INFINITESIMAL ZARISKI CLOSURES OF POSITIVE
REPRESENTATIONS

ANDRES SAMBARINO

ABSTRACT. We classify the (semi-simple parts of the) Lie algebra of the Zariski
closure of a discrete subgroup of a split simple real-algebraic Lie group, whose
limit sets are minimal and such that the limit set in the space of full flags
contains a positive triple of flags (as in Lusztig [20]). We then apply our result
to obtain a new proof of Guichard’s classification [14] of Zariski closures of
Hitchin representations into PSL4(R).
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1. INTRODUCTION

Let us consider the vector space R? equipped with its canonical ordered basis
& = {e1,...,eq} and let GL4(R) be the group of invertible matrices. A minor of
g € GL4(R) is the determinant of a square matrix obtained from g by deleting some
lines and columns from it. Minors appear naturally when one considers the exterior
powers of R?. Indeed, theses spaces carry also a natural basis

ARE =fei, A A, tiy < cee <ig)
defined from &, and the coefficients of A¥g in this basis are the k x k minors of g.
As introduced by Schoenberg [22] and Gantmacher-Krein [9], a matrix is totally

positive if all its minors are positive’. If g € GLy(R) is such a matrix, then, since
all its entries are positive, it preserves the sharp convex cone of R?

Ce = {(x1,...,2q) : x; =0},

consisting on vectors all of whose entries in € are non-negative. By the preceding
paragraph more is true: the same holds for every exterior power of g replacing &
by AFE.

The author was partially financed by ANR DynGeo ANR-16-CE40-0025.
1Let us convene throughout the paper that 0 is not a positive real number.
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An application of the classical Perron-Frobenius Theorem implies then that A*g
has a unique attracting fixed line in the interior of this cone,

9+.k €Nt € re, (1.1)

and the collection (g4 )¢ is an attracting complete flag” of g. If we denote by g
the complete flag

€ = (span(e1 @ - - @ ek))f
then the inclusion (1.1) readily implies that the lower triangular matriz 4 sending
€ to (9+ %) has all minors below the diagonal positive. Such a semi-group will
be denoted by Usq. If one is keener on upper triangular matrices then one should
replace g by €= (span(eq®- - -(—Ded,kﬂ))f to obtain analogous Usq. The subspace
of positive flags is then defined by

?>O:U>O'EZU>O'E-

Several implicit choices, other than the pair of flags (g,E) < &, have been done to
define F ¢, but we will not enter this matter at the moment.

The above (very quick) picture has been generalized to the real points of an
arbitrary (Zariski-connected) reductive split real-algebraic group G by Lusztig [20].
We refer the reader to §5.1 for the precise definitions and we reuse the notation
Fe = F as the complete flag space of G and F~( for the subset of positive flags
associated to a pair of fixed opposite Borel subgroups B and B (and a pinning,
see §5.1). Let us say that a triple of pairwise transverse flags (z,y, z) is positive, if
there exists g € G such that g-x = [B], g- 2 =[B] and g - y € T~o.

Le us consider more generally a partial flag Fy of G, these are indexed by subsets
of the set of simple roots A, with Fo = F. An element g € G is prozimal on Fy
if it has an attracting fixed point on Jy, i.e. there exists g ¢ € Fp fixed by g
and an open neighborhood V of g, ¢ such that gV < int V. In this situation one
has (), 9"V = {9+,0}. Elements that are proximal on F are often called purely
lozodromic.

If A < G is a discrete subgroup then its limit set on Fy is defined as

Lao ={9+,6:9¢€ A proximal on Fg} < Fy.

A result by Benoist® [2] asserts that if A is Zariski dense, then Ly ¢ is non-empty
and contained in any closed non-empty A-invariant set. We will assume a slightly
weaker version of this property. Let us say that Ly ¢ is minimal if the only closed
A-invariant subsets of Ly ¢ are either the empty set or Ly ¢ itself.

Definition 1.1. Let A < G be a discrete group. We say that

- A has minimal limit sets if Ly () is minimal for every o € A,
- L a contains a positive lozodromic triple if there exists gy € A proximal
on JF and zp € Ly a such that (94,20, 9—) is a positive triple.

Recall that a reductive Lie algebra b splits as the sum h = by @ 3(h) where
3(h) is its center and b5 = [, h] is semi-simple. Recall also that, as g is split, it
contains a special conjugacy class of sub-algebras isomorphic to sly(R) called the
principal sl3(R) s, see §2.1.1 for the definition.

2Recall that a complete flag of R% is a sequence of vector subspaces (Vz)f such that dimV; =14
and V; < Vi41.
3(that holds for G an arbitrary reductive real-algebraic Lie group of non-compact type)



The main purpose of this paper is to prove the following.

Theorem A. Let G be the real points of a Zariski connected, simple split, real-
algebraic group and A < G a subgroup with reductive Zariski closure H, minimal
limit sets and such that Ly A contains a positive lozodromic triple. Then b is
either g, a principal sla(R), or Int g-conjugated to one of the possibilities listed in
table 1.

We would like to stress the fact that only one positive (loxodromic) triple in the
limit set Ly A is required.

g Bss ¢:hss > g

slap, (R) sp(2n,R) defining representation
oot (R) so(n,n+ 1) ¥n defining representation
" goifn=3 fundamental for the short root
50(3,4) 9o fundamental for the short root
so(n—1,n)Vn >3 stabilizer of a non-isotropic line

so(n,n) s0(3,4)ifn=4 fundamental for the short root

’ . stabilizes a non-isotropic line L and is

gz ifn =4 fundamental for the short root on L+

e fa Fix(invg) (see example 3.2)

TABLE 1. The statement of Theorem A, if a simple split algebra g is
not listed in the first column then the only possibilities for s are g or a
principal sl (R). The notations eg, f4 and g refer to the split real forms of
the corresponding exceptional complex Lie algebras. Observe that there
are two non Int so(n, n)-conjugated embeddings so(n,n — 1) — so(n,n)
that stabilize a non-isotropic line.

The use of Lusztig’s positivity to study discrete groups seems to have origi-
nated in Fock-Goncharov’s [7] work, where the notion of positive representation of
a surface group was introduced. A similar approach simultaneously originated in
Labourie [19]. Both works focus on understanding a special connected component
of the character variety X(m1.5,G) = hom(m5,G)/G, for a closed connected ori-
entable surface S of genus > 2 and a center-free split simple group G, introduced
by Hitchin [15]. These Hitchin components are defined as those components that
contain a discrete and faithful representation 7.5 — G whose Zariski closure is a
principal PSLy(R) in G.

Combining loc. cit. together with Guichard [13] one has the following geometric
characterization of Hitchin representations. Recall that the Gromov boundary of
1.5 is homeomorphic to a circle and carries a 7 S-invariant cyclic order.

Theorem 1.2 ([7, 13, 19]). A representation p : .S — G lies in a Hitchin compo-
nent if and only if there exists a continuous equivariant map & : 0m1S — F sending
cyclically ordered triples to positive triples of flags.

In this paper we deal with a weaker notion than the one required in the above
result. We replace 7.5 with any discrete group acting on a Gromov-hyperbolic
space and relax the “order preserving” condition.

If X is a proper Gromov-hyperbolic space and I' < Isom(X) is a discrete sub-
group, then we denote by 0Xr its limit set on the visual boundary of X. It is



a compact [-invariant subset and I is non-elementary if 0Xr contains at least 3
points. If this is the case, then I is non-solvable and 0Xr is characterized by be-
ing the smallest non-empty l-invariant closed subset of 0X. We refer the reader
to Ghys-de la Harpe [10, Chapitre 8] for these (and other) general facts we will
require. Unless [ is convex co-compact, the limit set 0.Xr is not an intrinsic object
associated to the group structure of I'.

We will consider the following representations.

Definition 1.3. Let X be a proper Gromov-hyperbolic space and [ be a non-
elementary discrete isometry group. A representation p : I — G is partially positive
if there exists a p-equivariant continuous map & : 0 Xt — F such that for every pair
x # z in 0Xr, there exists y € 0Xr such that (£(z),£(y),&(2)) is a positive triple.

It is implicit in the definition that distinct pairs of 0 X are mapped to transverse
flags.

The second main result of this paper is the following. Recall that a non-solvable
Lie algebra [ is a semi-direct product ;s @, Radl, where [;5 is semi-simple and
Rad [ is solvable?, and that the Zariski closure of a non-solvable subgroup A < G
has non-solvable Lie algebra.

Theorem B. Let X be a proper Gromov-hyperbolic space, I < Isom X a non-
elementary discrete subgroup and p : I — G a partially positive representation with
Zariski closure L. Then the semi-simple part lss is either g, a principal sly(R), or
Int g-conjugated to one of the possibilities listed in table 1.

The challenge here is to show that L,y a = £(0Xr) and that for every o € A,
it projects surjectively to every L,r) (-} under the natural projection F — Fy.

Let us remark that, in contrast with Theorem A, we do not require the Zariski
closure of p(I') to be reductive. We emphasize this by stating the following conse-
quence of Theorem B.

Corollary 1.4. Assume that g = sl,(R),sp,, (R), so(n,n + 1) or go and let p :
I — G be partially positive, then its corresponding action on R™,R2" R2"+1 or R7
respectively is (strongly) irreducible.

Theorem B together with Theorem 1.2 give a new proof of the following clas-
sification result by Guichard (the argument is postponed to §6). As before, go
is the split real form of the corresponding complex exceptional Lie algebra and
GQ = Int gd2.

Corollary 1.5 (Guichard [11]). Let p : mS — PSL4(R) be a representation in
the Hitchin component, then the Zariski closure of p is either PSL4(R), a principal
PSL2(R) or conjugated to one of the following:

- PSpy,(R) if d = 2n for alln =1,

- PSO(n,n+1)ifd=2n+1 foralln > 1,

- the fundamental representation for the short root of Go if d = 7.

Corollary 1.5 plays a central role in Corollary 11.8 of Bridgeman-Canary-Labourie-
S. [1] and in the recent work by Danciger-Zhang [6], allowing the authors to reduce
the general problem to the group PSO(n,n + 1).

4See Knapp [17, Chapter B.1].



1.1. Final remarks. It is unclear whether all possibilities stated in Theorem B
might actually occur. When ' = m.S (S as above) then Hitchin’s Theorem [15]
implies this is actually the case. However, a recent result by Alessandrini-Lee-
Schaffhauser [1] provides many examples of locally rigid positive representations of
groups with torsion.

1.2. Organization of the paper. In §2 we recall some facts on representation
theory of real reductive Lie algebras of non-compact type. In §3 we introduce the
Hasse diagram of a representation of such a Lie algebra, this is nothing but the
usual Hasse diagram of a partially order set (here to be the set of restricted weights
of the representation). We introduce maps between diagrams and notably study
the existence of a surjective map between two Hasse diagrams. There is a case by
case proof that is postponed to appendix §A.

In §4 we study Zariski closures of discrete groups verifying a coherence condition
with respect to the position of their eigenspaces, and relate these to maps between
Hasse diagrams of the Zariski closure and the ambient group. The key point is
Proposition 4.8 that, in light of the previous section, classifies Zariski closures of
these groups, provided it is reductive.

Section 5 begins by recalling total positivity introduced by Lusztig [20], we prove
then that groups whose limit sets contains a positive loxodromic triple verify the
coherence condition studied in §4. This proves Theorem A. Theorem B is also
proved in this section. In §6 we focus on the SL4(R) situation and prove Guichard’s
classification (Corollary 1.5).

The paper is written rather linearly so one has the following diagram representing
dependence between sections:

§A

§1 — 82 — §3 — 84 — 85 — §6

Acknowledgements. The author would like to thank Olivier Guichard and Maria
Beatrice Pozzetti for enlightening discussions and careful reading of this article.

2. REVIEW ON LiIE THEORY

2.1. Semi-simple Lie algebras. Let g be a semi-simple real Lie algebra of the
non-compact type and fix a Cartan involution o : g — g with associated Cartan
decomposition g = €@ p. Let a < p be a maximal abelian subspace and let ® < a*
be the set of restricted roots of a in g. For o € ® let us denote by

0o ={ueg:|a,u] =ala)uVace a}

its associated root space. One has the (restricted) root space decomposition g =
90 @ D, o Ja, Where go is the centralizer of a.

Fix a Weyl chamber a™ of a and let &+ and A be, respectively, the associated
sets of positive roots and of simple roots. One has that ® = &+ U —®* and that
if « € ®* then, upon writing

a = Z kso,

geA

every coefficient k, is a non-negative integer. The height of a is ht(a) = > ko

o



Let us denote by (-, -) the Killing form of g, its restriction to a, and its associated
dual form in the dual of a, a*. For x, € a* define

()
¥ =200y

The Weyl group of ®, denoted by W, is the group generated by, for each o € P,

the reflection 7, : a* — a* on the hyperplane a™,

TQ(X)::X‘*<X,Q>Q~

It is a finite group with a unique longest element wq (w.r.t. the word metric on the
generating set {r, : @ € A}). This longest element sends a* to —a*.

Recall that the Dynkin diagram of the root system @ consists on a graph whose
vertices are the elements of A and such that «, 8 € A are joined by {a, 55, @)
edges. If two simple roots are joined by more than one edge then an arrow is added
pointing to the shortest (in norm (-,-)) root. One speaks indistinctively of the
Dynkin diagram of g, ® or of A.

We will require the following notion:

Definition 2.1. An element of A is extremal if it is connected to exactly one root
in the Dynkin diagram of ®.

The root systems of type D and E have 3 extremal roots, while the others only
have two.

2.1.1. Some sly’s of g. For a € ® let t,,ho € a be defined such that, for all v € a
and all ¢ € a*, one has

a(v) = (v,ty) and @(hy) = {p, @).

These two vectors are related by the simple formula h,, = 2t,/(ta,t). Recall that
for z € g, and y € g_,, one has [z,y] = (,y)to. Thus, for each o € &+ and x,, € g,
there exists y, € g_, such that

(8%)) = Xq
(?8) = Ya
1

h = (o 01)H ha

is a Lie algebra isomorphism between sla(R) and the span of {X4,Ya, ha}. Let us fix
such a choice of x, and y, from now on.

One says that g is split if the complexification a ® C is a Cartan subalgebra of
g ® C. Equivalently, g is split if the centralizer 3¢(a) of a in £ vanishes.

Assume that g is split. Following Kostant [18, §5], consider the dual basis of
{ts : 0 € A} relative to (-,-): (€a,t3) = dap, and let €g = >, _A €, € a. The element
€o is the semi-simple element of a 3-dimensional simple subalgebra of g. Such a
subalgebra, or any of its Int g-conjugates, will be called a principal slo(R) of g.

Let us denote by n = @ _ .o+ Ja-

Theorem 2.2 (Kostant [18, Thm 5.3]). Let g be a split Lie algebra and consider

an element
e = Z Ao Xe € M.

aedt

Then e lies in a principal sla(R) if and only if a, # 0 for all o € A.



2.2. Reductive groups. A Lie algebra g is reductive if every ad g-invariant sub-
space of g has an ad g-invariant complement. It is a standard fact (see Knapp [17,
Chapter 1. §7]) that such an algebra splits as

g= 3(9) D gss)
where g5 = [g, g] is semi-simple and 3(g) is the center of g.

A reductive Lie group® G is a 4-tuple (G, K,o, (- )), where K is a compact sub-
group of G, ¢ is a Lie algebra involution of g and (-, -) is a o-invariant, Ad G-invariant
non-degenerate bilinear form on g such that:

- g is a reductive Lie algebra,

- the Lie algebra £ of K is the set of fixed points of o,

-ifp={reg:o(x) = —x} then £ and p are (-,-)-orthogonal and (-,-) is
positive definite on p,

- the map K x p — G, (k,z) — kexpuz, is a surjective diffeomorphism.

- every automorphism of the form Ad(h), for h € G, of the complexification
g ® C is of the form Ad(z) for some z € Int(g ® C).

Given a reductive group G and a maximal abelian subspace a  p, one can form,
as in the semi-simple case, a restricted root space decomposition

=000 @ ga
a€Edy
where g, = {x € g: [a,2] = a(a)xVa € a}.

The relation between the restricted roots ®4 and the restricted roots of gss is
as follows: the elements of ®; can be obtained by considering the restricted root
space decomposition of g, relative to ass = a N gss and extending these roots to a
as being zero on a N 3(g).

2.3. Basic facts on representation theory of semi-simple Lie algebras. Let
g be a semi-simple Lie algebra over R without compact factors. We record here
some standard facts about irreducible real representations of g, see for example
Humphreys [16].

The restricted weight lattice is defined by

N={pea*:{p,ayeZVac o},
it is spanned by the fundamental weights: {w, : 0 € A} where w, is defined by

<w<77 6> = d0606

for every o, 3 € A, where d, = 1 if 20 ¢ ®* and d, = 2 otherwise. The set M of
dominant restricted weights is defined by My =M~ (at)*.

Given x, 1 € I one says that xy > ¥ if x — 1 has non-negative integer coefficients
in A. A subset m c I is saturated if for every x € m and a €  the string

X — o i between 0 and (x, )

is entirely contained in 7. Such a set is necessarily W-invariant. We say that 7 has
highest weight p € 7 if for every x € 7 one has x < p. One has the following lemma,
see Humphreys [16, §13.4 Lemma B.

Lemma 2.3. Let 7w be a saturated set of weights with highest weight p, then every
x € My with x < p belongs to .

5see for example Knapp [17, Chapter VII. §2.]



Let ¢ : g — sl(V) be an irreducible representation. The sub-algebra ¢(a) is
self-adjoint for an inner product of V' and thus the space V decomposes as a sum
V =@, en(g VY, where

VX={veV:d¢la)v=x(a)vVac< a}
are the common eigen-spaces, called restricted weight spaces, and

N(¢) = {x € a*: VX = {0}}
is called the set of restricted weights of ¢. It is a W-invariant set. The multiplicity
of x € MN(¢) is denoted by mg(x) and defined as the dimension of its restricted
weight space, my(x) = dim VX. We will often omit the subscript and write m(y) if
there no ambiguity in ¢.

Proposition 2.4. Let (V,¢) be an irreducible representation of g. Consider x €
M(¢) and o € &, then the elements of M(@) of the form x + i, i € Z form an
unbroken string

X +ia, i € [—r,q]
and r — q = (x, ).

There is a unique maximal element x, of M(¢) for >, called the the highest
restricted weight of ¢, and Proposition 2.4 implies that M(¢) is saturated with
highest weight x.

By definition, for every a € a® x4(a) is the spectral radius A (¢(a)) of ¢(a).
The restricted weight space associated to x4 is VT = V,, = {ve V : ¢(n)v = {0}}.
One has the following (to simplify notation, for a € ®* we write §o = g_a-)-

Remark 2.5. The subspaces of the form ¢(gg,) - - - #(83,)V T with 8; € A (repetitions
allowed) that do not identically vanish are in direct sum. Indeed, such a space is
contained the restricted weight space associated to

k
Xo — Z Bi.
i=0

Every weight of ¢ is obtained in this fashion, moreover, by construction every weight
X € I(¢) can be written as x = x¢ — 8o — - — B¢, with §; € A, in such a way that
all the partial sums

X=X¢—Bo— =B je[l,{]
are weights of ¢.

3. HASSE DIAGRAMS FOR REPRESENTATIONS

If ¢ : g — gl(V) is an irreducible representation of a real semi-simple Lie alge-
bra g without compact factors, then its set of weights carries the partial order >
previously defined: x > 9 if the coefficients of x —1 in A are non-negative integers.

One defines then the Hasse diagram of the representation ¢ as a graph whose
vertices are the elements of MN(¢), and one draws an edge between y and v if
and only if x — ¢ € A. Because of the non-symmetry of >, the edge should be a
directed arrow, however we prefer to forget the arrow and draw ¢ below x. It is
also convenient to label the edge with the simple root y — 1.

These Hasse diagrams carry a natural grading or levels defined by the function

level (X¢ — Z k‘go) =1 +Zk‘7'

geA
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FIGURE 1. Hasse diagrams for fundamental weights of (extremal) roots of Ga.

By means of Remark 2.5 one can draw the Hasse diagram of a given representation
level by level, starting from it’s highest weight and inductively checking, for a given
weight x € M(¢) the set of simple roots o € A such that ¢(g,)V* = {0}. This in
turn can be directly computed from the root system ¢ using Proposition 2.4: one
computes {x, o)y and, since all lower levels of the diagram are assumed to be known,
one knows whether x + o (down one level) belongs to IN(¢) or not.

It is more convenient then to define the Hasse diagram as depending only on the
type of the root system ®, and of a given dominant weight x € N, that will play
the role of the highest weight of an irreducible representation.

Definition 3.1. The Hasse diagram of a root system of type L and a given dominant
weight x € M will be denoted by F(, .

Figure (1) depicts the Hasse diagrams of the exceptional root system Gy for both
its fundamental weights, the Dynkin diagram is added to the picture.
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3.1. Maps between diagrams. Given two root systems of types J and L, consider
a function f : AL — Aj. We will define a diagram map with labeling f, in short a
diagram map, between two Hasse diagrams as a function T/ : fHI)‘( — 5{; such that

if 100, 1 € H then
Yo — 1 € AL implies T/ (g) — T/ (¥1) = f(¥o — ¥1) € Ay

Such a map is thus order preserving, level and labeling equivariant. We say that
T7 is surjective if it is set-wise surjective. If this is the case, then necessarily f is
surjective and both diagrams have the same total number of levels.

Let us emphasize that the function f is merely a set-wise function, no condition
on the associated function between the Dynkin diagrams is required.

Example 3.2. Consider the following Dynkin diagrams that carry a non-trivial
involution, invy : AL — Ay say,

- the middle point symmetry in A;: o—o——0—,
p Y y N,

—Dn:o—m$—<),

- the middle axis symmetry in Eg: o—oio—o
NT—
The quotient by the orbits of inv( provides a labeling

- f : AA2n+1 - ABnu

- f : ADn - AC,n

- [ Ags — Af,,
which induces surjective maps between the Hasse diagrams of the fundamental
weight @, of a given simple root and the fundamental weight of f(o). Figure (9)
in the appendix depicts the Eg case for one of the extremal roots.

Not every example comes from the fixed point set of an involution, as the fun-
damental representation ¢, : g2 — sl7(R) of the real split Lie algebra go shows.
This is depicted in Figure (2).

The existence of a surjective map between Hasse diagrams is of course very
restrictive as the following lemma shows.

Lemma 3.3. Consider two irreducible reduced root systems of types J and L. As-
sume there exists
- [ AL —> Ay such that f(«) is extremal for every extremal oo € A,
- for every extremal o a surjective diagram map T7 : 9—(1‘% — J{fﬂf(a) with
labeling f.

Then, besides f =identity, the only possibilities for J, L, and f are listed in table 2.

Proof. The proof is a case by case verification. In Appendix A we draw the Hasse
diagrams for the fundamental weights of the extremal roots of all irreducible reduced
root systems and the non-existence verification is also proven. (I

To end this section we remark that when L = Dy, in spite of the apparent
symmetry of the Bs’s given in table (2), these correspond to different cases. If

one considers the complex algebras so(7,C) and so(8,C), then the labelling o—{)
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B1 a
@] (@)
B2 B
] o
B3 T o
O _— e]
Ba a
o] (@)
Bs B
] )
Be @
o] (@)
Ag G
}Cwbm g'fwi
oO—O—+—0—=0 [e==¢]
B1 Be g«
FI1GURE 2. The surjective map 5—(/;%1 — ﬂ-CGwza .
L J | fibers of f
B,, Vn 0—0——0—0
Az, " —
Gy ifn=3| Figure (2)
Axp—1 Can NCS7
Bs Ga ==
Bn—l Yn >3 o—o— %—{)
I S
)
Gyifn=4 N~
T
TABLE 2

corresponds to the representation s0(7,C) — s0(8,C) that stabilizes a line in C¥,

whilst the labelling o\{ corresponds to the fundamental representation of s0(7,C)

associated to the short root of Bs. This is an irreducible representation with image in
50(8,C) called the spin representation, see Fulton-Harris [8, Lecture 20, Ex. 20.38].



12

B 3 3 a
(] O (@] O
B2 B2 B2 B2
(] (@] (@] O
7 Y 7 Y 7 Y
) a o
N
(@) @] _— @] (@] @] —> O (e)

A
AN
A
N

o o o o

B2 B2 B2 B2
o o o o

B B B a
o o o o
M2, H, M, 9,

F1GURE 3. The surjective maps TH%‘B — ﬂ-CBwf‘B and fJ-CDw“ﬁ — H?;a

4. DISCRETE SUBGROUPS SATISFYING A COHERENCE CONDITION W.R.T.
EIGENSPACES

4.1. Review on Lie group representations. Let G be a reductive real algebraic
Lie group. If ¢ : G — GL(V) is a rational representation then we denote by ¢ : g —
gl(V) the induced representation on its Lie algebra and we speak indistinctively of
highest restricted weight, restricted weight spaces, etc of ¢ and .

One has the following proposition from Tits [23] that guarantees existence of
certain representations of G. We say that ¢ is proximal if dimV* = 1.

Proposition 4.1 (Tits [23]). For every o € A there exists an irreducible prozimal
representation of G whose highest restricted weight is lw, for somel e Z>1. If g is
split then one can choose | = 1.

Definition 4.2. We will fix and denote by ¢, : G — GL(V,,) such a set of repre-
sentations.

Let 1 = @, co+ Jo and consider the opposite minimal parabolic algebras b =
go®n and b = go @ ft. The minimal parabolic subgroups are denoted by B and B
and defined as the normalizers in G of b and b respectively. The groups B and B
are conjugated. The complete flag space of G is defined by F = G/B. The G-orbit
of

([Bl,[B]) e F x F

is the unique open orbit of G and is denoted by F(2).
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If (¢, V) is a proximal irreducible representation, then one has a ¢-equivariant
algebraic map
P=0;:F-P(V)
defined by ®3(g[B]) = ¢(9)V*. The ¢(a)-invariant complement
VT = @ VX
xeN(¢)—{xs}
is stabilized by B, giving also ® = <i>¢; 1 F — P(V*) defined by ®(g-[B]) = #(9)V .

4.2. Jordan-Kostant-Lyapunov’s projection and Benoist’s limit cone. Re-
call that every element h € G can be uniquely written as a commuting product
h = hehgshy, where he is conjugate to an element in K, hgs is conjugate to an el-
ement in exp(at) and h,, is unipotent. The Jordan-Kostant-Lyapunov projection
A= Ag: G — a' is defined such that hs, is conjugated to exp ()\(h))

If A c G is a discrete subgroup, then its limit cone is denoted by L, and is
defined as the smallest closed cone that contains {A(g) : ¢ € A}. One has the
following fundamental result by Benoist. Recall that ass = a N ggs.

Theorem 4.3 (Benoist [2]). Let A < G be a Zariski dense subgroup. Then the limit
cone Lp is convexr and the intersection L N ags has non-empty interior in dgs.

4.3. Coherent subgroups. For g € GL4(R) let us denote by

Mg) = (Mlg),-++ 5 dalg)) € o

its Jordan projection. If A\i(g) > A2(g) we say that g is proximal. Equivalently,
the generalized eigenspace associated to the greatest (in modulus) eigenvalue of g
is 1-dimensional. We will denote by g, € P(R?) this attracting eigenline and by g_
its g-invariant complement.

A discrete subgroup A < PGL4(R) is prozimal if it contains a proximal element.
One defines then its limit set by

LY = {g; : g € A proximal}.

Recall from the introduction that L% is minimal if the only closed A-invariant
subsets are {J, L} }.

Lemma 4.4. Let A < PGL4(R) be prozimal with minimal LY. If A acts totally
reducibly in R? then span LY is an irreducible factor of A.

Proof. Let g € A be proximal and V' an irreducible factor. If v € V' does not lie in
g— then ¢g"(R-v) — g,. Consequently, since V' is closed and g-invariant, if g, ¢ V
one concludes V' < g_. Thus, g, necessarily belongs to an irreducible factor of A, W
say. The subset LR N P(W) is then non-empty, closed and A-invariant. Minimality
completes the proof. O

Definition 4.5. A discrete subgroup A < PGL4(R) is coherent if
- there exists a proximal gy € A such that A2gy is proximal and the eigenline
associated to A2(go) belongs to span LY,
- the limit sets LY and LP,, are minimal.
Lemma 4.6. Let A < PGL4(R) be a coherent subgroup with reductive Zariski clo-

sure H. Then there exists 0 € Ay with dimb, = 1 such that for every g € A one
has

o(M(9)) = Ai(g) — A2(9)-
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Proof. By Lemma 4.4 the representations H|spanL% and H|spanLP,, are irre-
ducible. Denoting by x; and x2 their highest restricted weights, 2x; — x2 verifies
that for all g € A one has 2x1 — x2(Au(g)) = A1(g9) — A2(9)-

Denote by {W;} the irreducible factors of A. For g € A with A%g proximal,
denote by V5(g) either the eigenline associated to Aa(g) if g is proximal, either the
2-dimensional Jordan block associated to Ai(g) otherwise. One readily sees that,
in both situations, the vector space Va(g) necessarily intersects one of the W;’s.

We can identify LF ,, as a subset of Gro(R?) and thus consider the subsets

W, ={PeLl.,: P W;# {0},

these are closed and A2A-invariant and the same holds for any intersection I;IV/Z N VT/;
By minimality, each intersection is either empty or L”iz A- However, by assumption

the space span LR, associated to the irreducible factor span LY, is non-empty, and

Va(go) < spanL¥. One concludes that span L} = L"iz » and that all intersections

span LY n V[f7j are empty. Equivalently, Vo(g) < spanL¥ for every g € A with
proximal AZg.

Applying §2.3 to H| span L% together with the preceding paragraph, one has that
for every g € A there exists ay € Ay such that ag(A(g)) = Ai(g) — A2(g). Since the
limit cone £, has non-empty interior on a N b, (Benoist’s Theorem 4.3) and Ay
is a finite set, there exists an open sub-cone 4 < £ and a root ¢ € Ay such that
for every v e €

o(v) = (2x1 — x2) (v).

Since both functions are linear and coincide on an open set, they must coincide and
o is the required root. (I

Definition 4.7. Let G be a reductive group and A a discrete subgroup. Then A is
totally coherent if for every o € A the subgroup ¢, (A) is coherent.

The following is the main result of this section.

Proposition 4.8. Let G be a real-algebraic simple group and A < G a totally
coherent discrete subgroup with reductive Zariski closure H. Then by is simple split.
Moreover, there exists a surjective function f : Ay — Ay and, for every a € Ay, a
surjective map with labeling [ between the diagrams

. 8 b

—H—f : J{Zawa - g{nawf(a)’

for some ng, € Z=1. If v is extremal then f(a) is extremal, if moreover rank hgg > 1
and £, =1 then n, = 1.

Proof. Since A is totally coherent, applying Lemma 4.6 to each representation ¢,
of G provides a function f : Ay — Ay such that for every g € A and o € A one has

f(@)(Au(g)) = o(Xa(9)). (4.1)

Consider then o € Ay and the associated fundamental representation bo: G —
GL(V). Since H is reductive, Lemma 4.4 implies that W = span LEQA is an ir-
reducible factor of ¢,H. Let ¢ : h — gl(W) the representation of b defined by
¢ = ¢a(h)|W and x4 € My its highest restricted weight.
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As stated in Remark 2.5 every element of INy(¢,) is of the form

Lo — Z kyo, (4.2)

ey

where for every o k, € Z=g. Let us consider then the function T/ : My(¢s) — My
defined by

T/() = xo — ), kof(0)

o€y

if x is as in equation (4.2). Observe that for every x € lNy(¢,) and 8 € ¢y one has
T (X),8) = xo: By = Y, kolf(0), By € Z,

geA,

so T/ (x) is indeed a weight of b.
Observe also that for every g € A one has, by equation (4.1), that

T/ (x) (Mn(9)) = x(Aa(9)),

so that for every v € Ly < (ay)" < (ag)* one has T/(x)(v) = x(v). Thus, since
Lan a;“ has non-empty interior in ay s (Benoist’s Theorem 4.3), one has

T/ (x) = xlap,ss- (4.3)
Consequently, for any v € ay 55 the eigenspace decomposition of ¢, (v) is
V= @D WM (4.4)
x€Mg(¢a)
hence,
My(¢) = T/ (Mg ().

To show equality, one observes that, by equation (4.4), the highest weight of any
other irreducible factor of ¢, () is a dominant weight < x4 and thus also belongs to
My(¢) (Lemma 2.3). By W-invariance of the set of restricted weights of irreducible
representations, one concludes that all the restricted weights of other irreducible
factors also belong to My (¢), consequently

My(¢) = T/ (Ng(¢a))-

Clearly T/ is level preserving.

From surjectivity of T/, and since there is only one weight of ¢, of level 2 (i.e.
Lyt — ) one has that for every S € Ay — {f(a)} the linear form x4 — 8 is not a
weight, hence (x4, ) = 0 and thus x4 = na@¢(s) for some ng € Z5;.

Since G is simple, ¢ is injective and thus, since any weight of ¢ () is contained
in My(4), ¢a(hss) is simple and thus b, is. Consequently, f is surjective and, since
dim(hss)(a) = 1 for every o (Lemma 4.6), b, is split.

Let us assume from now on that o is an extremal root of Ay, so that the only
weights of level 3 of ¢, are {nw, —a — B for a unique root 5 € Ay, and fow, — 2
(only if £, > 2). This implies that the only weights of level 3 of ¢ are nows(a) —
f(a) = f(B), and possibly nawysq) — 2f(a).

Hence (na@y(q) — f(a),0) = 0 for every o € Ay — {f(), f(B)} from which f(a)
is an extremal root of Ay. Moreover, either
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- fla) = f(B) ie. for every 0 € Ay — {f(a)} one has

0= <nawf(a) - f(a)v U> = 7<f(0&)70'>
and thus hss has rank 1,
- either f(a) # f(B).

In the latter case, if one assumes moreover that £, = 1, then n,wy ) —2f(a) ¢
My(¢) and hence n, = 1. O

4.4. Classification of Zariski closures of totally coherent groups. Through-
out this section, g is a simple split real Lie algebra, G is a real-algebraic Zariski
connected Lie group with Lie algebra g and A < G is a totally coherent discrete
subgroup with reductive Zariski closure H. The purpose is to classify the pairs
(hss, ¢) where ¢ : hss — g is the representation induced by the inclusion H ¢ G. By
Proposition 4.8 hss is simple split.

One begins by the following;:

Corollary 4.9. If b has rank 1 then it is a principal sla(R) of g.

Proof. From Proposition 4.8 one deduces that if one composes hss with any fun-
damental representation ¢, of g, the highest weight space of g is also the highest
weight space VX for some irreducible factor of ¢, (hss). Moreover, any other ir-
reducible factor of ¢, (hss) has highest weight < x. This is to say, if one writes
febssnnasf =3 o+ baYa, then b, # 0 for every o € A. Kostant’s Theorem 2.2
asserts then that by, is a principal sly(R). ]

If the rank of b, is = 2 then, since the fundamental representations of g verify
£y =1 for all o € Ag, Proposition 4.8 provides a surjective function f : Ay — Ay
such that the image of an extremal root is an extremal root, and for every o € A,
a surjective map T/ : HE — fH?ﬂf (o, Detween the corresponding Hasse diagrams.
Applying the table (2) given by Lemma 3.3 one concludes at once the following
Corollary.

Corollary 4.10. If rankbss = 2 then either hss = g, either the only possibilities
for ¢ : hss — g are, up to Int g-conjugation, the ones listed in table 3.

g Bss ¢:hss — @

ol (R) so(n,n+1) Vn defining representation
n+l goifn=23 fundamental for the short root
sla, (R) sp(2n, R) defining representation
50(3,4) 9o fundamental for the short root
so(n—1,n)Vn >3 stabilizer of a non-isotropic line

so(n, n) 50(3,4) if n =14 fundamental for the short root

’ . stabilizes a non-isotropic line L and is

gz ifn =4 fundamental for the short root on L+

¢6 fa Fix(invg) (example 3.2)

TABLE 3. Statement of Corollary 4.10
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5. TOTAL POSITIVITY

Throughout this section G denotes the real points of a Zariski connected real-
algebraic simple split group.

5.1. Lusztig’s total positivity. Let us fix, for each simple root o € A, algebraic
group isomorphisms z, : R — expg,, ¥o : R — §, and h, : R — exp(R- h,) so that

(51) = ao(®), (19) = 4o (t), (§,21) = hal(t),

defines a morphism SLy(R) — G. The collection O = {z, : 0 € A} is called a
pinning of G and two pinnings are conjugated by G.

Let U = expn and U = exp i be the unipotent radicals of B and B respectively
and let A = expa.

Let wy € W be the longest element and consider a reduced expression wy =
ry ---71 as a product of reflections associated to simple roots. Let us denote, for
each r; the associated simple root by o; € A. The number N equals [®T]|, but we
will not require this fact.

Consider the maps ¥O : (R-¢)N — U and ¥O : (R-¢)N — U defined by

UO(ay,- -+ ,an) = Toy (an) - - 2o, (a1),
\ijo(ala"' 7aN)=yUN(aN)"'y01(a1)' (51)
We summarize several results from Lusztig [20, §2] in the following theorem.

Theorem 5.1 (Luzstig [20, §2]). The images Usg = \I'O(([R{>0)N) and U=y =
\IJO(([R>0)N) are semi-groups independent of the chosen reduced expression of wy.
The product

G>O = U>0AU>O = U>0AU>O

is also a semi-group and every element g € Gso has a unique expression of the form
g = Utv with 1 € Usg, t € A and v € Usy.

Even though we omit the pinning notation on the semi-groups Uxg, U-¢ and
G-, they do depend on the pinning O.

5.2. Positivity of flags. The positive semi-group G- determines a special subset
F-o € F defined by

EF>O = G>0 . [B] = 0>0 : [B] = U>O ! [B]

Let us say that an ordered triple (z1,72,73) € F° is generic if (v;,7;) € F?),
Then one has the following.

Proposition 5.2 (Lusztig [20, Prop. 8.14]). The subset F~¢ is a connected com-
ponent of

{:U eF: ([B],z,[B]) is genem’c}.
In particular it is an open subset of F.

One then defines positivity on triples flags as being G-equivariant, consequently
the notion will not depend on the pinning:

Definition 5.3. A generic triple of flags (z,y, 2) is positive if there exists g € G
such that gz = [B], gx3 = [B] and gzs € Fxo.
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5.3. Simply laced G. Recall that g is simply laced if for every pair o, € A one
has (o, a) = {«, o). Equivalently, the Dynkin diagram of g does not contain a double
or triple arrow. Assume moreover that G is simply connected in the algebraic sense,
i.e. every finite covering from a real algebraic group onto G is trivial, equivalently
the group G¢ of C-points of G is simply connected in the topological sense.

Proposition 5.4 (Lusztig [20, §3.1 and Prop. 3.2]). Assume that G is simply laced
and simply connected. Let ¢ : G — GL(V) be an irreducible real representation,
then there exists a basis B of V' such that

- each element of By is contained in a restricted weight space of ¢,
- for every g € G=q, the map ¢(g) : V. — V has > 0 coefficients in B;.

5.4. Theorem A for simply laced G. We devote this section to the proof of
Theorem A when G is moreover simply laced and simply connected (as in §5.3).
We prove that a discrete subgroup verifying the hypothesis of Theorem A is totally
coherent.

Corollary 5.5. Let G be simply laced and simply connected and A a subgroup with
minimal limit sets and with a positive lozodromic triple. Then A is totally coherent.

Proof. Consider ¢ € A and a fundamental representation ¢, : G — GL(V). By
minimality one has that
®(Laa) =LY o)

Moreover, since the only second level weight of ¢, is w, — o, the representation
A2¢, of G is proximal (though maybe reducible). Denote by Q : G — GL(V”) the G-
irreducible factor containing the highest weight of A2¢,, it contains the attracting
points of A2g for every ¢ € G proximal on F. Let ¥ — A be the type of the
stabilizer of VA Vg, _, in G. The limit set Ly y is also minimal and one has
(o (LAﬂg) = L%&,(A) and the latter is thus minimal.

Finally, consider go € A proximal on F and xg € L a so that (go,,z0,g90_) is a
positive triple. We can assume that go, = [B] and go_ = [B] so that ®(go,) = V+
and ®(go_) = V~. We aim to show then that V,,__, belongs to span D(La ).

Let g € G- be such that

®(z0) = ®(g- [B]) = ds(9) - ®(g0)-

Consider then the 2-dimensional subspace Py, = ®(go,) ® ¢ (9)®(g0,) and let
4z, € P(V) be the intersection

by = Ppy "V

Since G is simply laced, Lusztig’s Proposition 5.4 applies to give that ¢,(g) has
positive coefficients in By_. In particular, if v € V™ — {0} the vector ¢, (g)v has
positive coefficients in By . The line ¢;, is thus not contained in any subspace
spanned by a partial sum of weights in MN(¢,) — {ws}, i.e. €y, is not contained
in any ¢, (g)-invariant subspace of V~. Consequently, the sequence ¢, (go") - £z,
approaches, as n — +00, the ¢4 (go)-invariant subspace of V= associated to the top
eigenvalue of ¢(go)|V ~, which is Vi, _,. This completes the proof. O

Corollary 5.5 gives thus the following.

Corollary 5.6. Let G be simply laced and simply connected and let A < G have
reductive Zariski closure H and be as in Corollary 5.5. Then bgs is either g, a
principal 55(R) or Int g-conjugated to the possibilities listed in table 4.
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g Bss ¢:hss — @

sl (R) so(n,n+1) ¥Yn defining representation
n+l goifn=3 fundamental for the short root
slo, (R) sp(2n, R) defining representation
so(n—1,n) ¥n >3 stabilizer of a non-isotropic line

so(n, n) 50(3,4)ifn=4 fundamental for the short root

’ . stabilizes a non-isotropic line L and is

g2 ifn =41 4 damental for the short root on L*

e6 fa Fix(invg) (example 3.2)

TABLE 4. Statement of Corollary 5.6

5.5. Descent. The purpose of this section is to briefly explain how to bypass the
simply-laced hypothesis in Corollary 5.5. We use a standard technique called de-
scent. It consists on observing that every simple split Lie algebra g is the fixed
point set of an automorphism 3 : g — g of a simply laced split simple Lie algebra
g. One requires also that the action of 3 on the simple roots of § is such that if
a, 3 € Ay are in the same >-orbit then (o, 5) = 0. See table 5.

type of g | type of g | orbits of >

A2n71 Cn 0—0—+—0—0

D, B, | | oo %)
=
D, Gy i@

TABLE 5

With these considerations, one has the following proposition from Lusztig.

Proposition 5.7 (Lusztig [20, §8.8]). Let G be simply connected. Then there exists
a simply laced, simply connected, simple split group G and a rational representation
Q: G — G together with an equivariant map ® : Fg — F, such that

2((%c).,) = ((Fe).):
We can now conclude the proof of Theorem A.

Corollary 5.8. Let G be the real points of a real-algebraic, Zariski connected, simple
split group. Let A < G be as in Theorem A. Then the semi-simple part b4 is either
g, a principal slo(R) or Int g-conjugated to the possibilities listed in table 3.

Proof. By passing to a finite cover we can assume that G is simply connected, the
pre-image of A under this covering has again minimal limit sets and its limit set on
F contains a positive loxodromic triple. From Proposition 5.7 one finds a simply-
laced G and a rational representation Q : G — G such that QA is partially positive.
Applying Corollary 5.6 to QA gives de required result. |
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5.6. Partially positive representations preserve type. Recall that G is the
real points of a real algebraic, Zariski connected, simple split group.

Let X be a proper Gromov-hyperbolic space and ' < Isom(X) a non-elementary
discrete subgroup, then one has the following facts from Ghys-de la Harpe [10, §8.2]:

i) every v €T is either

- of finite order (called elliptic),

- proximal, i.e. has two fixed points v_,v; € 0Xr such that for every
x € 0Xr — {7y_} one has 4"z — v, as n — +w0,

- parabolic, i.e. has a unique fixed point z, € 0Xr and every x € 0Xr
converges to x, under the iterates ¥ as n — +00 (some points will
drift away from x., before coming back though).

ii) The attracting points of proximal elements are dense in 0Xr.
iii) 0Xr is the smallest closed l-invariant subset of 0X, it is thus minimal.

Let us fix throughout this subsection a partially positive representation p: [ — G
with equivariant map £ : 0 Xt — F. We begin by showing that it is type preserving.

Proposition 5.9. If v € T is prozimal then p(7y) is proximal on F with attracting
flag £(v+) and repelling flag £(y—). If h € T is parabolic then there exists k € Ny
such that p(h*) belongs to the unipotent radical of &(x1,), moreover, there exists an
open set O < F such that hz — £(xp,) for every z € O.

Proof. We divide the proof into Lemmas 5.10 and 5.11 below. O

Let M be the centralizer in K of expa, as g is split this is a ﬁnivte group. For
o€ A, let us denote by ¢ = ¢ : G — SL(V) and by @ : F - P(V), @ : F — P(V¥)
the corresponding ¢-equivariant maps.

Lemma 5.10. For every proximal v € T, ¢p(7y) is prozimal with attracting line
DE(v4) and repelling hyperplane PE(y-).

Proof. By passing to a finite cover we can assume that G is simply connected. In
view of Proposition 5.7 we can also assume that G is simply laced and thus make
use of Lusztig’s canonical basis B (Proposition 5.4).

Without loss of generality we may assume that &(y4) = [B] and that () =
[B]. Since p(7) fixes both complete flags £(v,) and £(v_), it can be written as

p(7) = My(y) exp(ay) (5.2)

for a unique a,, € a and m,,) € M.

The composition ®¢ : X — P(V) is a continuous ¢p-equivariant map. By the
assumptions &(v4) = [B] and £(vy_) = [B], one has
-) =

O¢(7+) = V™ and PE(y VX

x€N(¢)—{=o}
respectively.
By definition there exists z € 0Xr distinct from 4 and y— and g € G-¢ such
that £(x) = g€(v4 ). Lusztig’s Proposition 5.4 states, in particular, that if v € V'
is non-zero then ¢, (g)v = ZeeBd_) ce€ with ¢ > 0 for all e.

On the other hand, equation (5.2) implies that ¢p(y) is the commuting product
of a matrix diagonal in B and a finite order element. Let us denote thus by Qe(7)

the (possibly complex) eigenvalue of ¢p(7) of the vector e € B 3
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If k is the order of m,y(,), then ¢(p(7)*) is diagonal in By, so that Qe(7)* € R
and one has for all n e N

1 Y nk v) = Q?( ) nkc
M (p()™ (o)) ee;% ()\1(¢p(7))) °® (5:3)

Since y"x — v, , equivariance implies ¢p(7")(gV*+) — VT. Consequently, given
that ce > 0, equation 5.3 implies then

1Qe(7)] < [A1(d0(7))],

for every e except V* and thus the spectral radius of dp(7) is attained at (and only
at) V. Consequently ¢p(7y) is proximal. a

Lemma 5.11. Let h € [ be parabolic with fized point xy, then there exists k € N>y
such that p(h*) belongs to the unipotent radical of &(x1,), moreover, there exists an
open set O < F such that hz — &(xp,) for every z € O.

Proof. Again we can assume that G is simply laced and simply connected. We
assume moreover that £(xp) = [B] and that [B] = £(zp) for some auxiliary point
2o € 0Xr. one has then ®&(xp) = V1. Let us write

p(h) = m,m) exp(an)up (5.4)

where myp € M has finite order, commutes with exp a, € A and normalizes uy € U.

Since every element of e € B3 belongs to a restricted weight space V,, of ¢, we
can order By so that e > f if xe > xt, (the order between elements lying in the
same weight space, or between weight spaces of the same level, is not relevant for
the following). The elements of A-U are upper triangular in By, so if k is the order
of m,;) then the transformation ®p(h*) is upper triangular in B;.

Let us denote by A; = exp Ay ((;_Sp(hk)) > 1 the spectral radius of ¢p(h*) and by
V), the sum of Jordan blocks of ¢p(h*) associated to \;. By equation (5.4) and the
definition of B the intersection Vx, n By is a basis of V},. Denote by 7 : V' — V},
the projection parallel to the vector space spanned by the remaining elements of
Bgy. If £ € P(V) is not contained in ker 7 then one has

dp (Gp(h)*™ - £,P(Vx,)) = 0 (5.5)

as n — o0.

By definition, there exists = € dXr — {z1,} and g € U such that £(z) = g - [B].
As before, if v € VT is non-zero then ¢(g)v has positive coefficients in Bj. This
implies, in particular, that ®¢(z) = ¢(g)V* & kerm. Since h"x — zj, one has
dp(h)" (®¢(x)) — ®E(xs), which combined with equation (5.5) gives ®&(z) € Vi, .

On the other hand, since h is parabolic, h~"x also converges to xp. So the above
argument applied to h~! gives that ®¢(xy,) is also contained in the generalized
eigenspace of ¢pp(h™F) associated to its spectral radius. Since®

[ép(h™)oll/Iv] = AT,

one concludes that the spectral radius of ¢p(h™") is A< L
Since ¢ has values in SL(V) (because G is simple) one concludes that A\; = 1 and
that ¢p(h)* is upper triangular on Bj with 1’s in the diagonal, i.e. p(h*) e U.

Sfor any auxiliary norm.



22

Considering x € 0Xr—{z;} and g € U-¢ as before; one has that PE(x) = P(g)V T
does not belong to a ¢p(h)-invariant subspace. Consequently, since ¢p(h)"®E(x) —
®E(xp), the same holds on a neighborhood of ®£(x) and the lemma is proved. O

5.7. Proof of Theorem B. Proposition 5.9 readily implies that if p : [ — G is
partially positive with limit map &,, then it has minimal limit sets and contains a
positive loxodromic triple. Indeed, by the descent method (§5.7) we can assume that
G is simply laced and apply Proposition 5.9 to obtain that the limit set L, a =
£(0Xr) and moreover that L, , = pos (ﬁ(ﬁXr)), where p, : § — JFisy is the
canonical projection.

Theorem A would then complete the proof provided the Zariski closure of p(I)
where reductive. The purpose of this subsection is thus to bypass the 'reductive
Zariski closure’ assumption. Consequently, Proposition 5.13 below and Theorem A
prove Theorem B.

We begin by recalling the following lemma. It is a well known fact that the reader
may check in Guéritaud-Guichard-Kassel-Wienhard [12, §2.5.4] or in Benoist’s lec-
ture notes [3].

Lemma 5.12. Let A be a group and let p € hom(A, G) have non-solvable Zariski
closure L. Let | = b @, Ry(h) be a Levy decomposition of the Lie algebra of L
as a semi-direct product, with b reductive and R, (h) its unipotent radical. Then
there exists 1) € hom(A, G) whose Zariski closure has Lie algebra b and a sequence

(gn) € G with g,pg;t — n.

As in Guéritaud-Guichard-Kassel-Wienhard [12, §2.5.4], we say that 7 is the
semi-simplification of p (regardless its Zariski closure is reductive and not neces-
sarily semi-simple, and regardless of any uniqueness issues). We then prove the
following.

Proposition 5.13. If p: [ — G is partially positive then its semi-simplification n
has minimal limit sets and contains a positive loxodromic triple.

Proof. By continuity of the Jordan projection and Proposition 5.9, one has that
7(7y) is purely loxodromic for every proximal v € I'; and that for every parabolic
h e T there exists k = kj, such that n(h)* is unipotent.

The argument from Guéritaud-Guichard-Kassel-Wienhard [12, Proposition 4.13]
works verbatim in this situation to give a n-equivariant continuous map &, : 0Xr —
JF such that for every proximal v € I &,(v4) and &,(y—) are respectively the at-
tracting and repelling flags of n(+). The limit set

Lyry.a = & (0Xr)
is thus minimal, and since every element of 7(I) is either purely loxodromic, unipo-
tent (up to a finite power) or elliptic, for every o € A the limit set L, ), is also
minimal.

Since the pairs {(y—,7v+) : 7 € [ proximal} are dense in 6X§2) = 0Xr x 0Xr —
diagonal, continuity of &, implies moreover that it is transverse, i. e. for every
x # y € 0Xr the flags &,(x) and &,(y) are in general position.

In order to find a positive loxodromic triple in &,(0Xr), we observe that for every
proximal v € I g,&,(v+) — &,(7+) as n — co. Indeed, for every o € A the line
Py (gn - €5(7)) is the eigenline of ¢, (gnp(7)g, ') associated to its spectral radius

M (00 (gnp(1)gn ) = M (6 (p(1))) = M (D0 (n(7)))-
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Consequently, any accumulation point of {®, (gn-£,(7))} is an eigenline associated
to A1 (¢s(n(7))); since ¢, (n(v)) is proximal, this eigenline is @, (&, (7+))-

By assumption, there exists € 0Xr such that (£,(v4),&,(x),&(7-)) is a pos-
itive triple of flags. By Proposition 5.2, F.¢ is an open subset of F, thus, since
attracting points of proximal elements are dense in 0Xr, there exists a proximal
h e T such that (&,(v+),&p(h4),&p(7-)) is also a positive triple.

We claim that (&,(74+), & (h+), & (7-)) is a positive triple. Indeed, let us asume
with out loss of generality that &,(v4) = [B] and that &,(y_) = [B]. One has the
convergence

gn (E(74), (i), Ep (1)) = ([B], & (hy), [B])

and the triple g, - (ﬁp('y+),§p(h+), fp(’y_)) is positive by definition. We may then
also assume that for every n, ¢,,-§,(h4) € gn-F>0. The limit &,(h) of the sequence
gn -&,(hy) lies thus in the topological closure F- . Proposition 5.2 states that every
element in the topological boundary of F~g is not transverse to either [B] or [B].

However, as was observed earlier, &, (hy) is both transverse to [B] and [B] and
thus necessarily lies in F~ ¢, the topological interior of F.g. O

5.8. Hyperconvexity. To end this section we record the following remark that
will be useful in Bridgeman-Pozzetti-Wienhard-S. [5].

Remark 5.14. Assume that 0Xr is homeomorphic to a circle, and that a partially
positive p : [ — G verifies the extra condition that & sends positive ordered triples
on 0XT to positive triples of flags. Then for every o € A and z,y, z € 0Xr pairwise
distinct one has

(P&(2) @ DE(y)) N @125, €(2) = {0}

Here we interpret @ ,» #,6(2) as a dim V, — 2-dimensional subspace of V,. In the
language of Pozzetti-S.-Wienhard [21], the remark states that the curve ®£(0XT)
is (1,1, 2)-hyperconvex.

Proof. We can assume that G is simply laced and simply connected. We may also
assume that £(z) = [B], £(z) = [B] and that £(y) = g&(x) for a g € Us. We mimic
now the proof of Corollary 5.5. Since ¢,(g) has positive coefficients in the basis
B, the intersection of the plane

Py = 9¢(2) ® PE(y) = PE(2) © ¢o(9)PE(2) = VT ® 9o (9)VF

with V', is not contained in any partial sum of restricted weight subspaces, in
particular it is not contained in

VX = i)Azqgaf(z)
XEM(¢o)—{wo,wo—0}

as required. O

6. GROUP LEVEL

Let us consider now a non-elementary discrete subgroup I' < Isom(X) of a proper
Gromov-hyperbolic space X, a simple split G and the space

homx (I, G) = {p : I — G partially positive}.
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In view of Proposition 5.9, if p € homx (', G) and v € I is non-torsion, then the
elliptic component

p(Y) = My,

as in equations (5.2) and (5.4) according to the type of v, is a locally constant
well defined map. The image of this map is thus an invariant of the connected
component of homx (I', G) containing p.

We will use this map to decide whether the Zariski closure of a given p is con-
nected or not. Indeed, let us consider p € homx (F,SLd(IR)) and denote by H its
Zariski closure. By Corollary 1.4 H has finite center. Thus, Hg, the connected
component of the identity of H, is (conjugated to) one of the groups in table 6.

- SLd(IR)v

- a principal SLy(R),

- Spy,(R) if d = 2n for all n > 1,

-SOp(n,n+1)ifd=2n+1for all n > 1,

- the fundamental representation for the short root of Gy if d = 7.

TABLE 6. Connected component of the identity of the Zariski closure
of an element p € homz (I, SLa(R)), G2 denotes the two-fold covering of
Ga.

To decide if H is connected, one can observe that for every non-torsion v € I
the elliptic component m, ) € M n H. This latter finite group is nothing but the
centralizer in Ky of exp an, so if m,(,y € Ho then p(v) € Ho.

Definition 6.1. A discrete and faithful representation I' — SLy4(R) is principal”
if its Zariski closure is a principal SLy(R). We denote by $(I, SL4(R)) a connected
component of homx (T, SLd(IR)) that contains a principal representation.

Corollary 6.2. Assume [ is torsion free, then every element ofﬁ(l_,SLd(lR)) has
connected Zariski closure (and is thus an element of table (6)).

Proof. Let 7 : SL2(R) — SL4(R) be a principal embedding. Observe that the group
M= MT(SL2(R)) - {T(_Ol _01)’7_((1) (1))}

is contained in any group in the list 6. If p € 53(|'75Ld(|R)) has Zariski closure H,
then for every v € I m,,) € M < Hg and the proof is complete. O

Finally, let S be a closed connected orientable surface of genus > 2 and p : m .5 —
PSL4(R) in a Hitchin component. Assume first that p lifts to a representation
p:mS — SLg(R). Then Theorem 1.2 assures that p € $(71.5, SL4(R)) and Corollary
6.2 implies that the Zariski closure of p is the projectivisation of a group in the
table 6.

To prove that p lifts, recall that 7.5 has the presentation

<a1,b1, e ,Clg7bg : H[a“bl] = ].>

"This is usually referred to as Fuchsian in the literature.



25

If n : mS — PSLy(R) is a representation and one considers a lift for each generator
7(a;), 7(b;) € SL2(R), one readily sees that the commutator product

[Th)n@l e {(52).(3%)}

is independent of the chosen lifts.

If 7 is discrete and faithful then (see for example Goldman [11]) the above product
equals id and the representation lifts. This shows that if pg : m1S — PSLg(R)
is principal, then it lifts to $(m1S,SLa(R)). On the other hand it is clear that
the above product of commutators is an invariant of the connected component in
hom (mS, PSLd(R)) so any Hitchin representation lifts. This completes the proof
of Guichard’s classification (Corollary 1.5).

APPENDIX A. THE HASSE DIAGRAMS FOR EXTREMAL ROOTS

In this appendix we prove Lemma 3.3. To this end we compute the Hasse
diagrams for the extremal roots of irreducible reduced root systems and compute,
in a case by case manner, the existence/non—existence of surjective maps between
them. Let us simplify notation and denote, for a simple root = € A of some root
system J, by in the Hasse diagram U-Ci_Jw for the fundamental weight w,.

Most of the situations are ruled out by the following simple facts. If f: AL — A,
is surjective and T7 : 9—(; — 5{}(&) is a surjective diagram map with labeling f then:

- rank J < ranklL,

- both J—C't; and fH}(a) have the same total amount of levels,

- if x is the only vertex at a given level, then the number of arrows pointing
downwards in K% is greater than that of T/(y) in 3—(}(&),

- to show non-existence of such f, it it sufficient to find one extremal root of
L whose Hasse diagram does not surject to any diagram of J (for extremal
roots).

We refer the reader to the corresponding figures for the labeling of simple roots
for each Dynkin diagram.

Lemma A.1. Leaving aside the case f =identity, one has the following.

- Type A : The only surjective diagram maps T7 : ﬂ{g‘f — ﬂ{i with x extremal are
-d=2n and J =B, and x = B for all n and moreover Gy and x = « if
d =6,
-d=2n-1,J=C, and z = 5.
- Type B : The only surjective diagram maps TS : 3—(2" — J—Ci with x extremal isn = 3
and J = Gy and ¢ = «.
- Type C : There is no surjective diagram map T7 : ng" — in with x extremal.
- Type D : The only surjective diagram maps T/ : 9{2” — in with x extremal are
- J=B,_1 with x = § for alln,
- moreover J = Bs with x = a and J = Gy with x = « if n = 4.

Proof. Observe that all Hasse diagrams J—Cg; (Figure (2)), 9{2” and ng consist
on exactly one arrow exiting each vertex. By restricting the total amount of levels
given by the existence of T/ together with the fact that rank J < n (in each case)
one completes the proof. A similar argument works for f}Cgl" (see also Figure 3). O
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We now treat the type E family, we will show that there is no surjective diagram
map from J{E’“ for k = 6, 7 or 8 to any other Hasse diagram U—Ci with extremal x.
Except for HE — HF* (as shown in Figure (9)).

Lemma A.2. There is no surjective map T/ from HE* for k = 6, 7 or 8 onto any
of :}an ~ ng"a 9{2", 9{2", for n < 8 nor onto J—C§2 or 9{22 .

Proof. The non-existence of such map comes from the fact that fHE has too many
levels (compared to the fact that n must be smaller than k), observe that Figure
(6) depicts H{E"‘ up to levels 9, 10 and 11 respectively for k = 6, 7 or 8. The case
3{22 is readily discarded since it has 7 levels.

We now treat U-Ci. for J = A,, B,, C, and x = (. Since these diagrams consist
on only one arrow pointing downwards at each level, from Figure (6) one sees that

if such a T/ existed then necessarily

f(B2) = f(o) = f(B) = f(B3) = [(Ba)-
Since f is surjective, the above equalities imply that J has rank < k& — 4, that is
n < k —4 < 4. However J—Cg“ has 5 levels, U{g“ has 9 levels and (Hg“ has 8 levels,
but HE has at least 9 levels (actually at least 17 as seen in Figure (9)).

Finally, from Figure (8) one sees that 3{22 has 14 levels but Figure (9) shows
that HE has at least 17 levels. g
Lemma A.3.

- There is no surjective map TS from 5{5’“ k = 6,7 or 8 onto }CE", J—Cg",

HO» ~ HO HE (j=6,7 or8), HE*1 (if k =7 or8) HE*2 (if k =8).

- There is no surjective map TS from HE™ or HES onto HEe, ﬂ'(gj (=67
or8), 5{;4 and HH .

Proof. In U-CE’C the first level with more than one exiting arrow is at least 4, however

the diagrams appearing in the first item have 2 exiting arrows at the third level.

Similarly the first level with more than one exiting arrow in iHE] or J—CES is at least 5,
but the diagrams listed in the second item have earlier multiple exiting arrows. [

The E family is thus achieved with the next Lemma.
Lemma A.4. There is no surjective map TF from J'CEk fork e {6,7,8,} onto ﬂ{g" .
Proof. Since in J-CB" there is only one arrow starting at each node for every level

up to n — 2, if such a T/ exists then one must have n — 2 = k — 3. However, by
looking at levels after the first rombus in Figure (6) one sees that

f(B) = flo) = (Bs),

thus n < k — 2, which is a contradiction with n = k — 1. O

The remaining F4 and Gs cases are easily discarded since the other reduced root
systems with rank J < 4 and < 2 respectively do not have enough levels.
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