HIGH-DIMENSIONAL PROBABILITY

MICHAELMAS TERM 2021

1. Let (X, d, μ) be a metric probability space. Suppose that for any Borel subset *A* of *X* with $\mu(A) \ge \frac{1}{2}$ and any $\varepsilon > 0$, we have

$$\mu\{x: d(x,A) \le \varepsilon\} \ge 1 - \alpha(\varepsilon)$$

for some function $\alpha : [0, \infty) \to [0, \infty)$. Prove that if $f : X \to \mathbb{R}$ is an *L*-Lipschitz function and m_f is a median of f with respect to μ , that is,

$$\min\left\{\mu\{x: f(x) \ge m_f\}, \mu\{x: f(x) \le m_f\}\right\} \ge \frac{1}{2},$$

then

$$\forall t > 0, \qquad \mu \Big\{ x : |f(x) - m_f| \ge t \Big\} \le 2\alpha(t/L).$$

Hint: Apply the assumption to the sets $\{f \ge m_f\}$ *and* $\{f \le m_f\}$.

2. Let $f : \Omega \to \mathbb{R}$ be a measurable function on a probability space (Ω, μ) and assume that there exists a value $a_f \in \mathbb{R}$ such that

$$\forall t > 0, \qquad \mu \Big\{ x : |f(x) - a_f| \ge t \Big\} \le \beta(t)$$

for some function $\beta : [0, \infty) \to [0, \infty)$. Prove the following concentration inequalities for the function f around its median and mean.

(i) If m_f is a median of f with respect to μ and t_0 is such that $\beta(t_0) < \frac{1}{2}$, then

$$\forall t > 0, \qquad \mu \Big\{ x : |f(x) - m_f| \ge t + t_0 \Big\} \le \beta(t).$$

(ii) If $B \stackrel{\text{def}}{=} \int_0^\infty \beta(s) \, ds < \infty$, then *f* is μ -integrable and

$$\forall t > 0, \qquad \mu \Big\{ x : |f(x) - \mathbb{E}_{\mu}[f]| \ge t + B \Big\} \le \beta(t).$$

3. The Brunn–Minkowski inequality asserts that for any compact sets *A*, *B* in \mathbb{R}^n ,

$$\operatorname{vol}(A+B)^{\frac{1}{n}} \ge \operatorname{vol}(A)^{\frac{1}{n}} + \operatorname{vol}(B)^{\frac{1}{n}}.$$

In this problem we will present an elementary proof of this inequality. It suffices to assume that each A, B is a disjoint union of a finite number of compact boxes with faces parallel to the coordinate hyperplanes as the general case will follow by approximation. Let N be the total number of boxes involved, that is, if A is a union of N_1 boxes and B is a union of N_2 boxes then $N = N_1 + N_2$. Prove the inequality by induction on N via the following steps.

- (i) Prove the base case N = 2, that is, the case $A = \prod_{i=1}^{n} [a_i, b_i]$ and $B = \prod_{i=1}^{n} [c_i, d_i]$.
- (ii) Let $Q_1, ..., Q_k$ be pairwise disjoint boxes with faces parallel to the coordinate hyperplanes. Prove that there exists a hyperplane H parallel to a coordinate hyperplane such that if H^+ and H^- are the closed half-spaces determined by H, then there exists $j, j' \in \{1, ..., k\}$ such that $Q_j \subset H^+$ and $Q_{j'} \subset H^-$.
- (iii) For the inductive step, suppose that A, B are unions of N_1 and N_2 boxes respectively such that $N_1 + N_2 = N + 1$. Choose a hyperplane H which satisfies the conclusion of (ii) for the collection of boxes whose union is A and let $A^+ = A \cap H^+$ and $A^- = A \cap H^-$. Observe that both A^+ and A^-

are unions of at most $N_1 - 1$ boxes. By appropriately translating *B*, notice that in order to deduce the Brunn–Minkowski inequality, we can assume without loss of generality that

$$\frac{\operatorname{vol}(B^+)}{\operatorname{vol}(B)} = \frac{\operatorname{vol}(A^+)}{\operatorname{vol}(A)} \quad \text{and} \quad \frac{\operatorname{vol}(B^-)}{\operatorname{vol}(B)} = \frac{\operatorname{vol}(A^-)}{\operatorname{vol}(A)}, \tag{*}$$

where $B^+ = B \cap H^+$ and $B^- = B \cap H^-$. Use the inclusion

$$A + B \supseteq (A^+ + B^+) \cup (A^- + B^-)$$

along with the inductive hypothesis and (*) to complete the proof. Deduce from the Brunn–Minkowski inequality that for any compact sets *A*, *B*,

$$\forall \ \lambda \in (0,1), \qquad \operatorname{vol}(\lambda A + (1-\lambda)B) \ge \operatorname{vol}(A)^{\lambda} \operatorname{vol}(B)^{1-\lambda}$$

4. (Borell's lemma) A Borel measure μ on \mathbb{R}^n is log-concave if for every compact subsets *A*, *B* of \mathbb{R}^n and $\lambda \in (0, 1)$, we have

$$\mu(\lambda A + (1 - \lambda)B) \ge \mu(A)^{\lambda} \mu(B)^{1 - \lambda}.$$

Prove that if *K* is an origin-symmetric convex set in \mathbb{R}^n , then

$$\forall t > 1, \qquad \mu(tK) \ge 1 - \mu(K) \left(\frac{1 - \mu(K)}{\mu(K)}\right)^{\frac{t+1}{2}}.$$

Hint: Use the inclusion $\frac{2}{t+1}(\mathbb{R}^n \setminus tK) + \frac{t-1}{t+1}K \subseteq \mathbb{R}^n \setminus K$.

5. Let X_1, \ldots, X_n be independent random vectors with values in a Banach space $(B, \|\cdot\|_B)$. Suppose that these random vectors are bounded in the sense that $\|X_i\|_B \leq C$ a.s. for every $i \in \{1, \ldots, n\}$. Show that

$$\operatorname{Var}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\|_{B}\right] \leq \frac{C^{2}}{n}.$$

6. Let X_1, \ldots, X_n be i.i.d. random variables with values in [0, 1]. Each X_i represents the size of a package to be shipped. The shipping containers are bins of size 1 (so each bin can hold packages whose sizes sum up to at most 1). Let $B_n = f(X_1, \ldots, X_n)$ be the minimal number of bins needed to store the packages. Note that explicitly computing B_n is a hard combinatorial optimization problem. Prove that

$$\operatorname{Var}[B_n] \leq \frac{n}{4}$$
 and $\mathbb{E}[B_n] \geq n \mathbb{E}[X_1].$

7. Let X_1, \ldots, X_n be independent random variables taking values in [a, b]. Show that if $f : \mathbb{R}^n \to \mathbb{R}$ is a *convex* function, then

$$\operatorname{Var} f(X_1, \dots, X_n) \le (b-a)^2 \mathbb{E}[|\nabla f(X_1, \dots, X_n)|^2].$$

Hint: If $g : \mathbb{R} \to \mathbb{R}$ is a convex function, then $g(x) - g(y) \ge g'(y)(x-y)$ for all $x, y \in \mathbb{R}$.

8. Consider the probability measure $d\nu(x) = \frac{1}{2}e^{-|x|}dx$ on \mathbb{R} . Find a suitable integration by parts formula for ν and use it to show that if $f : \mathbb{R} \to \mathbb{R}$ is a smooth function, then

$$\operatorname{Var}_{\nu} f \leq 4 \int_{\mathbb{R}} [f'(x)]^2 \, \mathrm{d}\nu(x).$$

9. Let $X = (X_1, \ldots, X_n) \sim N(0, \Sigma)$ be a centered *n*-dimensional Gaussian random vector with covariance matrix Σ . Show that

$$\operatorname{Var}\left[\max_{i\in\{1,\ldots,n\}}X_{i}\right] \leq \max_{i\in\{1,\ldots,n\}}\operatorname{Var}[X_{i}].$$

Hint: Write $X = \Sigma^{1/2} Y$ where $Y \sim N(0, \operatorname{Id}_n)$.

10. Let $(P_t)_{t\geq 0}$ be a reversible Markov semigroup with generator \mathcal{L} and stationary measure μ . The corresponding *carré du champ* is the bilinear operator given by

$$\Gamma(f,g) = \frac{1}{2} \Big\{ \mathcal{L}(fg) - f\mathcal{L}g - g\mathcal{L}f \Big\}.$$

- a. What is the carré du champ of the Ornstein–Uhlenbeck semigroup?
- b. Show that the Dirichlet form satisfies

$$\mathcal{E}(f,g) = \int \Gamma(f,g) \,\mathrm{d}\mu.$$

The carré du champ $\Gamma(f, f)$ is interpreted as the square gradient of f.

- c. Show that $\Gamma(f, f) \ge 0$. Hint: Use that $P_t f^2 \ge (P_t f)^2$ and the definition of \mathcal{L} .
- d. Prove the Cauchy–Schwarz inequality $\Gamma(f,g)^2 \leq \Gamma(f,f)\Gamma(g,g)$.
- e. Prove the identity

$$P_t(f^2) - (P_t f)^2 = 2 \int_0^t P_{t-s} \Gamma(P_s f, P_s f) \, \mathrm{d}s.$$

Hint: Interpolate along the curve $s \mapsto P_{t-s}(P_s f)^2$. f. Observe that if an inequality of the form

$$\forall s > 0, \qquad \Gamma(P_s f, P_s f) \le \alpha(s) P_s \Gamma(f, f)$$

holds a.s. for some function $\alpha: (0, \infty) \to (0, \infty)$, then we can derive the *local Poincaré inequality*

$$P_t(f^2) - (P_t f)^2 \le c(t) P_t \Gamma(f, f), \quad \text{where} \quad c(t) = 2 \int_0^t \alpha(s) \, \mathrm{d}s.$$

Observe that if $c(t) \rightarrow c < \infty$ as $t \rightarrow \infty$, then this implies the classical Poincaré inequality for *f* with constant *c*.

11. Let $(P_t)_{t>0}$ be a reversible Markov semigroup with generator \mathcal{L} and stationary measure μ . The corresponding Γ_2 -operator is defined by

$$\Gamma_2(f,g) = \frac{1}{2} \Big\{ \mathcal{L}\Gamma(f,g) - \Gamma(f,\mathcal{L}g) - \Gamma(\mathcal{L}f,g) \Big\}.$$

- a. What is the Γ_2 -operator of the Ornstein–Uhlenbeck semigroup?
- b. Prove that the following are equivalent for a fixed c > 0:

 - 1. $c\Gamma_2(f, f) \ge \Gamma(f, f)$ for all f (Bakry–Émery criterion). 2. $\Gamma(P_t f, P_t f) \le e^{-2t/c} P_t \Gamma(f, f)$ for all f and t (local ergodicity). 3. $P_t(f^2) (P_t f)^2 \le c(1 e^{-2t/c}) P_t \Gamma(f, f)$ for all f and t (local Poincaré).

Hint: For $1 \Rightarrow 2$ evaluate $\frac{d}{ds}P_{t-s}\Gamma(P_sf,P_sf)$. For $3 \Rightarrow 1$, compute the first nonzero term of the Taylor expansion of the local Poincaré inequality at t = 0.

c. Consider a measure $d\mu(x) = e^{-W(x)} dx$ on \mathbb{R}^n such that $\text{Hess}W(x) \geq \rho \text{Id}_n$ in the positive semidefinite ordering for some $\rho > 0$ and any $x \in \mathbb{R}^n$. The measure μ is the stationary measure of a Markov process whose semigroup has generator

$$\mathcal{L}_{\mu}f = \Delta f - \langle \nabla W, \nabla f \rangle.$$

Use the Bakry-Émery criterion to derive the following inequality of Brascamp and Lieb: for any smooth $f : \mathbb{R}^n \to \mathbb{R}$, we have

$$\operatorname{Var}_{\mu}[f] \leq \frac{1}{\rho} \int_{\mathbb{R}^n} |\nabla f(x)|^2 \, \mathrm{d}\mu(x).$$

12. Let $a_1, \ldots, a_n \in \mathbb{R}$. Prove that

$$\mathbb{P}\left\{\left|\sum_{i=1}^{n}a_{i}\varepsilon_{i}\right|\geq t\right\}\leq 2e^{-t^{2}/4\sum_{i=1}^{n}a_{i}^{2}},$$

where $(\varepsilon_1, ..., \varepsilon_n)$ is uniformly distributed on $\{-1, 1\}^n$. Deduce Khintchine's inequality: there exists a universal constant $C \in (0, \infty)$ such that for any $p \ge 2$,

$$\left(\mathbb{E}\left|\sum_{i=1}^{n}a_{i}\varepsilon_{i}\right|^{p}\right)^{1/p} \leq C\sqrt{p}\sqrt{\sum_{i=1}^{n}a_{i}^{2}}.$$

Hint: Recall that $\mathbb{E}|Y|^p = p \int_0^\infty t^{p-1} \mathbb{P}\{|Y| \ge t\} dt$ for any random variable *Y*. **13.** Let S_n be the symmetric group on *n* elements equipped with the metric

$$\forall \sigma, \tau \in \mathbb{S}_n, \qquad d_{\mathbb{S}_n}(\sigma, \tau) = \frac{1}{n} \# \{ i \in \{1, \dots, n\} : \sigma(i) \neq \tau(i) \}$$

and the uniform probability measure \mathbb{P} . For $j \in \{0, 1, ..., n\}$, consider the σ -algebra \mathcal{F}_j of subsets of \mathcal{S}_n generated by sets of the form

$$A_{i_1,\ldots,i_j} = \left\{ \sigma \in \mathcal{S}_n : \ \sigma(1) = i_1, \ \ldots, \ \sigma(j) = i_j \right\},$$

where i_1, \ldots, i_j are distinct elements of $\{1, \ldots, n\}$.

- a. Prove that for every atom $A = A_{i_1,...,i_j}$ of \mathcal{F}_j and every two atoms $B = A_{i_1,...,i_j,r}$, $C = A_{i_1,...,i_j,s}$ of \mathcal{F}_{j+1} contained in \mathcal{F}_j , there exists a bijection $\phi : B \to C$ such that $d_{\mathcal{S}_n}(b,\phi(b)) \leq \frac{2}{n}$ for any $b \in B$.
- b. Use part a. and the Azuma–Hoeffding inequality to deduce the following theorem of Maurey: if $f : (S_n, d_{S_n}) \to \mathbb{R}$ is a 1-Lipschitz function then

$$\forall t \ge 0, \qquad \mathbb{P}\{\sigma : f(\sigma) - \mathbb{E}f \ge t\} \le e^{-t^2 n/16}.$$

Hint: Consider the martingale $\{f_j\}_{j=0}^n$ *where* $f_j = \mathbb{E}[f|\mathcal{F}_j]$ *.*

- 14. A partition \mathcal{P} of a set is a refinement of a partition \mathcal{Q} of the same set if any element $P \in \mathcal{P}$ is contained in some element $Q \in \mathcal{Q}$. We say that a metric space (M, d_M) has length at most ℓ if there exists a sequence of partitions $\{M\} = \mathcal{M}^0, \mathcal{M}^1, \dots, \mathcal{M}^n = \{\{x\} : x \in M\}$ of M such that \mathcal{M}^i is a refinement of \mathcal{M}^{i-1} for every $i \in \{1, \dots, n\}$ and positive numbers a_1, \dots, a_n with $\sum_{i=1}^n a_i^2 \leq \ell^2$ for which the following property is satisfied. If $i \in \{1, \dots, n\}$ and $A \in \mathcal{M}^{i-1}$, $B, C \in \mathcal{M}^i$ are such that $B \cup C \subseteq A$, then there exists a bijection $\phi : B \to C$ such that $d_M(b, \phi(b)) \leq a_i$ for all $b \in B$.
 - a. Show that any bounded metric space M has length at most diam(M).
 - b. Use the Azuma–Hoeffding inequality to prove the following theorem of Schechtman: if (M, d_M, μ) is a metric probability space with length at most ℓ , then any 1-Lipschitz function $f : (M, d_M) \rightarrow \mathbb{R}$ satisfies

$$\forall t \ge 0, \qquad \mu\{x: F(x) - \mathbb{E}_{\mu}F \ge t\} \le e^{-t^2/4\ell^2}.$$

15. Prove the following partial converse of Herbst's lemma: if *X* is a σ^2 -subgaussian random variable, then

$$\forall \ \lambda \in \mathbb{R}, \qquad \operatorname{Ent}[e^{\lambda X}] \leq 2\lambda^2 \sigma^2 \mathbb{E}[e^{\lambda X}].$$

Hint: Note that $\operatorname{Ent}[e^{\lambda X}]/\mathbb{E}[e^{\lambda X}] = \mathbb{E}[Z \log Z]$ for $Z = e^{\lambda X}/\mathbb{E}[e^{\lambda X}]$. Now use concavity of the logarithm and that $\mathbb{E}[e^{\lambda(X-\mathbb{E}X)}] \ge 1$.

16. Let X_1, \ldots, X_n be independent random variables taking values in [a, b]. Show that if $f : \mathbb{R}^n \to \mathbb{R}$ is a *convex* function, then

$$\operatorname{Ent}[e^{f(X_1,...,X_n)}] \le (b-a)^2 \mathbb{E}[|\nabla f(X_1,...,X_n)|^2 e^{f(X_1,...,X_n)}].$$

Deduce that if f is *L*-Lipschitz, then

$$\forall t \ge 0, \qquad \mathbb{P}\{f(X_1, \dots, X_n) - \mathbb{E}f(X_1, \dots, X_n) \ge t\} \le e^{-t^2/4(b-a)^2 L^2}.$$

Hint: Recall problem 7.

17. Let $(P_t)_{t\geq 0}$ be a reversible and ergodic Markov semigroup with stationary measure μ and assume that the carré du champ (Problem 10) satisfies the chain rule

$$\Gamma(f, \phi \circ g) = \Gamma(f, g) \cdot \phi' \circ g.$$

a. Show that for a positive function *f* , we have

$$\mathcal{E}(\log P_t f, P_t f)^2 \leq \mathbb{E}_{\mu} \bigg[\frac{\Gamma(f, f)}{f} \bigg] \mathbb{E}_{\mu} \bigg[f \Gamma(P_t \log P_t f, P_t \log P_t f) \bigg].$$

Hint: Use reversibility and the Cauchy-Schwarz inequality for $\Gamma(\cdot, \cdot)$ *.*

b. Show that the Bakry–Émery criterion $c\Gamma_2(f, f) \ge \Gamma(f, f)$ for all f implies

$$\mathcal{E}(\log P_t f, P_t f)^2 \le e^{-2t/c} \mathcal{E}(\log f, f) \mathbb{E}_{\mu} \Big[f P_t \Gamma(\log P_t f, \log P_t f) \Big].$$

Hint: Use Problem 11 and the chain rule.

c. Show that the above inequality implies

 $\mathcal{E}(\log P_t f, P_t f) \le e^{-2t/c} \mathcal{E}(\log f, f)$

and deduce that the Bakry–Émery criterion implies the modified log-Sobolev inequality for all positive functions f,

$$\operatorname{Ent}_{\mu}[f] \leq \frac{c}{2} \mathcal{E}(\log f, f).$$

d. Consider a measure $d\mu(x) = e^{-W(x)} dx$ on \mathbb{R}^n such that $\text{Hess}W(x) \ge \rho \text{Id}_n$ in the positive semidefinite ordering for some $\rho > 0$ and any $x \in \mathbb{R}^n$. Show that μ satisfies the dimension-free log-Sobolev inequality

$$\operatorname{Ent}_{\mu}[f^{2}] \leq \frac{2}{\rho} \int_{\mathbb{R}^{n}} |\nabla f(x)|^{2} \, \mathrm{d}\mu(x).$$

- **18.** Let $X = (X_1, ..., X_n) \sim N(0, \Sigma)$ be a centered *n*-dimensional Gaussian random vector with covariance matrix Σ .
 - a. Show that $\max_{i=1,...,n} X_i$ is τ^2 -subgaussian, where $\tau^2 = \max_{i=1,...,n} \operatorname{Var} X_i$. *Hint: Recall Problem 9.*
 - b. Prove that the mean and median of $\max_{i=1,\dots,n} X_i$ satisfy

$$\mathbb{E}\Big[\max_{i=1,\dots,n} X_i\Big] \le \operatorname{med}\Big[\max_{i=1,\dots,n} X_i\Big] + \sqrt{2\log 2\tau^2}.$$

Hint: Use part a.

Let $(B, \|\cdot\|_B)$ be a Banach space such that B^* is separable. Then, there exists a countable subset $V \subset B^*$ such that

$$\forall x \in B, \qquad ||x||_B = \sup_{v \in V} v(x).$$

Let *X* be a centered Gaussian random vector in *B*, that is, a random vector such that v(X) is a centered Gaussian random variable for any $v \in B^*$. Let

$$\sigma^2 \stackrel{\text{def}}{=} \max_{v \in V} \operatorname{Var}[v(X)].$$

- c. Show that $\sigma^2 < \infty$, $\mathbb{E}||X||_B < \infty$ and that $||X||_B$ is σ^2 -subgaussian.
- d. Prove the Landau–Shepp–Marcus–Fernique theorem:

$$\mathbb{E}[e^{\alpha ||X||_B^2}] < \infty \quad \text{if and only if} \quad \alpha < \frac{1}{2\sigma^2}.$$

Hint: For the only if part, use $\mathbb{E}[e^{\alpha ||X||_B^2}] \ge \sup_{v \in V} \mathbb{E}[e^{\alpha v(X)^2}]$. **19.** Let (X, d, μ) be a metric probability space satisfying the T₁-inequality

$$\forall v \in \mathcal{P}_1(\mathbb{X}), \qquad \mathsf{W}_1(\mu, v) \le \sqrt{2\sigma^2 \mathsf{D}(v||\mu)}.$$

a. For a Borel subset *S* of X let μ_S be the restriction of μ on *S* given by $\mu_S(T) = \frac{\mu(S \cap T)}{\mu(S)}$, where $T \subseteq X$. Prove that if *A*, *B* are disjoint subsets of X, then

$$d(A, B) \le W_1(\mu_A, \mu_B) \le \sqrt{2\sigma^2 \log(1/\mu(A))} + \sqrt{2\sigma^2 \log(1/\mu(B))}.$$

b. Deduce that the T₁-inequality implies geometric concentration: if A is a Borel subset of X with $\mu(A) \ge \frac{1}{2}$ and

$$A_t = \{x \in \mathbb{X} : d(x, y) \le t \text{ for some } y \in A\},\$$

then

$$\forall t \ge 0, \qquad \mu(A_t) \ge 1 - 2e^{-t^2/4\sigma^2}.$$

20. Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}, |\cdot|)$ be two measures on the real line and denote by $F(t) = \mu((-\infty, t])$ and $G(t) = \nu((-\infty, t])$ their cumulative distribution functions.

a. Show that for any smooth function $f : \mathbb{R} \to \mathbb{R}$ with compact support,

$$\int_{\mathbb{R}} f \, \mathrm{d}\mu = -\int_{\mathbb{R}} f'(t)F(t) \, \mathrm{d}t$$

b. Using part a. deduce that

$$\mathsf{W}_1(\mu,\nu) = \int_{\mathbb{R}} |F(t) - G(t)| \, \mathrm{d}t.$$

c. Construct a coupling $M \in \mathcal{C}(\mu, \nu)$ such that

$$\mathbb{E}_M[|X-Y|] = \int_{\mathbb{R}} |F(t) - G(t)| \, \mathrm{d}t.$$

Hint: If U is uniformly distributed on [0,1], what are the distributions of $F^{-1}(U)$ and $G^{-1}(U)$?

21. Let $\mu_1 \otimes \cdots \otimes \mu_n$ be a product probability measure on Ω^n and ν an arbitrary probability measure on Ω^n . Prove Marton's transportation inequality:

$$\inf_{M \in \mathcal{C}(\mu_1, \otimes \mu_n, \nu)} \sum_{i=1}^n \mathbb{P}_M \{ X_i \neq Y_i \}^2 \le \frac{1}{2} D(\nu \| \mu_1 \otimes \cdots \otimes \mu_n \}$$

where $(X_1, ..., X_n, Y_1, ..., Y_n)$ has distribution *M*. *Hint: Use Pinsker's inequality and tensorization.*

22. Let $\mu \in \mathcal{P}_2(\mathbb{R}^n, |\cdot|)$ be a probability measure and $\sigma^2 > 0$. We know that if μ satisfies the modified log-Sobolev inequality

$$\forall f : \mathbb{R}^n \to \mathbb{R}, \qquad \operatorname{Ent}_{\mu}[e^f] \le \frac{\sigma^2}{2} \mathbb{E}_{\mu}[|\nabla f|^2 e^f]$$

then μ also satisfies the T₂-inequality

$$\forall v \in \mathcal{P}_2(\mathbb{R}^n), \qquad \mathsf{W}_2(\mu, \nu) \leq \sqrt{2\sigma^2 D(\nu || \mu)}.$$

We shall prove a converse of this implication for *convex* functions.

a. Prove that for any function $f : \mathbb{R}^n \to \mathbb{R}$

$$\frac{\operatorname{Ent}_{\mu}[e^{\lambda f}]}{\mathbb{E}_{\mu}[e^{\lambda f}]} \leq \lambda \Big\{ \mathbb{E}_{\nu}[f] - \mathbb{E}_{\mu}[f] \Big\}, \quad \text{where} \quad \mathrm{d}\nu = \frac{e^{\lambda f}}{\mathbb{E}_{\mu}[e^{\lambda f}]} \,\mathrm{d}\mu.$$

b. Prove that if f is assumed to be convex, then

$$\forall \ \lambda \ge 0, \qquad \frac{\operatorname{Ent}_{\mu}[e^{\lambda f}]}{\mathbb{E}_{\mu}[e^{\lambda f}]} \le \lambda \inf_{M \in \mathcal{C}(\mu, \nu)} \mathbb{E}_{M}[\langle \nabla f(Y), Y - X \rangle]$$

and

$$\forall \ \lambda \leq 0, \qquad \frac{\operatorname{Ent}_{\mu}[e^{\lambda f}]}{\operatorname{\mathbb{E}}_{\mu}[e^{\lambda f}]} \leq -\lambda \inf_{M \in \mathcal{C}(\mu, \nu)} \operatorname{\mathbb{E}}_{M}[\langle \nabla f(X), X - Y \rangle].$$

c. Conclude that if μ satisfies the T₂-inequality, then

$$\forall \ \lambda \ge 0, \qquad \operatorname{Ent}_{\mu}[e^{\lambda f}] \le 2\lambda^2 \sigma^2 \mathbb{E}_{\mu}[|\nabla f|^2 e^{\lambda f}]$$

and

A

$$\lambda \leq 0$$
, $\operatorname{Ent}_{\mu}[e^{\lambda f}] \leq 2\lambda^2 \sigma^2 \mathbb{E}_{\mu}[|\nabla f|^2] \mathbb{E}_{\mu}[e^{\lambda f}].$

d. Deduce from Herbst's argument that if $\mathbb{E}_{\mu}[|\nabla f|^2] \leq 1$, then

$$\forall t \ge 0, \qquad \mu\{f - \mathbb{E}_{\mu}f \le -t\} \le e^{-t^2/8\sigma^2}.$$

In particular, this consists of a one-sided refinement of the Gaussian concentration inequality in the class of convex functions.

- **23.** Show that the measure $\mu = \frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}$ on $(\mathbb{R}, |\cdot|)$ does not satisfy the T_2 -inequality. Deduce that there does not exist $\sigma^2 > 0$ such that for any $n \in \mathbb{N}$ and any 1-Lipschitz function $f : (\mathbb{R}^n, |\cdot|) \to \mathbb{R}$, the random variable $f(\varepsilon_1, \dots, \varepsilon_n)$ is σ^2 -subgaussian, where $\varepsilon_1, \dots, \varepsilon_n$ are i.i.d. symmetric Bernoulli variables.
- 24. Let $\varepsilon_1, \ldots, \varepsilon_n$ be independent symmetric Bernoulli random variables $\mathbb{P}{\{\varepsilon_i = \pm 1\}} = \frac{1}{2}$ and fix a set $T \subseteq \mathbb{R}^n$. Consider the random variable

$$Z = \sup_{t \in T} \sum_{\substack{k=1\\7}}^{n} \varepsilon_k t_k$$

a. Use the bounded differences inequality for the variance to prove that

$$\operatorname{Var}[Z] \le 4 \sup_{t \in T} \sum_{k=1}^{n} t_k^2.$$

b. Denote by

$$\tau^2 = \sum_{k=1}^n \sup_{t \in T} t_k^2.$$

Use McDiarmid's inequality to show that

$$\forall t \ge 0, \qquad \mathbb{P}\{|Z - \mathbb{E}Z| \ge t\} \le 2e^{-t^2/2\tau^2}.$$

c. Denote by

$$\sigma^2 = 4 \sup_{t \in T} \sum_{k=1}^n t_k^2.$$

Use the bounded differences inequality for the entropy to prove that

$$\forall t \ge 0, \qquad \mathbb{P}\{Z - \mathbb{E}Z \ge t\} \le e^{-t^2/4\sigma^2}.$$

- d. Use the Marton–Talagrand concentration inequality to prove that Z is σ^2 -subgaussian.
- **25.** Let $X_1, ..., X_n$ be independent random variables with values in $X_1, ..., X_n$ respectively. For $c_1, ..., c_n > 0$, consider the distance d_c on $X_1 \times \cdots \times X_n$ given by

$$d_c((x_1,\ldots,x_n),(y_1,\ldots,y_n))=\sum_{i=1}^n c_i\mathbf{1}_{x_i\neq y_i},$$

where $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{X}_1 \times \cdots \times \mathbb{X}_n$. Use McDiarmid's inequality to prove that for any measurable subset $A \subseteq \mathbb{X}_1 \times \cdots \times \mathbb{X}_n$, we have

$$\forall t \ge 0, \qquad \mathbb{P}\left\{d_c((X_1, \dots, X_n), A) \ge t\right\} \le \frac{1}{\mathbb{P}(A)}e^{-t^2/2}.$$

26. Let $(P_t)_{t\geq 0}$ be a reversible Markov semigroup with stationary measure μ and fix c > 0. Prove that the log-Sobolev inequality

$$\operatorname{Ent}_{\mu}[f^2] \le 2c\mathcal{E}(f, f) \quad \text{for all } f$$

implies the modified log-Sobolev inequality

$$\operatorname{Ent}_{\mu}[f] \leq \frac{c}{2} \mathcal{E}(\log f, f) \quad \text{for all nonnegative } f.$$

- 27. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function with $\int_{\mathbb{R}^n} f(x)^2 dx = 1$ and denote by λ the Lebesgue measure on \mathbb{R}^n .
 - a. Use the Gaussian log-Sobolev inequality to deduce that

$$\operatorname{Ent}_{\lambda}[f^{2}] \leq 2 \int_{\mathbb{R}^{n}} |\nabla f|^{2} \, \mathrm{d}x - \frac{n}{2} \log(2\pi) - n.$$

Hint: Consider the function $g = \frac{f^2 e^{|x|^2/2}}{\sqrt{2\pi}}$.

b. Apply the inequality of part a. to $f_{\sigma}(x) = \sigma^n f(\sigma x)$ for a suitable choice of $\sigma > 0$ to deduce the Euclidean log-Sobolev inequality:

$$\operatorname{Ent}_{\lambda}[f^{2}] \leq \frac{n}{2} \log \left(\frac{2}{n\pi e} \int_{\mathbb{R}^{n}} |\nabla f|^{2} \, \mathrm{d}x \right).$$

28. Let $C_n = (\{-1, 1\}^n, \sigma_n)$ where σ_n is the uniform probability measure on $\{-1, 1\}^n$. Recall that the discrete heat flow acts on the Walsh expansion as

$$\forall t \ge 0, \qquad P_t\left(\sum_{S \subseteq \{1,...,n\}} c_S w_S\right) = \sum_{S \subseteq \{1,...,n\}} e^{-t|S|} c_S w_S.$$

Consider the operator $\Delta^{-1/2}$ whose action on a function on \mathcal{C}_n is given by

$$\Delta^{-1/2} \left(\sum_{S \subseteq \{1,...,n\}} c_S w_S \right) = \sum_{\emptyset \neq S \subseteq \{1,...,n\}} \frac{c_S}{|S|^{1/2}} w_S.$$

a. For a function $f : \mathcal{C}_n \to \mathbb{R}$, prove that

$$\operatorname{Var}_{\sigma_n} f = \sum_{i=1}^n \|\Delta^{-1/2} \partial_i f\|_{L_2(\sigma_n)}^2$$

b. Prove that if $\mathbb{E}_{\sigma_n} g = 0$, then

$$\Delta^{-1/2}g = \frac{1}{\sqrt{\pi}}\int_0^\infty P_t g \,\frac{\mathrm{d}t}{\sqrt{t}}.$$

c. Use hypercontractivity to deduce that there exists an absolute constant $C \in (0, \infty)$ such that if $\mathbb{E}_{\sigma_n} g = 0$, then

$$\|\Delta^{-1/2}g\|_{L_{2}(\sigma_{n})} \leq \frac{C\|g\|_{L_{2}(\sigma_{n})}}{1 + \sqrt{\log(\|g\|_{L_{2}(\sigma_{n})}/\|g\|_{L_{1}(\sigma_{n})})}}$$

d. Combine the above to derive a proof of Talagrand's influence inequality.

29. Let $d\nu_n(x) = \frac{1}{2^n} e^{-||x||_1} dx$ be the symmetric exponential measure on \mathbb{R}^n . For $p \in \{1, 2\}$, we will use the notation

$$B_p^n = \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n |x_i|^p \le 1 \right\}.$$

Prove the following geometric form of Talagrand's two-level concentration inequality for ν_n : if *A* is a Borel subset of \mathbb{R}^n , then

$$\forall r > 0, \qquad 1 - \nu_n \left(A + c_1 \sqrt{r} B_2^n + c_2 r B_1^n \right) \le \frac{1}{\nu_n(A)} e^{-r},$$

where $c_1, c_2 > 0$ are universal constants.

30. The Gaussian isoperimetric inequality asserts that if $A \subseteq \mathbb{R}^n$ is a measurable set such that $\gamma_n(A) = \gamma_n(H)$ for some half-space H, then $\gamma^+(\partial A) \ge \gamma^+(\partial H)$. Use this statement to deduce the following stronger form of isoperimetry: under the assumptions above, we have $\gamma_n(A_r) \ge \gamma_n(H_r)$ for all r > 0, where

$$C_r = \{x \in \mathbb{R}^n : \text{ there exists } y \in C \text{ with } |x - y| \le r\}.$$

Hint: Assume that A is a finite union of Euclidean balls and differentiate the function $v(r) = \Phi^{-1}(\gamma_n(A_r))$, where Φ is the CDF of the normal distribution.