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Abstract. We classify the (semi-simple parts of the) Lie algebra of the Zariski

closure of a discrete subgroup of a split simple real-algebraic Lie group, whose
limit sets are minimal and such that the limit set in the space of full flags

contains a positive triple of flags (as in Lusztig [20]). We then apply our result
to obtain a new proof of Guichard’s classification [14] of Zariski closures of

Hitchin representations into PSLdpRq.
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1. Introduction

Let us consider the vector space Rd equipped with its canonical ordered basis
E “ te1, . . . , edu and let GLdpRq be the group of invertible matrices. A minor of
g P GLdpRq is the determinant of a square matrix obtained from g by deleting some
lines and columns from it. Minors appear naturally when one considers the exterior
powers of Rd. Indeed, theses spaces carry also a natural basis

^kE “ tei1 ^ ¨ ¨ ¨ ^ eik : i1 ă ¨ ¨ ¨ ă iku

defined from E, and the coefficients of ^kg in this basis are the k ˆ k minors of g.
As introduced by Schoenberg [22] and Gantmacher-Krein [9], a matrix is totally

positive if all its minors are positive1. If g P GLdpRq is such a matrix, then, since
all its entries are positive, it preserves the sharp convex cone of Rd

CE “ tpx1, . . . , xdq : xi ě 0u,

consisting on vectors all of whose entries in E are non-negative. By the preceding
paragraph more is true: the same holds for every exterior power of g replacing E

by ^kE.

The author was partially financed by ANR DynGeo ANR-16-CE40-0025.
1Let us convene throughout the paper that 0 is not a positive real number.
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An application of the classical Perron-Frobenius Theorem implies then that ^kg
has a unique attracting fixed line in the interior of this cone,

g`,k P int C^kE, (1.1)

and the collection pg`,kq
d
1 is an attracting complete flag2 of g. If we denote by ~E

the complete flag
~E “ pspanpe1 ‘ ¨ ¨ ¨ ‘ ekq

˘d

1

then the inclusion (1.1) readily implies that the lower triangular matrix ǔg sending
~E to pg`,kq has all minors below the diagonal positive. Such a semi-group will

be denoted by Ǔą0. If one is keener on upper triangular matrices then one should

replace ~E by ~E “ pspanped‘¨ ¨ ¨‘ed´k`1q
˘d

1
to obtain analogous Uą0. The subspace

of positive flags is then defined by

Fą0 “ Ǔą0 ¨
~E “ Uą0 ¨

~E.

Several implicit choices, other than the pair of flags p~E, ~Eq Ø E, have been done to
define Fą0, but we will not enter this matter at the moment.

The above (very quick) picture has been generalized to the real points of an
arbitrary (Zariski-connected) reductive split real-algebraic group G by Lusztig [20].
We refer the reader to §5.1 for the precise definitions and we reuse the notation
FG “ F as the complete flag space of G and Fą0 for the subset of positive flags
associated to a pair of fixed opposite Borel subgroups B and B̌ (and a pinning,
see §5.1). Let us say that a triple of pairwise transverse flags px, y, zq is positive, if
there exists g P G such that g ¨ x “ rB̌s, g ¨ z “ rBs and g ¨ y P Fą0.

Le us consider more generally a partial flag Fθ of G, these are indexed by subsets
of the set of simple roots ∆, with F∆ “ F. An element g P G is proximal on Fθ
if it has an attracting fixed point on Fθ, i.e. there exists g`,θ P Fθ fixed by g

and an open neighborhood V of g`,θ such that gV Ă intV. In this situation one
has

Ş

nPN g
nV “ tg`,θu. Elements that are proximal on F are often called purely

loxodromic.
If Λ ă G is a discrete subgroup then its limit set on Fθ is defined as

LΛ,θ “ tg`,θ : g P Λ proximal on Fθu Ă Fθ.

A result by Benoist3 [2] asserts that if Λ is Zariski dense, then LΛ,θ is non-empty
and contained in any closed non-empty Λ-invariant set. We will assume a slightly
weaker version of this property. Let us say that LΛ,θ is minimal if the only closed
Λ-invariant subsets of LΛ,θ are either the empty set or LΛ,θ itself.

Definition 1.1. Let Λ ă G be a discrete group. We say that

- Λ has minimal limit sets if LΛ,tσu is minimal for every σ P ∆,
- LΛ,∆ contains a positive loxodromic triple if there exists g0 P Λ proximal

on F and x0 P LΛ,∆ such that pg`, x0, g´q is a positive triple.

Recall that a reductive Lie algebra h splits as the sum h “ hss ‘ Zphq where
Zphq is its center and hss “ rh, hs is semi-simple. Recall also that, as g is split, it
contains a special conjugacy class of sub-algebras isomorphic to sl2pRq called the
principal sl2pRq’s, see §2.1.1 for the definition.

2Recall that a complete flag of Rd is a sequence of vector subspaces pViq
d
1 such that dimVi “ i

and Vi Ă Vi`1.
3(that holds for G an arbitrary reductive real-algebraic Lie group of non-compact type)
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The main purpose of this paper is to prove the following.

Theorem A. Let G be the real points of a Zariski connected, simple split, real-
algebraic group and Λ ă G a subgroup with reductive Zariski closure H, minimal
limit sets and such that LΛ,∆ contains a positive loxodromic triple. Then hss is
either g, a principal sl2pRq, or Int g-conjugated to one of the possibilities listed in
table 1.

We would like to stress the fact that only one positive (loxodromic) triple in the
limit set LΛ,∆ is required.

g hss φ : hss Ñ g
sl2npRq spp2n,Rq defining representation

sl2n`1pRq
sopn, n` 1q @n defining representation

g2 if n “ 3 fundamental for the short root
sop3, 4q g2 fundamental for the short root

sopn, nq

sopn´ 1, nq @n ě 3 stabilizer of a non-isotropic line
sop3, 4q if n “ 4 fundamental for the short root

g2 if n “ 4
stabilizes a non-isotropic line L and is
fundamental for the short root on LK

e6 f4 Fixpinv0q (see example 3.2)
Table 1. The statement of Theorem A, if a simple split algebra g is
not listed in the first column then the only possibilities for hss are g or a
principal sl2pRq. The notations e6, f4 and g2 refer to the split real forms of
the corresponding exceptional complex Lie algebras. Observe that there
are two non Int sopn, nq-conjugated embeddings sopn, n´ 1q Ñ sopn, nq
that stabilize a non-isotropic line.

The use of Lusztig’s positivity to study discrete groups seems to have origi-
nated in Fock-Goncharov’s [7] work, where the notion of positive representation of
a surface group was introduced. A similar approach simultaneously originated in
Labourie [19]. Both works focus on understanding a special connected component
of the character variety Xpπ1S,Gq “ hompπ1S,Gq{G, for a closed connected ori-
entable surface S of genus ě 2 and a center-free split simple group G, introduced
by Hitchin [15]. These Hitchin components are defined as those components that
contain a discrete and faithful representation π1S Ñ G whose Zariski closure is a
principal PSL2pRq in G.

Combining loc. cit. together with Guichard [13] one has the following geometric
characterization of Hitchin representations. Recall that the Gromov boundary of
π1S is homeomorphic to a circle and carries a π1S-invariant cyclic order.

Theorem 1.2 ([7, 13, 19]). A representation ρ : π1S Ñ G lies in a Hitchin compo-
nent if and only if there exists a continuous equivariant map ξ : Bπ1S Ñ F sending
cyclically ordered triples to positive triples of flags.

In this paper we deal with a weaker notion than the one required in the above
result. We replace π1S with any discrete group acting on a Gromov-hyperbolic
space and relax the “order preserving” condition.

If X is a proper Gromov-hyperbolic space and Γ ă IsompXq is a discrete sub-
group, then we denote by BXΓ its limit set on the visual boundary of X. It is



4

a compact Γ-invariant subset and Γ is non-elementary if BXΓ contains at least 3
points. If this is the case, then Γ is non-solvable and BXΓ is characterized by be-
ing the smallest non-empty Γ-invariant closed subset of BX. We refer the reader
to Ghys-de la Harpe [10, Chapitre 8] for these (and other) general facts we will
require. Unless Γ is convex co-compact, the limit set BXΓ is not an intrinsic object
associated to the group structure of Γ.

We will consider the following representations.

Definition 1.3. Let X be a proper Gromov-hyperbolic space and Γ be a non-
elementary discrete isometry group. A representation ρ : Γ Ñ G is partially positive
if there exists a ρ-equivariant continuous map ξ : BXΓ Ñ F such that for every pair
x ‰ z in BXΓ, there exists y P BXΓ such that

`

ξpxq, ξpyq, ξpzq
˘

is a positive triple.

It is implicit in the definition that distinct pairs of BXΓ are mapped to transverse
flags.

The second main result of this paper is the following. Recall that a non-solvable
Lie algebra l is a semi-direct product lss ‘π Rad l, where lss is semi-simple and
Rad l is solvable4, and that the Zariski closure of a non-solvable subgroup Λ ă G
has non-solvable Lie algebra.

Theorem B. Let X be a proper Gromov-hyperbolic space, Γ ă IsomX a non-
elementary discrete subgroup and ρ : Γ Ñ G a partially positive representation with
Zariski closure L. Then the semi-simple part lss is either g, a principal sl2pRq, or
Int g-conjugated to one of the possibilities listed in table 1.

The challenge here is to show that LρpΓq,∆ “ ξpBXΓq and that for every σ P ∆,
it projects surjectively to every LρpΓq,tσu under the natural projection F Ñ Ftσu.

Let us remark that, in contrast with Theorem A, we do not require the Zariski
closure of ρpΓq to be reductive. We emphasize this by stating the following conse-
quence of Theorem B.

Corollary 1.4. Assume that g “ slnpRq, sp2npRq, sopn, n ` 1q or g2 and let ρ :
Γ Ñ G be partially positive, then its corresponding action on Rn,R2n,R2n`1 or R7

respectively is (strongly) irreducible.

Theorem B together with Theorem 1.2 give a new proof of the following clas-
sification result by Guichard (the argument is postponed to §6). As before, g2

is the split real form of the corresponding complex exceptional Lie algebra and
G2 “ Int g2.

Corollary 1.5 (Guichard [14]). Let ρ : π1S Ñ PSLdpRq be a representation in
the Hitchin component, then the Zariski closure of ρ is either PSLdpRq, a principal
PSL2pRq or conjugated to one of the following:

- PSp2npRq if d “ 2n for all n ě 1,
- PSOpn, n` 1q if d “ 2n` 1 for all n ě 1,
- the fundamental representation for the short root of G2 if d “ 7.

Corollary 1.5 plays a central role in Corollary 11.8 of Bridgeman-Canary-Labourie-
S. [4] and in the recent work by Danciger-Zhang [6], allowing the authors to reduce
the general problem to the group PSOpn, n` 1q.

4See Knapp [17, Chapter B.1].
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1.1. Final remarks. It is unclear whether all possibilities stated in Theorem B
might actually occur. When Γ “ π1S (S as above) then Hitchin’s Theorem [15]
implies this is actually the case. However, a recent result by Alessandrini-Lee-
Schaffhauser [1] provides many examples of locally rigid positive representations of
groups with torsion.

1.2. Organization of the paper. In §2 we recall some facts on representation
theory of real reductive Lie algebras of non-compact type. In §3 we introduce the
Hasse diagram of a representation of such a Lie algebra, this is nothing but the
usual Hasse diagram of a partially order set (here to be the set of restricted weights
of the representation). We introduce maps between diagrams and notably study
the existence of a surjective map between two Hasse diagrams. There is a case by
case proof that is postponed to appendix §A.

In §4 we study Zariski closures of discrete groups verifying a coherence condition
with respect to the position of their eigenspaces, and relate these to maps between
Hasse diagrams of the Zariski closure and the ambient group. The key point is
Proposition 4.8 that, in light of the previous section, classifies Zariski closures of
these groups, provided it is reductive.

Section 5 begins by recalling total positivity introduced by Lusztig [20], we prove
then that groups whose limit sets contains a positive loxodromic triple verify the
coherence condition studied in §4. This proves Theorem A. Theorem B is also
proved in this section. In §6 we focus on the SLdpRq situation and prove Guichard’s
classification (Corollary 1.5).

The paper is written rather linearly so one has the following diagram representing
dependence between sections:

§A

§1 §2 §3 §4 §5 §6

Acknowledgements. The author would like to thank Olivier Guichard and Maria
Beatrice Pozzetti for enlightening discussions and careful reading of this article.

2. Review on Lie Theory

2.1. Semi-simple Lie algebras. Let g be a semi-simple real Lie algebra of the
non-compact type and fix a Cartan involution o : g Ñ g with associated Cartan
decomposition g “ k‘ p. Let a Ă p be a maximal abelian subspace and let Φ Ă a˚

be the set of restricted roots of a in g. For α P Φ let us denote by

gα “ tu P g : ra, us “ αpaqu@a P au

its associated root space. One has the (restricted) root space decomposition g “
g0 ‘

À

αPΦ gα, where g0 is the centralizer of a.
Fix a Weyl chamber a` of a and let Φ` and ∆ be, respectively, the associated

sets of positive roots and of simple roots. One has that Φ “ Φ` Y ´Φ` and that
if α P Φ` then, upon writing

α “
ÿ

σP∆

kσσ,

every coefficient kσ is a non-negative integer. The height of α is htpαq “
ř

σ kσ.
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Let us denote by p¨, ¨q the Killing form of g, its restriction to a, and its associated
dual form in the dual of a, a˚. For χ, ψ P a˚ define

xχ, ψy “ 2
pχ, ψq

pψ,ψq
.

The Weyl group of Φ, denoted by W, is the group generated by, for each α P Φ,
the reflection rα : a˚ Ñ a˚ on the hyperplane αK,

rαpχq “ χ´ xχ, αyα.

It is a finite group with a unique longest element w0 (w.r.t. the word metric on the
generating set trα : α P ∆u). This longest element sends a` to ´a`.

Recall that the Dynkin diagram of the root system Φ consists on a graph whose
vertices are the elements of ∆ and such that α, β P ∆ are joined by xα, βyxβ, αy
edges. If two simple roots are joined by more than one edge then an arrow is added
pointing to the shortest (in norm p¨, ¨q) root. One speaks indistinctively of the
Dynkin diagram of g, Φ or of ∆.

We will require the following notion:

Definition 2.1. An element of ∆ is extremal if it is connected to exactly one root
in the Dynkin diagram of Φ.

The root systems of type D and E have 3 extremal roots, while the others only
have two.

2.1.1. Some sl2’s of g. For α P Φ let tα, hα P a be defined such that, for all v P a
and all ϕ P a˚, one has

αpvq “ pv, tαq and ϕphαq “ xϕ, αy.

These two vectors are related by the simple formula hα “ 2tα{ptα, tαq. Recall that
for x P gα and y P g´α one has rx, ys “ px, yqtα. Thus, for each α P Φ` and xα P gα
there exists yα P g´α such that

e “p 0 1
0 0 q ÞÑ xα

f “p 0 0
1 0 q ÞÑ yα

h “p 1 0
0 ´1 qÞÑ hα

is a Lie algebra isomorphism between sl2pRq and the span of txα, yα, hαu. Let us fix
such a choice of xα and yα from now on.

One says that g is split if the complexification a b C is a Cartan subalgebra of
gb C. Equivalently, g is split if the centralizer Zkpaq of a in k vanishes.

Assume that g is split. Following Kostant [18, §5], consider the dual basis of
ttσ : σ P ∆u relative to p¨, ¨q: pεα, tβq “ δαβ , and let ε0 “

ř

σP∆ εσ P a. The element
ε0 is the semi-simple element of a 3-dimensional simple subalgebra of g. Such a
subalgebra, or any of its Int g-conjugates, will be called a principal sl2pRq of g.

Let us denote by n “
À

αPΦ` gα.

Theorem 2.2 (Kostant [18, Thm 5.3]). Let g be a split Lie algebra and consider
an element

e “
ÿ

αPΦ`

aαxα P n.

Then e lies in a principal sl2pRq if and only if aσ ‰ 0 for all σ P ∆.
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2.2. Reductive groups. A Lie algebra g is reductive if every ad g-invariant sub-
space of g has an ad g-invariant complement. It is a standard fact (see Knapp [17,
Chapter I. §7]) that such an algebra splits as

g “ Zpgq ‘ gss,

where gss “ rg, gs is semi-simple and Zpgq is the center of g.
A reductive Lie group5 G is a 4-tuple

`

G,K, σ, p¨, ¨q
˘

, where K is a compact sub-
group of G, σ is a Lie algebra involution of g and p¨, ¨q is a σ-invariant, Ad G-invariant
non-degenerate bilinear form on g such that:

- g is a reductive Lie algebra,
- the Lie algebra k of K is the set of fixed points of σ,
- if p “ tx P g : σpxq “ ´xu then k and p are p¨, ¨q-orthogonal and p¨, ¨q is

positive definite on p,
- the map Kˆ pÑ G, pk, xq ÞÑ k expx, is a surjective diffeomorphism.
- every automorphism of the form Adphq, for h P G, of the complexification
gb C is of the form Adpxq for some x P Intpgb Cq.

Given a reductive group G and a maximal abelian subspace a Ă p, one can form,
as in the semi-simple case, a restricted root space decomposition

g “ g0 ‘
à

αPΦg

gα

where gα “ tx P g : ra, xs “ αpaqx@a P au.
The relation between the restricted roots Φg and the restricted roots of gss is

as follows: the elements of Φg can be obtained by considering the restricted root
space decomposition of gss relative to ass “ aX gss and extending these roots to a
as being zero on aX Zpgq.

2.3. Basic facts on representation theory of semi-simple Lie algebras. Let
g be a semi-simple Lie algebra over R without compact factors. We record here
some standard facts about irreducible real representations of g, see for example
Humphreys [16].

The restricted weight lattice is defined by

Π “ tϕ P a˚ : xϕ, αy P Z@α P Φu,

it is spanned by the fundamental weights: t$σ : σ P ∆u where $σ is defined by

x$σ, βy “ dσδσβ

for every σ, β P ∆, where dσ “ 1 if 2σ R Φ` and dσ “ 2 otherwise. The set Π` of
dominant restricted weights is defined by Π` “ ΠX pa`q˚.

Given χ, ψ P Π one says that χ ą ψ if χ´ψ has non-negative integer coefficients
in ∆. A subset π Ă Π is saturated if for every χ P π and α P Φ the string

χ´ iα i between 0 and xχ, αy

is entirely contained in π. Such a set is necessarily W -invariant. We say that π has
highest weight µ P π if for every χ P π one has χ ă µ. One has the following lemma,
see Humphreys [16, §13.4 Lemma B].

Lemma 2.3. Let π be a saturated set of weights with highest weight µ, then every
χ P Π` with χ ă µ belongs to π.

5see for example Knapp [17, Chapter VII. §2.]
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Let φ : g Ñ slpV q be an irreducible representation. The sub-algebra φpaq is
self-adjoint for an inner product of V and thus the space V decomposes as a sum
V “

À

χPΠpφq V
χ, where

V χ “ tv P V : φpaqv “ χpaqv @a P au

are the common eigen-spaces, called restricted weight spaces, and

Πpφq “
 

χ P a˚ : V χ ‰ t0u
(

is called the set of restricted weights of φ. It is a W -invariant set. The multiplicity
of χ P Πpφq is denoted by mφpχq and defined as the dimension of its restricted
weight space, mφpχq “ dimV χ. We will often omit the subscript and write mpχq if
there no ambiguity in φ.

Proposition 2.4. Let pV, φq be an irreducible representation of g. Consider χ P
Πpφq and α P Φ, then the elements of Πpφq of the form χ ` iα, i P Z form an
unbroken string

χ` iα, i P J´r, qK
and r ´ q “ xχ, αy.

There is a unique maximal element χφ of Πpφq for ą, called the the highest
restricted weight of φ, and Proposition 2.4 implies that Πpφq is saturated with
highest weight χφ.

By definition, for every a P a` χφpaq is the spectral radius λ1

`

φpaq
˘

of φpaq.

The restricted weight space associated to χφ is V ` “ Vχφ “
 

v P V : φpnqv “ t0u
(

.
One has the following (to simplify notation, for α P Φ` we write ǧα “ g´α.).

Remark 2.5. The subspaces of the form φpǧβ`q ¨ ¨ ¨φpǧβ0qV
` with βi P ∆ (repetitions

allowed) that do not identically vanish are in direct sum. Indeed, such a space is
contained the restricted weight space associated to

χφ ´
k
ÿ

i“0

βi.

Every weight of φ is obtained in this fashion, moreover, by construction every weight
χ P Πpφq can be written as χ “ χφ´ β0´ ¨ ¨ ¨ ´ β`, with βj P ∆, in such a way that
all the partial sums

χ “ χφ ´ β0 ´ ¨ ¨ ¨ ´ βj j P J1, `K
are weights of φ.

3. Hasse diagrams for representations

If φ : g Ñ glpV q is an irreducible representation of a real semi-simple Lie alge-
bra g without compact factors, then its set of weights carries the partial order ą

previously defined: χ ą ψ if the coefficients of χ´ψ in ∆ are non-negative integers.
One defines then the Hasse diagram of the representation φ as a graph whose

vertices are the elements of Πpφq, and one draws an edge between χ and ψ if
and only if χ ´ ψ P ∆. Because of the non-symmetry of ą, the edge should be a
directed arrow, however we prefer to forget the arrow and draw ψ below χ. It is
also convenient to label the edge with the simple root χ´ ψ.

These Hasse diagrams carry a natural grading or levels defined by the function

level
`

χφ ´
ÿ

σP∆

kσσ
˘

“ 1`
ÿ

kσ.
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˝
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αβ
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$β

˝

˝

˝

˝

˝

˝

˝

α

β

α

α

β

α

HG2
$α

β α

Figure 1. Hasse diagrams for fundamental weights of (extremal) roots of G2.

By means of Remark 2.5 one can draw the Hasse diagram of a given representation
level by level, starting from it’s highest weight and inductively checking, for a given
weight χ P Πpφq the set of simple roots σ P ∆ such that φpǧσqV

χ “ t0u. This in
turn can be directly computed from the root system Φ using Proposition 2.4: one
computes xχ, σy and, since all lower levels of the diagram are assumed to be known,
one knows whether χ` σ (down one level) belongs to Πpφq or not.

It is more convenient then to define the Hasse diagram as depending only on the
type of the root system Φ, and of a given dominant weight χ P Π` that will play
the role of the highest weight of an irreducible representation.

Definition 3.1. The Hasse diagram of a root system of type L and a given dominant
weight χ P Π` will be denoted by HL

χ .

Figure (1) depicts the Hasse diagrams of the exceptional root system G2 for both
its fundamental weights, the Dynkin diagram is added to the picture.
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3.1. Maps between diagrams. Given two root systems of types J and L, consider
a function f : ∆L Ñ ∆J. We will define a diagram map with labeling f , in short a
diagram map, between two Hasse diagrams as a function Tf : HL

χ Ñ HJ
χ1 such that

if ψ0, ψ1 P H
L
χ then

ψ0 ´ ψ1 P ∆L implies Tf pψ0q ´ T
f pψ1q “ fpψ0 ´ ψ1q P ∆J.

Such a map is thus order preserving, level and labeling equivariant. We say that
Tf is surjective if it is set-wise surjective. If this is the case, then necessarily f is
surjective and both diagrams have the same total number of levels.

Let us emphasize that the function f is merely a set-wise function, no condition
on the associated function between the Dynkin diagrams is required.

Example 3.2. Consider the following Dynkin diagrams that carry a non-trivial
involution, inv0 : ∆L Ñ ∆L say,

- the middle point symmetry in A`: ,

- Dn : ,

- the middle axis symmetry in E6: .

The quotient by the orbits of inv0 provides a labeling

- f : ∆A2n`1
Ñ ∆Bn ,

- f : ∆Dn Ñ ∆Cn ,
- f : ∆E6

Ñ ∆F4
,

which induces surjective maps between the Hasse diagrams of the fundamental
weight $σ of a given simple root and the fundamental weight of fpσq. Figure (9)
in the appendix depicts the E6 case for one of the extremal roots.

Not every example comes from the fixed point set of an involution, as the fun-
damental representation φ̄$α : g2 Ñ sl7pRq of the real split Lie algebra g2 shows.
This is depicted in Figure (2).

The existence of a surjective map between Hasse diagrams is of course very
restrictive as the following lemma shows.

Lemma 3.3. Consider two irreducible reduced root systems of types J and L. As-
sume there exists

- f : ∆L Ñ ∆J such that fpαq is extremal for every extremal α P ∆L,

- for every extremal α a surjective diagram map Tf : HL
$α Ñ HJ

$fpαq
with

labeling f.

Then, besides f “identity, the only possibilities for J, L, and f are listed in table 2.

Proof. The proof is a case by case verification. In Appendix A we draw the Hasse
diagrams for the fundamental weights of the extremal roots of all irreducible reduced
root systems and the non-existence verification is also proven. �

To end this section we remark that when L “ D4, in spite of the apparent
symmetry of the B3’s given in table (2), these correspond to different cases. If

one considers the complex algebras sop7,Cq and sop8,Cq, then the labelling
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˝

˝

˝

˝

˝

˝

˝

β1

β2

β3

β4

β5

β6

HA6
$β1

β1 β6

˝

˝

˝

˝

˝

˝

˝

α

β

α

α

β

α

HG2
$α

β α

Tf

Figure 2. The surjective map HA6
$β1

Ñ HG2
$α .

L J fibers of f

A2n
Bn @n

G2 if n “ 3 Figure (2)
A2n´1 C2n

B3 G2

Dn

Bn´1 @n ě 3

B3 if n “ 4

G2 if n “ 4

E6 F4

Table 2

corresponds to the representation sop7,Cq Ñ sop8,Cq that stabilizes a line in C8,

whilst the labelling corresponds to the fundamental representation of sop7,Cq

associated to the short root of B3. This is an irreducible representation with image in
sop8,Cq called the spin representation, see Fulton-Harris [8, Lecture 20, Ex. 20.38].
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β2

β
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$β

ββ2

σ

α

˝

˝

˝

˝

˝

˝

˝

β

β2

α

α

β2

β

HB3
$β

β β2
α

˝

˝

˝

˝ ˝

˝

˝

˝

β

β2

σ α

α
σ

β2

β

HD4
$β

ββ2

σ

α

˝

˝

˝

˝ ˝

˝

˝

˝

α

β2

α β

β

α

β2

α

HB3
$α

β β2
α

Figure 3. The surjective maps HD4
$β Ñ HB3

$β and HD4
$β Ñ HB3

$α

4. Discrete subgroups satisfying a coherence condition w.r.t.
eigenspaces

4.1. Review on Lie group representations. Let G be a reductive real algebraic
Lie group. If φ̄ : G Ñ GLpV q is a rational representation then we denote by φ : gÑ
glpV q the induced representation on its Lie algebra and we speak indistinctively of
highest restricted weight, restricted weight spaces, etc of φ and φ̄.

One has the following proposition from Tits [23] that guarantees existence of
certain representations of G. We say that φ is proximal if dimV ` “ 1.

Proposition 4.1 (Tits [23]). For every σ P ∆ there exists an irreducible proximal
representation of G whose highest restricted weight is l$σ for some l P Zě1. If g is
split then one can choose l “ 1.

Definition 4.2. We will fix and denote by φ̄σ : G Ñ GLpVσq such a set of repre-
sentations.

Let ň “
À

αPΦ` ǧα and consider the opposite minimal parabolic algebras b “

g0 ‘ n and b̌ “ g0 ‘ ň. The minimal parabolic subgroups are denoted by B and B̌
and defined as the normalizers in G of b and b̌ respectively. The groups B and B̌
are conjugated. The complete flag space of G is defined by F “ G{B. The G-orbit
of

`

rBs, rB̌s
˘

P F ˆ F

is the unique open orbit of G and is denoted by Fp2q.
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If pφ, V q is a proximal irreducible representation, then one has a φ̄-equivariant
algebraic map

Φ “ Φφ̄ : F Ñ PpV q

defined by Φφ̄pgrBsq “ φ̄pgqV `. The φpaq-invariant complement

V ´ “
à

χPΠpφq´tχφu

V χ

is stabilized by B̌, giving also Φ̌ “ Φ̌φ̄ : F Ñ PpV ˚q defined by Φ̌pg ¨ rB̌sq “ φ̄pgqV ´.

4.2. Jordan-Kostant-Lyapunov’s projection and Benoist’s limit cone. Re-
call that every element h P G can be uniquely written as a commuting product
h “ hehsshn where he is conjugate to an element in K, hss is conjugate to an el-
ement in exppa`q and hn is unipotent. The Jordan-Kostant-Lyapunov projection
λ “ λG : G Ñ a` is defined such that hss is conjugated to exp

`

λphq
˘

.
If Λ Ă G is a discrete subgroup, then its limit cone is denoted by LΛ and is

defined as the smallest closed cone that contains tλpgq : g P Λu. One has the
following fundamental result by Benoist. Recall that ass “ aX gss.

Theorem 4.3 (Benoist [2]). Let Λ ă G be a Zariski dense subgroup. Then the limit
cone LΛ is convex and the intersection LΛ X ass has non-empty interior in ass.

4.3. Coherent subgroups. For g P GLdpRq let us denote by

λpgq “
`

λ1pgq, ¨ ¨ ¨ , λdpgq
˘

P a`

its Jordan projection. If λ1pgq ą λ2pgq we say that g is proximal. Equivalently,
the generalized eigenspace associated to the greatest (in modulus) eigenvalue of g
is 1-dimensional. We will denote by g` P PpR

dq this attracting eigenline and by g´
its g-invariant complement.

A discrete subgroup Λ ă PGLdpRq is proximal if it contains a proximal element.
One defines then its limit set by

LP
Λ “ tg` : g P Λ proximalu.

Recall from the introduction that LP
Λ is minimal if the only closed Λ-invariant

subsets are tH,LP
Λu.

Lemma 4.4. Let Λ ă PGLdpRq be proximal with minimal LP
Λ. If Λ acts totally

reducibly in Rd then span LP
Λ is an irreducible factor of Λ.

Proof. Let g P Λ be proximal and V an irreducible factor. If v P V does not lie in
g´ then gnpR ¨ vq Ñ g`. Consequently, since V is closed and g-invariant, if g` R V
one concludes V Ă g´. Thus, g` necessarily belongs to an irreducible factor of Λ, W
say. The subset LP

ΛXPpW q is then non-empty, closed and Λ-invariant. Minimality
completes the proof. �

Definition 4.5. A discrete subgroup Λ ă PGLdpRq is coherent if

- there exists a proximal g0 P Λ such that ^2g0 is proximal and the eigenline
associated to λ2pg0q belongs to span LP

Λ,
- the limit sets LP

Λ and LP
^2Λ are minimal.

Lemma 4.6. Let Λ ă PGLdpRq be a coherent subgroup with reductive Zariski clo-
sure H. Then there exists σ P ∆h with dim hσ “ 1 such that for every g P Λ one
has

σ
`

λHpgq
˘

“ λ1pgq ´ λ2pgq.
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Proof. By Lemma 4.4 the representations H| span LP
Λ and H| span LP

^2Λ are irre-
ducible. Denoting by χ1 and χ2 their highest restricted weights, 2χ1 ´ χ2 verifies
that for all g P Λ one has 2χ1 ´ χ2pλHpgqq “ λ1pgq ´ λ2pgq.

Denote by tWiu the irreducible factors of Λ. For g P Λ with ^2g proximal,
denote by V2pgq either the eigenline associated to λ2pgq if g is proximal, either the
2-dimensional Jordan block associated to λ1pgq otherwise. One readily sees that,
in both situations, the vector space V2pgq necessarily intersects one of the Wi’s.

We can identify LP
^2Λ as a subset of Gr2pR

dq and thus consider the subsets

ĂWi “
 

P P LP
^2Λ : P XWi ‰ t0u

(

,

these are closed and ^2Λ-invariant and the same holds for any intersection ĂWiXĂWj .
By minimality, each intersection is either empty or LP

^2Λ. However, by assumption

the space Čspan LP
Λ, associated to the irreducible factor span LP

Λ, is non-empty, and

V2pg0q Ă span LP
Λ. One concludes that Čspan LP

Λ “ LP
^2Λ and that all intersections

Čspan LP
Λ X

ĂWj are empty. Equivalently, V2pgq Ă span LP
Λ for every g P Λ with

proximal ^2g.
Applying §2.3 to H| span LP

Λ together with the preceding paragraph, one has that
for every g P Λ there exists αg P ∆h such that αgpλpgqq “ λ1pgq ´ λ2pgq. Since the
limit cone LΛ has non-empty interior on aX hss, (Benoist’s Theorem 4.3) and ∆h

is a finite set, there exists an open sub-cone C Ă LΛ and a root σ P ∆h such that
for every v P C

σpvq “
`

2χ1 ´ χ2

˘

pvq.

Since both functions are linear and coincide on an open set, they must coincide and
σ is the required root. �

Definition 4.7. Let G be a reductive group and Λ a discrete subgroup. Then Λ is
totally coherent if for every σ P ∆ the subgroup φ̄σpΛq is coherent.

The following is the main result of this section.

Proposition 4.8. Let G be a real-algebraic simple group and Λ ă G a totally
coherent discrete subgroup with reductive Zariski closure H. Then hss is simple split.
Moreover, there exists a surjective function f : ∆g Ñ ∆h and, for every α P ∆g, a
surjective map with labeling f between the diagrams

Tf : Hg
`α$α

Ñ Hh
nα$fpαq

,

for some nα P Zě1. If α is extremal then fpαq is extremal, if moreover rank hss ą 1
and `α “ 1 then nα “ 1.

Proof. Since Λ is totally coherent, applying Lemma 4.6 to each representation φ̄σ
of G provides a function f : ∆g Ñ ∆h such that for every g P Λ and σ P ∆g one has

fpσq
`

λHpgq
˘

“ σ
`

λGpgq
˘

. (4.1)

Consider then α P ∆g and the associated fundamental representation φ̄α : G Ñ
GLpV q. Since H is reductive, Lemma 4.4 implies that W “ span LP

φ̄αΛ
is an ir-

reducible factor of φ̄αH. Let φ : h Ñ glpW q the representation of h defined by
φ “ φαphq|W and χφ P Πh its highest restricted weight.
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As stated in Remark 2.5 every element of Πgpφαq is of the form

`α$α ´
ÿ

σP∆g

kσσ, (4.2)

where for every σ kσ P Zě0. Let us consider then the function Tf : Πgpφαq Ñ Πh

defined by

Tf pχq “ χφ ´
ÿ

σP∆g

kσfpσq

if χ is as in equation (4.2). Observe that for every χ P Πgpφαq and β P Φh one has

xTf pχq, βy “ xχφ, βy ´
ÿ

σP∆g

kσxfpσq, βy P Z,

so Tf pχq is indeed a weight of h.
Observe also that for every g P Λ one has, by equation (4.1), that

Tf pχq
`

λHpgq
˘

“ χ
`

λGpgq
˘

,

so that for every v P LΛ Ă pahq
` Ă pagq

` one has Tf pχqpvq “ χpvq. Thus, since
LΛ X a`h,ss has non-empty interior in ah,ss (Benoist’s Theorem 4.3), one has

Tf pχq “ χ|ah,ss. (4.3)

Consequently, for any v P ah,ss the eigenspace decomposition of φαpvq is

V “
à

χPΠgpφαq

pV qTf pχq (4.4)

hence,

Πhpφq Ă T
f
`

Πgpφαq
˘

.

To show equality, one observes that, by equation (4.4), the highest weight of any
other irreducible factor of φαphq is a dominant weight ă χφ and thus also belongs to
Πhpφq (Lemma 2.3). By W -invariance of the set of restricted weights of irreducible
representations, one concludes that all the restricted weights of other irreducible
factors also belong to Πhpφq, consequently

Πhpφq “ T
f
`

Πgpφαq
˘

.

Clearly Tf is level preserving.
From surjectivity of Tf , and since there is only one weight of φα of level 2 (i.e.

`α$α ´ α) one has that for every β P ∆h ´ tfpαqu the linear form χφ ´ β is not a
weight, hence xχφ, βy “ 0 and thus χφ “ nα$fpαq for some nα P Zě1.

Since G is simple, φα is injective and thus, since any weight of φαphq is contained
in Πhpφq, φαphssq is simple and thus hss is. Consequently, f is surjective and, since
dimphssqfpαq “ 1 for every α (Lemma 4.6), hss is split.

Let us assume from now on that α is an extremal root of ∆g, so that the only
weights of level 3 of φα are `α$α´α´ β for a unique root β P ∆g, and `α$α´ 2α
(only if `α ě 2). This implies that the only weights of level 3 of φ are nα$fpαq ´

fpαq ´ fpβq, and possibly nα$fpαq ´ 2fpαq.
Hence xnα$fpαq´ fpαq, σy “ 0 for every σ P ∆h´tfpαq, fpβqu from which fpαq

is an extremal root of ∆h. Moreover, either
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- fpαq “ fpβq i.e. for every σ P ∆h ´ tfpαqu one has

0 “ xnα$fpαq ´ fpαq, σy “ ´xfpαq, σy

and thus hss has rank 1,
- either fpαq ‰ fpβq.

In the latter case, if one assumes moreover that `α “ 1, then nα$fpαq ´ 2fpαq R
Πhpφq and hence nα “ 1. �

4.4. Classification of Zariski closures of totally coherent groups. Through-
out this section, g is a simple split real Lie algebra, G is a real-algebraic Zariski
connected Lie group with Lie algebra g and Λ ă G is a totally coherent discrete
subgroup with reductive Zariski closure H. The purpose is to classify the pairs
phss, φq where φ : hss Ñ g is the representation induced by the inclusion H Ă G. By
Proposition 4.8 hss is simple split.

One begins by the following:

Corollary 4.9. If hss has rank 1 then it is a principal sl2pRq of g.

Proof. From Proposition 4.8 one deduces that if one composes hss with any fun-
damental representation φσ of g, the highest weight space of g is also the highest
weight space V χ for some irreducible factor of φαphssq. Moreover, any other ir-
reducible factor of φαphssq has highest weight ă χ. This is to say, if one writes
f P hssX ň as f “

ř

αPΦ` bαyα, then bσ ‰ 0 for every σ P ∆. Kostant’s Theorem 2.2
asserts then that hss is a principal sl2pRq. �

If the rank of hss is ě 2 then, since the fundamental representations of g verify
`α “ 1 for all α P ∆g, Proposition 4.8 provides a surjective function f : ∆g Ñ ∆h

such that the image of an extremal root is an extremal root, and for every α P ∆g

a surjective map Tf : Hg
$α Ñ Hh

$fpαq
between the corresponding Hasse diagrams.

Applying the table (2) given by Lemma 3.3 one concludes at once the following
Corollary.

Corollary 4.10. If rank hss ě 2 then either hss “ g, either the only possibilities
for φ : hss Ñ g are, up to Int g-conjugation, the ones listed in table 3.

g hss φ : hss Ñ g

sl2n`1pRq
sopn, n` 1q @n defining representation

g2 if n “ 3 fundamental for the short root
sl2npRq spp2n,Rq defining representation
sop3, 4q g2 fundamental for the short root

sopn, nq

sopn´ 1, nq @n ě 3 stabilizer of a non-isotropic line
sop3, 4q if n “ 4 fundamental for the short root

g2 if n “ 4
stabilizes a non-isotropic line L and is
fundamental for the short root on LK

e6 f4 Fixpinv0q (example 3.2)
Table 3. Statement of Corollary 4.10
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5. Total positivity

Throughout this section G denotes the real points of a Zariski connected real-
algebraic simple split group.

5.1. Lusztig’s total positivity. Let us fix, for each simple root σ P ∆, algebraic
group isomorphisms xσ : RÑ exp gσ, yσ : RÑ ǧσ and hσ : RÑ exppR ¨hσq so that

p 1 t
0 1 q ÞÑ xσptq, p 1 0

t 1 q ÞÑ yσptq, p
t 0
0 t´1 q ÞÑ hσptq,

defines a morphism SL2pRq Ñ G. The collection O “
 

xσ : σ P ∆u is called a
pinning of G and two pinnings are conjugated by G.

Let U “ exp n and Ǔ “ exp ň be the unipotent radicals of B and B̌ respectively
and let A “ exp a.

Let w0 P W be the longest element and consider a reduced expression w0 “

rN ¨ ¨ ¨ r1 as a product of reflections associated to simple roots. Let us denote, for
each ri the associated simple root by σi P ∆. The number N equals |Φ`|, but we
will not require this fact.

Consider the maps ΨO : pRą0q
N Ñ U and Ψ̌O : pRą0q

N Ñ Ǔ defined by

ΨOpa1, ¨ ¨ ¨ , aN q “ xσN paN q ¨ ¨ ¨xσ1pa1q,

Ψ̌Opa1, ¨ ¨ ¨ , aN q “ yσN paN q ¨ ¨ ¨ yσ1
pa1q. (5.1)

We summarize several results from Lusztig [20, §2] in the following theorem.

Theorem 5.1 (Luzstig [20, §2]). The images Uą0 “ ΨO
`

pRą0q
N
˘

and Ǔą0 “

Ψ̌O
`

pRą0q
N
˘

are semi-groups independent of the chosen reduced expression of w0.
The product

Gą0 “ Ǔą0AUą0 “ Uą0AǓą0

is also a semi-group and every element g P Gą0 has a unique expression of the form
g “ ǔtv with ǔ P Ǔą0, t P A and v P Uą0.

Even though we omit the pinning notation on the semi-groups Uą0, Ǔą0 and
Gą0, they do depend on the pinning O.

5.2. Positivity of flags. The positive semi-group Gą0 determines a special subset
Fą0 Ă F defined by

Fą0 “ Gą0 ¨ rBs “ Ǔą0 ¨ rBs “ Uą0 ¨ rB̌s.

Let us say that an ordered triple px1, x2, x3q P F3 is generic if pxi, xjq P Fp2q.
Then one has the following.

Proposition 5.2 (Lusztig [20, Prop. 8.14]). The subset Fą0 is a connected com-
ponent of

!

x P F :
`

rBs, x, rB̌s
˘

is generic
)

.

In particular it is an open subset of F.

One then defines positivity on triples flags as being G-equivariant, consequently
the notion will not depend on the pinning:

Definition 5.3. A generic triple of flags px, y, zq is positive if there exists g P G
such that gx1 “ rBs, gx3 “ rB̌s and gx2 P Fą0.
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5.3. Simply laced G. Recall that g is simply laced if for every pair σ, α P ∆ one
has xσ, αy “ xα, σy. Equivalently, the Dynkin diagram of g does not contain a double
or triple arrow. Assume moreover that G is simply connected in the algebraic sense,
i.e. every finite covering from a real algebraic group onto G is trivial, equivalently
the group GC of C-points of G is simply connected in the topological sense.

Proposition 5.4 (Lusztig [20, §3.1 and Prop. 3.2]). Assume that G is simply laced
and simply connected. Let φ̄ : G Ñ GLpV q be an irreducible real representation,
then there exists a basis Bφ̄ of V such that

- each element of Bφ̄ is contained in a restricted weight space of φ,

- for every g P Gą0, the map φ̄pgq : V Ñ V has ą 0 coefficients in Bφ̄.

5.4. Theorem A for simply laced G. We devote this section to the proof of
Theorem A when G is moreover simply laced and simply connected (as in §5.3).
We prove that a discrete subgroup verifying the hypothesis of Theorem A is totally
coherent.

Corollary 5.5. Let G be simply laced and simply connected and Λ a subgroup with
minimal limit sets and with a positive loxodromic triple. Then Λ is totally coherent.

Proof. Consider σ P ∆ and a fundamental representation φ̄σ : G Ñ GLpV q. By
minimality one has that

Φ
`

LΛ,∆

˘

“ LP
φ̄σpΛq

.

Moreover, since the only second level weight of φ̄σ is $σ ´ σ, the representation
^2φ̄σ of G is proximal (though maybe reducible). Denote by Ω : G Ñ GLpV 1q the G-
irreducible factor containing the highest weight of ^2φ̄σ, it contains the attracting
points of ^2g for every g P G proximal on F. Let ϑ Ă ∆ be the type of the
stabilizer of V$σ ^ V$σ´σ in G. The limit set LΛ,ϑ is also minimal and one has
ΦΩ

`

LΛ,ϑ

˘

“ LP
^2φ̄σpΛq

and the latter is thus minimal.

Finally, consider g0 P Λ proximal on F and x0 P LΛ,∆ so that pg0`, x0, g0´q is a

positive triple. We can assume that g0` “ rBs and g0´ “ rB̌s so that Φpg0`q “ V `

and Φ̌pg0´q “ V ´. We aim to show then that V$σ´σ belongs to span ΦpLΛ,∆q.
Let g P Gą0 be such that

Φpx0q “ Φ
`

g ¨ rBs
˘

“ φ̄σpgq ¨ Φpg0`q.

Consider then the 2-dimensional subspace Px0 “ Φpg0`q ‘ φ̄σpgqΦpg0`q and let
`x0

P PpV q be the intersection

`x0
“ Px0

X V ´.

Since G is simply laced, Lusztig’s Proposition 5.4 applies to give that φ̄σpgq has
positive coefficients in Bφ̄σ . In particular, if v P V ` ´ t0u the vector φ̄σpgqv has
positive coefficients in Bφ̄σ . The line `x0

is thus not contained in any subspace
spanned by a partial sum of weights in Πpφσq ´ t$σu, i.e. `x0 is not contained
in any φ̄σpgq-invariant subspace of V ´. Consequently, the sequence φ̄σpg0

nq ¨ `x0

approaches, as nÑ `8, the φ̄σpg0q-invariant subspace of V ´ associated to the top
eigenvalue of φ̄pg0q|V

´, which is V$σ´σ. This completes the proof. �

Corollary 5.5 gives thus the following.

Corollary 5.6. Let G be simply laced and simply connected and let Λ ă G have
reductive Zariski closure H and be as in Corollary 5.5. Then hss is either g, a
principal sl2pRq or Int g-conjugated to the possibilities listed in table 4.
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g hss φ : hss Ñ g

sl2n`1pRq
sopn, n` 1q @n defining representation

g2 if n “ 3 fundamental for the short root
sl2npRq spp2n,Rq defining representation

sopn, nq

sopn´ 1, nq @n ě 3 stabilizer of a non-isotropic line
sop3, 4q if n “ 4 fundamental for the short root

g2 if n “ 4
stabilizes a non-isotropic line L and is
fundamental for the short root on LK

e6 f4 Fixpinv0q (example 3.2)
Table 4. Statement of Corollary 5.6

5.5. Descent. The purpose of this section is to briefly explain how to bypass the
simply-laced hypothesis in Corollary 5.5. We use a standard technique called de-
scent. It consists on observing that every simple split Lie algebra g is the fixed
point set of an automorphism κ̄ : 9g Ñ 9g of a simply laced split simple Lie algebra
9g. One requires also that the action of κ̄ on the simple roots of 9g is such that if
α, β P ∆ 9g are in the same κ̄-orbit then xα, βy “ 0. See table 5.

type of 9g type of g orbits of κ̄
A2n´1 Cn

Dn Bn´1

D4 G2

E6 F4

Table 5

With these considerations, one has the following proposition from Lusztig.

Proposition 5.7 (Lusztig [20, §8.8]). Let G be simply connected. Then there exists

a simply laced, simply connected, simple split group 9G and a rational representation

Ω : G Ñ 9G together with an equivariant map Φ : FG Ñ F 9G such that

Φ
´

`

FG

˘

ą0

¯

Ă

´

`

F 9G

˘

ą0

¯

.

We can now conclude the proof of Theorem A.

Corollary 5.8. Let G be the real points of a real-algebraic, Zariski connected, simple
split group. Let Λ ă G be as in Theorem A. Then the semi-simple part hss is either
g, a principal sl2pRq or Int g-conjugated to the possibilities listed in table 3.

Proof. By passing to a finite cover we can assume that G is simply connected, the
pre-image of Λ under this covering has again minimal limit sets and its limit set on
F contains a positive loxodromic triple. From Proposition 5.7 one finds a simply-

laced 9G and a rational representation Ω : G Ñ 9G such that ΩΛ is partially positive.
Applying Corollary 5.6 to ΩΛ gives de required result. �
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5.6. Partially positive representations preserve type. Recall that G is the
real points of a real algebraic, Zariski connected, simple split group.

Let X be a proper Gromov-hyperbolic space and Γ ă IsompXq a non-elementary
discrete subgroup, then one has the following facts from Ghys-de la Harpe [10, §8.2]:

i) every γ P Γ is either
- of finite order (called elliptic),
- proximal, i.e. has two fixed points γ´, γ` P BXΓ such that for every
x P BXΓ ´ tγ´u one has γnxÑ γ` as nÑ `8,

- parabolic, i.e. has a unique fixed point xγ P BXΓ and every x P BXΓ

converges to xγ under the iterates γn as n Ñ `8 (some points will
drift away from xγ before coming back though).

ii) The attracting points of proximal elements are dense in BXΓ.
iii) BXΓ is the smallest closed Γ-invariant subset of BX, it is thus minimal.

Let us fix throughout this subsection a partially positive representation ρ : Γ Ñ G
with equivariant map ξ : BXΓ Ñ F. We begin by showing that it is type preserving.

Proposition 5.9. If γ P Γ is proximal then ρpγq is proximal on F with attracting
flag ξpγ`q and repelling flag ξpγ´q. If h P Γ is parabolic then there exists k P Ně1

such that ρphkq belongs to the unipotent radical of ξpxhq, moreover, there exists an
open set O Ă F such that hnz Ñ ξpxhq for every z P O.

Proof. We divide the proof into Lemmas 5.10 and 5.11 below. �

Let M be the centralizer in K of exp a, as g is split this is a finite group. For
σ P ∆, let us denote by φ̄ “ φ̄σ : G Ñ SLpV q and by Φ : F Ñ PpV q, Φ̌ : F Ñ PpV ˚q
the corresponding φ̄-equivariant maps.

Lemma 5.10. For every proximal γ P Γ, φ̄ρpγq is proximal with attracting line
Φξpγ`q and repelling hyperplane Φ̌ξpγ´q.

Proof. By passing to a finite cover we can assume that G is simply connected. In
view of Proposition 5.7 we can also assume that G is simply laced and thus make
use of Lusztig’s canonical basis Bφ̄σ (Proposition 5.4).

Without loss of generality we may assume that ξpγ`q “ rBs and that ξpγ´q “
rB̌s. Since ρpγq fixes both complete flags ξpγ`q and ξpγ´q, it can be written as

ρpγq “ mρpγq exppaγq (5.2)

for a unique aγ P a and mρpγq P M.

The composition Φξ : BXΓ Ñ PpV q is a continuous φ̄ρ-equivariant map. By the
assumptions ξpγ`q “ rBs and ξpγ´q “ rB̌s, one has

Φξpγ`q “ V ` and Φ̌ξpγ´q “ V ´ “
à

χPΠpφq´t$σu

V χ

respectively.
By definition there exists x P BXΓ distinct from γ` and γ´ and g P Gą0 such

that ξpxq “ gξpγ`q. Lusztig’s Proposition 5.4 states, in particular, that if v P V `

is non-zero then φ̄σpgqv “
ř

ePBφ̄
cee with ce ą 0 for all e.

On the other hand, equation (5.2) implies that φ̄ρpγq is the commuting product
of a matrix diagonal in Bφ̄ and a finite order element. Let us denote thus by Ωepγq

the (possibly complex) eigenvalue of φ̄ρpγq of the vector e P Bφ̄.
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If k is the order of mρpγq, then φ̄
`

ρpγqk
˘

is diagonal in Bφ̄, so that Ωepγq
k P R

and one has for all n P N

1

λ1

`

φ̄ρpγq
˘nk

`

φ̄ρpγnkq
˘

pgvq “
ÿ

ePBφ̄σ

´ Ωepγq

λ1

`

φ̄ρpγq
˘

¯nk

cee. (5.3)

Since γnxÑ γ`, equivariance implies φ̄ρpγnqpgV `q Ñ V `. Consequently, given
that ce ą 0, equation 5.3 implies then

|Ωepγq| ă |λ1

`

φ̄ρpγq
˘

|,

for every e except V ` and thus the spectral radius of φ̄ρpγq is attained at (and only
at) V `. Consequently φ̄ρpγq is proximal. �

Lemma 5.11. Let h P Γ be parabolic with fixed point xh, then there exists k P Ně1

such that ρphkq belongs to the unipotent radical of ξpxhq, moreover, there exists an
open set O Ă F such that hnz Ñ ξpxhq for every z P O.

Proof. Again we can assume that G is simply laced and simply connected. We
assume moreover that ξpxhq “ rBs and that rB̌s “ ξpz0q for some auxiliary point
z0 P BXΓ. one has then Φξpxhq “ V `. Let us write

ρphq “ mρphq exppahquh (5.4)

where mh P M has finite order, commutes with exp ah P A and normalizes uh P U.
Since every element of e P Bφ̄ belongs to a restricted weight space Vχe of φ̄, we

can order Bφ̄ so that e ě f if χe ą χf , (the order between elements lying in the
same weight space, or between weight spaces of the same level, is not relevant for
the following). The elements of A ¨U are upper triangular in Bφ̄, so if k is the order

of mρphq then the transformation φ̄ρphkq is upper triangular in Bφ̄.

Let us denote by λ1 “ expλ1

`

φ̄ρphkq
˘

ě 1 the spectral radius of φ̄ρphkq and by

Vλ1
the sum of Jordan blocks of φ̄ρphkq associated to λ1. By equation (5.4) and the

definition of Bφ̄ the intersection Vλ1 XBφ̄ is a basis of Vλ1 . Denote by π : V Ñ Vλ1

the projection parallel to the vector space spanned by the remaining elements of
Bφ̄. If ` P PpV q is not contained in kerπ then one has

dP
`

φ̄ρphqkn ¨ `,PpVλ1
q
˘

Ñ 0 (5.5)

as nÑ8.
By definition, there exists x P BXΓ ´ txhu and g P Ǔą0 such that ξpxq “ g ¨ rBs.

As before, if v P V ` is non-zero then φ̄pgqv has positive coefficients in Bφ̄. This

implies, in particular, that Φξpxq “ φ̄pgqV ` Ć kerπ. Since hnx Ñ xh one has
φ̄ρphqn

`

Φξpxq
˘

Ñ Φξpxhq, which combined with equation (5.5) gives Φξpxhq P Vλ1 .
On the other hand, since h is parabolic, h´nx also converges to xh. So the above

argument applied to h´1 gives that Φξpxhq is also contained in the generalized
eigenspace of φ̄ρph´kq associated to its spectral radius. Since6

}φ̄ρph´kqv}{}v} “ λ´1
1 ,

one concludes that the spectral radius of φ̄ρph´kq is λ´1
1 ď 1.

Since φ̄ has values in SLpV q (because G is simple) one concludes that λ1 “ 1 and
that φ̄ρphqk is upper triangular on Bφ̄ with 1’s in the diagonal, i.e. ρphkq P U.

6for any auxiliary norm.
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Considering x P BXΓ´txhu and g P Ǔą0 as before; one has that Φξpxq “ φ̄pgqV `

does not belong to a φ̄ρphq-invariant subspace. Consequently, since φ̄ρphqnΦξpxq Ñ
Φξpxhq, the same holds on a neighborhood of Φξpxq and the lemma is proved. �

5.7. Proof of Theorem B. Proposition 5.9 readily implies that if ρ : Γ Ñ G is
partially positive with limit map ξρ, then it has minimal limit sets and contains a
positive loxodromic triple. Indeed, by the descent method (§5.7) we can assume that
G is simply laced and apply Proposition 5.9 to obtain that the limit set LρpΓq,∆ “

ξpBXΓq and moreover that LρpΓq,σ “ pσ
`

ξpBXΓq
˘

, where pσ : F Ñ Ftσu is the
canonical projection.

Theorem A would then complete the proof provided the Zariski closure of ρpΓq
where reductive. The purpose of this subsection is thus to bypass the ’reductive
Zariski closure’ assumption. Consequently, Proposition 5.13 below and Theorem A
prove Theorem B.

We begin by recalling the following lemma. It is a well known fact that the reader
may check in Guéritaud-Guichard-Kassel-Wienhard [12, §2.5.4] or in Benoist’s lec-
ture notes [3].

Lemma 5.12. Let Λ be a group and let ρ P hompΛ,Gq have non-solvable Zariski
closure L. Let l “ h ‘π Ruphq be a Levy decomposition of the Lie algebra of L
as a semi-direct product, with h reductive and Ruphq its unipotent radical. Then
there exists η P hompΛ,Gq whose Zariski closure has Lie algebra h and a sequence
pgnq P G with gnρg

´1
n Ñ η.

As in Guéritaud-Guichard-Kassel-Wienhard [12, §2.5.4], we say that η is the
semi-simplification of ρ (regardless its Zariski closure is reductive and not neces-
sarily semi-simple, and regardless of any uniqueness issues). We then prove the
following.

Proposition 5.13. If ρ : Γ Ñ G is partially positive then its semi-simplification η
has minimal limit sets and contains a positive loxodromic triple.

Proof. By continuity of the Jordan projection and Proposition 5.9, one has that
ηpγq is purely loxodromic for every proximal γ P Γ, and that for every parabolic
h P Γ there exists k “ kh such that ηphqk is unipotent.

The argument from Guéritaud-Guichard-Kassel-Wienhard [12, Proposition 4.13]
works verbatim in this situation to give a η-equivariant continuous map ξη : BXΓ Ñ

F such that for every proximal γ P Γ ξηpγ`q and ξηpγ´q are respectively the at-
tracting and repelling flags of ηpγq. The limit set

LηpΓq,∆ “ ξη
`

BXΓ

˘

is thus minimal, and since every element of ηpΓq is either purely loxodromic, unipo-
tent (up to a finite power) or elliptic, for every σ P ∆ the limit set LηpΓq,σ is also
minimal.

Since the pairs tpγ´, γ`q : γ P Γ proximalu are dense in BX
p2q
Γ “ BXΓ ˆ BXΓ ´

diagonal, continuity of ξη implies moreover that it is transverse, i. e. for every
x ‰ y P BXΓ the flags ξηpxq and ξηpyq are in general position.

In order to find a positive loxodromic triple in ξηpBXΓq, we observe that for every
proximal γ P Γ gnξρpγ`q Ñ ξηpγ`q as n Ñ 8. Indeed, for every σ P ∆ the line
Φσ

`

gn ¨ ξρpγq
˘

is the eigenline of φ̄σpgnρpγqg
´1
n q associated to its spectral radius

λ1

`

φ̄σpgnρpγqg
´1
n q

˘

“ λ1

`

φ̄σpρpγqq
˘

“ λ1

`

φ̄σpηpγqq
˘

.
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Consequently, any accumulation point of
 

Φσ
`

gn ¨ξρpγq
˘(

is an eigenline associated

to λ1

`

φ̄σpηpγqq
˘

; since φ̄σ
`

ηpγq
˘

is proximal, this eigenline is Φσ
`

ξηpγ`q
˘

.

By assumption, there exists x P BXΓ such that
`

ξρpγ`q, ξρpxq, ξρpγ´q
˘

is a pos-
itive triple of flags. By Proposition 5.2, Fą0 is an open subset of F, thus, since
attracting points of proximal elements are dense in BXΓ, there exists a proximal
h P Γ such that

`

ξρpγ`q, ξρph`q, ξρpγ´q
˘

is also a positive triple.

We claim that
`

ξηpγ`q, ξηph`q, ξηpγ´q
˘

is a positive triple. Indeed, let us asume

with out loss of generality that ξηpγ`q “ rBs and that ξηpγ´q “ rB̌s. One has the
convergence

gn ¨
`

ξρpγ`q, ξρph`q, ξρpγ´q
˘

Ñ
`

rBs, ξηph`q, rB̌s
˘

and the triple gn ¨
`

ξρpγ`q, ξρph`q, ξρpγ´q
˘

is positive by definition. We may then
also assume that for every n, gn ¨ξρph`q P gn ¨Fą0. The limit ξηph`q of the sequence

gn ¨ξρph`q lies thus in the topological closure Fą0. Proposition 5.2 states that every

element in the topological boundary of Fą0 is not transverse to either rBs or rB̌s.
However, as was observed earlier, ξηph`q is both transverse to rBs and rB̌s and

thus necessarily lies in Fą0, the topological interior of Fą0. �

5.8. Hyperconvexity. To end this section we record the following remark that
will be useful in Bridgeman-Pozzetti-Wienhard-S. [5].

Remark 5.14. Assume that BXΓ is homeomorphic to a circle, and that a partially
positive ρ : Γ Ñ G verifies the extra condition that ξ sends positive ordered triples
on BXΓ to positive triples of flags. Then for every σ P ∆ and x, y, z P BXΓ pairwise
distinct one has

`

Φξpxq ‘ Φξpyq
˘

X Φ̌^2φ̄σξpzq “ t0u.

Here we interpret Φ̌^2φ̄σξpzq as a dimVσ ´ 2-dimensional subspace of Vσ. In the
language of Pozzetti-S.-Wienhard [21], the remark states that the curve ΦξpBXΓq

is p1, 1, 2q-hyperconvex.

Proof. We can assume that G is simply laced and simply connected. We may also
assume that ξpxq “ rB̌s, ξpzq “ rBs and that ξpyq “ gξpxq for a g P Ǔą0. We mimic
now the proof of Corollary 5.5. Since φ̄σpgq has positive coefficients in the basis
Bφ̄σ , the intersection of the plane

Py “ Φξpxq ‘ Φξpyq “ Φξpxq ‘ φ̄σpgqΦξpxq “ V ` ‘ φ̄σpgqV
`

with V ´, is not contained in any partial sum of restricted weight subspaces, in
particular it is not contained in

ÿ

χPΠpφσq´t$σ,$σ´σu

V χ “ Φ̌^2φ̄σξpzq

as required. �

6. Group level

Let us consider now a non-elementary discrete subgroup Γ ă IsompXq of a proper
Gromov-hyperbolic space X, a simple split G and the space

homÁpΓ,Gq “ tρ : Γ Ñ G partially positiveu.
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In view of Proposition 5.9, if ρ P homÁpΓ,Gq and γ P Γ is non-torsion, then the
elliptic component

ρpγq ÞÑ mρpγq,

as in equations (5.2) and (5.4) according to the type of γ, is a locally constant
well defined map. The image of this map is thus an invariant of the connected
component of homÁpΓ,Gq containing ρ.

We will use this map to decide whether the Zariski closure of a given ρ is con-
nected or not. Indeed, let us consider ρ P homÁ

`

Γ,SLdpRq
˘

and denote by H its
Zariski closure. By Corollary 1.4 H has finite center. Thus, H0, the connected
component of the identity of H, is (conjugated to) one of the groups in table 6.

- SLdpRq,
- a principal SL2pRq,
- Sp2npRq if d “ 2n for all n ě 1,
- SO0pn, n` 1q if d “ 2n` 1 for all n ě 1,

- the fundamental representation for the short root of G2 if d “ 7.
Table 6. Connected component of the identity of the Zariski closure
of an element ρ P homÁ

`

Γ, SLdpRq
˘

, G2 denotes the two-fold covering of
G2.

To decide if H is connected, one can observe that for every non-torsion γ P Γ
the elliptic component mρpγq P M X H. This latter finite group is nothing but the
centralizer in KH of exp aH, so if mρpγq P H0 then ρpγq P H0.

Definition 6.1. A discrete and faithful representation Γ Ñ SLdpRq is principal7

if its Zariski closure is a principal SL2pRq. We denote by H
`

Γ,SLdpRq
˘

a connected

component of homÁpΓ,SLdpRq
˘

that contains a principal representation.

Corollary 6.2. Assume Γ is torsion free, then every element of H
`

Γ,SLdpRq
˘

has
connected Zariski closure (and is thus an element of table (6)).

Proof. Let τ : SL2pRq Ñ SLdpRq be a principal embedding. Observe that the group

M :“ M
τ
`

SL2pRq
˘ “

!

τ
`

´1 0
0 ´1

˘

, τ
`

1 0
0 1

˘

)

is contained in any group in the list 6. If ρ P H
`

Γ,SLdpRq
˘

has Zariski closure H,
then for every γ P Γ mρpγq PM Ă H0 and the proof is complete. �

Finally, let S be a closed connected orientable surface of genus ě 2 and ρ : π1S Ñ
PSLdpRq in a Hitchin component. Assume first that ρ lifts to a representation
rρ : π1S Ñ SLdpRq. Then Theorem 1.2 assures that rρ P Hpπ1S,SLdpRqq and Corollary
6.2 implies that the Zariski closure of ρ is the projectivisation of a group in the
table 6.

To prove that ρ lifts, recall that π1S has the presentation

xa1, b1, ¨ ¨ ¨ , ag, bg :
ź

rai, bis “ 1y.

7This is usually referred to as Fuchsian in the literature.
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If η : π1S Ñ PSL2pRq is a representation and one considers a lift for each generator
rηpaiq, rηpbiq P SL2pRq, one readily sees that the commutator product

ź

“

Ćηpaiq,Ćηpbiq
‰

P

!

`

´1 0
0 ´1

˘

,
`

1 0
0 1

˘

)

is independent of the chosen lifts.
If η is discrete and faithful then (see for example Goldman [11]) the above product

equals id and the representation lifts. This shows that if ρ0 : π1S Ñ PSLdpRq
is principal, then it lifts to H

`

π1S,SLdpRq
˘

. On the other hand it is clear that
the above product of commutators is an invariant of the connected component in
hom

`

π1S,PSLdpRq
˘

so any Hitchin representation lifts. This completes the proof
of Guichard’s classification (Corollary 1.5).

Appendix A. The Hasse diagrams for extremal roots

In this appendix we prove Lemma 3.3. To this end we compute the Hasse
diagrams for the extremal roots of irreducible reduced root systems and compute,
in a case by case manner, the existence/non-existence of surjective maps between
them. Let us simplify notation and denote, for a simple root x P ∆J of some root
system J, by HJ

x the Hasse diagram HJ
$x for the fundamental weight $x.

Most of the situations are ruled out by the following simple facts. If f : ∆L Ñ ∆J

is surjective and Tf : HL
α Ñ HJ

fpαq is a surjective diagram map with labeling f then:

- rank J ď rank L,
- both HL

α and HJ
fpαq have the same total amount of levels,

- if χ is the only vertex at a given level, then the number of arrows pointing
downwards in HL

α is greater than that of Tf pχq in HJ
fpαq,

- to show non-existence of such f, it it sufficient to find one extremal root of
L whose Hasse diagram does not surject to any diagram of J (for extremal
roots).

We refer the reader to the corresponding figures for the labeling of simple roots
for each Dynkin diagram.

Lemma A.1. Leaving aside the case f “identity, one has the following.

- Type A : The only surjective diagram maps Tf : HAd
β1
Ñ HJ

x with x extremal are
- d “ 2n and J “ Bn and x “ β for all n and moreover G2 and x “ α if
d “ 6,

- d “ 2n´ 1, J “ Cn and x “ β.
- Type B : The only surjective diagram maps Tf : HBn

β Ñ HJ
x with x extremal is n “ 3

and J “ G2 and x “ α.
- Type C : There is no surjective diagram map Tf : HCn

β Ñ HJ
x with x extremal.

- Type D : The only surjective diagram maps Tf : HDn
β Ñ HJ

x with x extremal are
- J “ Bn´1 with x “ β for all n,
- moreover J “ B3 with x “ α and J “ G2 with x “ α if n “ 4.

Proof. Observe that all Hasse diagrams HAn
β1

(Figure (2)), HBn
β and HCn

β consist
on exactly one arrow exiting each vertex. By restricting the total amount of levels
given by the existence of Tf together with the fact that rank J ď n (in each case)

one completes the proof. A similar argument works for HDn
β1

(see also Figure 3). �
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We now treat the type E family, we will show that there is no surjective diagram
map from HEk

α for k “ 6, 7 or 8 to any other Hasse diagram HJ
x with extremal x.

Except for HE6
α Ñ HF4

α (as shown in Figure (9)).

Lemma A.2. There is no surjective map Tf from HEk
α for k “ 6, 7 or 8 onto any

of HAn
β « HAn

α , HBn
β , HCn

β , for n ď 8 nor onto HG2

β or HG2
α .

Proof. The non-existence of such map comes from the fact that HE
α has too many

levels (compared to the fact that n must be smaller than k), observe that Figure

(6) depicts HEk
α up to levels 9, 10 and 11 respectively for k “ 6, 7 or 8. The case

HG2
α is readily discarded since it has 7 levels.

We now treat HJ
x for J “ An, Bn, Cn and x “ β. Since these diagrams consist

on only one arrow pointing downwards at each level, from Figure (6) one sees that
if such a Tf existed then necessarily

fpβ2q “ fpσq “ fpβq “ fpβ3q “ fpβ4q.

Since f is surjective, the above equalities imply that J has rank ď k ´ 4, that is
n ď k ´ 4 ď 4. However HA4

β has 5 levels, HB4

β has 9 levels and HC4

β has 8 levels,

but HE
α has at least 9 levels (actually at least 17 as seen in Figure (9)).

Finally, from Figure (8) one sees that HG2

β has 14 levels but Figure (9) shows

that HE
α has at least 17 levels. �

Lemma A.3.
- There is no surjective map Tf from HEk

α k “ 6, 7 or 8 onto HBn
α , HCn

α ,

HDn
α « HDn

σ , HEj
σ (j “ 6, 7 or 8), HEk´1

α , (if k “ 7 or 8) HEk´2
α (if k “ 8).

- There is no surjective map Tf from HE7
α or HE8

α onto HE6
α , H

Ej
β (j “ 6, 7

or 8), HF4

β and HF4
α .

Proof. In HEk
α the first level with more than one exiting arrow is at least 4, however

the diagrams appearing in the first item have 2 exiting arrows at the third level.
Similarly the first level with more than one exiting arrow in HE7

α or HE8
α is at least 5,

but the diagrams listed in the second item have earlier multiple exiting arrows. �

The E family is thus achieved with the next Lemma.

Lemma A.4. There is no surjective map Tf from HEk
α for k P t6, 7, 8, u onto HDn

β .

Proof. Since in HDn
β there is only one arrow starting at each node for every level

up to n ´ 2, if such a Tf exists then one must have n ´ 2 “ k ´ 3. However, by
looking at levels after the first rombus in Figure (6) one sees that

fpβq “ fpσq “ pβ3q,

thus n ď k ´ 2, which is a contradiction with n “ k ´ 1. �

The remaining F4 and G2 cases are easily discarded since the other reduced root
systems with rank J ď 4 and ď 2 respectively do not have enough levels.
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Figure 4. Hasse for extremal roots of An (left) and Bn (right)
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Figure 6. Hasse for extremal roots of the E family

˝

˝

...

˝

˝ ˝

˝ ˝

˝ ˝

˝ ˝

˝ ˝ ˝

α

β6

β3

β2 σ

β σ

β2

σ

β

β3

β3

β

β4

β4

β2 β

β5

first levels of HE
$α

Figure 7. Hasse for extremal roots of the E family, continued



29

˝

˝

˝

˝

˝ ˝

˝ ˝

˝ ˝ ˝

˝ ˝ ˝

˝ ˝ ˝

˝ ˝ ˝

˝ ˝ ˝

˝

β

ν

σ

σ α

α
ν

σ

β

α αν

α β
σ

α
ν

σ
α

β
σ

β

ν
α

σ

α

β

σ

α
σ

ν
σ

β

α
σ

ν

HF4
$β

up to level 12

˝

˝

˝

˝

˝ ˝

˝ ˝

˝ ˝

˝ ˝

˝

˝ ˝

˝ ˝

˝ ˝

˝ ˝

˝

˝

˝

˝

α

ε

ν

ε σ

α σ
ε

σ
α

ν

ν
α

ε

ε
α

ε
α

ν
α

ε

σ
α

ν

α
σ

ε

ε
σ

ν

ε

α

HF4
$α , it has 17 levels.

β ν σ α

˝

˝

˝

˝

˝ ˝

˝

˝ ˝

˝

˝

˝

˝

β

α

α

β α

α β

αβ

α β

α

α

β

HG2
$β

˝

˝

˝

˝

˝

˝

˝

HG2
$α

β α

Figure 8. Hasse for extremal roots of F4 (left) and G2 (right)
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[18] B. Kostant. The principal three-dimensional subgroup and the Betti numbers of a complex

simple Lie group. Amer. J. Math., 81:973–1032, 1959. (Cited on page 6.)

[19] F. Labourie. Anosov Flows, Surface Groups and Curves in Projective Space. Invent. Math.,
165:51–114, 2006. (Cited on page 3.)

[20] G. Lusztig. Total positivity in reductive groups. In Lie Theory and Geometry, volume 123
of Progress in Mathematics, pages 532–568. Birkhäuser, 1994. (Cited on pages 1, 2, 5, 17, 18,
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