THE DIMENSIONAL BRUNN–MINKOWSKI INEQUALITY IN GAUSS SPACE

ALEXANDROS ESKENAZIS AND GEORGIOS MOSCHIDIS

Abstract. Let γ_n be the standard Gaussian measure on \mathbb{R}^n. We prove that for every symmetric convex sets K, L in \mathbb{R}^n and every $\lambda \in (0, 1)$,

$$
\gamma_n(\lambda K + (1 - \lambda)L)^{\frac{1}{n}} \geq \lambda \gamma_n(K)^{\frac{1}{n}} + (1 - \lambda)\gamma_n(L)^{\frac{1}{n}},
$$

thus settling a problem raised by Gardner and Zvavitch (2010). This is the Gaussian analogue of the classical Brunn–Minkowski inequality for the Lebesgue measure. We also show that, for a fixed $\lambda \in (0, 1)$, equality is attained if and only if $K = L$.

2020 Mathematics Subject Classification. Primary: 52A40; Secondary: 52A20, 28C20, 47F10.

Key words. Brunn–Minkowski inequality, symmetric convex sets, Gaussian measure, Gardner–Zvavitch problem.

1. Introduction

The classical Brunn–Minkowski inequality asserts that for every compact sets A, B in \mathbb{R}^n and every $\lambda \in (0, 1)$,

$$
|\lambda A + (1 - \lambda)B|^\frac{1}{n} \geq \lambda |A|^\frac{1}{n} + (1 - \lambda)|B|^\frac{1}{n},
$$

where $|\cdot|$ denotes Lebesgue measure and the Minkowski convex combination of sets is given by

$$
\lambda A + (1 - \lambda)B = \{\lambda a + (1 - \lambda)b : a, b \in A\}.
$$

In view of the importance of the Brunn–Minkowski inequality in convex geometric analysis (see the monographs [Gar06, Sch14] and the surveys [Gar02, Mau05, Bar06]), the last decades have seen a surge of activity around refinements and extensions of (1) in different contexts. We refer to [KM17, KL18, HKL20] for an up to date account of some important achievements in this area.

One prominent direction in modern Brunn–Minkowski theory is the study of inequalities relating the “size” of the Minkowski sum of subsets of \mathbb{R}^n to the “sizes” of the individual summands, where “size” can be interpreted more loosely than in the sense of the usual Euclidean volume. In this paper, we will be interested in the case where “size” refers to the standard Gaussian measure γ_n given by $d\gamma_n(x) = \exp(-|x|^2/2) dx$; here $|x|$ denotes the Euclidean length of a vector $x \in \mathbb{R}^n$. An example of a profound geometric inequality for γ_n is Ehrhard’s inequality [Ehr83], which states that for every Borel measurable sets A, B in \mathbb{R}^n and every $\lambda \in (0, 1)$,

$$
\Phi^{-1}(\gamma_n(\lambda A + (1 - \lambda)B)) \geq \lambda \Phi^{-1}(\gamma_n(A)) + (1 - \lambda)\Phi^{-1}(\gamma_n(B)),
$$

where Φ^{-1} is the inverse of the Gaussian distribution function $\Phi(x) = \gamma_1((\infty, x])$. Inequality (3) is known to capture many delicate probabilistic and geometric properties of the Gaussian measure. For instance, it implies the Gaussian isoperimetric inequality, which asserts that half-spaces have minimal Gaussian surface area among all sets of fixed measure. Ehrhard’s original proof of (3) proceeded via Gaussian symmetrization and required both sets A and B to be convex, an assumption which was later removed by Borell in [Bor03] (see also [Lat96] for a partial result).

While Ehrhard’s inequality (3) captures the optimal dimension-free convexity of the Gaussian measure, its validity for general Borel subsets A, B of \mathbb{R}^n shows that it is oblivious to additional

A. E. was supported by a postdoctoral fellowship of the Fondation Sciences Mathématiques de Paris. G. M. acknowledges support from the Miller Institute for Basic Research in Science, UC Berkeley.
geometric properties of the underlying sets, such as convexity. In [GZ10], Gardner and Zvavitch undertook a detailed investigation of Gaussian inequalities in (dual) Brunn–Minkowski theory, which they concluded by asking (see [GZ10, Question 7.1]) whether the dimensional Brunn–Minkowski inequality (1) holds with the Lebesgue measure $|\cdot|$ replaced by γ_n with the assumption that the underlying sets are convex and contain the origin. A counterexample to this statement was produced by Nayar and Tkocz in [NT13], yet the possibility of such an inequality being true for all origin symmetric convex sets remained open. This problem is settled in the affirmative here.

Theorem 1. For every $n \in \mathbb{N}$, every symmetric convex sets K, L in \mathbb{R}^n and every $\lambda \in (0,1)$,

$$\gamma_n(\lambda K + (1 - \lambda)L)^{\frac{1}{n}} \geq \lambda \gamma_n(K)^{\frac{1}{n}} + (1 - \lambda)\gamma_n(L)^{\frac{1}{n}}.$$

(4)

By taking K and L to be small coordinate boxes around the origin, it becomes clear that the exponent $\frac{1}{n}$ is optimal (i.e. maximal) in inequality (4). As was already observed in [GZ10], the dimensional Gaussian Brunn–Minkowski inequality (4) neither trivially follows nor implies Ehrhard’s inequality (3) for origin symmetric convex sets.

1.1. Symmetry in Brunn–Minkowski theory. The dimensional Brunn–Minkowski inequality (4) is a refinement of the log-concavity of the Gaussian measure, that is, the fact that for every Borel sets A, B in \mathbb{R}^n and every $\lambda \in (0,1)$,

$$\gamma_n(\lambda A + (1 - \lambda)B) \geq \gamma_n(A)^{\lambda}\gamma_n(B)^{1 - \lambda},$$

(5)

for the class of symmetric convex sets. Strengthenings of measure-theoretic inequalities such as (5) under convexity and symmetry assumptions repeatedly appear in Brunn–Minkowski theory and the geometry of the Gaussian measure. To illustrate this phenomenon, we recall the deep B-inequality of Cordero-Erausquin, Fradelizi and Maurey [CEFM04], which states that for every symmetric convex set K in \mathbb{R}^n, the map $\alpha(t) = \gamma_n(e^t K)$ is a log-concave function on \mathbb{R}. In this setting, the log-concavity of the function $\beta(s) = \gamma_n(s K)$ on \mathbb{R}^+ for every convex set K in \mathbb{R}^n is a straightforward consequence of (5), yet the additional symmetry assumption is necessary for the log-concavity of α as can be seen by taking $K = [-1, \infty)$ on \mathbb{R}. Other important examples of inequalities in Gauss space (see also [Lat02]) which crucially rely on the symmetry and convexity of the underlying sets are the S-inequality of Latała and Oleszkiewicz [LO99] and Royen’s correlation inequality [Roy14].

Theorem 1 belongs in a large network of (largely conjectural) inequalities involving log-concave measures of various notions of convex combinations of symmetric convex sets in \mathbb{R}^n. At the top of the hierarchy of these inequalities lies the celebrated log-Brunn–Minkowski conjecture of Böröczky, Lutwak, Yang and Zhang [BLYZ12], which asserts that the Euclidean volume of the geometric mean of two symmetric convex sets can be bounded below by the geometric mean of their volumes. Its validity would, for instance, imply the dimensional Brunn–Minkowski inequality (4) and the B-inequality with γ_n replaced by any symmetric log-concave measure μ. Surveying in detail all recent developments in this area lies beyond the scope of this paper, so we refer to [KM17, YZ19, CHLL18, Put19, BK20, HKL20, KL20] for recent results and further bibliographical information.

1.2. Approaches towards the Gardner–Zvavitch problem. Since the formulation of the problem in [GZ10], there have been several partial results towards the general statement of Theorem 1. Gardner and Zvavitch themselves proved the Gaussian Brunn–Minkowski inequality (4) in the special cases that the sets K, L are either coordinate boxes containing the origin or dilates of a fixed symmetric convex set. These results were later generalized to more general measures by Marsiglietti [Mar16]. In [CLM17], Colesanti, Livshyts and Marsiglietti showed that (4) holds when both symmetric bodies K, L are small perturbations of the Euclidean ball. Moreover, Livshyts, Marsiglietti, Nayar and Zvavitch [LMNZ17] have used a clever variant of the Prékopa–Leindler
inequality [Sch14, Theorem 7.1.2] to show that inequality
\begin{equation}
\forall \lambda \in (0, 1), \quad \mu(\lambda A + (1 - \lambda) B)^{\frac{1}{n}} \geq \lambda \mu(A)^{\frac{1}{n}} + (1 - \lambda) \mu(B)^{\frac{1}{n}}
\end{equation}
holds true when \(\mu \) is an unconditional product measure on \(\mathbb{R}^n \) and \(A, B \) are ideals in \(\mathbb{R}^n \). Their result was later extended to weakly unconditional sets by Ritoré and Yepes Nicolás [RYN18]. The planar case of inequality (6) can be derived for any symmetric log-concave measure \(\mu \) on \(\mathbb{R}^2 \) and all symmetric convex sets \(K, L \) in \(\mathbb{R}^2 \) by combining [LMNZ17, Proposition 1] with [BLYZ12, Theorem 1.7] and a result of Saroglou [Sar16, Theorem 3.1]. Finally, the Gardner–Zvavitch problem was recently settled affirmatively for a class of symmetric convex sets with many hyperplane symmetries by Böröczky and Kalantzopoulos [BK20].

1.2.1. The local Gardner–Zvavitch problem, after Kolesnikov and Livshyts. The proofs of all the aforementioned results crucially require additional symmetries of the underlying sets which are not available in the general setting of Theorem 1. In [KL18], Kolesnikov and Livshyts took a different route to attack the Gardner–Zvavitch problem, by studying how inequalities of the form
\begin{equation}
\forall \lambda \in (0, 1), \quad \mu(\lambda K + (1 - \lambda) L)^{\frac{1}{n}} \geq \lambda \mu(K)^{\frac{1}{n}} + (1 - \lambda) \mu(L)^{\frac{1}{n}}
\end{equation}
behave infinitesimally when the convex bodies \(K \) and \(L \) are small perturbations of each other and then proving a local-to-global principle. This is also the approach which we shall be taking. From now on, we will refer to twice continuously differentiable functions simply as smooth functions.

To illustrate this technique, we briefly return to the B-inequality of [CEFM04], asserting that for every symmetric convex set \(K \) in \(\mathbb{R}^n \), the function \(\alpha(t) = \gamma_n(e^t K) \) is log-concave on \(\mathbb{R} \). It is straightforward to observe (see [CEFM04, p. 413]) that the log-concavity of \(\alpha \) on \(\mathbb{R} \) for an arbitrary \(K \) is equivalent to its infinitesimal log-concavity at \(t = 0 \), that is, \(\alpha''(0) \alpha(0) \leq \alpha'(0)^2 \). An explicit calculation now shows that the latter inequality can be equivalently rewritten as
\begin{equation}
\text{Var}_{\gamma_K}(|x|^2) \leq \frac{1}{2} \int |\nabla |x|^2|^2 \, d\gamma_K(x),
\end{equation}
where \(\gamma_K \) is the rescaled restriction of \(\gamma_n \) on a symmetric convex set \(K \) with nonempty interior, that is, the measure given by \(\gamma_K(A) = \frac{\gamma_n(\lambda A \cap K)}{\gamma_n(K)} \) for Borel subsets \(A \) of \(\mathbb{R}^n \). The delicate aspect of inequality (8) lies in the constant \(\frac{1}{2} \) on the right hand side. Indeed, the same Poincaré inequality with constant 1 is valid in much greater generality by a classical result of Brascamp and Lieb [BL76], which implies that if \(\mu \) is a measure of the form \(d\mu(x) = e^{-V(x)} \, dx \) with a potential whose Hessian satisfies \(\nabla^2 V \geq \beta \text{Id} \), then every smooth \(f : \mathbb{R}^n \to \mathbb{R} \) satisfies
\begin{equation}
\text{Var}_\mu(f) \leq \frac{1}{\beta} \int |\nabla f|^2 \, d\mu.
\end{equation}
Equivalently, (9) says that the spectral gap of such a measure is at least \(\sqrt{\beta} \). In order to prove (8), Cordero-Erausquin, Fradelizi and Maurey succeeded to realize this inequality as special case of a second eigenvalue problem for even functions and then crucially used the symmetry of both the measure \(\gamma_K \) and the function \(x \mapsto |x|^2 \). Such an analytic use of the underlying symmetry of the problem also lies at the heart of the proof of Theorem 1 (see also Theorem 3 below).

Recall that the generator of the Ornstein–Uhlenbeck semigroup is the elliptic differential operator \(\mathcal{L} \) whose action on a smooth function \(u : \mathbb{R}^n \to \mathbb{R} \) is given by
\begin{equation}
\forall \ x \in \mathbb{R}^n, \quad \mathcal{L} u(x) = \Delta u(x) - \sum_{i=1}^n x_i \partial_i u(x).
\end{equation}
We also denote by \(|A|_{\text{HS}} \) the Hilbert–Schmidt norm of a matrix \(A \), i.e. \(|A|_{\text{HS}}^2 = \sum_{i,j} a_{ij}^2 \). In [KL18], Kolesnikov and Livshyts proved the following local-to-global principle (see also [Col08, CLM17, KM18] for closely related infinitesimal versions of other Brunn–Minkowski-type inequalities).
Proposition 2 (Kolesnikov, Livshyts). Fix $n \in \mathbb{N}$. Let $\delta \in [0, 1]$ be such that for every symmetric convex set K in \mathbb{R}^n, every smooth symmetric function $u : K \to \mathbb{R}$ with $\mathcal{L}u = 1$ on K satisfies

$$\int \|\nabla^2 u\|^2_{HS} + |\nabla u|^2 \, d\gamma_K \geq \frac{\delta}{n}. \quad (11)$$

Then, for every symmetric convex sets K, L in \mathbb{R}^n and every $\lambda \in (0, 1)$,

$$\gamma_n(\lambda K + (1 - \lambda)L)^{\frac{n}{2}} \geq \lambda \gamma_n(K)^{\frac{n}{2}} + (1 - \lambda)\gamma_n(L)^{\frac{n}{2}}. \quad (12)$$

The main technical result of [KL18] was a proof of (11) with $\delta = \frac{1}{2}$ for all convex sets K containing the origin. Then, a local-to-global principle for such convex sets (similar to Proposition 2) implies the corresponding Gaussian Brunn–Minkowski inequality (12) with $\delta = \frac{1}{2}$. The main technical result of the present paper is the following refinement of the inequality of Kolesnikov and Livshyts for origin symmetric convex sets and symmetric (i.e. even) solutions of the equation $\mathcal{L}u = 1$ on K.

Theorem 3. For every $n \in \mathbb{N}$ and every symmetric convex set K in \mathbb{R}^n, every smooth symmetric function $u : \mathbb{R}^n \to \mathbb{R}$ with $\mathcal{L}u = 1$ on K, satisfies

$$\int \|\nabla^2 u\|^2_{HS} + |\nabla u|^2 \, d\gamma_K \geq \frac{1}{n}. \quad (13)$$

1.3. **Beyond power-type concavity.** While the exponent $\frac{1}{n}$ in inequality (4) cannot be improved, Ehrhard’s inequality (3) suggests that it is worth investigating potential strengthenings of (4), where the power function $t \mapsto t^n$ is replaced by a more general function of the Gaussian measure of the sets. Notice that if $\zeta_n : [0, 1] \to \mathbb{R}$ is such that for every Borel sets A, B in \mathbb{R}^n, the inequality

$$\zeta_n(\gamma_n(\lambda A + (1 - \lambda)B)) \geq \lambda \zeta_n(\gamma_n(A)) + (1 - \lambda)\zeta_n(\gamma_n(B)), \quad (14)$$

holds true, then choosing A and B to be half-spaces of the form $A = \{x \in \mathbb{R}^n : x_1 \leq a\}$ and $B = \{x \in \mathbb{R}^n : x_1 \leq b\}$, we see that $\zeta_n \circ \Phi$ is concave; here Φ is the Gaussian distribution function $\Phi(x) = \gamma_1((-\infty, x])$. In this sense, the choice $\zeta_n = \Phi^{-1}$ in (14), encapsulated by Ehrhard’s inequality (3), captures the optimal convexity of γ_n over all Borel sets in \mathbb{R}^n. Bearing this in mind as a motivating example, we ask the following (purposefully vague) question.

Question 4. Fix $n \in \mathbb{N}$. Is there an “optimal” increasing function $\xi_n : [0, 1] \to \mathbb{R}$ such that for every origin symmetric convex sets K, L in \mathbb{R}^n and every $\lambda \in (0, 1)$, the inequality

$$\xi_n(\gamma_n(\lambda K + (1 - \lambda)L)) \geq \lambda \xi_n(\gamma_n(K)) + (1 - \lambda)\xi_n(\gamma_n(L)) \quad (15)$$

is satisfied?

Ideally, such an inequality should be a joint refinement of Ehrhard’s inequality (3) and of the dimensional Brunn–Minkowski inequality (4) which becomes an equality for some nontrivial pairs of symmetric convex sets K, L in \mathbb{R}^n. In [GZ10, p. 5350], Gardner and Zvavitch presented an argument of Barthe which implies that (15) is not satisfied for $\xi_n = \Psi_n^{-1}$, where $\Psi_n(r) = \gamma_n(rB_2^n)$ and $rB_2^n = \{x \in \mathbb{R}^n : |x| \leq r\}$ is the Euclidean ball of radius r. We refer to Section 4 for some additional observations of this kind. While we have no conjecture as to what the optimal symmetric improvement (15) of Ehrhard’s inequality (3) might be, we obtain the following strengthening of (4).

Theorem 5. Fix $n \in \mathbb{N}$ and let $\sigma_n : [0, 1] \to \mathbb{R}$ be a strictly increasing function satisfying

$$\forall \ r \in (0, \infty), \quad 1 + \frac{\sigma_n''(\Psi_n(r))\Psi_n(r)}{\sigma_n'(\Psi_n(r))} = \frac{2}{n} - \frac{c_n}{n^2 \Psi_n(r)} r^2 e^{-r^2/2}, \quad (16)$$

where $c_n^{-1} = 2^{\frac{n}{2} - 1} \Gamma(n/2)$. Then, for every symmetric convex sets K, L in \mathbb{R}^n and every $\lambda \in (0, 1)$,

$$\sigma_n(\gamma_n(\lambda K + (1 - \lambda)L)) \geq \lambda \sigma_n(\gamma_n(K)) + (1 - \lambda)\sigma_n(\gamma_n(L)). \quad (17)$$
An explicit calculation (see Remark 10) reveals that the function $y \mapsto \sigma_n(y^n)$ is convex, hence (17) is indeed a genuine improvement of the dimensional Brunn–Minkowski inequality (4). Moreover, the strict convexity of $y \mapsto \sigma_n(y^n)$ readily implies the following corollary, settling the equality cases of the dimensional Brunn–Minkowski inequality (4) for the Gaussian measure.

Corollary 6. Fix $n \in \mathbb{N}$ and $\lambda \in (0, 1)$. If K, L are two symmetric convex sets in \mathbb{R}^n satisfying
\[
\gamma_n(\lambda K + (1 - \lambda)L)^{\frac{1}{n}} = \lambda \gamma_n(K)^{\frac{1}{n}} + (1 - \lambda)\gamma_n(L)^{\frac{1}{n}},
\]
then $K = L$.

The proof of Theorem 3 will be presented in Section 2 and the proofs of Theorem 5 and Corollary 6 in Section 3. Some additional remarks are postponed to Section 4.

Acknowledgements. We are grateful to Ramon van Handel for helpful discussions.

2. **Proof of Theorem 3**

It follows readily from Proposition 2 that Theorem 1 is a formal consequence of Theorem 3, so in this section we shall only establish the latter. For an $n \times n$ matrix A, we will denote by \hat{A} the traceless part of A, that is $\hat{A} = A - \frac{\text{tr}(A)}{n} \text{Id}$, where Id is the identity matrix. In particular, for a smooth function $u : K \to \mathbb{R}$, where K is a symmetric convex set, we write
\[
\hat{\nabla}^2 u \overset{\text{def}}{=} \nabla^2 u - \frac{\Delta u}{n} \text{Id}
\]
for the traceless part of its Hessian. Then, orthogonality implies the pointwise identity
\[
\|\nabla^2 u\|_{\text{HS}}^2 = \|\hat{\nabla}^2 u\|_{\text{HS}}^2 + \frac{(\Delta u)^2}{n}. \tag{20}
\]
Consider $r : \mathbb{R}^n \to \mathbb{R}$ to be $r(x) = \frac{|x|^2}{2n}$, which satisfies $\hat{\nabla}^2 r \equiv 0$ and $\Delta r \equiv 1$. Then, we have
\[
\|\hat{\nabla}^2 u\|_{\text{HS}}^2 = \|\nabla^2 (u - r)\|_{\text{HS}}^2 \overset{(20)}{=} \|\nabla^2 (u - r)\|_{\text{HS}}^2 - \frac{(\Delta (u - r))^2}{n} = \|\nabla^2 (u - r)\|_{\text{HS}}^2 - \frac{(\Delta u - 1)^2}{n}, \tag{21}
\]
so that combining (20) and (21), we get
\[
\|\nabla^2 u\|_{\text{HS}}^2 = \|\nabla^2 (u - r)\|_{\text{HS}}^2 + \frac{2}{n} \Delta u - \frac{1}{n}. \tag{22}
\]
Taking into account that $\mathcal{L} u(x) = \Delta u(x) - \sum_{i=1}^{n} x_i \partial_i u(x) = 1$, we can then write
\[
\forall x \in K, \quad \|\nabla^2 u(x)\|_{\text{HS}}^2 = \|\nabla^2 (u - r)(x)\|_{\text{HS}}^2 + \frac{2}{n} \sum_{i=1}^{n} x_i \partial_i u(x) + \frac{1}{n}. \tag{23}
\]
For a fixed $i \in \{1, \ldots, n\}$ the partial derivative $\partial_i (u - r)$ is an odd function on K and thus has expectation 0 with respect to γ_K. Therefore, the Brascamp–Lieb inequality (9) gives
\[
\sum_{j=1}^{n} \int (\partial_j \partial_i (u - r))^2 \, d\gamma_K \geq \text{Var}_{\gamma_K}(\partial_i (u - r)) = \int \left(\partial_i u(x) - \frac{x_i}{n} \right)^2 \, d\gamma_K(x). \tag{24}
\]
Summing (24) over $i \in \{1, \ldots, n\}$, we get
\[
\int \|\nabla^2 (u - r)\|_{\text{HS}}^2 \, d\gamma_K \geq \sum_{i=1}^{n} \int \left(\partial_i u(x) - \frac{x_i}{n} \right)^2 \, d\gamma_K(x)
\]
\[
= \int |\nabla u(x)|^2 - \frac{2}{n} \sum_{i=1}^{n} x_i \partial_i u(x) + \frac{|x|^2}{n^2} \, d\gamma_K(x). \tag{25}
\]
Combining (23) and (25), we finally deduce that
\[
\int \|\nabla^2 u\|_{HS}^2 + |\nabla u|^2 \, d\gamma_K \geq \int 2|\nabla u(x)|^2 + \frac{|x|^2}{n^2} + \frac{1}{n} \, d\gamma_K(x) \geq \frac{1}{n}
\]
and the proof is complete. \hfill \square

Remark 7. Notice that the only property of \(K \) and \(u \) that was used in the proof of Theorem 3 is the fact that \(\int \nabla(u-r) \, d\gamma_K = 0 \), which allows us to use the Brascamp–Lieb inequality.

3. PROOF OF THEOREM 5

The proof of Theorem 5, in analogy with that of Theorem 1, will proceed in two steps: first we will establish a suitable Poincaré-type inequality for solutions of the equation \(\mathcal{L} u = 1 \) and then the geometric inequality (17) will be a consequence of the following local-to-global principle.

Proposition 8. Fix \(n \in \mathbb{N} \). Let \(\psi : [0,1] \to \mathbb{R} \) be an increasing function such that for every symmetric convex set \(K \), every smooth symmetric function \(u : K \to \mathbb{R} \) with \(\mathcal{L} u = 1 \) on \(K \) satisfies
\[
\int \|\nabla^2 u\|_{HS}^2 + |\nabla u|^2 \, d\gamma_K \geq 1 + \frac{\psi''(\gamma_n(K))\gamma_n(K)}{\psi'(\gamma_n(K))}.
\]
Then, for every symmetric convex sets \(K,L \) in \(\mathbb{R}^n \) and every \(\lambda \in (0,1) \),
\[
\psi(\gamma_n(\lambda K + (1-\lambda)L)) \geq \Lambda \psi(\gamma_n(K)) + (1-\Lambda)\psi(\gamma_n(L)).
\]

In order to prove Proposition 8 one has to repeat the arguments of the proof of Proposition 2 in [KL18] (see also [KM18]) mutatis mutandis, by replacing the power function \(t \mapsto t^\alpha \) by a general increasing function \(\psi \). As the proof of the more general Proposition 8 does not require any additional ideas, we leave the (trivial) necessary modifications to the interested reader.

Lemma 9. Fix \(n \in \mathbb{N} \) and let \(K \) be a star-shaped set in \(\mathbb{R}^n \). If \(\rho \in [0,\infty) \) is such that \(\gamma_n(K) = \gamma_n(\rho B^2_n) \), where \(\rho B^2_n = \{ x \in \mathbb{R}^n : |x| \leq \rho \} \) is the closed Euclidean ball of radius \(\rho \), then
\[
\int_K |x|^2 \, d\gamma_n(x) \geq \int_{\rho B^2_n} |x|^2 \, d\gamma_n(x).
\]

Proof. We will denote by \(S^{n-1} \) the unit sphere in \(\mathbb{R}^n \) and by \(\rho_K : S^{n-1} \to [0,\infty] \) the radial function of \(K \), i.e. \(\rho_K(\theta) = \sup \{ r \geq 0 : r\theta \in K \} \). Let \(A = \{ \theta \in S^{n-1} : \rho \leq \rho_K(\theta) \} \) and \(B = S^{n-1} \setminus A \). Then,
\[
0 = (2\pi)^{n/2}(\gamma_n(K) - \gamma_n(\rho B^2_n)) = \int_{S^{n-1}} \int_0^{\rho_K(\theta)} r^{n-1}e^{-r^2/2} \, dr \, d\theta - \int_{S^{n-1}} \int_0^{\rho} r^{n-1}e^{-r^2/2} \, dr \, d\theta
\]
\[
= \int_A \int_0^{\rho_K(\theta)} r^{n-1}e^{-r^2/2} \, dr \, d\theta - \int_B \int_0^{\rho} r^{n-1}e^{-r^2/2} \, dr \, d\theta.
\]
Therefore, using polar coordinates once again, we get
\[
(2\pi)^{n/2}\left(\int_K |x|^2 \, d\gamma_n(x) - \int_{\rho B^2_n} |x|^2 \, d\gamma_n(x) \right)
\]
\[
= \int_A \int_0^{\rho_K(\theta)} r^{n+1}e^{-r^2/2} \, dr \, d\theta - \int_B \int_0^{\rho} r^{n+1}e^{-r^2/2} \, dr \, d\theta
\]
\[
\geq \rho^2\left(\int_A \int_0^{\rho_K(\theta)} r^{n-1}e^{-r^2/2} \, dr \, d\theta - \int_B \int_0^{\rho} r^{n-1}e^{-r^2/2} \, dr \, d\theta \right) = 0
\]
and the conclusion readily follows. \hfill \square

We are now well equipped to complete the proof of Theorem 5.
Proof of Theorem 5. Let K be a symmetric convex set in \mathbb{R}^n and $u : K \to \mathbb{R}$ a smooth symmetric function with $\mathcal{L}u = 1$ on K. Then, by (26) and Lemma 9, we have

$$\int \left\| \nabla^2 u \right\|_{HS}^2 + \left\| \nabla u \right\|^2 dy_K \geq \frac{1}{n^2} \int |x|^2 dy_K(x) + \frac{1}{n} \geq \frac{1}{n^2 \gamma_n(K)} \int_{\rho B^n_2} |x|^2 dy_n(x) + \frac{1}{n}, \quad (31)$$

where $\gamma_n(K) = \gamma_n(\rho B^n_2)$ or, equivalently, $\rho = \Psi_n^{-1}(\gamma_n(K))$. Moreover, integration by parts gives

$$\int_{\rho B^n_2} |x|^2 dy_n(x) = \frac{|S^{n-1}|}{(2\pi)^{n/2}} \int_0^\rho r^{n+1}e^{-r^2/2} dr = \frac{|S^{n-1}|}{(2\pi)^{n/2}} \left(n \int_0^\rho r^{n-1}e^{-r^2/2} dr - \rho^ne^{-\rho^2/2} \right) + n\gamma_n(K) - c_n \rho^n e^{-\rho^2/2}, \quad (32)$$

where $c_n^{-1} = 2^{2-n} \Gamma(n/2)$. Combining (31) and (32), we get

$$\int \left\| \nabla^2 u \right\|_{HS}^2 + \left\| \nabla u \right\|^2 dy_K \geq \frac{2}{n} - \frac{c_n}{n^2 \gamma_n(K)} \rho^n e^{-\rho^2/2}$$

$$= \frac{2}{n} - \frac{c_n}{n^2 \gamma_n(K)} \Psi_n^{-1}(\gamma_n(K))^n e^{-\Psi_n^{-1}(\gamma_n(K))^n/2} \quad (33)$$

and the conclusion follows readily by the definition (16) of σ_n and Proposition 8. \hfill \square

Remark 10. To see that (17) is a strict strengthening of (4), it suffices to observe that the function $\tau_n(x) = \sigma_n^{-1}(x)^{\frac{1}{n}}$ is increasing and concave, since then we can write

$$\gamma_n(\lambda K + (1-\lambda)L)^{\frac{1}{n}} = \tau_n \circ \sigma_n(\gamma_n(\lambda K + (1-\lambda)L))$$

$$\geq \tau_n(\lambda \sigma_n(\gamma_n(K)) + (1-\lambda)\sigma_n(\gamma_n(L)))$$

$$\geq \lambda \tau_n \circ \sigma_n(\gamma_n(K)) + (1-\lambda)\tau_n \circ \sigma_n(\gamma_n(L)) = \lambda \gamma_n(K)^{\frac{1}{n}} + (1-\lambda)\gamma_n(L)^{\frac{1}{n}}. \quad (34)$$

In order to prove that τ_n is concave, we will instead show that $\tau_n^{-1}(y) = \sigma_n(y^n)$ is convex. Indeed, the second derivative condition $(\tau_n^{-1})''(y) \geq 0$ can be equivalently rewritten as

$$\forall \ y \in (0, \infty), \quad \frac{\sigma_n''(y^n)y^n}{\sigma_n'(y^n)} \geq -\frac{n-1}{n}, \quad (35)$$

which readily follows from (16) and (32).

Proof of Corollary 6. Using the notation of the previous remark, we see from (31) and (35) that τ_n is in fact a strictly concave and strictly increasing function. Suppose now that for some symmetric convex sets K, L in \mathbb{R}^n, we have

$$\gamma_n(\lambda K + (1-\lambda)L)^{\frac{1}{n}} = \lambda \gamma_n(K)^{\frac{1}{n}} + (1-\lambda)\gamma_n(L)^{\frac{1}{n}}. \quad (36)$$

Then, since the second inequality in (34) becomes equality, we deduce that $\sigma_n(\gamma_n(K)) = \sigma_n(\gamma_n(L))$, which implies that $\gamma_n(K) = \gamma_n(L)$. Combining this with the equality condition (36), we have

$$\gamma_n(K) = \gamma_n(\lambda K + (1-\lambda)L) = \gamma_n(L), \quad (37)$$

which can only hold when $K = L$, e.g. by [Dub77] or [Ehr86]. \hfill \square
4. Further remarks

We conclude with a few additional remarks on Brunn–Minkowski-type inequalities for measures.

1. In [KL18], Kolesnikov and Livshyts showed that when K is a convex set containing the origin and $u : K \to \mathbb{R}$ is a smooth function satisfying $\mathcal{L}u = 1$ on K, then

$$
\int \|\nabla^2 u\|_{HS}^2 + |\nabla u|^2 \, d\gamma_K \geq \frac{1}{2n} \tag{38}
$$

in the following way. By omitting the traceless part of $\nabla^2 u$, (20) gives

$$
\int \|\nabla^2 u\|_{HS}^2 + |\nabla u|^2 \, d\gamma_K \geq \frac{1}{n} \left(1 + \sum_{i=1}^n x_i \partial_i u(x)\right)^2 + |\nabla u(x)|^2 \, d\gamma_K(x),
$$

where in the equality we used that $\mathcal{L}u = 1$. Pointwise minimizing the right hand side over all $u_1, \ldots, u_n \in \mathbb{R}$ (see [KL18, Lemma 2.4]), they get

$$
\mathcal{G}(u) \overset{\text{def}}{=} \int \frac{1}{n} \left(1 + \sum_{i=1}^n x_i \partial_i u(x)\right)^2 + |\nabla u(x)|^2 \, d\gamma_K(x) \geq \int \frac{1}{|x|^2 + n} \, d\gamma_K(x) \tag{39}
$$

and this quantity is always greater than $\frac{1}{2n}$ by a simple geometric inequality [KL18, Lemma 5.3]. It can easily be seen that when $K = \mathbb{R}^n$ this quantity is in fact $\frac{1}{2n} + o(\frac{1}{n})$. One indication that this argument can be improved is the fact that inequality (39) is saturated for the function $u_0(x) = -\frac{1}{2} \log(|x|^2 + n)$ that satisfies

$$
\forall \ x \in \mathbb{R}^n, \quad \mathcal{L}u_0(x) = \frac{|x|^2 - n}{|x|^2 + n} + \frac{2|x|^2}{(|x|^2 + n)^2} \tag{40}
$$

and this is very far from the imposed constraint $\mathcal{L}u = 1$ (e.g. when $|x| \sim \sqrt{n}$).

In the proof of Theorem 3 above, the traceless part $\hat{\nabla}^2 u$ of the Hessian of u is controlled via the Brascamp–Lieb inequality (9). The following proposition shows that by crudely omitting it, one cannot substantially improve the result of [KL18], even for very simple symmetric convex sets. In what follows, we will adopt the following shorthand notation: Given any $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, we will denote by x' the vector $(x_2, x_3, \ldots, x_n) \in \mathbb{R}^{n-1}$, so that $x = (x_1, x')$. For any $\varepsilon \in (0, 1)$, let $S_\varepsilon = \{|x_1| < \varepsilon\} \cap \{|x'|^2 < 2n\} \subseteq \mathbb{R}^n$ be a truncated slab of width ε.

Proposition 11. There exists an absolute constant $C \in (0, \infty)$, such that, for every $n \geq 2$ and every small enough $\varepsilon \in (0, 1)$, the functional \mathcal{G} associated to the slab S_ε in \mathbb{R}^n satisfies

$$
\inf \{\mathcal{G}(u) : u \in C^2(S_\varepsilon) \text{ with } \mathcal{L}u = 1\} \leq \frac{1}{2n} + C\varepsilon^2 + o\left(\frac{1}{n}\right). \tag{41}
$$

Proof. Let us define the function $u : S_\varepsilon \to \mathbb{R}$ by the relation $u \overset{\text{def}}{=} u_0 + v$, where we denote by $u_0(x) = -\frac{1}{2} \log(|x|^2 + n)$ the pointwise minimizer of the functional \mathcal{G} and the function v is the unique solution of the boundary value problem

$$
\begin{cases}
\mathcal{L}v = R, \\
v|_{\partial S_\varepsilon} = 0,
\end{cases} \tag{42}
$$

where

$$
R(x) \overset{\text{def}}{=} \frac{2n}{|x|^2 + n} - \frac{2|x|^2}{(|x|^2 + n)^2} \tag{43}
$$

and
Integrating by parts in the left hand side of (52) then yields

\[\int H \left(\frac{|x|^2}{n} \right) \, d\gamma_{S_{\varepsilon}}(x) + \int \frac{1}{n} \left(\sum_{i=1}^{n} x_i \partial_i v(x) \right)^2 + |\nabla v(x)|^2 \, d\gamma_{S_{\varepsilon}}(x), \tag{44} \]

where \(H(t) = \frac{1}{\gamma^t} \) for \(t \geq 0 \). Using the fact that \(|x|^2 \leq |x|^2 \leq |x'|^2 + \varepsilon^2 \) and \(|x|^2 < 2n\) on \(S_{\varepsilon} \), we can bound

\[\int H \left(\frac{|x|^2}{n} \right) \, d\gamma_{S_{\varepsilon}}(x) \leq \int H \left(\frac{|x'|^2}{n} \right) \, d\gamma_{S_{\varepsilon}}(x) + \frac{\varepsilon^2}{n}. \tag{45} \]

Since \(H \) is 1-Lipschitz on the interval \([0, 2]\). Furthermore, we can estimate

\[\frac{1}{n} \int H \left(\frac{|x'|^2}{n} \right) \, d\gamma_{S_{\varepsilon}}(x) = \frac{1}{\gamma_{n}(S_{\varepsilon})} \int_{|x'|^2 < 2n} \frac{H \left(\frac{|x'|^2}{n} \right) \, d\gamma_{n-1}(x') \, d\gamma_{\varepsilon}(1)}{d} \]

\[\leq H(1) + \int_{|x'|^2 < 2} \left| \frac{|x'|^2}{n} - 1 \right| \, d\gamma_{n-1}(x') \leq \frac{1}{2} + o(1), \tag{46} \]

as \(n \to \infty \). Thus, from (45) and (46), we obtain the following bound for the first summand of (44),

\[\frac{1}{n} \int H \left(\frac{|x'|^2}{n} \right) \, d\gamma_{S_{\varepsilon}}(x) \leq \frac{1}{2n} + \frac{\varepsilon^2}{n} + o \left(\frac{1}{n} \right), \tag{47} \]

as \(n \to \infty \). In order to complete the proof of (41), it suffices to show that the second summand of (44) satisfies

\[\int \frac{1}{n} \left(\sum_{i=1}^{n} x_i \partial_i v(x) \right)^2 + |\nabla v(x)|^2 \, d\gamma_{S_{\varepsilon}}(x) \leq C\varepsilon^2 \tag{48} \]

for some absolute constant \(C > 0 \), provided that \(\varepsilon \ll 1 \). In view of the bound

\[\int \frac{1}{n} \left(\sum_{i=1}^{n} x_i \partial_i v(x) \right)^2 + |\nabla v(x)|^2 \, d\gamma_{S_{\varepsilon}}(x) \leq \left(\int \frac{|x|^2}{n} + 1 \right) |\nabla v(x)|^2 \, d\gamma_{S_{\varepsilon}}(x) \leq 4 \int |\nabla v|^2 \, d\gamma_{S_{\varepsilon}}, \tag{49} \]

which follows from the upper bound \(|x|^2 < 2n + \varepsilon^2\) on \(S_{\varepsilon} \), it suffices to establish that

\[\int |\nabla v|^2 \, d\gamma_{S_{\varepsilon}} \leq C\varepsilon^2. \tag{50} \]

Therefore, the following lemma completes the proof of (41).

\begin{lemma}
For any \(\varepsilon > 0 \), the function \(v : S_{\varepsilon} \to \mathbb{R} \) defined by (42) satisfies

\[\int |\nabla v|^2 \, d\gamma_{S_{\varepsilon}} \leq 36\varepsilon^{2/2} \varepsilon^2, \tag{51} \]

\end{lemma}

\begin{proof}
Let us multiply equation (42) with \(v \) and integrate over \(S_{\varepsilon} \), obtaining the relation

\[\int v \cdot \mathcal{L} v \, d\gamma_{S_{\varepsilon}} = \int v \cdot R \, d\gamma_{S_{\varepsilon}}. \tag{52} \]

Integrating by parts in the left hand side of (52) then yields

\[\int |\nabla v|^2 \, d\gamma_{S_{\varepsilon}} = - \int v \cdot R \, d\gamma_{S_{\varepsilon}} \leq \left(\int v^2 \, d\gamma_{S_{\varepsilon}} \right)^{\frac{1}{2}} \left(\int R^2 \, d\gamma_{S_{\varepsilon}} \right)^{\frac{1}{2}}. \tag{53} \]

\end{proof}
Since \(v \) vanishes on \(\{x_1 = -\varepsilon\} \cap \{x_1^2 < 2n\} \subseteq \partial S_\varepsilon \), for any \(x = (x_1, x') \in S_\varepsilon \), we have
\[
|v(x_1, x')| = \left| \int_{-\varepsilon}^{x_1} \partial_1 v(s, x') \, ds \right| \leq \int_{-\varepsilon}^{\varepsilon} |\partial_1 v(s, x')| \, ds.
\]

Therefore, using (54), we can estimate
\[
\int v^2 \, d\gamma_{S_\varepsilon} = \frac{1}{\gamma_n(\partial_\varepsilon)} \int_{S_\varepsilon} v^2(x_1, x') \, d\gamma_n(x_1, x')
\]
\[
\leq \frac{1}{\gamma_n(\partial_\varepsilon)} \int_{S_\varepsilon} e^{\varepsilon^2/2} \left(\int_{-\varepsilon}^{\varepsilon} e^{-s^2/4} |\partial_1 v(s, x')| \, ds \right)^2 \, d\gamma_n(x_1, x')
\]
\[
\leq \frac{e^{\varepsilon^2/2}}{\gamma_n(\partial_\varepsilon)} \int_{|x'|^2 < 2n} \left(\int_{-\varepsilon}^{\varepsilon} e^{-s^2/2} (\partial_1 v(s, x'))^2 \, ds \right) \, d\gamma_1(x_1) \, d\gamma_{n-1}(x')
\]
\[
\leq \frac{2e^{\varepsilon^2/2}e_{\partial_\varepsilon}}{\gamma_n(\partial_\varepsilon)} \int_{|x'|^2 < 2n} \frac{2\varepsilon}{2\pi} \left(\int_{-\varepsilon}^{\varepsilon} e^{-s^2/2} (\partial_1 v(s, x'))^2 \, ds \right) \, d\gamma_{n-1}(x')
\]
\[
\leq \frac{4e^{\varepsilon^2/2}}{\gamma_n(\partial_\varepsilon)} \int_{|x'|^2 < 2n} \int_{-\varepsilon}^{\varepsilon} (\partial_1 v(s, x'))^2 \, d\gamma_1(s) \, d\gamma_{n-1}(x') \leq 4e^{\varepsilon^2/2} \varepsilon^2 \int |\nabla v|^2 \, d\gamma_{S_\varepsilon}.
\]

Finally, using the trivial pointwise bound
\[
|R(x)| \leq \frac{2n}{|x|^2 + n} + \frac{|x|^2}{(|x|^2 + n)^2} < 2 + \frac{1}{n} \leq 3
\]
along with (55), we obtain from (53) that
\[
\int |\nabla v|^2 \, d\gamma_{S_\varepsilon} \leq 6e^{\varepsilon^2/4} \varepsilon \left(\int |\nabla v|^2 \, d\gamma_{S_\varepsilon} \right)^{1/2}
\]
and the conclusion readily follows. \(\square \)

2. The bound of Theorem 3 can be sharpened when \(K \) is \(\rho B_2^\varepsilon \), the Euclidean ball of radius \(\rho \in (0, \infty) \). Let \(u \) be a smooth symmetric function with \(Lu = 1 \) on \(\rho B_2^\varepsilon \) and \(u(0) = 0 \). Then, for every \(r \in [0, \rho) \) and \(\theta \in S^{n-1} \), we can write \(u(r\theta) = u_0(r) + v(r\theta) \), where
\[
\forall r \in [0, \rho), \quad u_0(r) = \frac{1}{|S^{n-1}|} \int_{S^{n-1}} u(r\phi) \, d\phi \quad \text{and} \quad \int_{S^{n-1}} v(r\phi) \, d\phi = 0.
\]

For every \(r \in (0, \rho) \), we have
\[
u''_0(r) + \left(\frac{n-1}{r} - r \right) u'_0(r) = Lu_0(r) = \frac{1}{|S^{n-1}|} \int_{S^{n-1}} Lu(r\phi) \, d\phi = 1,
\]
hence also \(\mathcal{L} v = \mathcal{L} u - \mathcal{L} u_0 = 0 \). Moreover, notice that \(u_0(0) = 0 \) and
\[
u'_0(0) = \lim_{r \to 0} \frac{1}{|S^{n-1}|} \int_{S^{n-1}} \sum_{i=1}^n \frac{\phi_i x_i}{r} \partial_i u(r\phi) \, d\phi = \frac{1}{|S^{n-1}|} \int_{S^{n-1}} \sum_{i=1}^n \phi_i \lim_{r \to 0} \frac{x_i}{r} \partial_i u(r\phi) \, d\phi = 0.
\]
since u is even and thus $\partial_t u(0) = 0$. Additionally, It can be shown that we can write
\[
\int \|\nabla^2 u\|^2_{L^2} + |\nabla u|^2 \, d\gamma_{\rho B^n_2} = \int \|\nabla^2 u_0\|^2_{L^2} + |\nabla u_0|^2 \, d\gamma_{\rho B^n_2} + \int \|\nabla^2 v\|^2_{L^2} + |\nabla v|^2 \, d\gamma_{\rho B^n_2}.
\] (61)
Combining the above observations, we deduce that
\[
\min \left\{ \int \|\nabla^2 u\|^2_{L^2} + |\nabla u|^2 \, d\gamma_{\rho B^n_2} : u \in C^2(\rho B^n_2) \text{ with } \mathcal{L} u = 1 \right\} = \int \|\nabla^2 u_0\|^2_{L^2} + |\nabla u_0|^2 \, d\gamma_{\rho B^n_2},
\] where u_0 is the unique solution of (59) satisfying $u_0(0) = u'_0(0) = 0$. An explicit calculation now shows that this function u_0 satisfies
\[
\int \|\nabla^2 u_0\|^2_{L^2} + |\nabla u_0|^2 \, d\gamma_{\rho B^n_2} = 1 - \left(\frac{n-1}{\rho} - \rho \right) \int_0^\rho r^{n-1}e^{-r^2/2} \, dr > \frac{1}{n}. \quad (62)
\]
3. In view of the simplicity of the proof of Theorem 3, it is natural to wonder whether a similar argument can be employed to prove dimensional Brunn–Minkowski inequalities for measures other than the Gaussian. If μ is a symmetric log-concave measure on \mathbb{R}^n with $d\mu(x) = e^{-V(x)} \, dx$, the action of the corresponding elliptic operator \mathcal{L}_μ on a smooth function $u : \mathbb{R}^n \to \mathbb{R}$ is given by
\[
\forall x \in \mathbb{R}^n, \quad \mathcal{L}_\mu u(x) = \Delta u(x) - \langle \nabla V(x), \nabla u(x) \rangle.
\] (63)
Proposition 2 is a special case of the following more general statement (see [KL18]). Let μ be a symmetric log-concave measure on \mathbb{R}^n with $d\mu(x) = e^{-V(x)} \, dx$ and suppose that for every symmetric convex set K in \mathbb{R}^n, every smooth symmetric function $u : K \to \mathbb{R}$ with $\mathcal{L}_\mu u = 1$ on K satisfies
\[
\int \|\nabla^2 u\|^2_{L^2} + \langle \nabla^2 V \nabla u, \nabla u \rangle \, d\mu_K \geq \frac{\delta}{n}. \quad (64)
\]
for some $\delta \in [0, 1]$; here μ_K is the rescaled restriction of μ on K. Then, for every symmetric convex sets K, L in \mathbb{R}^n and $\lambda \in (0, 1)$, we have
\[
\mu(\lambda K + (1-\lambda)L)^{\frac{\delta}{n}} \geq \lambda \mu(K)^{\frac{\delta}{n}} + (1-\lambda)\mu(L)^{\frac{\delta}{n}}. \quad (65)
\]
Suppose now that the Hessian of the potential of μ satisfies $\nabla^2 V \geq 1d$. Then, arguing exactly as in the proof of Theorem 3 via (23) and the Brascamp–Lieb inequality (9) applied to $\nabla (u - r)$, we see that every smooth function $u : K \to \mathbb{R}$ with $\mathcal{L}_\mu u = 1$ on K satisfies
\[
\int \|\nabla^2 u\|^2_{L^2} + \langle \nabla^2 V \nabla u, \nabla u \rangle \, d\mu
\geq \int |\nabla u(x)|^2 + \langle \nabla^2 V(x) \nabla u(x), \nabla u(x) \rangle + \frac{2}{n} \langle \nabla V(x) - x, \nabla u(x) \rangle + \frac{|x|^2}{n^2} + \frac{1}{n} \, d\mu_K(x). \quad (66)
\]
However, this estimate is not sufficient to deduce inequality (64) with $\delta = 1$ even for $n = 2$. To see this, fix $N \gg 1$ and consider the log-concave probability measure $d\mu(x) = ce^{-N x_1^2 - x_2^2} \, dx$, where c is a normalizing constant, and the planar rectangle $\mathcal{R} = [-a, a] \times [-b, b]$ with $a = N^{-1/2}$ and $b = e^{-N}$. Let $u : \mathcal{R} \to \mathbb{R}$ be the unique solution of the boundary value problem
\[
\begin{cases}
\mathcal{L}_\mu u = 1, & \text{on } \mathcal{R}, \\
\partial_1 u(a, x_2) = -\partial_1 u(-a, x_2) = -N^{-4/3}, & \text{for } x_2 \in (-b, b), \\
\partial_2 u(x_1, b) = -\partial_2 u(x_1, -b) = \eta_N, & \text{for } x_1 \in (-a, a)
\end{cases}
\] (67)
where η_N satisfies the necessary compatibility condition
\[
\frac{\exp(-Na^2/2)}{\int_a^b \exp(-N x_1^2/2) \, dx_1} N^{-4/3} = \frac{\exp(-b^2/2)}{\int_{-b}^b \exp(- x_2^2/2) \, dx_2} \eta_N - \frac{1}{2}. \quad (68)
\]
Then, explicit (though tedious) computations show that
\[\int \langle \nabla V(x) - x, \nabla u(x) \rangle \, d\mu_\mathcal{R}(x) \lesssim -\frac{1}{N^{4/3}}, \]
which in turn implies
\[\int |\nabla u(x)|^2 + \langle \nabla^2 V(x) \nabla u(x), \nabla u(x) \rangle + \langle \nabla V(x) - x, \nabla u(x) \rangle + \frac{|x|^2}{4} \, d\mu_\mathcal{R}(x) \lesssim -\frac{1}{N^{4/3}}, \]
as all the remaining positive terms are of order at most \(N^{-3/2} \).

This reveals that the cancelations in the proof of Theorem 3 are specific to the Gaussian measure and in the case of a general symmetric log-concave measure \(\mu \) with a lower bound on the Hessian of its potential, one would need to find a more delicate way to control the norm of \(\nabla^2 u \) than the vanilla application \((21)-(25) \) of the Brascamp–Lieb inequality \((9) \) on \(\nabla(u - r) \).

4. If \(\lambda \in (0, 1) \), the \(\lambda \)-geometric mean of two symmetric convex sets \(K, L \) in \(\mathbb{R}^n \) is the set
\[K^\lambda L^{1-\lambda} \overset{\text{def}}{=} \bigcap_{\theta \in S^{n-1}} \{ x \in \mathbb{R}^n : \langle x, \theta \rangle \leq h_K(\theta)^\lambda h_L(\theta)^{1-\lambda} \}, \]
where the support function \(h_M : S^{n-1} \to \mathbb{R}_+ \) of a symmetric convex set \(M \) is \(h_M(\theta) = \sup_{y \in M} \langle y, \theta \rangle \). The log-Brunn–Minkowski conjecture of [BLYZ12], asserts that for any such sets and \(\lambda \in (0, 1) \),
\[|K^\lambda L^{1-\lambda}| \geq |K|^\lambda |L|^{1-\lambda}. \]
In [Sar16], Saroglou proved that the log-Brunn–Minkowski conjecture formally implies the validity of \((72) \), with the Lebesgue measure \(|\cdot| \) replaced by any symmetric log-concave measure \(\mu \), that is
\[\mu(K^\lambda L^{1-\lambda}) \geq \mu(K)^\lambda \mu(L)^{1-\lambda}. \]
Then, in [LMNZ17, Proposition 1], the authors showed that \((73) \) implies the dimensional Brunn–Minkowski inequality \((7) \) with \(\delta = 1 \) for all symmetric convex sets \(K, L \) in \(\mathbb{R}^n \). We note here that in the special case where \(\mu = \gamma_n \), one gets a slightly stronger result in the spirit of Question 4. Recall that \(\Psi_n : [0, \infty) \to [0, 1) \) is given by \(\Psi_n(r) = \gamma_n(rB^2_n) \), where \(rB^2_n = \{ x \in \mathbb{R}^n : |x| \leq r \} \). We will need the following well-known lemma, which we could not locate in the literature.

Lemma 13. Fix \(n \in \mathbb{N} \) and let \(A \) be a Borel measurable set in \(\mathbb{R}^n \). If \(\rho \in [0, \infty) \) is such that \(\gamma_n(A) = \gamma_n(\rho B^2_n) \), then for every \(t \in [0, 1] \), we have \(\gamma_n(tA) \geq \gamma_n(t\rho B^2_n) \).

Proof. Let \(B = \rho B^2_n \). The assumption implies that \(\gamma_n(A \setminus B) = \gamma_n(B \setminus A) \). Therefore,
\[(2\pi)^{n/2}(\gamma_n(tA) - \gamma_n(tB)) = \int_{t(A \setminus B)} e^{-|x|^2/2} \, dx - \int_{t(B \setminus A)} e^{-|x|^2/2} \, dx = t^n \left(\int_{A \setminus B} e^{-t^2|y|^2/2} \, dy - \int_{B \setminus A} e^{-t^2|y|^2/2} \, dy \right) \geq t^n e^{(1-t^2)|B|^2/2} \left(\int_{A \setminus B} e^{-|y|^2/2} \, dy - \int_{B \setminus A} e^{-|y|^2/2} \, dy \right) = 0 \]
and the proof is complete. \(\square \)

Proposition 14. Fix \(n \in \mathbb{N} \). If \((73) \) holds true for \(\mu = \gamma_n \), then for every symmetric convex sets \(K, L \) in \(\mathbb{R}^n \) and every \(\lambda \in (0, 1) \), we have
\[\Psi_n^{-1}(\gamma_n(\lambda K + (1-\lambda)L)) \geq \sup_{p \in [0, 1]} \left(\frac{\lambda}{p} \right)^p \left(\frac{1-\lambda}{1-p} \right)^{1-p} \Psi_n^{-1}(\gamma_n(K)^p \gamma_n(L)^{1-p}). \]

12
Proof. Fix $p \in (0, 1)$ and let $t_p = \left(\frac{1}{p}\right)^p \left(\frac{1}{1-p}\right)^{1-p} \in [0, 1]$. Then, we have the inclusion
\[
\lambda K + (1 - \lambda) L = p \cdot \left(\frac{1}{p} K\right) + (1 - p) \cdot \left(\frac{1}{1-p} L\right) \supseteq \left(\frac{1}{p} K\right)^p \left(\frac{1}{1-p} L\right)^{1-p} = t_p K^p L^{1-p}.
\] (76)
Since $t_p \in [0, 1]$, Lemma 13 implies that
\[
\gamma_n(t_p K^p L^{1-p}) \supseteq \gamma_n\left(t_p \Psi_n^{-1}\left(\gamma_n(K^p L^{1-p})\right) B^2_n\right) = \Psi_n\left(t_p \Psi_n^{-1}\left(\gamma_n(K^p L^{1-p})\right)\right),
\] (77)
Hence combining (73) with (76), (77) and the monotonicity of Ψ_n^{-1}, we derive (75).

5. In [GZ10, p. 5350], it was shown that inequality (15) is not satisfied for $\xi_n = \Psi_n^{-1}$, where $\Psi_n(r) = \gamma_n(r B_2^n)$. As was communicated to us by Ramon van Handel, this observation formally implies that if M is any Borel set in \mathbb{R}^n and $\Xi_n(r) = \gamma_n(r M)$, then (15) is not satisfied for $\xi_n = \Xi_n^{-1}$. Indeed, assuming the contrary and plugging $K = a B_2^n$ and $L = b B_2^n$ in (15), we see that $\Xi_n^{-1} \circ \Psi_n$ is concave. Therefore, for every $r \in (0, \infty)$ and $t \in (0, 1)$, we have
\[
t \Xi_n^{-1}(\Psi_n(r)) \leq \Xi_n^{-1}(\Psi_n(tr)).
\] (78)
Moreover, Lemma 13 is equivalent to the fact that for every $p \in (0, 1)$ and $t \in (0, 1)$,
\[
\Xi_n(t \Xi_n^{-1}(p)) \geq \Psi_n(t \Psi_n^{-1}(p))
\] (79)
Choosing $p = \Psi_n(r)$ in (79) and combining it with (78), we deduce that $\Xi_n^{-1} \circ \Psi_n$ is an affine function, which readily implies that $\Xi_n(r) = \Psi_n(ar)$ for some $a \in (0, \infty)$, thus contradicting [GZ10].

This simple argument reveals that the nontrivial equality cases of the sought-for symmetric Ehrhard inequality (15) must be more complicated than the one-parameter family $\{s M\}_{s \geq 0}$ of dilates of a given Borel set M. The possibility of such extremals is reminiscent of the conjectured multiscale solutions of the symmetric Gaussian isoperimetric problem [Bar01, Hei17].

References

(A. E.) Institut de Mathématiques de Jussieu, Sorbonne Université, 75252 Paris Cedex 05, France
Email address: alexandros.eskenazis@imj-prg.fr

(G. M.) Department of Mathematics, University of California, Berkeley, CA, 94720-3840, USA
Email address: gmoschidis@berkeley.edu