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1. Let (X,d,µ) be a metric probability space. Suppose that for any Borel subset A
of X with µ(A) ≥ 1

2 and any ε > 0, we have

µ{x : d(x,A) ≤ ε} ≥ 1−α(ε)

for some function α : [0,∞)→ [0,∞). Prove that if f : X → R is an L-Lipschitz
function and mf is a median of f with respect to µ, that is,

min
{
µ{x : f (x) ≥mf },µ{x : f (x) ≤mf }

}
≥ 1

2
,

then
∀ t > 0, µ

{
x : |f (x)−mf | ≥ t

}
≤ 2α(t/L).

Hint: Apply the assumption to the sets {f ≥mf } and {f ≤mf }.
2. Let f : Ω → R be a measurable function on a probability space (Ω,µ) and

assume that there exists a value af ∈R such that

∀ t > 0, µ
{
x : |f (x)− af | ≥ t

}
≤ β(t)

for some function β : [0,∞) → [0,∞). Prove the following concentration in-
equalities for the function f around its median and mean.

(i) If mf is a median of f with respect to µ and t0 is such that β(t0) < 1
2 , then

∀ t > 0, µ
{
x : |f (x)−mf | ≥ t + t0

}
≤ β(t).

(ii) If B def=
∫∞

0
β(s) ds <∞, then f is µ-integrable and

∀ t > 0, µ
{
x : |f (x)−Eµ[f ]| ≥ t +B

}
≤ β(t).

3. The Brunn–Minkowski inequality asserts that for any compact sets A,B in R
n,

vol(A+B)
1
n ≥ vol(A)

1
n + vol(B)

1
n .

In this problem we will present an elementary proof of this inequality. It suf-
fices to assume that each A,B is a disjoint union of a finite number of compact
boxes with faces parallel to the coordinate hyperplanes as the general case will
follow by approximation. Let N be the total number of boxes involved, that is,
if A is a union ofN1 boxes and B is a union ofN2 boxes thenN =N1 +N2. Prove
the inequality by induction on N via the following steps.

(i) Prove the base caseN = 2, that is, the caseA =
∏n
i=1[ai ,bi] and B =

∏n
i=1[ci ,di].

(ii) Let Q1, . . . ,Qk be pairwise disjoint boxes with faces parallel to the coordi-
nate hyperplanes. Prove that there exists a hyperplaneH parallel to a coor-
dinate hyperplane such that if H+ and H− are the closed half-spaces deter-
mined byH , then there exists j, j ′ ∈ {1, . . . , k} such that Qj ⊂H+ and Qj ′ ⊂H−.

(iii) For the inductive step, suppose that A,B are unions of N1 and N2 boxes
respectively such that N1 + N2 = N + 1. Choose a hyperplane H which
satisfies the conclusion of (ii) for the collection of boxes whose union is
A and let A+ = A ∩H+ and A− = A ∩H−. Observe that both A+ and A−
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are unions of at most N1 − 1 boxes. By appropriately translating B, notice
that in order to deduce the Brunn–Minkowski inequality, we can assume
without loss of generality that

vol(B+)
vol(B)

=
vol(A+)
vol(A)

and
vol(B−)
vol(B)

=
vol(A−)
vol(A)

, (∗)

where B+ = B∩H+ and B− = B∩H−. Use the inclusion

A+B ⊇ (A+ +B+)∪ (A− +B−)

along with the inductive hypothesis and (∗) to complete the proof.
Deduce from the Brunn–Minkowski inequality that for any compact sets A,B,

∀ λ ∈ (0,1), vol(λA+ (1−λ)B) ≥ vol(A)λvol(B)1−λ.

4. (Borell’s lemma) A Borel measure µ on R
n is log-concave if for every compact

subsets A,B of Rn and λ ∈ (0,1), we have

µ(λA+ (1−λ)B) ≥ µ(A)λµ(B)1−λ.

Prove that if K is an origin-symmetric convex set in R
n, then

∀ t > 1, µ(tK) ≥ 1−µ(K)
(

1−µ(K)
µ(K)

) t+1
2

.

Hint: Use the inclusion 2
t+1(Rn \ tK) + t−1

t+1K ⊆R
n \K .

5. Let X1, . . . ,Xn be independent random vectors with values in a Banach space
(B,‖ · ‖B). Suppose that these random vectors are bounded in the sense that
‖Xi‖B ≤ C a.s. for every i ∈ {1, . . . ,n}. Show that

Var
[∥∥∥∥1
n

n∑
i=1

Xi

∥∥∥∥
B

]
≤ C

2

n
.

6. Let X1, . . . ,Xn be i.i.d. random variables with values in [0,1]. Each Xi represents
the size of a package to be shipped. The shipping containers are bins of size
1 (so each bin can hold packages whose sizes sum up to at most 1). Let Bn =
f (X1, . . . ,Xn) be the minimal number of bins needed to store the packages. Note
that explicitly computing Bn is a hard combinatorial optimization problem.
Prove that

Var[Bn] ≤ n
4

and E[Bn] ≥ nE[X1].

7. Let X1, . . . ,Xn be independent random variables taking values in [a,b]. Show
that if f : Rn→R is a convex function, then

Varf (X1, . . . ,Xn) ≤ (b − a)2
E[|∇f (X1, . . . ,Xn)|2].

Hint: If g : R→R is a convex function, then g(x)−g(y) ≥ g ′(y)(x−y) for all x,y ∈R.
8. Consider the probability measure dν(x) = 1

2e
−|x|dx on R. Find a suitable inte-

gration by parts formula for ν and use it to show that if f : R→ R is a smooth
function, then

Varνf ≤ 4
∫
R

[f ′(x)]2 dν(x).
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9. Let X = (X1, . . . ,Xn) ∼ N (0,Σ) be a centered n-dimensional Gaussian random
vector with covariance matrix Σ. Show that

Var
[

max
i∈{1,...,n}

Xi
]
≤ max
i∈{1,...,n}

Var[Xi].

Hint: Write X = Σ1/2Y where Y ∼N (0, Idn).
10. Let (Pt)t≥0 be a reversible Markov semigroup with generator L and stationary

measure µ. The corresponding carré du champ is the bilinear operator given by

Γ (f ,g) =
1
2

{
L(f g)− f Lg − gLf

}
.

a. What is the carré du champ of the Ornstein–Uhlenbeck semigroup?
b. Show that the Dirichlet form satisfies

E(f ,g) =
∫
Γ (f ,g) dµ.

The carré du champ Γ (f , f ) is interpreted as the square gradient of f .
c. Show that Γ (f , f ) ≥ 0. Hint: Use that Ptf 2 ≥ (Ptf )2 and the definition of L.
d. Prove the Cauchy–Schwarz inequality Γ (f ,g)2 ≤ Γ (f , f )Γ (g,g).
e. Prove the identity

Pt(f
2)− (Ptf )2 = 2

∫ t

0
Pt−sΓ (Psf ,Psf ) ds.

Hint: Interpolate along the curve s 7→ Pt−s(Psf )2.
f. Observe that if an inequality of the form

∀ s > 0, Γ (Psf ,Psf ) ≤ α(s)PsΓ (f , f )

holds a.s. for some function α : (0,∞)→ (0,∞), then we can derive the local
Poincaré inequality

Pt(f
2)− (Ptf )2 ≤ c(t)PtΓ (f , f ), where c(t) = 2

∫ t

0
α(s) ds.

Observe that if c(t) → c < ∞ as t → ∞, then this implies the classical
Poincaré inequality for f with constant c.

11. Let (Pt)t≥0 be a reversible Markov semigroup with generator L and stationary
measure µ. The corresponding Γ2-operator is defined by

Γ2(f ,g) =
1
2

{
LΓ (f ,g)− Γ (f ,Lg)− Γ (Lf ,g)

}
.

a. What is the Γ2-operator of the Ornstein–Uhlenbeck semigroup?
b. Prove that the following are equivalent for a fixed c > 0:

1. cΓ2(f , f ) ≥ Γ (f , f ) for all f (Bakry–Émery criterion).
2. Γ (Ptf ,Ptf ) ≤ e−2t/cPtΓ (f , f ) for all f and t (local ergodicity).
3. Pt(f 2)− (Ptf )2 ≤ c(1− e−2t/c)PtΓ (f , f ) for all f and t (local Poincaré).

Hint: For 1⇒2 evaluate d
dsPt−sΓ (Psf ,Psf ). For 3⇒1, compute the first nonzero

term of the Taylor expansion of the local Poincaré inequality at t = 0.
c. Consider a measure dµ(x) = e−W (x) dx on R

n such that HessW (x) � ρIdn
in the positive semidefinite ordering for some ρ > 0 and any x ∈ Rn. The
measure µ is the stationary measure of a Markov process whose semigroup
has generator

Lµf = ∆f − 〈∇W,∇f 〉.
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Use the Bakry-Émery criterion to derive the following inequality of Bras-
camp and Lieb: for any smooth f : Rn→R, we have

Varµ[f ] ≤ 1
ρ

∫
R
n
|∇f (x)|2 dµ(x).

12. Let a1, . . . , an ∈R. Prove that

P

{∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣ ≥ t} ≤ 2e−t
2/4

∑n
i=1 a

2
i ,

where (ε1, . . . , εn) is uniformly distributed on {−1,1}n. Deduce Khintchine’s in-
equality: there exists a universal constant C ∈ (0,∞) such that for any p ≥ 2,(

E

∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣p)1/p
≤ C√p

√√
n∑
i=1

a2
i .

Hint: Recall that E|Y |p = p
∫∞

0
tp−1

P{|Y | ≥ t}dt for any random variable Y .
13. Let Sn be the symmetric group on n elements equipped with the metric

∀ σ,τ ∈ Sn, dSn(σ,τ) =
1
n

#{i ∈ {1, . . . ,n} : σ (i) , τ(i)}

and the uniform probability measure P. For j ∈ {0,1, . . . ,n}, consider the σ -
algebra Fj of subsets of Sn generated by sets of the form

Ai1,...,ij =
{
σ ∈ Sn : σ (1) = i1, . . . ,σ (j) = ij

}
,

where i1, . . . , ij are distinct elements of {1, . . . ,n}.
a. Prove that for every atomA = Ai1,...,ij of Fj and every two atoms B = Ai1,...,ij ,r ,
C = Ai1,...,ij ,s of Fj+1 contained in Fj , there exists a bijection φ : B→ C such

that dSn(b,φ(b)) ≤ 2
n for any b ∈ B.

b. Use part a. and the Azuma–Hoeffding inequality to deduce the following
theorem of Maurey: if f : (Sn,dSn)→R is a 1-Lipschitz function then

∀ t ≥ 0, P{σ : f (σ )−Ef ≥ t} ≤ e−t
2n/16.

Hint: Consider the martingale {fj}nj=0 where fj = E[f |Fj].
14. A partition P of a set is a refinement of a partition Q of the same set if any

element P ∈ P is contained in some element Q ∈ Q. We say that a metric
space (M,dM) has length at most ` if there exists a sequence of partitions
{M} = M0,M1, · · · ,Mn =

{
{x} : x ∈ M

}
of M such that Mi is a refinement of

Mi−1 for every i ∈ {1, . . . ,n} and positive numbers a1, . . . , an with
∑n
i=1 a

2
i ≤ `

2

for which the following property is satisfied. If i ∈ {1, . . . ,n} and A ∈ Mi−1,
B,C ∈Mi are such that B∪C ⊆ A, then there exists a bijection φ : B→ C such
that dM(b,φ(b)) ≤ ai for all b ∈ B.

a. Show that any bounded metric space M has length at most diam(M).
b. Use the Azuma–Hoeffding inequality to prove the following theorem of

Schechtman: if (M,dM ,µ) is a metric probability space with length at most
`, then any 1-Lipschitz function f : (M,dM)→R satisfies

∀ t ≥ 0, µ{x : F(x)−EµF ≥ t} ≤ e−t
2/4`2

.
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15. Prove the following partial converse of Herbst’s lemma: ifX is a σ2-subgaussian
random variable, then

∀ λ ∈R, Ent[eλX] ≤ 2λ2σ2
E[eλX].

Hint: Note that Ent[eλX]/E[eλX] = E[Z logZ] for Z = eλX/E[eλX]. Now use con-
cavity of the logarithm and that E[eλ(X−EX)] ≥ 1.

16. Let X1, . . . ,Xn be independent random variables taking values in [a,b]. Show
that if f : Rn→R is a convex function, then

Ent[ef (X1,...,Xn)] ≤ (b − a)2
E[|∇f (X1, . . . ,Xn)|2ef (X1,...,Xn)].

Deduce that if f is L-Lipschitz, then

∀ t ≥ 0, P{f (X1, . . . ,Xn)−Ef (X1, . . . ,Xn) ≥ t} ≤ e−t
2/4(b−a)2L2

.

Hint: Recall problem 7.
17. Let (Pt)t≥0 be a reversible and ergodic Markov semigroup with stationary mea-

sure µ and assume that the carré du champ (Problem 10) satisfies the chain rule

Γ (f ,φ ◦ g) = Γ (f ,g) ·φ′ ◦ g.
a. Show that for a positive function f , we have

E(logPtf ,Ptf )2 ≤ Eµ

[Γ (f , f )
f

]
Eµ

[
f Γ (Pt logPtf ,Pt logPtf )

]
.

Hint: Use reversibility and the Cauchy-Schwarz inequality for Γ (·, ·).
b. Show that the Bakry–Émery criterion cΓ2(f , f ) ≥ Γ (f , f ) for all f implies

E(logPtf ,Ptf )2 ≤ e−2t/cE(logf , f )Eµ
[
f PtΓ (logPtf , logPtf )

]
.

Hint: Use Problem 11 and the chain rule.
c. Show that the above inequality implies

E(logPtf ,Ptf ) ≤ e−2t/cE(logf , f )

and deduce that the Bakry–Émery criterion implies the modified log-Sobolev
inequality for all positive functions f ,

Entµ[f ] ≤ c
2
E(logf , f ).

d. Consider a measure dµ(x) = e−W (x) dx on R
n such that HessW (x) � ρIdn in

the positive semidefinite ordering for some ρ > 0 and any x ∈ Rn. Show
that µ satisfies the dimension-free log-Sobolev inequality

Entµ[f 2] ≤ 2
ρ

∫
R
n
|∇f (x)|2 dµ(x).

18. Let X = (X1, . . . ,Xn) ∼ N (0,Σ) be a centered n-dimensional Gaussian random
vector with covariance matrix Σ.

a. Show that maxi=1,...,nXi is τ2-subgaussian, where τ2 = maxi=1,...,nVarXi .
Hint: Recall Problem 9.

b. Prove that the mean and median of maxi=1,...,nXi satisfy

E

[
max
i=1,...,n

Xi
]
≤med

[
max
i=1,...,n

Xi
]
+
√

2log2τ2.

Hint: Use part a.
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Let (B,‖ · ‖B) be a Banach space such that B∗ is separable. Then, there exists a
countable subset V ⊂ B∗ such that

∀ x ∈ B, ‖x‖B = sup
v∈V

v(x).

Let X be a centered Gaussian random vector in B, that is, a random vector such
that v(X) is a centered Gaussian random variable for any v ∈ B∗. Let

σ2 def= max
v∈V

Var[v(X)].

c. Show that σ2 <∞, E‖X‖B <∞ and that ‖X‖B is σ2-subgaussian.
d. Prove the Landau–Shepp–Marcus–Fernique theorem:

E[eα‖X‖
2
B] <∞ if and only if α <

1
2σ2 .

Hint: For the only if part, use E[eα‖X‖
2
B] ≥ supv∈V E[eαv(X)2

].
19. Let (X,d,µ) be a metric probability space satisfying the T1-inequality

∀ ν ∈ P1(X), W1(µ,ν) ≤
√

2σ2D(ν||µ).

a. For a Borel subset S of X let µS be the restriction of µ on S given by µS(T ) =
µ(S∩T )
µ(S) , where T ⊆X. Prove that if A,B are disjoint subsets of X, then

d(A,B) ≤W1(µA,µB) ≤
√

2σ2 log(1/µ(A)) +
√

2σ2 log(1/µ(B)).

b. Deduce that the T1-inequality implies geometric concentration: if A is a
Borel subset of X with µ(A) ≥ 1

2 and

At = {x ∈X : d(x,y) ≤ t for some y ∈ A},

then

∀ t ≥ 0, µ(At) ≥ 1− 2e−t
2/4σ2

.

20. Let µ,ν ∈ P1(R, | · |) be two measures on the real line and denote by F(t) =
µ((−∞, t]) and G(t) = ν((−∞, t]) their cumulative distribution functions.

a. Show that for any smooth function f : R→R with compact support,∫
R

f dµ = −
∫
R

f ′(t)F(t) dt.

b. Using part a. deduce that

W1(µ,ν) =
∫
R

|F(t)−G(t)| dt.

c. Construct a coupling M ∈ C(µ,ν) such that

EM[|X −Y |] =
∫
R

|F(t)−G(t)| dt.

Hint: If U is uniformly distributed on [0,1], what are the distributions of
F−1(U ) and G−1(U )?
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21. Let µ1 ⊗ · · · ⊗ µn be a product probability measure on Ωn and ν an arbitrary
probability measure on Ωn. Prove Marton’s transportation inequality:

inf
M∈C(µ1,⊗µn,ν)

n∑
i=1

PM{Xi , Yi}2 ≤
1
2
D(ν||µ1 ⊗ · · · ⊗µn),

where (X1, . . . ,Xn,Y1, . . . ,Yn) has distribution M.
Hint: Use Pinsker’s inequality and tensorization.

22. Let µ ∈ P2(Rn, | · |) be a probability measure and σ2 > 0. We know that if µ
satisfies the modified log-Sobolev inequality

∀ f : Rn→R, Entµ[ef ] ≤ σ
2

2
Eµ[|∇f |2ef ]

then µ also satisfies the T2-inequality

∀ ν ∈ P2(Rn), W2(µ,ν) ≤
√

2σ2D(ν||µ).

We shall prove a converse of this implication for convex functions.
a. Prove that for any function f : Rn→R

Entµ[eλf ]

Eµ[eλf ]
≤ λ

{
Eν[f ]−Eµ[f ]

}
, where dν =

eλf

Eµ[eλf ]
dµ.

b. Prove that if f is assumed to be convex, then

∀ λ ≥ 0,
Entµ[eλf ]

Eµ[eλf ]
≤ λ inf

M∈C(µ,ν)
EM[〈∇f (Y ),Y −X〉]

and

∀ λ ≤ 0,
Entµ[eλf ]

Eµ[eλf ]
≤ −λ inf

M∈C(µ,ν)
EM[〈∇f (X),X −Y 〉].

c. Conclude that if µ satisfies the T2-inequality, then

∀ λ ≥ 0, Entµ[eλf ] ≤ 2λ2σ2
Eµ[|∇f |2eλf ]

and

∀ λ ≤ 0, Entµ[eλf ] ≤ 2λ2σ2
Eµ[|∇f |2]Eµ[eλf ].

d. Deduce from Herbst’s argument that if Eµ[|∇f |2] ≤ 1, then

∀ t ≥ 0, µ{f −Eµf ≤ −t} ≤ e−t
2/8σ2

.

In particular, this consists of a one-sided refinement of the Gaussian con-
centration inequality in the class of convex functions.

23. Show that the measure µ = 1
2δ1+1

2δ−1 on (R, |·|) does not satisfy the T2-inequality.
Deduce that there does not exist σ2 > 0 such that for any n ∈ N and any 1-
Lipschitz function f : (Rn, | · |) → R, the random variable f (ε1, . . . , εn) is σ2-
subgaussian, where ε1, . . . , εn are i.i.d. symmetric Bernoulli variables.

24. Let ε1, . . . , εn be independent symmetric Bernoulli random variables P{εi = ±1} =
1
2 and fix a set T ⊆R

n. Consider the random variable

Z = sup
t∈T

n∑
k=1

εktk .

7



a. Use the bounded differences inequality for the variance to prove that

Var[Z] ≤ 4sup
t∈T

n∑
k=1

t2k .

b. Denote by

τ2 =
n∑
k=1

sup
t∈T

t2k .

Use McDiarmid’s inequality to show that

∀ t ≥ 0, P{|Z −EZ | ≥ t} ≤ 2e−t
2/2τ2

.

c. Denote by

σ2 = 4sup
t∈T

n∑
k=1

t2k .

Use the bounded differences inequality for the entropy to prove that

∀ t ≥ 0, P{Z −EZ ≥ t} ≤ e−t
2/4σ2

.

d. Use the Marton–Talagrand concentration inequality to prove that Z is σ2-
subgaussian.

25. Let X1, . . . ,Xn be independent random variables with values in X1, . . . ,Xn re-
spectively. For c1, . . . , cn > 0, consider the distance dc on X1 × · · · ×Xn given by

dc((x1, . . . ,xn), (y1, . . . , yn)) =
n∑
i=1

ci1xi,yi ,

where (x1, . . . ,xn), (y1, . . . , yn) ∈X1×· · ·×Xn. Use McDiarmid’s inequality to prove
that for any measurable subset A ⊆X1 × · · · ×Xn, we have

∀ t ≥ 0, P

{
dc((X1, . . . ,Xn),A) ≥ t

}
≤ 1
P(A)

e−t
2/2.

26. Let (Pt)t≥0 be a reversible Markov semigroup with stationary measure µ and fix
c > 0. Prove that the log-Sobolev inequality

Entµ[f 2] ≤ 2cE(f , f ) for all f

implies the modified log-Sobolev inequality

Entµ[f ] ≤ c
2
E(logf , f ) for all nonnegative f .

27. Let f : Rn→ R be a smooth function with
∫
R
n f (x)2 dx = 1 and denote by λ the

Lebesgue measure on R
n.

a. Use the Gaussian log-Sobolev inequality to deduce that

Entλ[f 2] ≤ 2
∫
R
n
|∇f |2 dx − n

2
log(2π)−n.

Hint: Consider the function g = f 2e|x|
2/2

√
2π

.
b. Apply the inequality of part a. to fσ (x) = σnf (σx) for a suitable choice of
σ > 0 to deduce the Euclidean log-Sobolev inequality:

Entλ[f 2] ≤ n
2

log
( 2
nπe

∫
R
n
|∇f |2 dx

)
.
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28. Let Cn = ({−1,1}n,σn) where σn is the uniform probability measure on {−1,1}n.
Recall that the discrete heat flow acts on the Walsh expansion as

∀ t ≥ 0, Pt

( ∑
S⊆{1,...,n}

cSwS

)
=

∑
S⊆{1,...,n}

e−t|S |cSwS .

Consider the operator ∆−1/2 whose action on a function on Cn is given by

∆−1/2
( ∑
S⊆{1,...,n}

cSwS

)
=

∑
∅,S⊆{1,...,n}

cS
|S |1/2

wS .

a. For a function f : Cn→R, prove that

Varσnf =
n∑
i=1

‖∆−1/2�if ‖2L2(σn).

b. Prove that if Eσng = 0, then

∆−1/2g =
1
√
π

∫ ∞
0
Ptg

dt
√
t
.

c. Use hypercontractivity to deduce that there exists an absolute constant
C ∈ (0,∞) such that if Eσng = 0, then

‖∆−1/2g‖L2(σn) ≤
C‖g‖L2(σn)

1 +
√

log(‖g‖L2(σn)/‖g‖L1(σn))
.

d. Combine the above to derive a proof of Talagrand’s influence inequality.
29. Let dνn(x) = 1

2n e
−‖x‖1 dx be the symmetric exponential measure on R

n. For p ∈
{1,2}, we will use the notation

Bnp =
{
x ∈Rn :

n∑
i=1

|xi |p ≤ 1
}
.

Prove the following geometric form of Talagrand’s two-level concentration in-
equality for νn: if A is a Borel subset of Rn, then

∀ r > 0, 1− νn
(
A+ c1

√
rBn2 + c2rB

n
1

)
≤ 1
νn(A)

e−r ,

where c1, c2 > 0 are universal constants.
30. The Gaussian isoperimetric inequality asserts that if A ⊆ R

n is a measurable
set such that γn(A) = γn(H) for some half-space H , then γ+(�A) ≥ γ+(�H). Use
this statement to deduce the following stronger form of isoperimetry: under
the assumptions above, we have γn(Ar) ≥ γn(Hr) for all r > 0, where

Cr =
{
x ∈Rn : there exists y ∈ C with |x − y| ≤ r

}
.

Hint: Assume that A is a finite union of Euclidean balls and differentiate the func-
tion v(r) =Φ−1(γn(Ar)), where Φ is the CDF of the normal distribution.
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