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Introduction

This article aims to develop the cohomological aspects of Bruhat-Tits theory. It can be
seen as a complement to [BT87].

Recall that the cohomological study of [BT87] focuses on anisotropic cocycles (cf. [BT87,
3.6.]) and the resulting decomposition results (cf. [BT87, 3.12. Theorem.]). This article
addresses a completely different problem, which we explain below.

Consider a henselian discrete valuation ring R, with field of fractions K. Denote by
Runr its strict henselization and by Kunr the field of fractions of Runr. This is the maximal
unramified extension of K. It is Galois, and we denote its Galois group by Γunr. The residue
field of R is denoted by κ, and is not assumed to be perfect. Denote also by I the inertia
subgroup of K, i.e. the absolute Galois group of Kunr.
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Given a reductive group G over K, we ask whether it is possible to understand the
following kernel:

Ker
(
H1(Γunr, G(Kunr)F̃ )→ H1(Γunr, G(Kunr))

)
where F̃ is a Γunr-invariant facet of the building B(GKunr) and G(Kunr)F̃ is its stabilizer
under the action of G(Kunr).

More generally, we introduce the notion of a global subgroup. A subgroup of G(K) is
called global if it is open for the adic topology, and if it contains G(K)+, i.e., the subgroup
generated by the K-points of the root subgroups of G. The study of the action of these
subgroups on the building is of great interest. Indeed, they act transitively on pairs (A, C)
such that A is an apartment of B(G) and C is a chamber of A (cf. Lemma 2.5).

One can also consider a global subgroup H̃ of G(Kunr) invariant under the action of Γunr.
These objects are then a generalization of the subgroups considered by Tits in [BT87, 3.5.]
(cf. Remark (2) of 2.6).

In this case, as in [BT87], one can be interested in more general questions involving H̃.
In summary, one can study the kernel:

Ker
(
H1(Γunr, H̃F̃ )→ H1(Γunr, H̃)

)
where H̃ is this time a Γunr-invariant global subgroup of G(Kunr) and H̃F̃ is the stabilizer
of F̃ under the action of H̃.

Some techniques from classical group cohomology allow us to show the bijection (cf. point
(1) (a) of Theorem 4.3):

(Orb(F̃)
H̃
)Γ

unr
/H

∼→ Ker
(
H1(Γunr, H̃F̃ )→ H1(Γunr, H̃)

)
. (∗)

where we have set H := H̃Γunr . In other words, the kernel corresponds to the Γunr-invariant
elements of the orbit F̃ under H̃, modulo the action of H.

Therefore, we note that Bruhat and Tits had already implicitly addressed the question
in [BT84a]. For example, the result [BT84a, 5.2.10.(ii) Proposition.] means, among other
things, that (Orb(F̃)G(Kunr))

Γunr
/G(K) is trivial when G is semisimple simply connected,

quasi-split over Kunr. Consequently, Ker
(
H1(Γunr, G(Kunr)F̃ )→ H1(Γunr, G(Kunr)

)
is triv-

ial in this case (cf. Remark 4.6).

Also, in [BT84a, 5.2.13.], Bruhat and Tits give a case where (Orb(F̃)G(Kunr))
Γunr

/G(K)
is non-trivial. In this example, G is quasi-split and adjoint.

By observing this example carefully, we see that Bruhat and Tits essentially reason at
the level of types, and thus at the level of affine Dynkin diagrams. It turns out that this
phenomenon is quite general.

Indeed, we prove in this article that the bijection (∗) always holds if we reduce it to the
level of types. We then obtain (cf. point (2) (a) of Theorem 4.3):(

{ω · T̃ ≺ T̃max | ω ∈ H̃}Γunr
)
/H

∼→ Ker
(
H1(Γunr, H̃F̃ )→ H1(Γunr, H̃)

)
. (∗′)

Let us explain the objects involved. Recall that the affine Tits index of G is the data of its
affine Dynkin diagram over Kunr, an action of Γunr, and a Γunr-stable set of vertices, which
we denote by T̃max. This is also the type of the largest Γunr-invariant facet in B(GKunr)

(also called the Γunr-chamber). The type T̃ is defined as the type of F̃ .
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Consequently, the bijection (∗′) gives an explicit and combinatorial way to compute the
kernel, depending only on the affine Tits index of G equipped with the natural action of H̃
and H. This is the main theoretical result of this article.

From this theorem, we immediately deduce that Ker
(
H1(Γunr, H̃F̃ )→ H1(Γunr, H̃)

)
is

trivial when H̃ acts trivially on the affine Tits index. This is notably the case when G
is semisimple simply connected and quasi-split over Kunr according to [BT84a, 5.2.10.(i)
Proposition.]. We thus recover the result of Bruhat and Tits mentioned above.

Furthermore, thanks to the bijection (∗′), the case where G is quasi-split and adjoint can
be fully understood, thus generalizing the example [BT84a, 5.2.13.] of Bruhat and Tits. We
thus prove in this article:

Theorem (cf. Theorem 6.15). Let G be a semisimple adjoint group quasi-split over K. Also
let F̃ be a Γunr-invariant facet of the building B(GKunr). Then the kernel:

Ker
(
H1(Γunr, G(Kunr)F̃ )→ H1(Γunr, G(Kunr)

)
has cardinality 2k where k is an integer bounded above by the number of factors that are a
Weil restriction of an absolutely almost simple group of type 2Dn (for n ≥ 4) or 2A4n+3 (for
n ≥ 0) split by an unramified extension.

That being said, one can also be interested in the following kernel:

Ker
(
H1(Γunr, G(Kunr)0F̃ )→ H1(Γunr, G(Kunr))

)
where G(Kunr)0 is the subgroup generated by the parahoric subgroups over Kunr, also called
the residually neutral component of GKunr .

This question is significantly more delicate. Despite our efforts and our exploration of the
literature, we do not know if there are situations where it is non-trivial.

The case where F̃ is a hyperspecial point (cf. Definition 5.1) is in fact trivial according to
the Grothendieck-Serre conjecture in the case of a henselian discrete valuation ring. Again,
the result has in fact already been proved by Bruhat and Tits when G is semisimple in
[BT84a, 5.2.14. Proposition.] using the bijection (∗). We also show in this article that the
proof can be adjusted to directly prove the reductive case. This is the subject of Proposition
5.5.

Another case where we can prove triviality is, once again, the quasi-split adjoint case.
This is the subject of Theorem 6.8.

To conclude, let us make an observation on the hypotheses of the article. The residue
field κ of R is not assumed to be perfect, contrary to the article [BT87] by Bruhat and Tits.
The group G is also not assumed to be quasi-split over Kunr, although this is the setting
of the theorems of [BT84a] (recall moreover that if κ is perfect, then G is quasi-split over
Kunr as mentioned in [BT84a, 5.1.1.]). It is therefore necessary to recall some aspects of
Bruhat-Tits theory in this generality, in particular to explain why the building of G exists.
This is the purpose of Section 1.
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Notations and conventions

For any field k, the notation ks denotes a separable closure of k.

We use the definition of reductive group by Chevalley and Borel (cf. [Bor91]). In partic-
ular, they are affine, smooth, and connected.

Note that the maximal unramified extension of a complete field is not always complete.
For example, the maximal unramified extension of κ((t)) is not κs((t)) if κs/κ is infinite.

1. Some reminders on the Bruhat-Tits building

Let us recall some points about the building and its existence. To be as general as possi-
ble, we assume in this section that K is not necessarily henselian. The results of this section
will in fact be available in the forthcoming book [Rou]. For convenience, we propose to
present this section independently of this reference.

In [Rou77, Définitions 2.1.12], Rousseau proposes a definition of a building associated to
a reductive group G over K. As proven in [Rou77, Théorème 2.1.14], this building exists if
and only if the building in the sense of [BT72], i.e., constructed from a valued root datum,
exists; and it is unique up to isomorphism.

Furthermore, as indicated in [Rou77, Théorème 2.1.14.2)c)] and [Rou77, Théorème 2.1.15.c)],
it is possible to canonize this building by constructing it as the product of the building of
the derived group D(G) with a vector part given by the radical R(G). A building in this
form is called a centered building. A centered building is unique up to unique isomorphism
(of centered buildings).

Note that the building constructed from a valued root datum associated to G is identified
with the building of D(G).

The building proposed by Rousseau for G is exactly the extended building under mod-
ern terminology. We denote it by Be(G). As said before, it decomposes into a product
B(G)× VG where VG is the vector part of the building and where B(G) is the building of
D(G) (or the building in the sense of a valued root datum of G as in [BT72]). The part
B(G) is thus the (reduced) building of G under modern terminology.

In particular, when G is semisimple, Be(G) = B(G) is unique up to unique isomorphism
and corresponds to the building in the sense of a valued root datum of G.

Another important point to consider is whether the building Be(G) is bornological, i.e.,
whether the stabilizers of bounded subsets are bounded, or more precisely whether it satisfies
the equivalent conditions given in [Rou77, Théorème 2.2.11]. It turns out that according to
[Rou77, Corollaire 5.2.4.], an (extended) building is always bornological when K is henselian.
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As indicated in [Rou77, Exemples 2.2.14.f)], the question of existence reduces to the
almost-simple case and the case of tori. Now, the case of tori, when K is henselian, is
treated in [Rou77, Proposition 2.4.8.2)]. Furthermore, [Rou77, Proposition 2.3.9.] tells us
that the question reduces to the case where K is complete.

Note that the proof of [Rou77, Proposition 5.1.5.] shows exactly that the building of
a separable Weil restriction of a group is naturally a building of that latter group. In
particular, the almost-simple case reduces to the absolutely almost-simple case.

Finally, recall from Struyve ([MSV14] and [Str14, Main Corollary.]) that the conjecture
[Tit86, 13. Conjecture] is verified. This therefore means that every absolutely almost simple
algebraic group over an arbitrary discretely valued complete field admits a valued root datum
compatible with the field’s valuation. We thus deduce a building associated to this type of
group according to [BT72], and hence a building in the sense of Rousseau by the previous
discussion.

In conclusion, we have:

Proposition 1.1. Let G be a reductive group over a henselian discretely valued field K.
Then G admits an extended building, unique up to unique isomorphism. It is moreover
bornological.

We can in fact improve this result thanks to [Rou77, Proposition 2.3.5]:

Theorem 1.2. Let G be a reductive group over a discretely valued field K. Suppose that
G has the same relative rank over K and over its henselization (or alternatively its com-
pletion K̂). Then G admits an extended building, unique up to unique isomorphism. It is
furthermore bornological.

This building is canonically identified with that of G
K̂

and its apartments are the
K̂-apartments corresponding to the K̂-maximal split tori defined and split over K.

Remark 1.3. However, it is still not known whether every reductive group over an arbitrary
valued field admits a building, not necessarily bornological.

Let us now give some information about the vector part VG and the apartments.

Note D := G/D(G), the coradical torus of G. The vector part VG is given by
X∗(R(G)) ⊗Z R ∼= X∗(D) ⊗Z R and G(K) acts by translation via g 7→ (χ 7→ −v(χ(g)))
from G(K) to Hom(X∗(G),R) = Hom(X∗(D),R) = X∗(D) ⊗Z R. It is viewed both as an
affine space over itself and as a vector space. We denote by G(K)1 the pointwise stabilizer
in G(K) of VG (or equivalently, the stabilizer of a point of VG). In other words, it is the
kernel of the morphism g 7→ (χ 7→ −v(χ(g))).

We immediately deduce that G(K)1 is normal in G(K) and that the quotient is isomorphic
to Zr where r is the rank of the group of K-characters of G (hence of D or of R(G)).

The definition of G(K)1 is functorial in G and its construction is compatible with Galois
extensions: for any Galois extension of valued fields L/K with Galois group Γ (the valuation
on L being assumed Γ-invariant), the group G(L)1 is Γ-invariant and
(G(L)1)Γ = G(L)1 ∩ G(K) = G(K)1. Furthermore, G(K)1 can also be defined as the
inverse image of D(K)1 under G(K) 7→ D(K) (cf. [KP23, Lemma 2.6.16]). Consequently,
since D is isogenous to R(G), we have G(K)1 = G(K) if and only if R(G) (or D) contains
no K-split subtorus (this is in particular the case for semisimple groups).
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More generally, as explained in [Rou77, 2.1.7-2.1.11], given a maximal split torus S of G,
an apartment A(S) of Be(G) associated to S is an affine space under X∗(S)⊗ZR equipped
with an action ν : NG(S)(K)→ Autaff(A(S)) satisfying the conditions of definition [Rou77,
2.1.8.a)]. It is unique up to isomorphism. Moreover, every apartment of Be(G) is of this
form.

In particular, the restriction to Z(K) (where Z := ZG(S)) is an action by translation
defined by z 7→ (χ 7→ −v(χ(z))) mapping to:

Hom(X∗(Z),R) = Hom(X∗(Z/D(Z)),R) = X∗(Z/D(Z))⊗Z R ∼= X∗(S)⊗Z R.

Furthermore, the kernel of ν is equal to Z(K)1.
It turns out that an apartment A(S) can also be given by A(S′)× VG, where A(S′) is an

apartment of B(G′) associated to the maximal split torus S′ := S ∩ D(G). In this form,
A(S) is called the centered apartment of G associated to S. Such an apartment has an affine
structure, but also a vectorial structure given by VG. It is unique up to unique isomorphism
of centered apartments. In the following, the notation A(S) denotes the centered apartment
of G associated to S. Such an apartment of Be(G) of course respects the decomposition
Be(G) = B(G)× VG.

Let us finally look at facets and types. We now suppose that K is henselian.

Recall that a facet F of B(G) denotes the open geometric realization of the polysimplex
it represents. Its topological closure F in B(G) is exactly the (disjoint) union of its open
sub-polysimplices (hence its sub-facets) according to [BT72, (2.5.10.)]. A facet F is said to
be incident to a facet F ′ if we have the inclusion F ⊆ F ′. We then write F ≺ F ′.

Furthermore, every facet is contained in the closure of a chamber (which by definition is
a maximal facet for incidence, or even of maximal dimension).

The closure of a chamber is in natural correspondence with the Dynkin diagram of the
affine root system (or equivalently of the échelonnage, cf. [BT72, I.4.]) of G. This graph is
called in [KP23] the relative affine Dynkin diagram, and in [Tit79] the relative local Dynkin
diagram or even the K-residual graph in [BT87].

The type of a facet is then defined as being its image under this correspondence. This
image does not depend on the choice of the closure of a chamber in which the facet is
included. Consequently, two facets of the same type in the same closure of a chamber are
equal.

A type T is said to be incident to a type T ′ if we have the inclusion T ⊂ T ′ (seen as
sets of points of the Dynkin diagram). We then write T ≺ T ′. Take two facets F and F ′

respectively of type T and T ′. If F ≺ F ′, then we have T ≺ T ′.

As indicated previously, the existence of a building B(G) for G is equivalent to the
existence of a valued root datum for G. The latter allows one to deduce a double Tits
system equipped with an adapted morphism whose associated building is exactly B(G)
according to [BT72, 6.5. Théorème.].

We thus deduce a type morphism, denoted ξ, from G(K) to the group of automorphisms
of the relative affine Dynkin diagram according to [BT72, 1.2.16]. Its image is denoted Ξ
and its kernel is denoted G(K)c. There is thus an isomorphism G(K)/G(K)c ∼= Ξ. We can
also restrict this morphism to G(K)1. Its image is denoted Ξ1 and its kernel is denoted
G(K)b := G(K)c ∩G(K)1. We deduce an isomorphism G(K)1/G(K)b ∼= Ξ1.

The interested reader can analyze the case of GLn for examples. Indeed, there is a way
to interpret the building and the types in this case through lattice chains (cf. [BT84b]).
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The type morphism measures how the type of a facet changes under the action of an
element of G(K). In other words, a facet F of type T is such that g · F is of type ξ(g) · T
for all g ∈ G(K). Denote by ΞT the subgroup of w ∈ Ξ such that w · T = T . One can also
verify that G(K)F surjects onto ΞT and that its kernel is G(K)cF , whence an isomorphism
G(K)F/G(K)cF

∼= ΞT . We also define all this analogously for G(K)1 and Ξ1. Cf. [BT72,
1.2.13 - 1.2.20] and [BT72, 2.7.].

The type of a facet can also be seen as the orbit of this facet under a group acting
transitively on the chambers while preserving the types. This is notably the case for G(K)c,
G(K)b and even G(K)+ (cf. Lemma 2.4).

Remark 1.4. We do not necessarily have equality between Ξ1 and Ξ. To simplify, con-
sider the case where κ is perfect. In order to realize the counterexample efficiently, we
use the Kottwitz morphism (cf. [KP23, 11.5]). It is a morphism G(K) → π1(G)I (func-
torial in G) whose kernel is G(K)0, the subgroup generated by the parahoric subgroups,
also called the residually neutral component of G(K), (cf. [KP23, Proposition 11.5.4]),
and whose inverse image of the torsion elements is G(K)1 (cf. [KP23, Lemma 11.5.2]). The
Gal(Ks/K)-module π1(G) is the algebraic fundamental group, defined in [KP23, 11.3]. Con-
sequently, π1(G)I denotes the Γunr-module obtained by taking coinvariants.

Consider the case where G = GL2. An immediate calculation shows that π1(G)I = Z
and is thus torsion-free. We deduce that G(K)0 = G(K)1. Since G(K)0 acts trivially on
the types (cf. [BT84a, 5.2.12.(i) Proposition.]), the same holds for G(K)1. Hence Ξ1 = 0.

On the other hand, G(K) does not act trivially on the types. Indeed, the following two
parahoric subgroups are associated to points of different types (cf. [KP23, Chapter 3.1]):(

R R
R R

)
and

(
R tR

t−1R R

)
whereas they are conjugate by the matrix

(
t 0
0 1

)
∈ G(K).

To finish, let us prove that Ξ is finite abelian. For this, we need a few results:

Lemma 1.5. Let Z be a Levi subgroup of G. We have D(G(K)) = G(K)+D(Z(K)).

Proof. Since G(K)+ is perfect ([BT73, 6.4. Corollaire.]), we have G(K)+ ⊂ D(G(K)). We
deduce the inclusion G(K)+D(Z(K)) ⊂ D(G(K)). Conversely, since G(K) = G(K)+ Z(K)
([BT73, 6.11.(i) Proposition.]), we can take an element d ∈ D(G(K)) of the form
g1z1g2z2(g1z1)

−1(g2z2)
−1, with g1, g2 in G(K)+ (resp. z1, z2 in Z(K)). Since G(K)+ is

normal in G(K), we can consider the quotient G(K)/G(K)+ and see that the image of d in
G(K)/G(K)+ is equal to that of z1z2z−1

1 z−1
2 , hence d ∈ G(K)+D(Z(K)). Since D(G(K))

is generated by this type of elements, we deduce the inclusion D(G(K)) ⊂ G(K)+D(Z(K))
as desired. □

Proposition 1.6. G(K)b is a normal subgroup of G(K) whose quotient is abelian of finite
type and whose number of generators is bounded by the relative rank of G.

Proof. Take Z a minimal Levi subgroup of G. By Lemma 1.5, we have
D(G(K)) = G(K)+D(Z(K)). Now, on one hand G(K)b contains G(K)+ thanks to Lemma
2.4, and on the other hand D(Z(K)) ⊂ D(Z)(K) ⊂ Z(K)1 ⊂ G(K)b. The subgroup G(K)b

therefore contains D(G(K)) and is thus normal with abelian quotient.
Furthermore, there is a surjection Z(K)/Z(K)1 → G(K)/G(K)+Z(K)1 such that

G(K)/G(K)+Z(K)1 is abelian of finite type since Z(K)/Z(K)1 is. Its number of gen-
erators is thus bounded by that of Z(K)/Z(K)1, which is simply the relative rank of G. We
then use Lemma 2.8 which tells us that G(K)b = G(K)+Z(K)1 to conclude. □
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We then deduce what we wanted:

Proposition 1.7. The group G(K)/G(K)c ∼= Ξ (and hence G(K)1/G(K)b ∼= Ξ1) is finite
abelian.

Proof. Note that we have the isomorphism G(K)/G(K)c ∼= Ξ. Furthermore, since
G(K)b ⊂ G(K)c, Corollary 1.6 gives that Ξ is abelian. On the other hand, the fact that
there are finitely many ways to permute a finite number of vertices implies that Ξ is finite.
Consequently, the same holds for G(K)1/G(K)b ∼= Ξ1 ⊂ Ξ. □

2. Global subgroups and new notions

We consider a possibly infinite unramified Galois extension L/K, with Galois group Γ.
We can thus assume the inclusion L ⊂ Kunr.

In what follows, we consider the following subgroups of G(K):

Definition 2.1. Let H be an open subgroup of G(K).
• We say that H is a global subgroup of G(K) if G(K)+ ⊂ H.
• Furthermore, we say that H, assumed to be global, is L-conformal (or just con-

formal if L = K) if H preserves the L-types, or equivalently if H ⊂ G(L)c. Also,
H is said to be very conformal if H is Kunr-conformal. We also say that H is
uniform if H fixes a point of VG, or equivalently, if H ⊂ G(K)1.
• We say that H is L-good (or just good if L = K) if H is uniform and L-conformal,

or equivalently, if H ⊂ G(L)b. Also, H is said to be very good if H is Kunr-good.
• We also define H1, Hb, Htb, Hc, and Htc as the subgroups obtained by taking the

intersection of H with G(K)1, G(K)b, G(Kunr)b, G(K)c, and G(Kunr)c respectively.
• For any subset Ω of B(G), we denote by HΩ (resp. H f

Ω) the stabilizer (resp.
pointwise stabilizer) of Ω under H. If we take several subsets (Ωi)i∈I , we denote
H(Ωi)i∈I

:=
⋂

i∈I HΩi . This latter subgroup is called the multistabilizer of (Ωi)i∈I
under H.

Observe that

Hb = (H1)c = (Hc)1 = H1 ∩Hc and Htb = (H1)tc = (Htc)1 = H1 ∩Htc.

Indeed, it suffices to verify the result when H = G(K). In this case, it follows from the
definitions.

As we will see later in Corollary 3.6, a global subgroup that is L-conformal (resp. L-good)
is conformal (resp. good), but the converse is false.

Remarks 2.2.
(1) We do not take the same convention as Bruhat and Tits in [BT84a], and as Prasad in

[KP23]. For Prasad, G(K)1Ω denotes the pointwise stabilizer of Ω under the action of
G(K)1, while G(K)†Ω denotes the stabilizer of Ω under the action of G(K)1. Bruhat
and Tits take an analogous convention.

(2) The convoluted notations "1" and "b" were already present in the literature. We
have therefore chosen to give them names so that they are easier to remember
("1" is associated with the "uniform" property and "b" is associated with the "good"
property, which is translated "bon" in French). We have also added the notion of
"conformity" (associated with "c"), which, although convenient, was not present in
the literature. Note also that "t" in "tb" and "tc" stands for "très" in French, which
means "very".
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(3) One could have defined a notion of "L-uniform" (or "very uniform") property. How-
ever, (G(Kunr)1)Γ

unr
= G(K)1 according to the end of Section 1. This is therefore

equivalent to the notion of "uniform" property.

Remark 2.3. The pointwise stabilizer of any subset Ω of B(G) under the action of a global
subgroup H is the multistabilizer of (x)x∈Ω under H. If moreover Ω is a finite union of
facets, it is also the multistabilizer under H of the family given by the vertices incident to
Ω (in finite number).

The main result concerning global subgroups is the following:

Lemma 2.4. A global subgroup acts transitively on the pairs (A, C) of apartments
and chambers contained in that apartment. Moreover, G(K)+ is a good global subgroup
(i.e. G(K)+ ⊂ G(K)b).

Proof. It suffices to prove the result for G(K)+. One can also reduce to the semisimple
adjoint case. Indeed, the action on the building factors through Z(G)(K) and [BT73,
Corollary 6.3.] implies that G(K)+ → Gad(K)+ is surjective.

We know that there exists a valued root datum associated to G(K). The parahoric
subgroups (in the sense of [BT72], i.e., the stabilizers of facets under the action of G(K)c)
are described in [BT72, (7.1.1.)] and thus generate G(K)+Z(K)1 ("H" equals Z(K)1, with
Z a minimal Levi subgroup, since G is semisimple. Also, the affine root groups generate
G(K)+). But by definition, this group also equals G(K)c (and even G(K)b since G is
assumed semisimple). It therefore acts transitively on the apartment-chamber pairs that
interest us (cf. [BT72, (2.2.6)]). Since G(K)+ ⊂ G(K)+Z(K)1 = G(K)b, we deduce in
particular that G(K)+ is good.

Let A and A′ be apartments and C ⊂ A and C′ ⊂ A′ be chambers of these apartments. Let
g ∈ G(K)b such that g · (A, C) = (A′, C′). Let Z relative to A and write the decomposition
g = g+z given by G(K)b = G(K)+Z(K)1. Since Z(K)1 fixes A (and hence C), we have:

g+ · (A, C) = g+ · (z · (A, C)) = g · (A, C) = (A′, C′).
Hence the result. □

We then deduce:

Proposition 2.5. Choose an apartment A and a chamber C ⊂ A. Any conformal global
subgroup K of G(K) defines a saturated BN -pair by setting B = KC and N = KA, the
stabilizers of C and A under the action of K. The associated building is exactly B(G) and
its Weyl group is the affine Weyl group of the building.

Up to conjugation by K, this BN -pair does not depend on the choice of the pair (A, C).
Proof. According to the previous lemma, we fall into the framework of application of [Tit74,
3.11. Proposition], which gives us the result. □

Remarks 2.6.
(1) The terminology global subgroup is actually inspired by Proposition 2.5: a global

subgroup is large enough to determine a sufficiently rich set of "local" subgroups
given by the stabilizers of bounded subsets of the building B(G).

(2) The notion of a global subgroup of G(Kunr) invariant under Γunr encompasses that
of the subgroups considered in [BT87, 3.5.] in the case where the residue field κ is
perfect. Indeed, Tits rather imposes to contain G(Kunr)0, the subgroup generated
by the parahoric subgroups over Kunr, also called the residually neutral component
of GKunr , instead of G(Kunr)+, and G(Kunr)+ ⊂ G(Kunr)0 (cf. 3rd paragraph of
[BT84a, 5.2.11.]).
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From this, we deduce some elementary results concerning facets and global subgroups:

Proposition 2.7. Let H be a global subgroup of G(K) and two facets F and F ′ in B(G).
We have:

(1) The subgroup HF acts transitively on the apartments containing F .
(2) If HF ′ ⊂ HF , then F ⊂ F ′. The converse is true if H is moreover conformal.
(3) We have HF = HF if and only if F = F ′.

Proof.

(1) Since H is global, it suffices to show the result for H = G(K)+. This is [KP23,
Proposition 1.5.13.(1)] applied to the Tits system of G(K)+ (cf. Proposition 2.5).

(2) and (3) Observe that HF ′ ⊂ HF implies G(K)+F ′ ⊂ G(K)+F . Since G(K)+ induces a Tits
system whose building is exactly B(G) (cf. Proposition 2.5), there is a correspon-
dence between the parabolic subgroups of the Tits system for inclusion (which are
the stabilizers of facets) and the facets of the building for incidence. Hence F ⊂ F ′

if and only if G(K)+F ′ ⊂ G(K)+F . The same reasoning also applies to an arbitrary
conformal subgroup.

□

We also have decomposition results:

Lemma 2.8. Let H be a global subgroup of G(K). We have H = G(K)+H(A,C), where
A is an apartment of B(G) and C is a chamber in A. Furthermore, Hc

(A,C) = H f
A and

Hb
(A,C) = H1,f

A . In particular, we have G(K)b = G(K)+Z(K)1 for Z a minimal Levi subgroup
of G.

Proof. The reverse inclusion is obvious. Let us study the direct inclusion.
Let h ∈ H. By transitivity of G(K)+ on apartment-chamber pairs, there exists

g ∈ G(K)+ such that g · C = h · C and g · A = h · A. So h′ := g−1h ∈ H(A,C).
So h = gh′.

Observe that Hb
(A,C) = Hb,f

A since Hb fixes the types, hence C, and hence all of A since the

vertices of C determine an affine basis of A. Furthermore, Hb,f
A = H1,f

A because H1,f
A fixes C

and thus acts trivially on the types. The same reasoning proves that Hc
(A,C) = H f

A.
We deduce therefore from Section 1 that G(K)b(A,C) is exactly the pointwise stabilizer

of the extended apartment A × VG ⊂ Be(G), i.e., Z(K)1, where Z is the Levi subgroup
associated to A. Hence the last decomposition. □

This last result allows us to deduce a more precise Bruhat decomposition:

Proposition 2.9 (Bruhat decomposition). Take A an apartment of B(G) and C a chamber
of A. Let H be a global subgroup of G(K). We have: H = G(K)+C HAG(K)+C .
In particular, G(K) = G(K)+C N(K)G(K)+C , where N is the normalizer of the maximal split
torus of G associated to A.

Proof. According to [KP23, Proposition 1.4.5.(1)], there exists a Bruhat decomposition for
G(K)+ (since the latter determines a Tits system, cf. Proposition 2.5). Consequently,
G(K)+ = G(K)+C G(K)+AG(K)+C .
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Observe that HC = H(A,C)G(K)+C = G(K)+C H(A,C) since G(K)+C acts transitively on the
apartments containing C according to Lemma 2.4. Then, note that HA = H(A,C)G(K)+A
since G(K)+A acts transitively on the chambers of A according to also Lemma 2.4. Since by
Lemma 2.8, H = H(A,C)G(K)+, we therefore finally have:

H = H(A,C) (G(K)+C G(K)+AG(K)+C ) = G(K)+C
(
H(A,C)G(K)+A

)
G(K)+C = G(K)+C HAG(K)+C .

□

Let us now prove some compatibility results of global subgroups with unramified exten-
sions. Before that, we need to show the following elementary lemma:

Lemma 2.10. Let G′ be a reductive group over a field K ′ and L′/K ′, a Galois extension
with Galois group Γ′. The subgroup G′(L′)+ is Γ′-invariant and we have:

G′(K ′)+ ⊂ (G′(L′)+)Γ
′
= G′(L′)+ ∩G′(K ′).

Proof. The first assertion comes from [BT73, 6.1.]. Indeed, σ ∈ Γ′ defines an isomorphism
σ : G′

L′ → G′
L′ , and thus sends G′(L′)+ to G(L′)+. Hence the Γ′-invariance.

On the other hand, [BT73, 6.1.] also gives G′(K ′)+ ⊂ G′(L′)+. We therefore have the
result using the Γ′-invariance. □

This allows us to obtain:

Proposition 2.11. We have:
(1) Every global subgroup H admits a largest global subgroup that is respectively uniform,

good, L-good, conformal, L-conformal given respectively by H1, Hb, H ∩G(L)b Hc,
H ∩G(L)c (and thus in particular a largest global subgroup that is respectively very
good and very conformal given by Htb and Htc).

(2) If H̃ is a global subgroup respectively uniform, good, conformal, Γ-invariant of G(L),
then H̃Γ is a global subgroup respectively uniform, L-good, L-conformal of G(K).

(3) If H̃ is a global Γ-invariant subgroup of G(L), then H̃1, H̃b and H̃c are also
Γ-invariant.

Proof.
(1) For the first point, it suffices to show that the subgroups in question are global.

We have according to Lemmas 2.4, 2.10 and the first point of Corollary 3.6:

G(L)c ∩H Hc

G(K)+ G(L)+ ∩H G(L)b ∩H Hb H1.

3.6.(1)

2.10 2.4 3.6.(1)

(2) Since H̃Γ ⊂ H̃, it suffices only to show that G(K)+ ⊂ H̃Γ. But we have
G(K)+ ⊂

2.10
(G(L)+)Γ ⊂ H̃Γ. Hence the result.

(3) The third point reduces to the case where H̃ = G(L). For G(L)1, this has already
been done at the end of Section 1. For the rest, let us use Lemma 2.8. Given an apart-
ment A ⊂ B(GL) and an L-chamber C ⊂ A, we have: G(L)∗ = G(L)+G(L)∗(A,C) for
∗ ∈ {b, c}. Now, G(L)+ is Γ-invariant according to Lemma 2.10. It therefore suffices
to show that the orbit under Galois of G(L)∗(A,C) is in G(L)∗ for all ∗ ∈ {b, c}.
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Now, Lemma 2.8 also shows that G(L)b(A,C) = G(L)1,fA and that

G(L)c(A,C) = G(L)fA. But for σ ∈ Γ, σ(G(L)1,fA ) = G(L)1,fσ(A) ⊂ G(L)b, and simi-
larly σ(G(L)fA) = G(L)fσ(A) ⊂ G(L)c. This therefore gives the result as desired.

□

Let us introduce some additional notations that will be useful later:

Definition 2.12. Let H be a global subgroup of G(K) and F a facet of type T . Denote:
• ΞH , the image of H by ξ (which thus induces H/Hc ∼= ΞH).
• ΞH,T , the image of HF by ξ (which thus induces HF/H

c
F
∼= ΞH,T ). It is also the

set {w ∈ ΞH | w · T = T } since Hc ⊂ H acts transitively and conformally on the
chambers (cf. definition below).
• Orb(F)H , the orbit of F by H.
• Orb(T )ΞH

(or even Orb(T )H), the orbit of T by ΞH .

Let us now generalize the notion of facet and the associated objects. This generalization
is inexpensive for what follows and adds additional richness to our general problem.

Definition 2.13. Let us call a multifacet any union of facets included in the same closure
of a chamber. For such an object, we can define the type (or multitype, to emphasize
that this is relative to a multifacet) as the set of the types of the different facets composing
it. A facet is then in particular a multifacet, and his type can naturally be identified as his
multitype.

We say that a multifacet is strongly invariant under the action of a group if each of the
facets composing it is invariant (it is therefore not sufficient that the multifacet is invariant
as a geometric object). We define the same notion for the multitypes.

We also say that a group acting on B(G) by polysimplicial automorphisms acts confor-
mally on a multifacet F if it sends it to multifacets of the same type.

If F is a multifacet with decomposition into facets
⊔

i∈I Fi, then for any global subgroup H
of G(K), we denote H(F) := H(Fi)i∈I

:=
⋂

i∈I HFi . This group is called the multistabilizer
subgroup of the multifacet F relative to H.

More generally, we use the notation (F) to specify that we are considering F as a multi-
facet and not as a subset of the building (we do the same for the multitypes).

Remark 2.14. We see therefore that the use of multifacets gives rise to a larger family of
subgroups than just the stabilizers of facets. In particular, this gives access to the pointwise
stabilizers of facets, by taking for example the multifacet associated to the vertices incident
to a facet.

Note however that, in the conformal case, stabilizing a facet and preserving its type implies
in fact pointwise stabilizing it. In this case, the multistabilizer of a multifacet whose type
is preserved is none other than the pointwise stabilizer of the union of the facets composing
it: the notion of multistabilizer is only interesting if one considers non-conformal global
subgroups.

Remark 2.15. As for facets, the topological closure of a multifacet F :=
⊔

iFi is ex-
actly the union of the subfacets of the Fi. Indeed, this is a consequence of the fact that
F =

⊔
iFi =

⋃
iF i. We also define the incidence relation as an inclusion at the level

of closures. We also say that a multitype T = {T1, ..., Tn} is incident to a multitype
T ′ = {T ′

1 , ..., T ′
m}, which we denote by T ≺ T ′, if for every Ti, there exists T ′

j such that
Ti ≺ T ′

j (in the sense of the usual types). One can check that, as for the case of facets,
taking the type of a multifacet is compatible with the incidence relation.
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3. Some complements on unramified descent

Recall that, according to Rousseau in [Rou77, Proposition 2.4.6], the Galois group Γ
acts by polysimplicial automorphisms on B(GL) in a manner compatible with the action
of G(L) (i.e., σ(g · x) = σ(g) · σ(x) for any σ ∈ Γ, g ∈ G(L), x ∈ B(GL)). According to
the tamely ramified descent theorem ([Rou77, Proposition 5.1.1.]), the set of fixed points
is uniquely identified with B(G). One can also choose a Γ-invariant metric on B(GL)
(cf. [Rou77, §2.2]) such that Γ acts by isometries ([Rou77, Remark 2.4.7.(f)]), and hence
such that B(G) ⊂ B(GL) is an isometric embedding. Under this choice, B(G) is also a
closed convex subset of B(GL). Indeed, Γ acts continuously on B(GL) (since it acts by
isometries), hence the closedness. The convexity then follows from the uniqueness of the
geodesic connecting two points (since Γ acts by isometries).

In particular, since Γ acts by polysimplicial automorphisms, it sends facets to facets.
Furthermore, this action on facets factors through an action on the types (and even on the
relative affine Dynkin diagram). It suffices to see that, given an L-facet F and g ∈ G(L)c,
the facets σ(F) and σ(g · F) have the same type. Since σ(g · F) = σ(g) · σ(F) and G(L)c is
Γ-invariant (cf. point (3) of Proposition 2.11), we get the result. This observation extends
of course to multifacets.

Let us then introduce the following definition (already present in [KP23, 9.2.4]):

Definition 3.1. A Γ-multifacet is an L-multifacet that is strongly Γ-invariant. In partic-
ular, a Γ-facet is an L-facet that is Γ-invariant.

One also defines a Γ-vertex (resp. a Γ-chamber) as a Γ-facet that is minimal (resp.
maximal) among Γ-facets.

Recall also that the unramified descent theorem was originally proved by Bruhat and
Tits (in [BT84a, 5.]) and generalized by Prasad (in [Pra20, Theorem 3.8.]). This theorem
provides a more precise dictionary than the tamely ramified descent theorem (notably a
strong compatibility at the level of facets and parahoric subgroups. For example, parahoric
group schemes commutes with unramified base change, but not with tame ones).

We propose to develop some complements to this theorem. Before that, we need to prove
the following lemma:

Lemma 3.2. Let F be a Γ-multifacet of B(GL).
We have the equality: F ∩B(G) = F ∩B(G).

Proof. Let us first prove the case where F is a facet.
Observe first that F ∩B(G) ⊂ F ∩B(G). Consequently, F ∩B(G) ⊂ F ∩B(G).
Let us show the reverse inclusion. Take x ∈ F ∩B(G) and y ∈ F ∩B(G). Since F is
convex, the geodesic [x, y] ⊂ F is such that the half-open geodesic [x, y[ is included in F
(cf. [Bou81, II.§2.6. Proposition 16.]).

Furthermore, since B(G) is convex and x and y are in B(G), the geodesic [x, y] is in fact
included in B(G). Consequently, [x, y[ is included in F ∩B(G). This implies that y is in
F ∩B(G). Hence the reverse inclusion.
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Let us now prove the general case. Write F =
⊔

i Fi as the decomposition of F into
facets. We have:

F ∩B(G) = (
⋃
i

Fi) ∩B(G)

=
⋃
i

(Fi ∩B(G)) =
⋃
i

Fi ∩B(G) =
case of
facets

⋃
i

(Fi ∩B(G)) = (
⋃
i

Fi) ∩B(G)

= F ∩B(G).

Hence the result. □

We thus have:

Proposition 3.3. We have the following G(K)-equivariant correspondence, increasing for
the inclusion and for the incidence:{

Γ-multifacets
of B(GL)

}
∼=

{
K-multifacets

of B(G)

}
⊔
i

Fi
α7→

⊔
i

FΓ
i =

⊔
i

Fi ∩B(G)

⊔
i

F̃i
β←[

⊔
i

Fi

where F 7→ F̃ associates to a K-facet the unique L-facet containing its barycenter.
In particular, under this correspondence, a Γ-vertex corresponds to a K-vertex and a

Γ-chamber corresponds to a K-chamber.

Proof. To lighten the proof, we only write the case of facets. It suffices to reason facet by
facet to get the case of multifacets.

Remark [Rou, 5.1.5.1 Remark (c)] explicitly states the well-definedness and even the
surjectivity of the direct arrow at the level of facets. Conversely, for a K-facet F , the
L-facet F̃ is Γ-invariant because it is the unique L-facet containing the barycenter of F ,
which is itself fixed by Γ. Hence the well-definedness of the inverse arrow.

Take a Γ-facet F . Observe then that F̃Γ = F because both K-facets contain the
barycenter of FΓ. Conversely, (F̃ )Γ = F because both L-facets contain the barycenter of
F .

Note that both sets are G(K)-stable. The direct arrow is obviously G(K)-equivariant
since every element of G(K) is fixed by Γ and since the action of Γ on B(GL) is compatible
with the action of G(L). The inverse arrow is therefore also equivariant.

The increasing property for the inclusion is of course obvious in both directions.
Let’s look at the incidence for the direct arrow. According to Lemma 3.2,

we have F ∩ B(G) = F ∩B(G). Consequently, if a Γ-invariant facet F ′ is in F , then
F ′ ∩B(G) ⊂ F ∩B(G) = F ∩B(G). In other words, F ′Γ is incident to FΓ. This is
what we wanted.

For the inverse arrow, if F ⊂ F ′, then the barycenter of F is contained in F ′ ⊂ F̃ ′.
Therefore F̃ ⊂ F̃ ′ since F̃ is the unique L-facet containing the barycenter. □
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Recall the following definitions:

Definition 3.4.

(1) We say that G is residually split if G and GKunr have the same relative semisimple
rank.

(2) We say that G is residually quasi-split if there exists a Γunr-invariant
Kunr-chamber in B(GKunr) (or equivalently if there exists a Γunr-chamber which
is a Kunr-chamber).

We also have a correspondence at the level of the types:

Proposition 3.5.

(1) The correspondence from Proposition 3.3 preserves the types.
In particular, the orbit under the action of a conformal global subgroup of G(K) of
a Γ-multifacet (resp. a K-multifacet) describes exactly the Γ-multifacets of the same
L-type (resp. the K-multifacets of the same K-type).

(2) Let T̃max denote the type of a Γ-chamber (which is independent of the choice of the
Γ-chamber). We thus have the following natural Ξ-equivariant bijections, increasing
for the inclusion and the incidence (in an obvious sense):

{
L-multitypes strongly

Γ-inv. of B(GL) in T̃max

}
∼←

{
Sets of Γ-multifacets of

B(GL) of same L-multitype

} α→
β←

{
K-multitypes

of B(G)

}

In particular, if G is residually quasi-split, the set on the left is exactly that of strongly
Γ-invariant L-multitypes of B(GL).

Proof.

(1) Consider two Γ-multifacets F̃ and F̃ ′ and take H an L-conformal subgroup of G(K)

(for example G(K)+). Also denote F := F̃Γ and F ′ := (F̃ ′)Γ.
Suppose that F and F ′ have the same K-type. Then, F̃ and F̃ ′ have the same

L-type. Indeed, there exists g ∈ H such that g · F = F ′. By bijectivity and
G(K)-equivariance of the correspondence in Proposition 3.3, we have g · F̃ = F̃ ′.
Hence the result since H does not change the L-types.

Suppose now that F̃ and F̃ ′ have the same L-type. We know there exists g ∈ H

such that g · F and F ′ lie in the closure of the same K-chamber. Let C̃ be the
corresponding Γ-chamber. Now, (g · F̃)Γ = g · F . This means that g · F̃ and F̃ ′

are in the closure of C̃ by the increasing property. In particular, they lie in the
closure of the same L-chamber. Since g does not change the L-types, this means
that g · F̃ = F̃ ′. In particular, g · F and F ′ are equal. Since g also does not change
the K-types, we deduce that F and F ′ have the same K-type. Hence the result.

(2) The correspondence in point (2) given by α and β is then obtained by factoring the
maps α and β from Proposition 3.3 at the level of orbits under H. Indeed, on one
hand, the orbit of a K-multifacet under H corresponds to the K-multitypes. On the
other hand, the orbit of a Γ-multifacet under H describes Γ-multifacets which are
also of the same L-type by the L-conformal property. Conversely, the Γ-multifacets
of the same L-type are all described according to point (1).
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Let us now prove the first bijection of point (2). Take a Γ-chamber C̃. Since C̃
corresponds to the set of L-multitypes in T̃max, we can lift a strongly Γ-invariant
L-multitype T̃ living in T̃max to an L-multifacet F̃ in the closure of C̃. But since C̃
is Γ-invariant, the orbit of F̃ under Γ remains in C̃. Since T̃ is strongly Γ-invariant,
Γ acts conformally on F̃ , and thus F̃ is strongly Γ-invariant. This shows the surjec-
tivity, injectivity being of course obvious.

If G is residually quasi-split, then T̃max is the type of an L-chamber. This gives
the result.

Finally, note that these correspondances are of course G(K)-equivariant. Since
G(K)c acts trivially on the K-multitypes, it also acts trivially on the other sets and
the action therefore factors everywhere through G(K)/G(K)c ∼= Ξ. This shows in
particular that the orbit under the action of a conformal global subgroup of G(K)
of a Γ-multifacet describes exactly the Γ-multifacets of the same L-type, hence the
second remark of the proposition.

□

Let us now establish some corollaries to Proposition 3.5:

Proposition 3.6.
(1) Every global subgroup of G(K) that is L-conformal is conformal. In particular, given

H, a global subgroup of G(K), we have H ∩G(L)c ⊂ Hc and H ∩G(L)b ⊂ Hb.
(2) A global subgroup of G(K) is conformal if and only if it acts conformally on the

Γ-multifacets of B(GL).

Remark 3.7. Careful! It is possible that the inclusion G(K)tc ⊂ G(K)c is strict, and hence
that a conformal global subgroup is not very conformal. A counterexample where G is the
unique inner form of PGL2 over Qp, with p prime (since H2(Qp, µ2) = Z/2Z), is given in
[KP23, Example 2.6.31]. It is thus adjoint, anisotropic, and residually quasi-split. In other
words, G(K) permutes the vertices of the Kunr-grading, i.e., A1 ( ).

Note also the following result:

Proposition 3.8. Let H̃ be a Γ-invariant global subgroup of G(L). Take F̃ a Γ-multifacet
of B(GL). Set H := H̃Γ and F := F̃Γ. Then

H̃
(F̃)
∩H = H

(F̃)
= H(F).

Proof. The result obviously reduces to the case of facets. Let h ∈ HF . Since
∅ ̸= F ⊂ h · F̃ ∩ F̃ , we have h · F̃ = F̃ . So h ∈ HF̃ . Conversely, if h ∈ HF̃ , take
x ∈ F . Then h · x ∈ F̃ . But σ(h · x) = σ(h) · σ(x) = h · x for all σ ∈ Γ. So h · x ∈ F and
h ∈ HF . □

From this, we can introduce the following definition:

Definition 3.9. Take H̃ a Γunr-invariant global subgroup of G(Kunr). Set H := H̃Γunr .

(1) Consider F , a facet of B(G) and F̃ its associated Γunr-facet via the correspondence
in Proposition 3.3.
(a) We say that a smooth separated R-model of G having as Runr-points the group

H̃F̃ (resp. H̃ f
F̃
) is a stabilizer (resp. pointwise stabilizer) group scheme

of F relative to H. It is also called a Bruhat-Tits model of HF (resp.
H f

F).
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(b) Its group of R-points is given by (H̃F̃ )
Γunr

= HF̃ = HF (resp.
(H̃ f

F̃
)Γ

unr
= H f

F̃
= H f

F) according to Proposition 3.8.
(2) Suppose this time that F is a multifacet.

(a) We say that a smooth separated R-model of G having as Runr-points the group
H̃

(F̃)
is a multistabilizer group scheme of F relative to H. It is also

called a Bruhat-Tits model of H(F).
(b) Its group of R-points is given by (H̃

(F̃)
)Γ

unr
= H

(F̃)
= H(F) according to Propo-

sition 3.8.
If H̃ = G(Kunr), relative to H may be omitted in the preceding definitions.

Remark 3.10. The preceding definitions are of course compatible with unramified Galois
algebraic extensions Kunr/L/K in an obvious sense.

Remark 3.11. A smooth affine R-scheme is unique up to isomorphism if its Runr-points are
fixed (cf. [KP23, Corollary 2.10.11]). Consequently, using the notations of the definition,
there is at most one affine Bruhat-Tits model given the choice of H̃ and F .

The question of uniqueness in the case where the model is not affine will be discussed in
a future article.

Remark 3.12. This definition includes in particular the group schemes defined by Bruhat
and Tits in [BT84a] and also the group schemes defined in [KP23]. It also includes the
Néron models of tori (which thus gives an example of a situation where the model is not
necessarily affine). The question of existence, under certain hypotheses, of Bruhat-Tits
models (especially when they are not affine) will be addressed in a future article.

4. Theoretical cohomological results

In all that follows, we denote by ξ̃ the type morphism associated to GL. We also denote
by D (resp. D̃) the relative affine Dynkin diagram of G (resp. GL).

Consider also Ξext (resp. Ξext
L ), the subgroup of Dynkin automorphisms of D (resp. D̃)

induced by the polysimplicial automorphisms of an apartment of B(G) (resp. B(GL)) that
vectorially induce an element of the vectorial Weyl group (cf. [KP23, Definition 1.3.71]).
More precisely, this construction is indicated in [KP23, Remark 1.3.76].

Note that the action of G(L) on B(GL) is compatible with the action of G(L) on the
vectorial building of G over L, in the sense that the latter gives the underlying vectorial
action. Moreover, the vectorial action is, on each apartment, induced by elements of the
vectorial Weyl group, and consequently preserves the vectorial types (cf. [Rou, 2.2.16.(c)
Theorem.]). This implies that the image of the type morphism over K (resp. L) is included
in Ξext (resp. Ξext

L ).
Furthermore, the Galois action on B(GL) is compatible with the Galois action on the

vectorial building over L, and as in the affine case, the vectorial building over K embeds
into the vectorial building over L (cf. [Rou, 2.3.1.(2) Theorem.]).

We also define the extended type: to a pair (F , ∗) composed of a K-multifacet and a point
of VG, we associate (T , ∗), the pair formed by the type of F and ∗ (thus seen in D̃ × VG).
The action of G(K) on (F , ∗) induces an action on (T , ∗) given by g · (T , ∗) = (ξ(g) · T , g · ∗)
and thus an associated morphism ξe, whose kernel is by definition G(K)b := G(K)c∩G(K)1.
Given a global subgroup H of G(K), we denote Ξe

H := ξe(H) ∼= H/Hb.
Of course, we generalize all this over L, and the action of Γ on Be(GL) factors through

D̃ × VGL
. We denote by ξ̃e the associated morphism over L.



18 A. ZIDANI

Let us begin with the following theorem:

Theorem 4.1. Let H̃ be a Γ-invariant global subgroup of G(L). Denote H := H̃Γ. Denote
also by T̃max the type of a Γ-chamber.

(1) (a) The group Ξ
H̃

is endowed with the action of Γ by conjugation (given by
σ 7→ (ω 7→ σ ◦ ω ◦ σ−1)), such that we have the exact sequence of Γ-groups:

1 H̃c H̃ Ξ
H̃

1.
ξ̃

(b) Similarly, Ξe
H̃

is endowed with the action of Γ by conjugation, such that we have
the exact sequence of Γ-groups:

1 H̃b H̃ Ξe
H̃

1.
ξ̃e

(2) The previous exact sequences give rise to the following exact sequences of pointed
sets:
(a) 1 (Ξ

H̃
)Γ/ξ̃(H) H1(Γ, H̃c) H1(Γ, H̃) H1(Γ,Ξ

H̃
).

(b) 1 (Ξe
H̃
)Γ/ξ̃e(H) H1(Γ, H̃b) H1(Γ, H̃) H1(Γ,Ξe

H̃
).

(3) We have the following inclusions: ξ̃(H) ⊂ (Ξ
H̃,T̃max

)Γ ⊂ (Ξ
H̃
)Γ.

(4) The group (Ξ
H̃,T̃max

)Γ acts naturally on D and induces a map (Ξ
H̃,T̃max

)Γ → Ξext.

(5) The kernel Ker
(
(Ξ

H̃,T̃max
)Γ → Ξext

)
is given by the elements of (Ξ

H̃
)Γ stabilizing

each Γ-orbits of D̃ in T̃max, or equivalently, stabilizing T̃max and stabilizing a Γ-orbit
descending to a K-special vertex.

(6) If D̃ admits a special vertex x in T̃max (for example if G is residually quasi-split),
then an element ω of the kernel writes σ ◦ ϕ = ϕ ◦ σ with σ ∈ Γ and ϕ ∈ Aut(D̃),
the latter fixing x, the Γ-orbits in T̃max and sending an arbitrary Γ-orbit to another.
Moreover, ω is the unique element of the kernel having a decomposition with σ.

(7) The cardinality of the kernel is bounded by the size of the Γ-orbit of x. In particular,
if x is fixed by Γ (for example if it is hyperspecial, cf. Definition 5.1), then the kernel
is trivial.

(8) The restriction of the map (Ξ
H̃,T̃max

)Γ → Ξext to ξ̃(H) has image Ξ and kernel

ξ̃(Hc) ∼= Hc/(H ∩ H̃c). In particular, Hc = H ∩ H̃c when G admits a L-special
vertex in T̃max fixed by Γ.

Proof.

(1) (a) By point (3) of Proposition 2.11, H̃c is a Γ-invariant subgroup of H̃. Con-
sequently, the map h 7→ σ(h) 7→ ξ̃(σ(h)) from H̃ to Ξ

H̃
factors through Ξ

H̃
.

We deduce then that the action of Γ on H̃ factors into an action of Γ on
Ξ
H̃

such that the exact sequence of the statement is realized. The relation
σ(h) ·F = σ(h ·σ−1(F)) for every facet F , every σ ∈ Γ and h ∈ H̃, and the fact
that every element of Γ induces a Dynkin automorphism on the types, implies
the relation ξ̃(σ(h)) = σ ◦ ξ̃(h) ◦ σ−1.

(b) This point is done similarly to the previous point.
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(2) (a) The exact sequence in cohomology then gives:

1 (H̃c)Γ H (Ξ
H̃
)Γ H1(Γ, H̃c) H1(Γ, H̃) H1(Γ,Ξ

H̃
).

It then implies the exact sequence:

1 ξ̃(H) (Ξ
H̃
)Γ H1(Γ, H̃c) H1(Γ, H̃) H1(Γ,Ξ

H̃
).

And similarly, the latter implies the exact sequence of the statement.
(b) This point is done in the same manner.

(3) The inclusion ξ̃(H) ⊂ (Ξ
H̃,T̃max

)Γ comes from the fact that H sends a Γ-chamber to
a Γ-chamber.

(4) Take a K-apartment A and a K-chamber C in A. There exists a Kunr-apartment
Ã that contains A. Consider the unique Γ-chamber C̃ such that C = (C̃)Γ. Since
C ⊂ A ⊂ Ã, we have that C̃ is in Ã. Denote by C a Kunr-chamber of Ã such that C̃
is incident to it.

Take then h ∈ H̃ such that ξ̃(h) ∈ (Ξ
H̃,T̃max

)Γ. This means that ξ̃(h) = ξ̃(σ(h))

and that h · C̃ is of the same type as C̃. Up to moving h by an element of H̃b, we
can assume that h · (C , Ã) = (C , Ã). This implies that h · C̃ = C̃.

Let us now study h−1σ(h). Observe that:

C̃ = σ(C̃) = σ(h · C̃) = σ(h) · σ(C̃) = σ(h) · C̃

This implies that h−1σ(h) · C̃ = C̃. But, by hypothesis, h−1σ(h) ∈ H̃c. This
implies that C̃ is fixed by h−1σ(h). Consequently:

h · C = {h · x ∈ h · C̃ | ∀σ ∈ Γ, σ(x) = x}

= {h · x ∈ h · C̃ | ∀σ ∈ Γ, h−1σ(h) · σ(x) = x}

= {h · x ∈ h · C̃ | ∀σ ∈ Γ, σ(h · x) = h · x}

= (h · C̃)Γ = C.

Therefore, h stabilizes the K-chamber C. This implies in particular that h sta-
bilizes the affine subspace of Ã generated by C, that is the K-apartment A. The
element h obviously acts on A by affine automorphisms.

Now, Let us prove that the action is vectorially by Weyl automorphisms. This
will gives us the result. Indeed, recall that C is in correspondence with D , so that an
action on C coming from an action on A by affine automorphism that are vectorially
by Weyl automorphisms exactly determine an action on D by automorphisms from
Ξext.

Consider Ṽ and V the vector spaces associated respectively to Ã and A. According
to [Rou, 2.3.1.(2) Theorem.], the map between the vectorial buildings over K and
over Kunr is Weyl compatible. In particular, in our case, that means that the natural
embedding V ⊂ Ṽ is such that any element of the Kunr-Weyl group restricted to V is
exactly an element of the K-Weyl group (cf. [Rou, 2.4.3.1. Definitions]). Therefore,
since h acts on Ṽ by Weyl automorphisms according to [Rou, 2.1.7.(b) Theorem.],
his induced action on V is still by Weyl automorphisms.
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(5) The description of Ker
(
Ξ
H̃,T̃max

)Γ → Ξext
)

comes from the fact that the Γ-orbits of

D̃ in T̃max are in correspondence with the vertices of D . The equivalent condition
comes from the fact that the only element of Ξext fixing a special point is the identity
(cf. [KP23, Remark 1.3.76]).

(6) Since ω is in the kernel, it sends x to an element of its Γ-orbit. In other words, there
exists σ ∈ Γ such that ω · x = σ · x. So ϕ := σ−1 ◦ ω fixes x. Since σ and ω fix the
Γ-orbits in T̃max, the same holds for ϕ. Moreover, since σ−1 ω σ = ω, we also have
σ ◦ϕ = ϕ ◦σ. Finally, since σ and ω send a Γ-orbit to another, the same holds for ϕ.

According to [KP23, Remark 1.3.76], the morphism ω′ 7→ ω′ · x from Ξ
H̃

to the
special points of D̃ is injective. We deduce also that ω is the unique element of the
kernel having σ in its decomposition since ω · x = σ · x.

(7) We reuse [KP23, Remark 1.3.76]. Since an element of the kernel sends x to an
element of its Γ-orbit, we deduce the bound. If G admits a hyperspecial point, it is
Γ-invariant and its orbit is reduced to itself. Hence the result.

(8) Observe that an element ξ̃(h) ∈ (Ξ
H̃
)Γ (for h ∈ H) is in the kernel Ker

(
Ξ
H̃,T̃max

)Γ → Ξext
)

if and only if it stabilizes each Γ-orbits of D̃ in T̃max according to point (5). This is
equivalent to requiring that ξ̃(h) stabilizes the K-types according to Proposition 3.5,
or even that h ∈ Hc. The kernel is thus given by ξ̃(Hc). Note that Ker(ξ̃) = H̃c.
Moreover, point (1) of Corollary 3.6 gives that H ∩ H̃c ⊂ Hc. This implies that
Hc/(H ∩ H̃c) ∼= ξ̃(Hc).

According to Proposition 3.5, the group H ∩ H̃c acts transitively on the
Γ-chambers, since it acts transitively on the K-chambers. Consequently, every el-
ement of ξ̃(H) comes from an h ∈ H that stabilizes a certain Γ-chamber C. As
seen in point (4), the action of h on CΓ determines the image of ξ̃(h) in Ξext. But
this action is none other than the natural action of h on the K-chamber CΓ in the
building B(G) ∼= B(GL)

Γ. By definition, this action defines an element of ΞH , and
of course, every element of ΞH is obtained this way.

According to point (7), if G admits a L-special vertex in T̃max fixed by Γ,
then the kernel Ker

(
Ξ
H̃,T̃max

)Γ → Ξext
)

is trivial. Consequently, ξ̃(Hc), and thus

Hc/(H ∩ H̃c) is trivial. This implies the equality Hc = H ∩ H̃c.

□

Remark 4.2. There exist situations where T̃max contains no special vertex of D̃ .
Indeed, set q0 = X2

1 + X2
2 + X2

3 + X2
4 and consider the quadratic form

q = q0(X1, X2, X3, X4) + t q0(X
′
1, X

′
2, X

′
3, X

′
4) in R((t)). It is anisotropic of discriminant

1, so Spin(q) is an anisotropic simply connected absolutely almost simple group of type 1D4.

Its affine Tits index is given by , hence the desired counterexample since the central
point is not special in D4 according to [KP23, Table 1.3.5].

Indeed, observe first that there is a natural inclusion of SO(q0) × SO(q0) into SO(q)
over R((t)). This inclusion lifts to a morphism at the level of simply connected coverings
Spin(q0) × Spin(q0) → Spin(q) according to [Con14, Exercise 6.5.2.(iii)]. We then observe
that the kernel µ of the lift is included in Ker (Spin(q0)× Spin(q0)→ SO(q0)× SO(q0)):
consequently µ is a finite multiplicative central split subgroup.
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Denote P the unique parahoric group scheme of Spin(q) over R[[t]]. Since Spin(q) is
anisotropic over R((t)) and simply connected, we have P(R[[t]]) = Spin(q)(R((t))) according
to [BT84a, 5.2.10.(i) Proposition.]. Moreover, since q0 is defined and regular over R[[t]], the
group (Spin(q0)× Spin(q0))/µ is defined and reductive over R[[t]]. We denote it then Q.

Let us then show that there exists a morphism Q → P of
R[[t]]-group schemes extending the inclusions (Spin(q0) × Spin(q0))/µ → Spin(q) and
Q(R[[t]]) ⊂ P(R[[t]]) = Spin(q)(R((t))). It suffices for this to show that Q is étoffé (cf.
[BT84a, 1.7.1. Définition.]).

According to [BT84a, 1.7.2.], it suffices to show that Q satisfies (ET 1) and (ET 2).
[BT84a, 1.7.3.] already gives us that (ET 1) is satisfied. (ET 2) means that the image of
Q(R) to Q(κ) is schematically dense in Qκ. Since Q is smooth and R is henselian, this
reduces to showing that Q(κ) is schematically dense in Qκ according to Hensel’s lemma
([KP23, Lemma 8.1.3]). This is true according to [Mil17, Theorem 17.93].

Since Q is reductive over R[[t]] and of rank 4, it admits an R[[t]]-maximal torus T of
rank 4. The induced map T → P has a kernel of multiplicative type according to [SGA3,
Exp. IX, Théorème 6.8.]. But the latter is trivial on the generic fiber: it is therefore trivial
according to [SGA3, Exp. IX, Remarque 1.4.1.b)]. Consequently, T → P and in particular
the rank of PC is at least 4.

Also, since the group is anisotropic, its affine index contains only one distinguished orbit.
Finally, according to [Tit79, 3.5.2.], the Tits index of the reductive quotient of PR is obtained
by removing all the vertices associated to the facet of P from the affine Tits index of Spin(q)
(moreover, the unique distinguished orbit). Note also that the affine Tits index of Spin(q)
has 5 vertices. The previous observation on the rank shows that at most one vertex is
removed, and thus that the distinguished orbit is reduced to a point.

It remains to eliminate the following case: (modulo rotation). Suppose, by contra-
diction, that its index is of this form. This means that Spin(q) admits a hyperspecial point
(cf. Definition 5.1) and thus a reductive model G over R[[t]] (cf. Lemma 5.2). Consider
then a regular quadratic form q′ over R such that GR = Spin(q′) (G is simply connected).
Thanks to the inclusion R→ R[[t]], this defines a reductive group Spin(q′) over R[[t]].

The two groups G and Spin(q′) are then forms of Spin8 that coincide over R. Now,
according to [SGA3, Exp. XXIV, Proposition 8.1.(ii)], since Aut(Spin8) is smooth, we have
H1(R[[t]],Aut(Spin8))

∼→ H1(R,Aut(Spin8)). We deduce then that G and Spin(q′) are
isomorphic.

In particular, we have an isomorphism between Spin(q′) and Spin(q) over R((t)). Let
us then show that this implies that q′ and q are equivalent up to homothety by a scalar
of R((t)). From this, we then deduce an absurdity because q is not regular when reduced
modulo t, and thus not regular over R[[t]], contrary to q′.

According to [KMRT98, (44.8) Theorem.], there is an equivalence of categories between
triality algebras and simply connected groups of type D4 via T 7→ Spin(T ). In particu-
lar, in the context of groups of type 1D4, things simplify greatly. We consider the alge-
bras with involution (M8(R((t))), ∗) and (M8(R((t))), ∗′) with ∗ := X 7→ M−1

q
tXMq and

∗′ := X 7→ M−1
q′

tXMq′ , where Mq and Mq′ are respectively the matrices of the quadratic
forms q and q′. The associated "Spin" groups are simply Spin(q) and Spin(q′). The algebras
are thus isomorphic. To conclude, we then use [KMRT98, (12.34) Proposition.] which gives
that (M8(R((t))), ∗) and (M8(R((t))), ∗′) are isomorphic algebras with involution if and only
if q and q′ are equivalent up to homothety.
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Let us now show the following theorem, which is at the core of this part:

Theorem 4.3. Let Ω̃ be a disjoint union of parts
⊔

i∈I Ω̃i of B(GL) where each Ω̃i is
Γ-invariant. Take H̃ ⊂ G(L), a Γ-invariant global subgroup and set H := H̃Γ. Choose ∗,
an arbitrary point of the vector part VG of Be(G).

(1) We have the natural isomorphisms (where the considered quotients are quotients of
actions):
(a) (Orb((Ω̃i)i∈I)H̃)Γ/H

∼→ Ker
(
H1(Γ, H̃

(Ω̃i)i∈I
)→ H1(Γ, H̃)

)
.

(b) (Orb((Ω̃i)i∈I , ∗))H̃)Γ/H
∼→ Ker

(
H1(Γ, H̃1

(Ω̃i)i∈I
)→ H1(Γ, H̃)

)
.

The action on the families is term-by-term.
(2) Let us now consider a Γ-multifacet F̃ of type T̃ . We have the following isomorphisms

induced by passing to the types:
(a) (Orb((F̃))

H̃
)Γ/H

∼→
(
{ω · T̃ ≺ T̃max | ω ∈ Ξ

H̃
}Γ

)
/ΞH .

(b) (Orb((F̃), ∗)
H̃
)Γ/H

∼→
(
{(ω · T̃ , ω · ∗) | ω · T̃ ≺ T̃max , ω ∈ Ξe

H̃
}Γ

)
/Ξe

H .

Proof.
(1) (a) The result comes from [Ser94, I.§5.4., Corollaire 1.]. Indeed, it suffices

to apply it to the Γ-morphism H̃
(Ω̃i)i∈I

→ H̃, and observe that

H̃/H̃
(Ω̃i)i∈I

∼= Orb((Ω̃i)i∈I)H̃ as a Γ-set with an action of H̃ (term-by-term).
(b) The second point is proved in the same manner. Indeed, it suffices to observe

that H̃1
(Ω̃i)i∈I

= H̃
((Ω̃i)i∈I ,∗).

(2) (a) Note first that the map (Orb((F̃))
H̃
)Γ → {ω · T̃ ≺ T̃max | ω ∈ ΞH̃}Γ is well-

defined since every Γ-multifacet is incident to a Γ-chamber, and this incidence
passes to the types. Moreover, by Proposition 3.5, the action of H on strongly
Γ-invariant types factors through ΞH . This proves the good definition of the
map in the statement.
Let us show injectivity. Take g, g′ ∈ H̃ such that g · F̃ and g′ · F̃ are strongly
Γ-invariant. Suppose also that there exists h ∈ H such that h · (g · F̃) and g′ · F̃
have the same L-type. By Proposition 3.5, this means that there exists hb ∈ Hb

such that (hbhg) · F̃ and g′ · F̃ are equal. Since hb h ∈ H, this means therefore
that g · F̃ and g′ · F̃ are in the same orbit under H. Hence injectivity.
Let us now show surjectivity. Take C̃, a Γ-chamber such that F̃ is incident to it.
Let h ∈ H̃ such that ξ(h) · T̃ is a strongly Γ-invariant type incident to T̃max. It
lifts to the L-multifacet h · F̃ , which we can assume incident to C̃, up to moving
h by an element of H̃b.
Let σ ∈ Γ. We then have σ(h · F̃) incident to σ(C̃) = C̃. But, since ξ(h) · T̃ is
Γ-invariant, σ(h · F̃) is also of this type. We therefore have σ(h · F̃) and h · F̃
of the same type in C̃, so they are equal as multifacets. Consequently, h · F̃ is
strongly Γ-invariant and surjectivity is proved as desired.

(b) As before, the map (defined by taking the type on the first factor) is well-defined
for the same reasons. Let us also add that the action of H on the set on the
left factors through Ξe

H because Hb ⊂ Hc acts trivially on strongly Γ-invariant
types (as shown previously), and Hb ⊂ H1 acts trivially on ∗ ∈ VG. The proof
of injectivity and surjectivity is done, mutatis mutandis, as in the previous case.

□
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Remark 4.4. By combining point (1) and point (2) in the context of a multifacet, we deduce
that the kernels of point (1) depend only on the types, more precisely on the relative affine
Dynkin diagram over L equipped with its Galois action and the set of vertices T̃max (what
one could call a L/K-affine Tits index) and the action of H̃ on it.

To perform calculations in the case where L = Kunr, one can notably use the classification
of affine Tits indices done in [Tit79, 4. Classification.] for local fields, or even the recent
classification of residually quasi-split groups when κ is perfect in [Rou, 6.5.13].

One can also determine the list of affine Tits indices in the hyperspecial case (cf. Definition
5.1), and thus perform a calculation, using the list of (classical) Tits indices in [Tit66] on
which one adjoins a hyperspecial point using the list of affine Dynkin diagrams (cf. [KP23,
Table 1.3.4 / 1.3.5]).

Remark 4.5. The two sets of point (2) (a) of Theorem 4.3 are therefore finite since there are
finitely many distinct types.

Remark 4.6. If G is semisimple simply connected, quasi-split over Kunr, it has already been
proved in [BT84a, 5.2.10.(ii)] that (Orb(F̃)G(Kunr))

Γunr
/G(K) = 1 for any Γunr-facet F . One

can also deduce it from [BT84a, 5.2.10.(i)] (which says that G(Kunr) is conformal) and point
(2) (a) of Theorem 4.3.

We deduce from Theorem 4.3 the following particular cases:

Corollary 4.7. Let F̃ be a Γ-multifacet of B(GL). Take H̃ ⊂ G(L) global, Γ-invariant,
and acting conformally on F̃ . We have:

Ker
(
H1(Γ, H̃

(F̃)
)→ H1(Γ, H̃)

)
= 1.

Proof. Note that T̃ is the type of F̃ . The hypothesis means that H̃ acts trivially on T̃ .
Consequently, (Orb(T̃ )

H̃
)Γ is trivial. We then conclude thanks to Theorem 4.3. □

Corollary 4.8. Take H̃ ⊂ G(L), a Γ-invariant global subgroup. Let C̃ be a Γ-chamber of
B(GL). We have:

Ker
(
H1(Γ, H̃C̃)→ H1(Γ, H̃)

)
= 1.

Proof. Note that T̃max is the type of C̃. By Theorem 4.3, the kernel in the statement is equal
to the subset of (Orb(T̃max)H̃)Γ consisting of types incident to T̃max. This set is therefore
obviously reduced to {T̃max}. □

Let us now dwell on some results expressing to what extent the extension L/K can be
changed for cohomology calculations.

Lemma 4.9. Assume that G has the same relative rank over L as over K. Take S a K-split
maximal torus. Note Z := ZG(S) and N := NG(S). Also take a Γ-invariant global subgroup
H̃ of G(L) containing Z(L)1 (or equivalently, G(L)b) and note H := H̃Γ. We have the
following assertions:

(1) The natural map (H ∩N(K))/Z(K)1 → (H̃ ∩N(L))/Z(L)1 is an isomorphism.
(2) The building Be(G) is canonically identified with a subset of Be(GL) which sends a

K-apartment to a Γ-invariant apartment over L.
(3) Consider A the extended apartment associated to S in Be(G) ⊂ Be(GL).

Point (1) also means that HA and H̃A have the same image in Autaff(A).
(4) We have the natural isomorphisms ΞH

∼= Ξ
H̃

and Ξe
H
∼= Ξe

H̃
.
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Proof. Note that H̃ contains Z(L)1 if and only if it contains G(L)b since the latter equals
G(L)+Z(L)1 by Lemma 2.8.

(1) We have the following commutative diagram with exact rows:

1 (H ∩N(K))/(H ∩ Z(K)) (H ∩N(K))/Z(K)1 (H ∩ Z(K))/Z(K)1 1

1 (H̃ ∩N(L))/(H ∩ Z(K)) (H̃ ∩N(L))/Z(L)1 (H̃ ∩ Z(L))/Z(L)1 1.

Note first that N(K)/Z(K) → N(L)/Z(L) is an isomorphism since N/Z is a fi-
nite constant group (cf. [Mil17, 25.16]). Since HZ(K) = G(K) and H̃Z(L) = G(K)
(since G(K)+Z(K) = G(K) and G(L)+Z(L) = G(L) by [BT73, 6.11.(i) Proposi-
tion.]), H ∩N(K) (resp. H̃ ∩N(L)) surjects onto N(K)/Z(K) (resp. N(L)/Z(L)).
This gives that the left vertical arrow is an isomorphism.

Take a basis B of characters of Z. It is therefore of cardinality r, where r is the
relative rank of G over K. Since it has the same relative rank over L, it is also
a basis of characters of ZL. The map z 7→ (v(χ(z)))χ∈B defines an isomorphism
from Z(K)/Z(K)1 to Zr. Since L/K is unramified, it extends to an isomorphism
Z(L)/Z(L)1 ∼= Zr. Hence a natural isomorphism Z(K)/Z(K)1 ∼= Z(L)/Z(L)1.
Given h ∈ H̃ ∩ Z(L), there exists therefore z ∈ Z(K) and z1 ∈ Z(L)1 such that
h = zz1. Since Z(L)1 ⊂ H̃, it turns out that z ∈ Z(K) ∩ H̃ = Z(K) ∩ H. This
proves therefore that the right vertical arrow is an isomorphism.

In conclusion, the central vertical arrow is an isomorphism since it is the case for
the left and right arrows. Hence the desired isomorphism.

(2) This is an immediate consequence of [Rou77, Proposition 2.3.1.] and the unramified
descent theorem.

(3) Recall that we have an action map N(L)→ Autaff(A) whose kernel is Z(L)1 (cf. end
of section 1). By the previous point, this map is compatible with the one associated
to N(K). It then suffices to observe that HA = H ∩N(K) and H̃A = H̃ ∩N(L) to
conclude thanks to point (1).

(4) Observe first that Hb = H̃b∩H and that Hc = H̃c∩H. Indeed, this is a consequence
of Proposition 3.5 since Γ acts trivially on Be(GL) and thus on types, and the
equality of relative ranks means that every L-chamber is a K-chamber. In other
words, being conformal over L is equivalent to being conformal over K.

Let us then show that H̃ = H H̃b to conclude. This will of course imply
H̃ = H H̃c. Since Z(L)1 ⊂ H̃, we in fact have H̃b = G(L)b. Point (1) says that
(H ∩N(K))Z(L)1 = (H̃ ∩N(L)) = H̃A. Multiplying by G(L)+ and using Lemma
2.8, we obtain (H ∩N(K))G(L)b = H̃AG(L)+ = H̃. Hence the result.

□

Proposition 4.10. Consider L′/K, an unramified Galois extension containing L with Ga-
lois group Γ′. Assume that G has the same relative rank over L′ as over L. Let F̃ ′, a
Γ′-multifacet. It induces a Γ-multifacet which we denote F̃ .

Also take a Γ-invariant global subgroup H̃ ′ of G(L′) containing G(L′)b, and note
H̃ := (H̃ ′)Gal(L′/L) and H := (H̃ ′)Γ

′ . We have the equalities:

(1) (a) Ker
(
H1(Γ, H̃c)→ H1(Γ, H̃)

)
= Ker

(
H1(Γ′, (H̃ ′)c)→ H1(Γ′, H̃ ′)

)
.

(b) Ker
(
H1(Γ, H̃b)→ H1(Γ, H̃)

)
= Ker

(
H1(Γ′, (H̃ ′)b)→ H1(Γ′, H̃ ′)

)
.
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(2) (a) Ker
(
H1(Γ, H̃F̃ )→ H1(Γ, H̃)

)
= Ker

(
H1(Γ′, (H̃ ′)F̃ ′)→ H1(Γ′, H̃ ′)

)
.

(b) Ker
(
H1(Γ, H̃1

F̃
)→ H1(Γ, H̃)

)
= Ker

(
H1(Γ′, (H̃ ′)1

F̃ ′)→ H1(Γ′, H̃ ′)
)
.

Proof. Observe that L′/L is Galois. By Lemma 4.9, since G has the same relative rank
over L′ as over L, the inclusion Be(GL) ⊂ Be(GL′) sends an apartment to an apartment
invariant under Gal(L′/L). This inclusion is therefore such that Γ and Γ′ act in the same
way on the L-types (which are thus in correspondence with the L′-types). Moreover, note
that a Γ′-chamber is naturally a Γ-chamber, so that the type T̃max is the same over L and
over L′. Note then that the facet F̃ is none other than the image of F̃ ′ under this inclusion.

(1) (a) By point (2) of Theorem 4.1 (and its functoriality), it suffices to show that the
map (Ξ

H̃
)Γ/ξ̃(H) → (Ξ

H̃′)
Γ′
/ξ̃′(H) is an isomorphism. This is an immediate

consequence of the isomorphism Ξ
H̃

∼→ Ξ
H̃′ by point (4) of Lemma 4.9, this

latter isomorphism also identifying ξ̃(H) with ξ̃′(H).
(b) This case is treated in the same manner.

(2) (a) We have the following commutative diagram according to point (2) (a) of The-
orem 4.3:

Ker
(
H1(Γ, H̃F̃ )→ H1(Γ, H̃)

)
Ker

(
H1(Γ′, H̃ ′

F̃ ′)→ H1(Γ′, H̃ ′)
)

(Orb(F̃)
H̃
)Γ/H (Orb(F̃ ′)

H̃′)
Γ′
/H

(
{ω · T̃ ≺ T̃max | ω ∈ Ξ

H̃
}Γ

)
/ΞH

(
{ω · T̃ ≺ T̃max | ω ∈ Ξ

H̃′}Γ
′
)
/ΞH

∼=

∼=

∼=

∼=

and the last horizontal arrow is an isomorphism by point (4) of Lemma 4.9 since
the latter gives Ξ

H̃

∼→ Ξ
H̃′ .

(b) This case is treated analogously.

□

Remark 4.11. One can in particular apply this proposition when L′ = Kunr and with a finite
Galois extension L/K such that G has the same rank over L as over Kunr. Consequently,
the kernels are trivial if G is split over K, or if G is semisimple and residually split.

The kernels are also trivial in the case where G is an absolutely almost simple quasi-split
group over K and split by a totally ramified extension, because in this case, G is residually
split. Indeed, a quasi-split group admits a minimal Galois splitting extension K ′ (which is
none other than the Galois extension with Galois group the kernel of the ∗-action). This
extension is totally ramified by hypothesis. Consequently, G is residually split because,
otherwise, there would exist an unramified extension between K and K ′.

Note that, according to [Gil15, 2.9. Calculs galoisiens.], given an R-group scheme G, any
Γ-cocycle in Z1(Γ,G(RL)) (where RL is the ring of integers of L) defines a G-torsor over R,
and thus an element of H1(R,G) (in fact, any G-torsor over R trivialized over RL comes
from a unique such cocycle according to [Gil15, Lemme 2.2.1.]). Similarly, a cocycle in
Z1(Γ, G(L)) defines an element of H1(K,G). Moreover, two torsors are isomorphic if and
only if the associated cocycles are cohomologous.
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We therefore define the twist of G by a cocycle z ∈ Z1(Γ,G(RL)), denoted zG, as the
twist through the torsor it induces (cf. [Gil15, 2.1.]). We similarly define the twist of G by
a cocycle of Z1(Γ, G(L)). Two cohomologous cocycles of course induce isomorphic twists.

Note finally that twisting G by a cocycle z ∈ Z1(Γ,G(RL)) is compatible with twisting
G(RL) by the same cocycle in the following sense: (zG)(RL) is equal to z(G(RL)) as a
Γ-module (it is of course the same for G).

Let us finish this section with some properties about the behavior under twisting by a
cocycle of the building, of the facets, and of the stabilizers:

Proposition 4.12. Take a cocycle z ∈ Z1(Γ, G(L)).

(1) The twists zG(L) and zB(GL) are such that on one hand, zG(L) is G(L) equipped
with the action given by σ ⋆ g := z(σ)σ(g)z(σ)−1, and on the other hand, such that
zB(GL) is B(GL) equipped with the action σ ⋆ x = z(σ)σ(x). Moreover, these two
actions are compatible, in other words: σ ⋆ (g · x) = (σ ⋆ g) · (σ ⋆ x). Furthermore,
(zB(GL))

Γ is identified with B(zG).
(2) Let z′ be a cocycle cohomologous to z via an element g0 ∈ G(L) (such that

z′ = σ 7→ g−1
0 z(σ)σ(g0)). Then we have the following isomorphisms:

z′G(L)
∼→ zG(L)

g 7→ g0gg
−1
0

and
z′B(GL)

∼→ zB(GL)

x 7→ g0 · x

where the first isomorphism is an isomorphism of Γ-groups, and where the second
isomorphism is an isomorphism of Γ ⋉ G(L)-sets. Moreover, zG and z′G are iso-
morphic.

Proof.

(1) This is an immediate consequence of [Ser94, 5.3. Torsion] and notably of [Ser94,
Proposition 34.] for the compatibility. Indeed, B(GL) can be seen as a Γ-set with a
compatible action of the Γ-group G(Kunr).

As for the fixed points, this comes from the tamely ramified descent theorem
([Rou77, Proposition 5.1.1.]), noting that zG is reductive over K since it is over L,
and from the fact that (zG)(L) = z(G(L)) as Γ-groups.

(2) The verification is immediate. As for the isomorphism between zG and z′G, this is
a consequence of the fact that z and z′ come from isomorphic torsors since they are
cohomologous.

□

Proposition 4.13. Take F̃ a Γ-multifacet of B(GL) and z ∈ Z1(Γ, G(L)
(F̃)

). Write

F̃ =
⊔

i∈I F̃i, its decomposition into Γ-facets and note F =
⊔

i∈I Fi the associated
K-multifacet. The cocycle z defines for every i ∈ I a class in Z1(Γ, G(L)F̃i

) and in
Z1(Γ, G(L)) which we also denote by z. Then:

(1) The twisted multifacet zF̃ is also compatible with zB(GL), in the following sense:
F̃ is strongly Γ-invariant for the action ⋆ introduced in point (1) of Proposition 4.12
and the induced Γ ⋉ G(L)

(F̃ )
-set is exactly zF̃ . The set of fixed points is denoted

zF . The latter is a multifacet of B(zG) and admits the decomposition into facets
zF =

⊔
i∈I

zFi.
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(2) Let z′ ∈ Z1(Γ, G(L)
(F̃)

) be a cocycle cohomologous to z in Z1(Γ, G(L)), thus via
an element g0 ∈ G(L) (such that z′ = σ 7→ g−1

0 z(σ)σ(g0)). Then the isomorphism
from point (2) of Proposition 4.12 sends z′F̃ to the facet g0F̃ which is Γ-invariant
in zB(GL). Consequently, zF is sent to (g0F̃)Γ.

In particular, if g0 ∈ G(L)
(F̃ )

(and thus z and z′ are cohomologous in Z1(Γ, G(L)
(F̃)

)),

then z′F̃ is sent to zF̃ (and zF to z′F).

Proof.

(1) As before, we use [Ser94, 5.3. Torsion]. Since F̃ is strongly Γ-invariant and G(L)
(F̃)

operates on F̃ in a manner compatible with Γ, we can consider the twist zF̃ . We
similarly obtain the zF̃i for all i ∈ I. Since, for every i ∈ I, we have F̃i ⊂ F̃ ⊂ B(GL)

as Γ⋉G(L)
(F̃ )

-sets, then similarly, zF̃i ⊂ zF̃ ⊂ zB(GL) as Γ⋉G(L)
(F̃ )

-sets. Hence

the compatibility and the strong Γ-invariance of zF̃ . Proposition 3.3 then tells us
that zF is a multifacet of B(zG) with decomposition

⊔
i∈I

zFi.
(2) The verification is immediate.

□

Proposition 4.14. Take H̃, a Γ-invariant global subgroup of G(L) and set H := H̃Γ.
Also take z ∈ Z1(Γ, H̃). We have:

(1) The subgroup zH := (zH̃)Γ is global in (zG)(K).

Suppose furthermore that z ∈ Z1(Γ, H̃
(F̃)

) (which of course defines a cocycle in Z1(Γ, G(L)
(F̃)

)

and in Z1(Γ, H̃) that we also denote by z). We have:

(2) The subgroup zH(F) := (zH̃
(F̃)

)Γ is the multistabilizer of zF in B(zG) relative to
zH. In other words, zH(F) = (zH)(zF).

(3) Assume that L = Kunr. If furthermore H(F) admits a Bruhat-Tits model H(F), then
(zH)(zF) also does and one is given by zH(F).

Proof. Observe that the twisted groups zH̃
(F̃)

, zH̃Fi for all i ∈ I, zH̃ and zG(L) are equipped

with compatible Γ-actions. Note also that zH̃ is global since its underlying group is H̃.

(1) Since zH̃ is global, zH is also global by point (2) of Proposition 2.11.
(2) Regarding the multistabilizer, we observe by Proposition 3.8 and the compatibility

of the Γ-groups:

(zH)(zF) =
zH ∩ zH̃

(F̃)
= (zH̃

(F̃)
)Γ = zH(F).

(3) Suppose now that H(F) admits a Bruhat-Tits model H(F). Observe then that the
group zH(F) has as Runr-points (with its Γ-action) zH̃

(F̃)
and thus as R-points

zH(F) = (zH)(zF). It is therefore indeed a Bruhat-Tits model of (zH)(zF).
□

5. Case of hyperspecial points

Let us now focus on the case of hyperspecial points. Recall the definition:

Definition 5.1. A point x ∈ B(G) is called a hyperspecial point of G if G is split over
Kunr and if x is a special vertex of B(GKunr) (via the identification B(G) ∼= B(GKunr)Γ

unr).



28 A. ZIDANI

The notion of a hyperspecial point thus depends on the Γunr-set B(GKunr), but also on
G. Note also that a hyperspecial point is a vertex of B(G) by Proposition 3.3. Let us now
recall some results linking hyperspecial points and reductive models:

Lemma 5.2. Let G be a reductive group over K and x a hyperspecial point of G
(so G is split over Kunr). The following statements hold:

(1) The affine Bruhat-Tits model of G(K)1x is reductive (with connected fibers) over R.
(2) Conversely, every reductive model of G is obtained in this way.
(3) In particular, if G is an R-reductive group, then D(G) (resp. G) is K-anisotropic if

and only if G(R) = G(K)1 (resp. G(R) = G(K)).

Proof.
(1) By definition, the point x is special in B(GKunr). According to [BT84a, 4.6.22.]

and [BT84a, 4.6.28.(ii)], the affine model associated to G(Kunr)1x is reductive (with
connected fibers). Since the affine model of G(K)1x is simply the descent to R (which
exists using the process of [BT84a, 5.1.30.] because x is Γunr-invariant), we obtain
the result.

(2) Conversely, [BT84a, 4.6.31.] tells us that a reductive model G of G is isomorphic
over Runr to the scheme associated to G(Kunr)1x for some special point x ∈ B(GKunr).
Since G is defined over R, G(Kunr)1x is Γunr-invariant and thus G(Kunr)1x = G(Kunr)1σ(x)
for all σ ∈ Γunr. By point (3) of Proposition 2.7, x is therefore also Γunr-invariant.
It thus comes from a point on B(G) which is therefore hyperspecial and then
G(R) = G(K)1x.

(3) Finally, if D(G) is anisotropic, G(R) is the stabilizer under the action of G(K)1 of
the unique (hyperspecial) point of B(G). It is therefore exactly G(K)1. If moreover
G is anisotropic, G(K)1 = G(K) and we get the result.

Conversely, if G(R) = G(K), then G(K) is bounded, and thus cannot contain the
image of a K-cocharacter (which is unbounded). So G is K-anisotropic. If this time
G(R) = G(K)1, then D(G)(K) ⊂ G(K)1 is bounded and we reason as before.

□

We thus deduce:

Proposition 5.3. Let G be a reductive group over R. The following properties are equiva-
lent:

(1) D(G) (resp. G) is anisotropic over κ.
(2) D(G) (resp. G) is anisotropic over K.
(3) G(R) = G(K)1 (resp. G(R) = G(K)).

Proof. The equivalence between (2) and (3) is a consequence of Lemma 5.2. Let us now
show that (1) and (2) are equivalent.

Recall that G is isogenous to D(G) × R(G), so that there is a correspondence between
non-central cocharacters of G and cocharacters of D(G), and between central cocharacters
and cocharacters of R(G).

Recall from the decomposition of [SGA3, Exp. XXVI, Corollaire 3.5.] that the R-scheme
of proper parabolic subgroups of G, denoted Par(G)+, is smooth and projective. By the
valuative criterion of properness, we have Par(G)+(R) = Par(G)+(K). Now, there is a
natural map Par(G)+(R)→ Par(G)+(κ). Consequently, if Par(G)+(K) is non-empty, then
Par(G)+(κ) is also non-empty. So if G has a non-central cocharacter over K, then it has
one over κ.
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Moreover, smoothness also allows the use of Hensel’s lemma, so that the map
Par(G)+(R)→ Par(G)+(κ) is surjective. We therefore finally have:

Par(G)+(K) = Par(G)+(R) ↠ Par(G)+(κ)

Consequently, if G admits no proper parabolic subgroup over K, then it admits none over
κ either. In other words, if G has no non-central cocharacter over K, then it admits none
over κ either.

Now, let us deal with central characters. We can reduce to the case of a torus T . This is
an immediate consequence of the fact that:

HomKunr(Gm,Kunr , TKunr)
∼← HomRunr(Gm,Runr , TRunr)

∼→ Homκs(Gm,κs , Tκs)

as Γunr-groups, since T is split over Runr. □

That being said, the case of tori can be understood quite easily thanks to the following
lemma. This lemma seems to be known to some specialists, but we haven’t found any
reference in the literature about it.

Lemma 5.4. Let T be a K-torus split over Kunr. It thus admits a toric model over R which
we denote by T . Let us consider the Γunr-group T̂ ◦ := HomRunr(Gm,Runr , TRunr).

(1) There is a canonical isomorphism of Γunr-modules:

T (Kunr)1 × T̂ ◦ = T (Runr)× T̂ ◦ ∼= T (Kunr).

(2) For all i ≥ 1, we have:

Ker
(
H i(Γunr, T (Kunr)1)→ H i(Γunr, T (Kunr))

)
= 0.

Proof.
(1) We have the natural exact sequence of Γunr-groups:

0 (Runr)× (Kunr)× Z 0.

It is split by 1 7→ π (where π is a uniformizer of K, and thus also of Kunr). This
section is Γunr-invariant. Tensoring the previous exact sequence by T̂ ◦, we obtain
the exact sequence of Γunr-groups:

0 T (Runr) T (Kunr) T̂ ◦ 0.

because we have canonical isomorphisms T̂ ◦ ⊗Z (Runr)× ∼= T (Runr)

and T̂ ◦ ⊗Z (Kunr)× ∼= T (Kunr) given by θ ⊗ x 7→ θ(x). It is also split by
θ 7→ θ⊗π ∼= θ 7→ θ(π), a section which is also Γunr-invariant. Hence the isomorphism
of Γunr-modules.

Note also that, by definition of the exact sequence, we have T (Runr) = T (Kunr)1.
(2) This point then follows from the fact that this isomorphism induces the canonical

isomorphism:

H i(Γunr, T (Runr))×H i(Γunr, T̂ ◦) ∼= H i(Γunr, T (Kunr)).

and hence the desired injectivity.
□
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Note that Bruhat and Tits have already treated the case of hyperspecial points when G
is semisimple in [BT84a, 5.2.14. Proposition.]. We can in fact adjust their proof to include
the reductive case:

Proposition 5.5. Let x be a hyperspecial point of G. We have:

Ker
(
H1(Γunr, G(Kunr)1x)→ H1(Γunr, G(Kunr))

)
= 1.

Proof. Recall that, since x is hyperspecial, it is a vertex both in B(G) and in B(GKunr).
Take x = (x, λ), a point in Be(G). Thanks to Theorem 4.3, the question reduces to showing
that (Orb(x)G(Kunr))

Γunr
/G(K) = 1.

Take then a point y = (y, µ) in Be(G) such that there exists g ∈ G(Kunr) with g · x = y.
We then observe that y is an hyperspecial vertex. Since G(K)+ acts transitively on the
K-chambers and is very conformal, there exists g′ ∈ G(K)+ such that x′ := g′ · x is still
hyperspecial and such that x′ and y are in the same closure of a K-chamber (and thus
the same closure of a Kunr-chamber, which we denote C). Moreover, g′ · λ = λ since
G(K)+ ⊂ G(K)1. By replacing x := (x, λ) with (x′, λ), we can assume this. We can in
fact assume that x, y and even C lie in a Kunr-special apartment (so that the associated
Kunr-split maximal torus T is defined over K and contains a K-split maximal torus). Since
G is split over Kunr, the torus T is a Kunr-maximal torus, and is thus its own centralizer.

Let I := G(Kunr)+C . Let N(Kunr) be the normalizer associated to the special apartment.
The Bruhat decomposition (Proposition 2.9) then gives G(Kunr) = I N(Kunr) I. We can
thus write g = i n i′ with obvious notations. Consequently, i n i′ · x = y. So n · x = y since I
fixes x and y (because it pointwise stabilizes the chamber where they lie and I ⊂ G(Kunr)1).

Moreover, since x is special over Kunr, G(Kunr)bx ∩N(Kunr) surjects onto the (vectorial)
Weyl group of GKunr , i.e., N(Kunr)/T (Kunr) (cf. [BT84a, 4.6.22.]). There thus exists
n′ ∈ G(Kunr)bx ∩ N(Kunr) such that n′ and n have the same image in the Weyl group. In
other words, t := nn′−1 ∈ T (Kunr). But n′−1 · x = x. So t · x = n · x.

Consider σ 7→ t−1 σ(t). This is a coboundary in B1(Γunr, T (Kunr)) and also a cocycle in
Z1(Γunr, T (Kunr)1). Indeed:

t · x = y = σ(y) = σ(t · x) = σ(t) · x

since x and y are Γunr-invariant. Consequently, t−1 σ(t) fixes x. But T (Kunr) acts by
translation on the (extended) apartment. So if it fixes x, it fixes the (extended) apartment.
This means that we actually have t−1 σ(t) ∈ T (Kunr)1. The associated cohomology class
thus lives in

Ker
(
H1(Γunr, T (Kunr)1)→ H1(Γunr, T (Kunr)

)
.

This kernel is in fact trivial by Lemma 5.4. Consequently, there exists t′ ∈ T (Kunr)1 such
that σ 7→ t−1 σ(t) = σ 7→ t′−1 σ(t′), or equivalently such that t t′−1 is Γunr-invariant, and
thus lives in G(K). Therefore, t t′−1 · x = t · x = y. So x and y are in the same orbit under
G(K). □

Remark 5.6. We have the factorization H1(Γunr, G(Kunr)1x)→ H1(Γunr, G(Kunr)1)→ H1(Γunr, G(Kunr)).
The previous theorem thus implies:

Ker
(
H1(Γunr, G(Kunr)1x)→ H1(Γunr, G(Kunr)1)

)
= 1.

An alternative proof of this result can also be obtained by reworking the previous proof with
the reduced building.
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Remark 5.7. However, it is not always true that Ker(H1(Γunr, G(Kunr)1)→ H1(Γunr, G(Kunr)))
is trivial, even if G admits a hyperspecial point. Consider the following example:

Let D be a division algebra of degree d over a field k. Consider here K = k((t)). Thanks
to Proposition 5.3 applied to GL1(D ⊗k k[[t]]), the algebra D defines a division algebra
D ⊗k k((t)) over k((t)). It is moreover split over Kunr. Take here G = GL1(D)K (which
admits, by the way, the reductive model G = GL1(D)k[[t]]). The group GL1(D)Kunr admits
a unique character given by the reduced norm. Consequently, GL1(D)(Kunr)1 is given by
the kernel of the valuation of the reduced norm on Kunr (which is surjective since D is split
over Kunr).

Observe also that, since D is of finite dimension over k, we have the canonical isomor-
phisms D ⊗k k((t)) ∼= D((t)) and D ⊗k k[[t]] ∼= D[[t]].

Now, we have the decomposition:

(D ⊗k k((t)))
× = k((t))×(D ⊗k k[[t]])

×.

Indeed, an element of D((t))× can be written as tix with x having non-zero reduction
modulo t. We denote by x0 ∈ D× this reduction. This gives the desired decomposition.
Indeed, ti ∈ k((t))× and x is of the form x0(1 − ty), with y ∈ D[[t]], whose inverse is
(
∑+∞

k=0(ty)
k)x−1

0 ∈ D[[t]].
Consequently, the image of (D ⊗k k((t)))× under the valuation of the reduced norm is

given by k((t))× since (D ⊗k k[[t]])× is bounded. Since the norm on k((t)) is compatible
with the reduced norm of Dk((t)), the image is therefore dZ (cf. [TW15, Theorem 1.4.]).
The exact sequence in cohomology then implies:

Ker(H1(Γunr, G(Kunr)1)→ H1(Γunr, G(Kunr))) = Z/dZ ̸= 1.

Remark 5.8. It turns out that Ker(H1(Γunr, G(Kunr)x)→ H1(Γunr, G(Kunr))) is not always
trivial. A counterexample is given in [BT84a, 5.2.15. Remarque.]. Let us precise that.

Take the extension L/K = C((t))/R((t)), and h the Hermitian form given by z1z1− z2z2.
Take G = U(h) (also denoted U(1, 1)). This is a quasi-split form of GL2 which satisfies on
one hand D(G) = SU(h) ∼= SL2, and on the other hand Z(G) ∼= R1

L/K(Gm), which is not
split. In fact, G is residually split, so that B(G) = B(GL) = B(SL2).

By Theorem 4.3, it suffices to find two hyperspecial points in the same orbit under G(L),
and whose types are not conjugate by G(K) for the kernel to be non-trivial.

As said above, the building of G is exactly that of SL2. Its relative affine Dynkin diagram
is given by whose two vertices are special (cf. [BT84a, 4.2.23.] and [BT72, (1.4.6)]).

These two points are however not conjugate in G(K). In fact, the latter acts by preserving
the types. Indeed, on one hand we have G(K) = G(K)1 since the radical of G is anisotropic.
On the other hand, since GL = GL2, the Kottwitz morphism of G (cf. [KP23, Chapter 11])
is obtained by restricting that of GL2. For the same reasons as in Remark 1.4, we conclude
that G(K)0 = G(K)1 and thus that G(K) acts trivially on the types.

For GL2, we have the same Dynkin diagram. The two vertices of the diagram are fixed
by Galois, because otherwise, unramified descent would tell us that the diagram of G would
consist of a single point. The two vertices of the diagram of G are therefore hyperspecial.

It now suffices to find two vertices of different types conjugated by GL2(L). This has
already been done in Remark 1.4. This concludes.
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6. Application: the case of quasi-split adjoint groups

Let us conclude this article by using everything we have shown in the previous parts to
compute exactly the kernels

Ker
(
H1(Γunr, G(Kunr)0F̃ )→ H1(Γunr, G(Kunr))

)
and

Ker
(
H1(Γunr, G(Kunr)F̃ )→ H1(Γunr, G(Kunr))

)
for K-groups G that are semisimple, adjoint, and quasi-split over K, and where F̃ is a
Γunr-facet of the building B(GKunr).

Let us first address the case of parahoric subgroups. According to [BT84a, 5.2.12. Propo-
sition.], the parahoric subgroups over K are given by the stabilizers of facets under the
action of the residually neutral component G(K)0. Now, since G is quasi-split and adjoint,
we have the following lemma:

Lemma 6.1. We have the equalities: G(K)0 = G(K)b = G(K)c.

Proof. Note that since G is semisimple, the extended building equals the reduced building
and thus G(K)b = G(K)c.

Let T be a K-maximal torus containing a maximal split torus. According to [BT84a,
4.4.16. Proposition.], it is an induced torus. Its canonical scheme (i.e., its finite type Néron
model) is therefore smooth and connected. Its R-points are given by T (K)1.

Furthermore, according to [BT84a, 5.2.11.], G(K)0 is generated by G(K)+ and the
R-points of the identity component of the canonical scheme of T , which here is T (K)1

by the previous discussion.
However, according to Lemma 2.8, G(K)b = G(K)+ T (K)1. Hence G(K)0 = G(K)b. □

The question then reduces to asking whether the composite map

H1(Γunr, G(Kunr)cF̃ )→ H1(Γunr, G(Kunr)c)→ H1(Γunr, G(Kunr))

has a trivial kernel for F̃ , a Γunr-invariant facet of B(GKunr).

The first map has trivial kernel according to Corollary 4.7. Let us now focus on the second
map.

For this, we need to prove that every quasi-split reductive group is residually quasi-split.
This is already known when the residue field κ is perfect (cf. [KP23, Proposition 9.10.5]).
It turns out that the result holds in general, but our proof requires the use of the theory of
pseudo-reductive groups (i.e. groups with trivial unipotent radical over the base field).

Recall that a pseudo-parabolic subgroup of a pseudo-reductive group is called a pseudo
Borel subgroup if it is a minimal pseudo-parabolic over the separable closure. This is actually
equivalent to requiring it to be a solvable pseudo-parabolic. A pseudo-reductive group
possessing a pseudo Borel subgroup is said to be quasi-split. In this case, all its minimal
pseudo-parabolic subgroups are pseudo Borel subgroups since they are conjugate. All this
is explained at the beginning of [CP16, Section C.2]).

These definitions extend naturally to the case of smooth connected affine groups since
there is a correspondence between their pseudo-parabolic subgroups and those of its maximal
pseudo-reductive quotient (cf. [CGP15, Proposition 2.2.10]).
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Furthermore, let us introduce (in full generality) the following definition:

Definition 6.2. Assume that the affine Bruhat-Tits model of G(K)1F exists. Denote it
by G1F . We then define the parahoric group scheme (resp. the parahoric subgroup)
associated to a facet F of B(G) as being G0F := (G1F )◦ (resp. G(K)0F := (G1F )◦(R)).

Remark 6.3. Note that the affine group schemes G1F are constructed by Bruhat and Tits in
the case where G is quasi-split over Kunr in [BT84a, 5.1.30.].

That being said, this definition coincides with the definition of [BT84a] in the quasi-split
over Kunr case. Indeed, on one hand, in the quasi-split case, [BT84a, 4.6.21. Proposition.
(ii)] combined with [BT84a, 4.6.26.] and [BT84a, 4.6.28. Proposition.] implies that (G1F )◦ is
indeed the parahoric group scheme associated to the parahoric subgroup of [BT84a, 5.2.6.
Définition.]. In general, as indicated in [BT84a, 5.1.30.], the schemes descend over R and
its R-points are the parahoric subgroups according to the last paragraph of [BT84a, 5.2.8.
Proposition.].

We can thus propose a generalization of [KP23, Proposition 9.10.1], which gives conditions
equivalent to being residually quasi-split:

Proposition 6.4. Let G be a reductive group over K, quasi-split over Kunr. The following
statements are equivalent:

(1) There exists a K-chamber C such that the κ-group (G0C)κ is solvable.
(2) There exists a Kunr-chamber that is Γunr-invariant in B(GKunr).
(3) Every Γunr-chamber in B(GKunr) is a Γunr-invariant Kunr-chamber.
(4) For every K-chamber C, the κ-group (G0C)κ is solvable.
(5) For every K-facet, the κ-group (G0F )κ is quasi-split.

Proof.
(1) =⇒ (2) The K-chamber C comes from a Γunr-chamber C̃. It comes from a Γunr-chamber

C̃ which is therefore a Kunr-chamber. This induces a compatibility (G0C)Runr = G0
C̃
,

hence (G0C)κs = (G0
C̃
)κs and the latter is therefore solvable. It thus possesses no non-

trivial parabolic subgroup. According to the parabolic-parahoric correspondence
over Kunr ([BT84a, 5.1.32.(i) Proposition.]), we deduce that C̃ is a Kunr-chamber.

(2) =⇒ (3) According to Proposition 3.3, the Γunr-chambers are G(K)-conjugate since the
K-chambers are. Consequently, if one Γunr-chamber is a Kunr-chamber, then all
Γunr-chambers are by conjugation.

(3) =⇒ (4) Take a K-chamber C. It comes from a Γunr-chamber C̃ which is therefore a
Kunr-chamber. As before, we have (G0C)κs = (G0

C̃
)κs . This latter group has no non-

trivial parabolic subgroup and is therefore solvable according to [CGP15, Proposition
3.5.1.(4)], since its pseudo-reductive quotient is pseudo-split.

(4) =⇒ (1) This is trivial.
(4) =⇒ (5) Let F be a K-facet and C a K-chamber containing F . According to the parabolic-

parahoric correspondence, the image of (G0C)κ → (G0F )κ is a pseudo-parabolic sub-
group of (G0F )κ. By hypothesis, it is solvable. Therefore (G0F )κ is quasi-split.

(5) =⇒ (4) Conversely, take a K-chamber C. By hypothesis, (G0C)κ is quasi-split. It is therefore
solvable because it admits no non-trivial pseudo-parabolic subgroup.

□

Remark 6.5. The hypothesis of quasi-splitness over Kunr intervenes notably in the proof to
use the parabolic-parahoric correspondence. We do not know if the correspondence remains
valid in general, and therefore a fortiori if the hypothesis of quasi-splitness over Kunr can
be removed.
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We then deduce the desired result:

Proposition 6.6. Every quasi-split K-reductive group is residually quasi-split.

Proof. Take a reductive group G that is quasi-split. According to Proposition 6.4, it suffices
to show that for every K-facet F , the κ-group (G0F )κ is quasi-split.

Take S, a maximal split torus of G. Its centralizer in G is a torus T . According to [BT84a,
4.6.4.(ii) Proposition.] and [BT84a, 4.6.26.], G0F admits a unique closed split subtorus S with
generic fiber S and its centralizer T in G0F is the identity component of the Néron model of
T . In particular, the centralizer of Sκ is Tκ, which is commutative. Then take a cocharacter
λ such that the centralizer of its image in G is that of Sκ, i.e., Tκ. The pseudo-parabolic
subgroup associated to λ is therefore solvable. This proves that (G0F )κ is quasi-split. □

Let us return to our problem. Note for the sequel ξunr the type morphism on Kunr, and
Ξunr the image of G(Kunr) by this morphism. We can then prove the triviality of the kernel
of the second map:

Proposition 6.7. We have the equality ξunr(G(K)) = (Ξunr)Γ
unr and the fact that these two

groups are canonically isomorphic to Ξext. Consequently:

Ker
(
H1(Γunr, G(Kunr)c)→ H1(Γunr, G(Kunr))

)
= 1.

Proof. Note that G is residually quasi-split according to Proposition 6.6. Consequently, by
point (4) of Theorem 4.1, there is a canonical morphism (Ξunr)Γ

unr → Ξext. Its restriction
to ξunr(G(K)) has image Ξ, which in our case equals Ξext according to [KP23, Proposition
6.6.2]. The previous canonical morphism is therefore surjective.

Furthermore, since G is quasi-split, it admits a special vertex which remains so after
passing to any separable extension. Indeed, the split case is obvious. We obtain the general
case by quasi-split descent (cf. [BT84a, 4.2.3.-4.2.4.], a Chevalley valuation on a split group
represents a special point, and this valuation, hence this point, descends).

Point (7) of Theorem 4.1 then says that Ker
(
(Ξunr)Γ

unr → Ξext
)

is trivial.
We therefore finally deduce that ξunr(G(K)) and (Ξunr)Γ

unr are isomorphic to Ξext via the
same morphism, such that ξunr(G(K)) = (Ξunr)Γ

unr as desired. The triviality of the kernel
then follows from point (2) of Theorem 4.1. □

From all this, we finally deduce the theorem:

Theorem 6.8. Let G be a semisimple adjoint group, quasi-split over K. We have:

Ker
(
H1(Γunr, G(Kunr)0F̃ )→ H1(Γunr, G(Kunr))

)
= 1

where F̃ is a Γunr-invariant facet of the building B(GKunr).

Now let us focus on the case of facet stabilizers. We wish to determine the kernel of the
map:

H1(Γunr, G(Kunr)F̃ )→ H1(Γunr, G(Kunr))

for F̃ , a Γunr-invariant facet of B(GKunr).

The strategy is to reduce to the absolutely almost simple case and perform explicit cal-
culations.
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Denote GK :=
∏

i∈I Gi, the decomposition of GK into a product of K-almost simple
groups. We then have the Galois-compatible equivariant bijection: B(GKunr) ∼=

∏
i∈I B(Gi,Kunr),

and thus a decomposition F̃ =
∏

i∈I F̃i into Γunr-invariant facets. This then gives:

Ker
(
H1(Γunr, G(Kunr)F̃ )→ H1(Γunr, G(Kunr))

)
=

∏
i∈I

Ker
(
H1(Γunr, Gi(K

unr)F̃i
)→ H1(Γunr, Gi(K

unr))
)
.

The problem thus reduces to the case where G is a K-almost simple K-group. It is
written as G := RL/K(G′) where G′ is an adjoint absolutely almost simple L-group and
L/K is a finite separable extension. The calculation of the kernel is then further reduced to
the absolutely almost simple case thanks to the following lemma:

Lemma 6.9. Let L/K be a finite separable extension and H ′ a reductive group over L. De-
note Γunr

L := Gal(Lunr/L) and H := RL/K(H ′). Take a Γunr-invariant facet F̃ in B(HKunr).
It induces a K-facet in B(H) ∼= B(H ′), and thus corresponds to a Γunr

L -invariant facet F̃ ′

in B(H ′
Lunr). We then have the identifications:

H1(Γunr, H(Kunr)) = H1(Γunr
L , H ′(Lunr))

H1(Γunr, H(Kunr)F̃ ) = H1(Γunr
L , H ′(Lunr)F̃ ′)

and this, in a functorial manner, such that:

Ker
(
H1(Γunr, H(Kunr)F̃ )→ H1(Γunr, H(Kunr))

)
= Ker

(
H1(Γunr

L , H ′(Lunr)F̃ ′)→ H1(Γunr
L , H ′(Lunr))

)
.

Proof. Note that HKunr is given by RL⊗KKunr/Kunr(H ′
L⊗KKunr).

Set Lunr := Kunr ∩ L, the maximal unramified extension of K in L. We then have:
L⊗LunrK

unr ∼= LKunr = Lunr. Consider the identification Γunr
L := Gal(Lunr/L) ∼= Gal(Kunr/Lunr).

This is an open subgroup of Γunr. Set Σ := HomK(Lunr,K
unr) and observe the following

isomorphisms of Γunr-modules:

Kunr ⊗K L ∼= (Kunr ⊗K Lunr)⊗Lunr L
∼= (

∏
σ∈Σ

σKunr)⊗Lunr L

∼=
∏
σ∈Σ

(σKunr ⊗Lunr L)
∼=

∏
σ∈Σ

σLunr

Now, since Kunr/Lunr is separable, Σ lifts into Γunr. Still denote Σ one of its lifts. This
is then a set of representatives in Γunr for Γunr/Γunr

L . We can therefore use Shapiro’s lemma
(in group cohomology):

H1(Γunr, H(Kunr)) = H1(Γunr, H ′(Kunr⊗KL)) = H1(Γunr,
∏
σ∈Σ

σH ′(Lunr)) = H1(Γunr
L , H ′(Lunr)).

Now let us address H1(Γunr, H(Kunr)F̃ ). Note that:

RL⊗KKunr/Kunr(H ′
L⊗KKunr) =

∏
σ∈Σ

σRLunr/Kunr(H ′
Lunr).

The compatibility of buildings with separable Weil restrictions (cf. proof of [Rou77, Propo-
sition 5.1.5.]) and with products gives the Galois-compatible and equivariant bijections:

B(HKunr) ∼=
∏
σ∈Σ

B(σRLunr/Kunr(H ′
Lunr)) ∼=

∏
σ∈Σ

σB(H ′
Lunr).
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Note that F̃ ′ is the image of F̃ in B(H ′
Lunr) (i.e., by looking at the factor where σ = id). In

this case, the image of F̃ under the above correspondence is (σF̃ ′)σ∈Σ. This identification
then induces the identification: H(Kunr)F̃

∼=
∏

σ∈Σ
σH ′(Lunr)σF̃ ′ =

∏
σ∈Σ

σ(H ′(Lunr)F̃ ′).
We can once again apply Shapiro’s lemma:

H1(Γunr, H(Kunr)F̃ ) = H1(Γunr,
∏
σ∈Σ

σ(H ′(Lunr)F̃ ′)) = H1(Γunr
L , H ′(Lunr)F̃ ′).

The functoriality of the Shapiro isomorphism allows us to deduce the desired equality of
kernels. □

Let us continue our investigation. According to Remark 4.11, semisimple groups that are
residually split are such that the kernel

H1(Γunr, G(Kunr)F̃ )→ H1(Γunr, G(Kunr))

is trivial for every Γunr-facet F̃ . Since we have reduced to the absolutely almost simple case,
and G is quasi-split, this therefore eliminates split groups, and groups of the form 2Xy split
by a (quadratic) ramified extension (as explained in Remark 4.11). Furthermore, note that
groups of type 6D4 and 3D4 have the same rank, so we can eliminate the situation of a group
of type 6D4 becoming of type 3D4 over Kunr. Finally, since a group of type 6D4 is split by
an extension with Galois group S3, there is no Galois extension such that it becomes of type
2D4.

Thus, only groups of type 2E6, 2An (for n ≥ 1), 2Dn (for n ≥ 4), 3D4 and 6D4 that are
split over Kunr remain to be treated.

Next, since G is quasi-split, it is residually quasi-split according to Proposition 6.6, and
therefore T̃max, the type of a Γunr-chamber, is exactly the type of a Kunr-chamber. Point
(2) (a) of Theorem 4.3 then simplifies to:

Ker
(
H1(Γunr, G(Kunr)F̃ )→ H1(Γunr, G(Kunr))

) ∼= (Orb(T̃ )Ξunr)Γ
unr

/Ξ

where T̃ is the Kunr-type of F̃ .

Furthermore, since G is quasi-split and adjoint, according to Proposition 6.7, we have
Ξunr = Ξext

Kunr and Ξ = (Ξunr)Γ
unr

= Ξext. We will therefore use the notations Ξ and Ξext

(resp. Ξunr and Ξext
Kunr) interchangeably in the sequel.

Let us gather some data concerning the remaining cases. The list in [BT84a, 4.2.23.] then
allows us to determine the affine root system over K, and more precisely the Galois action
on the affine root system over Kunr, and the list [KP23, Remark 1.3.76] gives the associated
affine Dynkin diagrams and the groups Ξ and Ξunr. We then deduce Table 1.

Note that we have added numbering on some diagrams to facilitate reasoning in the sequel.
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Let’s start with type 2An (for n ≥ 1):

Proposition 6.10. Consider the affine Dynkin diagram of type An (for n ≥ 1) equipped with
the Galois action Γunr given by the axial symmetry in Table 1. Its Ξunr is then Z/(n+ 1)Z
and is given by the rotation described in Table 1. Consider a type T̃ of this diagram and let
m be the cardinality of its orbit under Ξunr (so m | n+ 1). We have:

• If m is odd, then (Orb(T̃ )Ξunr)Γ
unr is trivial.

• If m is even, then n+ 1 is also even, the set (Orb(T̃ )Ξunr)Γ
unr contains 2 elements,

and we have the following cases:
– If n+1

m is odd, then (Orb(T̃ )Ξunr)Γ
unr

/Ξ is trivial.
– Otherwise, if n+1

m is even, then (Orb(T̃ )Ξunr)Γ
unr

/Ξ contains 2 elements.

In particular, (Orb(T̃ )Ξunr)Γ
unr

/Ξ is trivial if n ̸≡ 3 (mod 4).

Proof. For type An, the automorphism group is given by the dihedral group. It is thus given
by the presentation ⟨r, σ | rn+1 = 1, σ2 = 1, σrσ = r−1⟩. The associated group Ξunr is then
the subgroup generated by r (which is thus Z/(n+1)Z), and Γunr acts through the subgroup
generated by σ.

Consider a Γunr-invariant type T̃ , which is thus given by a subset of vertices. Let’s try to
see if the orbit of T̃ under Ξunr admits another Γunr-invariant type. Let T̃ ′ be a potential
such type. Let m ∈ N∗ be the smallest strictly positive integer such that rm · T̃ = T̃ (this
is also the cardinality of the orbit under Ξunr).

Consider then k ∈ {0, ...,m−1} such that rk · T̃ = T̃ ′. Since T̃ ′ is Γunr-invariant, we have
σ · T̃ ′ = T̃ ′. We thus have:

rk · T̃ = T̃ ′ = σ · T̃ ′ = σ · (rk · T̃ ) = σrk · (σ · T̃ ) = σrkσ · T̃ = r−k · T̃

We conclude that r2k · T̃ = T̃ . Since 2k ∈ {0, ..., 2m − 2}, either 2k = 0, or 2k = m by
minimality of m: that is, k = 0 or k = m

2 . If m is odd, the second possibility is ruled out
and only k = 0 is valid. Otherwise, both possibilities are valid. There is thus 1 element that
is Γunr-invariant in the orbit of T̃ under Ξunr if m is odd, and 2 otherwise.

Since m | n + 1, if n is even, then m is always odd. Consequently, there is thus 1
element that is Γunr-invariant in the orbit of T̃ under Ξunr. Let us now study the case where
n = 2n′ + 1 is odd and where m = 2m′ is even. We thus have m′ | n′ + 1.

Consider now Ξ, which, according to Table 1, is none other than the group ⟨rn′+1⟩.
When are T̃ and T̃ ′ = rm

′ · T̃ conjugate by this rotation? We have:

rn
′+1 · T̃ = rm

′ · T̃ ⇐⇒ rm
′ n′+1

m′ · T̃ = rm
′ · T̃

If n′+1
m′ = n+1

m is odd, then rm
′ n′+1

m′ = rm
′ since r2m

′ · T̃ = rm · T̃ = T̃ , and in this case
the equality is satisfied. We deduce then that T̃ and T̃ ′ are conjugate by this rotation.

Conversely, if n+1
m is even, we have rm

′ n′+1
m′ · T̃ = T̃ . We must then satisfy T̃ = rm

′ · T̃ .
This is impossible by minimality of m. The two types T̃ and T̃ ′ are then not conjugate by
this rotation. We have thus considered all cases. □

Remark 6.11. [BT84a, 5.2.13] gives an example of a quasi-split adjoint group G of type 2A3

split by an unramified extension with a Γ-facet F̃ such that (Orb(F̃)G(L))
Γ/G(K) is non-

trivial, and thus, according to point (1) (a) of Theorem 4.3, such that
Ker

(
H1(Γ, G(L)F̃ )→ H1(Γ, G(L)

)
is non-trivial.
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The previous calculation actually generalizes this result. In the example [BT84a, 5.2.13],
one chooses in fact a Γunr-edge such that its orbit under Ξunr has cardinality m = 2. Since
n+1
m = 4

2 = 2, the previous proposition allows us to conclude that (Orb(T̃ )Ξunr)Γ
unr

/Ξ has
two elements.

Let us now address the case of type 2Dn (for n ≥ 4).

For this, we need the morphisms introduced in Table 1, that is, τ, τ ′, σ and φ. They
are defined regardless of whether n is even or odd. More precisely, τ is the symmetry with
respect to the central vertical axis, τ ′ is the symmetry with respect to the horizontal axis
(or the rotation of the two extreme branches), σ is the rotation of the branch 3− 4, and φ
is in fact τ ◦ σ. Note also that φ2 = τ ′.

Let us also introduce the symbol ⊕ to denote "type concatenation". In other words, to
two types, it associates the type given by the union of the vertices composing each type.

We can then state the result:

Proposition 6.12. Consider the affine Dynkin diagram of type Dn (for n ≥ 4) equipped with
the actions indicated in Table 1 (for D4, we consider the non-trialitarian case). Take T̃ , a
Γunr-invariant type of this diagram. It can then be written as S̃⊕R̃ where S̃ is a type without
the four numbered vertices from Table 1 (hence Γunr-invariant) and R̃, a Γunr-invariant type
whose vertices are among the four numbered vertices. Then we have:

(1) If R̃ has zero or four vertices, then:
(a) If τ(S̃) = S̃, then the sets (Orb(T̃ )Ξunr)Γ

unr and (Orb(T̃ )Ξunr)Γ
unr

/Ξ are both
trivial.

(b) Otherwise, they are both of cardinality 2.
(2) If R̃ has an odd number of vertices, then the set (Orb(T̃ )Ξunr)Γ

unr is of cardinality 2

and (Orb(T̃ )Ξunr)Γ
unr

/Ξ is trivial.
(3) If R̃ has two vertices, then the sets (Orb(T̃ )Ξunr)Γ

unr and (Orb(T̃ )Ξunr)Γ
unr

/Ξ are
both of cardinality 2.

Proof. Of course, since T̃ and S̃ are Γunr-invariant, so is R̃. We then observe that the only
possibilities for R̃ are:

∅, (1), (2), (1, 2), (3, 4), (1, 3, 4), (2, 3, 4), (1, 2, 3, 4)
We must therefore treat each of these cases.

Observe moreover that the orbit of T̃ under ⟨φ⟩ is the same as under ⟨τ, τ ′⟩. Indeed, this
is a consequence of the fact that φ = τ ◦ σ and φ2 = τ ′. Consequently, the calculations are
the same regardless of whether n is even or odd.

Quick calculations using Table 1 then yield:
(1) R̃ = ∅. We find that (Orb(T̃ )Ξunr)Γ

unr
= {S̃, τ(S̃)}. It is thus trivial if and only if

S̃ = τ(S̃). We then observe that the same holds for (Orb(T̃ )Ξunr)Γ
unr

/Ξ.
(2) R̃ ∈ {(1), (2)}. We find that (Orb(T̃ )Ξunr)Γ

unr
= {S̃ ⊕ (1), S̃ ⊕ (2)}. We then observe

that (Orb(T̃ )Ξunr)Γ
unr

/Ξ is trivial.
(3) R̃ = (1, 2). We find (Orb(T̃ )Ξunr)Γ

unr
= {S̃ ⊕ (1, 2), τ(S̃)⊕ (3, 4)}. We then observe

that (Orb(T̃ )Ξunr)Γ
unr

/Ξ has two elements.
(4) R̃ = (3, 4). We find (Orb(T̃ )Ξunr)Γ

unr
= {S̃ ⊕ (3, 4), τ(S̃)⊕ (1, 2)}. We then observe

that (Orb(T̃ )Ξunr)Γ
unr

/Ξ has two elements.
(5) R̃ ∈ {(1, 3, 4), (2, 3, 4)}. We find (Orb(T̃ )Ξunr)Γ

unr
= {S̃ ⊕ (1, 3, 4), S̃ ⊕ (2, 3, 4)}. We

then observe that (Orb(T̃ )Ξunr)Γ
unr

/Ξ is trivial.



40 A. ZIDANI

(6) R̃ = (1, 2, 3, 4). We find (Orb(T̃ )Ξunr)Γ
unr

= {S̃ ⊕ (1, 2, 3, 4), τ(S̃) ⊕ (1, 2, 3, 4)}. It
is thus trivial if and only if S̃ = τ(S̃). We then observe that the same holds for
(Orb(T̃ )Ξunr)Γ

unr
/Ξ.

This concludes the proof. □

Proposition 6.13. Consider the affine Dynkin diagram of type D4 equipped with the Galois
action Γunr given either by the rotation of 3 points, or by all possible permutations of these
3 points (in other words, the trialitarian case of Table 1). Its group Ξunr is then (Z/2Z)2.
We then have that (Orb(T̃ )Ξunr)Γ

unr is trivial for every type of this diagram.

Proof. Let’s reuse the numbering from Table 1. We identify a type with the n-tuple of
its points. Observe then that the only Γunr-invariant types are (0), (1), (0, 1), (2, 3, 4),
(0, 2, 3, 4), (1, 2, 3, 4) and (0, 1, 2, 3, 4). Since the action by Ξunr preserves the size of the types,
we can already say that (Orb(T̃ )Ξunr)Γ

unr is trivial for T̃ in {(0, 1), (2, 3, 4), (0, 1, 2, 3, 4)}.
Since (0) is fixed by Ξunr, we can also eliminate (0) and (1). Similarly, any type in the orbit
of (0, 2, 3, 4) under Ξunr must contain 0, so (1, 2, 3, 4) cannot be in the orbit. We have thus
treated all cases and (Orb(T̃ )Ξunr)Γ

unr is trivial for every Γunr-invariant type T̃ . □

Proposition 6.14. Consider the affine Dynkin diagram of type E6 equipped with the Galois
action Γunr given by the axial symmetry in Table 1. Its Ξunr is Z/3Z and is given by the
rotation described in Table 1. We then have that (Orb(T̃ )Ξunr)Γ

unr is trivial for every type
of this diagram.

Proof. The proof is essentially the same as for the An case. Let T̃ be a type of this diagram.
Take r ∈ Ξunr and σ ∈ Γunr. Once again, we have σ ◦ r = r2 ◦ σ. If r · T̃ is Γunr-invariant, it
is such that:

r · T̃ = (σ ◦ r) · T̃ = (r2 ◦ σ) · T̃ = r2 · (σ · T̃ ) = r2 · T̃

Consequently, T̃ = r · T̃ = r2 · T̃ and so (Orb(T̃ )Ξunr)Γ
unr is trivial. □

Let us summarize all this using Table 2 (using the notations of the previous propositions):
We observe in particular that only the values 1 or 2 are present, and that 2 appears only

when G is of type 2A4n+3 (for n ≥ 0) or 2Dn (for n ≥ 4), split over Kunr.

In conclusion, we obtain the following theorem:

Theorem 6.15. Let G be a semisimple adjoint group quasi-split over K. Let also F̃ be a
Γunr-invariant facet of the building B(GKunr). Then the kernel:

Ker
(
H1(Γunr, G(Kunr)F̃ )→ H1(Γunr, G(Kunr)

)
has cardinality 2k where k is an integer bounded above by the number of factors that are a
Weil restriction of an absolutely almost simple group of type 2Dn (for n ≥ 4) or 2A4n+3 (for
n ≥ 0) split by an unramified extension.

Remark 6.16. Of course, it is possible to compute this kernel explicitly by reducing to the
absolutely almost simple case thanks to the compatibility of the kernel with the product
and the Weil restriction (cf. Lemma 6.9) and by using Table 2.
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Type of G #(Orb(T̃ )Ξunr)Γ
unr

#(Orb(T̃ )Ξunr)Γ
unr

/Ξ

2An split over Kunr

(for n ≥ 1)

m odd: 1

m even: 2

m odd: 1

m even and n+1
m odd: 1

m even and n+1
m even: 2

2Dn split over Kunr

(for n ≥ 4)

τ(S̃) = S̃ and #R̃ ∈ {0, 4}: 1

τ(S̃) ̸= S̃ and #R̃ ∈ {0, 4}: 2

#R̃ ∈ {1, 2, 3}: 2

τ(S̃) = S̃ and #R̃ ∈ {0, 4}: 1

τ(S̃) ̸= S̃ and #R̃ ∈ {0, 4}: 2

#R̃ ∈ {1, 3}: 1

#R̃ = 2: 2

Other types 1 1

Table 2. Summary of the previous calculations.
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