for every i ∈ {1, . . . , n} \ T , then

P[|g| ≥ t] ≥ e−(Ct2k2 log k)/r.

Define J = {i :
∑
S3i|ĝ(S)|2 ≥ r2(4)−2C−k}. Define h : {−1, 1}n → R by

h =
∑

#(S)≤k,S⊆J f̂(S)χS .

Observe ∑
i≤n,S3i

|ĝ(S)|2 =
∑
S

|ĝ(S)|2#(S) =
∑

#(S)≤k
|f̂(S)|2#(S) ≤ k.

Therefore #(J) ≤ k/r2(4)−2C−k ≈ 2O(k)/r2 and h depends on the coordinates of J . Observe∑
S |f̂(S)− ĝ(S)|2 =

∑
#(S)>k|f̂(S)|2 ≤ e−O(k2 log k)/r ≤ e−O(1)/r ≤ r/2.

By Lemma 10.5, ∑
S |ĝ(S)− ĥ(S)|2 ≤ r/2.

Indeed, suppose ∑
S |ĝ(S)− ĥ(S)|2 > r/2.

By Lemma 10.5 with parameters J and r/2 and 2,

P[|g| ≥ 2] ≥ e−(8Ck2 log k)/r

and ∑
S |f̂(S)− ĝ(S)|2 = Ex|f(x)− g(x)|2 ≥ 1 · e−(8Ck2 log k)/r

which is a contradiction when taking a large enough constant in the O(·).
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Chapter 11

On the Fourier spectrum of
functions on Boolean cubes

after A. Defant, M. Masty lo, and A. Pérez [1]
A summary written by Haonan Zhang

Abstract. We discuss Bohnenblust–Hille type inequalities for n-dimensional Boolean cubes
{±1}n [1]. Similar to the result in [2] for n-dimensional torus Tn, the Bohnenblust–Hille
constant for Boolean cubes is also of subexponential growth. The main ideas and ingredients
of the proof are presented.

11.1 Introduction

Let Tn be the n-dimensional torus. A classical inequality of Bohnenblust and Hille [3] says that for any
n ≥ 1 and any complex-valued degree-d polynomial

P (z) =
∑

α∈Zn
≥0

:|α|≤d

aαz
α, z = (z1, . . . , zn) ∈ Tn,

there exists a constant C(d) > 0 depending only on d such that

(11.1)

 ∑
α∈Zn

≥0
:|α|≤d

|aα|
2d

d+1


d+1
2d

≤ C(d)‖P‖Tn .

Here and in what follows, we use ‖f‖K to denote the supremum norm of a scalar function on K.
The best possible constant C(d) in (11.1) is the Bohnenblust–Hille constant, and will be denoted by

BH≤dT . Similarly, we denote by BH=d
T the best constant such that (11.1) holds for all d-homogeneous

polynomials. Clearly BH=d
T ≤ BH≤dT . An easy trick shows that we actually have BH=d

T = BH≤dT . The

upper bound of BH≤dT established in the original proof and its later improvements is essentially of order
√
d
d
. Recent years have seen many improvements on the Bohnenblust–Hille constants BH≤dT . Notably,

Bayart, Pellegrino and Seaoane-Sepúlveda [2] proved that there exists a universal constant C > 0 such
that

(11.2) BH≤dT ≤ C
√
d log d.

This, in particular, implies the subexponential growth of BH≤dT :

(11.3) lim sup
d→∞

d

√
BH≤dT = 1.

In the following, we present a Boolean analog of this result.
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The analysis of scalar-valued functions on the Boolean cube {±1}n plays an important role in many
areas such as theoretical computer sciences. Any function f : {±1}n → R has a unique Fourier–Walsh
expansion:

f(x) =
∑
S⊂[n]

f̂(S)χS(x), x ∈ {±1}n,

where for each S ⊂ [n] := {1, . . . , n}, χS is defined as

χS(x) = xS :=
∏
k∈S

xk, x = (x1, . . . , xn) ∈ {±1}n.

In particular, when S = ∅, χ∅ ≡ 1. Endowing the uniform probability measure on {±1}n, we define the
expectation of f : {±1}n → R as

Ef :=
1

2n

∑
x∈{±1}n

f(x).

We use ‖f‖p := (E|f |p)1/p, 1 ≤ p <∞ to denote the associated Lp-norms.

For each S ⊂ [n], let |S| be the cardinality of S. Then f : {±1}n → R is of degree-d if f̂(S) = 0 for all

|S| > d, and f is d-homogeneous if f̂(S) = 0 whenever |S| 6= d. We will need the following consequence
of hypercontractivity [1]: for f : {±1}n → R of degree-d we have

(11.4) ‖f‖2 ≤ C(p, d)‖f‖p, 1 ≤ p ≤ 2,

where C(p, d) = (p− 1)−d/2 if 1 < p ≤ 2, and C(1, d) = ed.
Now we can state the Bohnenblust–Hille type inequalities for the Boolean cube: for any f : {±1}n →

R of degree-d we have

(11.5)

 ∑
S∈[n]:|S|≤d

|f̂(S)|
2d

d+1


d+1
2d

≤ BH≤d{±1}‖f‖{±}n .

Here BH≤d{±1} already denotes the best constant for Boolean cubes. One can understand BH=d
{±1} in an

obvious way, i.e., the best constant such that (11.5) holds for all d-homogeneous functions. The trick for

proving BH=d
T = BH≤dT does not work for Boolean cube anymore, so we only have BH=d

{±1} ≤ BH≤d{±1} in

general. The main result of [1] is the following:

Theorem 11.1. [1] There exists a universal constant C > 0 such that

(11.6) BH≤d{±1} ≤ C
√
d log d.

In particular, lim supd→∞
d

√
BH≤d{±1} = 1.

This result is closely related to many other topics such as Sidon sets, Boolean radii and the Aaronson–
Ambainis conjecture [3]. To compare, we also have Bohnenblust–Hille type inequalities for real polyno-

mials on n-dimensional cubes [−1, 1]n, with the best constants BH=d
[−1,1] and BH≤d[−1,1] satisfying [1]

lim sup
d→∞

d

√
BH=d

[−1,1] = 2, and lim sup
d→∞

d

√
BH≤d[−1,1] = 1 +

√
2.

11.2 Proof of the d-homogeneous case

Let us sketch the proof of Theorem 11.1 in the d-homogeneous case so that one can easily grasp the
point. For any n ∈ N and any finite set A ⊂ N, define

I(A,n) := {i : A→ [n]}.

When A = [d], we denote I(d, n) := I([d], n) for simplicity. For two disjoint subsets A1 and A2 of N we
may define the direct sum i1 ⊕ i2 of i1 ∈ I(A1, n) and i2 ∈ I(A2, n) as an element of I(A1 ∪ A2, n). In
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particular, for any fixed d and any S ⊂ [d], we use Ŝ := [d] \ S to denote the complement of S in [d].
Any element i in I(d, n) can be uniquely decomposed into the direct sum of some i1 ∈ I(S, n) and some

i2 ∈ I(Ŝ, n).
The following inequality is crucial and will also be used in the proof of the degree-d case.

Proposition 11.2. [2] Let n ∈ N and 1 ≤ k ≤ d be integers. Then for any scalar matrix (ai)i∈I(d,n),
we have

(11.7)

 ∑
i∈I(d,n)

|ai|
2d

d+1


d+1
2d

≤

 ∏
S⊂[d]:|S|=k

 ∑
i1∈I(S,n)

 ∑
i2∈I(Ŝ,n)

|ai1⊕i2 |2
 1

2 ·
2k

k+1


k+1
2k


1

(d
k)

.

The proof of (11.6) for BH=d
{±1} is based on the following inductive inequality

(11.8) BH=d
{±1} ≤ C(k, d)BH=k

{±1},

for some constant C(k, d) > 0 and any 1 ≤ k ≤ d. The desired bound (11.6) for BH=d
{±1} will follow by

applying (11.8) repeatedly to special k’s. Now we use a simple example to illustrate the proof of (11.8).
Let (d, k) = (2, 1). Then for any 2-homogeneous function f(x) =

∑
i<j aijxixj on {±1}n we need to

show ∑
i<j

|aij |4/3
3/4

≤ CBH=1
{±1}‖f‖{±1}n .

Here and in what follows, C > 0 is some constant that may differ from line to line. The proof consists
of four steps.

Step 1: Put aii := 0, i ∈ [n] and aji := aij for i < j.
Step 2: Apply the inequality (11.7) to (aij)i,j∈[n]:∑

i<j

|aij |4/3
3/4

≤C
n∑
i=1

∑
j 6=i

|aij |2
1/2

.

Step 3: The hypercontractivity result (11.4) (with p = 1) implies

n∑
i=1

∑
j 6=i

|aij |2
1/2

=

n∑
i=1

∥∥∥∥∥∥
∑
j 6=i

aijyj

∥∥∥∥∥∥
2

≤ CEy
n∑
i=1

∣∣∣∣∣∣
∑
j 6=i

aijyj

∣∣∣∣∣∣ .
By definition of BH=1

{±1}, the last term is bounded from above by

C sup
y∈{±1}n

n∑
i=1

∣∣∣∣∣∣
∑
j 6=i

aijyj

∣∣∣∣∣∣ ≤ CBH=1
{±1} sup

x,y∈{±1}n

∣∣∣∣∣∣
n∑
i=1

∑
j 6=i

aijxiyj

∣∣∣∣∣∣ .
Step 4: By a polarization result that we will discuss later, the right-hand side is bounded from

above by CBH=1
{±1}‖f‖{±1}n . This finishes the proof.

Now let us recall the polarization result in the last step establishing

(11.9) sup
x,y∈{±1}n

∣∣∣∣∣∣
∑
i 6=j

aijxiyj

∣∣∣∣∣∣ ≤ C‖f‖{±1}n .

Any degree-d function f : {±1}n → R is the restriction of a unique polynomial (the tetrahedral) P =
Pf : Rn → R that is affine in each variable. Moreover, ‖f‖{±1}n = ‖Pf‖[−1,1]n . This polynomial P is

associated to a unique d-affine symmetric form L : (Rn)d → R such that P (x) = L(x, . . . , x). When f is d-
homogeneous, the form L is d-linear. For the above f(x) =

∑
i<j aijxixj , L(x, y) = 1

2

∑
i6=j aijxiyj , which

is (up to a scalar) what we need to estimate in (11.9). In general, one has to bound L(x, . . . , x, y, . . . , y).
For this, we need to use the following polarization result:
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Proposition 11.3. [1] Let P : Rn → R be a d-homogeneous polynomial. Let L : (Rn)d → R be the
associated unique d-linear symmetric form. Then for any 0 < k < d, we have

|L(

k︷ ︸︸ ︷
x, . . . , x,

d−k︷ ︸︸ ︷
y, . . . , y)| ≤Mk,d

dd

kk(d− k)d−k
k!(d− k)!

d!
‖P‖[−1,1]n , x, y ∈ Rn.

Here Mk,d is the Markov number that has an explicit form.

The proof relies on Markov’s inequality, saying that for any real polynomial p(t) :=
∑d
k=0 akt

k of
degree d, we have

|ak| ≤Mk,d‖p‖[−1,1], 0 ≤ k ≤ d.
The constant Mk,d is optimal and can be captured by Chebyshev polynomial of degree d. Then Propo-
sition 11.3 will follow by taking p(t) = P (tλx + (1 − λ)y) for suitable λ ∈ [0, 1] and expanding p by
linearity and symmetry of L.

11.3 Proof of the degree-d case

The proof of (11.6) is again based on an inductive inequality similar to (11.8). For this, we repeat the
four-step argument. The first three steps can be easily adapted to the degree-d case. However, the proof
of Proposition 11.3 used in the last step does not work for degree-d case, since it requires the linearity
of L. Before stating the substitute of polarization result, we start with a variant of Markov’s inequality:

Proposition 11.4. For each 0 ≤ k ≤ d set

ψd,k(t) :=

(
1 + t

2

)k (
1− t

2

)d−k
, t ∈ R.

Then any degree-d polynomial p : R→ R can be represented as

p(t) =

d∑
k=0

akψd,k(t), t ∈ R,

where each ak = ak(p) ∈ R satisfies

|ak(p)| ≤ |ak(Td)|‖p‖[−1,1].

Here Td denotes the Chebyshev polynomial of degree d.

Different from Proposition 11.3, here we replace the basis {tk}k with {ψk,d}k. Then one can prove
the following polarization result by choosing p(t) = P ( 1+t

2 x + 1−t
2 y) and expanding p by affinity and

symmetry of L.

Proposition 11.5. Let P : Rn → R be a polynomial of degree d and L = LP the associated d-affine
form. Then for any 0 ≤ k ≤ d/2, we have

|L(

k︷ ︸︸ ︷
x, . . . , x,

d−k︷ ︸︸ ︷
y, . . . , y)| ≤ 2dk‖P‖[−1,1]n , x, y ∈ Rn.

With this, one can complete the proof of Theorem 11.1 in the general case.
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[2] Bayart, F., Pellegrino, D., Seaoane-Sepúlveda, J.B., The Bohr radius of the n-dimensional polydisk
is equivalent to (log n)/n. Adv. Math. 264, 726–746 (2014).

[3] Bohnenblust, H. F., Hille, E., On the absolute convergence of Dirichlet series. Ann. Math. 32(3),
600–622 (1931).

Haonan Zhang, IST Austria
email: haonan.zhang@ist.ac.at

42


