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INTRODUCTION

Cet article a pour objectif de développer les aspects cohomologiques de la théorie de
Bruhat-Tits. Il peut étre vu comme un complément a | .

Rappelons que 1'étude cohomologique de | | est concentrée sur les cocycles aniso-
tropes (cf. | , 3.6.]) et les résultats de décomposition qui en découlent (cf. | , 3.12.
Théoréme.|). Cet article vise une toute autre problématique que 1’on explique ci-dessous.

Considérons un anneau de valuation discréte hensélien R, de corps de fractions K. Notons
R™ son hensélisé strict et K™ le corps de fractions de R". C’est ’extension maximale non
ramifiée de K. Elle est galoisienne et on note son groupe de Galois I'™". Le corps résiduel
de R est noté k, et n’est pas supposé nécessairement parfait. Désignons également par I, le
sous-groupe d’inertie de K, c’est-a-dire le groupe de galois absolu de K™".
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2 A. ZIDANI

Etant donné un groupe réductif G sur K, on se demande s’il est possible de comprendre
le noyau suivant :

Ker (H'(I™, G(K™) z) — H'(I'™, G(K™)))

o F est une facette I™-invariante de I'immeuble B(Ggnor) et G(K™)
par 'action de G(K™).

7, son stabilisateur

Plus généralement, on introduit la notion de sous-groupe global. Un sous-groupe de G(K)
est dit global §'il est ouvert pour la topologie adique, et s’il contient G(K)*, i.e. le sous-
groupe engendré par les K-points des sous-groupes de racines de G. L’étude de ’action sur
I'immeuble de ces sous-groupes est d’un grand intérét. En effet, ils agissent transitivement
sur les couples (A, C) tels que A est un appartement de #(G) et C une chambre de A (cf.
le lemme 2.5).

On peut également considérer un sous-groupe global Hde G (K™) invariant pour l'action
de I'™. Ces objets sont alors une généralisation des sous-groupes considérés par Tits dans
| , 3.5.] (cf. la remarque (2) de 2.6).

Dans ce cas, tout comme dans | |, on peut s’intéresser a des questions plus générales
impliquant H. En somme, on peut étudier le noyau :

Ker (Hl(rnr, H

2) = H'(T™, ﬁ[))

otl H est cette fois un sous-groupe global '™ -invariant de G(K™) et H 7, le stabilisateur de
F sous l'action de H.

Quelques techniques de cohomologie des groupes classiques permettent de montrer la
bijection (cf. le point (1) (a) du théoréme 4.3) :

(Orb(F) 7)™ /H 5 Ker (Hl(rm, Hz) — H\(T™, fi)) : (+)

ou l'on a posé¢ H := H™ . En d’autres termes, le noyau est en correspondance avec les
éléments I'™"-invariants de l'orbite F par H, modulo I'action de H.

Dés lors, on constate que Bruhat et Tits s’étaient déja penchés implicitement sur la ques-
tion dans | |. En effet, par exemple, le résultat | , 5.2.10.(ii) Proposition.| signifie
entre autres que (Orb(F ) Knr))rnr /G(K) est trivial lorsque G est semi-simple simplement
connexe, quasi-déployé sur K™. En conséquence, Ker (H(I™, G(K™) z) — HY(I'™, G(K™))
est trivial dans ce cas de figure (cf. la remarque 4.6).

Egalement, dans | , 5.2.13.], Bruhat et Tits donnent un cas de figure ou
(Orb(F )axnny)t /G(K) est non trivial. Dans cet exemple, G est quasi-déployé et adjoint.

En observant attentivement cet exemple, on observe que Bruhat et Tits raisonnent es-
sentiellement au niveau des types, et donc au niveau des diagrammes de Dynkin affines. Il
s’avére que ce phénomeéne est tout a fait général.

En effet, on prouve dans cet article que la bijection (x) reste toujours satisfaite si on la
réduit au niveau des types. On obtient alors (cf. le point (2) (a) du théoréme 4.3) :

({w T < Tonax | w € fI}F“) JH 5 Ker (Hl(rm, Hz) — HY(™, ﬁ)) . (+)

Expliquons les objets en présence. Rappelons que l'indice de Tits affine de G est la don-
née de son diagramme de Dynkin affine sur K™, d’une action de I'"", et d’'un ensemble
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I'™*-stable de sommets, que 1’on note ’fmax. Ce dernier est aussi le type de la plus grande fa-
cette I -invariante dans Z(Ggnr) (aussi appelée '™ -chambre). Le type T est défini comme
étant le type de F.

En conséquence, la bijection (') donne une maniére explicite et combinatoire de calculer
le noyau, dépendant uniquement de l'indice de Tits affine de G muni de I'action naturelle
de H et de H. C’est le résultat théorique principal de cet article.

De ce théoréme, on en déduit immédiatement que Ker (Hl (e, ﬁ]j.) — HI(I™, ﬁ)) est

trivial lorsque H agit trivialement sur I'indice de Tits affine. C’est notamment le cas lorsque
G est semi-simple simplement connexe et quasi-déployé sur K™ d’apreés | , 5.2.10.(i)
Proposition.|. On retrouve alors le résultat de Bruhat et Tits indiqué plus haut.

Par ailleurs, grace a la bijection ('), le cas G quasi-déployé et adjoint peut étre compris
entiérement, généralisant ainsi I'exemple | , 5.2.13.] de Bruhat et Tits. On prouve ainsi
dans cet article :

Théoréme (cf. le théoréme 6.15). Soit G un groupe semi-simple adjoint et quasi-déployé sur
K. Soit également F, une facette I'™ -invariante de 'immeuble B(Gpnr). Alors le noyau :

Ker (Hl(Fnr, G(Knr)]?) — Hl(rnra G(Knr))

est de cardinal 2% ou k est un entier majoré par le nombre de facteurs restriction de Weil
d’un groupe absolument presque simple de type 2D,, (pour n > 4) ou 2Agnys (pour n > 0)
déployé par une extension non ramifiée.

Ceci étant, on peut également s’intéresser au noyau suivant :
1/nr nr\0 1/nr nr
Ker (H (™, G(E™)%) — H'(T™, G(K )))

ott G(K™)? est le sous-groupe engendré par les sous-groupes parahoriques sur K™, aussi
appelé la composante résiduellement neutre de Ggnr.

Cette question est nettement plus délicate. Malgré nos efforts et notre exploration de la
littérature, on ignore s’il existe des situations ot il est non trivial.

Le cas ot F est un point hyperspécial (cf. la définition 5.1) est en fait trivial d’aprés la
conjecture de Grothendieck-Serre dans le cas d’'un anneau de valuation discréte hensélien.
La encore, le résultat a en fait été déja prouvé par Bruhat et Tits lorsque G est semi-simple
dans | , 5.2.14. Proposition.| en utilisant la bijection (*). On montre également dans
cet article que la preuve peut étre ajustée pour montrer directement le cas réductif. C’est
I'objet de la proposition 5.5.

Un autre cas ol I'on peut prouver la trivialité est, une fois encore, le cas quasi-déployé
adjoint. C’est I'objet du théoréme 6.8.

Pour terminer, faisons une observation sur les hypothéses de I’article. Le corps résiduel
k de R n’est pas supposé parfait, contrairement a larticle | | de Bruhat et Tits. Le
groupe G n’est pas non plus supposé quasi-déployé sur K", bien qu’il s’agisse du cadre des
théorémes de | | (rappelons d’ailleurs que si k est parfait, alors G est quasi-déployé
sur K™ comme mentionné dans | , 5.1.1.]). Il est donc nécessaire de faire quelques
rappels sur la théorie de Bruhat-Tits dans cette généralité, notamment expliquer pourquoi
I'immeuble de G existe. C’est 'objet de la partie 1.
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NOTATIONS ET CONVENTIONS

Pour tout corps k, la notation £* désigne une cléture séparable de k.

On utilise la définition de groupe réductif de Chevalley et Borel (cf. | |). En particu-
lier, ils sont affines, lisses et connexes.

Soulignons que ’extension maximale non ramifiée d’un corps complet n’est pas toujours
compléte. Par exemple, I'extension maximale non ramifiée de x((t)) n’est pas k*((t)) si K°/k
est infini.

1. QUELQUES RAPPELS SUR L'IMMEUBLE DE BRUHAT-TITS

Faisons quelques rappels sur I'immeuble et son existence. Pour étre le plus général pos-
sible, on suppose dans cette section que K n’est pas nécessairement hensélien. Les résultats
de cette section seront en fait disponibles dans le livre [Rou] non encore publié. Par commo-
dité, on se propose de réaliser cette section indépendamment de cette référence.

Dans | , Définitions 2.1.12], Rousseau propose une définition d’un immeuble associé a
un groupe réductif G sur K. Comme prouvé dans le | , Théoréme 2.1.14], cet immeuble
existe si et seulement si 'immeuble au sens de | |, c’est-a-dire construit a partir d’une
donnée radicielle valuée, existe; et il est unique & isomorphisme prés.

Par ailleurs, comme indiqué dans | , Théoréme 2.1.14.2)c)| et | , Théoréme
2.1.15.¢)], il est possible de canoniser cet immeuble en le construisant comme le produit de
I'immeuble du groupe dérivé D(G) avec une partie vectorielle donnée par le radical R(G).
Un immeuble sous cette forme est appelé immeuble centré. Un immeuble centré est unique
a unique isomorphisme (d’immeubles centrés) pres.

Notons que I'immeuble construit a partir d’'une donnée radicielle valuée associée & G
s’identifie avec I'immeuble de D(G).

L’immeuble proposé par Rousseau pour G est exactement 'immeuble étendu sous la
terminologie moderne. On le note #¢(G). Comme dit précédemment, il se décompose en un
produit Z(G) x Vi ou Vi est la partie vectorielle de I'immeuble et ot #(G) est 'immeuble
de D(G) (ou I'immeuble au sens d’une donnée radicielle valuée de G comme dans | D-
La partie #(G) est donc I'immeuble (réduit) de G sous la terminologie moderne.

En particulier, lorsque G est semi-simple, #°(G) = A(G) est unique a unique isomor-
phisme prés et correspond a I'immeuble au sens d’une donnée radicielle valuée de G.

Un autre point important a considérer est de savoir si I'immeuble %°(G) est bornolo-
gique, c’est-a-dire si les stabilisateurs de parties bornées sont bornés, ou plus précisément
s’il vérifie les conditions équivalentes données en | , Théoréme 2.2.11]. Il s’avére que
d’aprés | , Corollaire 5.2.4.], un immeuble (étendu) est toujours bornologique lorsque
K est hensélien.
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Comme indiqué en | , Exemples 2.2.14.f)|, la question de 'existence se rameéne au
cas presque-simple et au cas des tores. Or, le cas des tores, lorsque K est hensélien, est
traité en | , Proposition 2.4.8.2)|. Par ailleurs, | , Proposition 2.3.9.] nous dit que
la question se raméne au cas ou K est complet.

Notons que la preuve de | , Proposition 5.1.5.] montre exactement que l'immeuble
d’une restriction de Weil séparable d’un groupe est naturellement un immeuble de ce dernier
groupe. En particulier, le cas presque-simple se raméne au cas absolument presque-simple.

Enfin, rappelons d’aprés Struyve (| | et | , Main Corollary.]) que la conjecture
[ , 13. Conjecture| est vérifiée. Cela signifie donc que tout groupe algébrique absolument
presque simple sur un corps valué discrétement complet arbitraire admet une donnée radi-
cielle valuée compatible avec la valuation du corps. On en déduit donc un immeuble associé
a ce type de groupe d’aprés | |, et donc un immeuble au sens de Rousseau d’aprés la
discussion précédente.

En conclusion, on a :

Proposition 1.1. Soit G un groupe réductif sur un corps hensélien valué discrétement K.
Alors G admet un immeuble étendu unique & unique isomorphisme prés. 1l est par ailleurs
bornologique.

On peut en fait améliorer ce résultat grace a | , Proposition 2.3.5] :

Théoréme 1.2. Soit G un groupe réductif sur un corps valué discrétement K. On suppose
que G a méme rang relatif sur K et sur son hensélisé (ou encore son complété I?) Alors G
admet un immeuble étendu, unique & unique isomorphisme prés. Il est en outre bornologique.

Cet immeuble s’identifie canoniquement a celur de G et ses appartements sont les

I?—appartements correspondant auz K -tores déployés maximauz définis et déployés sur K.

Remarque 1.3. Toutefois, on ne sait toujours pas si tout groupe réductif sur un corps valué
arbitraire admet un immeuble non forcément bornologique.

Donnons maintenant quelques informations sur la partie vectorielle Vg et les apparte-
ments.

Notons D := G/D(G), le tore coradical de G. La partie vectorielle Viz est donnée par
X«(R(G)) @z R = X, (D) ®z R et G(K) agit par translation grace a g — (x — —v(x(9)))
de G(K) vers Hom(X*(G),R) = Hom(X*(D),R) = X, (D) ®z R. 1l est vu a la fois comme
espace affine sur lui-méme et comme espace vectoriel. On note donc G(K)! le fixateur sous
G(K) de Vi (ou de maniére équivalente, d'un point de V7). Autrement dit, c’est le noyau
du morphisme g — (x — —v(x(9))).

On en déduit immédiatement que G(K)" est distingué dans G(K) et que le quotient est
isomorphe & Z" o 7 est le rang du groupe des K-caractéres de G (donc de D ou de R(G)).

La définition de G(K)! est fonctorielle en G et sa construction est compatible aux ex-
tensions galoisiennes : pour toute extension galoisienne de corps valués L/K de groupe de
Galois T' (la valuation de L étant supposée I-invariante), le groupe G(L)! est T-invariant
et (G(L)YHY = G(L)' NG(K) = G(K)'. Par ailleurs, G(K)' peut également étre défini
comme l'image réciproque de D(K)! par G(K) — D(K) (cf. | , Lemma 2.6.16]). En
conséquence, puisque D est isogéne & R(G), on a G(K)! = G(K) si et seulement si R(G)
(ou D) ne contient aucun K-sous-tore déployé (c’est en particulier le cas pour les groupes
semi-simples).

1
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Plus généralement, comme expliqué dans | , 2.1.7-2.1.11], étant donné un tore dé-
ployé maximal S de G, un appartement A(S) de ¢(G) associé & S est un espace affine sous
X«(5) ®z R muni d’'une action v : Ng(S5)(K) — Autag(A(S)) vérifiant les conditions de la
définition | , 2.1.8.a)]. Il est unique & isomorphisme prés. Par ailleurs, tout appartement
de #°(G) est de cette forme.

Notamment, la restriction & Z(K) (ot Z := Z(S)) est une action par translation définie
par z — (x — —v(x(z))) allant vers :

Hom(X*(Z),R) = Hom(X*(Z/D(Z)),R) = X.(Z/D(Z)) @z R = X,(S) @z R.

Par ailleurs, le noyau de v est égal a Z(K)*.

Il savére qu’'un appartement A(S) peut étre aussi donné par A(S") x Vg, ou A(S’) est
un appartement de Z(G’) associé au tore déployé maximal S’ := S N D(G). Sous cette
forme, A(S) est appelé appartement centré de G associé a S. Un tel appartement a une
structure affine, mais également une structure vectorielle donnée par Vg. Il est unique a
unique isomorphisme d’appartements centrés prés. Dans la suite, la notation A(S) désigne
Pappartement centré de G associé a S. Un tel appartement de 2°(G) respecte bien entendu
la décomposition B¢(G) = B(G) x V.

Intéressons-nous enfin aux facettes et aux types. On suppose cette fois que K est hensélien.

Rappelons qu’une facette F de B(G) désigne la réalisation géométrique ouverte du poly-
simplexe qu’elle représente. Son adhérence topologique F dans %(G) est exactement I'union
(disjointe) de ses sous-polysimplexes ouverts (donc de ses sous-facettes) d’aprés | ,
(2.5.10.)]. Une facette F est dite incidente a une facette F’ si 'on a l'inclusion F C F'.
On note alors F < F'.

Par ailleurs, toute facette est incluse dans ’adhérence d’une chambre (qui est par définition
une facette maximale pour 'incidence, ou encore de dimension maximale).

L’adhérence d'une chambre est en correspondance naturelle avec le graphe de Dynkin de
I’échelonnage (ou de maniére équivalente, du systéme de racine affine, cf. | , 1.4.]) de
G. Ce graphe est appelé dans | | diagramme de Dynkin affine relatif, et dans | |
diagramme de Dynkin local relatif ou encore K-graphe résiduel chez | ].

Le type d’une facette est alors défini comme étant son image sous cette correspondance.
Cette image ne dépend pas du choix de I’adhérence d’une chambre ot ’on a inclus la facette.
En conséquence, deux facettes de méme type dans la méme adhérence d’une chambre sont
égales.

Un type 7 est dit incident & un type 7 sil'on a I'inclusion 7 C 77 (vu en tant qu’ensemble
de sommets dans le diagramme de Dynkin). On écrit alors 7 < T’. Prenons deux facettes
F et F' respectivement de type T et 7'. Si F < F', on a alors T < T".

Comme indiqué précédemment, 'existence d’un immeuble Z(G) pour G est équivalente
a l'existence d’une donnée radicielle valuée pour G. Cette derniére permet d’en déduire un
double systéme de Tits muni d’un morphisme adapté dont 'immeuble associé est exactement
PB(G) d’apres | , 6.5. Théoréme.].

On en déduit donc un morphisme type, noté &, de G(K) dans le groupe des automor-
phismes du diagramme de Dynkin affine relatif d’apreés | , 1.2.16]. Son image est notée
E et son noyau est noté G(K)°. Il y a donc un isomorphisme G(K)/G(K)¢ = E. On peut
aussi restreindre & G(K)! ce morphisme. Son image est notée Z! et son noyau est noté
G(K)b:= G(K)*NG(K)!. On en déduit un isomorphisme G(K)!/G(K)* = =L
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Le lecteur intéressé par des exemples peut analyser le cas de GL,,. En effet, il existe une
maniére d’interpréter I'immeuble et les types dans ce cas de figure au travers de chaines de
réseaux (cf. | D).

Le morphisme type mesure comment le type d’une facette change par action sous un
élément de G(K). Autrement dit, une facette F de type T est telle que g - F est de type
&(g) - T pour tout g € G(K). Notons E7 le sous-groupe des w € = tels que w - T = T.
On peut également vérifier que G(K)r se surjecte sur Z7 et que son noyau vaut G(K)%,
d’ott un isomorphisme G(K)r/G(K)% = Z7. On définit également tout cela de maniére
analogue pour G(K)' et Z!. Cf. | , 1.2.13 - 1.2.20] et | , 2.7

Le type d’une facette peut étre aussi vu comme étant ’orbite de cette facette sous un
groupe agissant transitivement sur les chambres tout en préservant les types. C’est notam-
ment le cas de G(K)¢, G(K)® et méme de G(K)T (cf. le lemme 2.4).

Remarque 1.4. On n’a pas nécessairement égalité entre Z! et =. Pour simplifier, considérons
le cas ol k est parfait. Pour réaliser le contre-exemple efficacement, on utilise le morphisme
de Kottwitz (cf. | , 11.5]). Il s’agit d’un morphisme G(K) — m1(G); (fonctoriel en G)
dont le noyau est G(K)?, le sous-groupe engendré par les sous-groupes parahoriques, aussi
appelé la composante résiduellement neutre de G(K), (cf. | , Proposition 11.5.4]), et
dont I'image réciproque des éléments de torsion est G(K)?! (cf. | , Lemma 11.5.2]). Le
Gal(K*®/K)-module m1(G) est le groupe fondamental algébrique, défini dans | , 11.3].
En conséquence, 71 (G); désigne le '™ -module obtenu en prenant les coinvariants.
Considérons le cas ot G = GLa. Un calcul immédiat montre que 71(G); = Z et est donc
sans torsion. On en déduit que G(K)? = G(K)'. Comme G(K)° agit trivialement sur les

types (cf. | , 5.2.12.(i) Proposition.]), il en est donc de méme pour G(K)!. D’ott ! = 0.
Par ailleurs, G(K) n’agit pas trivialement sur les types. En effet, les deux parahoriques
suivants sont associés a des points de types différents (cf. | , Chapter 3.1]) :

R R ot R iR
R R t 'R R

alors qu’ils sont conjugués par la matrice (é ?) € G(K).

Pour finir, prouvons que = est abélien fini. Pour cela, on a besoin de quelques résultats :

Lemme 1.5. Soit Z, un sous-groupe de Levi de G. On a D(G(K)) = G(K)* D(Z(K)).

Démonstration. Puisque G(K)™ est parfait (| , 6.4. Corollaire.]),ona G(K)* € D(G(K)).
On en déduit linclusion G(K)" D(Z(K)) <C D(G(K)). Réciproquement, puisque
GK) = GK)"Z(K) (] , 6.11.(1) Proposition.]), on peut prendre un élément

d € D(G(K)) de la forme g1z19222(g121) ' (goz2)™!, avec g1, g2 dans G(K)* (resp.
21, 22 dans Z(K)). Puisque G(K)™ est distingué dans G(K), on peut considérer le quotient
G(K)/G(K)* et voir que I'image de d dans G(K)/G(K)* est égal a celle de 212027 125 ',
dot d € G(K)" D(Z(K)). Comme D(G(K)) est engendré par ce type d’éléments, on en
déduit Pinclusion D(G(K)) C G(K)* D(Z(K)) comme voulu. O

Proposition 1.6. G(K)® est un sous-groupe distingué de G(K) dont le quotient est abélien
de type fini et dont le nombre de générateurs est majoré par le rang relatif de G.

Démonstration. Prenons Z un sous-groupe de Levi minimal de G. D’aprés le lemme 1.5, on a
D(G(K)) = G(K)T D(Z(K)). Or, d'une part G(K)? contient G(K)* d’aprés le lemme 2.4,
et d’autre part D(Z(K)) € D(Z)(K) c Z(K)' ¢ G(K)®. Le sous-groupe G(K)? contient
donc D(G(K)) est donc distingué de quotient abélien.
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Par ailleurs, il y a une surjection Z(K)/Z(K)' — G(K)/G(K)*Z(K)! de telle sorte a ce
que G(K)/G(K)*Z(K)! soit abélien de type fini puisque Z(K)/Z(K)! I'est. Son nombre de
générateurs est donc majoré par celui de Z(K)/Z(K)!, qui est simplement le rang relatif de
G. On utilise alors le lemme 2.8 qui nous dit que G(K)* = G(K)*Z(K)" pour conclure. [

On en déduit alors ce que 1'on voulait :

Proposition 1.7. Le groupe G(K)/G(K)¢ = Z (et donc G(K)'/G(K)* = =1) est abélien
fini.

Démonstration. Notons que l'on a 'isomorphisme G(K)/G(K)¢ = Z. Par ailleurs, puisque
G(K)® ¢ G(K)®, le corollaire 1.6 donne que Z est abélien. D’autre part, le fait qu’il y ait
un nombre fini de maniéres de permuter un nombre fini de sommets implique que = est fini.
Par conséquent, il en est de méme pour G(K)!/G(K)* = =! C =. O

2. SOUS-GROUPES GLOBAUX ET NOUVELLES NOTIONS

On considére une extension galoisienne non ramifiée éventuellement infinie L/K, de
groupe de Galois I'. On peut donc supposer avoir 'inclusion L C K™ .

Dans toute la suite, on considére les sous-groupes suivants de G(K) :

Définition 2.1. Soit H un sous-groupe ouvert de G(K).

— On dit que H est un sous-groupe global de G(K) si G(K)™ C H.

— On dit de plus que H, supposé global, est L-conforme (ou juste conforme si
L = K) si H préserve les L-types, ou de fagon équivalente, si H C G(L)¢. Par
ailleurs, H est dit trés conforme si H est K™ -conforme. On dit aussi que H est
uniforme si H stabilise un point de Vg, ou de maniére équivalente, si H C G(K)*.

— On dit que H est L-bon (ou juste bon si L = K ) si H est uniforme et L-conforme,
ou de fagon équivalente, si H C G(L)®. Par ailleurs, H est dit trés bon si H est
K™ -bon.

— On définit également H', H®, H'™ H€¢, H' comme étant les sous-groupes obtenus
en prenant lintersection de H avec respectivement G(K)', G(K)®, G(K™), G(K)¢
et G(K™)e.

— Pour toute partie Q de B(G), on note Hq (resp. HS) le stabilisateur (resp. fiza-
teur) de Q sous H. Si on prend plusieurs parties (€;)ier, on note
Hqpier = Nicr Ho;- Ce dernier sous-groupe est appelé le multistabilisateur de
(Q)ier sous H.

Observons que
Hb — (Hl)c — (Hc)l — Hl N HE et th — (Hl)tc — (Htc)l — Hl ﬂHtc.
En effet, il suffit de vérifier le résultat lorsque H = G(K). Dans ce cas, cela découle des
définitions.
Comme on le verra plus loin dans le corollaire 3.6, un sous-groupe global L-conforme
(resp. L-bon) est conforme (resp. bon), mais la réciproque est fausse.
Remarques 2.2.

(1) On ne prend pas la méme convention que Bruhat et Tits dans | |, et que Prasad
dans | |. Pour Prasad, G(K){, désigne le fixateur de {2 sous l'action de G(K)?,

tandis que G(K )}2 désigne le stabilisateur de 2 sous l'action de G(K)!. Bruhat et
Tits prennent une convention analogue.
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(2) Les notations alambiquées "1" et "b" étaient déja présentes dans la littérature. On
a donc choisi de leur donner un nom de telle sorte & les retenir plus aisément ("1"
est associé au caractére "uniforme" et "b" est associé au caractére "bon"). On a
également rajouté la notion de "conformité" (associée a "¢"), qui, bien que pratique,

n’était pas présente dans la littérature.

(3) On aurait pu définir une notion de caractére " L-uniforme" (ou "trés uniforme"). Tou-
tefois, (G(K™))™ = G(K)! d’aprés la fin de la section 1. Cela est donc équivalent
a la notion de caractére "uniforme".

Remarque 2.3. Tout fixateur d’'une partie 2 de Z(G) sous l'action d’un sous-groupe global
H est le multistabilisateur de (z)zeq sous H. Si de plus € est une union finie de facettes, il
s’agit également du multistabilisateur sous H de la famille donnée par les sommets incidents
a € (en nombre fini).

Le principal résultat au sujet des sous-groupes globaux est le suivant :

Lemme 2.4. Un sous-groupe global agit transitivement sur les couples (A,C) d’appartements
et de chambres incluses dans cet appartement. Par ailleurs, G(K)" est un bon sous-groupe

global (i.e. G(K)* C G(K)°).

Démonstration. 11 suffit de prouver le résultat pour G(K)*. On peut également revenir au
cas semi-simple adjoint. En effet, ’action sur I'immeuble se factorise par Z(G)(K) et | ,
Corollaire 6.3.] implique que G(K)+ — G*4(K)7T est surjective.

On sait qu’il s’existe une donnée de racine valuée associé & G(K). Les parahoriques (au
sens de | |, c’est a dire les stabilisateurs de facettes sous 'action de G(K)¢) sont dé-
crits dans | , (7.1.1.)] et engendrent donc G(K)*Z(K)! ("H" vaut Z(K)!, avec Z
un sous-groupe de Levi minimal, puisque G est semi-simple. Aussi, les groupes de ra-
cines affines engendrent G(K)'). Mais par définition, ce groupe vaut également G(K)®
(et méme G(K) puisque G est supposé semi-simple). Il agit donc transitivement sur les
couples appartements-chambres qui nous intéressent (cf. | , (2.2.6)]). Comme
G(K)t c G(K)TZ(K)! = G(K)?, le sous-groupe G(K)™ est bon.

Prenons A et A’ des appartements et, C C A et ' C A’, des chambres de ces appar-
tements. Prenons g € G(K)® tel que g - (A,C) = (A’,C’). Prenons Z relativement a A et
écrivons la décomposition g = g2 donnée par G(K)* = G(K)*Z(K)'. Puisque Z(K)! fixe
A (et donc C), on a :

g+ : (A’C) = g+ : (Z : (A,C)) =g- (A,C) = (A/’C/)'
D’ou le résultat. O

On en déduit alors :

Proposition 2.5. Choisissons un appartement A et une chambre C C A. Tout sous-groupe
global conforme K de G(K) définit une BN -paire saturée en posant B = K¢ et N = K 4,
les stabilisateurs de C et A sous l'action de K. L’ immeuble associé est exactement B(G) et
son groupe de Weyl est le groupe de Weyl affine de I'tmmeuble.

Modulo conjugaison par K, cette BN -paire ne dépend pas du choiz du couple (A,C).

Démonstration. D’aprés le lemme précédent, on rentre dans le cadre d’application de | ,
3.11. Proposition|, qui nous donne le résultat. ]
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Remarques 2.6.

(1) La terminologie sous-groupe global est en fait inspirée de la proposition 2.5 : un
sous-groupe global est suffisamment gros pour déterminer un ensemble suffisamment
riche de sous-groupes "locaux" donnés par les stabilisateurs de parties bornées de
I'immeuble #(G).

(2) La notion de sous-groupe global de G(K™) invariant par I'™" englobe celle des sous-
groupes considérés dans | , 3.5.] dans le cas ou le corps résiduel  est parfait.
En effet, Tits impose plutoét de contenir G(K™)?, le sous-groupe engendré par les
sous-groupes parahoriques sur K™, aussi appelé la composante résiduellement neutre
de Ggnr, au lieu de G(K™)*, et G(K™)T € G(K™)? (cf. 3e paragraphe de | ,
5.2.11.)).

De ceci, on en déduit quelques résultats élémentaires autour des facettes et des sous-
groupes globaux :

Proposition 2.7. Soit H un sous-groupe global de G(K) et deux facettes F et F' dans
AB(G). On a :

(1) Le sous-groupe Hr agit transitivement sur les appartements contenant F.
(2) Si Hr» C Hr, alors F C F'. La réciproque est vraie si H est de plus conforme.
(8) On a Hr = Hr si et seulement si F = F'.

Démonstration.
(1) Puisque H est global, il suffit de montrer le résultat pour H = G(K)". 1l s’agit
de | , Proposition 1.5.13.(1)] appliqué au systéme de Tits de G(K)* (cf. la

proposition 2.5).
(2) et (3) Observons que Hr C Hr implique G(K)%, C G(K)%. Comme G(K)* induit un
systéme de Tits dont I'immeuble est exactement Z(G) (cf. la proposition 2.5), on
a une correspondance entre les paraboliques du systéme de Tits pour 'inclusion
(qui sont les stabilisateurs de facettes) et les facettes de 'immeuble pour 'incidence.
Dot F C F' si et seulement si G(K)%, C G(K)F. Le méme raisonnement s’applique
également & un sous-groupe conforme arbitraire.
O

On a également des résultats de décomposition :

Lemme 2.8. Soit H un sous-groupe global de G(K). On o H = G(K)"H4¢), ot A est
un appartement de B(G) et C est une chambre dans A. Par ailleurs, H(CA ¢ = Hf4 et
HfA,C) = H}‘l’f. En particulier, on a G(K)® = G(K)*Z(K)' pour Z un sous-groupe de Levi
minimal de G.

Démonstration. L’inclusion réciproque est évidente. Etudions l'inclusion directe.
Soit h € H. Par transitivité de G(K)" sur les couples appartements-chambres, il existe
geEGK)  telqueg-C=h-Cetg-A=h-A Donch' =g lhe H(4¢)- Donc h = gh'.

Observons que H E’ ae) = Hﬁ{f puisque H? fixe les types, donc C, et donc tout A puisque

les sommets de C déterminent une base affine de A. Par ailleurs, Hﬁ{f = Hi{f car Hi(f fixe C
et donc agit trivialement sur les types. Le méme raisonnement prouve que H (c a0 = Hf4
On en déduit donc d’aprés la section 1 que G(K )l(’ Ac) est exactement le fixateur de

I'appartement étendu A x Vg C %°(G), c’est-a-dire Z(K)!, ot Z est le sous-groupe de Levi
associé a A. D’ou la derniére décomposition. O
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Ce dernier résultat permet d’en déduire une décomposition de Bruhat plus précise :

Proposition 2.9 (Décomposition de Bruhat). Prenons A un appartement de B(G) et C
une chambre de A. Soit H un sous-groupe global de G(K). On a : H=G(K)} HAG(K){.
En particulier, G(K) = G(K)} N(K)G(K)§, ot N est le normalisateur du tore déployé
mazimal de G associé a A.

Démonstration. D’apreés | , Proposition 1.4.5.(1)], il existe une décomposition de Bruhat
pour G(K)* (puisque ce dernier détermine un systéme de Tits, cf. la proposition 2.5).
Par conséquent, G(K)* = G(K)} G(K){ G(K)}.

Observons que He = H ) GK)} = GK){ H 4y puisque G(K)} agit transitive-
ment sur les appartements contenant C d’aprés le lemme 2.4. Ensuite, constatons que
Hy = H4c)G(K), puisque G(K)7 agit transitivement sur les chambres de A d’apres
également le lemme 2.4. Comme d’aprés le lemme 2.8, H = H( 4 G(K)™, on a donc fina-
lement :

H=He) (GEK); GE)LGK)E) = GEK), (Hace GK),) GK); =G(K)f HyG(K)S.
O

Prouvons maintenant quelques résultats de compatibilité des sous-groupes globaux aux
extensions non ramifiées. Avant cela, on a besoin de montrer le lemme élémentaire suivant :

Lemme 2.10. Soit G' un groupe réductif sur un corps K' et L' /K', une extension galoi-
sienne de groupe de Galois . Le sous-groupe G'(L')t est I'-invariant et on a :

G'(KNT c (G'IHHY =&'(L)T nG(K).

Démonstration. La premiére assertion provient de | , 6.1.]. En effet, 0 € I définit un

isomorphisme o : G, — G, et donc envoie G'(L')* vers G(L')". D’ott la I-invariance.
D’autre part, | , 6.1.] donne aussi G'(K')™ C G'(L')*. On a donc le résultat en

utilisant la I"-invariance. g

Ceci nous permet d’obtenir :

Proposition 2.11. On a :

(1) Tout sous-groupe global H admet un plus grand sous-groupe global respectivement
uniforme, bon, L-bon, conforme, L-conforme donné respectivement par H', HPY,
HNG(L)® H¢, HN G(L)® (et donc en particulier un plus grand sous-groupe glo-
bal respectivement trés bon et trés conforme donné par respectivement H' et H').

(2) Si H est un sous-groupe global respectivement uniforme, bon, conforme, I'-invariant
de G(L), alors HY est un sous-groupe global respectivement uniforme, L-bon,
L-conforme de G(K).

(3) Si H est un sous-groupe global T-invariant de G(L), alors H', H® et H® sont égale-
ment I'-invariants.

Démonstration.

(1) Pour le premier point, il suffit de montrer que les sous-groupes en question sont
globaux. On a d’apreés les lemmes 2.4, 2.10 et le premier point du corollaire 3.6 :

GLNH — HE

3.6.(1)
+ + b < N b c 1
G(E)™ 5 GIL)TNH 5 GIL)PNH o H H.
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(2) Puisque H' C H, il suffit seulement de montrer que G(K)* c H'. Or, on a
G(K)* S (G(L)H)T ¢ H'. Dot le résultat.

(3) Le troisiéme point se raméne au cas ot H = G(L). Pour G(L)!, cela a déja été
fait a la fin de la section 1. Pour le reste, utilisons le lemme 2.8. Etant donné un
appartement A C #(GL) et une L-chambre C C A, on a: G(L)* = G(L)*G(L){, 0
pour * € {b,c}. Or, G(L)" est T-invariant d’aprés le lemme 2.10. 11 suffit donc de
montrer que 'orbite sous Galois de G(L)E‘A c) est dans G(L)* pour tout * € {b, c}.

Or, le lemme 2.8 montre également que G(L)l(’Ac) = G(L)}L{f et que

G(L)EAC) = G(L)Y. Mais pour ¢ € T, J(G(L)}if) = G(L)}T’(fA) C G(L), et de
méme o(G(L)Y) = G(L)g(A) C G(L)®. Ceci donne donc le résultat comme voulu.
O

Introduisons quelques notations supplémentaires qui vont nous servir par la suite :

Définition 2.12. Soient H un sous-groupe global de G(K) et F une facette de type T.
Notons :

~ ™

— Eq, limage de H par & (qui induit donc H/H¢ = =g ).

— En,T, Uimage de Hr par & (qui induit donc Hr /H% = ZEg 7). Cest aussi l’ensemble
{weEy |w-T =T} puisque H* C H agit transitivement et de maniére conforme
sur les chambres (cf. définition ci-dessous).

— Orb(F) g, Vorbite de F par H.
— Orb(7T)z,, (ou méme Orb(T )y ), lorbite de T par Zg.

Généralisons maintenant la notion de facette et les objets associés. Cette généralisation est
peu cotiteuse pour la suite et ajoute une richesse supplémentaire a notre probléme général.

Définition 2.13. Appelons multifacette toute union de facettes incluse dans la méme
adhérence d’une chambre. Pour un tel objet, on peut définir le type (ou multitype, pour
insister sur le fait que cela est relatif a une multifacette) comme étant I’ensemble des types
des différentes facettes la composant. Une facette est en particulier une multifacette, et son
type s’indentifie naturellement avec son multitype.

On dit qu’une multifacette est fortement invariante par laction d’un groupe si cha-
cune des facettes la composant est invariante (il ne suffit donc pas que la multifacette soit
invariante en tant qu’objet géométrique). On définit la méme notion pour les multitypes.

On dit également qu’un groupe agissant sur B(G) par automorphismes polysimpliciauz
agit de maniére conforme sur une multifacette F s’il ’envoie sur des multifacettes de
méme type.

Si F est une multifacette de décomposition en facettes | |,y Fi, alors pour tout sous-groupe
global H de G(K), on note H(ry := H(x,),., = (Nic; HF,. Ce groupe est appelé sous-groupe
multistabilisateur de la multifacette F relativement a H.

Plus généralement, on utilise la notation (F) pour préciser que l'on regarde bien F en
tant que multifacette et non en tant que partie de limmeuble (on fait de méme pour les
multitypes).

Remarque 2.14. On voit donc que l'utilisation de multifacettes donne lieu a une plus grande
famille de sous-groupes que les seuls stabilisateurs de facettes. En particulier, cela donne
accés aux fixateurs de facettes, en prenant par exemple la multifacette associée aux sommets
incidents a une facette.
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Remarquons toutefois que, dans le cas conforme, stabiliser une facette et préserver son
type implique en fait de la fixer. Dans ce cas, le multistabilisateur d’une multifacette
dont on préserve le type n’est autre que le fixateur de 'union des facettes la composant :
la notion de multistabilisateur n’a donc d’intérét que si I'on considére des sous-groupes
globaux non conformes.

Remarque 2.15. Comme pour les facettes, l'adhérence topologique d’une multifacette
F = |J; Fi est exactement la réunion des sous-facettes des F;. En effet, cela est une
conséquence du fait que F = m =, Fi. On définit également la relation d’incidence
comme étant une inclusion au niveau des adhérences. On dit également qu'un multitype
T = {Ti,...,Tn} est incident & un autre multitype 7' = {7{,..., 7}, ce que l'on note
T < T, si pour tout T;, il existe 7;-’ tel que T; < 7;-’ (dans le sens des types usuels). Il s’avére
que, comme dans le cas des facettes, prendre le multitype est compatible avec la relation
d’incidence.

3. QUELQUES COMPLEMENTS SUR LA DESCENTE NON RAMIFIEE

Rappelons que, d’aprés Rousseau dans | , Proposition 2.4.6], le groupe de Galois T’
agit par automorphismes polysimpliciaux sur Z(G ) de maniére compatible avec I’action de
G(L) (i.e,,0(g-x) =0(g)-o(x) pour tout 0 € I', g € G(L),z € A(GL)). D’apres le théoréme
de descente modérément ramifiée (| , Proposition 5.1.1.]), 'ensemble des points fixes
s’identifie de fagon unique & #(G). On peut d’ailleurs choisir une métrique invariante sur
B(GL) (cf. | , §2.2]) de telle sorte que I' agisse par isométrie (| , Remarque
2.4.7.(f)]), et donc de telle sorte que Z(G) C ZA(GL) soit un plongement isométrique. Sous
ce choix, #(G) est également un fermé convexe de Z(Gr). En effet, I' agit contintiment sur
P(Gr) (puisqu’il agit par isométries), d’ou le caractére fermé. Le caractére convexe provient
ensuite de I'unicité de la géodésique reliant deux points (puisque I' agit par isométries).

En particulier, puisque I' agit par automorphismes polysimpliciaux, il envoie facettes
sur facettes. En outre, cette action sur les facettes se factorise en une action sur les types
(et méme sur le diagramme de Dynkin affine relatif). Il suffit en effet de voir que, étant
donné F une L-facette et g € G(L)¢, les facettes o(F) et o(g - F) ont méme type. Comme
o(g-F)=0(g) o(F) et que G(L) est I'-invariant (cf. point (3) de la proposition 2.11), on
a le résultat. Cette constatation s’étend bien entendu aux multifacettes.

Introduisons alors la définition suivante (déja présente dans | ,9.2.4]) :

Définition 3.1. On appelle T'-multifacette une L-multifacette fortement I'-invariante. En
particulier, une I'-facette est une L-facette I'-invariante.

On définit également un T'-sommet (resp. une I'-chambre) comme étant une T'-facette
minimale (resp. mazximale) parmi les T'-facettes.

Rappelons aussi que le théoréme de descente non ramifiée a été montré originellement par
Bruhat et Tits (dans | , 5.]) et généralisé par Prasad (dans | , Theorem 3.8.]).
Ce théoréme fournit un dictionnaire plus précis que le théoréme de descente modérément
ramifiée (notamment une forte compatibilité au niveau des facettes et des sous-groupes
parahoriques. Par exemple, les schémas en groupes parahoriques commutent au changement
de base non ramifié, mais pas a ceux modérés).

On se propose de développer quelques compléments & ce théoréme. Avant cela, on a besoin
de montrer le lemme suivant :
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Lemme 3.2. Soit # une I'-multifacette de B(Gp).

On a Uégalité : F N B(G) = F N B(G).

Démonstration. Prouvons d’abord le cas ou .% est une facette.

Observons déja que .# N B(G) C . F N H(G). Par conséquent, F N B(G) C F N B(G).
Montrons 'inclusion réciproque. Prenons x € .# N %(G) et y € Z N %(G). Comme F est
convexe, la géodésique [z,y] C .Z est tel que la géodésique & moitié ouverte [z, y[ soit incluse
dans .Z (cf. | , 11.§2.6. Proposition 16.]).

Par ailleurs, puisque #(G) est convexe et que z et y sont dans B(G), la géodésique
[,y] est en fait incluse dans Z(G). Par conséquent, [z, y] est incluse dans .# N AB(G). Ceci
implique que y est dans .# N A(G). D’ou l'inclusion réciproque.

Montrons maintenant le cas général. Notons .# = | |, #; la décomposition en facettes de

Z.0n a:
FNnAG) =(JF) n2G)

— Llj(ﬂ} N %(G)) = UW cas des

A facettes

UFin =(JZ)n=z(©G)

D’oit le résultat. |
On a ainsi :

Proposition 3.3. On a la correspondance G(K)-équivariante, croissante pour l'inclusion
et l'incidence, suivante :

I-multifacettes N K-multifacettes
de B(GL) [~ de B(G)
|_|Jl N |_|3?F |_|J’Z N%A(Q)
ELRNE

ot F +— F associe a une K-facette l'unique L-facette contenant son barycentre.
On a donc en particulier que, sous cette correspondance, un I'-sommet correspond & un
K-sommet et une I'-chambre correspond a une K-chambre.

Démonstration. Pour alléger la preuve, on écrit seulement le cas des facettes. Il suffit de
raisonner facette par facette pour avoir le cas des multifacettes.

Laremarque [Rou, 5.1.5.1 Remark (c)| énonce explicitement la bonne définition et méme la
surjectivité de la fleche directe au niveau des facettes. Réciproquement, pour une
K-facette F, la L-facette F est D-invariante puisqu’elle est I'unique L-facette contenant
le barycentre de F, lui-méme fixé par I'. D’ott la bonne définition de la fléche réciproque.

Prenons une I'-facette .%. Observons alors que FT = F car les deux facettes contiennent
le barycentre de .#T. Réciproquement, (F )F = F car les deux facettes contiennent le bary-
centre de F.

Notons que les deux ensembles sont G(K)-stables. La fleche directe est évidemment
G(K)-équivariante puisque tout élément de G(K) est fixé par I' et puisque l'action de T’
sur B(G1,) est compatible a 'action de G(L). La fleche réciproque 'est donc également.

La croissance pour l'inclusion est bien siir évidente dans les deux sens.
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Regardons lincidence pour la fleche directe. D’aprés le lemme 3.2 | on a
FNBG)=FNAB(G). Par conséquent, si une facette [-invariante .#’ est dans .7, alors
F' NBG) C FNABG)=FNAG). Autrement dit, F'* est incident & FT. Cest ce que
I'on voulait. o

Pour la fléche réciproque, si F C F', alors le barycentre de F est contenu dans F/ C F.

Donc F C F/ puisque F I'unique L-facette contenant le barycentre. O

Rappelons les définitions suivantes :

Définition 3.4.

(1) On dit que G est résiduellement déployé si G et Ggn ont méme rang semi-simple
relatif.

(2) On dit que G est résiduellement quasi-déployé s’il existe une K™ -chambre

I -invariante dans B(Ggnor) (ou encore s’il existe une I'™ -chambre qui est une
K™ -chambre).

On a également une correspondance au niveau des types :

Proposition 3.5.

(1) La correspondance de la proposition 3.3 préserve les types.
En particulier, l'orbite par action d’un sous-groupe global conforme de G(K) d’une

C-multifacette (resp. d’une K-multifacette) décrit exactement les T'-multifacettes de
méme L-type (resp. les K-multifacettes de méme K-type).

(2) Notons %max; le type d’une T'-chambre (qui est indépendant du choixz de la
I'-chambre). On a donc les bijections naturelles Z-équivariantes croissantes pour l'in-
clusion et l'incidence (sous un sens évident) suivante :

L-multitypes fortement _ [ Ensembles de I'-multifacettes de S (K -multitypes
[-inv. de Z(GL) dans T A(Gr) de méme L-multitype 2 de B(G)
En particulier, st G est résiduellement quasi-déployé, 'ensemble de gauche est exac-
tement celui des L-multitypes fortement T'-invariants de B(Gr).

Démonstration.

(1) Considérons deux I'-multifacettes F et F' et prenons H un sous-groupe L-conforme
de G(K) (par exemple G(K)"). Notons également F := FU et F' := (F)L.

Supposons que F et F’ soient de méme K-type. Alors, F et F' ont méme L-types.
En effet, il existe g € H tel que g - F = F'. Par bijectivité et G(K)-équivariance de
la correspondance de la proposition 3.3, on a g - F = F'. Dot le résultat puisque H
ne change pas les L-types.

Supposons maintenant que F et F' soient de méme L- type. On sait qu’il existe
g€ H tel que g-F et F " vivent dans la méme adhérence d’'une K-chambre. Notons
C la I-chambre correspondante. Or, (g - .7-") = g - F. Ceci signifie que ¢ - F et F'
sont dans I'adhérence de C par croissance. En particulier, ils vivent dans la méme
adhérence d’une L-chambre. Comme g ne change pas les L-types, cela signifie que
g- F=ZF.En particulier, g - F et F’ sont égaux. Comme g ne change pas non plus
les K-types, on en déduit que F et F’ ont le méme K-type. D’ou le résultat.
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(2) La correspondance du point (2) donnée par @ et 3 s’obtient alors en factorisant
les applications « et 8 de la proposition 3.3 au niveau des orbites par H. En ef-
fet, d’une part, 'orbite d’'une K-multifacette par H est en correspondance avec les
K-multitypes. D’autre part, 'orbite d’une I'-multifacette par H décrit des
I'-multifacettes qui sont par ailleurs de méme L-type par caractére L-conforme. Réci-
proquement, les ['-multifacettes de méme L-type sont en fait toutes décrites d’aprés
le point (1).

Prouvons maintenant la premiére bijection du point (2). Prenons une I'-chambre
C. Comme C est en correspondance avec l'ensemble des L-multitypes dans Tmax,
on peut relever un L-multitype T fortement I'invariant vivant dans Tpax €n une
L-multifacette F dans I'adhérence de C. Mais comme C est - invariant, I’orbite de F
par I reste dans C Comme 7 est fortement I'- invariant, I" agit de maniére conforme
sur j’: et donc F est fortement I-invariant. Ceci montre donc la surjectivité, I'injec-
tivité étant bien siir évidente.

Si G est résiduellement quasi-déployé, alors %max est le type d’'une L-chambre.
Ceci donne le résultat.

Enfin, notons que ces correspondances sont bien entendu G(K)-équivariantes.
Comme G(K)¢ agit trivialement sur les K-multitypes, il agit également trivialement
sur les autres ensembles et I’action se factorise donc partout par G(K)/G(K)® = E.
Ceci montre en particulier que ’orbite par I'action d’un sous-groupe global conforme
de G(K) d’une I'-multifacette décrit exactement les I'-multifacettes de méme L-type,
d’ott la seconde remarque de la proposition.

O
Etablissons maintenant quelques corollaires & la proposition 3.5 :

Corollaire 3.6.

(1) Tout sous-groupe global de G(K) qui est L-conforme est conforme. En particu-
lier, étant donné H, un sous-groupe global de G(K), on o« H N G(L) C HE¢ et
HNG(L)® c HY.

(2) Tout sous-groupe global de G(K) est conforme si et seulement s’il agit de maniére
conforme sur les I'-multifacettes de B(Gp,).

Remarque 3.7. Attention! Il est possible que l'inclusion G(K)* C G(K)¢ soit stricte, et
donc qu’un sous-groupe global conforme ne soit pas trés conforme. Un contre-exemple ot G
est Punique forme interne de PGL2 sur Q,, avec p premier (puisque H?(Q,, ug) = Z/27), est
donné en | , Example 2.6.31]. Elle est donc adjointe, anisotrope et résiduellement quasi-
déployée. Autrement dit, G(K) permute les sommets de I’échelonnage sur K™, c’est-a-dire
Aq (o).

Notons également le résultat suivant :

Proposition 3.8. Soit H un sous-groupe global T'-invariant de G(L). Prenons F une
I-multifacette de (Gr). Posons H := H' et F := F'. Alors

Démonstration. Le résultat se raméne bien évidemment au cas des facettes. Soit h € Hr
Comme () #= F C h - Fn ]-" onah-F=F. Donch e H 7. Réciproquement, si h € Hz,
prenons x € F. Alors h -z € F. Mais o(h-z) = o(h) - o(z ) = h -z pour tout o € T'. Donc
h-x € FetheHgr. O
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De ceci, on peut introduire la définition suivante :

Définition 3.9. Prenons H un sous-groupe global T™-invariant de G(K™). Posons
H:=H".
(1) Considérons F, une facette de B(G) et F sa T™facette associée par la correspon-
dance de la proposition 3.35.

(a) On dit qu’un R-modéle lisse et séparé de G ayant comme R™-points le groupe
ﬁl]_"i (resp. ﬁ}) est un schéma en groupes stabilisateur (resp. fixateur)
de F relativement a H. Il est aussi appelé un modéle de Bruhat-Tits de
Hgz (resp. HY).

(b) Son groupe des R-points est donné par (ﬁ}’:

(ITI})Fnr = H} = Hg_-) d’apres la proposition 3.8.

= Hz = Hr (resp.

(2) Supposons cette fois que F soit une multifacette.

(a) On dit qu'un R-modéle lisse et séparé de G ayant comme R" -points le groupe
H(]_’:) est un schéma en groupes multistabilisateur de F relativement a
H. I est aussi appelé un modéle de Bruhat-Tits de HF).

(b) Son groupe des R-points est donné par (]?{T(J;))Fm = H(];) = H(F) d’apres la
proposition 3.8.

Si H = G(K™), relativement & H peut étre omis dans les définitions précédentes.

Remarque 3.10. Les définitions précédentes sont bien str compatibles aux extensions algé-
briques galoisiennes non ramifiées K™ /L/K sous un sens évident.

Remarque 3.11. Un R-schéma lisse et affine est unique & isomorphisme prés si 'on fixe ses
R™-points (cf. | , Corollary 2.10.11]). Par conséquent, en reprenant les notations de la
définition, il y a au plus un seul modéle de Bruhat-Tits affine étant donné le choix de H et
de F.

La question de 'unicité dans le cas ou le modéle n’est pas affine sera discutée dans un
article ultérieur.

Remarque 3.12. Cette définition inclut en particulier les schémas en groupes définis par
Bruhat et Tits dans | | et également les schémas en groupes définis dans | . 1
inclut également les modéles de Néron des tores (qui donne donc un exemple de situation
ol le modeéle n’est pas nécessairement affine). La question de D'existence, sous certaines
hypothéses, des modéles de Bruhat-Tits (notamment lorsqu’ils ne sont pas affines) sera
abordée dans un article ultérieur.

4. RESULTATS COHOMOLOGIQUES THEORIQUES

Dans toute la suite, on note E, le morphisme type associé & G. On note également ¥

(resp. 2) le diagramme de Dynkin affine relatif de G (resp. G.).

Considérons également = (resp. Z9'), le sous-groupe d’automorphismes de Dynkin de

P (resp. .@) induit par les automorphismes polysimpliciaux d’un appartement de %AB(G)
(resp. A(Gr)) qui induisent vectoriellement un élément du groupe de Weyl vectoriel (cf.
[ , Definition 1.3.71]). Plus précisément, cette construction est indiquée dans | ,
Remark 1.3.76].
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Notons que 'action de G(L) sur #(GL,) est compatible a I'action de G(L) sur 'immeuble
vectoriel de G sur L, au sens ol cette derniére donne ’action vectorielle sous-jacente. De plus,
I’action vectorielle est, sur chaque appartement, induite par des éléments du groupe de Weyl

vectoriel, et en conséquence préserve les types vectoriels (cf. [Rou, 2.2.16.(c) Theorem.]).
Ceci implique que I'image du morphisme type sur K (resp. L) est incluse dans Z%** (resp.
—ext

=7Y).

De plus, 'action de Galois sur Z(Gp) est compatible a I'action de Galois sur I'immeuble
vectoriel sur L, et comme dans le cas affine, I'immeuble vectoriel sur K se plonge dans
I'immeuble vectoriel sur L (cf. [Rou, 2.3.1.(2) Theorem.|).

On définit également le type étendu : & un couple (F,*) composé d'une K-multifacette
et d’'un point de Vi, on associe (7, %), le couple formé du type de F et de * (vu donc dans
9 x Vi). L’action de G(K) sur (F,#) induit une action sur (7,%) donnée par
g (T,x) = (&(g) - T,g - *) et donc un morphisme £¢ associé¢, dont le noyau est par défi-
nition G(K)? := G(K)°N G(K)!. Etant donné un sous-groupe global H de G(K), on note
2¢, = ¢¢(H) = H/HP.

Bien entendu, on généralise tout cela sur L, et 'action de I' sur #°(Gp,) se factorise par
D x Ve, - On note £ le morphisme associé¢ sur L.

Commengons par le théoréme suivant :

Théoréme 4.1. Soit H un sous-groupe global T'-invariant de G(L). Notons H := HT.
Notons également Tmax, le type d’une I'-chambre.

(1) (a) Le groupe Zg est muni de l'action de I' par conjugaison (donnée par
o (wrr cowoat)), de telle sorte que l'on ait la suite evacte de I'-groupes :

1 s H° H ¢

[1]

H
(b) De méme, E% est muni de l’action de I' par conjugaison, de telle sorte 4 ce que

l’on ait la suite exacte de T'-groupes :

b ﬁge

ua

1 >

—_
—
—

~
—_

€.
H

(2) Les suites exactes précédentes donnent lieu aux suites exactes suivantes d’ensembles
poINtés :

(a) 1 —— (E5)"/EH) — HN,H) —— HYT,H) —— H'(I,Z5).

() 1 — (22)'/¢¢(H) — HY(T,H®") —— HY(T,H) —— H(I',E%.).

—H H
(8) On a les inclusions suivantes : £(H) C (Eﬁy%max)r c (EpL.
(4) Le groupe (Ef{ffmax)r agit naturellement sur 2 et induit wune fleche
(Eﬁ,%max)r — Zext,
(5) Le noyau Ker <(Eﬁfmax)r — EeXt) est donné par les éléments de (E7)" stabilisant

chacune des T-orbites de 9 dans %max, ou de maniére équivalente, stabilisant 7~'maX
et stabilisant une I'-orbite se descendant un en K-sommet spécial.
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(6) Si O admet un sommet spécial © dans Toax (par exemple si G est résiduellement
quasi-déployé), alors un élément w du noyau s’écrit 0 o ¢ = ¢po o avec 0 € T et
¢ € Aut(.@), ce dernier fizant z, les T-orbites dans Tmax €t envoyant une T-orbite
quelconque vers une autre. Par ailleurs, w est le seul élément du noyau ayant une
décomposition avec o.

(7) Le cardinal du noyau est magjorée par la taille de la T-orbite de x. En particulier,
st x est fizé par T' (par exemple s’il est hyperspécial, cf. la définition 5.1), alors le
noyau est trivial.

(8) La restriction de la fleche (27 ~ ' — B 4 £(H) a comme image E et comme

Hszax)
noyau E(HC) = H¢/(H N H). En particulier, H* = H N H€ lorsque G admet un
L-sommet spécial dans Tmax fizé par T.

Démonstration.

(1) (a) D’aprés le point (3) de la proposition 2.11, H® est un sous-groupe I'-invariant de

H. Par conséquent, Papplication h — o(h) — £(o(h)) de H vers Z - se factorise

H

par =5. On en déduit alors que l'action de I' sur H se factorise en une action de

I' sur =5 de telle sorte que la suite exacte de ’énoncé soit réalisée. La relation
i q

o(h) - F = o(h - o~ 1(F)) pour toute facette F, tout o € I' et h € H, et le

fait que tout élément de I' induit un automorphisme de Dynkin sur les types,
implique la relation £(a(h)) = oo &(h) oo™t
(b) Ce point se fait de maniére analogue au point précédent.

(2) (a) La suite exacte en cohomologie donne alors :

1 —— ()Y —— H —— (E5)" —— HY(,H®) — H'(T,H) —— H'T,Ep).

Elle implique alors la suite exacte :

1 —— §H) — (E5)" —— HNT,H®) —— HY(T,H) —— H'(T,Z7).

Et de méme, cette derniére implique la suite exacte de 1’énoncé.

(b) Ce point se fait de la méme maniére.

(3) L'inclusion £(H) C (2 i %max)r provient du fait que H envoie une I'-chambre sur une
I’-chambre.

(4) Prenons un K-appartement A et une K-chambre C dans A. Il existe un
K™-appartement A qui contient A. Considérons 'unique I'-chambre C telle que
c = (C)F. Puisque ¢ € A C A, il savére que C est dans A. Notons 4, une
K™_chambre de A telle que C soit incidente & celle-ci.

Prenons alors h € H tel que £(h) € Eg ,T;Hax)F. Ceci signifie que £(h) = &(o(h))

et que h - C est de méme type que C. Quitte a translater i par un élément de H b on
peut supposer que h- (¢, A) = (¢,.A). Ceci implique que h-C = C.

Etudions maintenant h~'a(h). Observons que :
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Ceci implique que h_la(h)~5: C. Mais, par hypothése, h~1o(h) € He. Ceci implique
que C est fixée par h=ta(h). Dot :

h-C={h-zeh-C|Voel,o(z)=ux}
—{h-zeh-C|Yoel,ho(h) o(x) =z}
—{h-zeh-C|VoeTl,o(h-z)=h-z}
=(h-O)F =c.

Par conséquent, h stabilise la K-chambre C. Ceci implique en particulier que h
stabilise le sous-espace affine de A engendré par C, c’est-a-dire le K-appartement .A.
L’élément h agit évidemment sur A par automorphismes affines.

Montrons maintenant que l’action est vectoriellement par automorphismes de
Weyl. Ceci nous donnera le résultat. En effet, rappelons que C est en correspon-
dance avec &, de sorte qu’une action sur C provenant d’une action sur A par auto-
morphismes affines qui sont vectoriellement par automorphismes de Weyl détermine
exactement une action sur & par automorphismes provenant de =Xt

Considérons V et V les espaces vectoriels associés respectivement a Aet A. D’apres
[Rou, 2.3.1.(2) Théoréme.], 'application entre les immeubles vectoriels sur K et sur
K™ est compatible a Weyl. En particulier, dans notre cas, cela signifie que l'inclusion
naturelle V C V est tel que tout élément du groupe de Weyl sur K™ restreint a V
est exactement un élément du groupe de Weyl sur K (cf. [Rou, 2.4.3.1. Définitions).
Par conséquent, puisque h agit sur V par automorphismes de Weyl d’aprés | ,
2.1.7.(b) Théoréme.|, son action induite sur V est encore par automorphismes de
Weyl.

7TmaX
dans Tmax sont en correspondance avec les sommets de . La condition équivalente

provient du fait que le seul élément de = fixant un point spécial est I'identité (cf.
[ , Remark 1.3.76]).

La description de Ker <E i F )F — Ee"t) provient du fait que les I'-orbites de 7

Comme w est dans le noyau, il envoie x sur un élément de sa I'-orbite. Autrement
dit, il existe o € I tel que w-z = o-z. Donc ¢ := o low fixe . Comme o et w fixent
les I'-orbites dans Tax, il en est de méme pour ¢. Par ailleurs, comme o~ 'wo = w,
on a également o o » = ¢ o . Enfin, comme ¢ et w envoient une I'-orbite vers une

autre, il en est de méme pour ¢.

D’apreés | , Remark 1.3.76], le morphisme w’ — w' -z de = 77 vers les points

spéciaux de 7 est injectif. On en déduit également que w est le seul élément du
noyau ayant ¢ dans sa décomposition puisque w-x = o - x.

On réutilise | , Remark 1.3.76]. Comme un élément du noyau envoie x vers un
élément de sa I'-orbite, on en déduit la majoration. Si G admet un point hyperspécial,
il est T'-invariant et son orbite est réduite a lui-méme. D’oit le résultat.
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(8) Observons quun élément &(h) € (Ez)' (pour h € H) est dans le noyau

Ker <E i %max)F — Ee"t> si et seulement il stabilise chacune des I-orbites de 2

dans Tynax d’aprés le point (5). Cela est équivalent a demander que §~ (h) stabilise les
K-types d’aprés la proposition 3.5, ou encore que h € H€. Le noyau est donc donné
par £(H¢). Notons que Ker(£) = H¢. Par ailleurs, le point (1) du corollaire 3.6 donne
que HN H® C H®. D'ou H®/(H N H®) = £(H®).

D’aprés la proposition 3.5, le groupe H NH¢ agit transitivement sur les I'-chambres,
puisqu’agit transitivement sur les K-chambres. En conséquence, tout élément de
£ (H) provient d'un h € H qui stabilise une certaine I'-chambre C. Comme vu dans
le point (4), laction de h sur C' détermine I'image de £(h) dans 2. Or, cette
action n’est autre que P’action naturelle de h sur la K-chambre C'' dans I'immeuble
B(G) =2 B(Gr)'. Par définition, cette action définit un élément de Zp, et bien
entendu, tout élément de Zx s’obtient de cette maniére.

D’aprés le point (7), si G admet un L-sommet spécial dans Tpax fixé par T,

alors le noyau Ker <E 0T )F — EEXt) est trivial. En conséquence, {(H€), et donc

H¢/(H N H¢) est trivial. Ceci implique D'égalite H¢ = H N HC.
t

Remarque 4.2. 11 existe des situations oul %max ne contient aucun sommet spécial de 2. En ef-
fet, posons ¢ = X? + X2 + X§ + X2 et considérons la forme quadratique
q = qo(X1,X2, X3, X4) + tqo(X], X5, X5, X)) dans R((t)). Elle est anisotrope de discri-
minant 1, donc Spin(g) est un groupe anisotrope simplement connexe absolument presque

simple de type 'Dy. Son indice de Tits affine est donné par :}S(: , d’ou le contre-exemple

voulu puisque le point central n’est pas spécial dans Dy d’aprés | , Table 1.3.5].

En effet, observons en premier lieu qu'’il y a une inclusion naturelle de SO(qy) x SO(qo)
dans SO(q) sur R((t)). Cette inclusion se reléve en un morphisme au niveau des revétements
simplement connexes Spin(go) X Spin(qp) — Spin(g) d’aprés | , Exercise 6.5.2.(iii)]. On
constate ensuite que le noyau p du relevé est inclus dans Ker (Spin(go) x Spin(go) — SO(qo) x SO(qo)) :
en conséquence g est un sous-groupe de type multiplicatif fini déployé central.

Notons P 'unique schéma en groupes parahorique de Spin(q) sur R[[t]]. Puisque Spin(q)
est anisotrope sur R((¢)) et simplement connexe, on a P(R][[t]]) = Spin(q)(R((¢))) d’apres
[ , 5.2.10.(i) Proposition.|. Par ailleurs, comme g est défini et régulier sur R[[t]], le
groupe (Spin(go) x Spin(qo))/p est défini et réductif sur R[[¢]]. On le note alors Q.

Montrons ensuite qu’il existe un morphisme Q — P de R[[t]]-schémas en groupes étendant
les inclusions (Spin(go) x Spin(4o)),/s — Spin(q) et Q(R])) C P(RI[]) = Spin(g) (R((1))).
Il suffit pour cela de montrer que Q est étoffé (cf. | , 1.7.1. Définition.]).

D’aprés | , 1.7.2], il suffit de montrer que Q vérifie (ET 1) et (ET 2). | , 1.7.3]
nous donne déja que (ET 1) est satisfait. (ET 2) signifie que I'image de Q(R) vers Q(k) est
schématiquement dense dans Q.. Comme Q est lisse et R hensélien, cela revient a montrer

que Q(k) est schématiquement dense dans Q, d’apreés le lemme de Hensel (| , Lemma
8.1.3]). Cela est vrai d’apres | , Theorem 17.93].

Comme Q est réductif sur R[[¢]] et qu’il est de rang 4, il admet R[[t]]-tore maximal T de
rang 4. L’application induite T — P a un noyau de type multiplicatif d’aprés | , Exp.

IX, Théoréme 6.8.]. Or, ce dernier est trivial sur la fibre générique : il est donc trivial d’aprés
[ , Exp. IX, Remarque 1.4.1.b)|. En conséquence, T' — P et en particulier le rang de
Pc est d’au moins 4.
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Egalement, comme le groupe est anisotrope, son indice affine contient qu’une seule orbite
distinguée. Enfin, d’aprés | , 3.5.2.], l'indice de Tits du quotient réductif de Pr est
obtenu en supprimant tous les sommets associés a la facette de P dans l'indice de Tits affine
de Spin(g) (en outre, 'unique orbite distinguée). Notons d’ailleurs que I'indice de Tits affine
de Spin(q) admet 5 sommets. L’observation précédente sur le rang montre qu'un sommet
est au plus supprimé, et donc que l'orbite distinguée est réduite & un point.

11 reste donc a éliminer le cas de figure suivant : _» (modulo rotation). Supposons, en

raisonnant par I’absurde, que son indice soit de cette forme. Cela signifie que Spin(q) admet
un point hyperspécial (cf. la définition 5.1) et donc un modéle réductif G sur R[[¢]] (cf. le
lemme 5.2). Considérons alors une forme quadratique réguliére ¢’ sur R tel que Gg = Spin(q’)
(G est simplement connexe). Grace a l'inclusion R — R[[t]], ceci définit un groupe réductif
Spin(q’) sur R[[¢]].

Les deux groupes G et Spin(q’) sont alors des formes de Sping qui coincident sur R.
Or, d’apres | , Exp. XXIV, Proposition 8.1.(ii)], puisque Aut(Sping) est lisse, on a
H'(R[[t]], Aut(Sping)) = H'(R, Aut(Sping)). On en déduit alors que G et Spin(q’) sont
isomorphes.

En particulier, on a un isomorphisme entre Spin(q’) et Spin(g) sur R((¢)). Montrons alors
que ceci implique que ¢’ et ¢ sont équivalents & homothétie par un scalaire de R((¢)) pres.
De ceci, on en déduit alors une absurdité car ¢ n’est pas réguliére lorsque 1’on réduit modulo
t, et donc pas réguliére sur R[[t]], contrairement a ¢’

D’apreés | , (44.8) Theorem.|, il y a une équivalence de catégories entre les algébres
trialitaires et les groupes simplement connexes de type D4 au travers de T' — Spin(7).
En l'occurrence, dans le cadre de groupes de type 'Dy, les choses se simplifient gran-
dement. On considére les algébres a involutions (Mg(R((%))),*) et (Mg(R((¢))),*") avec
x 1= X = MyUX My et ¥ = X — My "X My, ot My et My sont respectivement
les matrices des formes quadratiques ¢ et ¢’. Les groupes "Spin" associés sont simplement
Spin(q) et Spin(q¢’). Les algebres sont donc isomorphes. Pour conclure, on utilise ensuite
| , (12.34) Proposition.] qui donne que (Mg(R((%))),*) et (Mg(R((¢))),*’) sont des
algeébres a involutions isomorphes si et seulement si g et ¢’ sont équivalentes a homothétie
prés.

Montrons maintenant le théoréme suivant, qui est au cceur de cette partie :
ie[ﬁ; de B(GL) ou chaque 5; est

T-invariant. Prenons H C G(L), un sous-groupe global T'-invariant et posons H := HT.
Choisissons *, un point quelconque de la partie vectorielle Vi de B°(Q).

Théoréme 4.3. Soit Q une union disjointe de parties | |

(1) On a les isomorphismes naturels (ou les quotients considérés sont des quotients d’ac-
tions) :
(a) (Orb(D)ien) )" /H = Ker (HYT, g, ) — H'(T, H)).
(b) (Orb()ier. ) ) /H = Ker (H\T, Hly | ) — HY(D,H)).
L’action sur les familles est celle terme a terme.

(2) Prenons cette fois une I'-multifacette F de type T. On a les isomorphismes suivants
induits en passant aux types :

(a) (OD(F)) )" /H 5 ({0 T < T | w € Z5)7) / Eir,
(b) (Orb((F),=)7) /H = ({(w Twe#) [we T < Trax  w € E%}F> =
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Démonstration.
(1) (a) Le résultat provient de | , 1.§5.4., Corollaire 1.]. En effet, il suffit
d’appliquer le tout au I'-morphisme H( Sier H, et d’observer que

H/H(ﬁ')'e =~ Orb((€ )ier) - en tant que I'-ensemble muni d'une action de

H (terme a terme).
(b) Le second point se prouve de la méme maniére. En effet, il suffit d’observer que
B oo = Hi@ier
(2) (a) Notons déja que la fleche (Orb((j-:))ﬁ)F = {w-T < Tmax | w € B} est
bien définie puisque toute I'-multifacette est incident & une I'-chambre, et cette
incidence passe aux types. Par ailleurs, d’aprés la proposition 3.5, 'action de H
sur les types fortement I-invariants se factorise par Z¥. Ceci prouve la bonne
définition de la fleche de I’énoncé.
Montrons linjectivité. Prenons ¢,¢/ € H tels que g - F et ¢ - F soient
I-fortement invariants. Supposons également qu’il existe h € H tel que h-(g- F )
et g - . F aient méme L- type. D’apres la proposition 3.5, cela signifie qu’il existe
hy € HY tel que (hbhg) . F et ¢’ - F soient égaux. Puisque hy h € H, cela signifie
donc que g - F et g - . F sont dans la méme orbite par H. D’ou l'injectivité.

Montrons maintenant la surjectivité. Prenons 5 une I'-chambre tel que F soit
incident a celle-ci. Soit h € H tel que &(h)- T soit un type fortement I'-invariant
incident a Tmax Il se reléve en la L-multifacette h - }' que 'on peut supposer
incident & C quitte a bouger h par un élément de HP.

Soit donc o € . On a alors o(h - ) incident a ¢(C) = C. Or, comme &(h) - T
est [-invariant, a(h‘]?) est également de ce type. On a donc O'(h‘.f) et h-F de
méme type dans CN, ils sont donc égaux en tant que multifacette. Par conséquent,
h - F est [-fortement invariant et la surjectivité est prouvée comme voulu.

(b) Comme précédemment, la fléche (définie en prenant le type sur le premier fac-
teur), est bien définie pour les mémes raisons. Ajoutons également que I’action
de H sur I'ensemble de gauche se factorise par =%, car H b c H¢ agit trivia-
lement sur les types fortement I'-invariants (comme montré précédemment),
et H® ¢ H' agit trivialement sur * € V. La preuve de l'injectivité et de la
surjectivité se fait, mutatis mutandis, comme le cas précédent.

O

Remarque 4.4. En combinant le point (1) et le point (2) dans le cadre d’une multifacette,
on en déduit que les noyaux du point (1) ne dépendent que des types, plus précisément que
du diagramme de Dynkin affine relatif sur L muni de son action de Galois et I'ensemble de
sommets Tmax (ce que 'on pourrait appeler un L/K-indice de Tits affine) et de 'action de
H dessus.

Pour réaliser des calculs dans le cas ou L = K™, on peut notamment s’aider de la classi-
fication des indices de Tits affines faite dans | , 4. Classification.] pour les corps locaux,
ou encore de la récente classification des groupes résiduellement quasi-déployés lorsque & est
parfait dans [Rou, 6.5.13].

On peut également déterminer la liste des indices de Tits affines dans le cas hyperspé-
cial (cf. définition 5.1), et donc réaliser un calcul, en utilisant la liste des indices de Tits
(classiques) dans | | sur lequel on adjoint un point hyperspécial a I’aide de la liste des
diagrammes de Dynkin affines (cf. | , Table 1.3.4 / 1.3.5]).
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Remarque 4.5. Les deux ensembles du point (2) (a) du théoréme 4.3 sont donc finis puisqu’il
y a un nombre fini de types distincts.

Remarque 4.6. Si G est semi-simple simplement connexe, quasi-déployé sur K™, il a déja été
prouvé dans | , 5.2.10.(i))] que (Orb(F)gg=n))"" /G(K) = 1 pour toute

I'™-facette F. On peut aussi le déduire de | , 5.2.10.(1)] (qui dit que G(K™) est
conforme) et du point (2) (a) du théoréme 4.3.

On déduit du théoréme 4.3 les cas particuliers suivants :

Corollaire 4.7. Soit F une D-multifacette de B(Gpr). Prenons H C G(L) global,
T-invariant, et agissant de maniére conforme sur F. On a :

Ker (Hl(r,ﬁ(ﬁ)) = Hl(r,ﬁf)) — 1

Démonstration. Notons '7~1 le type de F. L’hypothése signifie que H agit trivialement sur
T . Par conséquent, (Orb(T) f])F est trivial. On conclut alors grace au théoréme 4.3. O

Corollaire 4.8. Prenons H C G(L), un sous-groupe global T-invariant. Soit C une
I'-chambre de Z(GL). On a :

Ker <H1(F,}~IC~) ~ HMT, ﬁ)) ~ 1.

Démonstration. Notons %max, le type de C. D’apres le théoréme 4.3, le noyau de I’énoncé est
égal au sous-ensemble de (Orb(Tmax) )" composé des types incidents & Tmax. Cet ensemble

est donc bien évidemment réduit a {'?:max}. O

Attardons-nous maintenant sur quelques résultats exprimant dans quelle mesure 1’exten-
sion L/K peut étre changée pour les calculs de cohomologie.

Lemme 4.9. Supposons que G ait méme rang relatif sur L que sur K. Prenons S un K-tore
déployé mazimal. Notons Z = Zg(S) et N := Ng(S). Prenons également un sous-groupe
global T-invariant H de G(L) contenant Z(L)" (ou de manicre équivalente, G(L)®) et notons

H := H". On a les assertions suivantes :
(1) La fleche naturelle (H N N(K))/Z(K)' — (HNN(L))/Z(L)" est un isomorphisme.

(2) L’immeuble °(G) s’identifie canoniquement a un sous-ensemble de B°(GrL) qui
envoie un appartement sur K sur un appartement I'-invariant sur L.

(3) Considérons A lappartement étendu associé a S dans B°(G) C #B°(GL). Le point
(1) signifie également que H 4 et H 4 ont la méme image dans Aut,g(A).

—e ~v e

(4) On a les isomorphismes naturels =y = =5 et =¢; = ES.

Démonstration. Notons que H contient Z(L)! si et seulement s’il contient G(L)? puisque ce
dernier vaut G(L)TZ(L)! d’aprés le lemme 2.8.

(1) On a le diagramme commutatif a lignes exactes suivant :

1 —— (HNN(K))/(HNZ(K)) — (HNN(K))/Z(K)! —— (HNZ(K))/Z(K)! —— 1

[ [ [

1 —— (HNN(L)/(HN Z(K)) — (HNN(L))/Z(L)* —— (HN Z(L))/Z(L)! — 1.
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Notons déja que N(K)/Z(K) — N(L)/Z(L) est un isomorphisme puisque N/Z
est un groupe fini constant (cf. | , 25.16]). Comme HZ(K) = G(K) et
fIZ(L) = G(K) (puisque G(K)*Z(K) = G(K) et G(L)"Z(L) = G(L) d’aprés
[ , 6.11.(i) Proposition.|), HNN (K) (resp. ﬁIﬂN(L)) se surjecte dans N(K)/Z(K)
(resp. N(L)/Z(L)). Ceci donne que la fleche verticale de gauche est un isomorphisme.

Prenons une base B de caractéres de Z. Elle est donc de cardinal r, ol r est le rang
relatif de G sur K. Comme il a méme rang relatif sur L, il s’agit également d’une
base de caractéres de Zy. La fleche z — (v(x(2)))yes définit un isomorphisme de
Z(K)/Z(K)! vers Z". Comme L/K est non ramifié, elle s’étend en un isomorphisme
Z(L)/Z(L)! = Z". D’ott un isomorphisme naturel Z(K)/Z(K)' = Z(L)/Z(L).
Etant donné h € H N Z(L), il existe donc z € Z(K) et 2! € Z(L)* tel que h = zz".
Comme Z(L)! C H, il savére que z € Z(K) N H = Z(K) N H. Ceci prouve donc
que la fleche verticale de droite est un isomorphisme.

En conclusion, la fléche verticale centrale est un isomorphisme puisque c’est le cas
des fleches de gauche et de droite. D’out I'isomorphisme souhaité.

Il s’agit d’une conséquence immédiate de | , Proposition 2.3.1.| et du théoréme
de descente non ramifiée.

Rappelons que 'on a une fléche d’action N (L) — Aut,g(A) dont le noyau est Z(L)*
(cf. fin de la section 1). D’aprés le point précédent, cette fleche est compatible a celle
associée a N(K). Il suffit alors d’observer que Hy = H N N(K) et Hy = HNN(L)
pour conclure grace au point (1).

Observons tout d’abord que H® = HN H et que H¢ = H°N H. En effet, c’est
une conséquence de la proposition 3.5 puisque I' agit trivialement sur %°(Gr) et
donc sur les types, et 'égalité des rangs relatifs signifie que toute L-chambre est une
K-chambre. En d’autres termes, étre conforme sur L est équivalent a étre conforme
sur K.

Montrons alors que H = HHY pour conclure. Cela impliquera bien entendu
H = HH¢. Comme Z(L)' € H, on a en fait H® = G(L)’. Le point (1) dit que
(HNN(K))Z(L)' = (HNN(L)) = Hy. En multipliant par G(L)* et en utilisant
le lemme 2.8, on obtient (H N N(K)) G(L)’? = H4 G(L)t = H. D’ou le résultat.

O

Proposition 4.10. Considérons L'/ K, une extension galoisienne non ramifiée contenant L
de groupe de Galois T". Supposons que G ait le méme rang relatif sur L' que sur L. Soit F',
une I'"-multifacette. Elle induit une T'-multifacette que l’on note F.

Prenons également un sous-groupe global T-invariant H' de G(L') contenant G(L')®, et

notons H := (H')®L'/L) ot H .= (H)'. On a les égalités :

(1) (a) Ker( (T, HY) — H\(T, ﬁ)) — Ker (Hl(r' (ﬁ')C) o Hl(r',ﬁ')).
(b) Ker (HY(T, HY) — H\(T, H)) = Ker (H'(I', (')") — HY(I', 1))

(2) (a) Ker (H1 ) — H\(T, )) Ker (H1 ) — HN(I, H’))
(b) Ker (Hl (C, L) — H(T, )) Ker <H1 L) = HY(T, H’))
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Démonstration. Observons que L'/ L est galoisien. D’aprés le lemme 4.9, puisque G a méme
rang relatif sur L' que sur L, l'inclusion #°(G) C #°(G}/) envoie un appartement sur un
appartement invariant par Gal(L’/L). Cette inclusion est donc telle que T" et T agissent de
la méme maniére sur les L-types (qui donc sont en correspondance avec les L'-types). Par
ailleurs, notons qu’une IV-chambre est naturellement une I'-chambre, de sorte que le type
Tonax €st le méme sur L et sur L. Notons alors que facette F nlest autre que I'image de F

sous cette inclusion.
(1) (a) D’apres le point (2) du théoréme 4.1 (et son caractére fonctoriel), il suffit de
montrer que la fleche (25)"/ E§(H) — (2 H,)F/ /€' (H) est un isomorphisme. C’est
une conséquence immédiate de I'isomorphisme =5 ) 7 d’aprés le point (4)
du lemme 4.9, ce dernier isomorphisme identifiant également £(H) avec &(H).

(b) Ce cas se traite de la méme maniére.

(2) (a) On a le diagramme commutatif suivant d’aprés le point (2) (a) du théoréme
4.3 :

Ker (Hl(r, Hz) — Hl(r,fi)) —  Ker (Hl(r’,ﬁa ) = Hl(r',ﬁ’))
| [
(Orb(F)5)'/H (Orb(F") »

| i

({w T < T | w € Eﬁ}F) i — ({w T < T | w € :ﬁ,}F’) i

IR
IR

) /H

aof

R

et la derniére fléche horizontale est un isomorphisme d’aprés le point (4) du
lemme 4.9 puisque ce dernier donne =5 — =5,.
(b) Ce cas se traite de maniére analogue.

O

Remarque 4.11. On peut en particulier appliquer cette proposition lorsque L' = K™ et
avec une extension galoisienne finie L/K telle que G a méme rang sur L que sur K™. En
conséquence, les noyaux sont triviaux si G est déployé sur K, ou encore si G est semi-simple
et résiduellement déployé.

Les noyaux sont également triviaux dans le cas ot G est un groupe absolument presque
simple quasi-déployé sur K et déployée par une extension totalement ramifiée, car dans ce
cas, GG est résiduellement déployé. En effet, un groupe quasi-déployé admet une K-extension
galoisienne déployante minimale K’ (qui n’est autre que l'extension galoisienne de groupe
de Galois le noyau de la x-action). Cette extension est totalement ramifiée par hypothése.
En conséquence, G est résiduellement déployé car, dans le cas contraire, il existerait une
extension non ramifiée entre K et K'.

Notons que, d’apreés | , 2.9. Calculs galoisiens.|, étant donné un R-schéma en groupes
G, tout I'-cocycle dans Z1(T', G(Ry)) (ot Ry, est 'anneau d’entiers de L) définit un G-torseur
sur R, et donc un élément de H'(R, G) (en fait, tout G-torseur sur R trivialisé sur Ry, provient
d’un unique tel cocycle d’aprés | , Lemme 2.2.1.]). De méme, un cocycle de Z1(T', G(L))
définit un élément de H'(K, G). Par ailleurs, deux torseurs sont isomorphes si et seulement
si les cocycles associés sont cohomologues.
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On définit donc le tordu de G par un cocycle z € ZY(T',G(Ry)), noté *G, comme étant le
tordu au travers du torseur qu'il induit (cf. | , 2.1.]). On définit de méme le tordu de
G par un cocycle de Z}(T', G(L)). Deux cocycles cohomologues induisent bien entendu des
tordus isomorphes.

Notons enfin que tordre G par un cocycle z € ZT,G(Ry)) est compatible a la torsion
de G(Ry,) par le méme cocycle dans le sens suivant : (*G)(Ry) est égal a *(G(Ry)) en tant
que I'-module (il en est bien sir de méme pour G).

Terminons cette section avec quelques propriétés sur le comportement par torsion par un
cocycle de I'immeuble, des facettes, et des stabilisateurs :

Proposition 4.12. Prenons un cocycle z € Z*(I',G(L)).

(1) Les tordus *G(L) et *#(G) sont tels que d’une part, *G(L) soit G(L) muni de l’ac-
tion donnée par oxg := z(0)a(g)z(o)~, et d’autre part, tel que *B(G1) soit B(GL)
muni de l'action o x x = z(o)o(x). Par ailleurs, ces deux actions sont compatibles,
autrement dit : ox(g-x) = (0% g)- (0 %x). De plus, (*%B(GL))" s’identifie o B(*G).

(2) Soit 2’ un cocycle cohomologue & z via un élément gy € G(L) (de telle sorte a ce que
2 =0 gytz(0)a(go)). Alors on a les isomorphismes suivants :

~

“G(L) 3 *G(L) t Y B(Gr) S *B(GL)
e
g 9099y " T g

ot le premier isomorphisme est un isomorphisme de I'-groupes, et ot le second iso-

. . . . !
morphisme est un isomorphisme de I' x G(L)-ensembles. Par ailleurs, *G et * G sont
1somorphes.

Démonstration.

(1) Il s’agit d’une conséquence immeédiate de | , 5.3. Torsion| et notamment de
[ , Proposition 34.| pour la compatibilité. En effet, Z(Gr) peut étre vu comme
un I-ensemble muni d’une action compatible du I'-groupe G(K™).

Pour ce qui est des points fixes, cela provient du théoréme de descente modérément
ramifiée (| , Proposition 5.1.1.]), notant que *G est réductif sur K puisque 'est
sur L, et du fait que (*G)(L) = #*(G(L)) en tant que I'-groupes.

(2) La vérification est immédiate. Pour ce qui est de I'isomorphisme entre *G et 7@ , cela
est une conséquence du fait que z et 2’ proviennent de torseurs isomorphes puisqu’ils
sont cohomologues.

O
Proposition 4.13. Prenons F une D-multifacette de B(GL) et z € Z(T, G(L)(f)). Ecri-

vons F = LLlier fi, sa décomposition en I'-facettes et notons F = | |;c; Fi la K-multifacette
associée. Le cocycle z définit pour tout i € I une classe dans Z'(T',G(L) =) et dans Z*(I', G(L))
que l'on note aussi z. Alors :

(1) La multifacette tordue *F est également compatible & *%B(Gr), dans le sens sui-
vant : F est I'-fortement invariante pour l'action * introduite dans le point (1) la
proposition 4.12 et le T' X G(L)(ﬁ)-ensemble induit est exactement *F. L’ensemble

des points fizes est noté *F. Ce dernier est une multifacette de B(*G) et admet la
décomposition en facettes *F = | |, * F;.
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(2) Soit 2 € ZI(F,G(L)(J:_)) un cocycle cohomologue a z dans Z*(T',G(L)), donc via
un élément go € G(L) (de telle sorte a ce que 2’ = o + gy 2(0)a(go)). Alors
lisomorphisme du point (2) de la proposition /.12 envoie ZF sur la facette go]-N" qui
est I'-invariante dans *%B(GL). En conséquence, *F est envoyé sur (gof)r.

En particulier, si gy € G(L)(ﬁ) (et donc z et 2’ sont cohomologues dans Z*(T, G(L)(]j.)),
alors #' F est envoyé sur *F (et *F sur * F).

Démonstration.

(1) Comme précédemment, on utilise | . 5.3. Torsion]. Puisque F est fortement
I'-invariante et que G (L)( ) opére sur F de maniére compatible a I, on peut consi-

dérer le tordu a . On obtient de méme les = F; pour tout ¢ € I. Comme, pour tout
i€l ,onaF, CF C AB(GL) en tant que I' X G(L), = -ensembles, alors de méme,

(F)
*Fi C *F C *#A(GL) en tant que I' x G(L)(ﬁ)—ensembles. D’ou la compatibilité
et la forte T-invariance de *F. La proposition 3.3 nous dit alors que *F est une
multifacette de #(*G) de décomposition | |;c; *F;.
(2) La vérification est immeédiate.
(|

Proposition 4.14. Prenons ﬁ, un sous-groupe global T'-invariant de G(L) et posons
H := H". Prenons également z € ZY(I', H). On a :

Supposons de plus que z € Z*(T, H

(1) Le sous-groupe *H := (*H)¥ est global dans (*G)(K).

(]_"Z)) (qui définit bien entendu un cocycle dans Z*(T, G(L)(]_":))

et dans Z*(T, H) que Uon note aussi z). On a :

Démonstration. Observons que les groupes tordus *H (

(2) Le sous-groupe “H ry 1= (zﬁ(f_))r est le multistabilisateur de *F dans #B(*G) rela-
tivement a *H. Autrement dit, *H ) = (*H) - r).

(3) Supposons que L = K™. Si de plus Hry admet un modéle de Bruhat-Tits H r),
alors (*H)=r) €galement et un est donné par *H x).

7y “Hz, pour tout i € I, “H et *G(L)

sont munis de I'-actions compatibles. Notons aussi que “H est global puisque son groupe
sous-jacent est H.

(1) Comme “H est global, #H est aussi global d’aprés le point (2) de la proposition 2.11.
our ce qui est du multistabilisateur, on observe d’aprés la proposition 3.8 et la
2) P i d Itistabili b d’ 1 ition 3.8 et 1
compatibilité des I'-groupes :
(3) Supposons maintenant que H (7) admette un modele de Bruhat-Tits H ). Observons

alors que le groupe “H r) a comme R™-points (muni de sa -action) *H G et donc
comme R-points *H(z) = (*H)-r). C'est donc bien un modéle de Bruhat-Tits de

(CH):r)-
]
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5. CAS DES POINTS HYPERSPECIAUX
Intéressons-nous au cas des points hyperspéciaux. Rappelons la définition :

Définition 5.1. On dit que x € B(G) est un point hyperspécial de G si G est déployé sur
K™ et si x est un sommet spécial de B(Ggn) (via Uidentification B(G) = B(Gror)' ).

La notion de point hyperspécial dépend donc du I'™-ensemble Z(G gnr), mais également
de G. Notons aussi qu’un point hyperspécial est un sommet de Z(G) d’aprés la proposition
3.3. Rappelons maintenant quelques résultats reliant les points hyperspéciaux et les modéles
réductifs :

Lemme 5.2. Soit G un groupe réductif sur K et x un point hyperspécial de G (le groupe G
est donc déployé sur K™ ). On a les énoncés suivants :

(1) Le modéle de Bruhat-Tits affine de G(K). est réductif (@ fibres connezes) sur R.

x

(2) Réciproquement, tout modéle réductif de G s’obtient de cette maniére.

(8) En particulier, si G est un R-groupe réductif, alors D(G) (resp. G) est K -anisotrope
si et seulement si G(R) = G(K)! (resp. G(R) = G(K)).

Démonstration.

(1) Par définition, le point x est spécial dans Z(Ggnr). D’aprés | , 4.6.22.] et
[ ,4.6.28.(ii)], le modéle affine associé a G(K™)L est réductif (& fibres connexes).
Comme le modéle affine de G(K). est simplement le descendu & R (qui existe en
utilisant le procédé | , 5.1.30.] puisque = est I -invariant), on a le résultat.

(2) Réciproquement, | , 4.6.31.] nous dit qu'un modele réductif G de G est iso-
morphe sur R™ au schéma associé a G(K™). pour un certain point spécial

r € B(Ggn). Comme G est défini sur R, G(K™). est I'-invariant et donc

x

G(K™)! = G(K“r)é(z) pour tout o € I'"™. D’aprés le point (3) de la proposition
2.7, x est donc aussi ™ -invariant. Il provient donc d’un point sur Z(G) qui est
donc hyperspécial et alors G(R) = G(K)..
(3) Enfin, si D(G) est anisotrope, G(R) est le stabilisateur sous Paction de G(K)! de
I'unique point (hyperspécial) de %(G). C’est donc exactement G(K)!. Si de plus G

est anisotrope, G(K)! = G(K) et on a le résultat.
Réciproquement, si G(R) = G(K), alors G(K) est borné, et donc ne peut pas
contenir 'image d’un K-cocaractére (qui est non borné). Donc G est K-anisotrope.
Si cette fois G(R) = G(K)!, alors D(G)(K) C G(K)! est borné et on raisonne

comme précédemment.

O
On en déduit donc :

Proposition 5.3. Soit G, un groupe réductif sur R. Les propriétés suivantes sont équiva-
lentes :

(1) D(G) (resp. G) est anisotrope sur k.

(2) D(QG) (resp. G) est anisotrope sur K.

(3) G(R) = G(K)! (resp. G(R) = G(K)).

Démonstration. L’équivalence entre (2) et (3) est une conséquence du lemme 5.2. Montrons
maintenant que (1) et (2) sont équivalents.
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Rappelons que G est isogéne & D(G) x R(G), de telle sorte a ce qu’il y a une correspondance
entre les cocaractéres non centraux de G et les cocaractéres de D(G), et les cocaractéres
centraux et les cocaractéres de R(G).

Rappelons d’aprés la décomposition de | , Exp. XXVI, Corollaire 3.5.] que le
R-schéma des sous-groupes paraboliques propres de G, noté Par(G)*' est lisse et projec-
tif. D’aprés le critére valuatif de propreté, on a Par(G)*(R) = Par(G)*(K). Or, on a une
fleche naturelle Par(G)*(R) — Par(G)* (k). Par conséquent, si Par(G)*(K) est non vide,
alors Par(G) ™ (x) aussi. Donc si G a un cocaractére non central sur K, alors il en a un sur
K.

Or, la lissité permet également d’utiliser le lemme de Hensel, de telle sorte que la fléche
Par(G)T(R) — Par(G)* (k) est surjective. On a donc finalement :

Par(G)*(K) = Par(G) " (R) - Par(G) " (k)

Par conséquent, si G n’admet aucun parabolique propre sur K, alors il n’en admet pas
non plus sur x. Autrement dit, si G n’a pas de cocaractére non central sur K, alors il n’en
admet pas non plus sur k.

Maintenant, occupons-nous des caractéres centraux. On peut revenir au cas d’'un tore T'.
C’est une conséquence immeédiate du fait que :

HOII]Knr (Gm,Knr y TKnr) & HOH’anr (GmJ%nr, TRnr) :> HOIIl,is (Gm’,ﬂs y THS)
en tant que ™ -groupes, puisque T est déployé sur R™. U

Ceci étant, le cas des tores peut étre compris assez facilement grace au lemme suivant.
Ce lemme semble étre connu de certains spécialistes, mais on n’en a pas trouvé de référence
dans la littérature.

Lemme 5.4. Soit un K-tore déployé sur K™ . Il admet donc un modele torique sur R que
Pon note T'. Considérons le I'"™ -groupe T° := Hom gur (Gyy,, gur, Tior).

(1) On a un isomorphisme canonique de I'™ -modules :
T(K™)' x T° = T(R™) x T° = T(K™).
(2) Pour touti>1, on a :
Ker (H/(I™,T(K™)") — H/(I™,T(K™))) = 0.
Démonstration.
(1) On a la suite exacte naturelle de I -groupes :
0 —— (R™)* —— (K™)* —— Z —— 0.

Elle est scindée par 1 — 7 (ou 7 est une uniformisante de K, et donc aussi de K™).

Cette section est I''-invariante. En tensorisant la suite exacte précédente par fo,
on obtient la suite exacte de I'""-groupes :

0 — T(R™) —— T(K™) > T° > 0.

car on a des isomorphismes canoniques T° ®z (R™)* = T(R™) et
T° @z (K™)* = T(K™) donnés par # ® x — 6(z). Elle est aussi scindée par
00— 0xm=0+— 0(r), section qui est aussi [™-invariante. D’ott I'isomorphisme de
I'™-modules.

Notons d’ailleurs que, par définition de la suite exacte, on a T(R™) = T(K™)!.
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(2) Ce point provient alors du fait que cet isomorphisme induit I'isomorphisme cano-
nique :

Hi(l-\nr’ T(Rnr)) % Hi(l-\nr’ fO) o~ Hi(l—\nr’ T(Knr))
et donc l'injectivité voulue.

O

Notons que Bruhat et Tits ont déja traité le cas des points hyperspéciaux lorsque G est
semi-simple dans | , 5.2.14. Proposition.]. On peut en fait ajuster leur preuve pour
inclure le cas réductif :

Proposition 5.5. Soit x un point hyperspécial de G. On a :
Ker (H(I™,G(K™)}) — HY(I'™,G(K™))) = 1.

Démonstration. Rappelons que, comme x est hyperspécial, il s’agit d’un sommet a la fois
dans #(G) et dans B(Ggnr). Prenons T = (x, A), un point de B°(G). Grace au théoréme
4.3, la question revient a montrer que (Orb(Z)g(xn)' /G(K) = 1.

Prenons alors un point y = (y, ) de #°(G) tel qu'il existe g € G(K™) tel que g -7 = 7.
On observe alors que y est un sommet hyperspécial. Comme G(K)* agit transitivement
sur les K-chambres et est trés conforme, il existe ¢ € G(K)* tel que 2/ := ¢’ - x soit
toujours hyperspécial et tel que 2’ et y soient dans la méme adhérence d’une K-chambre (et
donc méme adhérence d'une K™-chambre, que 'on note C). Par ailleurs, ¢’ - A = \ puisque
G(K)T ¢ G(K)!. Quitte & remplacer T := (z,)) par (z',\), on peut donc supposer cela.
On peut en fait supposer que z, y et méme C vivent dans un K™ -appartement spécial (de
telle sorte & ce que le K™ -tore déployé maximal associé T' soit défini sur K et contienne un
K-tore déployé maximal). Comme G est déployé sur K™, le tore T" est un K™ -tore maximal,
et donc est également son propre centralisateur.

Notons T := G(K™)/}. Notons N(K™) le normalisateur associé & I'appartement spécial.
La décomposition de Bruhat (proposition 2.9) donne alors que G(K™) = Z N(K™)Z. On
peut donc écrire g = ini’ avec des notations évidentes. Par conséquent, in¢ - T = 7. Donc
n-T =y puisque Z fixe T et 7 (car fixant la chambre oi1 ils sont et Z C G(K™)!).

Par ailleurs, puisque z est spécial sur K™, G(K™)% N N(K™) se surjecte sur le groupe de
Weyl (vectoriel) de Ggnr, c’est a dire N(K™)/T(K™) (cf. | , 4.6.22.]). 11 existe donc
n' € G(K™)% N N(K™) tel que n et n ont méme image dans le groupe de Weyl. Autrement
dit, t :=nn/~t € T(K™). Or, n’~! .7 =%. Donc t - T = n - 7.

Considérons o + t~1 o(t). Il s’agit d’un cobord dans BY(I'™, T'(K™)) et également d’un
cocycle dans Z1(T™, T (K™ )!). En effet :

t-

T=y=0y)=0(t-7)=0(t) =

puisque T et ¥ sont ['-invariants. Par conséquent, t~!o(t) fixe . Or, T(K™) agit par
translation sur 'appartement (étendu). Donc s’il fixe T, il fixe appartement (étendu). Cela
signifie que I'on a en fait t~!o(t) € T(K™)!. La classe de cohomologie associée vit donc
dans

Ker (H'(I™, T(K™)') — H' (™, T(K™)) .

Ce noyau est en fait trivial d’aprés le lemme 5.4. Par conséquent, il existe t' € T(K™)! tel
que 0 — t71o(t) = 0 — t'"La(t'), ou encore tel que t#'~! soit ™ -invariant, et donc vit
dans G(K). Par conséquent, t¢'~1 .7 = t.T = 7. Donc T et § sont dans la méme orbite sous
G(K). O
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Remarque 5.6. On ala factorisation H!(I'™, G(K™)L) — HY(I'™, G(K™)!) — HY(I'™, G(K™)).
Le théoréme précédent implique donc :

Ker (H'(I'™, G(K™);) — H'(I'™,G(K™)")) = 1.

Une démonstration alternative de ce résultat peut étre aussi obtenu en reprenant la preuve
précédente avec 'immeuble réduit.

Remarque 5.7. Tl n’est toutefois pas toujours vrai que Ker( H(T'™, G(K™)!) — HY(I'™, G(K™)))
soit trivial, méme si G admet un point hyperspécial. Considérons I’exemple suivant :

Soit D une algébre a division de degré d sur un corps k. Considérons ici K = k((t)). Grace
a la proposition 5.3 appliqué & GL1 (D ®y, k[[t]]), 'algébre D définit une algébre a division
D ®y k((t)) sur k((t)). Elle est par ailleurs déployée sur K™ . Prenons ici G = GL1(D)k
(qui admet d’ailleurs le modele réductif G = GL1(D)y)- Le groupe GLi(D)gnr admet
un unique caractére donné par la norme réduite. Par conséquent, GL1(D)(K™)! est donné
par le noyau de la valuation de la norme réduite sur K™ (qui est surjectif puisque D est
déployée sur K™").

Observons également que, puisque D est de dimension finie sur k, on a les isomorphismes
canoniques D ®y k((t)) = D((t)) et D ®y k[[t]] = DI[t]].

Or, on a la décomposition :

(D @k k(1)) = k(1)) (D @k k[[t]) "

En effet, un élément de D((t))* s’écrit t'x avec x de réduction modulo ¢ non nulle. On note
xg € D* cette réduction. Cela donne la décomposition voulue. En effet, t* € k((t))* et
est de la forme 2o(1 — ty) avec y € D([[t]], dont V'inverse est (3725 (ty)*)zy ' € DI[t]].

Par conséquent, 'image de (D ®y k((t)))* par la valuation de la norme réduite est donnée
par k((t))* puisque (D ®y k[[t]])* est borné. Comme la norme sur k((t)) est compatible avec
la norme réduite de Dy ()), on a que I'image est finalement dZ (cf. | , Theorem 1.4.]).
La suite exacte en cohomologie implique alors :

Ker(HY(T'™, G(K™)Y) — HY(I'™,G(K™))) = Z/dZ # 1.

Remarque 5.8. 11 s’avére que Ker(H(I'™, G(K™),) — HY(T™,G(K™))) n’est pas toujours
trivial. Un contre-exemple est donné dans | , 5.2.15. Remarque.|. Explicitons cela.

Prenons lextension L/K = C((t))/R((t)), et h la forme hermitienne donnée par
2121 — 2222. On prend G = U(h) (aussi noté U(1,1)). C’est une forme quasi-déployée de GLq
qui vérifie d'une part D(G) = SU(h) = SLg, et d’autre part Z(G) = RIL/K(Gm), qui n’est pas
déployé. En fait, G est résiduellement déployé, de telle sorte que B(G) = B(Gr) = B(SLa).

D’aprés le théoréeme 4.3, il suffit de trouver deux points hyperspéciaux dans la méme
orbite par G(L) et dont les types ne soient pas conjugués par G(K) pour que le noyau soit
non nul.

Comme dit plus haut, 'immeuble de G est exactement celui de SLy. Son diagramme de
Dynkin affine relatif est donné par e—e dont les deux sommets sont spéciaux (cf. | ,
4.2.23.] et | , (1.4.6)]).

Ces deux points ne sont cependant pas conjugués dans G(K). En fait, ce dernier agit
en préservant les types. En effet, d'une part on a G(K) = G(K)! puisque le radical de
G est anisotrope. D’autre part, comme G = GLg, le morphisme de Kottwitz de G (cf.
[ , Chapter 11]) est obtenu en restreignant celui de GLg. Pour les mémes raisons que la
remarque 1.4, on conclut que G(K)" = G(K)! et donc que G(K) agit trivialement sur les

types.
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Pour GLg, on a le méme diagramme de Dynkin. Les deux sommets du diagramme sont
d’ailleurs fixes par Galois, car dans le cas contraire, la descente non ramifiée nous dirait que
le diagramme de G serait composé d’'un unique point. Les deux sommets du diagramme de
G sont donc hyperspéciaux.

I1 suffit maintenant de trouver deux sommets de types différents conjugués par GLy(L).
Cela a déja été fait dans la remarque 1.4. Ceci conclut donc.

6. APPLICATION : CAS DES GROUPES ADJOINTS QUASI-DEPLOYES

Terminons enfin cet article en utilisant tout ce que 'on a montré dans les parties précé-
dentes pour calculer de maniére exacte les noyaux

Ker (Hl(Fnr, G(Knr)g_’:) — Hl(rnra G(Knr)))

et
Ker (H'(I™, G(K™) z) — H'(I'™, G(K™)))

pour les K-groupes G semi-simples adjoints et quasi-déployés sur K, et ou F est une
I'-facette de I'immeuble B(G gur).

Occupons-nous d’abord du cas des sous-groupes parahoriques. D’aprés | , 5.2.12.
Proposition.|, les sous-groupes parahoriques sur K sont donnés par les stabilisateurs de
facettes sous l'action de la composante résiduellement neutre G(K)Y. Or, puisque G est
quasi-déployé et adjoint, on a le lemme suivant :

Lemme 6.1. On a les égalités : G(K)? = G(K)® = G(K)°.

Démonstration. Notons que, puisque G est semi-simple, 'immeuble étendu est égal & I'im-
meuble réduit et donc G(K)* = G(K)°.

Soit 7' un K-tore maximal contenant un tore déployé maximal. D’apreés | , 4.4.16.
Proposition.|, il s’agit d’un tore induit. Son schéma canonique (c’est-a-dire son modeéle de
Néron de type fini) est donc lisse et connexe. Ses R-points sont donnés par T(K)!.

Par ailleurs, d’apres | , 5.2.11.], G(K)? est engendré par G(K)" et les R-points
de la composante de I'identité du schéma canonique de T, c’est-a-dire ici T(K)! d’aprés la
discussion précédente.

Or, d’aprés le lemme 2.8, G(K)” = G(K)* T(K)!'. D'ou G(K)? = G(K)". O

La question se rameéne alors & se demander si la fléche composée suivante a un noyau
trivial :

Hl (11nr7 G(Knr)%) N Hl(rnr, G(Knr)C) N Hl(rnr, G(Knr))
pour F, une facette ™ -invariante de (G genr).

La premiére fléche est de noyau trivial d’aprés le corollaire 4.7. Intéressons-nous alors a
la seconde fléche.

Pour cela, on a besoin de démontrer que tout groupe réductif quasi-déployé est résiduel-
lement quasi-déployé. Cela est déja connu lorsque le corps résiduel k est parfait (cf. | ,
Proposition 9.10.5]). Il s’avére que le résultat subsiste en général, mais notre preuve nécessite
d’utiliser la théorie des groupes pseudo-réductifs (i.e. des groupes avec un radical unipotent
trivial sur le corps de base).
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Rappelons qu’un sous-groupe pseudo-parabolique d’un groupe pseudo-réductif est appelé
pseudo sous-groupe de Borel s’il est un pseudo-parabolique minimal sur la cléture séparable.
C’est en fait équivalent a exiger que ce soit un pseudo parabolique résoluble. Un groupe
pseudo-réductif possédant un pseudo sous-groupe de Borel est dit quasi-déployé. Dans ce
cas, tous ces sous-groupes pseudo-paraboliques minimaux sont des pseudo sous-groupes de
Borel puisqu’ils sont conjugués. Tout ceci est expliqué au début de | , Section C.2]).

Ces définitions s’étendent naturellement au cas des groupes lisses connexes affines puisqu’il
y a une correspondance entre ses sous-groupes pseudo-paraboliques et ceux de son quotient
pseudo-réductif maximal (cf. | , Proposition 2.2.10]).

Par ailleurs, introduisons (en toute généralité) la définition suivante :

Définition 6.2. Supposons que le modéle de Bruhat-Tits affine de G(K)}_- existe.
On le note Qlf. On définit alors le schéma en groupes parahorique (resp. le
sous-groupe parahorique) associé o une facette F de B(G) comme étant G% = (GL)°

(resp. G(K)F := (95)°(R)).

Remarque 6.3. Notons les schémas en groupes affines Q}_- sont construits par Bruhat et Tits
dans le cas ou G est quasi-déployé sur K™ dans | , 5.1.30.].

Ceci étant, cette définition coincide avec la définition de | | dans le cas quasi-déployé
sur K™, En effet, d’une part, dans le cas quasi-déployé, | , 4.6.21. Proposition. (ii)]
combiné avec | , 4.6.26.] et | , 4.6.28. Proposition.] implique que (G%)° est bien
le schéma en groupes parahorique associé au sous-groupe parahorique de | , 5.2.6.
Définition.]. En général, comme indiqué dans | , 5.1.30.], les schémas se descendent
sur R et ses R-points sont les sous-groupes parahoriques d’aprés le dernier paragraphe de
| , 5.2.8. Proposition.].

On peut donc proposer une généralisation de | , Proposition 9.10.1], qui donne des
propositions équivalentes au fait d’étre résiduellement quasi-déployé :

Proposition 6.4. Soit G un groupe réductif sur K, quasi-déployé sur K™ . Les propositions
suivantes sont équivalentes :

(1) Il existe une K-chambre C tel que le r-groupe (G). est résoluble.

(2) Il existe une K™ -chambre ™ -invariante dans B(G gnr).

(8) Toute T™ -chambre dans B(Ggnr) est une K™ -chambre T™ -invariante.

(4) Pour toute K-chambre C, le r-groupe (G3), est résoluble.

5) Pour toute K -facette, le k-groupe (G%),. est quasi-déployé.

) group F q pLoy

Démonstration.

(1) = (2) La K-chambre C provient d’une I™-chambre C. Elle provient d’une I'"™-chambre C
qui est donc une K™-chambre. Cela induit une compatibilité (gg) pee = G2 donc
(GQ)rs = (gg),@s et ce dernier est donc résoluble. Il ne posséde donc pas de sous-
groupe parabolique non trivial. D’aprés la correspondance paraboliques-parahoriques
sur K™ (| , 5.1.32.(i) Proposition.]), on en déduit que C est une K™ -chambre.

(2) = (3) D’aprés la proposition 3.3, les I'™-chambres sont G(K)-conjugués puisque les
K-chambres le sont. Par conséquent, si une I'"*-chambre est une K™ -chambre, alors
toutes les I'""-chambres le sont par conjugaison.
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(3) = (4) Prenons une K-chambre C. Elle provient d'une I'™-chambre C qui est donc une
K™ -chambre. Comme précédemment, on a (GQ).s = (gg),{s. Ce dernier groupe ne
posséde pas de sous-groupe parabolique non trivial et est donc résoluble d’aprés
| , Proposition 3.5.1.(4)], puisque son quotient pseudo-réductif est pseudo-
déployé.

(4) = (1) Clest trivial.

(4) = (5) Soit F, une K-facette et C, une K-chambre contenant F. D’aprés la correspondance
paraboliques-parahoriques, 'image de (gg),{ — (g(])_-),{ est un sous-groupe pseudo-
parabolique de (Q%)H. Par hypothése, il est résoluble. Donc (g%) « est quasi-déployé.

5) = (4) Réciproquement, prenons une K-chambre C. Par hypothése, (G2),. est quasi-déployé.
proq b yp C q ploy
Il est donc résoluble car il n’admet aucun sous-groupe pseudo-parabolique non trivial.

0

Remarque 6.5. L’hypothése de quasi-déploiement sur K™ intervient notamment dans la
preuve pour utiliser la correspondance paraboliques-parahoriques. On ignore si la corres-
pondance reste valide en général, et donc a fortiori si 'hypothése de quasi-déploiement sur
K™ peut étre supprimée.

On en déduit alors le résultat que 1’on souhaite :
Proposition 6.6. Tout K-groupe réductif quasi-déployé est résiduellement quasi-déployé.

Démonstration. Prenons un groupe réductif G quasi-déployé. D’aprés la proposition 6.4, il
suffit de montrer que, pour toute facette K-facette F, le k-groupe (g%) « est quasi-déployé.

Prenons S, un tore déployé maximal de G. Son centralisateur dans G est un tore 7.
D’aprés | , 4.6.4.(i1) Proposition.| et | , 4.6.26.], G% admet un unique sous-tore
déployé fermé S de fibre générique S et son centralisateur 7 dans Q% est la composante
de l'identité du modeéle de Néron de T. En particulier, le centralisateur de S, est 7, qui
est commutatif. Prenons alors un cocaractére A tel que le centralisateur de son image dans
G soit celui de Sy, c’est-a-dire T,. Le sous-groupe pseudo-parabolique associé & A est donc
résoluble. Cela prouve que (g%) « est quasi-déployé. O

Revenons a notre probléme. Notons pour la suite £™ le morphisme type sur K™, et ="

Iimage de G(K™) par ce morphisme. On peut alors prouver la trivialité du noyau de la
seconde fléche :

Proposition 6.7. On a l’égalité €™ (G(K)) = (E™)™ et le fait que ces deux groupes soient
canoniquement isomorphes a 2. En conséquence :

Ker (H'(I'™, G(K™)°) — H'(I'™, G(K™))) = 1.

Démonstration. Notons que G est résiduellement quasi-déployé d’aprés la proposition 6.6.
Par conséquent, d’aprés le point (4) du théoréme 4.1, il y a un morphisme canonique
()™ =t Sa restriction a "(G(K)) a comme image =, qui vaut dans notre cas
de figure = d’apres | , Proposition 6.6.2]. Le morphisme canonique précédent est
donc surjectif.

Par ailleurs, puisque G est quasi-déployé, il admet un sommet spécial qui le reste aprés
passage a n’importe quelle extension séparable. En effet, le cas déployé est évident. On ob-
tient alors le cas général par descente quasi-déployée (cf. | , 4.2.3.-4.2.4.], une valuation
de Chevalley sur un groupe déployé représente un point spécial, et cette valuation, donc ce
point, se descend).

Le point (7) du théoréme 4.1 dit alors que Ker ((E")!™" — =) est trivial.
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On en déduit donc finalement que €™ (G(K)) et (Z™)™ sont isomorphes a 2 A travers
le méme morphisme, de telle sorte a ce que €™ (G(K)) = (E™)I™ comme voulu. La trivialité
du noyau provient alors du point (2) du théoréme 4.1. O

De tout ceci, on en déduit finalement le théoréme :
Théoréme 6.8. Soit G un groupe semi-simple adjoint et quasi-déployé sur K. On a :
Ker (H'(I™, G(K™)}) — H'(I™, G(K™))) = 1
ot F est une facette T -invariante de Uimmeuble B(Ggnr).

Intéressons-nous cette fois au cas des stabilisateurs de facettes. On souhaite alors déter-
miner le noyau de 'application :

Hl(l—\nr’ G(Knr) ) N Hl(rnr G(Knr))
pour F, une facette I -invariante de (G gcnr).
La stratégie est de se ramener au cas absolument presque simple et de réaliser des calculs
explicites.
Notons G := [[,c; Gi, la décomposition de G en produit de groupes K-presque simples.
On a alors la bijection equlvarlante et compatible a Galois : B(G o) 2 [[;c; B(Giror), et

donc une décomposition F= II Fi en facettes I™-invariantes. Ceci donne alors :

i€l

Ker (H'(I™, G(K™) z) — H'(I"™, G(K™))) = [] Ker (H'(I™, Gi(K™) z) — H'(I™, G/(K™)) ) .
i€l

Le probléme se raméne alors au cas ot G est un K-groupe K-presque simple. Il s’écrit

donc G := Ry, x(G") ou G’ est un L-groupe adjoint absolument presque simple et L/K

est une extension finie séparable. Le calcul du noyau se raméne ensuite au cas absolument
presque simple grace au lemme suivant :

Lemme 6.9. Soit L/K, une extension finie séparable et H' un groupe réductif sur L.
Notons T} := Gal(L™ /L) et H := Ry x(H'). Prenons une facette I'"" -invariante F dans
PB(Hgnr). Elle induit une K -facette dans B(H) = B(H'), et correspond alors a une facette
I} -invariante F' dans B(Hun). On a alors les identifications :

Hl(rnr’H(Knr)) — Hl( %er/(Lnr))
HY(I™, H(K™)z) = H' (T}, H'(L™) 7)
et ce, de maniere fonctorielle, de telle sorte que :
Ker (H'(I™, H(K™)z) — H'(I™, H(K™))) = Ker (H'(I'f', H'(L™) z) — H'(I'f", H'(L™))) .

Démonstration. Remarquons que Hynr est donné par Ryg . gorjgnr (Hpg  gonr)-

Posons L, := K" N L, 'extension maximale non ramifiée de K dans L. On a alors :
L®p, K™= LK™ = [ Considérons I'identification T := Gal(L™ /L) = Gal(K™ /Ly,).
Il s’agit d’un sous-groupe ouvert de I'™. Posons ¥ := Hompg (Ly,, K™) et observons les
isomorphismes de I'"™-modules suivants :

Knr ®K L = (Knr ®K Lnr) ®Lnr L = (H UKnr) ®Lm' L
oceY

~ H(UKnr L. L) o H onr

ceEY oEY
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Or, comme K™ /L, est séparable, ¥ se reléve dans I'™". Notons toujours 3 un de ses
relevés. Il s’agit alors d'un ensemble de représentants dans I'™" pour I'™"/I"}". On peut donc
utiliser le lemme de Shapiro (en cohomologie des groupes) :

Hl(rnr’H(Knr)) — Hl(rnr’Hl(Knr QK L)) —_ Hl(rnr7 H aHl(Lnr)) — Hl( Er’Hl(Lnr)).
oeX
Occupons-nous désormais de H'(T'™, H(K"™)z). Notons que :

R,L@KKnr/Knr(Hi®KKnr) — H O-R,Lnr/Knr(Hinr).
oceX

La compatibilité des immeubles aux restrictions de Weil séparables (cf. preuve de | ,
Proposition 5.1.5.|) et au produit donne les bijections équivariantes et compatibles a Galois :

B(Hieor) = [ BORLwejgene (Hpr)) 22 [ 7B (Hipm).

oEX [

Notons que F est I'image de F dans Z(H 7ar) (C'est & dire en regardant le facteur tel que

o = id). Dans ce cas, I'image de F sous la correspondance ci-dessus est (".7? "oex. Cette iden-
tification induit alors I'identification : H(K™)z = [[,ex “7H (L"), 7 = [L,ex “(H'(L™) 5,).
On peut donc une fois de plus appliquer le lemme de Shapiro :
HNT™, H(K™) ) = HN(T™, [[ 7(H'(L™) 7)) = H'(TF, H'(L™) 7).
oeEY
La fonctorialité de 'isomorphisme de Shapiro permet d’en déduire ’égalité des noyaux vou-
lue. O

Continuons notre investigation. D’aprés la remarque 4.11, les groupes semi-simples rési-
duellement déployés sont tels que le noyau

Hl(rnr’ G(Knr)]’_:) N Hl(rnr7G(Knr))

est trivial pour toute I'"-facette F. Comme on s’est ramené au cas absolument presque
simple, et que G est quasi-déployé, cela élimine donc les groupes déployés, et les groupes
de la forme 2X, déployés par une extension (quadratique) ramifiée (comme expliqué dans
la remarque 4.11). Par ailleurs, on remarque que les groupes de type 5Dy et 3D4 ont méme
rang, on peut donc éliminer la situation d’un groupe de type 9D, devenant de type 3Dy
sur K™. Enfin, puisqu’un groupe de type 6Dy est déployé par une extension de groupe de
Galois S3, il n’existe aucune extension galoisienne telle qu’il devienne de type 2Dj.

Il ne reste donc que les groupes de type 2Eg, 24, (pour n > 1), 2D,, (pour n > 4), 3Dy
et 9D, déployés sur K™ & traiter.

Ensuite, comme G est quasi-déployé, il est résiduellement quasi-déployé d’apres la proposi-
tion 6.6, et donc Tmax, le type dune I'"-chambre, est exactement le type d’une
K™ -chambre. Le point (2) (a) du théoréme 4.3 se simplifie alors en :

Ker (H(I'™, G(K™) 7) — H'(I'™, G(K™))) = (Orb(T)zm)™ /2

ot T est le K" -type de F.

Par ailleurs, puisque G est quasi-déployé et adjoint, d’aprés la proposition 6.7, on a
—_ —_ —_ —_ nr —_ 1 BN .
B o= =%t et 2 = () = 2 On utilise donc de maniére interchangeable les no-
nr ot —ext

*—4Kn1‘
tations = et = (resp. = 2%, ) dans la suite.
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Récoltons quelques données au sujet des cas restants. La liste en | , 4.2.23.] permet
alors de déterminer les échelonnages sur K, et méme plus précisément l'action de Galois sur
I’échelonnage sur K™, et la liste | , Remark 1.3.76] donne les diagrammes de Dynkin
affines associés et les groupes = et =Z™. On en déduit alors la table 1.

Notons que 'on a rajouté des numérotations sur certains diagrammes pour faciliter les
raisonnements dans la suite.

Commencons par le type 24, (pour n > 1) :

Proposition 6.10. Considérons le diagramme de Dynkin affine de type A, (pour n > 1)
muni de l'action de Galois I'™ donnée par la symétrie aziale de la table 1. Son =™ wvaut
alors Z/(n+ 1)Z et est donné par la rotation décrite dans la table 1. Considérons un type T
de ce diagramme et notons m le cardinal de son orbite par 2™ (on a donc m |n+1). On
a:

— Sim est impair, alors (Orb(T )zar )™

est trivial.

— Sim est pair, alors n + 1 aussi, [’'ensemble (Orb(T )znr)
on a de plus les cas suivants :

— Si ’%1 est impair, alors (Orb(T)zn )T /2 est trivial.

™ contient 2 éléments, et

— Sinon, si "L est pair, alors (Orb(T)zer )™ /2 contient 2 éléments.

En particulier, (Orb(T)zn )™ /2 est trivial sin # 3 (mod 4).

Démonstration. Pour le type A,, le groupe des automorphismes est donné par le groupe
diédral. Il est donc donné par la présentation (r,o | 7"+t = 1,02 = 1,070 = r~!). Le groupe
EM associé est alors le sous-groupe engendré par r (qui est donc Z/(n+ 1)Z), et I'™ agit au
travers du sous-groupe engendré par o.

Considérons donc un type ' -invariant 7~’, qui est donc donné par un sous-ensemble de
sommets. Essayons de voir si 'orbite de T par =™ admet un autre type I -invariant. Soit
77 un éventuel type de la sorte. Considérons m € N*, le plus petit entier strictement positif
tel que r™ . T =T (c’est aussi le cardinal de I'orbite par Z7).

Considérons donc k € {0, ...,m — 1} tel que " - T = T'. Comme T’ est [™-invariant, on
aoc-T' =T Onadonc :

Tk~%=%'za-%':0-(rk-%):Jrk-(a-%)zarko-%:r_k-%
On conclut donc que r2* - T = T. Comme 2k € {0,...,2m — 2}, ou bien 2k = 0, ou bien

2k = m par minimalité de m : c’est a dire K = 0 ou k = 7. Si m est impair, la seconde
possibilité est a proscrire et seul donc k = 0 est valide. Sinon, les deux possibilités sont
valides. Il y a donc 1 élément ™" -invariants dans 'orbite de 7 par Z™ si m est impair, et 2

sinon.

Comme m | n+ 1, si n est pair, alors m est toujours impair. Par conséquent, il y a donc 1
élément ™ -invariants dans lorbite de T par Z™. Etudions maintenant le cas ott n = 2n’/+1
est impair et ot m = 2m’ est pair. On a donc m’ | n’ + 1.

Considérons maintenant =, qui, selon la table 1, n’est autre que le groupe <r”/+1>.
Quand est-ce que T et T/ =r™ . T sont conjugués par cette rotation? On a :

’ n/+1

! ~ ! ~ ~ ! ~
P T =™ T = ™ e T =™ T
R . . rn/+1 ’ . /= ~ ~
Si 2l — ntl egt impair, alors 7™ w7 = r™ puisque r*™ - T =™ . T =T, et dans ce

cas ’égalité est satisfaite. On en déduit alors que T et T sont conjugués par cette rotation.
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TABLE 1. Diagrammes de Dynkin affines, actions de ="', actions de Galois, et actions de = pour des groupes déployés sur K™.

Type =m Générateurs de =™ Générateur de I'™" = Générateur de
2A
2n
(n> 1) Z)2nZ 0
“Aan-1 Z)2n +1)Z
(n>1)
T
M.U !
2n 2 d
(n>2) (Z.)27) v
T 2
) 1
Dap—1
(n > 3) 7./A7 VV‘ .
2

3Dy et 6D, (Z.)27.)?

2FEs 7./37
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. . . 4l ~ -~ . .
Dans le cas contraire, si %‘1 est pair, on a " w” - T = T. Il faut donc satisfaire

T =™ . T. Cela est impossible par minimalité de m. Les deux types T et T’ ne sont alors
pas conjugués par cette rotation. On a donc considéré tous les cas. ]

Remarque 6.11. | , 5.2.13| donne un exemple de groupe quasi-déployé adjoint G de type
2A3 et déployé par une extension non ramifitee avec une I-facette F tel que
(Orb(j-:)g(L )''/G(K) est non trivial, et donc, d’aprés le point (1) (a) du théoréme 4.3, tel que
Ker (HY(I',G(L) ) = H'(T',G(L)) est non trivial.

Le calcul precedent généralise en fait ce résultat Dans I'exemple | , 5.2.13], on choisit
en fait une I -aréte tel que son orbite par =" soit de cardinal m = "‘H =2=2

la proposition précédente permet de conclure que (Orb(T)z= )" /= admet deux éléments.
Occupons-nous maintenant du cas du type 2D,, (pour n > 4).

Pour cela, on a besoin des morphismes introduits dans la table 1, c’est a dire 7,7, 0 et .
Ils sont par ailleurs définis peu importe si n est pair ou impair. Plus précisément, 7 est la
symeétrie par rapport a I’axe vertical central, 7/ est la symétrie par rapport a ’axe horizontal
(ou la rotation des deux branches extrémales), o est la rotation de la branche 3 —4, et ¢ est
en fait 7 o 0. Notons d’ailleurs que ¢? = 7.

Introduisons également le symbole & pour désigner la "concaténation de types". Autre-
ment dit, a deux types, cela associe le type donné par I'union des sommets composant chacun
des types.

On peut alors formuler le résultat :

Proposition 6.12. Considérons le digramme de Dynkin affine de type D,, (pour n > 4)
muni des actions indiquées par la table 1 (pour Dy, on regarde le cas non trialitaire). Prenons
T un type ' -invariant de ce diagramme. Il s’écrit alors SBR ot S est un type sans les
quatre sommets numérotés de la table 1 (donc T™ -invariant) et R, un type I -invariant
dont les sommets sont parmi les quatre sommets numérotés. Alors on a :

(1) Si R admet zéro ou quatre sommets, alors :
(a) SiT(S) =38, alors les ensembles (Orb(T)zae )™ et (Orb(T)ze)I™ /2 sont tous
deuz triviauz.

(b) Sinon, ils sont tous deuz de cardinal 2.

(2) Si R admet un nombre impair de sommets, alors Uensemble (Orb(T )z )I™" est de
cardinal 2 et (Orb(T)zne )l /2 est trivial.

(3) Si R admet deuz sommets, alors les ensembles (Orb(T)=ur)T™ et (Orb(T)=mr )™ /2
sont tous deux de cardinal 2.

Démonstration. Bien entendu, puisque T et S sont '™ -invariants, il en est de méme pour
R. On observe alors que les seules possibilités pour R sont :

0,(1),(2),(1,2),(3,4),(1,3,4),(2,3,4),(1,2,3,4)

Il faut donc traiter chacun de ces cas.

Observons par ailleurs que l'orbite de T sous (p) est la méme que sous (7,7’). En effet,
cela est une conséquence du fait que ¢ = 700 et p? = 7’. En conséquence, les calculs sont
les mémes peu importe si n est pair ou impair.
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De rapides calculs grace a la table 1 permettent alors d’obtenir :

(1) R = 0. On trouve que (Orb(7T)zn)I™ = {S,7(S)}. Il est donc trivial si et seulement
si S = 7(S). On observe ensuite qu’il en est de méme pour (Orb(7T)zar)!™ /Z.

(2) R € {(1),(2)}. On trouve que (Orb(T)=)™ = {S® (1),S @ (2)}. On observe
ensuite que (Orb(7)zu )t /= est trivial.

(3) R=(1, 2). On trouve (Orb(T)zee )™ = {S®(1,2), 7(S)®(3,4)}. On observe ensuite
que (Orb(T)za )™ /= admet deux éléments.
)

(4) R = (3,4 . On trouve (Orb(T)zer)I™ = {S&(3,4), 7(S)®(1,2)}. On observe ensuite
que (Orb(7T)=zar)!™ /= admet deux éléments.

(5) R €{(1,3,4),(2,3,4)}. On trouve (Orb(T)==)I"" = {S&(1,3,4),S&(2,3,4)}. On
observe ensuite que (Orb(7 )z )™ /= est trivial.

(6) R = (1,2,3,4). On trouve (Orb(7)=w)"" = {S & (1,2,3,4),7(S) & (1,2,3,4)}. 1I
est donc trivial si et seulement si S = 7(S5). On observe ensuite qu’il en est de méme
pour (Orb(7T)za )™ /Z.

Ceci conclut donc. O

Proposition 6.13. Considérons le diagramme de Dynkin affine de type D4 muni de l’action
de Galois T™ donnée, ou bien par la rotation de 3 points, ou bien toutes les permutations
possibles de ces 3 points (autrement dit le cas trialitaire de la table 1). Son groupe Z™ vaut

alors (Z/27)2. On a alors que (Orb(T)zn )" est trivial pour tout type de ce diagramme.

Démonstration. Réutilisons la numérotation de la table 1. On identifie un type avec le n-
uplet de ses points. Observons alors que les seuls types I'"™-invariants sont (0), (1), (0,1),
(2,3,4), (0,2,3,4), (1,2,3,4) et (0,1,2,3,4). Comme l'action par E" préserve la taille des
types, on peut déja dire que (Orb(7T )zn:)I™ est trivial pour 7 dans {(0, 1), (2,3,4), (0,1,2,3,4)}.
Comme (0) est fixe par =", on peut également éliminer (0) et (1). De méme, tout type dans
Porbite de (0,2,3,4) par =" doit contenir 0, donc (1,2, 3,4) ne peut pas étre dans 'orbite.
On a donc traité tous les cas et (Orb(7T )z )I™ est trivial pour tout type I™-invariant 7. [

Proposition 6.14. Considérons le diagramme de Dynkin affine de type Eg muni de l'action

de Galois T™ donnée par la symétrie axiale de la table 1. Son Z™ vaut Z/37 et est donné
Fl’]r

par la rotation décrite dans la table 1. On a alors que (Orb(7 )znr)
type de ce diagramme.

est trivial pour tout

Démonstration. La preuve est essentiellement la méme que pour le cas A,,. Soit 7~', un type
de ce diagramme. Prenons r € Z* et ¢ € I'™". Une fois encore, on a cor =r?o0. Sir-T
est I'™-invariant, il est tel que :

r-T=(or) T=0G%0)T=r(c-T)=r>-T

En conséquence, T =r-T =72-T et donc (Orb(7 )= )™ est trivial. O
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Résumons tout ceci grace au tableau 2 (en reprenant les notations des propositions pré-
cédentes) :

Type de G #(Orb(T )z )™ #(Orb(T)=m)™ /2
m impair : 1
2A,, déployé sur K™* m impair : 1
m pair et ”7“ impair : 1
(pour n > 1) m pair : 2
m pair et ”7“ pair : 2

o _ T(S) =S et #R € {0,4} : 1
7(S) =S et #R € {0,4} : 1

2D,, déployé sur K™ L N 7(S) #S et #R € {0,4} : 2
7(S) #S et #R € {0,4} : 2 N
(pour n > 4) N #R € {1,3}: 1
#R ={1,2,3} : 2 i
#R =2: 2
Autres types 1 1

TABLE 2. Résumé des calculs précédents.

On observe en particulier que seules les valeurs 1 ou 2 sont présentes, et que 2 n’apparait
que lorsque G est de type 244,13 (pour n > 0) ou 2D,, (pour n > 4), déployé sur K™.

En conclusion, on obtient le théoréme suivant :

Théoréme 6.15. Soit G un groupe semi-simple adjoint et quasi-déployé sur K. Soit égale-
ment F, une facette T™ -invariante de l'immeuble B(G gnr). Alors le noyau :

Ker (H'(I'™,G(K™) z) — H'(I'™,G(K™))

est de cardinal 2% ou k est un entier majoré par le nombre de facteurs restriction de Weil
d’un groupe absolument presque simple de type 2D,, (pour n > 4) ou 2Agnys (pour n > 0)
déployé par une extension non ramifiée.

Remarque 6.16. Bien entendu, il est possible de calculer explicitement ce noyau en se rédui-
sant au cas absolument presque simple grace a la compatibilité du noyau au produit et a la
restriction de Weil (cf. le lemme 6.9) et en utilisant la table 2.
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