HIGH-DIMENSIONAL PROBABILITY

MICHAELMAS TERM 2021

1. Let (X, d, μ) be a metric probability space. Suppose that for any Borel subset A of X with $\mu(A) \geq \frac{1}{2}$ and any $\varepsilon>0$, we have

$$
\mu\{x: d(x, A) \leq \varepsilon\} \geq 1-\alpha(\varepsilon)
$$

for some function $\alpha:[0, \infty) \rightarrow[0, \infty)$. Prove that if $f: X \rightarrow \mathbb{R}$ is an L-Lipschitz function and m_{f} is a median of f with respect to μ, that is,

$$
\min \left\{\mu\left\{x: f(x) \geq m_{f}\right\}, \mu\left\{x: f(x) \leq m_{f}\right\}\right\} \geq \frac{1}{2},
$$

then

$$
\forall t>0, \quad \mu\left\{x:\left|f(x)-m_{f}\right| \geq t\right\} \leq 2 \alpha(t / L) .
$$

Hint: Apply the assumption to the sets $\left\{f \geq m_{f}\right\}$ and $\left\{f \leq m_{f}\right\}$.
2. Let $f: \Omega \rightarrow \mathbb{R}$ be a measurable function on a probability space (Ω, μ) and assume that there exists a value $a_{f} \in \mathbb{R}$ such that

$$
\forall t>0, \quad \mu\left\{x:\left|f(x)-a_{f}\right| \geq t\right\} \leq \beta(t)
$$

for some function $\beta:[0, \infty) \rightarrow[0, \infty)$. Prove the following concentration inequalities for the function f around its median and mean.
(i) If m_{f} is a median of f with respect to μ and t_{0} is such that $\beta\left(t_{0}\right)<\frac{1}{2}$, then

$$
\forall t>0, \quad \mu\left\{x:\left|f(x)-m_{f}\right| \geq t+t_{0}\right\} \leq \beta(t) .
$$

(ii) If $B \stackrel{\text { def }}{=} \int_{0}^{\infty} \beta(s) \mathrm{d} s<\infty$, then f is μ-integrable and

$$
\forall t>0, \quad \mu\left\{x:\left|f(x)-\mathbb{E}_{\mu}[f]\right| \geq t+B\right\} \leq \beta(t) .
$$

3. The Brunn-Minkowski inequality asserts that for any compact sets A, B in \mathbb{R}^{n},

$$
\operatorname{vol}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}(A)^{\frac{1}{n}}+\operatorname{vol}(B)^{\frac{1}{n}} .
$$

In this problem we will present an elementary proof of this inequality. It suffices to assume that each A, B is a disjoint union of a finite number of compact boxes with faces parallel to the coordinate hyperplanes as the general case will follow by approximation. Let N be the total number of boxes involved, that is, if A is a union of N_{1} boxes and B is a union of N_{2} boxes then $N=N_{1}+N_{2}$. Prove the inequality by induction on N via the following steps.
(i) Prove the base case $N=2$, that is, the case $A=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]$ and $B=\prod_{i=1}^{n}\left[c_{i}, d_{i}\right]$.
(ii) Let Q_{1}, \ldots, Q_{k} be pairwise disjoint boxes with faces parallel to the coordinate hyperplanes. Prove that there exists a hyperplane H parallel to a coordinate hyperplane such that if H^{+}and H^{-}are the closed half-spaces determined by H, then there exists $j, j^{\prime} \in\{1, \ldots, k\}$ such that $Q_{j} \subset H^{+}$and $Q_{j^{\prime}} \subset H^{-}$.
(iii) For the inductive step, suppose that A, B are unions of N_{1} and N_{2} boxes respectively such that $N_{1}+N_{2}=N+1$. Choose a hyperplane H which satisfies the conclusion of (ii) for the collection of boxes whose union is A and let $A^{+}=A \cap H^{+}$and $A^{-}=A \cap H^{-}$. Observe that both A^{+}and A^{-}
are unions of at most $N_{1}-1$ boxes. By appropriately translating B, notice that in order to deduce the Brunn-Minkowski inequality, we can assume without loss of generality that

$$
\begin{equation*}
\frac{\operatorname{vol}\left(B^{+}\right)}{\operatorname{vol}(B)}=\frac{\operatorname{vol}\left(A^{+}\right)}{\operatorname{vol}(A)} \quad \text { and } \quad \frac{\operatorname{vol}\left(B^{-}\right)}{\operatorname{vol}(B)}=\frac{\operatorname{vol}\left(A^{-}\right)}{\operatorname{vol}(A)} \tag{*}
\end{equation*}
$$

where $B^{+}=B \cap H^{+}$and $B^{-}=B \cap H^{-}$. Use the inclusion

$$
A+B \supseteq\left(A^{+}+B^{+}\right) \cup\left(A^{-}+B^{-}\right)
$$

along with the inductive hypothesis and (*) to complete the proof.
Deduce from the Brunn-Minkowski inequality that for any compact sets A, B,

$$
\forall \lambda \in(0,1), \quad \operatorname{vol}(\lambda A+(1-\lambda) B) \geq \operatorname{vol}(A)^{\lambda} \operatorname{vol}(B)^{1-\lambda} .
$$

4. (Borell's lemma) A Borel measure μ on \mathbb{R}^{n} is log-concave if for every compact subsets A, B of \mathbb{R}^{n} and $\lambda \in(0,1)$, we have

$$
\mu(\lambda A+(1-\lambda) B) \geq \mu(A)^{\lambda} \mu(B)^{1-\lambda}
$$

Prove that if K is an origin-symmetric convex set in \mathbb{R}^{n}, then

$$
\forall t>1, \quad \mu(t K) \geq 1-\mu(K)\left(\frac{1-\mu(K)}{\mu(K)}\right)^{\frac{t+1}{2}} .
$$

Hint: Use the inclusion $\frac{2}{t+1}\left(\mathbb{R}^{n} \backslash t K\right)+\frac{t-1}{t+1} K \subseteq \mathbb{R}^{n} \backslash K$.
5. Let X_{1}, \ldots, X_{n} be independent random vectors with values in a Banach space $\left(B,\|\cdot\|_{B}\right)$. Suppose that these random vectors are bounded in the sense that $\left\|X_{i}\right\|_{B} \leq C$ a.s. for every $i \in\{1, \ldots, n\}$. Show that

$$
\operatorname{Var}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\|_{B}\right] \leq \frac{C^{2}}{n} .
$$

6. Let X_{1}, \ldots, X_{n} be i.i.d. random variables with values in $[0,1]$. Each X_{i} represents the size of a package to be shipped. The shipping containers are bins of size 1 (so each bin can hold packages whose sizes sum up to at most 1). Let $B_{n}=$ $f\left(X_{1}, \ldots, X_{n}\right)$ be the minimal number of bins needed to store the packages. Note that explicitly computing B_{n} is a hard combinatorial optimization problem. Prove that

$$
\operatorname{Var}\left[B_{n}\right] \leq \frac{n}{4} \quad \text { and } \quad \mathbb{E}\left[B_{n}\right] \geq n \mathbb{E}\left[X_{1}\right] .
$$

7. Let X_{1}, \ldots, X_{n} be independent random variables taking values in $[a, b]$. Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function, then

$$
\operatorname{Var} f\left(X_{1}, \ldots, X_{n}\right) \leq(b-a)^{2} \mathbb{E}\left[\left|\nabla f\left(X_{1}, \ldots, X_{n}\right)\right|^{2}\right] .
$$

Hint: If $g: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function, then $g(x)-g(y) \geq g^{\prime}(y)(x-y)$ for all $x, y \in \mathbb{R}$.
8. Consider the probability measure $\mathrm{d} v(x)=\frac{1}{2} e^{-|x|} \mathrm{d} x$ on \mathbb{R}. Find a suitable integration by parts formula for v and use it to show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function, then

$$
\operatorname{Var}_{v} f \leq 4 \int_{\mathbb{R}_{2}}\left[f^{\prime}(x)\right]^{2} \mathrm{~d} v(x)
$$

9. Let $X=\left(X_{1}, \ldots, X_{n}\right) \sim N(0, \Sigma)$ be a centered n-dimensional Gaussian random vector with covariance matrix Σ. Show that

$$
\operatorname{Var}\left[\max _{i \in\{1, \ldots, n\}} X_{i}\right] \leq \max _{i \in\{1, \ldots, n\}} \operatorname{Var}\left[X_{i}\right] .
$$

Hint: Write $X=\Sigma^{1 / 2} Y$ where $Y \sim N\left(0, \mathrm{Id}_{n}\right)$.
10. Let $\left(P_{t}\right)_{t \geq 0}$ be a reversible Markov semigroup with generator \mathcal{L} and stationary measure μ. The corresponding carré du champ is the bilinear operator given by

$$
\Gamma(f, g)=\frac{1}{2}\{\mathcal{L}(f g)-f \mathcal{L} g-g \mathcal{L} f\} .
$$

a. What is the carré du champ of the Ornstein-Uhlenbeck semigroup?
b. Show that the Dirichlet form satisfies

$$
\mathcal{E}(f, g)=\int \Gamma(f, g) \mathrm{d} \mu
$$

The carré du champ $\Gamma(f, f)$ is interpreted as the square gradient of f.
c. Show that $\Gamma(f, f) \geq 0$. Hint: Use that $P_{t} f^{2} \geq\left(P_{t} f\right)^{2}$ and the definition of \mathcal{L}.
d. Prove the Cauchy-Schwarz inequality $\Gamma(f, g)^{2} \leq \Gamma(f, f) \Gamma(g, g)$.
e. Prove the identity

$$
P_{t}\left(f^{2}\right)-\left(P_{t} f\right)^{2}=2 \int_{0}^{t} P_{t-s} \Gamma\left(P_{s} f, P_{s} f\right) \mathrm{d} s
$$

Hint: Interpolate along the curve $s \mapsto P_{t-s}\left(P_{s} f\right)^{2}$.
f. Observe that if an inequality of the form

$$
\forall s>0, \quad \Gamma\left(P_{s} f, P_{s} f\right) \leq \alpha(s) P_{s} \Gamma(f, f)
$$

holds a.s. for some function $\alpha:(0, \infty) \rightarrow(0, \infty)$, then we can derive the local Poincaré inequality

$$
P_{t}\left(f^{2}\right)-\left(P_{t} f\right)^{2} \leq c(t) P_{t} \Gamma(f, f), \quad \text { where } \quad c(t)=2 \int_{0}^{t} \alpha(s) \mathrm{d} s .
$$

Observe that if $c(t) \rightarrow c<\infty$ as $t \rightarrow \infty$, then this implies the classical Poincaré inequality for f with constant c.
11. Let $\left(P_{t}\right)_{t \geq 0}$ be a reversible Markov semigroup with generator \mathcal{L} and stationary measure μ. The corresponding Γ_{2}-operator is defined by

$$
\Gamma_{2}(f, g)=\frac{1}{2}\{\mathcal{L} \Gamma(f, g)-\Gamma(f, \mathcal{L} g)-\Gamma(\mathcal{L} f, g)\} .
$$

a. What is the Γ_{2}-operator of the Ornstein-Uhlenbeck semigroup?
b. Prove that the following are equivalent for a fixed $c>0$:

1. $c \Gamma_{2}(f, f) \geq \Gamma(f, f)$ for all f (Bakry-Émery criterion).
2. $\Gamma\left(P_{t} f, P_{t} f\right) \leq e^{-2 t / c} P_{t} \Gamma(f, f)$ for all f and t (local ergodicity).
3. $P_{t}\left(f^{2}\right)-\left(P_{t} f\right)^{2} \leq c\left(1-e^{-2 t / c}\right) P_{t} \Gamma(f, f)$ for all f and t (local Poincaré).

Hint: For $1 \Rightarrow 2$ evaluate $\frac{\mathrm{d}}{\mathrm{d} s} P_{t-s} \Gamma\left(P_{s} f, P_{s} f\right)$. For $3 \Rightarrow 1$, compute the first nonzero term of the Taylor expansion of the local Poincaré inequality at $t=0$.
c. Consider a measure $\mathrm{d} \mu(x)=e^{-W(x)} \mathrm{d} x$ on \mathbb{R}^{n} such that Hess $W(x) \geq \rho \mathbf{l d}_{n}$ in the positive semidefinite ordering for some $\rho>0$ and any $x \in \mathbb{R}^{n}$. The measure μ is the stationary measure of a Markov process whose semigroup has generator

$$
\mathcal{L}_{\mu} f=\Delta f \underset{3}{\langle\nabla W, \nabla f\rangle}
$$

Use the Bakry-Émery criterion to derive the following inequality of Brascamp and Lieb: for any smooth $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we have

$$
\operatorname{Var}_{\mu}[f] \leq \frac{1}{\rho} \int_{\mathbb{R}^{n}}|\nabla f(x)|^{2} \mathrm{~d} \mu(x)
$$

12. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$. Prove that

$$
\mathbb{P}\left\{\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right| \geq t\right\} \leq 2 e^{-t^{2} / 4 \sum_{i=1}^{n} a_{i}^{2}},
$$

where $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ is uniformly distributed on $\{-1,1\}^{n}$. Deduce Khintchine's inequality: there exists a universal constant $C \in(0, \infty)$ such that for any $p \geq 2$,

$$
\left(\mathbb{E}\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right|^{p}\right)^{1 / p} \leq C \sqrt{p} \sqrt{\sum_{i=1}^{n} a_{i}^{2}}
$$

Hint: Recall that $\mathbb{E}|Y|^{p}=p \int_{0}^{\infty}{ }_{t}^{p-1} \mathbb{P}\{|Y| \geq t\} \mathrm{d} t$ for any random variable Y.
13. Let S_{n} be the symmetric group on n elements equipped with the metric

$$
\forall \sigma, \tau \in \mathcal{S}_{n}, \quad d_{S_{n}}(\sigma, \tau)=\frac{1}{n} \#\{i \in\{1, \ldots, n\}: \sigma(i) \neq \tau(i)\}
$$

and the uniform probability measure \mathbb{P}. For $j \in\{0,1, \ldots, n\}$, consider the σ algebra \mathcal{F}_{j} of subsets of \mathcal{S}_{n} generated by sets of the form

$$
A_{i_{1}, \ldots, i_{j}}=\left\{\sigma \in \mathcal{S}_{n}: \sigma(1)=i_{1}, \ldots, \sigma(j)=i_{j}\right\},
$$

where i_{1}, \ldots, i_{j} are distinct elements of $\{1, \ldots, n\}$.
a. Prove that for every atom $A=A_{i_{1}, \ldots, i_{j}}$ of \mathcal{F}_{j} and every two atoms $B=A_{i_{1}, \ldots, i_{j}, r}$, $C=A_{i_{1}, \ldots, i_{j}, s}$ of \mathcal{F}_{j+1} contained in \mathcal{F}_{j}, there exists a bijection $\phi: B \rightarrow C$ such that $d_{S_{n}}(b, \phi(b)) \leq \frac{2}{n}$ for any $b \in B$.
b. Use part a. and the Azuma-Hoeffding inequality to deduce the following theorem of Maurey: if $f:\left(\mathcal{S}_{n}, d_{S_{n}}\right) \rightarrow \mathbb{R}$ is a 1 -Lipschitz function then

$$
\forall t \geq 0, \quad \mathbb{P}\{\sigma: f(\sigma)-\mathbb{E} f \geq t\} \leq e^{-t^{2} n / 16}
$$

Hint: Consider the martingale $\left\{f_{j}\right\}_{j=0}^{n}$ where $f_{j}=\mathbb{E}\left[f \mid \mathcal{F}_{j}\right]$.
14. A partition \mathcal{P} of a set is a refinement of a partition Q of the same set if any element $P \in \mathcal{P}$ is contained in some element $Q \in \mathcal{Q}$. We say that a metric space $\left(M, d_{M}\right)$ has length at most ℓ if there exists a sequence of partitions $\{M\}=\mathcal{M}^{0}, \mathcal{M}^{1}, \cdots, \mathcal{M}^{n}=\{\{x\}: x \in M\}$ of M such that \mathcal{M}^{i} is a refinement of \mathcal{N}^{i-1} for every $i \in\{1, \ldots, n\}$ and positive numbers a_{1}, \ldots, a_{n} with $\sum_{i=1}^{n} a_{i}^{2} \leq \ell^{2}$ for which the following property is satisfied. If $i \in\{1, \ldots, n\}$ and $A \in \mathcal{N}^{i-1}$, $B, C \in \mathcal{N}^{i}$ are such that $B \cup C \subseteq A$, then there exists a bijection $\phi: B \rightarrow C$ such that $d_{M}(b, \phi(b)) \leq a_{i}$ for all $b \in B$.
a. Show that any bounded metric space M has length at most $\operatorname{diam}(M)$.
b. Use the Azuma-Hoeffding inequality to prove the following theorem of Schechtman: if $\left(M, d_{M}, \mu\right)$ is a metric probability space with length at most ℓ, then any 1-Lipschitz function $f:\left(M, d_{M}\right) \rightarrow \mathbb{R}$ satisfies

$$
\forall t \geq 0, \quad \mu\left\{x: F(x)-\mathbb{E}_{\mu} F \geq t\right\} \leq e^{-t^{2} / 4 \ell^{2}}
$$

15. Prove the following partial converse of Herbst's lemma: if X is a σ^{2}-subgaussian random variable, then

$$
\forall \lambda \in \mathbb{R}, \quad \operatorname{Ent}\left[e^{\lambda X}\right] \leq 2 \lambda^{2} \sigma^{2} \mathbb{E}\left[e^{\lambda X}\right] .
$$

Hint: Note that $\operatorname{Ent}\left[e^{\lambda X}\right] / \mathbb{E}\left[e^{\lambda X}\right]=\mathbb{E}[Z \log Z]$ for $Z=e^{\lambda X} / \mathbb{E}\left[e^{\lambda X}\right]$. Now use concavity of the logarithm and that $\mathbb{E}\left[e^{\lambda(X-\mathbb{E} X)}\right] \geq 1$.
16. Let X_{1}, \ldots, X_{n} be independent random variables taking values in $[a, b]$. Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function, then

$$
\operatorname{Ent}\left[e^{f\left(X_{1}, \ldots, X_{n}\right)}\right] \leq(b-a)^{2} \mathbb{E}\left[\left|\nabla f\left(X_{1}, \ldots, X_{n}\right)\right|^{2} e^{f\left(X_{1}, \ldots, X_{n}\right)}\right]
$$

Deduce that if f is L-Lipschitz, then

$$
\forall t \geq 0, \quad \mathbb{P}\left\{f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E} f\left(X_{1}, \ldots, X_{n}\right) \geq t\right\} \leq e^{-t^{2} / 4(b-a)^{2} L^{2}}
$$

Hint: Recall problem 7.
17. Let $\left(P_{t}\right)_{t \geq 0}$ be a reversible and ergodic Markov semigroup with stationary measure μ and assume that the carré du champ (Problem 10) satisfies the chain rule

$$
\Gamma(f, \phi \circ g)=\Gamma(f, g) \cdot \phi^{\prime} \circ g .
$$

a. Show that for a positive function f, we have

$$
\mathcal{E}\left(\log P_{t} f, P_{t} f\right)^{2} \leq \mathbb{E}_{\mu}\left[\frac{\Gamma(f, f)}{f}\right] \mathbb{E}_{\mu}\left[f \Gamma\left(P_{t} \log P_{t} f, P_{t} \log P_{t} f\right)\right]
$$

Hint: Use reversibility and the Cauchy-Schwarz inequality for $\Gamma(\cdot, \cdot)$.
b. Show that the Bakry-Émery criterion $c \Gamma_{2}(f, f) \geq \Gamma(f, f)$ for all f implies

$$
\mathcal{E}\left(\log P_{t} f, P_{t} f\right)^{2} \leq e^{-2 t / c} \mathcal{E}(\log f, f) \mathbb{E}_{\mu}\left[f P_{t} \Gamma\left(\log P_{t} f, \log P_{t} f\right)\right] .
$$

Hint: Use Problem 11 and the chain rule.
c. Show that the above inequality implies

$$
\mathcal{E}\left(\log P_{t} f, P_{t} f\right) \leq e^{-2 t / c} \mathcal{E}(\log f, f)
$$

and deduce that the Bakry-Émery criterion implies the modified log-Sobolev inequality for all positive functions f,

$$
\operatorname{Ent}_{\mu}[f] \leq \frac{c}{2} \mathcal{E}(\log f, f)
$$

d. Consider a measure $\mathrm{d} \mu(x)=e^{-W(x)} \mathrm{d} x$ on \mathbb{R}^{n} such that Hess $W(x) \geq \rho \mathbf{l d}_{n}$ in the positive semidefinite ordering for some $\rho>0$ and any $x \in \mathbb{R}^{n}$. Show that μ satisfies the dimension-free log-Sobolev inequality

$$
\operatorname{Ent}_{\mu}\left[f^{2}\right] \leq \frac{2}{\rho} \int_{\mathbb{R}^{n}}|\nabla f(x)|^{2} \mathrm{~d} \mu(x)
$$

18. Let $X=\left(X_{1}, \ldots, X_{n}\right) \sim N(0, \Sigma)$ be a centered n-dimensional Gaussian random vector with covariance matrix Σ.
a. Show that $\max _{i=1, \ldots, n} X_{i}$ is τ^{2}-subgaussian, where $\tau^{2}=\max _{i=1, \ldots, n} \operatorname{Var} X_{i}$. Hint: Recall Problem 9.
b. Prove that the mean and median of $\max _{i=1, \ldots, n} X_{i}$ satisfy

$$
\mathbb{E}\left[\max _{i=1, \ldots, n} X_{i}\right] \leq \operatorname{med}\left[\max _{i=1, \ldots, n} X_{i}\right]+\sqrt{2 \log 2 \tau^{2}} .
$$

Hint: Use part a.

Let $\left(B,\|\cdot\|_{B}\right)$ be a Banach space such that B^{*} is separable. Then, there exists a countable subset $V \subset B^{*}$ such that

$$
\forall x \in B, \quad\|x\|_{B}=\sup _{v \in V} v(x) .
$$

Let X be a centered Gaussian random vector in B, that is, a random vector such that $v(X)$ is a centered Gaussian random variable for any $v \in B^{*}$. Let

$$
\sigma^{2} \stackrel{\text { def }}{=} \max _{v \in V} \operatorname{Var}[v(X)] .
$$

c. Show that $\sigma^{2}<\infty, \mathbb{E}\|X\|_{B}<\infty$ and that $\|X\|_{B}$ is σ^{2}-subgaussian.
d. Prove the Landau-Shepp-Marcus-Fernique theorem:

$$
\mathbb{E}\left[e^{\alpha\|X\|_{B}^{2}}\right]<\infty \quad \text { if and only if } \quad \alpha<\frac{1}{2 \sigma^{2}} .
$$

Hint: For the only if part, use $\mathbb{E}\left[e^{\alpha\|X\|_{B}^{2}}\right] \geq \sup _{v \in V} \mathbb{E}\left[e^{\alpha v(X)^{2}}\right]$.
19. Let (\mathbb{X}, d, μ) be a metric probability space satisfying the T_{1}-inequality

$$
\forall v \in \mathcal{P}_{1}(\mathbb{X}), \quad \mathrm{W}_{1}(\mu, v) \leq \sqrt{2 \sigma^{2} \mathrm{D}(v \| \mu)} .
$$

a. For a Borel subset S of \mathbb{X} let μ_{S} be the restriction of μ on S given by $\mu_{S}(T)=$ $\frac{\mu(S \cap T)}{\mu(S)}$, where $T \subseteq \mathbb{X}$. Prove that if A, B are disjoint subsets of \mathbb{X}, then

$$
d(A, B) \leq \mathrm{W}_{1}\left(\mu_{A}, \mu_{B}\right) \leq \sqrt{2 \sigma^{2} \log (1 / \mu(A))}+\sqrt{2 \sigma^{2} \log (1 / \mu(B))}
$$

b. Deduce that the T_{1}-inequality implies geometric concentration: if A is a Borel subset of \mathbb{X} with $\mu(A) \geq \frac{1}{2}$ and

$$
A_{t}=\{x \in \mathbb{X}: d(x, y) \leq t \text { for some } y \in A\},
$$

then

$$
\forall t \geq 0, \quad \mu\left(A_{t}\right) \geq 1-2 e^{-t^{2} / 4 \sigma^{2}}
$$

20. Let $\mu, v \in \mathcal{P}_{1}(\mathbb{R},|\cdot|)$ be two measures on the real line and denote by $F(t)=$ $\mu((-\infty, t])$ and $G(t)=v((-\infty, t])$ their cumulative distribution functions.
a. Show that for any smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ with compact support,

$$
\int_{\mathbb{R}} f \mathrm{~d} \mu=-\int_{\mathbb{R}} f^{\prime}(t) F(t) \mathrm{d} t .
$$

b. Using part a. deduce that

$$
\mathrm{W}_{1}(\mu, v)=\int_{\mathbb{R}}|F(t)-G(t)| \mathrm{d} t
$$

c. Construct a coupling $M \in \mathcal{C}(\mu, v)$ such that

$$
\mathbb{E}_{M}[|X-Y|]=\int_{\mathbb{R}}|F(t)-G(t)| \mathrm{d} t .
$$

Hint: If U is uniformly distributed on $[0,1]$, what are the distributions of $F^{-1}(U)$ and $G^{-1}(U)$?
21. Let $\mu_{1} \otimes \cdots \otimes \mu_{n}$ be a product probability measure on Ω^{n} and v an arbitrary probability measure on Ω^{n}. Prove Marton's transportation inequality:

$$
\inf _{M \in \mathcal{C}\left(\mu_{1}, \otimes \mu_{n}, v\right)} \sum_{i=1}^{n} \mathbb{P}_{M}\left\{X_{i} \neq Y_{i}\right\}^{2} \leq \frac{1}{2} D\left(v \| \mu_{1} \otimes \cdots \otimes \mu_{n}\right),
$$

where $\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$ has distribution M.
Hint: Use Pinsker's inequality and tensorization.
22. Let $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{n},|\cdot|\right)$ be a probability measure and $\sigma^{2}>0$. We know that if μ satisfies the modified log-Sobolev inequality

$$
\forall f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \operatorname{Ent}_{\mu}\left[e^{f}\right] \leq \frac{\sigma^{2}}{2} \mathbb{E}_{\mu}\left[|\nabla f|^{2} e^{f}\right]
$$

then μ also satisfies the T_{2}-inequality

$$
\forall v \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right), \quad \mathrm{W}_{2}(\mu, v) \leq \sqrt{2 \sigma^{2} D(v \| \mu)}
$$

We shall prove a converse of this implication for convex functions.
a. Prove that for any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\frac{\operatorname{Ent}_{\mu}\left[e^{\lambda f}\right]}{\mathbb{E}_{\mu}\left[e^{\lambda f}\right]} \leq \lambda\left\{\mathbb{E}_{v}[f]-\mathbb{E}_{\mu}[f]\right\}, \quad \text { where } \quad \mathrm{d} v=\frac{e^{\lambda f}}{\mathbb{E}_{\mu}\left[e^{\lambda f}\right]} \mathrm{d} \mu
$$

b. Prove that if f is assumed to be convex, then

$$
\forall \lambda \geq 0, \quad \frac{\operatorname{Ent}_{\mu}\left[e^{\lambda f}\right]}{\mathbb{E}_{\mu}\left[e^{\lambda f}\right]} \leq \lambda \inf _{M \in \mathcal{C}(\mu, \nu)} \mathbb{E}_{M}[\langle\nabla f(Y), Y-X\rangle]
$$

and

$$
\forall \lambda \leq 0, \quad \frac{\operatorname{Ent}_{\mu}\left[e^{\lambda f}\right]}{\mathbb{E}_{\mu}\left[e^{\lambda f}\right]} \leq-\lambda \inf _{M \in \mathcal{C}(\mu, \nu)} \mathbb{E}_{M}[\langle\nabla f(X), X-Y\rangle] .
$$

c. Conclude that if μ satisfies the T_{2}-inequality, then

$$
\forall \lambda \geq 0, \quad \operatorname{Ent}_{\mu}\left[e^{\lambda f}\right] \leq 2 \lambda^{2} \sigma^{2} \mathbb{E}_{\mu}\left[|\nabla f|^{2} e^{\lambda f}\right]
$$

and

$$
\forall \lambda \leq 0, \quad \operatorname{Ent}_{\mu}\left[e^{\lambda f}\right] \leq 2 \lambda^{2} \sigma^{2} \mathbb{E}_{\mu}\left[|\nabla f|^{2}\right] \mathbb{E}_{\mu}\left[e^{\lambda f}\right]
$$

d. Deduce from Herbst's argument that if $\mathbb{E}_{\mu}\left[|\nabla f|^{2}\right] \leq 1$, then

$$
\forall t \geq 0, \quad \mu\left\{f-\mathbb{E}_{\mu} f \leq-t\right\} \leq e^{-t^{2} / 8 \sigma^{2}}
$$

In particular, this consists of a one-sided refinement of the Gaussian concentration inequality in the class of convex functions.
23. Show that the measure $\mu=\frac{1}{2} \delta_{1}+\frac{1}{2} \delta_{-1}$ on $(\mathbb{R},|\cdot|)$ does not satisfy the T_{2}-inequality. Deduce that there does not exist $\sigma^{2}>0$ such that for any $n \in \mathbb{N}$ and any 1 Lipschitz function $f:\left(\mathbb{R}^{n},|\cdot|\right) \rightarrow \mathbb{R}$, the random variable $f\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ is σ^{2} subgaussian, where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d. symmetric Bernoulli variables.
24. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be independent symmetric Bernoulli random variables $\mathbb{P}\left\{\varepsilon_{i}= \pm 1\right\}=$ $\frac{1}{2}$ and fix a set $T \subseteq \mathbb{R}^{n}$. Consider the random variable

$$
Z=\sup _{t \in T} \sum_{\substack{ \\7=1}}^{n} \varepsilon_{k} t_{k}
$$

a. Use the bounded differences inequality for the variance to prove that

$$
\operatorname{Var}[Z] \leq 4 \sup _{t \in T} \sum_{k=1}^{n} t_{k}^{2}
$$

b. Denote by

$$
\tau^{2}=\sum_{k=1}^{n} \sup _{t \in T} t_{k}^{2}
$$

Use McDiarmid's inequality to show that

$$
\forall t \geq 0, \quad \mathbb{P}\{|Z-\mathbb{E} Z| \geq t\} \leq 2 e^{-t^{2} / 2 \tau^{2}}
$$

c. Denote by

$$
\sigma^{2}=4 \sup _{t \in T} \sum_{k=1}^{n} t_{k}^{2}
$$

Use the bounded differences inequality for the entropy to prove that

$$
\forall t \geq 0, \quad \mathbb{P}\{Z-\mathbb{E} Z \geq t\} \leq e^{-t^{2} / 4 \sigma^{2}}
$$

d. Use the Marton-Talagrand concentration inequality to prove that Z is σ^{2} subgaussian.
25. Let X_{1}, \ldots, X_{n} be independent random variables with values in X_{1}, \ldots, X_{n} respectively. For $c_{1}, \ldots, c_{n}>0$, consider the distance d_{c} on $\mathbb{X}_{1} \times \cdots \times \mathbb{X}_{n}$ given by

$$
d_{c}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sum_{i=1}^{n} c_{i} \mathbf{1}_{x_{i} \neq y_{i}},
$$

where $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{X}_{1} \times \cdots \times \mathbf{X}_{n}$. Use McDiarmid's inequality to prove that for any measurable subset $A \subseteq \mathbb{X}_{1} \times \cdots \times \mathbb{X}_{n}$, we have

$$
\forall t \geq 0, \quad \mathbb{P}\left\{d_{c}\left(\left(X_{1}, \ldots, X_{n}\right), A\right) \geq t\right\} \leq \frac{1}{\mathbb{P}(A)} e^{-t^{2} / 2}
$$

26. Let $\left(P_{t}\right)_{t \geq 0}$ be a reversible Markov semigroup with stationary measure μ and fix $c>0$. Prove that the log-Sobolev inequality

$$
\operatorname{Ent}_{\mu}\left[f^{2}\right] \leq 2 c \mathcal{E}(f, f) \quad \text { for all } f
$$

implies the modified log-Sobolev inequality

$$
\operatorname{Ent}_{\mu}[f] \leq \frac{c}{2} \mathcal{E}(\log f, f) \quad \text { for all nonnegative } f
$$

27. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function with $\int_{\mathbb{R}^{n}} f(x)^{2} \mathrm{~d} x=1$ and denote by λ the Lebesgue measure on \mathbb{R}^{n}.
a. Use the Gaussian log-Sobolev inequality to deduce that

$$
\operatorname{Ent}_{\lambda}\left[f^{2}\right] \leq 2 \int_{\mathbb{R}^{n}}|\nabla f|^{2} \mathrm{~d} x-\frac{n}{2} \log (2 \pi)-n
$$

Hint: Consider the function $g=\frac{f^{2} e^{\mid x x^{2} / 2}}{\sqrt{2 \pi}}$.
b. Apply the inequality of part a. to $f_{\sigma}(x)=\sigma^{n} f(\sigma x)$ for a suitable choice of $\sigma>0$ to deduce the Euclidean log-Sobolev inequality:

$$
\operatorname{Ent}_{\lambda}\left[f^{2}\right] \leq \frac{n}{2} \log \left(\frac{2}{n \pi e} \int_{\mathbb{R}^{n}}|\nabla f|^{2} \mathrm{~d} x\right)
$$

28. Let $\mathcal{C}_{n}=\left(\{-1,1\}^{n}, \sigma_{n}\right)$ where σ_{n} is the uniform probability measure on $\{-1,1\}^{n}$. Recall that the discrete heat flow acts on the Walsh expansion as

$$
\forall t \geq 0, \quad P_{t}\left(\sum_{S \subseteq\{1, \ldots, n\}} c_{S} w_{S}\right)=\sum_{S \subseteq\{1, \ldots, n\}} e^{-t|S|} c_{S} w_{S} .
$$

Consider the operator $\Delta^{-1 / 2}$ whose action on a function on \mathcal{C}_{n} is given by

$$
\Delta^{-1 / 2}\left(\sum_{S \subseteq\{1, \ldots, n\}} c_{S} w_{S}\right)=\sum_{\emptyset \neq S \subseteq\{1, \ldots, n\}} \frac{c_{S}}{|S|^{1 / 2}} w_{S} .
$$

a. For a function $f: \mathcal{C}_{n} \rightarrow \mathbb{R}$, prove that

$$
\operatorname{Var}_{\sigma_{n}} f=\sum_{i=1}^{n}\left\|\Delta^{-1 / 2} \partial_{i} f\right\|_{L_{2}\left(\sigma_{n}\right)}^{2} .
$$

b. Prove that if $\mathbb{E}_{\sigma_{n}} g=0$, then

$$
\Delta^{-1 / 2} g=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} P_{t} g \frac{\mathrm{~d} t}{\sqrt{t}} .
$$

c. Use hypercontractivity to deduce that there exists an absolute constant $C \in(0, \infty)$ such that if $\mathbb{E}_{\sigma_{n}} g=0$, then

$$
\left\|\Delta^{-1 / 2} g\right\|_{L_{2}\left(\sigma_{n}\right)} \leq \frac{C\|g\|_{L_{2}\left(\sigma_{n}\right)}}{1+\sqrt{\log \left(\|g\|_{L_{2}\left(\sigma_{n}\right)} /\|g\|_{L_{1}\left(\sigma_{n}\right)}\right)}}
$$

d. Combine the above to derive a proof of Talagrand's influence inequality.
29. Let $\mathrm{d} v_{n}(x)=\frac{1}{2^{n}} e^{-\|x\|_{1}} \mathrm{~d} x$ be the symmetric exponential measure on \mathbb{R}^{n}. For $p \in$ $\{1,2\}$, we will use the notation

$$
B_{p}^{n}=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left|x_{i}\right|^{p} \leq 1\right\} .
$$

Prove the following geometric form of Talagrand's two-level concentration inequality for v_{n} : if A is a Borel subset of \mathbb{R}^{n}, then

$$
\forall r>0, \quad 1-v_{n}\left(A+c_{1} \sqrt{r} B_{2}^{n}+c_{2} r B_{1}^{n}\right) \leq \frac{1}{v_{n}(A)} e^{-r},
$$

where $c_{1}, c_{2}>0$ are universal constants.
30. The Gaussian isoperimetric inequality asserts that if $A \subseteq \mathbb{R}^{n}$ is a measurable set such that $\gamma_{n}(A)=\gamma_{n}(H)$ for some half-space H, then $\gamma^{+}(\partial A) \geq \gamma^{+}(\partial H)$. Use this statement to deduce the following stronger form of isoperimetry: under the assumptions above, we have $\gamma_{n}\left(A_{r}\right) \geq \gamma_{n}\left(H_{r}\right)$ for all $r>0$, where

$$
C_{r}=\left\{x \in \mathbb{R}^{n}: \text { there exists } y \in C \text { with }|x-y| \leq r\right\} .
$$

Hint: Assume that A is a finite union of Euclidean balls and differentiate the function $v(r)=\Phi^{-1}\left(\gamma_{n}\left(A_{r}\right)\right)$, where Φ is the CDF of the normal distribution.

