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Abstract

We classify the (semi-simple parts of the) Lie algebra of the
Zariski closure of a discrete subgroup of a split simple real-algebraic
Lie group, whose limit sets are minimal and such that the limit
set in the space of full flags contains a positive triple of flags (as
in Lusztig [23]). We then apply our result to obtain a new proof
of Guichard’s classification [17] of Zariski closures of Hitchin rep-
resentations into PSLdpRq.
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1. Introduction

Let us consider the vector space Rd equipped with its canonical or-
dered basis E “ te1, . . . , edu and let GLdpRq be the group of invertible
matrices. A minor of g P GLdpRq is the determinant of a square matrix
obtained from g by deleting some lines and columns from it. Minors
appear naturally when one considers the exterior powers of Rd. Indeed,
theses spaces carry also a natural basis

^kE “ tei1 ^ ¨ ¨ ¨ ^ eik : i1 ă ¨ ¨ ¨ ă iku

defined from E, and the coefficients of ^kg in this basis are the k ˆ k
minors of g.

The author was partially financed by ANR DynGeo ANR-16-CE40-0025.

1



2

As introduced by Schoenberg [25] and Gantmacher-Krein [13], a ma-
trix is totally positive if all its minors are positive1 . If g P GLdpRq is
such a matrix, then, since all its entries are positive, it preserves the
sharp convex cone of Rd

CE “ tpx1, . . . , xdq : xi ě 0u,

consisting on vectors all of whose entries in E are non-negative. By the
preceding paragraph more is true: the same holds for every exterior
power of g,

p^kgqpv1 ^ ¨ ¨ ¨ ^ vkq “ gv1 ^ ¨ ¨ ¨ ^ gvk,

replacing E by ^kE.
An application of the classical Perron-Frobenius Theorem implies

then that ^kg has a unique attracting fixed line in the interior of this
cone,

(1.1) g`,k P int C^kE,

and the collection pg`,kq
d
1 is an attracting complete flag2 of g. If we

denote by ~E the complete flag

~E “ pspanpe1 ‘ ¨ ¨ ¨ ‘ ekq
˘d

1

then the inclusion (1.1) readily implies that the lower triangular matrix

ǔg sending ~E to pg`,kq has positive minors (except those that are forced
to be zero by the virtue of being lower triangular). Such a semi-group
will be denoted by Ǔą0. If one is more familiar with upper triangular

matrices then one should replace ~E by ~E “ pspanped‘¨ ¨ ¨‘ed´k`1q
˘d

1
to

obtain an analogous Uą0. The subspace of positive flags is then defined
by

Fą0 “ Ǔą0 ¨
~E “ Uą0 ¨

~E.

The pair of flags p~E, ~Eq uniquely determines the (ordered) decomposition

Rd “
À

ePE Re, so Fą0 is actually defined by the pair p~E, ~Eq and a pinning
(see § 5).

The above (very quick) picture has been generalized to the real points
of an arbitrary (Zariski-connected) reductive split real-algebraic group
G by Lusztig [23]. We refer the reader to §5.1 for the precise definitions
and we reuse the notation FG “ F as the complete flag space of G and
Fą0 for the subset of positive flags associated to a pair of fixed opposite
Borel subgroups B and B̌ (and a pinning). Let us say that a triple of
pairwise transverse flags px, y, zq is positive, if there exists g P G such
that g ¨ x “ rB̌s, g ¨ z “ rBs and g ¨ y P Fą0.

Le us consider more generally a partial flag Fθ of G, these are indexed
by subsets of the set of simple roots ∆, with F∆ “ F. An element g P G

1Let us convene throughout the paper that 0 is not a positive real number.
2Recall that a complete flag of Rd is a sequence of vector subspaces pViq

d
1 such

that dimVi “ i and Vi Ă Vi`1.
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is proximal on Fθ if it has an attracting fixed point on Fθ, i.e. there
exists g`,θ P Fθ fixed by g and an open neighborhood V of g`,θ such

that gV Ă intV. In this situation one has
Ş

nPN g
nV “ tg`,θu. Elements

that are proximal on F are often called purely loxodromic.
If Λ ă G is a discrete subgroup then its limit set on Fθ is defined as

LΛ,θ “ tg`,θ : g P Λ proximal on Fθu Ă Fθ.

A result by Benoist3 [3] asserts that if Λ is Zariski dense, then LΛ,θ is
non-empty and contained in any closed non-empty Λ-invariant set. We
will assume a slightly weaker version of this property. Let us say that
LΛ,θ is minimal if the only closed Λ-invariant subsets of LΛ,θ are either
the empty set or LΛ,θ itself.

Definition 1.1. Let Λ ă G be a discrete group. We say that

- Λ has minimal limit sets if LΛ,tσu is minimal for every σ P ∆,
- LΛ,∆ contains a positive loxodromic triple if there exists g0 P Λ

proximal on F and x0 P LΛ,∆ such that pg`, x0, g´q is a positive
triple.

Recall that a reductive Lie algebra h splits as the sum h “ hss ‘
Zphq where Zphq is its center and hss “ rh, hs is semi-simple. Recall
also that, as g is split, it contains a special conjugacy class of sub-
algebras isomorphic to sl2pRq called the principal sl2pRq’s, see §2.1.1 for
the definition.

The main purpose of this paper is to prove the following.

Theorem A. Let G be the real points of a Zariski connected, simple
split, real-algebraic group and Λ ă G a subgroup with reductive Zariski
closure H, minimal limit sets and such that LΛ,∆ contains a positive
loxodromic triple. Then hss is either g, a principal sl2pRq, or Int g-
conjugated to one of the possibilities listed in Table 1.

We would like to stress the fact that only one positive (loxodromic)
triple in the limit set LΛ,∆ is required.

The use of Lusztig’s positivity to study discrete groups seems to have
originated in Fock-Goncharov’s [11] work, where the notion of posi-
tive representation of a surface group was introduced. A similar ap-
proach simultaneously originated in Labourie [22]. Both works focus on
understanding a special connected component of the character variety
Xpπ1S,Gq “ hompπ1S,Gq{G, for a closed connected orientable surface
S of genus ě 2 and a center-free split simple group G, introduced by
Hitchin [18]. These Hitchin components are defined as those compo-
nents that contain a discrete and faithful representation π1S Ñ G such
that the Zariski closure of ρpπ1Sq is a principal PSL2pRq in G.

3(that holds when G is an arbitrary reductive real-algebraic Lie group of non-
compact type)
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g hss φ : hss Ñ g
sl2npRq spp2n,Rq defining representation

sl2n`1pRq
sopn, n` 1q @n defining representation

g2 if n “ 3 fundamental for the short root
sop3, 4q g2 fundamental for the short root

sopn, nq

sopn´ 1, nq @n ě 3 stabilizer of a non-isotropic line
sop3, 4q if n “ 4 fundamental for the short root

g2 if n “ 4
stabilizes a non-isotropic line L and is
fundamental for the short root on LK

e6 f4 Fixpinv0q (see Example 3.3)
Table 1. The statement of Theorem A, if a simple split al-
gebra g is not listed in the first column then the only possi-
bilities for hss are g or a principal sl2pRq. The notations e6, f4
and g2 refer to the split real forms of the corresponding excep-
tional complex Lie algebras. Observe that there are two non
Int sopn, nq-conjugated embeddings sopn, n ´ 1q Ñ sopn, nq
that stabilize a non-isotropic line.

Combining [11] and [22], together with Guichard [16], one has the
following geometric characterization of Hitchin representations. Recall
that the Gromov boundary of π1S is homeomorphic to a circle and
carries a π1S-invariant cyclic order.

Theorem 1.2 ([11, 16, 22]). A representation ρ : π1S Ñ G lies in a
Hitchin component if and only if there exists a continuous equivariant
map ξ : Bπ1S Ñ F sending cyclically ordered triples to positive triples
of flags.

In this paper we deal with a weaker notion than the one required in
the above result. We replace π1S with any discrete group acting on a
Gromov-hyperbolic space and relax the “order preserving” condition.

If X is a proper Gromov-hyperbolic space and Γ ă IsompXq is a dis-
crete subgroup, then we denote by BXΓ its limit set on the visual bound-
ary of X. It is a compact Γ-invariant subset and Γ is non-elementary if
BXΓ contains at least 3 points. If this is the case, BXΓ is characterized
by being the smallest non-empty Γ-invariant closed subset of BX, and
Γ necessarily contains a non-abelian free subgroup. We refer the reader
to Ghys-de la Harpe [14, Chapitre 8] for these and other general facts
we will require. Unless Γ is convex co-compact, the limit set BXΓ need
not be an intrinsic object associated to the group structure of Γ.

We will consider the following representations.

Definition 1.3. Let X be a proper Gromov-hyperbolic space and
Γ be a non-elementary discrete isometry group. A representation ρ :
Γ Ñ G is partially positive if there exists a ρ-equivariant continuous
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map ξ : BXΓ Ñ F such that for every pair x ‰ z in BXΓ, there exists
y P BXΓ such that

`

ξpxq, ξpyq, ξpzq
˘

is a positive triple.

It is implicit in the definition that distinct pairs of BXΓ are mapped
to transverse flags.

Recall from Knapp [20, Chapter B.1] that a finite dimensional real
Lie algebra l is a semi-direct product lss ‘π Rad l, where lss is semi-
simple and Rad l is solvable. The second main result of this paper is the
following.

Theorem B. Let X be a proper Gromov-hyperbolic space, Γ ă IsomX
a non-elementary discrete subgroup and ρ : Γ Ñ G a partially positive
representation. Denote by L the Zariski closure of ρpΓq. Then the semi-
simple part lss is either g, a principal sl2pRq, or Int g-conjugated to one
of the possibilities listed in Table 1.

The challenge here is to show that LρpΓq,∆ “ ξpBXΓq and that for
every σ P ∆, it projects surjectively to every LρpΓq,tσu under the natural
projection F Ñ Ftσu.

Let us remark that, in contrast with Theorem A, we do not require the
Zariski closure of ρpΓq to be reductive. We emphasize this by stating
the following consequence of Theorem B, recall that a discrete group
acts strongly irreducibly on Rk if it does not preserve a finite collection
of non-trivial subspaces.

Corollary 1.4. Assume that g “ slnpRq, sp2npRq, sopn, n ` 1q or
g2. Let X be a proper Gromov-hyperbolic space, Γ ă IsomX a non-
elementary discrete subgroup and ρ : Γ Ñ G a partially positive repre-
sentation, then its corresponding action on Rn,R2n,R2n`1 or R7 respec-
tively is (strongly) irreducible.

Theorem B together with Theorem 1.2 give a new proof of the fol-
lowing classification result by Guichard (the argument is postponed to
§6). As before, g2 is the split real form of the corresponding complex
exceptional Lie algebra and G2 “ Int g2.

Corollary 1.5 (Guichard [17]). Let ρ : π1S Ñ PSLdpRq be a repre-
sentation in the Hitchin component. Then ρpπ1Sq is contained in the
identity component of its Zariski closure, and these are: either PSLdpRq,
a principal PSL2pRq or conjugated to one of the following:

- PSp2npRq if d “ 2n for all n ě 1,
- PSO0pn, n` 1q if d “ 2n` 1 for all n ě 1,
- the fundamental representation for the short root of G2 if d “ 7.

Corollary 1.5 plays a central role in Corollary 11.8 of Bridgeman-
Canary-Labourie-S. [5] and in the recent work by Danciger-Zhang [10],
allowing the authors to reduce the general problem to the group PSOpn, n`
1q.
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1.1. Final remarks. It is unclear whether all possibilities stated in
Theorem B might actually occur. When Γ “ π1S (S as above) then
Hitchin’s Theorem [18] implies this is actually the case. However, a
recent result by Alessandrini-Lee-Schaffhauser [2] provides many exam-
ples of locally rigid positive representations of groups with torsion.

1.2. Organization of the paper. In §2 we recall some facts on repre-
sentation theory of real reductive Lie algebras of non-compact type. In
§3 we introduce the Hasse diagram of a representation of such a Lie alge-
bra, this is nothing but the usual Hasse diagram of a partially order set
(here to be the restricted weights of the representation with their nat-
ural partial order). We introduce maps between diagrams and notably
study the existence of a surjective map between two Hasse diagrams.
There is a case by case proof that is postponed to appendix §A.

In §4 we study Zariski closures of discrete groups verifying a coherence
condition with respect to the position of their eigenspaces, and relate
these to maps between Hasse diagrams of the Zariski closure and the
ambient group. The key point is Proposition 4.10 that, in light of the
previous section, classifies Zariski closures of these groups, provided it
is reductive.

Section 5 begins by recalling total positivity introduced by Lusztig
[23], we prove then that groups whose limit sets contains a positive
loxodromic triple verify the coherence condition studied in §4. This
proves Theorem A. Theorem B is also proved in this section. In §6
we focus on the SLdpRq situation and prove Guichard’s classification
(Corollary 1.5).

The paper is written rather linearly so one has the following diagram
representing dependence between sections:

§A

§1 §2 §3 §4 §5 §6

Acknowledgements. The author would like to thank Olivier Gui-
chard and Maria Beatrice Pozzetti for enlightening discussions and care-
ful reading of this article. He would also like to thank the referees for
careful reading and improving the exposition of the paper.

2. Review on Lie Theory

2.1. Semi-simple Lie algebras. Let g be a semi-simple real Lie alge-
bra of the non-compact type and fix a Cartan involution o : gÑ g with
associated Cartan decomposition g “ k ‘ p. Let a Ă p be a maximal
abelian subspace and let Φ Ă a˚ be the set of restricted roots of a in g.
For α P Φ let us denote by

gα “ tu P g : ra, us “ αpaqu @a P au
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its associated root space. One has the (restricted) root space decompo-
sition g “ g0 ‘

À

αPΦ gα, where g0 is the centralizer of a.
Fix a Weyl chamber a` of a and let Φ` and ∆ be, respectively, the

associated sets of positive roots and of simple roots. One has that
Φ “ Φ` Y´Φ` and that if α P Φ` then, upon writing

α “
ÿ

σP∆

kσσ,

every coefficient kσ is a non-negative integer. The height of α is htpαq “
ř

σ kσ.
Let us denote by p¨, ¨q the Killing form of g, its restriction to a, and

its associated dual form in the dual a˚ of a. For χ, ψ P a˚ define

(2.1) xχ, ψy “ 2
pχ, ψq

pψ,ψq
.

The Weyl group of Φ, denoted by W, is the group generated by, for
each α P Φ, the reflection rα : a˚ Ñ a˚ on the hyperplane αK,

rαpχq “ χ´ xχ, αyα.

It is a finite group with a unique longest element w0 (w.r.t. the word
metric on the generating set trα : α P ∆u). This longest element sends
a` to ´a`.

Recall that the Dynkin diagram of the root system Φ consists on a
graph whose vertices are the elements of ∆ and such that α, β P ∆ are
joined by xα, βyxβ, αy edges. If two simple roots are joined by more
than one edge then an arrow is added pointing to the shortest (in norm
p¨, ¨q) root. One speaks indistinctively of the Dynkin diagram of g, Φ or
of ∆.

We will require the following notion:

Definition 2.1. An element of ∆ is extremal if it is connected to
exactly one root in the Dynkin diagram of Φ.

The root systems of type D and E have 3 extremal roots, while the
others only have two.

2.1.1. Some sl2’s of g. For α P Φ let tα, hα P a be defined such that,
for all v P a and all ϕ P a˚, one has

αpvq “ pv, tαq and ϕphαq “ xϕ, αy.

These two vectors are related by the simple formula hα “ 2tα{ptα, tαq.
Recall that for x P gα one has rx, opxqs “ px, opxqqtα. Thus, for each
α P Φ` and xα P gα there exists yα P g´α such that

e “p 0 1
0 0 q ÞÑ xα

f “p 0 0
1 0 q ÞÑ yα

h “p 1 0
0 ´1 qÞÑ hα
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is a Lie algebra isomorphism between sl2pRq and the span of txα, yα, hαu.
Let us fix such a choice of xα and yα from now on.

One says that g is split if the complexification a b C is a Cartan
subalgebra of gb C. Equivalently, g is split if the centralizer Zkpaq of a
in k is trivial.

Assume that g is split. Following Kostant [21, §5], consider the
dual basis of ttσ : σ P ∆u relative to p¨, ¨q: pεα, tβq “ δαβ, and let
ε0 “

ř

σP∆ εσ P a. The element ε0 is the semi-simple element of a 3-
dimensional simple subalgebra of g. Such a subalgebra, or any of its
Int g-conjugates, will be called a principal sl2pRq of g.

Let us denote by n “
À

αPΦ` gα.

Theorem 2.2 (Kostant [21, Thm 5.3]). Let g be a split Lie algebra
and consider an element

e “
ÿ

αPΦ`

aαxα P n.

Then e lies in a principal sl2pRq if and only if aσ ‰ 0 for all σ P ∆.

2.2. Reductive groups. A Lie algebra g is reductive if every ad g-
invariant subspace of g has an ad g-invariant complement. It is a stan-
dard fact (see Knapp [20, Chapter I. §7]) that such an algebra splits
as

g “ Zpgq ‘ gss,

where gss “ rg, gs is semi-simple and Zpgq is the center of g.
A reductive Lie group (see for example Knapp [20, Chapter VII. §2.])

G is a 4-tuple
`

G,K, σ, p¨, ¨q
˘

, where K is a compact subgroup of G, σ is
a Lie algebra involution of g and p¨, ¨q is a σ-invariant, Ad G-invariant
non-degenerate bilinear form on g such that:

- g is a reductive Lie algebra,
- the Lie algebra k of K is the set of fixed points of σ,
- if p “ tx P g : σpxq “ ´xu then k and p are p¨, ¨q-orthogonal and
p¨, ¨q is positive definite on p,

- the map K ˆ p Ñ G, pk, xq ÞÑ k expx, is a surjective diffeomor-
phism.

- every automorphism of the form Adphq, for h P G, of the complex-
ification gb C is of the form Adpxq for some x P Intpgb Cq.

Given a reductive group G and a maximal abelian subspace a Ă p,
one can form, as in the semi-simple case, a restricted root space decom-
position

g “ g0 ‘
à

αPΦg

gα

where gα “ tx P g : ra, xs “ αpaqx@a P au.
The relation between the restricted roots Φg and the restricted roots

of gss is as follows: the elements of Φg can be obtained by considering
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the restricted root space decomposition of gss relative to ass “ a X gss
and extending these roots to a as being zero on aX Zpgq.

2.3. Basic facts on representation theory of semi-simple Lie
algebras. Let g be a semi-simple Lie algebra over R without compact
factors. We record here some standard facts about irreducible real rep-
resentations of g, see for example Humphreys [19].

The restricted weight lattice is defined by

Π “ tϕ P a˚ : xϕ, αy P Z @α P Φu,

it is spanned by the fundamental weights: t$σ : σ P ∆u where $σ is
defined by

x$σ, βy “ dσδσβ

for every σ, β P ∆, where dσ “ 1 if 2σ R Φ` and dσ “ 2 otherwise. The
set Π` of dominant restricted weights is defined by Π` “ ΠX pa`q˚.

Given χ, ψ P Π one says that χ ą ψ if χ´ψ has non-negative integer
coefficients in ∆. A subset π Ă Π is saturated if for every χ P π and
α P Φ the string

χ´ iα i between 0 and xχ, αy

is entirely contained in π. Such a set is necessarily W-invariant. We say
that π has highest weight µ P π if for every χ P π one has µ ą χ. One
has the following lemma, see Humphreys [19, §13.4 Lemma B].

Lemma 2.3. Let π be a saturated set of weights with highest weight
µ, then every χ P Π` with µ ą χ belongs to π.

Let φ : g Ñ slpV q be an irreducible representation. The sub-algebra
φpaq is self-adjoint for an inner product of V and thus the space V
decomposes as a sum V “

À

χPΠpφq V
χ, where

V χ “ tv P V : φpaqv “ χpaqv @a P au

are the common eigen-spaces, called restricted weight spaces, and

Πpφq “
 

χ P a˚ : V χ ‰ t0u
(

is called the set of restricted weights of φ. It is a W-invariant set. The
multiplicity of χ P Πpφq is denoted by mφpχq and defined as the dimen-
sion of its restricted weight space, mφpχq “ dimV χ. We will often omit
the subscript and write mpχq if there no ambiguity in φ.

Proposition 2.4 (See Humphreys [19, Proposition 21.3]). Let pV, φq
be an irreducible representation of g. Then the set Πpφq is saturated with
highest weight χφ. In particular, for χ P Πpφq and α P Φ, the elements
of Πpφq of the form χ` iα, i P Z form an unbroken string

χ` iα, i P J´r, qK

and r ´ q “ xχ, αy.
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The unique maximal element χφ of Πpφq from Proposition 2.4 is called
the the highest restricted weight of φ. By definition, for every a P a`

one has χφpaq “ λ1

`

φpaq
˘

, the spectral radius of φpaq. The restricted
weight space associated to χφ is

(2.2) V ` “ V χφ “
 

v P V : φpnqv “ t0u
(

.

To simplify notation, for α P Φ`, we let ǧα “ g´α, then one has the
following.

Remark 2.5. The subspaces of the form φpǧβ`q ¨ ¨ ¨φpǧβ0qV
` with

βi P ∆ (repetitions allowed) that do not identically vanish are in direct
sum. Indeed, such a space is contained the restricted weight space
associated to

χφ ´
ÿ̀

i“0

βi.

Every weight of φ is obtained in this fashion, moreover, by construction
every weight χ P Πpφq can be written as χ “ χφ ´ β0 ´ ¨ ¨ ¨ ´ β`, with
βj P ∆, in such a way that all the partial sums

χ “ χφ ´ β0 ´ ¨ ¨ ¨ ´ βj j P J1, `K

are weights of φ.

Example 2.6. Let us treat the example of the defining representation
φ of sldpRq, i.e. the identity representation φ : sldpRq Ñ sldpRq. A
Cartan subspace is

a “ tdiagpa1, ¨ ¨ ¨ , adq : ai P R and
ÿ

ai “ 0u.

A set of simple roots is ∆ “ tβiu
d´1
1 , where for each i P J1, d ´ 1K one

lets βipaq “ ai´ai`1, and the associated Weyl chamber is a` “ ta P a :
ai ě ai`1, i P J1, d´ 1Ku.

The highest weight of the representation φ is χφ P a
˚ such that for all

a P a` one has χφpaq is the spectral radius of φpaq “ a. By the choice
of a` one has χφ “ $β1 : a ÞÑ a1. The remaining weights of φ, i.e. the
elements of a˚ describing the eigenvalues of a P a, are Πpφq “ tεipaq “

aiu
d´1
1 . We find them algorithmically from $β1 and ∆ by means of

Proposition 2.4 and Remark 2.5 as follows:

1) Consider the simple roots σ that are not orthogonal to χφ (equiv-
alently such that xχφ, σy ‰ 0). In this case only σ “ β1 works,
giving xχφ, β1y “ 1 by the very definition of χφ “ $β1 , so the β1-
string through χφ has length 1 which yields that χ2 “ $χ ´ β1 :
a ÞÑ a1 ´ pa1 ´ a2q “ a2 is a weight of φ.

2) We now consider the roots σ with xχ2, σy ‰ 0. By linearity of x , y
on the first coordinate one sees that only β1 and β2 work in this
case, with values ´1 and 1 respectively. The first one gives that
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χ2 ` β1 is a weight (which we already new), and the second one
gives χ3 “ p$β1 ´ β1q ´ β2 : a ÞÑ a3 is a weight of φ.

3) one repeats the procedure to obtain the other weights.

3. Hasse diagrams for representations

If φ : gÑ glpV q is an irreducible representation of a real semi-simple
Lie algebra g without compact factors, then its set of weights carries
the partial order ą previously defined: χ ą ψ if the coefficients of χ´ψ
in ∆ are non-negative integers.

One defines then the Hasse diagram of the representation φ as a graph
whose vertices are the elements of Πpφq, and one draws an edge between
χ and ψ if and only if χ ´ ψ P ∆. Because of the non-symmetry of ą,
the edge should be a directed arrow, however we prefer to forget the
arrow and draw ψ below χ. It is also convenient to label the edge with
the simple root χ´ ψ.

These Hasse diagrams carry a natural grading or levels defined by
the function

level
´

χφ ´
ÿ

σP∆

kσσ
¯

“ 1`
ÿ

kσ.

By means of Remark 2.5 one can draw the Hasse diagram of a given
representation level by level, starting from it’s highest weight and in-
ductively checking, for a given weight χ P Πpφq the set of simple roots
σ P ∆ such that φpǧσqV

χ “ t0u. This in turn can be directly computed
from the root system Φ using Proposition 2.4: one computes xχ, σy and,
since all lower levels of the diagram are assumed to be known, one knows
whether χ` σ (down one level) belongs to Πpφq or not.

It is more convenient then to define the Hasse diagram as depending
only on the type of the root system Φ, and of a given dominant weight
χ P Π` that will play the role of the highest weight of an irreducible
representation.

Definition 3.1. The Hasse diagram of a root system of type L and
a given dominant weight χ P Π` will be denoted by HL

χ .

Example 3.2. For example, the Hasse diagram of a fundamental
weight $σ, where σ is such that 2σ R ∆, has

- solely $σ at the first level,
- only $σ ´ σ at the second level,
- the forms $σ´σ´β, for every β P ∆ neighboring σ in the Dynkin

diagram of the given root system, at the third level.

The remaining levels can become quickly very complicated.

Figure (1) depicts the Hasse diagrams of the exceptional root system
G2 for both its fundamental weights, the Dynkin diagram is added to
the picture together with the corresponding set of weights in each case.
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$α

ΠG2p$αq

$β

ΠG2p$βq

Figure 1. Hasse diagrams for fundamental weights of (ex-
tremal) roots of G2, together with the corresponding weight
sets (in black).

3.1. Maps between diagrams. Given two root systems of types J
and L, consider a function f : ∆L Ñ ∆J. We will define a diagram map
with labeling f , in short a diagram map, between two Hasse diagrams
as a function Tf : HL

χ Ñ HJ
χ1 such that if ψ0, ψ1 P H

L
χ then

ψ0 ´ ψ1 P ∆L implies Tf pψ0q ´ T
f pψ1q “ fpψ0 ´ ψ1q P ∆J.

Such a map is thus order preserving, level and labeling equivariant.
We say that Tf is surjective if it is set-wise surjective. If this is the
case, then necessarily f is surjective and both diagrams have the same
total number of levels.
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Let us emphasize that the function f is merely a set-wise function,
no condition on the associated function between the Dynkin diagrams
is required.

Example 3.3. Consider the following Dynkin diagrams that carry a
non-trivial involution, inv0 : ∆L Ñ ∆L say,

- the middle point symmetry in A`: ,

- Dn : ,

- the middle axis symmetry in E6: .

The quotient by the orbits of inv0 provides a labeling

- f : ∆A2n`1 Ñ ∆Bn ,
- f : ∆Dn Ñ ∆Cn ,
- f : ∆E6 Ñ ∆F4 ,

which induces surjective maps between the Hasse diagrams of the fun-
damental weight $σ of a given simple root and the fundamental weight
of fpσq. Figure (9) in the appendix depicts the E6 case for one of the
extremal roots.

Not every example comes from the fixed point set of an involution,
as the fundamental representation φ̄$α : g2 Ñ sl7pRq of the real split
Lie algebra g2 shows. This is depicted in Figure (2).

The existence of a surjective map between Hasse diagrams is of course
very restrictive as the following lemma shows.

Lemma 3.4. Consider two irreducible reduced root systems of types
J and L. Assume there exists

- f : ∆L Ñ ∆J such that fpαq is extremal for every extremal α P ∆L,

- for every extremal α a surjective diagram map Tf : HL
$α Ñ HJ

$fpαq

with labeling f.

Then, besides f “identity, the only possibilities for J, L, and f are listed
in Table 2.

Proof. The proof is a case by case verification. In Appendix A we
draw the Hasse diagrams for the fundamental weights of the extremal
roots of all irreducible reduced root systems and the non-existence ver-
ification is also proven. q.e.d.

To end this section we remark that when L “ D4, in spite of the appar-
ent symmetry of the B3’s given in Table (2), these correspond to different
cases. If one considers the complex algebras sop7,Cq and sop8,Cq, then

the labelling corresponds to the representation sop7,Cq Ñ sop8,Cq
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HG2
$α
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Tf

Figure 2. The surjective map HA6
$β1

Ñ HG2
$α

.

L J fibers of f

A2n
Bn @n

G2 if n “ 3 Figure (2)
A2n´1 C2n

B3 G2

Dn

Bn´1 @n ě 3

B3 if n “ 4

G2 if n “ 4

E6 F4

Table 2

that stabilizes a line in C8, whilst the labelling corresponds to the

fundamental representation of sop7,Cq associated to the short root of
B3. This is an irreducible representation with image in sop8,Cq called
the spin representation, see Fulton-Harris [12, Lecture 20, Ex. 20.38].
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Figure 3. The surjective maps HD4
$β
Ñ HB3

$β
and HD4

$β
Ñ HB3

$α

4. Discrete subgroups satisfying a coherence condition w.r.t.
eigenspaces

4.1. Review on Lie group representations. Let G be a reductive
real algebraic Lie group. If φ̄ : G Ñ GLpV q is a rational representation
then we denote by φ : g Ñ glpV q the induced representation on its
Lie algebra and we speak indistinctively of highest restricted weight,
restricted weight spaces, etc of φ and φ̄.

One has the following proposition from Tits [26, Theorem 7.2] that
guarantees existence of representations of G, the reader may also check
Abels-Margulis-Soifer [1, Theorem 6.3] We say that φ is proximal if
dimV ` “ 1 (recall Equation (2.2)).

Proposition 4.1 (Tits [26]). For every σ P ∆ there exists an irre-
ducible proximal representation of G whose highest restricted weight is
l$σ for some l P Zě1. If g is split then one can choose l “ 1.

Definition 4.2. For each σ P ∆, we will fix and denote by φ̄σ : G Ñ
GLpVσq a representation given by the above proposition.

Recall the definition of root spaces gα from § 2. For α P Φ` we
let ǧα “ g´α, ň “

À

αPΦ` ǧα and we consider the opposite minimal

parabolic subalgebras b “ g0‘n and b̌ “ g0‘ ň. The minimal parabolic
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subgroups are denoted by B and B̌ and defined as the normalizers in
G of b and b̌ respectively. The groups B and B̌ are conjugated. The
complete flag space of G is defined by F “ G{B. The G-orbit of

`

rBs, rB̌s
˘

P F ˆ F

is the unique open orbit of G and is denoted by Fp2q.
If pφ, V q is a proximal irreducible representation, then we let ϑ Ă ∆

be the set of simple roots non-orthogonal to χφ,

ϑ “ tσ P ∆ : xχφ, σy ‰ 0u.

Consider also the parabolic subgroup Pϑ whose Lie algebra is defined
by

pϑ “
à

σPΦ`Yt0u

gσ ‘
à

σPx∆´ϑy

g´σ.

The group Pϑ is the stabilizer in G of the line V `.

Definition 4.3. We will say that ϑ, or Pϑ, is the type of the stabilizer
of V `.

We also consider an opposite parabolic subgroup P̌ϑ whose Lie algebra
is

p̌ϑ “
à

σPΦ`Yt0u

g´σ ‘
à

σPx∆´ϑy

gσ.

It is conjugated to the parabolic group Piϑ. We denote the flag space
associated to ϑ by Fϑ “ G{Pϑ. The G orbit of the pair prPϑs, rP̌ϑsq is
the unique open orbit for the action of G in the product Fϑ ˆ Fiϑ and

is denoted by F
p2q
ϑ .

One has a φ̄-equivariant algebraic map

Φ “ Φφ̄ : Fϑ Ñ PpV q

defined by Φφ̄pgrPϑsq “ φ̄pgqV `. The φpaq-invariant complement

V ´ :“
à

χPΠpφq´tχφu

V χ

is stabilized by P̌ϑ, giving also a map Φ̌ “ Φ̌φ̄ : Fiϑ Ñ PpV ˚q defined

by Φ̌pg ¨ rP̌ϑsq “ φ̄pgqV ´, where we have used the natural identification
between PpV ˚q and GrdimV´1pV q given by Rϕ ÞÑ kerϕ.

4.2. Jordan-Kostant-Lyapunov’s projection and Benoist’s limit
cone. Recall that every element h P G can be uniquely written as a com-
muting product h “ hehsshn where he is conjugate to an element in K,
hss is conjugate to an element in exppa`q and hn is unipotent. The
Jordan-Kostant-Lyapunov projection λ “ λG : G Ñ a` is defined such
that hss is conjugated to exp

`

λphq
˘

.
If Λ Ă G is a discrete subgroup, then its limit cone is denoted by LΛ

and is defined as the smallest closed cone that contains tλpgq : g P Λu.
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One has the following fundamental result by Benoist. Recall that ass “
aX gss.

Theorem 4.4 (Benoist [3, Théorème 1.2]). Let Λ ă G be a Zariski
dense subgroup. Then the limit cone LΛ is convex and the intersection
LΛ X ass has non-empty interior in ass.

4.3. Coherent subgroups. For g P GLdpRq let us denote by

λpgq “
`

λ1pgq, ¨ ¨ ¨ , λdpgq
˘

P a`

its Jordan projection. By definition, the coordinates of λpgq are the
logarithms of the modulus of the eigenvalues of g, counted with mul-
tiplicity and in decreasing order. If λ1pgq ą λ2pgq we say that g is
proximal. Equivalently, the generalized eigenspace associated to the
greatest (in modulus) eigenvalue of g is 1-dimensional. We will denote
by g` P PpR

dq this attracting eigenline and by g´ its g-invariant com-
plementary subspace.

A discrete subgroup Λ ă PGLdpRq is proximal if it contains a proximal
element. One defines then its limit set by

LPΛ “ tg` : g P Λ proximalu.

Recall from the introduction that LPΛ is minimal if the only closed

Λ-invariant subsets of LPΛ are tH,LPΛu.

Lemma 4.5. Let Λ ă PGLdpRq be proximal with minimal LPΛ. If Λ

acts totally reducibly in Rd then span LPΛ is an irreducible factor of Λ.

Proof. Let g P Λ be proximal and V an irreducible factor. If v P V
does not lie in g´ then gnpR ¨ vq Ñ g`. Consequently, since V is closed
and g-invariant, if g` R V one concludes V Ă g´. Thus, g` necessarily
belongs to an irreducible factor of Λ, W say. The subset LPΛ X PpW q
is then non-empty, closed and Λ-invariant. Minimality completes the
proof. q.e.d.

Definition 4.6. A discrete subgroup Λ ă PGLdpRq is coherent if

- there exists a proximal g0 P Λ such that ^2g0 is proximal and the
eigenline associated to λ2pg0q belongs to span LPΛ,

- the limit sets LPΛ and LP
^2Λ are minimal.

Example 4.7. The typical example of a coherent group are the so-
called p1, 1, 2q-hyperconvex representations from Pozzetti-S.-Wienhard
[24].

The main feature of coherence one should keep in mind is that, neces-
sarily, the generalized eigenspace V2pg0q of g0 associated to λ2pg0q is one
dimensional, and both lines pg0q` and V2pg0q lie in the same irreducible
factor of Λ on Rd. This will be further explained in the proof of the
following Lemma.
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Lemma 4.8. Let Λ ă PGLdpRq be a coherent subgroup with reductive
Zariski closure H and let h “ LiepHq. Then there exists a unique σ P ∆h

such that for every g P Λ one has

σ
`

λHpgq
˘

“ λ1pgq ´ λ2pgq.

Moreover dim hσ “ 1.

Proof. By Lemma 4.5 the representations H| span LPΛ and H| span LP
^2Λ

are irreducible. Let χ1 and χ2 be their highest restricted weights,
then 2χ1 ´ χ2 verifies that for all g P Λ one has 2χ1 ´ χ2pλHpgqq “
λ1pgq ´ λ2pgq.

Denote by tWiu
k
1 the irreducible factors of Λ enumerated so that

W1 “ span LPΛ. For g P Λ with ^2g proximal, denote by V2pgq either
the eigenline associated to λ2pgq if g is proximal, or the 2-dimensional
Jordan block associated to λ1pgq otherwise. One readily sees that, in
both situations, the vector space V2pgq necessarily intersects one of the
Wi’s.

We can identify LP
^2Λ as a subset of Gr2pR

dq and thus consider the

closed ^2Λ-invariant subsets

Li “
 

P P LP^2Λ : P XWi ‰ t0u
(

.

The intersections Li X Lj are also invariant and closed so by minimal-

ity, each intersection is either empty or LP
^2Λ. However, the element g0

from the definition of coherence is proximal with ^2g0 proximal, so its
attracting line p^2g0q` P LP

^2Λ is g0 ‘ V2pg0q P Gr2pR
dq. This latter

plane is, by assumption, contained in W1 “ span LPΛ, which yields

- L1 “ L^2Λ and
- all intersections L1 X Lj , for j ą 1, are empty.

We conclude that V2pgq Ă span LPΛ for every g P Λ with proximal ^2g.

Applying §2.3 to H| span LPΛ together with the preceding paragraph,
one has that for every g P Λ there exists αg P ∆h such that αgpλpgqq “
λ1pgq´λ2pgq. Since the limit cone LΛ has non-empty interior on aXhss,
(Benoist’s Theorem 4.4) and ∆h is a finite set, there exists an open sub-
cone C Ă LΛ and a root σ P ∆h such that for every v P C

σpvq “
`

2χ1 ´ χ2

˘

pvq.

Since both functions are linear and coincide on an open set, they must
coincide and σ is the required root. The same argument gives uniqueness
of σ. The fact that hσ is one dimensional follows from the fact that, for
every g P Λ, up to conjugation, one has hσV

` “ V χ1´σ is the eigenspace
associated to λ2pg0q, which is one dimensional. q.e.d.

Definition 4.9. Let G be a reductive group and Λ a discrete sub-
group. Then Λ is totally coherent if for every σ P ∆ the subgroup φ̄σpΛq
is coherent.
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The following is the main result of this section.

Proposition 4.10. Let G be a real-algebraic simple group and Λ ă G
a totally coherent discrete subgroup with reductive Zariski closure H.
Then hss is simple split. Moreover, there exists a surjective function
f : ∆g Ñ ∆h and, for every α P ∆g, a surjective map with labeling f
between the diagrams

Tf : Hg
`α$α

Ñ Hh
nα$fpαq

,

for some nα P Zě1. If α is extremal then fpαq is extremal, if moreover
rank hss ą 1, 2α R Φ and `α “ 1 then nα “ 1.

Proof. Let us denote by ῑ : H Ñ G the representation induced by the
inclusion of H in G and by ι : hÑ g its derivative.

Since Λ is totally coherent, applying Lemma 4.8 to each representa-
tion φ̄σ of G provides a function f : ∆g Ñ ∆h such that for every g P Λ
and σ P ∆g one has

(4.1) fpσq
`

λHpgq
˘

“ σ
`

λGpῑpgqq
˘

.

Consider then α P ∆g and the associated fundamental representation
φ̄α : G Ñ GLpV q. Since H is reductive, Lemma 4.5 implies that W “

span LP
φ̄αΛ

is an irreducible factor of φ̄αH. Let φ : h Ñ glpW q be the

representation of h defined by φ “ φαpιhq|W and χφ P Πhpφq its highest
restricted weight.

As stated in Remark 2.5 every element χ P Πgpφαq is of the form

(4.2) χ “ `α$α ´
ÿ

σP∆g

kσσ,

where kσ P Zě0 for every σ. Define then function Tf : Πgpφαq Ñ Πh by

Tf pχq “ χφ ´
ÿ

σP∆g

kσfpσq,

if χ is as in Equation (4.2). For every χ P Πgpφαq and β P Φh one has

xTf pχq, βy “ xχφ, βy ´
ÿ

σP∆g

kσxfpσq, βy P Z,

so Tf pχq is indeed a weight of h, moreover Tf is level preserving. Ob-
serve also that for every g P Λ one has, by Equation (4.1), that

Tf pχq
`

λHpgq
˘

“ χ
`

λGpῑgq
˘

,

so that for every v P LΛ one has Tf pχqpvq “ χpιvq. Thus, for every

v P LΛ and w P V Tf pχq one has

φpvqw “ χpιvqw “
`

Tf pχqpvq
˘

w.

Since LΛ has non-empty interior in ah,ss (Theorem 4.4) and Πgpφαq is
finite, there exists an open sub-cone C Ă LΛ such that for every u P C
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the eigenvalues Tf pχqpuq, for χ P Πgpφαq, are pairwise distinct. This is
to say, the decomposition

V “
à

χPΠgpφαq

V Tf pχq

consists, for every u P C , on eigenspaces associated to pairwise distinct
eigenvalues of φpuq. Thus, intersecting with W and since C is open, we
obtain that

W “
à

χPΠgpφαq

W X V Tf pχq

is the weight space decomposition of φ. Thus Tf has values in Πhpφq
and is moreover surjective onto this set.

Since G is simple, φα is injective and thus, since any weight of φαpιhq
is contained in Πhpφq, φαpιhssq is simple and thus hss is. Consequently,
f is surjective and, since dimphssqfpαq “ 1 for every α (Lemma 4.8), hss
is split.

From surjectivity of Tf , and since there is only one weight of φα of
level 2 (the weight `α$α´α, recall Example 3.2) one has that for every
β P ∆h´tfpαqu the linear form χφ´β is not a weight, hence xχφ, βy “ 0
and thus χφ “ nα$fpαq for some nα P Zě1.

Let us assume from now on that α is an extremal root of ∆g, so that
the only weights of level 3 of φα are `α$α ´ α ´ β for a unique root
β P ∆g, and `α$α ´ 2α (only if `α ě 2 or if 2α P Φ). This implies that
the only weights of level 3 of φ are nα$fpαq´ fpαq´ fpβq, and possibly
nα$fpαq ´ 2fpαq.

Hence xnα$fpαq ´ fpαq, σy “ 0 for every σ P ∆h ´ tfpαq, fpβqu from
which fpαq is an extremal root of ∆h. Moreover, either

- fpαq “ fpβq i.e. for every σ P ∆h ´ tfpαqu one has

0 “ xnα$fpαq ´ fpαq, σy “ ´xfpαq, σy

and thus hss has rank 1,
- or fpαq ‰ fpβq. In this case, if one assumes moreover that `α “ 1

and 2α R Φ, then nα$fpαq ´ 2fpαq R Πhpφq and hence nα “ 1.

This completes the proof. q.e.d.

4.4. Classification of Zariski closures of totally coherent groups.
Throughout this section, g is a simple split real Lie algebra, G is a real-
algebraic Zariski connected Lie group with Lie algebra g and Λ ă G is
a totally coherent discrete subgroup with reductive Zariski closure H.
The purpose is to classify the pairs phss, φq where φ : hss Ñ g is the
representation induced by the inclusion H Ă G. By Proposition 4.10 hss
is simple split.

One begins by the following:

Corollary 4.11. If hss has rank 1 then it is a principal sl2pRq of g.
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Proof. Consider α P ∆ and let us compose the inclusion of hss with
a fundamental representation φα of g. Throughout the proof of Propo-
sition 4.10 it is stablished that the highest weight space V ` of φα is
also the highest weight space of some non-trivial irreducible factor of
φαpιhssq, of highest weight nα$fpαq, for some nα P Zě1, and a function
f : ∆g Ñ ∆h, necessarily constant in this is case.

There exists then a non-zero f P ιphssq X ň. Consider w P V ` “

V nα$fpαq . Since V nα$fpαq is the highest weight space of the representa-
tion φ : hss Ñ glpW q,

0 ‰ φpfqv P V nα$fpαq´fpαq Ă V `α$α´α.

Additionally, we compute φαpfqv upon writing f “
ř

σPΦ` bσyσ. To
this end, consider the set Rα of positive roots with non-vanishing coef-
ficient on α (in the basis ∆) and its complement RAα on Φ`,

Rα “ tβ P Φ` : x$α, βy ‰ 0u

RAα “ tβ P Φ` : x$α, βy “ 0u

By Proposition 2.4, if β P RAα one has `α$α´β R Πpφαq, so φαpyβqv “ 0.
However, again by Proposition 2.4, if β P Rα then `α$α ´ β P Πpφαq,
giving φαpyβqv ‰ 0.

Thus,

V `α$α´α Q φαpfqv “
ÿ

σPΦ`

bσ
`

φαpyσqv
˘

“
ÿ

σPRα

bσ
`

φαpyσqv
˘

`
ÿ

σPRAα

bσ
`

φαpyσqv
˘

“
ÿ

σPRα

bσ
`

φαpyσqv
˘

.

Since the weight spaces V `α$α´β are in direct sum for distinct β P Φα,
one concludes bβ “ 0 for all β P Rα ´ tαu and bα ‰ 0.

The same argument applied to the remaining fundamental represen-
tations φσ, for σ P ∆, give that f “

ř

σP∆ bσσ and that bσ ‰ 0 for all
σ P ∆. Kostant’s Theorem 2.2 asserts then that hss is a principal sl2pRq.
q.e.d.

If the rank of hss is at least 2 then, since the fundamental repre-
sentations of g verify `α “ 1 for all α P ∆g, Proposition 4.10 pro-
vides a surjective function f : ∆g Ñ ∆h such that the image of an
extremal root is an extremal root, and for every α P ∆g a surjective

map Tf : Hg
$α Ñ Hh

$fpαq
between the corresponding Hasse diagrams.

Applying the Table (2) given by Lemma 3.4 one concludes at once the
following Corollary.
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Corollary 4.12. If rank hss ě 2 and hss ‰ g, then the only possibili-
ties for φ : hss Ñ g are, up to Int g-conjugation, the ones listed in Table
3.

g hss φ : hss Ñ g

sl2n`1pRq
sopn, n` 1q @n defining representation

g2 if n “ 3 fundamental for the short root
sl2npRq spp2n,Rq defining representation
sop3, 4q g2 fundamental for the short root

sopn, nq

sopn´ 1, nq @n ě 3 stabilizer of a non-isotropic line
sop3, 4q if n “ 4 fundamental for the short root

g2 if n “ 4
stabilizes a non-isotropic line L and is
fundamental for the short root on LK

e6 f4 Fixpinv0q (Example 3.3)
Table 3. Statement of Corollary 4.12

5. Total positivity

Throughout this section G denotes the real points of a Zariski con-
nected real-algebraic simple split group.

5.1. Lusztig’s total positivity. Let us fix, for each simple root σ P ∆,
algebraic group isomorphisms xσ : R Ñ exp gσ, yσ : R Ñ exp ǧσ and
hσ : RÑ exppR ¨ hσq so that

p 1 t
0 1 q ÞÑ xσptq, p 1 0

t 1 q ÞÑ yσptq, p
t 0
0 t´1 q ÞÑ hσptq,

defines a morphism SL2pRq Ñ G (recall § 2.1.1 on the existence of such
morphisms). The collection O “

 

xσ : σ P ∆u is called a pinning of G
and two pinnings are conjugated by G.

Let ň “
À

αPΦ` ǧα. Denote by U “ exp n and by Ǔ “ exp ň the

unipotent radicals of B and B̌ respectively. Let A “ exp a and let M be
the centralizer in K of exp a, one has

(5.1) B “ MAU.

Let w0 PW be the longest element and consider a reduced expression
w0 “ rN ¨ ¨ ¨ r1 as a product of reflections associated to simple roots.
Let us denote, for each ri the associated simple root by σri P ∆. The
number N equals |Φ`|, but we will not require this fact.

Consider the maps ΨO : pRą0q
N Ñ U and Ψ̌O : pRą0q

N Ñ Ǔ defined
by

ΨOpa1, ¨ ¨ ¨ , aN q “ xσrN paN q ¨ ¨ ¨xσr1 pa1q,

Ψ̌Opa1, ¨ ¨ ¨ , aN q “ yσrN paN q ¨ ¨ ¨ yσr1 pa1q.(5.2)
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We summarize several results from Lusztig [23, §2] in the following
theorem.

Theorem 5.1 (Luzstig [23, §2]). The images Uą0 “ ΨO
`

pRą0q
N
˘

and Ǔą0 “ Ψ̌O
`

pRą0q
N
˘

are semi-groups independent of the chosen
reduced expression of w0. The product

Gą0 “ Ǔą0AUą0 “ Uą0AǓą0

is also a semi-group and every element g P Gą0 has a unique expression
of the form g “ ǔtv with ǔ P Ǔą0, t P A and v P Uą0.

Even though we omit the pinning notation on the semi-groups Uą0,
Ǔą0 and Gą0, they do depend on the pinning O. For example, fixing the
pinning on SLnpRq

`

1 t
0 1

˘

ÞÑ xiptq “ id`tei,i`1, i P J1, d´ 1K,

where ei,j is the n ˆ n matrix consisting of vanishing entries except
at pi, jq, whose entry equals 1, gives the semi-group SLnpRqą0 of totally
positive matrices mentioned in the Introduction. However one may con-
sider other pinnings. We list below four possibilities for the unipotent
semi-groups Uą0 in SL3pRq corresponding to different pinnings:

UO1
ą0 “

!´ 1 x`z xy
1 y

1

¯

: x, y, z P Rą0

)

,

UO2
ą0 “

!

ˆ

1 ´px`zq ´xy
1 y

1

˙

: x, y, z P Rą0

)

,

UO3
ą0 “

!´ 1 x`z ´xy
1 ´y

1

¯

: x, y, z P Rą0

)

,

UO4
ą0 “

!

ˆ

1 ´px`zq xy
1 ´y

1

˙

: x, y, z P Rą0

)

.

5.2. Positivity of flags. The positive semi-group Gą0 determines a
special subset Fą0 Ă F defined by

Fą0 “ Gą0 ¨ rBs “ Ǔą0 ¨ rBs “ Uą0 ¨ rB̌s.

Let us say that an ordered triple px1, x2, x3q P F
3 is in general position

if for all 1 ď i ă j ď 3 one has pxi, xjq P F
p2q. Then one has the following.

Proposition 5.2 (Lusztig [23, Prop. 8.14]). The subset Fą0 is a
connected component of

!

x P F :
`

rBs, x, rB̌s
˘

is in general position
)

.

In particular it is an open subset of F.

One then defines positivity on triples of flags as being G-equivariant,
consequently the notion will not depend on the pinning:

Definition 5.3. A triple of flags in general position px, y, zq is positive
if there exists g P G such that gx “ rBs, gz “ rB̌s and gy P Fą0.
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5.3. Simply laced G. Recall that g is simply laced if for every pair
σ, α P ∆ one has xσ, αy “ xα, σy (recall the definition of x , y in Equation
(2.1)). Equivalently, the Dynkin diagram of g does not contain a double
or triple arrow. Moreover, G is called algebraically simply connected
if every finite covering from a real algebraic group onto G is trivial,
equivalently the group GC of C-points of G is simply connected in the
topological sense.

Proposition 5.4 (Lusztig [23, §3.1 and Prop. 3.2]). Assume that G
is simply laced and algebraically simply connected. Let φ̄ : G Ñ GLpV q
be an irreducible real representation, then there exists a basis Bφ̄ of V
such that

- each element of Bφ̄ is contained in a restricted weight space of φ,

- for every g P Gą0, the map φ̄pgq : V Ñ V has positive entries on
the basis Bφ̄.

5.4. Theorem A for simply laced G. We devote this section to the
proof of Theorem A when G is simply laced and algebraically simply
connected. We prove that a discrete subgroup verifying the hypothesis
of Theorem A is totally coherent.

Corollary 5.5. Let G be simply laced and algebraically simply con-
nected, and Λ a subgroup with minimal limit sets and such that LΛ,∆

contains a positive loxodromic triple. Then Λ is totally coherent.

Proof. For σ P ∆ consider the fundamental representation φ̄σ : G Ñ
GLpV q and the φ̄σ-equivariant map Φ : Ftσu Ñ PpV q from § 4.1. Let

also ^2 : GLpV q Ñ GLp^2V q denote the second exterior power repre-
sentation.

By minimality one has that

Φ
`

LΛ,tσu

˘

“ LPφ̄σpΛq.

Moreover, since the only second level weight of φ̄σ is $σ ´ σ (recall
Example 3.2), the representation ^2φ̄σ of G is proximal, though it may
be reducible. Denote by ψ̄ : G Ñ GLpV 1q the G-irreducible factor con-
taining the highest weight of ^2φ̄σ. It contains the attracting points
of ^2g for every g P G proximal on F. Let ϑ Ă ∆ be the type of the
stabilizer in G (recall Definition 4.3) of V $σ ^ V $σ´σ. The limit set
LΛ,ϑ is also minimal and one has Φψ̄

`

LΛ,ϑ

˘

“ LP
^2φ̄σpΛq

so the latter is

thus minimal.
Finally, consider g0 P Λ proximal on F and x0 P LΛ,∆ so that

pg0`, x0, g0´q is a positive triple. We can assume that g0` “ rBs and

g0´ “ rB̌s so that Φpg0`q “ V ` and Φ̌pg0´q “ V ´ (recall notation from
§ 4.1). We want to show that V $σ´σ belongs to span ΦpLΛ,tσuq.

Let g P Gą0 be such that

Φpx0q “ Φ
`

g ¨ rBs
˘

“ φ̄σpgq ¨ Φpg0`q.
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Consider then the 2-dimensional subspace Px0 “ Φpg0`q‘ φ̄σpgqΦpg0`q

and let `x0 P PpV q be the intersection

`x0 “ Px0 X V
´.

Since G is simply laced, Lusztig’s Proposition 5.4 applies to give that
φ̄σpgq has positive coefficients in Bφ̄σ . In particular, if v P V ` ´ t0u

the vector φ̄σpgqv has positive coefficients in Bφ̄σ . The line `x0 is thus
not contained in any subspace spanned by a partial sum of weights in
Πpφσq´t$σu, i.e. `x0 is not contained in any φ̄σpg0q-invariant subspace
of V ´. Consequently, the sequence φ̄σpg0

nq¨`x0 approaches, as nÑ `8,
the φ̄σpg0q-invariant subspace of V ´ associated to the top eigenvalue of
φ̄pg0q|V

´, which is V $σ´σ. This completes the proof. q.e.d.

Corollary 5.5 together with subsection § 4.4 give thus the following.

Corollary 5.6. Let G be simply laced and algebraically simply con-
nected, and let Λ ă G have reductive Zariski closure H, minimal limit
sets and such that LΛ,∆ contains a positive loxodromic triple. Then hss
is either g, a principal sl2pRq or Int g-conjugated to the possibilities listed
in Table 4.

g hss φ : hss Ñ g

sl2n`1pRq
sopn, n` 1q @n defining representation

g2 if n “ 3 fundamental for the short root
sl2npRq spp2n,Rq defining representation

sopn, nq

sopn´ 1, nq @n ě 3 stabilizer of a non-isotropic line
sop3, 4q if n “ 4 fundamental for the short root

g2 if n “ 4
stabilizes a non-isotropic line L and is
fundamental for the short root on LK

e6 f4 Fixpinv0q (Example 3.3)
Table 4. Statement of Corollary 5.6

5.5. Descent. The purpose of this section is to briefly explain how to
bypass the simply-laced hypothesis in Corollary 5.5. We use a standard
technique called descent. It consists on observing that every simple split
Lie algebra g is the fixed point set of an automorphism κ̄ : 9g Ñ 9g of a
simply laced split simple Lie algebra 9g. One requires also that the action
of κ̄ on the simple roots of 9g is such that if α, β P ∆ 9g are in the same
κ̄-orbit then xα, βy “ 0. See Table 5.

With these considerations, one has the following proposition from
Lusztig.

Proposition 5.7 (Lusztig [23, §8.8]). Let G be algebraically simply
connected. Then there exists a simply laced, simply connected, simple
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type of 9g type of g orbits of κ̄
A2n´1 Cn

Dn Bn´1

D4 G2

E6 F4

Table 5

split group 9G and a rational representation ψ̄ : G Ñ 9G together with an
equivariant map Φ : FG Ñ F 9G such that

Φ
´

`

FG

˘

ą0

¯

Ă

´

`

F 9G

˘

ą0

¯

.

We can now conclude the proof of Theorem A.

Corollary 5.8. Let G be the real points of a real-algebraic, Zariski
connected, simple split group. Let Λ ă G be as in Theorem A. Then the
semi-simple part hss is either g, a principal sl2pRq or Int g-conjugated
to the possibilities listed in Table 3.

Proof. By passing to a finite cover we can assume that G is simply
connected, the pre-image of Λ under this covering has again minimal
limit sets and its limit set on F contains a positive loxodromic triple.
From Proposition 5.7 one finds a simply-laced 9G and a rational represen-
tation ψ̄ : G Ñ 9G such that ψ̄Λ is partially positive. Applying Corollary
5.6 to ψ̄Λ gives the required result. q.e.d.

5.6. Partially positive representations preserve type. Recall that
G is the real points of a real algebraic, Zariski connected, simple split
group.

Let X be a proper Gromov-hyperbolic space and Γ ă IsompXq a
non-elementary discrete subgroup, then one has the following facts from
Ghys-de la Harpe [14, §8.2]:

i) the action of Γ on the visual boundary of X has a smallest closed
Γ-invariant subset denoted by BXΓ, the Γ-action on BXΓ is thus
minimal;

ii) every γ P Γ is either
- of finite order (called elliptic),
- proximal, i.e. has two fixed points γ´, γ` P BXΓ such that for

every x P BXΓ ´ tγ´u one has γnxÑ γ` as nÑ `8,
- parabolic, i.e. has a unique fixed point xγ P BXΓ and every x P
BXΓ converges to xγ under the iterates γn as n Ñ `8 (some
points will drift away from xγ before coming back though).
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iii) The attracting points of proximal elements are dense in BXΓ.

Let us fix throughout this subsection a partially positive representa-
tion ρ : Γ Ñ G with continuous ρ-equivariant map ξ : BXΓ Ñ F. We
begin by showing that it is type preserving. Recall from Equation (5.1)
the definition of unipotent radical.

Proposition 5.9. If γ P Γ is proximal then ρpγq is proximal on F with
attracting flag ξpγ`q and repelling flag ξpγ´q. If h P Γ is parabolic then
there exists k P Ně1 such that ρphkq belongs to the unipotent radical of
ξpxhq, moreover, there exists an open set O Ă F such that hnz Ñ ξpxhq
for every z P O.

Proof. We divide the proof into Lemmas 5.10 and 5.11 below. q.e.d.

Let M be the centralizer in K of exp a, as g is split this is a finite group.
For σ P ∆, let us denote by φ̄ “ φ̄σ : G Ñ SLpV q and by Φ : F Ñ PpV q,
Φ̌ : F Ñ PpV ˚q the corresponding φ̄-equivariant maps (recall § 4.1).

Lemma 5.10. For every proximal γ P Γ, φ̄ρpγq is proximal with
attracting line Φξpγ`q and repelling hyperplane Φ̌ξpγ´q.

Proof. By passing to a finite cover we can assume that G is alge-
braically simply connected. In view of Proposition 5.7 we can also as-
sume that G is simply laced and thus make use of Lusztig’s canonical
basis Bφ̄σ (Proposition 5.4).

By conjugating ρ we may assume that ξpγ`q “ rBs and that ξpγ´q “
rB̌s. Since ρpγq fixes both complete flags ξpγ`q and ξpγ´q, it can be
written as

(5.3) ρpγq “ mρpγq exppaγq

for a unique aγ P a and mρpγq P M.

The composition Φξ : BXΓ Ñ PpV q is a continuous φ̄ρ-equivariant
map. By the assumptions ξpγ`q “ rBs and ξpγ´q “ rB̌s, one has

Φξpγ`q “ V ` and Φ̌ξpγ´q “ V ´ “
à

χPΠpφq´t$σu

V χ

respectively.
By definition there exists x P BXΓ distinct from γ` and γ´ and

g P Gą0 such that ξpxq “ gξpγ`q. Lusztig’s Proposition 5.4 states, in
particular, that if v P V ` is non-zero then φ̄σpgqv “

ř

ePBφ̄
cee with

ce ą 0 for all e.
Additionally, Equation (5.3) implies that φ̄ρpγq is the commuting

product of a matrix diagonal in Bφ̄ and a finite order element. Let us

denote thus by Ωepγq the (possibly complex) eigenvalue of φ̄ρpγq of the
vector e P Bφ̄ and let µ1pφ̄ρpγqq be the spectral radius of φ̄ρpγq.
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If k is the order of mρpγq, then φ̄
`

ρpγqk
˘

is diagonal in Bφ̄, so that

Ωepγq
k P R and one has for all n P N

(5.4)
1

µ1

`

φ̄ρpγq
˘nk

`

φ̄ρpγnkq
˘

pgvq “
ÿ

ePBφ̄σ

´ Ωepγq

µ1

`

φ̄ρpγq
˘

¯nk
cee.

Since γnx Ñ γ`, equivariance implies φ̄ρpγnqpgV `q Ñ V `. Conse-
quently, given that ce ą 0, Equation (5.4) yields

|Ωepγq| ă µ1

`

φ̄ρpγq
˘

for every e except the one in V ` and thus the spectral radius of φ̄ρpγq
is (only) attained on V `. Consequently φ̄ρpγq is proximal and Φξpγ`q
is the attracting point of φ̄ρpγq. q.e.d.

Lemma 5.11. Let h P Γ be parabolic with fixed point xh, then there
exists k P Ně1 such that ρphkq belongs to the unipotent radical of ξpxhq,
moreover, there exists an open set O Ă F such that hnz Ñ ξpxhq for
every z P O.

Proof. Again we can assume that G is simply laced and algebraically
simply connected and make use of Lusztig’s canonical basis Bφ̄ (Propo-

sition 5.4). We assume moreover that ξpxhq “ rBs and that rB̌s “ ξpz0q

for some auxiliary point z0 P BXΓ. One has then Φξpxhq “ V `. Let us
write

(5.5) ρphq “ mρphq exppahquh

where mh P M has finite order, commutes with exp ah P A and normal-
izes uh P U.

Since every element of e P Bφ̄ belongs to a restricted weight space

Vχe of φ̄, we can order Bφ̄ so that e ě f if χe ą χf , (the order between
elements lying in the same weight space, or between weight spaces of
the same level, is not relevant for the following). The elements of A ¨
U are upper triangular in Bφ̄, so if k is the order of mρphq then the

transformation φ̄ρphkq is upper triangular in Bφ̄.

Let us denote by µ1 “ expλ1

`

φ̄ρphkq
˘

the spectral radius of φ̄ρphkq

and by Vµ1 the sum of Jordan blocks of φ̄ρphkq associated to µ1. Since
φ̄ has values in SLpV q (because G is simple) one has µ1 ě 1.

By Equation (5.5) and the definition of Bφ̄, the intersection Vµ1XBφ̄

is a basis of Vµ1 . Denote by π : V Ñ Vµ1 the projection parallel to the
vector space spanned by the remaining elements of Bφ̄. If ` P PpV q is
not contained in kerπ then one has

(5.6) dP
`

φ̄ρphqkn ¨ `,PpVµ1q
˘

Ñ 0

as nÑ8.
By definition, there exists x P BXΓ ´ txh, z0u and g P Gą0 such

that ξpxq “ g ¨ rBs. As before, if v P V ` is non-zero then φ̄pgqv has
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positive coefficients in Bφ̄. This implies, in particular, that Φξpxq “

φ̄pgqV ` Ć kerπ. Since hnx Ñ xh one has φ̄ρphqn
`

Φξpxq
˘

Ñ Φξpxhq,
which combined with Equation (5.6) gives Φξpxhq P Vµ1 . In particular,

φ̄pρphkqqv “ µ1v.

Additionally, since h´1 is also parabolic with fixed point xh, the above
argument applied to h´1 gives that v P V ` belongs to the eigenspace
associated to the spectral radius of φ̄ρph´kq. However φ̄ρph´kqv “ µ´1

1 v

so the spectral radius of φ̄ρph´kq is µ´1
1 ď 1. Since the spectral radius

of any element is at least 1, we obtain µ1 “ 1 and that φ̄ρphqk is upper
triangular on Bφ̄ with 1’s in the diagonal, i.e. ρphkq P U.

Considering x P BXΓ ´ txhu and g P Gą0 as before; one has that
Φξpxq “ φ̄pgqV ` does not belong to a φ̄ρphq-invariant subspace. Con-
sequently, since φ̄ρphqnΦξpxq Ñ Φξpxhq, the same holds on a neighbor-
hood of Φξpxq and the lemma is proved. q.e.d.

The following is an immediate consequence of Proposition 5.9.

Corollary 5.12. If ρ : Γ Ñ G is partially positive then it has minimal
limit sets.

Proof. Indeed, Proposition 5.9 readily implies that the limit set LρpΓq,∆ “

ξpBXΓq and moreover that LρpΓq,σ “ pσ
`

ξpBXΓq
˘

, where pσ : F Ñ Ftσu
is the canonical projection. q.e.d.

5.7. Proof of Theorem B. Corollary 5.12 together with Theorem A
would complete the proof of Theorem B provided the Zariski closure of
ρpΓq where reductive. The purpose of this subsection is thus to bypass
the ’reductive Zariski closure’ assumption. Consequently, Proposition
5.15 below and Theorem A prove Theorem B.

We begin by recalling the following lemma. It is a well known fact
that the reader may check in Guéritaud-Guichard-Kassel-Wienhard [15,
§2.5.4] or in Benoist’s lecture notes [4].

Lemma 5.13. Let Λ be a group and let ρ P hompΛ,Gq have non-
solvable Zariski closure L. Let l “ h‘πRuphq be a Levi decomposition of
the Lie algebra of L as a semi-direct product, with h reductive and Ruphq
its unipotent radical. Then there exists η P hompΛ,Gq whose Zariski
closure has Lie algebra h and a sequence pgnq P G with gnρg

´1
n Ñ η.

As in Guéritaud-Guichard-Kassel-Wienhard [15, §2.5.4], we say that
η is the semi-simplification of ρ (regardless its Zariski closure is reduc-
tive and not necessarily semi-simple, and regardless of any uniqueness
issues). We will also require the following slight modification of [15,
Proposition 4.13] whose proof works verbatim.

Proposition 5.14 ([15, Proposition 4.13]). Let Λ ă IsomX be non-
elementary and let ρ : Λ Ñ G be a representation with a continuous
equivariant map ξ : BXΛ Ñ F. Assume that ξ is
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(i) transverse, i.e. for every x ‰ y one has pξpxq, ξpyqq P Fp2q, and
(ii) dynamics preserving, i.e. for every proximal γ P Λ the image ρpγq

is proximal on F with attracting flag ξpγ`q.

Then the semi-simplification η : Λ Ñ G of ρ also has a continuous
η-equivariant map satisfying both these conditions.

We proceed now to the main step.

Proposition 5.15. If ρ : Γ Ñ G is partially positive then its semi-
simplification η has minimal limit sets and contains a positive loxo-
dromic triple.

Proof. By continuity of the Jordan projection and Proposition 5.9,
one has that ηpγq is purely loxodromic for every proximal γ P Γ, and
that for every parabolic h P Γ there exists k “ kh such that ηphqk is
unipotent.

Proposition 5.14 gives a η-equivariant continuous transverse map ξη :
BXΓ Ñ F such that for every proximal γ P Γ the flags ξηpγ`q and ξηpγ´q
are respectively the attracting and repelling flags of ηpγq. The limit set

LηpΓq,∆ “ ξη
`

BXΓ

˘

is thus minimal, and since every element of ηpΓq is either purely loxo-
dromic, unipotent (up to a finite power) or elliptic, for every σ P ∆ the
limit set LηpΓq,tσu is the projection of LηpΓq,∆u to Ftσu and is thus also
minimal.

In order to find a positive loxodromic triple in ξηpBXΓq, we observe
that for every proximal γ P Γ one has gnξρpγ`q Ñ ξηpγ`q as n Ñ

8. Indeed, for every σ P ∆ the line Φσ

`

gn ¨ ξρpγq
˘

is the eigenline of

φ̄σpgnρpγqg
´1
n q associated to its spectral radius

λ1

`

φ̄σpgnρpγqg
´1
n q

˘

“ λ1

`

φ̄σpρpγqq
˘

“ λ1

`

φ̄σpηpγqq
˘

.

Consequently, any accumulation point of
 

Φσ

`

gn ¨ξρpγq
˘(

is an eigenline

associated to λ1

`

φ̄σpηpγqq
˘

; since φ̄σ
`

ηpγq
˘

is proximal, this eigenline is

Φσ

`

ξηpγ`q
˘

.

By assumption, there exists x P BXΓ such that
`

ξρpγ`q, ξρpxq, ξρpγ´q
˘

is a positive triple of flags. By Proposition 5.2, Fą0 is an open subset of
F, thus, since attracting points of proximal elements are dense in BXΓ,
there exists a proximal h P Γ such that

`

ξρpγ`q, ξρph`q, ξρpγ´q
˘

is also
a positive triple.

We claim that
`

ξηpγ`q, ξηph`q, ξηpγ´q
˘

is a positive triple. Indeed,
let us assume with out loss of generality that ξηpγ`q “ rBs and that

ξηpγ´q “ rB̌s. One has the convergence

gn ¨
`

ξρpγ`q, ξρph`q, ξρpγ´q
˘

Ñ
`

rBs, ξηph`q, rB̌s
˘

and the triple gn ¨
`

ξρpγ`q, ξρph`q, ξρpγ´q
˘

is positive by definition. We
may then also assume that for every n, gn ¨ ξρph`q P gn ¨ Fą0. The limit
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ξηph`q of the sequence gn ¨ξρph`q lies thus in the topological closure Fą0.
Proposition 5.2 states that every element in the topological boundary
of Fą0 is not transverse to either rBs or rB̌s. However, as was observed
earlier, ξηph`q is both transverse to rBs and rB̌s and thus necessarily

lies in Fą0, the topological interior of Fą0. q.e.d.

To wrap up the proof of Theorem B, we observe that the Zariski
closure of ρpΓq and that of its semi-simplification ηpΓq have the same
reductive part h (Lemma 5.13), and Proposition 5.15 permits to apply
Theorem A to η, giving the desired conclusion.

5.8. Hyperconvexity. To end this section we record the following re-
mark that will be useful in Bridgeman-Pozzetti-Wienhard-S. [6].

Remark 5.16. Assume that BXΓ is homeomorphic to a circle, and
that a partially positive ρ : Γ Ñ G verifies the extra condition that ξ
sends positive ordered triples on BXΓ to positive triples of flags. Then
for every σ P ∆ and x, y, z P BXΓ pairwise distinct one has

`

Φξpxq ‘ Φξpyq
˘

X Φ̌^2φ̄σξpzq “ t0u.

Here we interpret Φ̌^2φ̄σξpzq as a dimVσ ´ 2-dimensional subspace

of Vσ. In the language of Pozzetti-S.-Wienhard [24], the remark states
that the curve ΦξpBXΓq is p1, 1, 2q-hyperconvex.

Proof. We can assume that G is simply laced and algebraically simply
connected. We may also assume that ξpxq “ rB̌s, ξpzq “ rBs and that
ξpyq “ gξpxq for a g P Ǔą0. We mimic now the proof of Corollary 5.5.
Since φ̄σpgq has positive coefficients in the basis Bφ̄σ , the intersection
of the plane

Py “ Φξpxq ‘ Φξpyq “ Φξpxq ‘ φ̄σpgqΦξpxq “ V ` ‘ φ̄σpgqV
`

with V ´, is not contained in any partial sum of restricted weight sub-
spaces, in particular it is not contained in

ÿ

χPΠpφσq´t$σ ,$σ´σu

V χ “ Φ̌^2φ̄σξpzq

as required. q.e.d.

6. Group level

Let us consider now a non-elementary discrete subgroup Γ ă IsompXq
of a proper Gromov-hyperbolic space X, a simple split G and the space

homÁpΓ,Gq “ tρ : Γ Ñ G partially positiveu.

In view of Proposition 5.9, if ρ P homÁpΓ,Gq and γ P Γ has infinite
order, then the elliptic component mρpγq P M (as in Equations (5.3) or
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(5.5) according to the type of γ) is well defined. Once such γ P Γ is
fixed, we get a continuous map homÁpΓ,Gq Ñ M,

ρ ÞÑ mρpγq,

and since M is finite, this map is locally constant. Its image is thus an
invariant of the connected component of homÁpΓ,Gq containing ρ.

Let us consider ρ P homÁ

`

Γ,SLdpRq
˘

and denote by H the Zariski
closure of ρpΓq, we will use the above map to decide if ρpΓq is contained
in H0, the identity component of H.

Lemma 6.1. The center of H is contained in t˘ idu.

Proof. Consider an element z in the center of H and a proximal γ P
Γ. The attracting line ξpγ`q of ρpγq is invariant by z, let a P R be
the eigenvalue of z on ξpγ`q. The set tgγ` : g P Γu is dense in BXΓ.
Additionally, gγ` is the attracting line of gγg´1 and one sees that the
eigenvalue of z on ξpgγ`q is also a. By Corollary 1.4 H acts irreducibly
on Rd so tξpgγ`q : g P Γu spans Rd, giving that z is a homothety. q.e.d.

Thus H0 is (conjugated to) one of the groups in Table 6 below.

- SLdpRq,
- a principal SL2pRq,
- Sp2npRq if d “ 2n for all n ě 1,
- SO0pn, n` 1q if d “ 2n` 1 for all n ě 1,
- the fundamental representation for the short root of G2 if d “ 7.

Table 6. Identity component of the Zariski closure of ρpΓq.

Observe that for every infinite order γ P Γ the elliptic component
mρpγq P MXH. This latter finite group is nothing but the centralizer in
KH of exp aH, so if mρpγq P H0 then ρpγq P H0.

Definition 6.2. A discrete and faithful morphism ρ0 : Γ Ñ SLdpRq
that factors as

Γ Ñ SL2pRq
τd
ÝÑ SLdpRq,

where τd is a principal embedding, will be called principal4 . Let us fix
H, a connected component of homÁpΓ, SLdpRq

˘

that contains a principal
representation.

Corollary 6.3. Assume Γ is torsion-free. Then for every ρ P H the
group ρpΓq is contained in the identity component of its Zariski closure.

Proof. Observe that the group

M :“ M
τd

`

SL2pRq
˘ “

!

τ
`

´1 0
0 ´1

˘

, τ
`

1 0
0 1

˘

)

4This is usually referred to as Fuchsian in the literature.



33

is contained in all groups in Table 6. If ρ P H has Zariski closure H,
then for every γ P Γ´tidu one has mρpγq PM Ă H0 and thus ρpγq Ă H0.

q.e.d.

Finally, let S be a closed connected orientable surface of genus ě 2
and let ρ : π1S Ñ PSLdpRq belong to a Hitchin component. Assume
first that ρ lifts to a representation rρ : π1S Ñ SLdpRq. Then Theorem
1.2 assures that rρ P Hpπ1S, SLdpRqq and Corollary 6.3 implies that the
Zariski closure of ρ is the projectivisation of a group in Table 6. The
following lemma completes thus the proof of Guichard’s classification
(Corollary 1.5).

Lemma 6.4. Every Hitchin representation ρ : π1S Ñ PSLdpRq lifts
to a representation with values in SLdpRq.

Proof. Culler’s Theorem 4.1 in [9] implies that every Hitchin repre-
sentation lifts provided one of them does. Additionally, if η : π1S Ñ
PSL2pRq is discrete and faithful, then ηpπ1Sq is in particular torsion-free
so [9, Corollary 2.3] implies that η lifts to a representation in SL2pRq,
giving the desired lemma. q.e.d.

Remark 6.5.
‚ The case of Hitchin representations with values in SO0pn, nq has

been treated by Carvajales-Dai-Pozzetti-Wienhard [8, Corollary
7.10].

‚ The above argument for Hitchin representations in SLdpRq also
applies to the cusped Hitchin representations studied by Canary-
Zhang-Zimmer [7].

Appendix A. The Hasse diagrams for extremal roots

In this appendix we prove Lemma 3.4. To this end we compute
the Hasse diagrams for the extremal roots of irreducible reduced root
systems and compute, in a case by case manner, the existence/non-
existence of surjective level preserving maps between them. Let us sim-
plify notation and denote, for a simple root x P ∆J of some root system
J, by HJ

x the Hasse diagram HJ
$x for the fundamental weight $x.

Most of the situations are ruled out by the following simple facts. If
f : ∆L Ñ ∆J is surjective and Tf : HL

α Ñ HJ
fpαq is a surjective diagram

map with labeling f then:

- rank J ď rank L,
- both HL

α and HJ
fpαq have the same total amount of levels,

- if χ is the only vertex at a given level, then the number of arrows
pointing downwards in HL

α is greater than that of Tf pχq in HJ
fpαq,

- to show non-existence of such f, it it sufficient to find one extremal
root of L whose Hasse diagram does not surject to any diagram of
J (for extremal roots).
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We refer the reader to the corresponding figures for the labeling of
simple roots for each Dynkin diagram.

Lemma A.1. Leaving aside the case f “identity, one has the fol-
lowing.

- Type A : The only surjective diagram map Tf : HAd
β1
Ñ HJ

x with x extremal
are

- d “ 2n and J “ Bn and x “ β for all n and moreover G2 and
x “ α if d “ 6,

- d “ 2n´ 1, J “ Cn and x “ β.
- Type B : The only surjective diagram maps Tf : HBn

β Ñ HJ
x with x extremal

is n “ 3 and J “ G2 and x “ α.
- Type C : There is no surjective diagram map Tf : HCn

β Ñ HJ
x with x ex-

tremal.
- Type D : The only surjective diagram maps Tf : HDn

β Ñ HJ
x with x extremal

are
- J “ Bn´1 with x “ β for all n,
- moreover one has J “ B3 with x “ α and J “ G2 with x “ α if
n “ 4.

Proof. Observe that all Hasse diagrams HAn
β1

, HBn
β (Figure (4)) and

HCn
β (Figure (5)) consist on exactly one arrow exiting each vertex. By

restricting the total amount of levels given by the existence of Tf to-
gether with the fact that rank J ď n (in each case) one completes the

proof. A similar argument works for HDn
β1

(see also Figure (3)). q.e.d.

We now treat the type E family, we will show that there is no surjec-
tive diagram map from HEk

α for k “ 6, 7 or 8 to any other Hasse diagram

HJ
x with extremal x, except for HE6

α Ñ HF4
α (as shown in Figure (9)).

Lemma A.2. There is no surjective map Tf from HEk
α for k “ 6, 7

or 8 onto any of HAn
β « HAn

α , HBn
β , HCn

β , for n ď 8 nor onto HG2
β or

HG2
α .

Proof. The non-existence of such map comes from the fact that HE
α

has too many levels (compared to the fact that n must be smaller than

k), observe that Figure (6) depicts HEk
α up to levels 9, 10 and 11 respec-

tively for k “ 6, 7 or 8. The case HG2
α is readily discarded since it has 7

levels.
We now treat HJ

x for J “ An, Bn, Cn and x “ β. Since these diagrams
consist on only one arrow pointing downwards at each level, from Figure
(6) one sees that if such a Tf existed then necessarily

fpβ2q “ fpσq “ fpβq “ fpβ3q “ fpβ4q.

Since f is surjective, the above equalities imply that J has rank ď k´4,
that is n ď k ´ 4 ď 4. However HA4

β has 5 levels, HB4
β has 9 levels and
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HC4
β has 8 levels, but HE

α has at least 9 levels (actually at least 17 as

seen in Figure (9)).

Finally, from Figure (8) one sees that HG2
β has 14 levels but Figure

(9) shows that HE
α has at least 17 levels. q.e.d.

Lemma A.3.
- There is no surjective map Tf from HEk

α k “ 6, 7 or 8 onto HBn
α ,

HCn
α , HDn

α « HDn
σ , H

Ej
σ (j “ 6, 7 or 8), H

Ek´1
α , (if k “ 7 or 8)

H
Ek´2
α (if k “ 8).

- There is no surjective map Tf from HE7
α or HE8

α onto HE6
α , H

Ej
β

(j “ 6, 7 or 8), HF4
β and HF4

α .

Proof. In HEk
α the first level with more than one exiting arrow is at

least 4, however the diagrams appearing in the first item have 2 exiting
arrows at the third level. Similarly the first level with more than one
exiting arrow in HE7

α or HE8
α is at least 5, but the diagrams listed in the

second item have earlier multiple exiting arrows. q.e.d.

The E family is thus achieved with the next Lemma.

Lemma A.4. There is no surjective map Tf from HEk
α for k P

t6, 7, 8u onto HDn
β .

Proof. Since in HDn
β there is only one arrow starting at each node

for every level up to n ´ 2, if such a Tf exists then one must have
n´ 2 “ k´ 3. However, by looking at the levels after the first rhombus
in Figure (6) one sees that

fpβq “ fpσq “ pβ3q,

thus n ď k ´ 2, which is a contradiction with n “ k ´ 1. q.e.d.

We now deal with F4 and G2.

Lemma A.5.
- Let x be an extremal root of F4. Then, other than f “ id, there is

no surjective map Tf from HF4
α to any other Hasse diagram HJ

z

for extremal z.
- Let x be a root of Γ2. There, other than f “ id, there is no

surjective map Tf from HG4
x to any other Hasse diagram HJ

z for
extremal z.

Proof. Follows easily since the other reduced root systems with rank J ď
4 and ď 2 respectively do not have enough levels. q.e.d.
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Figure 4. Hasse for extremal roots of An (left) and Bn (right)



37

˝

˝

...

˝

˝ ˝

˝

...

˝

β

β2

βn´2

σ α

α
σ

βn´2

β

HDn
$β

˝

˝

˝

˝ ˝

˝ ˝

˝ ˝

˝ ˝

˝

α

βn´2

βn´3
σ

βn´4
σ

βn´3

βn´5
σ

βn´4

σ
β

HDn
$α « HDn

$σ

β β2

σ

α

˝

˝

...

˝

˝

...

˝

β

β2

βn´1

α

βn´1

β

HCn
$β

˝

˝

˝

˝ ˝

˝ ˝ ˝

˝ ˝

α

βn´1

βn´1 βn´2

βn´2α

βn´1

βn´3

βn´2

α

βn´3

βn´1

HCn
$α up to level 6

β β2 βn´1
α

Figure 5. Hasse for extremal roots of Cn (left) and Dn (right)
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Figure 6. Hasse for extremal roots of the E family
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Figure 7. Hasse for extremal roots of the E family, continued
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Figure 8. Hasse for extremal roots of F4 (left) and G2 (right)
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α with labeling f.
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