HIGH-DIMENSIONAL PROBABILITY
MICHAELMAS TERM 2021

1. Let (X,d, ) be a metric probability space. Suppose that for any Borel subset A
of X with y(A) > J and any ¢ > 0, we have

plx: d(x,A)<e}>1-al(e)

for some function « : [0,00) — [0,00). Prove that if f : X — R is an L-Lipschitz
function and myg is a median of f with respect to p, that is,
: 1
min {pufx: f(x) 2 myg) plx: () < myl} > 2,
then

V>0, plx: If(x)-mygl >t} <2a(t/L).

Hint: Apply the assumption to the sets {f > mg} and {f < my}.
2. Let f : O — R be a measurable function on a probability space (€2, 4) and
assume that there exists a value ay € R such that

Vi>0, y{x: |f(x)—af|2t}ﬁﬁ(t)

for some function 8 : [0,00) — [0,00). Prove the following concentration in-
equalities for the function f around its median and mean.
(i) If mf is a median of f with respect to p and ¢, is such that (ty) < %, then

V>0, plx If(x)-mgl =t} < B(1).
) If B et fo s) ds < oo, then f is py-integrable and
V>0, pfx: [f(x)-E,[f]l> t+ B < Bt).

3. The Brunn—Minkowski inequality asserts that for any compact sets A, B in R",
vol(A + B)# > vol(A)i +vol(B)i.

In this problem we will present an elementary proof of this inequality. It suf-
fices to assume that each A, B is a disjoint union of a finite number of compact
boxes with faces parallel to the coordinate hyperplanes as the general case will
follow by approximation. Let N be the total number of boxes involved, that is,
if A is a union of N; boxes and B is a union of N, boxes then N = N; + N,. Prove
the inequality by induction on N via the following steps.
(i) Prove the base case N = 2, that is, the case A =[]"_;[a;, b;] and B =[], [¢;, d;]-
(ii) Let Qq,..., Qx be pairwise disjoint boxes with faces parallel to the coordi-
nate hyperplanes. Prove that there exists a hyperplane H parallel to a coor-
dinate hyperplane such that if H" and H™ are the closed half-spaces deter-
mined by H, then there exists j,j" € {1,...,k} such that Qj C H* and Q]-, cH™.
(iii) For the inductive step, suppose that A, B are unions of N; and N, boxes
respectively such that N; + N, = N + 1. Choose a hyperplane H which
satisfies the conclusion of (ii) for the collection of boxes whose union is

A and let At = ANHY and A~ = AN H~. Observe that both A* and A~
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are unions of at most Ny — 1 boxes. By appropriately translating B, notice
that in order to deduce the Brunn-Minkowski inequality, we can assume
without loss of generality that
vol(B*) _ vol(A™) and vol(B™) _ vol(A7)
vol(B)  vol(A) vol(B)  vol(A)’

where Bt = BN H*' and B~ = BN H™. Use the inclusion

(¥)

A+B2(A"+B")U(A”+B")

along with the inductive hypothesis and (*) to complete the proof.
Deduce from the Brunn—-Minkowski inequality that for any compact sets A, B,

VAe(0,1),  vol(AA+(1—-21)B)>vol(A)*vol(B)!.

. (Borell’s lemma) A Borel measure y on IR" is log-concave if for every compact
subsets A, B of R” and A € (0,1), we have

PAA+(1=2)B) = p(A) u(B)' .

Prove that if K is an origin-symmetric convex set in IR", then

t+1
1 —M(K))2
Vi1, tK zl—(K(
p(tK) H(K) HK)
Hint: Use the inclusion HLI(IR” \ tK) + Z—iK CIR"\K.

. Let Xy,...,X,, be independent random vectors with values in a Banach space
(B,]| - Ig).- Suppose that these random vectors are bounded in the sense that
|X;llg < C as. for every i € {1,...,n}. Show that

1 & C?
va 1Y x| < .
ar[n;ﬁ n
1=

. Let Xy,...,X,, bei.i.d. random variables with values in [0, 1]. Each X; represents
the size of a package to be shipped. The shipping containers are bins of size
1 (so each bin can hold packages whose sizes sum up to at most 1). Let B, =
f(Xi,...,X,) be the minimal number of bins needed to store the packages. Note
that explicitly computing B, is a hard combinatorial optimization problem.
Prove that

Var[Bn]SZ and  [E[B,]> nE[X,]

. Let Xj,...,X,, be independent random variables taking values in [a4,b]. Show
that if f : IR” — R is a convex function, then

Varf(Xy,...,X,) < (b—a)’E[|Vf(Xy,..., X))

Hint: If g : R — Ris a convex function, then g(x)—g(v) > ¢'(v)(x—y) for all x,y € R.
. Consider the probability measure dv(x) = %e"’d dx on R. Find a suitable inte-
gration by parts formula for v and use it to show that if f : R — IR is a smooth
function, then

Var, f < ALJ;R[]"(x)]2 dv(x).
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9. Let X = (Xy,...,X,,) ~ N(0,X) be a centered n-dimensional Gaussian random
vector with covariance matrix X. Show that

Var[ max X < max Var[X;].

i€{l,..., i€{l,...,n}
Hint: Write X = XY2Y where Y ~ N(0,1d,,).

10. Let (P;);>0 be a reversible Markov semigroup with generator £ and stationary
measure y. The corresponding carré du champ is the bilinear operator given by

P(f9) = 5{£(f9) - fLg - sLf}

a. What is the carré du champ of the Ornstein—-Uhlenbeck semigroup?
b. Show that the Dirichlet form satisfies

£(f,g) = fnf,g) d

The carré du champ I'(f, f) is interpreted as the square gradient of f.
c. Show that I'(f, f) > 0. Hint: Use that P,f* > (P, f) and the deﬁnztzon of L.
d. Prove the Cauchy-Schwarz inequality I'(f,g)> < I'(f, f)I’
e. Prove the identity

t
PA(f2)— (Bf)? = zfo P_T(P.f,P.f) ds

Hint: Interpolate along the curve s — P,_i(P,f)>.
f. Observe that if an inequality of the form

Vs>0,  I(Bf,Rf)<a(s)RI(f,f)

holds a.s. for some function « : (0, 00) — (0, 00), then we can derive the local
Poincaré inequality

P(f%) = (P,f)*> <c(t)BI(f,f), where c(t)= ZJ:a(s) ds.

Observe that if ¢(t) —» ¢ < o0 as t — oo, then this implies the classical
Poincaré inequality for f with constant c.
11. Let (P);>o be a reversible Markov semigroup with generator £ and stationary
measure y. The corresponding I;-operator is defined by

L(f,8) = {Lr f,8)=T(f,£8)~T(£Lf,9)}.

a. What is the I;-operator of the Ornstein—Uhlenbeck semigroup?

b. Prove that the following are equivalent for a fixed ¢ > 0:

1. c(f, f) = I(f, f) for all f (Bakry-Emery criterion).

2. I( Ptf Pf)< e‘2t/CP I'(f, f) for all f and ¢ (local ergodicity).

3. B(f?) - (Pf)? 1—e ?¢)P,I'(f, f) for all f and t (local Poincaré).
Hint: For 1=2 evaluate dsPt—sF(Psf; P, f). For 3=1, compute the first nonzero
term of the Taylor expansion of the local Poincaré inequality at t = 0.

c. Consider a measure du(x) = e""®)dx on R" such that HessW(x) > pld,
in the positive semidefinite ordering for some p > 0 and any x € R". The
measure y is the stationary measure of a Markov process whose semigroup
has generator

L.f = Af —(VW,Vf).
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Use the Bakry-Emery criterion to derive the following inequality of Bras-
camp and Lieb: for any smooth f : R” — R, we have

ar 2
v [f]<pj V)P du(x)

12. Let ay,...,a, € R. Prove that

n
IP{| Zai5i| > f} < 2e7t/ALLL 7
i=1

where (¢1,...,¢,) is uniformly distributed on {-1,1}". Deduce Khintchine’s in-
equality: there exists a universal constant C € (0, o) such that for any p > 2,

n l/P n
(IE‘Zaieip) <C+p Zuiz
i=1 i=1

Hint: Recall that IE|Y|P = pjooo tP=LIP{|Y| > t} dt for any random variable Y.
13. Let §,, be the symmetric group on n elements equipped with the metric

Vo,tes,, dgn(O',T):%#{iE{l,...,n}IG(i)iT(i)}

and the uniform probability measure IP. For j € {0,1,...,n}, consider the o-
algebra J; of subsets of S, generated by sets of the form

i :{GESnZ o(l)=1y, ... ;U(j):ij};

where iy,...,i; are distinct elements of {1,...,n}.

a. Prove that for every atom A = A;, i of J;and every twoatoms B=A; ij,ro
C= Ail,...,i]»,s of Fj,1 contained in J;, there exists a bijection ¢ : B— C such
that dg (b, p(b)) < % for any b € B.

b. Use part a. and the Azuma-Hoeffding inequality to deduce the following
theorem of Maurey: if f : (8,,ds, ) — R is a 1-Lipschitz function then

.....

Vt>0, Plo: f(o)-Ef >t} <e 16,

Hint: Consider the martingale {fj}}q:o where f; = E[f|T;].
14. A partition P of a set is a refinement of a partition Q of the same set if any
element P € P is contained in some element Q € Q. We say that a metric
space (M,d)s) has length at most ¢ if there exists a sequence of partitions

{M} = MO, ML, M = {{x} I X € M} of M such that M is a refinement of

M~! for every i € {1,...,n} and positive numbers ay,...,a, with Y 1a1 < {?
for which the following property is satisfied. If i € {1,...,n} and A € M,
B,C € M! are such that BUC C A, then there exists a bijection ¢ : B — C such
that dy;(b, ¢(b)) < a; for all b € B.
a. Show that any bounded metric space M has length at most diam(M).
b. Use the Azuma-Hoeffding inequality to prove the following theorem of
Schechtman: if (M, dyy, p) is a metric probability space with length at most

¢, then any 1-Lipschitz function f : (M, dy;) — R satisfies
Vit>0, plx: F(x)-IE,F >t} < e A,
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15. Prove the following partial converse of Herbst’s lemma: if X is a 0>-subgaussian
random variable, then
VAeR,  Ent[e’*]<21262E[eM].

Hint: Note that Ent[e*X|/[E[e**] = [E[Zlog Z] for Z = e**X/E[e*X]. Now use con-
cavity of the logarithm and that E[e}X~EX)] > 1,

16. Let X;j,...,X,, be independent random variables taking values in [a,b]. Show
that if f : R” — R is a convex function, then

Ent[e/ X1-X0)] < (b - a)*E[|Vf(Xy,..., X,,)|?e/ K Xn)],
Deduce that if f is L-Lipschitz, then
V>0,  P{f(Xp..., X)) -Ef(Xy,...,X,) >t} < et /40-aL?

Hint: Recall problem 7.
17. Let (P;);>o be a reversible and ergodic Markov semigroup with stationary mea-
sure y and assume that the carré du champ (Problem 10) satisfies the chain rule

L(f,¢pog)=T(f,8) ¢ o
a. Show that for a positive function f, we have

&(logP,f,P,f)* < IEy[F(J;'f)]IEP,[fT(PtlogPtf,PtlogPtf)].

Hint: Use reversibility and the Cauchy-Schwarz inequality for I'(-,-).
b. Show that the Bakry-Emery criterion cIx(f, f) > I'(f, f) for all f implies

E(logPf Pif > < /¢ log . )E,| AT log P.f. log P.f)|

Hint: Use Problem 11 and the chain rule.
c. Show that the above inequality implies

E(logP.f, Pif) < e *“E(log f, f)

and deduce that the Bakry-Emery criterion implies the modified log-Sobolev
inequality for all positive functions f,

Ent,[f] < S&(log . f).

d. Consider a measure du(x) = e~ dx on R" such that HessW(x) > pld,, in
the positive semidefinite ordering for some p > 0 and any x € R". Show
that y satisfies the dimension-free log-Sobolev inequality

Ent,[f? ]< IVf (x)> dp(x).

18. Let X = (Xy,...,X,,) ~ N(0,X) be a centered n-dimensional Gaussian random
vector with covariance matrix Z
a. Show that max;_; _, X; is T>-subgaussian, where 72 = max;_; _, VarX;.
Hint: Recall Problem 9.
b. Prove that the mean and median of max;_; __,X; satisfy

.....

Hint: Use part a.



Let (B,||-||g) be a Banach space such that B* is separable. Then, there exists a
countable subset V C B* such that

V x€B, ||x||g = supv(x).

veV

Let X be a centered Gaussian random vector in B, that is, a random vector such
that v(X) is a centered Gaussian random variable for any v € B*. Let

o2 &f max Var[v(X)].

veV

c. Show that 02 < oo, [E||X||5 < co and that ||X||g is o>-subgaussian.
d. Prove the Landau-Shepp-Marcus—Fernique theorem:

1
lE[e“”X”fZ?] <oo ifandonlyif a< 557

Hint: For the only if part, use lE[e"‘”XHIZB] > supvele[em’(X)z],
19. Let (X, d, u) be a metric probability space satisfying the T;-inequality

Y v e P (X), W1 (p,v) < 4J202D(V||p).

a. For a Borel subset S of X let yg be the restriction of pon S given by pug(T) =

y(:(r;)T), where T C X. Prove that if A, B are disjoint subsets of X, then

4(A, B) < Wy (s, ) < 202 og(1/u(A)) + /202 log(1/p(B).

b. Deduce that the T;- mequahty implies geometric concentration: if A is a
Borel subset of X with u(A) > 5 L and

Ay ={xeX: d(x,y) <t for some y € A},
then
Vi>0,  u(A)>1-2e747,

20. Let u,v € P{(R,|-|) be two measures on the real line and denote by F(t) =
p((—o0,t]) and G(t) = v((—oo, t]) their cumulative distribution functions.
a. Show that for any smooth function f : R — R with compact support,

fmf dji= —JIRf'(t)F(t) dr

b. Using part a. deduce that

(o Ju: (1) dt.

c. Construct a coupling M € C(p, v) such that

Epu[|X-Y|]= J|F G(t)| dt.

Hint: If U is uniformly distributed on [0,1], what are the distributions of
FY(U)and G1(U)?
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21. Let y; ® --- ® p, be a product probability measure on (2" and v an arbitrary
probability measure on (2”. Prove Marton’s transportation inequality:

D(v|p ®---® py),

inf ZIPMX AL <3

MeC( Vl BV

where (Xy,...,X,, Yq,...,Y,) has distribution M.
Hint: Use Pinsker’s inequality and tensorization.

22. Let p € P,(IR%,|-|) be a probability measure and ¢ > 0. We know that if
satisfies the modified log-Sobolev inequality

2
o
Vf:R'">R,  Ent[ef]< 71E”[|Vf|2ef]
then p also satisfies the T,-inequality

Y v e P,(R"), W, (1, v) < f202D(v||p).

We shall prove a converse of this implication for convex functions.
a. Prove that for any function f : R" - R

Ent,[e Af] e
W ME,[f]-E,lf]}, where dv= Wdy
b. Prove that if f is assumed to be convex, then
YA>0 Ent”—m</\ inf IEM[<Vf ), Y — X)]
7 E,[e"] ~ " Mec(y,
and

YA<0 Enty—[e*\f]<_/\ inf Ey[(VF(X),X-Y)]

- B [eV] = meepn M '

c. Conclude that if y satisfies the T,-inequality, then
¥YA>0,  Ent,[e"]<2)0%0°E,[|[Vf*eV]
and
¥YA<0,  Ent,[eV]<2A20%E,[IVFPIE,[eV].
d. Deduce from Herbst’s argument that if ]EH[|Vf|2] <1, then

Vi20,  ulf-E,f<-t)<et

In particular, this consists of a one-sided refinement of the Gaussian con-
centration inequality in the class of convex functions.

23. Show that the measure y = %61 +%5_1 on (IR, ||) does not satisfy the T,-inequality.
Deduce that there does not exist o> > 0 such that for any n € N and any 1-
Lipschitz function f : (R"|-|) — R, the random variable f(¢y,...,¢,) is o>-
subgaussian, where ¢y,..., ¢, are i.i.d. symmetric Bernoulli variables.

24. Let¢y,...,¢, beindependent symmetric Bernoulli random variables P{¢; = +1} =
% and fix a set T C R". Consider the random variable

=sup Zektk



25.

26.

27.

a. Use the bounded differences inequality for the variance to prove that
n
Var[Z] < 4sup Zt,f
teT 1
b. Denote by

n

% = Zsup t]f.

=1 teT
Use McDiarmid’s inequality to show that

Vi>0, P{Z-EZ|>t <2/,

n
0% = 4sup Zt,%

teT 14

c. Denote by

Use the bounded differences inequality for the entropy to prove that
Vi>0, P{Z-EZ>t)<e /4’

d. Use the Marton-Talagrand concentration inequality to prove that Z is o2-
subgaussian.
Let Xi,...,X,, be independent random variables with values in Xj,...,X,, re-
spectively. For cy,...,c, >0, consider the distance d, on X; x--- x X, given by

n

A1 s X D1 V) = ) il
i=1
where (xq,...,%,), (¥1,...,V,) € Xy X:--xX,,. Use McDiarmid’s inequality to prove
that for any measurable subset A C X x---x X, we have

1
V20, Pld(Xy,..,X,)A) 2 ) < Me—tz/z.

Let (P;)>( be a reversible Markov semigroup with stationary measure y and fix
¢ > 0. Prove that the log-Sobolev inequality

Ent,[f?] < 2¢&(f, f) forall f
implies the modified log-Sobolev inequality

Ent,[f] < %8(logf,f) for all nonnegative f.

Let f : R" — R be a smooth function with LRH f(x)? dx = 1 and denote by A the
Lebesgue measure on R".
a. Use the Gaussian log-Sobolev inequality to deduce that

Enty[f2]<2 | |Vf)? dx—glog(Zn)—n.
IR?’I

. . ) fze|x|2/2
Hint: Consider the function g =

Nt

b. Apply the inequality of part a. to f,(x) = 0" f(ox) for a suitable choice of
o > 0 to deduce the Euclidean log-Sobolev inequality:

Ent,[f?] < glog( 2 LG IVfI? dx).

nrce
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28. Let €, = ({-1,1}",0,,) where 0, is the uniform probability measure on {-1,1}".
Recall that the discrete heat flow acts on the Walsh expansion as

Y tZO; Pt ( Z Csws): Z €_t|S|CSw5.
Scl1,...,n} Sc{1,...,n}
Consider the operator A™!/2 whose action on a function on €, is given by

-1/2 _ €s
A ( Z Csws) = Z WWs.
n}

Sc{1,...,n} 0=Sc{1,...,
a. For a function f : C,, » R, prove that

n
Var, f = ZHA‘VZai FIE,
i=1

b. Prove that if [E; ¢ =0, then

1 e dt
ATV? :—J Pg—.
8= BV

c. Use hypercontractivity to deduce that there exists an absolute constant
C € (0,00) such that if [E, ¢ =0, then

Cligllz,(s,)
1+ \10g(lgll(o,/ 81l 5,)

d. Combine the above to derive a proof of Talagrand’s influence inequality.
29. Let dv,(x) = 21—,1@‘”"”1 dx be the symmetric exponential measure on R". For p €

{1,2}, we will use the notation

n
B! = {x eR": Z|xi|P < 1}.
i=1

Prove the following geometric form of Talagrand’s two-level concentration in-
equality for v,,: if A is a Borel subset of R", then

1A ¢lIL0,) <

1
Vn(A)

e’

Vr>0, l—vn(A+c1\/?B§’+c2rB’f)S

where ¢y, c, > 0 are universal constants.

30. The Gaussian isoperimetric inequality asserts that if A C IR” is a measurable
set such that y,(A) = y,(H) for some half-space H, then y*(dA) > y*(dH). Use
this statement to deduce the following stronger form of isoperimetry: under
the assumptions above, we have y,(A,) > y,(H,) for all r > 0, where

C, = {x € R": there exists y € C with |x—y| < r}.

Hint: Assume that A is a finite union of Euclidean balls and differentiate the func-
tion v(r) = @ Y(y,(A,)), where @ is the CDF of the normal distribution.



