ON PISIER’S INEQUALITY FOR UMD TARGETS

ALEXANDROS ESKENAZIS

Abstract. We prove an extension of Pisier’s inequality (1986) with a dimension independent constant for vector valued functions whose target spaces satisfy a relaxation of the UMD property.

2010 Mathematics Subject Classification. Primary: 46B07; Secondary: 46B85, 42C10, 60G46.

Key words. Pisier’s inequality, Banach space valued martingales, UMD Banach spaces.

1. Introduction

Let \((X, \| \cdot \|_X)\) be a Banach space. For \(p \in [1, \infty)\), the vector valued \(L_p\) norm of a function \(f : \Omega \to X\) defined on a measure space \((\Omega, \mathcal{F}, \mu)\) is given by \(\|f\|_{L_p(\Omega; \mu; X)} = \int_\Omega \|f(\omega)\|_X^p \, d\mu(\omega)\). When \(\Omega\) is a finite set and \(\mu\) is the normalized counting measure, we will simply write \(\|f\|_{L_p(\Omega)}\).

Let \(\mathcal{C}_n = \{-1, 1\}^n\) be the discrete hypercube. For \(i \in \{1, \ldots, n\}\), the \(i\)-th partial derivative of a function \(f : \mathcal{C}_n \to X\) is defined by

\[
\forall \varepsilon \in \mathcal{C}_n, \quad \partial_i f(\varepsilon) \overset{\text{def}}{=} \frac{f(\varepsilon) - f(\varepsilon_1, \ldots, \varepsilon_{i-1}, -\varepsilon_i, \varepsilon_{i+1}, \ldots, \varepsilon_n)}{2}.
\]

(1)

In [Pis86], Pisier showed that for every \(n \in \mathbb{N}\) and \(p \in [1, \infty)\), every \(f : \mathcal{C}_n \to X\) satisfies

\[
\left\| f - \frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} f(\delta) \right\|_{L_p(\mathcal{C}_n; X)} \leq \mathfrak{P}^n_p(X) \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^n \delta_i \partial_i f \right\|_{L_p(\mathcal{C}_n; X)}^p \right)^{1/p},
\]

(2)

with \(\mathfrak{P}^n_p(X) = 2e \log n\). Showing that \(\mathfrak{P}^n_p(X)\) is bounded by a constant depending only on \(p\) and the geometry of the given Banach space \(X\), is of fundamental importance in the theory of nonlinear type (see [Pis86, NS02]). The first positive and negative results in this direction were obtained by Talagrand in [Tal93], who showed that \(\mathfrak{P}^p_p(\mathbb{R}) = \Theta(1)\) and \(\mathfrak{P}^p_p(\ell_\infty) = \Theta(\log n)\) for every \(p \in [1, \infty)\).

Talagrand’s dimension independent scalar valued inequality (2) was greatly generalized in the range \(p \in (1, \infty)\) by Naor and Schechtman [NS02]. Recall that a Banach space \((X, \| \cdot \|_X)\) is called a UMD space if for every \(p \in (1, \infty)\), there exists a constant \(\beta_p \in (0, \infty)\) such that for every \(n \in \mathbb{N}\), every probability space \((\Omega, \mathcal{F}, \mu)\) and every filtration \(\{\mathcal{F}_i\}_{i=0}^n\) of sub-\(\sigma\)-algebras of \(\mathcal{F}\), every martingale \(\{\mathcal{M}_i : \Omega \to X\}_{i=0}^n\) adapted to \(\{\mathcal{F}_i\}_{i=0}^n\) satisfies

\[
\max_{\delta = (\delta_1, \ldots, \delta_n) \in \mathcal{C}_n} \left\| \sum_{i=1}^n \delta_i (\mathcal{M}_i - \mathcal{M}_{i-1}) \right\|_{L_p(\Omega; \mu; X)} \leq \beta_p \|\mathcal{M}_n - \mathcal{M}_0\|_{L_p(\Omega; \mu; X)}.
\]

(3)

The least constant \(\beta_p \in (0, \infty)\) for which (3) holds is called the UMD\(_p\) constant of \(X\) and is denoted by \(\beta_p(X)\). In [NS02], Naor and Schechtman proved that for every UMD Banach space \(X\) and \(p \in (1, \infty)\),

\[
\sup_{n \in \mathbb{N}} \mathfrak{P}^n_p(X) \leq \beta_p(X).
\]

(4)

Their result was later strengthened by Hytönen and Naor [HN13] in terms of the random martingale transform inequalities of Garling, see [Gar90]. Recall that a Banach space \((X, \| \cdot \|_X)\) is a UMD\(_+$

\[\text{The author was supported by a postdoctoral fellowship of the Fondation Sciences Mathématiques de Paris.}\]
space if for every \(p \in (1, \infty) \) there exists a constant \(\beta_p^+ \in (0, \infty) \) such that for every martingale \(\{M_i : \Omega \to X\}_{i=0}^n \) as before, we have
\[
\left(\frac{1}{2^n} \sum_{\delta \in \mathcal{E}_n} \left\| \sum_{i=1}^n \delta_i (M_i - M_{i-1}) \right\|_{L_p(\Omega, \mu; X)}^p \right)^{1/p} \leq \beta_p^+ \| M_n - M_0 \|_{L_p(\Omega, \mu; X)}.
\] (5)

Similarly, \(X \) is a \(\text{UMD}^- \) Banach space if for every \(p \in (1, \infty) \) there exists a constant \(\beta_p^- \in (0, \infty) \) such that for every martingale \(\{M_i : \Omega \to X\}_{i=0}^n \) as before, we have
\[
\| M_n - M_0 \|_{L_p(\Omega, \mu; X)} \leq \beta_p^- \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{E}_n} \left\| \sum_{i=1}^n \delta_i (M_i - M_{i-1}) \right\|_{L_p(\Omega, \mu; X)}^p \right)^{1/p}.
\] (6)

The least positive constants \(\beta_p^+, \beta_p^- \) for which (5) and (6) hold are respectively called the \(\text{UMD}^+ \) and \(\text{UMD}^- \) constants of \(X \) and denoted by \(\beta_p^+(X) \) and \(\beta_p^-(X) \). In [HN13], Hytönen and Naor showed that for every Banach space \(X \) whose dual \(X^* \) is a \(\text{UMD}^+ \) space and \(p \in (1, \infty) \),
\[
\sup_{n \in \mathbb{N}} \mathcal{Q}_p^n(X) \leq \beta_{p/(p-1)}^+(X^*).
\] (7)

In fact, in [HN13, Theorem 1.4], the authors proved a generalization (see (28)) of inequality (2) for a family of \(n \) functions \(\{f_i : \mathcal{E}_n \to X\}_{i=1}^n \) under the assumption that the dual of \(X \) is \(\text{UMD}^+ \).

The main result of the present note is a different inequality of this nature with respect to a Fourier analytic parameter of \(X \). For a Banach space \((X, \| \cdot \|_X) \) and \(p \in (1, \infty) \), let \(\mathfrak{s}_p(X) \in (0, \infty) \) be the least constant \(s \in (0, \infty) \) such that the following holds. For every probability space \((\Omega, \mathcal{F}, \mu) \), \(n \in \mathbb{N} \) and filtration \(\{\mathcal{F}_i\}_{i=1}^n \) of sub-\(\sigma \)-algebras of \(\mathcal{F} \) with corresponding vector valued conditional expectations \(\{E_i\}_{i=1}^n \), every sequence of functions \(\{f_i : \Omega \to X\}_{i=1}^n \) satisfies
\[
\left(\frac{1}{2^n} \sum_{\delta \in \mathcal{E}_n} \left\| \sum_{i=1}^n \delta_i E_i f_i \right\|_{L_p(\Omega, \mu; X)}^p \right)^{1/p} \leq s \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{E}_n} \left\| \sum_{i=1}^n \delta_i f_i \right\|_{L_p(\Omega, \mu; X)}^p \right)^{1/p}.
\] (8)

The square function inequality (8) originates in Stein’s classical work [Ste70], where he showed that \(\mathfrak{s}_p(\mathbb{R}) = \Theta(1) \) for every \(p \in (1, \infty) \). In the vector valued setting which is of interest here, it has been proven by Bourgain in [Bou86] that for every \(\text{UMD}^+ \) Banach space and \(p \in (1, \infty) \),
\[
\mathfrak{s}_p(X) \leq \beta_p^+(X).
\] (9)

For a function \(f : \mathcal{E}_n \to X \) and \(i \in \{0, 1, \ldots, n\} \) denote by
\[
\forall \varepsilon \in \mathcal{E}_n, \quad E_i f(\varepsilon) \stackrel{\text{def}}{=} \frac{1}{2^{n-i}} \sum_{\delta_{i+1}, \ldots, \delta_n \in \{-1,1\}} f(\varepsilon_1, \ldots, \varepsilon_i, \delta_{i+1}, \ldots, \delta_n),
\] (10)
so that \(E_n f = f \) and \(E_0 f = \frac{1}{2^n} \sum_{\delta \in \mathcal{E}_n} f(\delta) \). The main result of this note is the following theorem.

Theorem 1. Fix \(p \in (1, \infty) \) and let \((X, \| \cdot \|_X) \) be a Banach space with \(\mathfrak{s}_p(X) < \infty \). If, additionally, \(X \) is a \(\text{UMD}^- \) space, then for every \(n \in \mathbb{N} \) and functions \(f_1, \ldots, f_n : \mathcal{E}_n \to X \), we have
\[
\left\| \sum_{i=1}^n (E_i f_i - E_{i-1} f_i) \right\|_{L_p(\mathcal{E}_n; X)} \leq \mathfrak{s}_p(X) \beta_p^-(X) \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{E}_n} \left\| \sum_{i=1}^n \delta_i \partial_i f_i \right\|_{L_p(\mathcal{E}_n; X)}^p \right)^{1/p}.
\] (11)
Choosing \(f_1 = \cdots = f_n = f \), we deduce that the constants in Pisier’s inequality (2) satisfy
\[
\sup_{n \in \mathbb{N}} \mathcal{Q}_p^n(X) \leq \mathfrak{s}_p(X) \beta_p^-(X).
\] (12)
Combining (12) with Bourgain’s inequality (9), we deduce that sup_{n \in \mathbb{N}} \| \mathbf{F}_n^p \| \leq \beta_p^+(X) \beta_p^-(X)$, which is weaker than Naor and Schechtman’s bound (4). Nevertheless, it appears to be unknown (see [Pis16, p. 197]) whether every Banach space X with $\mathbf{s}_p(X) < \infty$ is necessarily a UMD$^+$ space. Therefore, it is conceivable that there exist Banach spaces X for which inequality (12) does not follow from the previously known results of [NS02, HN13]. We will see in Proposition 5 below that if the dual X^* of a Banach space X is UMD$^+$, then X satisfies the assumptions of Theorem 1. Therefore, Theorem 1 also contains the aforementioned result of [HN13].

Moreover, Theorem 1 implies an inequality similar to [HN13, Theorem 1.4] (see also Remark 3 below for comparison), under different assumptions. We will need some standard terminology from discrete Fourier analysis. Recall that every function $f : \mathcal{C}_n \to X$ can be expanded in a Walsh series as

$$f = \sum_{A \subseteq \{1, \ldots, n\}} \hat{f}(A) w_A,$$

where the Walsh function $w_A : \mathcal{C}_n \to \{-1, 1\}$ is given by $w_A(\varepsilon) = \prod_{i \in A} \varepsilon_i$ for $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \mathcal{C}_n$, and $\hat{f}(A) \in X$. Moreover, the fractional hypercube Laplacian of a function $f : \mathcal{C}_n \to X$ is given by

$$\forall \alpha \in \mathbb{R}, \quad \Delta^\alpha \left(\sum_{A \subseteq \{1, \ldots, n\}} \hat{f}(A) w_A \right) \overset{\text{def}}{=} \sum_{A \subseteq \{1, \ldots, n\}, A \neq \emptyset} |A|^\alpha \hat{f}(A) w_A.$$

Corollary 2.
Fix $p \in (1, \infty)$ and let $(X, \| \cdot \|_X)$ be a Banach space with $\mathbf{s}_p(X) < \infty$. If, additionally, X is a UMD$^-$ space, then for every $n \in \mathbb{N}$ and functions $f_1, \ldots, f_n : \mathcal{C}_n \to X$, we have

$$\left\| \sum_{i=1}^n \Delta^{-1} \partial_i f_i \right\|_{L_p(\mathcal{C}_n; X)} \leq \mathbf{s}_p(X) \beta_p^-(X) \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^n \delta_i \partial_i f_i \right\|_{L_p(\mathcal{C}_n; X)}^p \right)^{\frac{1}{p}}.$$

Acknowledgements.
I would like to thank Assaf Naor for helpful discussions.

2. Proofs

We first present the proof of Theorem 1.

Proof of Theorem 1. For a function $h : \mathcal{C}_n \to X$ and $i \in \{1, \ldots, n\}$ consider the averaging operator

$$\forall \varepsilon \in \mathcal{C}_n, \quad \mathcal{E}_i h(\varepsilon) \overset{\text{def}}{=} \frac{h(\varepsilon) + h(\varepsilon_1, \ldots, \varepsilon_{i-1}, -\varepsilon_i, \varepsilon_{i+1}, \ldots, \varepsilon_n)}{2} = (\text{id} - \partial_i) h(\varepsilon),$$

where id is the identity operator. Then, for every $i \in \{0, 1, \ldots, n\}$ we have the identities

$$\mathcal{E}_i h = \mathcal{E}_{i+1} \circ \cdots \circ \mathcal{E}_n h = \mathbb{E}[h|\mathcal{F}_i],$$

where $\mathcal{F}_i = \sigma(\varepsilon_1, \ldots, \varepsilon_i)$. Since for every $i \in \{1, \ldots, n\}$,

$$\mathbb{E}[\mathcal{E}_i f_i - \mathcal{E}_{i-1} f_i | \mathcal{F}_{i-1}] = 0,$$

the sequence $\{\mathcal{E}_i f_i - \mathcal{E}_{i-1} f_i\}_{i=1}^n$ is a martingale difference sequence and thus the UMD$^-$ condition and (8) imply that

$$\left\| \sum_{i=1}^n (\mathcal{E}_i f_i - \mathcal{E}_{i-1} f_i) \right\|_{L_p(\mathcal{C}_n; X)} \overset{\text{6}}{\leq} \beta_p^-(X) \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^n \delta_i (\mathcal{E}_i f_i - \mathcal{E}_{i-1} f_i) \right\|_{L_p(\mathcal{C}_n; X)}^p \right)^{\frac{1}{p}} \overset{\text{16}}{=} \beta_p^-(X) \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^n \delta_i \mathcal{E}_i \partial_i f_i \right\|_{L_p(\mathcal{C}_n; X)}^p \right)^{\frac{1}{p}},$$

$$\overset{\text{8}}{=} \mathbf{s}_p(X) \beta_p^-(X) \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^n \delta_i \partial_i f_i \right\|_{L_p(\mathcal{C}_n; X)}^p \right)^{\frac{1}{p}}.$$
which completes the proof. □

We will now derive Corollary 2 from Theorem 1. The proof follows a symmetrization argument of [HN13].

Proof of Corollary 2. As noticed in (19) above, (11) can be equivalently written as

\[\left\| \sum_{i=1}^{n} \mathcal{E}_i \partial_i f_i \right\|_{L_p(\mathcal{C}_n;X)} \leq \mathfrak{s}_p(X) \beta_p^-(X) \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^{n} \delta_i \partial_i f_i \right\|_{L_p(\mathcal{C}_n;X)}^p \right)^{1/p}. \]

Fix a permutation \(\pi \in S_n \) and consider the filtration \(\{ \mathcal{F}_i \}_{i=0}^{n} \) given by \(\mathcal{F}_i = \sigma(\mathcal{C}_1, \ldots, \mathcal{C}_i) \) with corresponding conditional expectations \(\mathcal{E}_\pi \). Repeating the argument of the proof of Theorem 1 for this filtration and the martingale difference sequence \(\{ \mathcal{E}_\pi \mathcal{F}_\pi(n(i)) - \mathcal{E}_\pi \mathcal{F}_\pi(n(-i)) \}_{i=1}^{n} \), we see that for every \(\pi \in S_n \),

\[\left\| \sum_{i=1}^{n} \mathcal{E}_\pi^\pi \partial_\pi(n(i)) \mathcal{F}_\pi(n(i)) \right\|_{L_p(\mathcal{C}_n;X)} \leq \mathfrak{s}_p(X) \beta_p^-(X) \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^{n} \delta_i \partial_\pi(n(i)) \mathcal{F}_\pi(n(i)) \right\|_{L_p(\mathcal{C}_n;X)}^p \right)^{1/p}, \]

(20)

since \((\delta_1, \ldots, \delta_n) \) has the same distribution as \((\delta_{\pi(1)}, \ldots, \delta_{\pi(n)}) \). An obvious adaptation of (10) along with (13) shows that for every \(h : \mathcal{C}_n \to X \),

\[\mathcal{E}_\pi^\pi h = \sum_{A \subseteq \{\pi(1), \ldots, \pi(i)\}} \hat{h}(A) w_A \]

(22)

where \(\hat{h}(A) \) are the Walsh coefficients of \(h \). Therefore, expanding each \(\mathcal{F}_\pi(n(i)) \) as a Walsh series (13) we have

\[\forall \ i \in \{1, \ldots, n\}, \quad \mathcal{E}_\pi^\pi \partial_\pi(n(i)) \mathcal{F}_\pi(n(i)) = \sum_{A \subseteq \{1, \ldots, n\} \text{ max } \pi^{-1}(A) = i} \hat{f}_\pi(n(i))(A) w_A \]

(23)

and therefore

\[\sum_{i=1}^{n} \mathcal{E}_\pi^\pi \partial_\pi(n(i)) \mathcal{F}_\pi(n(i)) = \sum_{A \subseteq \{1, \ldots, n\} \text{ A} \neq \emptyset} \mathcal{F}_\pi(\text{max } \pi^{-1}(A))(A) w_A. \]

(24)

Averaging (24) over all permutations \(\pi \in S_n \) and using the fact that \(\pi(\text{max } \pi^{-1}(A)) \) is uniformly distributed in \(A \), we get

\[\frac{1}{n!} \sum_{\pi \in S_n} \sum_{i=1}^{n} \mathcal{E}_i^\pi \partial_\pi(n(i)) \mathcal{F}_\pi(n(i)) = \sum_{A \subseteq \{1, \ldots, n\} \text{ } A \neq \emptyset} \frac{1}{|A|} \sum_{i \in A} \hat{f}_i(A) w_A = \sum_{i=1}^{n} \frac{1}{|A|} \hat{f}_i(A) w_A = \sum_{i=1}^{n} \Delta^{-1} \partial_i f_i. \]

Hence, by convexity we finally deduce that

\[\left\| \sum_{i=1}^{n} \Delta^{-1} \partial_i f_i \right\|_{L_p(\mathcal{C}_n;X)} \leq \frac{1}{n!} \sum_{\pi \in S_n} \left\| \sum_{i=1}^{n} \mathcal{E}_i^\pi \partial_\pi(n(i)) \mathcal{F}_\pi(n(i)) \right\|_{L_p(\mathcal{C}_n;X)} \]

(25)

\[\leq \mathfrak{s}_p(X) \beta_p^-(X) \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^{n} \delta_i \partial_\pi(n(i)) \mathcal{F}_\pi(n(i)) \right\|_{L_p(\mathcal{C}_n;X)}^p \right)^{1/p}, \]

which completes the proof. □
Lemma 4. If a space \(X \) is UMD\(^+ \), we will need the following lemma.

In [HN13, Theorem 1.4], it was shown that for every \(p \in (1, \infty) \) and every function \(F : \mathcal{C}_n \times \mathcal{C}_n \to X \),

\[
\left\| \sum_{i=1}^{n} \Delta^{-1} \partial_i F_i \right\|_{L_p(\mathcal{C}_n; X)} \leq \beta_p^+ (X^*) \left\| F \right\|_{L_p(\mathcal{C}_n \times \mathcal{C}_n; X)},
\]

(27)

In fact, since every Banach space whose dual is UMD\(^+ \) is K-convex (see [Pis16] and Section 3 below) the validity of inequality (27) is equivalent to its validity for functions of the form \(F(\varepsilon, \delta) = \sum_{i=1}^{n} \delta_i F_i(\varepsilon) \), where \(F_1, \ldots, F_n : \mathcal{C}_n \to X \). In other words, [HN13, Theorem 1.4] is equivalent to the fact that if \(X^* \) is UMD\(^+ \), then for every \(F_1, \ldots, F_n : \mathcal{C}_n \to X \) and \(p \in (1, \infty) \),

\[
\left\| \sum_{i=1}^{n} \Delta^{-1} \partial_i F_i \right\|_{L_p(\mathcal{C}_n; X)} \leq A_p(X) \left(\frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^{n} \delta_i F_i \right\|_{L_p(\mathcal{C}_n; X)}^p \right)^{1/p},
\]

(28)

up to the value of the constant \(A_p(X) \). In particular, applying (28) to \(F_i = \partial^i f_i \), one recovers Corollary 2, so inequality (28) of [HN13] is formally stronger than (15) in the class of spaces whose dual is UMD\(^+ \).

3. Concluding remarks

In this section we will compare our result with existing theorems in the literature. Recall that a Banach \(X \) space is K-convex if \(X \) does not contain the family \(\{\ell^n_1\}_{n=1}^\infty \) with uniformly bounded distortion. We will need the following lemma.

Lemma 4. If a space \((X, \| \cdot \|_X) \) satisfies \(s_p(X) < \infty \) for some \(p \in (1, \infty) \), then \(X \) is K-convex.

Proof. It is well known since Stein’s work [Ste70] that inequality (8) does not hold for \(p \in \{1, \infty\} \) even for scalar valued functions. In fact, an inspection of the argument in [Ste70, p. 105] shows that for every \(n \in \mathbb{N} \) there exists \(n \) functions \(g_1, \ldots, g_n : \mathcal{C}_n \to \{0, 1\} \) such that for every \(q \in (2, \infty) \),

\[
\left\| \left(\sum_{i=1}^{n} (E_i g_i)^2 \right)^{1/2} \right\|_{L_q(\mathcal{C}_n; \mathbb{R})} \gtrsim \left(\int_0^n y^{n/2} e^{-y} \, dy \right)^{1/q} \left\| \left(\sum_{i=1}^{n} g_i^2 \right)^{1/2} \right\|_{L_q(\mathcal{C}_n; \mathbb{R})},
\]

(29)

where \(\{E_i\}_{i=0}^{n} \) are the conditional expectations (10). Using the fact that \(L_\infty(\mathcal{C}^*_n; \mathbb{R}) \) is isomorphic to \(L_n(\mathcal{C}^*_n; \mathbb{R}) \), we thus deduce that

\[
\left\| \left(\sum_{i=1}^{n} (E_i g_i)^2 \right)^{1/2} \right\|_{L_\infty(\mathcal{C}_n; \mathbb{R})} \gtrsim \left(\int_0^n y^{n/2} e^{-y} \, dy \right)^{1/n} \left\| \left(\sum_{i=1}^{n} g_i^2 \right)^{1/2} \right\|_{L_\infty(\mathcal{C}_n; \mathbb{R})}.
\]

(30)

Therefore, by duality in \(L_\infty(\mathcal{C}^*_n; \ell^2_n) \) and Khintchine’s inequality [Khi23], we deduce that there exists \(n \) functions \(h_1, \ldots, h_n : \mathcal{C}_n \to \mathbb{R} \) such that

\[
\frac{1}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^{n} \delta_i E_i h_i \right\|_{L_1(\mathcal{C}_n; \mathbb{R})} \gtrsim \frac{\sqrt{n}}{2^n} \sum_{\delta \in \mathcal{C}_n} \left\| \sum_{i=1}^{n} \delta_i h_i \right\|_{L_1(\mathcal{C}_n; \mathbb{R})}.
\]

(31)
Suppose that a Banach space X with $s_p(X) < \infty$ is not K-convex, so that there exists a constant $K \in [1, \infty)$ such that for every $n \in \mathbb{N}$, there exists a linear operator $J_n : L_1(\mathbb{C}_n; \mathbb{R}) \to X$ satisfying
\[
\forall h \in L_1(\mathbb{C}_n; \mathbb{R}), \quad \|h\|_{L_1(\mathbb{C}_n; \mathbb{R})} \leq \|J_n h\|_X \leq K \|h\|_{L_1(\mathbb{C}_n; \mathbb{R})}.
\] (32)

Consider the functions $H_1, \ldots, H_n : \mathbb{C}_n \to L_1(\mathbb{C}_n; \mathbb{R})$ given by
\[
\forall \varepsilon, \varepsilon' \in \mathbb{C}_n, \quad [H_i(\varepsilon)](\varepsilon') = h_i(\varepsilon \varepsilon_1' \ldots \varepsilon_n \varepsilon'_n),
\] (33)
where $h_i \in L_1(\mathbb{C}_n; \mathbb{R})$ are the functions satisfying (31). Then, for every $i \in \{1, \ldots, n\}$, we have $[\varepsilon_i H_i(\varepsilon)](\varepsilon') = \varepsilon_i h_i(\varepsilon \varepsilon_1' \ldots \varepsilon_n \varepsilon'_n)$ and, by translation invariance, for every $\varepsilon, \delta \in \mathbb{C}_n$ we have
\[
\left\| \sum_{i=1}^n \delta_i \varepsilon_i H_i(\varepsilon) \right\|_{L_1(\mathbb{C}_n; \mathbb{R})} = \left\| \sum_{i=1}^n \delta_i \varepsilon_i h_i \right\|_{L_1(\mathbb{C}_n; \mathbb{R})} \quad \text{and} \quad \left\| \sum_{i=1}^n \delta_i H_i(\varepsilon) \right\|_{L_1(\mathbb{C}_n; \mathbb{R})} = \left\| \sum_{i=1}^n \delta_i h_i \right\|_{L_1(\mathbb{C}_n; \mathbb{R})}
\]

Therefore, considering the mappings $f_1, \ldots, f_n : \mathbb{C}_n \to X$ given by $f_i = J_n \circ H_i$, we see that
\[
\left(\frac{1}{2^n} \sum_{\delta \in \mathbb{C}_n} \left\| \sum_{i=1}^n \delta_i \varepsilon_i f_i \right\|_{L_p(\mathbb{C}_n; X)}^p \right)^{1/p} \geq K^{-1} \sqrt{n} \left(\frac{1}{2^n} \sum_{\delta \in \mathbb{C}_n} \left\| \sum_{i=1}^n \delta_i f_i \right\|_{L_p(\mathbb{C}_n; X)}^p \right)^{1/p},
\] (34)
thus showing that $s_p(X) \geq K^{-1} \sqrt{n}$, which is a contradiction. □

Recall that the X-valued Rademacher projection is defined to be
\[
\Rad(A) = \left\{ \sum_{i \in \{1, \ldots, n\}} f(A) w_i \right\} = \sum_{i=1}^n \hat{f} \{\{i\}\} w_{\{i\}}.
\] (35)

A deep theorem of Pisier [Pis82] asserts that a Banach space is K-convex if and only if
\[
\forall r \in (1, \infty), \quad K_r(X) \overset{\text{def}}{=} \sup_{n \in \mathbb{N}} \left\| \Rad \right\|_{L_r(\mathbb{C}_n; X) \to L_r(\mathbb{C}_n; X)} < \infty.
\] (36)

In particular, it follows from Lemma 4 that $s_p(X) < \infty$ for some $p \in (1, \infty)$ implies that $K_r(X) < \infty$ for every $r \in (1, \infty)$. We proceed by showing that Banach spaces belonging to the class considered in [HN13, Theorem 1.4] satisfy the assumptions of Theorem 1.

Proposition 5. Let $(X, \| \cdot \|_X)$ be a Banach space. If X^* is a UMD$^+$ space, then X is a UMD$^-$ space and $s_p(X) < \infty$ for every $p \in (1, \infty)$.

Proof. The fact that if X^* is UMD$^+$, then X is UMD$^-$ has been proven by Garling in [Gar90, Theorem 1], so we only have to prove that $s_p(X) < \infty$. Let $f_1, \ldots, f_n : \mathbb{C}_n \to X$ and $G^* : \mathbb{C}_n \times \mathbb{C}_n \to X^*$ be such that
\[
\left(\frac{1}{2^n} \sum_{\delta \in \mathbb{C}_n} \left\| \sum_{i=1}^n \delta_i \varepsilon_i f_i \right\|_{L_p(\mathbb{C}_n; X)}^p \right)^{1/p} = \frac{1}{4^n} \sum_{\varepsilon, \delta \in \mathbb{C}_n} \langle G^*(\varepsilon, \delta), \sum_{i=1}^n \delta_i \varepsilon_i f_i(\varepsilon) \rangle
\] (37)
and $\|G^*\|_{L_q(\mathbb{C}_n \times \mathbb{C}_n; X^*)} = 1$, where $\frac{1}{p} + \frac{1}{q} = 1$. Let $G^*_i : \mathbb{C}_n \to X^*$ be given by
\[
\forall \varepsilon \in \mathbb{C}_n, \quad G^*_i(\varepsilon) = \frac{1}{2^n} \sum_{\delta \in \mathbb{C}_n} \delta_i G^*_i(\varepsilon, \delta).
\] (38)

Then, since X^* is UMD$^+$, we deduce that X^* is also K-convex (this is proven in [Gar90] but it also follows by combining Bourgain’s inequality (8) with Lemma 4) and thus
\[
\left(\frac{1}{2^n} \sum_{\delta \in \mathbb{C}_n} \left\| \sum_{i=1}^n \delta_i G^*_i \right\|_{L_q(\mathbb{C}_n; X^*)}^q \right)^{1/q} \overset{(38)}{=} \left(\frac{1}{4^n} \sum_{\varepsilon, \delta \in \mathbb{C}_n} \| \Rad \delta G^*(\varepsilon, \delta) \|_X^q \right)^{1/q} \leq K_q(X^*).
\] (39)
Hence, we have
\[
\left(\frac{1}{2^n} \sum_{\delta \in \varepsilon_n} \left\| \sum_{i=1}^{n} \delta_i E_i f_i \right\|_{L^p(\varepsilon_n;X)} \right)^{1/p} \leq \frac{1}{4^n} \sum_{\varepsilon, \delta \in \varepsilon_n} \left(\sum_{i=1}^{n} \delta_i G_i^s(\varepsilon), \sum_{i=1}^{n} \delta_i E_i f_i(\varepsilon) \right) = \frac{1}{2^n} \sum_{\varepsilon \in \varepsilon_n} \langle \varepsilon_i G_i^s, f_i \rangle = \frac{1}{4^n} \sum_{\varepsilon, \delta \in \varepsilon_n} \left(\sum_{i=1}^{n} \delta_i E_i G_i^s(\varepsilon), \sum_{i=1}^{n} \delta_i f_i(\varepsilon) \right)
\]
\[
\leq \left(\frac{1}{2^n} \sum_{\delta \in \varepsilon_n} \left\| \sum_{i=1}^{n} \delta_i E_i G_i^s \right\|_{L^q(\varepsilon_n;X^s)} \right)^{1/q} \cdot \left(\frac{1}{2^n} \sum_{\delta \in \varepsilon_n} \left\| \sum_{i=1}^{n} \delta_i f_i \right\|_{L^p(\varepsilon_n;X)} \right)^{1/p}.
\]
Therefore, combining (40) with (8) and (39), we deduce that
\[
\left(\frac{1}{2^n} \sum_{\delta \in \varepsilon_n} \left\| \sum_{i=1}^{n} \delta_i E_i f_i \right\|_{L^p(\varepsilon_n;X)} \right)^{1/p} \leq s_q(X^s)\left(\frac{1}{2^n} \sum_{\delta \in \varepsilon_n} \left\| \sum_{i=1}^{n} \delta_i E_i G_i^s \right\|_{L^q(\varepsilon_n;X^s)} \right)^{1/q} \cdot \left(\frac{1}{2^n} \sum_{\delta \in \varepsilon_n} \left\| \sum_{i=1}^{n} \delta_i f_i \right\|_{L^p(\varepsilon_n;X)} \right)^{1/p}.
\]
\[
\leq s_q(X^s)K_q(X^s) \cdot \left(\frac{1}{2^n} \sum_{\delta \in \varepsilon_n} \left\| \sum_{i=1}^{n} \delta_i f_i \right\|_{L^p(\varepsilon_n;X)} \right)^{1/p},
\]
which shows that \(s_p(X) \leq K_q(X^s)s_q(X^s). \)

We conclude by observing that spaces satisfying the assumptions of Theorem 1 are necessarily superreflexive (see [Pis16] for the relevant terminology).

Lemma 6. If a UMD\(^{-}\) Banach space \((X, \| \cdot \|_X)\) satisfies \(s_p(X) < \infty\), then \(X\) is superreflexive.

Proof. A theorem of Pisier [Pis73] asserts that a Banach space \(X\) is \(K\)-convex if and only if \(X\) has nontrivial Rademacher type. Therefore, we deduce from Lemma 4 that if \(s_p(X) < \infty\) for some \(p \in (1, \infty)\), then there exists \(s \in (1, 2)\) and \(T_s(X) \in (0, \infty)\) such that
\[
\forall \ x_1, \ldots, x_n \in X, \quad \left(\frac{1}{2^n} \sum_{\delta \in \varepsilon_n} \left\| \sum_{i=1}^{n} \delta_i x_i \right\|_X^s \right)^{1/s} \leq T_s(X) \left(\sum_{i=1}^{n} \| x_i \|_X \right)^{1/s}.
\]

Therefore, if \(X\) also satisfies the UMD\(^{-}\) property, we deduce that for every \(X\)-valued martingale \(\{\mathcal{M}_i : \Omega \to X\}_{i=0}^n\),
\[
\| \mathcal{M}_n - \mathcal{M}_0 \|_{L_s(\Omega, \mu;X)} \leq \beta_s(X) \left(\frac{1}{2^n} \sum_{\delta \in \varepsilon_n} \left\| \sum_{i=1}^{n} \delta_i (\mathcal{M}_i - \mathcal{M}_{i-1}) \right\|_X^s \right)^{1/s} \leq \beta_s(X) T_s(X) \left(\sum_{i=1}^{n} \| \mathcal{M}_i - \mathcal{M}_{i-1} \|_X^s \right)^{1/s},
\]
which means that \(X\) has martingale type \(s\). Combining this with well known results linking martingale type and superreflexivity (see [Pis16]), we reach the desired conclusion. \(\square\)

Therefore, Theorem 1 establishes that \(\mathcal{P}_p^n(X) = \Theta(1)\) for \(X\) in a (strict, see [Gar90, Qiu12]) subclass of all superreflexive spaces. In the forthcoming manuscript [EN20], the bound \(\mathcal{P}_p^n(X) = o(\log n)\) is shown to hold for every superreflexive Banach space \(X\) and \(p \in (1, \infty)\).
References

Institut de Mathématiques de Jussieu, Sorbonne Université, 4, Place Jussieu, 75252 Paris Cedex 05, France

Email address: alexandros.eskenazis@imj-prg.fr