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Introduction

Cet article a pour objectif de développer les aspects cohomologiques de la théorie de
Bruhat-Tits. Il peut être vu comme un complément à [BT87].

Rappelons que l’étude cohomologique de [BT87] est concentrée sur les cocycles aniso-
tropes (cf. [BT87, 3.6.]) et les résultats de décomposition qui en découlent (cf. [BT87, 3.12.
Théorème.]). Cet article vise une toute autre problématique que l’on explique ci-dessous.

Considérons un anneau de valuation discrète hensélien R, de corps de fractions K. Notons
Rnr son hensélisé strict et Knr le corps de fractions de Rnr. C’est l’extension maximale non
ramifiée de K. Elle est galoisienne et on note son groupe de Galois Γnr. Le corps résiduel
de R est noté κ, et n’est pas supposé nécessairement parfait. Désignons également par I, le
sous-groupe d’inertie de K, c’est-à-dire le groupe de galois absolu de Knr.
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2 A. ZIDANI

Étant donné un groupe réductif G sur K, on se demande s’il est possible de comprendre
le noyau suivant :

Ker
(
H1(Γnr, G(Knr)F̃ )→ H1(Γnr, G(Knr))

)
où F̃ est une facette Γnr-invariante de l’immeuble B(GKnr) et G(Knr)F̃ , son stabilisateur
par l’action de G(Knr).

Plus généralement, on introduit la notion de sous-groupe global. Un sous-groupe de G(K)
est dit global s’il est ouvert pour la topologie adique, et s’il contient G(K)+, i.e. le sous-
groupe engendré par les K-points des sous-groupes de racines de G. L’étude de l’action sur
l’immeuble de ces sous-groupes est d’un grand intérêt. En effet, ils agissent transitivement
sur les couples (A, C) tels que A est un appartement de B(G) et C une chambre de A (cf.
le lemme 2.5).

On peut également considérer un sous-groupe global H̃ de G(Knr) invariant pour l’action
de Γnr. Ces objets sont alors une généralisation des sous-groupes considérés par Tits dans
[BT87, 3.5.] (cf. la remarque (2) de 2.6).

Dans ce cas, tout comme dans [BT87], on peut s’intéresser à des questions plus générales
impliquant H̃. En somme, on peut étudier le noyau :

Ker
(
H1(Γnr, H̃F̃ )→ H1(Γnr, H̃)

)
où H̃ est cette fois un sous-groupe global Γnr-invariant de G(Knr) et H̃F̃ , le stabilisateur de
F̃ sous l’action de H̃.

Quelques techniques de cohomologie des groupes classiques permettent de montrer la
bijection (cf. le point (1) (a) du théorème 4.3) :

(Orb(F̃)
H̃
)Γ

nr
/H

∼→ Ker
(
H1(Γnr, H̃F̃ )→ H1(Γnr, H̃)

)
. (∗)

où l’on a posé H := H̃Γnr . En d’autres termes, le noyau est en correspondance avec les
éléments Γnr-invariants de l’orbite F̃ par H̃, modulo l’action de H.

Dès lors, on constate que Bruhat et Tits s’étaient déjà penchés implicitement sur la ques-
tion dans [BT84a]. En effet, par exemple, le résultat [BT84a, 5.2.10.(ii) Proposition.] signifie
entre autres que (Orb(F̃)G(Knr))

Γnr
/G(K) est trivial lorsque G est semi-simple simplement

connexe, quasi-déployé sur Knr. En conséquence, Ker
(
H1(Γnr, G(Knr)F̃ )→ H1(Γnr, G(Knr)

)
est trivial dans ce cas de figure (cf. la remarque 4.6).

Également, dans [BT84a, 5.2.13.], Bruhat et Tits donnent un cas de figure où
(Orb(F̃)G(Knr))

Γnr
/G(K) est non trivial. Dans cet exemple, G est quasi-déployé et adjoint.

En observant attentivement cet exemple, on observe que Bruhat et Tits raisonnent es-
sentiellement au niveau des types, et donc au niveau des diagrammes de Dynkin affines. Il
s’avère que ce phénomène est tout à fait général.

En effet, on prouve dans cet article que la bijection (∗) reste toujours satisfaite si on la
réduit au niveau des types. On obtient alors (cf. le point (2) (a) du théorème 4.3) :(

{ω · T̃ ≺ T̃max | ω ∈ H̃}Γnr
)
/H

∼→ Ker
(
H1(Γnr, H̃F̃ )→ H1(Γnr, H̃)

)
. (∗′)

Expliquons les objets en présence. Rappelons que l’indice de Tits affine de G est la don-
née de son diagramme de Dynkin affine sur Knr, d’une action de Γnr, et d’un ensemble
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Γnr-stable de sommets, que l’on note T̃max. Ce dernier est aussi le type de la plus grande fa-
cette Γnr-invariante dans B(GKnr) (aussi appelée Γnr-chambre). Le type T̃ est défini comme
étant le type de F̃ .

En conséquence, la bijection (∗′) donne une manière explicite et combinatoire de calculer
le noyau, dépendant uniquement de l’indice de Tits affine de G muni de l’action naturelle
de H̃ et de H. C’est le résultat théorique principal de cet article.

De ce théorème, on en déduit immédiatement que Ker
(
H1(Γnr, H̃F̃ )→ H1(Γnr, H̃)

)
est

trivial lorsque H̃ agit trivialement sur l’indice de Tits affine. C’est notamment le cas lorsque
G est semi-simple simplement connexe et quasi-déployé sur Knr d’après [BT84a, 5.2.10.(i)
Proposition.]. On retrouve alors le résultat de Bruhat et Tits indiqué plus haut.

Par ailleurs, grâce à la bijection (∗′), le cas G quasi-déployé et adjoint peut être compris
entièrement, généralisant ainsi l’exemple [BT84a, 5.2.13.] de Bruhat et Tits. On prouve ainsi
dans cet article :

Théorème (cf. le théorème 6.15). Soit G un groupe semi-simple adjoint et quasi-déployé sur
K. Soit également F̃ , une facette Γnr-invariante de l’immeuble B(GKnr). Alors le noyau :

Ker
(
H1(Γnr, G(Knr)F̃ )→ H1(Γnr, G(Knr)

)
est de cardinal 2k où k est un entier majoré par le nombre de facteurs restriction de Weil
d’un groupe absolument presque simple de type 2Dn (pour n ≥ 4) ou 2A4n+3 (pour n ≥ 0)
déployé par une extension non ramifiée.

Ceci étant, on peut également s’intéresser au noyau suivant :

Ker
(
H1(Γnr, G(Knr)0F̃ )→ H1(Γnr, G(Knr))

)
où G(Knr)0 est le sous-groupe engendré par les sous-groupes parahoriques sur Knr, aussi
appelé la composante résiduellement neutre de GKnr .

Cette question est nettement plus délicate. Malgré nos efforts et notre exploration de la
littérature, on ignore s’il existe des situations où il est non trivial.

Le cas où F̃ est un point hyperspécial (cf. la définition 5.1) est en fait trivial d’après la
conjecture de Grothendieck-Serre dans le cas d’un anneau de valuation discrète hensélien.
Là encore, le résultat a en fait été déjà prouvé par Bruhat et Tits lorsque G est semi-simple
dans [BT84a, 5.2.14. Proposition.] en utilisant la bijection (∗). On montre également dans
cet article que la preuve peut être ajustée pour montrer directement le cas réductif. C’est
l’objet de la proposition 5.5.

Un autre cas où l’on peut prouver la trivialité est, une fois encore, le cas quasi-déployé
adjoint. C’est l’objet du théorème 6.8.

Pour terminer, faisons une observation sur les hypothèses de l’article. Le corps résiduel
κ de R n’est pas supposé parfait, contrairement à l’article [BT87] de Bruhat et Tits. Le
groupe G n’est pas non plus supposé quasi-déployé sur Knr, bien qu’il s’agisse du cadre des
théorèmes de [BT84a] (rappelons d’ailleurs que si κ est parfait, alors G est quasi-déployé
sur Knr comme mentionné dans [BT84a, 5.1.1.]). Il est donc nécessaire de faire quelques
rappels sur la théorie de Bruhat-Tits dans cette généralité, notamment expliquer pourquoi
l’immeuble de G existe. C’est l’objet de la partie 1.
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Notations et conventions

Pour tout corps k, la notation ks désigne une clôture séparable de k.

On utilise la définition de groupe réductif de Chevalley et Borel (cf. [Bor91]). En particu-
lier, ils sont affines, lisses et connexes.

Soulignons que l’extension maximale non ramifiée d’un corps complet n’est pas toujours
complète. Par exemple, l’extension maximale non ramifiée de κ((t)) n’est pas κs((t)) si κs/κ
est infini.

1. Quelques rappels sur l’immeuble de Bruhat-Tits

Faisons quelques rappels sur l’immeuble et son existence. Pour être le plus général pos-
sible, on suppose dans cette section que K n’est pas nécessairement hensélien. Les résultats
de cette section seront en fait disponibles dans le livre [Rou] non encore publié. Par commo-
dité, on se propose de réaliser cette section indépendamment de cette référence.

Dans [Rou77, Définitions 2.1.12], Rousseau propose une définition d’un immeuble associé à
un groupe réductif G sur K. Comme prouvé dans le [Rou77, Théorème 2.1.14], cet immeuble
existe si et seulement si l’immeuble au sens de [BT72], c’est-à-dire construit à partir d’une
donnée radicielle valuée, existe ; et il est unique à isomorphisme près.

Par ailleurs, comme indiqué dans [Rou77, Théorème 2.1.14.2)c)] et [Rou77, Théorème
2.1.15.c)], il est possible de canoniser cet immeuble en le construisant comme le produit de
l’immeuble du groupe dérivé D(G) avec une partie vectorielle donnée par le radical R(G).
Un immeuble sous cette forme est appelé immeuble centré. Un immeuble centré est unique
à unique isomorphisme (d’immeubles centrés) près.

Notons que l’immeuble construit à partir d’une donnée radicielle valuée associée à G
s’identifie avec l’immeuble de D(G).

L’immeuble proposé par Rousseau pour G est exactement l’immeuble étendu sous la
terminologie moderne. On le note Be(G). Comme dit précédemment, il se décompose en un
produit B(G)×VG où VG est la partie vectorielle de l’immeuble et où B(G) est l’immeuble
de D(G) (ou l’immeuble au sens d’une donnée radicielle valuée de G comme dans [BT72]).
La partie B(G) est donc l’immeuble (réduit) de G sous la terminologie moderne.

En particulier, lorsque G est semi-simple, Be(G) = B(G) est unique à unique isomor-
phisme près et correspond à l’immeuble au sens d’une donnée radicielle valuée de G.

Un autre point important à considérer est de savoir si l’immeuble Be(G) est bornolo-
gique, c’est-à-dire si les stabilisateurs de parties bornées sont bornés, ou plus précisément
s’il vérifie les conditions équivalentes données en [Rou77, Théorème 2.2.11]. Il s’avère que
d’après [Rou77, Corollaire 5.2.4.], un immeuble (étendu) est toujours bornologique lorsque
K est hensélien.
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Comme indiqué en [Rou77, Exemples 2.2.14.f)], la question de l’existence se ramène au
cas presque-simple et au cas des tores. Or, le cas des tores, lorsque K est hensélien, est
traité en [Rou77, Proposition 2.4.8.2)]. Par ailleurs, [Rou77, Proposition 2.3.9.] nous dit que
la question se ramène au cas où K est complet.

Notons que la preuve de [Rou77, Proposition 5.1.5.] montre exactement que l’immeuble
d’une restriction de Weil séparable d’un groupe est naturellement un immeuble de ce dernier
groupe. En particulier, le cas presque-simple se ramène au cas absolument presque-simple.

Enfin, rappelons d’après Struyve ([MSV14] et [Str14, Main Corollary.]) que la conjecture
[Tit86, 13. Conjecture] est vérifiée. Cela signifie donc que tout groupe algébrique absolument
presque simple sur un corps valué discrètement complet arbitraire admet une donnée radi-
cielle valuée compatible avec la valuation du corps. On en déduit donc un immeuble associé
à ce type de groupe d’après [BT72], et donc un immeuble au sens de Rousseau d’après la
discussion précédente.

En conclusion, on a :

Proposition 1.1. Soit G un groupe réductif sur un corps hensélien valué discrètement K.
Alors G admet un immeuble étendu unique à unique isomorphisme près. Il est par ailleurs
bornologique.

On peut en fait améliorer ce résultat grâce à [Rou77, Proposition 2.3.5] :

Théorème 1.2. Soit G un groupe réductif sur un corps valué discrètement K. On suppose
que G a même rang relatif sur K et sur son hensélisé (ou encore son complété K̂). Alors G
admet un immeuble étendu, unique à unique isomorphisme près. Il est en outre bornologique.

Cet immeuble s’identifie canoniquement à celui de G
K̂

et ses appartements sont les
K̂-appartements correspondant aux K̂-tores déployés maximaux définis et déployés sur K.

Remarque 1.3. Toutefois, on ne sait toujours pas si tout groupe réductif sur un corps valué
arbitraire admet un immeuble non forcément bornologique.

Donnons maintenant quelques informations sur la partie vectorielle VG et les apparte-
ments.

Notons D := G/D(G), le tore coradical de G. La partie vectorielle VG est donnée par
X∗(R(G)) ⊗Z R ∼= X∗(D) ⊗Z R et G(K) agit par translation grâce à g 7→ (χ 7→ −v(χ(g)))
de G(K) vers Hom(X∗(G),R) = Hom(X∗(D),R) = X∗(D)⊗Z R. Il est vu à la fois comme
espace affine sur lui-même et comme espace vectoriel. On note donc G(K)1 le fixateur sous
G(K) de VG (ou de manière équivalente, d’un point de VG). Autrement dit, c’est le noyau
du morphisme g 7→ (χ 7→ −v(χ(g))).

On en déduit immédiatement que G(K)1 est distingué dans G(K) et que le quotient est
isomorphe à Zr où r est le rang du groupe des K-caractères de G (donc de D ou de R(G)).

La définition de G(K)1 est fonctorielle en G et sa construction est compatible aux ex-
tensions galoisiennes : pour toute extension galoisienne de corps valués L/K de groupe de
Galois Γ (la valuation de L étant supposée Γ-invariante), le groupe G(L)1 est Γ-invariant
et (G(L)1)Γ = G(L)1 ∩ G(K) = G(K)1. Par ailleurs, G(K)1 peut également être défini
comme l’image réciproque de D(K)1 par G(K) 7→ D(K) (cf. [KP23, Lemma 2.6.16]). En
conséquence, puisque D est isogène à R(G), on a G(K)1 = G(K) si et seulement si R(G)
(ou D) ne contient aucun K-sous-tore déployé (c’est en particulier le cas pour les groupes
semi-simples).
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Plus généralement, comme expliqué dans [Rou77, 2.1.7-2.1.11], étant donné un tore dé-
ployé maximal S de G, un appartement A(S) de Be(G) associé à S est un espace affine sous
X∗(S)⊗Z R muni d’une action ν : NG(S)(K)→ Autaff(A(S)) vérifiant les conditions de la
définition [Rou77, 2.1.8.a)]. Il est unique à isomorphisme près. Par ailleurs, tout appartement
de Be(G) est de cette forme.

Notamment, la restriction à Z(K) (où Z := ZG(S)) est une action par translation définie
par z 7→ (χ 7→ −v(χ(z))) allant vers :

Hom(X∗(Z),R) = Hom(X∗(Z/D(Z)),R) = X∗(Z/D(Z))⊗Z R ∼= X∗(S)⊗Z R.

Par ailleurs, le noyau de ν est égal à Z(K)1.
Il s’avère qu’un appartement A(S) peut être aussi donné par A(S′) × VG, où A(S′) est

un appartement de B(G′) associé au tore déployé maximal S′ := S ∩ D(G). Sous cette
forme, A(S) est appelé appartement centré de G associé à S. Un tel appartement a une
structure affine, mais également une structure vectorielle donnée par VG. Il est unique à
unique isomorphisme d’appartements centrés près. Dans la suite, la notation A(S) désigne
l’appartement centré de G associé à S. Un tel appartement de Be(G) respecte bien entendu
la décomposition Be(G) = B(G)× VG.

Intéressons-nous enfin aux facettes et aux types. On suppose cette fois que K est hensélien.

Rappelons qu’une facette F de B(G) désigne la réalisation géométrique ouverte du poly-
simplexe qu’elle représente. Son adhérence topologique F dans B(G) est exactement l’union
(disjointe) de ses sous-polysimplexes ouverts (donc de ses sous-facettes) d’après [BT72,
(2.5.10.)]. Une facette F est dite incidente à une facette F ′ si l’on a l’inclusion F ⊆ F ′.
On note alors F ≺ F ′.

Par ailleurs, toute facette est incluse dans l’adhérence d’une chambre (qui est par définition
une facette maximale pour l’incidence, ou encore de dimension maximale).

L’adhérence d’une chambre est en correspondance naturelle avec le graphe de Dynkin de
l’échelonnage (ou de manière équivalente, du système de racine affine, cf. [BT72, I.4.]) de
G. Ce graphe est appelé dans [KP23] diagramme de Dynkin affine relatif, et dans [Tit79]
diagramme de Dynkin local relatif ou encore K-graphe résiduel chez [BT87].

Le type d’une facette est alors défini comme étant son image sous cette correspondance.
Cette image ne dépend pas du choix de l’adhérence d’une chambre où l’on a inclus la facette.
En conséquence, deux facettes de même type dans la même adhérence d’une chambre sont
égales.

Un type T est dit incident à un type T ′ si l’on a l’inclusion T ⊂ T ′ (vu en tant qu’ensemble
de sommets dans le diagramme de Dynkin). On écrit alors T ≺ T ′. Prenons deux facettes
F et F ′ respectivement de type T et T ′. Si F ≺ F ′, on a alors T ≺ T ′.

Comme indiqué précédemment, l’existence d’un immeuble B(G) pour G est équivalente
à l’existence d’une donnée radicielle valuée pour G. Cette dernière permet d’en déduire un
double système de Tits muni d’un morphisme adapté dont l’immeuble associé est exactement
B(G) d’après [BT72, 6.5. Théorème.].

On en déduit donc un morphisme type, noté ξ, de G(K) dans le groupe des automor-
phismes du diagramme de Dynkin affine relatif d’après [BT72, 1.2.16]. Son image est notée
Ξ et son noyau est noté G(K)c. Il y a donc un isomorphisme G(K)/G(K)c ∼= Ξ. On peut
aussi restreindre à G(K)1 ce morphisme. Son image est notée Ξ1 et son noyau est noté
G(K)b := G(K)c ∩G(K)1. On en déduit un isomorphisme G(K)1/G(K)b ∼= Ξ1.
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Le lecteur intéressé par des exemples peut analyser le cas de GLn. En effet, il existe une
manière d’interpréter l’immeuble et les types dans ce cas de figure au travers de chaînes de
réseaux (cf. [BT84b]).

Le morphisme type mesure comment le type d’une facette change par action sous un
élément de G(K). Autrement dit, une facette F de type T est telle que g · F est de type
ξ(g) · T pour tout g ∈ G(K). Notons ΞT le sous-groupe des w ∈ Ξ tels que w · T = T .
On peut également vérifier que G(K)F se surjecte sur ΞT et que son noyau vaut G(K)cF ,
d’où un isomorphisme G(K)F/G(K)cF

∼= ΞT . On définit également tout cela de manière
analogue pour G(K)1 et Ξ1. Cf. [BT72, 1.2.13 - 1.2.20] et [BT72, 2.7.].

Le type d’une facette peut être aussi vu comme étant l’orbite de cette facette sous un
groupe agissant transitivement sur les chambres tout en préservant les types. C’est notam-
ment le cas de G(K)c, G(K)b et même de G(K)+ (cf. le lemme 2.4).

Remarque 1.4. On n’a pas nécessairement égalité entre Ξ1 et Ξ. Pour simplifier, considérons
le cas où κ est parfait. Pour réaliser le contre-exemple efficacement, on utilise le morphisme
de Kottwitz (cf. [KP23, 11.5]). Il s’agit d’un morphisme G(K) → π1(G)I (fonctoriel en G)
dont le noyau est G(K)0, le sous-groupe engendré par les sous-groupes parahoriques, aussi
appelé la composante résiduellement neutre de G(K), (cf. [KP23, Proposition 11.5.4]), et
dont l’image réciproque des éléments de torsion est G(K)1 (cf. [KP23, Lemma 11.5.2]). Le
Gal(Ks/K)-module π1(G) est le groupe fondamental algébrique, défini dans [KP23, 11.3].
En conséquence, π1(G)I désigne le Γnr-module obtenu en prenant les coinvariants.

Considérons le cas où G = GL2. Un calcul immédiat montre que π1(G)I = Z et est donc
sans torsion. On en déduit que G(K)0 = G(K)1. Comme G(K)0 agit trivialement sur les
types (cf. [BT84a, 5.2.12.(i) Proposition.]), il en est donc de même pour G(K)1. D’où Ξ1 = 0.

Par ailleurs, G(K) n’agit pas trivialement sur les types. En effet, les deux parahoriques
suivants sont associés à des points de types différents (cf. [KP23, Chapter 3.1]) :(

R R
R R

)
et

(
R tR

t−1R R

)
alors qu’ils sont conjugués par la matrice

(
t 0
0 1

)
∈ G(K).

Pour finir, prouvons que Ξ est abélien fini. Pour cela, on a besoin de quelques résultats :

Lemme 1.5. Soit Z, un sous-groupe de Levi de G. On a D(G(K)) = G(K)+D(Z(K)).

Démonstration. Puisque G(K)+ est parfait ([BT73, 6.4. Corollaire.]), on a G(K)+ ⊂ D(G(K)).
On en déduit l’inclusion G(K)+D(Z(K)) ⊂ D(G(K)). Réciproquement, puisque
G(K) = G(K)+ Z(K) ([BT73, 6.11.(i) Proposition.]), on peut prendre un élément
d ∈ D(G(K)) de la forme g1z1g2z2(g1z1)

−1(g2z2)
−1, avec g1, g2 dans G(K)+ (resp.

z1, z2 dans Z(K)). Puisque G(K)+ est distingué dans G(K), on peut considérer le quotient
G(K)/G(K)+ et voir que l’image de d dans G(K)/G(K)+ est égal à celle de z1z2z

−1
1 z−1

2 ,
d’où d ∈ G(K)+D(Z(K)). Comme D(G(K)) est engendré par ce type d’éléments, on en
déduit l’inclusion D(G(K)) ⊂ G(K)+D(Z(K)) comme voulu. □

Proposition 1.6. G(K)b est un sous-groupe distingué de G(K) dont le quotient est abélien
de type fini et dont le nombre de générateurs est majoré par le rang relatif de G.

Démonstration. Prenons Z un sous-groupe de Levi minimal de G. D’après le lemme 1.5, on a
D(G(K)) = G(K)+D(Z(K)). Or, d’une part G(K)b contient G(K)+ d’après le lemme 2.4,
et d’autre part D(Z(K)) ⊂ D(Z)(K) ⊂ Z(K)1 ⊂ G(K)b. Le sous-groupe G(K)b contient
donc D(G(K)) est donc distingué de quotient abélien.
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Par ailleurs, il y a une surjection Z(K)/Z(K)1 → G(K)/G(K)+Z(K)1 de telle sorte à ce
que G(K)/G(K)+Z(K)1 soit abélien de type fini puisque Z(K)/Z(K)1 l’est. Son nombre de
générateurs est donc majoré par celui de Z(K)/Z(K)1, qui est simplement le rang relatif de
G. On utilise alors le lemme 2.8 qui nous dit que G(K)b = G(K)+Z(K)1 pour conclure. □

On en déduit alors ce que l’on voulait :

Proposition 1.7. Le groupe G(K)/G(K)c ∼= Ξ (et donc G(K)1/G(K)b ∼= Ξ1) est abélien
fini.

Démonstration. Notons que l’on a l’isomorphisme G(K)/G(K)c ∼= Ξ. Par ailleurs, puisque
G(K)b ⊂ G(K)c, le corollaire 1.6 donne que Ξ est abélien. D’autre part, le fait qu’il y ait
un nombre fini de manières de permuter un nombre fini de sommets implique que Ξ est fini.
Par conséquent, il en est de même pour G(K)1/G(K)b ∼= Ξ1 ⊂ Ξ. □

2. Sous-groupes globaux et nouvelles notions

On considère une extension galoisienne non ramifiée éventuellement infinie L/K, de
groupe de Galois Γ. On peut donc supposer avoir l’inclusion L ⊂ Knr.

Dans toute la suite, on considère les sous-groupes suivants de G(K) :

Définition 2.1. Soit H un sous-groupe ouvert de G(K).
— On dit que H est un sous-groupe global de G(K) si G(K)+ ⊂ H.
— On dit de plus que H, supposé global, est L-conforme (ou juste conforme si

L = K) si H préserve les L-types, ou de façon équivalente, si H ⊂ G(L)c. Par
ailleurs, H est dit très conforme si H est Knr-conforme. On dit aussi que H est
uniforme si H stabilise un point de VG, ou de manière équivalente, si H ⊂ G(K)1.

— On dit que H est L-bon (ou juste bon si L = K) si H est uniforme et L-conforme,
ou de façon équivalente, si H ⊂ G(L)b. Par ailleurs, H est dit très bon si H est
Knr-bon.

— On définit également H1, Hb, Htb, Hc, Htc comme étant les sous-groupes obtenus
en prenant l’intersection de H avec respectivement G(K)1, G(K)b, G(Knr)b, G(K)c

et G(Knr)c.
— Pour toute partie Ω de B(G), on note HΩ (resp. H f

Ω) le stabilisateur (resp. fixa-
teur) de Ω sous H. Si on prend plusieurs parties (Ωi)i∈I , on note
H(Ωi)i∈I

:=
⋂

i∈I HΩi . Ce dernier sous-groupe est appelé le multistabilisateur de
(Ωi)i∈I sous H.

Observons que

Hb = (H1)c = (Hc)1 = H1 ∩Hc et Htb = (H1)tc = (Htc)1 = H1 ∩Htc.

En effet, il suffit de vérifier le résultat lorsque H = G(K). Dans ce cas, cela découle des
définitions.

Comme on le verra plus loin dans le corollaire 3.6, un sous-groupe global L-conforme
(resp. L-bon) est conforme (resp. bon), mais la réciproque est fausse.

Remarques 2.2.
(1) On ne prend pas la même convention que Bruhat et Tits dans [BT84a], et que Prasad

dans [KP23]. Pour Prasad, G(K)1Ω désigne le fixateur de Ω sous l’action de G(K)1,
tandis que G(K)†Ω désigne le stabilisateur de Ω sous l’action de G(K)1. Bruhat et
Tits prennent une convention analogue.
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(2) Les notations alambiquées "1" et "b" étaient déjà présentes dans la littérature. On
a donc choisi de leur donner un nom de telle sorte à les retenir plus aisément ("1"
est associé au caractère "uniforme" et "b" est associé au caractère "bon"). On a
également rajouté la notion de "conformité" (associée à "c"), qui, bien que pratique,
n’était pas présente dans la littérature.

(3) On aurait pu définir une notion de caractère "L-uniforme" (ou "très uniforme"). Tou-
tefois, (G(Knr)1)Γ

nr
= G(K)1 d’après la fin de la section 1. Cela est donc équivalent

à la notion de caractère "uniforme".

Remarque 2.3. Tout fixateur d’une partie Ω de B(G) sous l’action d’un sous-groupe global
H est le multistabilisateur de (x)x∈Ω sous H. Si de plus Ω est une union finie de facettes, il
s’agit également du multistabilisateur sous H de la famille donnée par les sommets incidents
à Ω (en nombre fini).

Le principal résultat au sujet des sous-groupes globaux est le suivant :

Lemme 2.4. Un sous-groupe global agit transitivement sur les couples (A, C) d’appartements
et de chambres incluses dans cet appartement. Par ailleurs, G(K)+ est un bon sous-groupe
global (i.e. G(K)+ ⊂ G(K)b).

Démonstration. Il suffit de prouver le résultat pour G(K)+. On peut également revenir au
cas semi-simple adjoint. En effet, l’action sur l’immeuble se factorise par Z(G)(K) et [BT73,
Corollaire 6.3.] implique que G(K)+ → Gad(K)+ est surjective.

On sait qu’il s’existe une donnée de racine valuée associé à G(K). Les parahoriques (au
sens de [BT72], c’est à dire les stabilisateurs de facettes sous l’action de G(K)c) sont dé-
crits dans [BT72, (7.1.1.)] et engendrent donc G(K)+Z(K)1 ("H" vaut Z(K)1, avec Z
un sous-groupe de Levi minimal, puisque G est semi-simple. Aussi, les groupes de ra-
cines affines engendrent G(K)+). Mais par définition, ce groupe vaut également G(K)c

(et même G(K)b puisque G est supposé semi-simple). Il agit donc transitivement sur les
couples appartements-chambres qui nous intéressent (cf. [BT72, (2.2.6)]). Comme
G(K)+ ⊂ G(K)+Z(K)1 = G(K)b, le sous-groupe G(K)+ est bon.

Prenons A et A′ des appartements et, C ⊂ A et C′ ⊂ A′, des chambres de ces appar-
tements. Prenons g ∈ G(K)b tel que g · (A, C) = (A′, C′). Prenons Z relativement à A et
écrivons la décomposition g = g+z donnée par G(K)b = G(K)+Z(K)1. Puisque Z(K)1 fixe
A (et donc C), on a :

g+ · (A, C) = g+ · (z · (A, C)) = g · (A, C) = (A′, C′).

D’où le résultat. □

On en déduit alors :

Proposition 2.5. Choisissons un appartement A et une chambre C ⊂ A. Tout sous-groupe
global conforme K de G(K) définit une BN -paire saturée en posant B = KC et N = KA,
les stabilisateurs de C et A sous l’action de K. L’immeuble associé est exactement B(G) et
son groupe de Weyl est le groupe de Weyl affine de l’immeuble.

Modulo conjugaison par K, cette BN -paire ne dépend pas du choix du couple (A, C).

Démonstration. D’après le lemme précédent, on rentre dans le cadre d’application de [Tit74,
3.11. Proposition], qui nous donne le résultat. □
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Remarques 2.6.
(1) La terminologie sous-groupe global est en fait inspirée de la proposition 2.5 : un

sous-groupe global est suffisamment gros pour déterminer un ensemble suffisamment
riche de sous-groupes "locaux" donnés par les stabilisateurs de parties bornées de
l’immeuble B(G).

(2) La notion de sous-groupe global de G(Knr) invariant par Γnr englobe celle des sous-
groupes considérés dans [BT87, 3.5.] dans le cas où le corps résiduel κ est parfait.
En effet, Tits impose plutôt de contenir G(Knr)0, le sous-groupe engendré par les
sous-groupes parahoriques sur Knr, aussi appelé la composante résiduellement neutre
de GKnr , au lieu de G(Knr)+, et G(Knr)+ ⊂ G(Knr)0 (cf. 3e paragraphe de [BT84a,
5.2.11.]).

De ceci, on en déduit quelques résultats élémentaires autour des facettes et des sous-
groupes globaux :

Proposition 2.7. Soit H un sous-groupe global de G(K) et deux facettes F et F ′ dans
B(G). On a :

(1) Le sous-groupe HF agit transitivement sur les appartements contenant F .
(2) Si HF ′ ⊂ HF , alors F ⊂ F ′. La réciproque est vraie si H est de plus conforme.
(3) On a HF = HF si et seulement si F = F ′.

Démonstration.
(1) Puisque H est global, il suffit de montrer le résultat pour H = G(K)+. Il s’agit

de [KP23, Proposition 1.5.13.(1)] appliqué au système de Tits de G(K)+ (cf. la
proposition 2.5).

(2) et (3) Observons que HF ′ ⊂ HF implique G(K)+F ′ ⊂ G(K)+F . Comme G(K)+ induit un
système de Tits dont l’immeuble est exactement B(G) (cf. la proposition 2.5), on
a une correspondance entre les paraboliques du système de Tits pour l’inclusion
(qui sont les stabilisateurs de facettes) et les facettes de l’immeuble pour l’incidence.
D’où F ⊂ F ′ si et seulement si G(K)+F ′ ⊂ G(K)+F . Le même raisonnement s’applique
également à un sous-groupe conforme arbitraire.

□

On a également des résultats de décomposition :

Lemme 2.8. Soit H un sous-groupe global de G(K). On a H = G(K)+H(A,C), où A est
un appartement de B(G) et C est une chambre dans A. Par ailleurs, Hc

(A,C) = H f
A et

Hb
(A,C) = H1,f

A . En particulier, on a G(K)b = G(K)+Z(K)1 pour Z un sous-groupe de Levi
minimal de G.

Démonstration. L’inclusion réciproque est évidente. Étudions l’inclusion directe.
Soit h ∈ H. Par transitivité de G(K)+ sur les couples appartements-chambres, il existe

g ∈ G(K)+ tel que g · C = h · C et g · A = h · A. Donc h′ := g−1h ∈ H(A,C). Donc h = gh′.
Observons que Hb

(A,C) = Hb,f
A puisque Hb fixe les types, donc C, et donc tout A puisque

les sommets de C déterminent une base affine de A. Par ailleurs, Hb,f
A = H1,f

A car H1,f
A fixe C

et donc agit trivialement sur les types. Le même raisonnement prouve que Hc
(A,C) = H f

A.
On en déduit donc d’après la section 1 que G(K)b(A,C) est exactement le fixateur de

l’appartement étendu A×VG ⊂ Be(G), c’est-à-dire Z(K)1, où Z est le sous-groupe de Levi
associé à A. D’où la dernière décomposition. □
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Ce dernier résultat permet d’en déduire une décomposition de Bruhat plus précise :

Proposition 2.9 (Décomposition de Bruhat). Prenons A un appartement de B(G) et C
une chambre de A. Soit H un sous-groupe global de G(K). On a : H = G(K)+C HAG(K)+C .
En particulier, G(K) = G(K)+C N(K)G(K)+C , où N est le normalisateur du tore déployé
maximal de G associé à A.

Démonstration. D’après [KP23, Proposition 1.4.5.(1)], il existe une décomposition de Bruhat
pour G(K)+ (puisque ce dernier détermine un système de Tits, cf. la proposition 2.5).
Par conséquent, G(K)+ = G(K)+C G(K)+AG(K)+C .

Observons que HC = H(A,C)G(K)+C = G(K)+C H(A,C) puisque G(K)+C agit transitive-
ment sur les appartements contenant C d’après le lemme 2.4. Ensuite, constatons que
HA = H(A,C)G(K)+A puisque G(K)+A agit transitivement sur les chambres de A d’après
également le lemme 2.4. Comme d’après le lemme 2.8, H = H(A,C)G(K)+, on a donc fina-
lement :

H = H(A,C) (G(K)+C G(K)+AG(K)+C ) = G(K)+C
(
H(A,C)G(K)+A

)
G(K)+C = G(K)+C HAG(K)+C .

□

Prouvons maintenant quelques résultats de compatibilité des sous-groupes globaux aux
extensions non ramifiées. Avant cela, on a besoin de montrer le lemme élémentaire suivant :

Lemme 2.10. Soit G′ un groupe réductif sur un corps K ′ et L′/K ′, une extension galoi-
sienne de groupe de Galois Γ′. Le sous-groupe G′(L′)+ est Γ′-invariant et on a :

G′(K ′)+ ⊂ (G′(L′)+)Γ
′
= G′(L′)+ ∩G′(K ′).

Démonstration. La première assertion provient de [BT73, 6.1.]. En effet, σ ∈ Γ′ définit un
isomorphisme σ : G′

L′ → G′
L′ , et donc envoie G′(L′)+ vers G(L′)+. D’où la Γ′-invariance.

D’autre part, [BT73, 6.1.] donne aussi G′(K ′)+ ⊂ G′(L′)+. On a donc le résultat en
utilisant la Γ′-invariance. □

Ceci nous permet d’obtenir :

Proposition 2.11. On a :
(1) Tout sous-groupe global H admet un plus grand sous-groupe global respectivement

uniforme, bon, L-bon, conforme, L-conforme donné respectivement par H1, Hb,
H ∩ G(L)b Hc, H ∩ G(L)c (et donc en particulier un plus grand sous-groupe glo-
bal respectivement très bon et très conforme donné par respectivement Htb et Htc).

(2) Si H̃ est un sous-groupe global respectivement uniforme, bon, conforme, Γ-invariant
de G(L), alors H̃Γ est un sous-groupe global respectivement uniforme, L-bon,
L-conforme de G(K).

(3) Si H̃ est un sous-groupe global Γ-invariant de G(L), alors H̃1, H̃b et H̃c sont égale-
ment Γ-invariants.

Démonstration.
(1) Pour le premier point, il suffit de montrer que les sous-groupes en question sont

globaux. On a d’après les lemmes 2.4, 2.10 et le premier point du corollaire 3.6 :

G(L)c ∩H Hc

G(K)+ G(L)+ ∩H G(L)b ∩H Hb H1.

3.6.(1)

2.10 2.4 3.6.(1)
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(2) Puisque H̃Γ ⊂ H̃, il suffit seulement de montrer que G(K)+ ⊂ H̃Γ. Or, on a
G(K)+ ⊂

2.10
(G(L)+)Γ ⊂ H̃Γ. D’où le résultat.

(3) Le troisième point se ramène au cas où H̃ = G(L). Pour G(L)1, cela a déjà été
fait à la fin de la section 1. Pour le reste, utilisons le lemme 2.8. Étant donné un
appartement A ⊂ B(GL) et une L-chambre C ⊂ A, on a : G(L)∗ = G(L)+G(L)∗(A,C)
pour ∗ ∈ {b, c}. Or, G(L)+ est Γ-invariant d’après le lemme 2.10. Il suffit donc de
montrer que l’orbite sous Galois de G(L)∗(A,C) est dans G(L)∗ pour tout ∗ ∈ {b, c}.

Or, le lemme 2.8 montre également que G(L)b(A,C) = G(L)1,fA et que

G(L)c(A,C) = G(L)fA. Mais pour σ ∈ Γ, σ(G(L)1,fA ) = G(L)1,fσ(A) ⊂ G(L)b, et de
même σ(G(L)fA) = G(L)fσ(A) ⊂ G(L)c. Ceci donne donc le résultat comme voulu.

□

Introduisons quelques notations supplémentaires qui vont nous servir par la suite :

Définition 2.12. Soient H un sous-groupe global de G(K) et F une facette de type T .
Notons :

— ΞH , l’image de H par ξ (qui induit donc H/Hc ∼= ΞH).
— ΞH,T , l’image de HF par ξ (qui induit donc HF/H

c
F
∼= ΞH,T ). C’est aussi l’ensemble

{w ∈ ΞH | w · T = T } puisque Hc ⊂ H agit transitivement et de manière conforme
sur les chambres (cf. définition ci-dessous).

— Orb(F)H , l’orbite de F par H.
— Orb(T )ΞH

(ou même Orb(T )H), l’orbite de T par ΞH .

Généralisons maintenant la notion de facette et les objets associés. Cette généralisation est
peu coûteuse pour la suite et ajoute une richesse supplémentaire à notre problème général.

Définition 2.13. Appelons multifacette toute union de facettes incluse dans la même
adhérence d’une chambre. Pour un tel objet, on peut définir le type (ou multitype, pour
insister sur le fait que cela est relatif à une multifacette) comme étant l’ensemble des types
des différentes facettes la composant. Une facette est en particulier une multifacette, et son
type s’indentifie naturellement avec son multitype.

On dit qu’une multifacette est fortement invariante par l’action d’un groupe si cha-
cune des facettes la composant est invariante (il ne suffit donc pas que la multifacette soit
invariante en tant qu’objet géométrique). On définit la même notion pour les multitypes.

On dit également qu’un groupe agissant sur B(G) par automorphismes polysimpliciaux
agit de manière conforme sur une multifacette F s’il l’envoie sur des multifacettes de
même type.

Si F est une multifacette de décomposition en facettes
⊔

i∈I Fi, alors pour tout sous-groupe
global H de G(K), on note H(F) := H(Fi)i∈I

:=
⋂

i∈I HFi . Ce groupe est appelé sous-groupe
multistabilisateur de la multifacette F relativement à H.

Plus généralement, on utilise la notation (F) pour préciser que l’on regarde bien F en
tant que multifacette et non en tant que partie de l’immeuble (on fait de même pour les
multitypes).

Remarque 2.14. On voit donc que l’utilisation de multifacettes donne lieu à une plus grande
famille de sous-groupes que les seuls stabilisateurs de facettes. En particulier, cela donne
accès aux fixateurs de facettes, en prenant par exemple la multifacette associée aux sommets
incidents à une facette.
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Remarquons toutefois que, dans le cas conforme, stabiliser une facette et préserver son
type implique en fait de la fixer. Dans ce cas, le multistabilisateur d’une multifacette
dont on préserve le type n’est autre que le fixateur de l’union des facettes la composant :
la notion de multistabilisateur n’a donc d’intérêt que si l’on considère des sous-groupes
globaux non conformes.

Remarque 2.15. Comme pour les facettes, l’adhérence topologique d’une multifacette
F :=

⊔
iFi est exactement la réunion des sous-facettes des Fi. En effet, cela est une

conséquence du fait que F =
⊔

iFi =
⋃

iF i. On définit également la relation d’incidence
comme étant une inclusion au niveau des adhérences. On dit également qu’un multitype
T = {T1, ..., Tn} est incident à un autre multitype T ′ = {T ′

1 , ..., T ′
m}, ce que l’on note

T ≺ T ′, si pour tout Ti, il existe T ′
j tel que Ti ≺ T ′

j (dans le sens des types usuels). Il s’avère
que, comme dans le cas des facettes, prendre le multitype est compatible avec la relation
d’incidence.

3. Quelques compléments sur la descente non ramifiée

Rappelons que, d’après Rousseau dans [Rou77, Proposition 2.4.6], le groupe de Galois Γ
agit par automorphismes polysimpliciaux sur B(GL) de manière compatible avec l’action de
G(L) (i.e., σ(g ·x) = σ(g) ·σ(x) pour tout σ ∈ Γ, g ∈ G(L), x ∈ B(GL)). D’après le théorème
de descente modérément ramifiée ([Rou77, Proposition 5.1.1.]), l’ensemble des points fixes
s’identifie de façon unique à B(G). On peut d’ailleurs choisir une métrique invariante sur
B(GL) (cf. [Rou77, §2.2]) de telle sorte que Γ agisse par isométrie ([Rou77, Remarque
2.4.7.(f)]), et donc de telle sorte que B(G) ⊂ B(GL) soit un plongement isométrique. Sous
ce choix, B(G) est également un fermé convexe de B(GL). En effet, Γ agit continûment sur
B(GL) (puisqu’il agit par isométries), d’où le caractère fermé. Le caractère convexe provient
ensuite de l’unicité de la géodésique reliant deux points (puisque Γ agit par isométries).

En particulier, puisque Γ agit par automorphismes polysimpliciaux, il envoie facettes
sur facettes. En outre, cette action sur les facettes se factorise en une action sur les types
(et même sur le diagramme de Dynkin affine relatif). Il suffit en effet de voir que, étant
donné F une L-facette et g ∈ G(L)c, les facettes σ(F) et σ(g · F) ont même type. Comme
σ(g · F) = σ(g) · σ(F) et que G(L)c est Γ-invariant (cf. point (3) de la proposition 2.11), on
a le résultat. Cette constatation s’étend bien entendu aux multifacettes.

Introduisons alors la définition suivante (déjà présente dans [KP23, 9.2.4]) :

Définition 3.1. On appelle Γ-multifacette une L-multifacette fortement Γ-invariante. En
particulier, une Γ-facette est une L-facette Γ-invariante.

On définit également un Γ-sommet (resp. une Γ-chambre) comme étant une Γ-facette
minimale (resp. maximale) parmi les Γ-facettes.

Rappelons aussi que le théorème de descente non ramifiée a été montré originellement par
Bruhat et Tits (dans [BT84a, 5.]) et généralisé par Prasad (dans [Pra20, Theorem 3.8.]).
Ce théorème fournit un dictionnaire plus précis que le théorème de descente modérément
ramifiée (notamment une forte compatibilité au niveau des facettes et des sous-groupes
parahoriques. Par exemple, les schémas en groupes parahoriques commutent au changement
de base non ramifié, mais pas à ceux modérés).

On se propose de développer quelques compléments à ce théorème. Avant cela, on a besoin
de montrer le lemme suivant :
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Lemme 3.2. Soit F une Γ-multifacette de B(GL).
On a l’égalité : F ∩B(G) = F ∩B(G).

Démonstration. Prouvons d’abord le cas où F est une facette.
Observons déjà que F ∩B(G) ⊂ F ∩B(G). Par conséquent, F ∩B(G) ⊂ F ∩B(G).
Montrons l’inclusion réciproque. Prenons x ∈ F ∩B(G) et y ∈ F ∩B(G). Comme F est
convexe, la géodésique [x, y] ⊂ F est tel que la géodésique à moitié ouverte [x, y[ soit incluse
dans F (cf. [Bou81, II.§2.6. Proposition 16.]).

Par ailleurs, puisque B(G) est convexe et que x et y sont dans B(G), la géodésique
[x, y] est en fait incluse dans B(G). Par conséquent, [x, y[ est incluse dans F ∩B(G). Ceci
implique que y est dans F ∩B(G). D’où l’inclusion réciproque.

Montrons maintenant le cas général. Notons F =
⊔

i Fi la décomposition en facettes de
F . On a :

F ∩B(G) = (
⋃
i

Fi) ∩B(G)

=
⋃
i

(Fi ∩B(G)) =
⋃
i

Fi ∩B(G) =
cas des
facettes

⋃
i

(Fi ∩B(G)) = (
⋃
i

Fi) ∩B(G)

= F ∩B(G).

D’où le résultat. □

On a ainsi :

Proposition 3.3. On a la correspondance G(K)-équivariante, croissante pour l’inclusion
et l’incidence, suivante :{

Γ-multifacettes
de B(GL)

}
∼=

{
K-multifacettes

de B(G)

}
⊔
i

Fi
α7→

⊔
i

FΓ
i =

⊔
i

Fi ∩B(G)

⊔
i

F̃i
β←[

⊔
i

Fi

où F 7→ F̃ associe à une K-facette l’unique L-facette contenant son barycentre.
On a donc en particulier que, sous cette correspondance, un Γ-sommet correspond à un

K-sommet et une Γ-chambre correspond à une K-chambre.

Démonstration. Pour alléger la preuve, on écrit seulement le cas des facettes. Il suffit de
raisonner facette par facette pour avoir le cas des multifacettes.

La remarque [Rou, 5.1.5.1 Remark (c)] énonce explicitement la bonne définition et même la
surjectivité de la flèche directe au niveau des facettes. Réciproquement, pour une
K-facette F , la L-facette F̃ est Γ-invariante puisqu’elle est l’unique L-facette contenant
le barycentre de F , lui-même fixé par Γ. D’où la bonne définition de la flèche réciproque.

Prenons une Γ-facette F . Observons alors que F̃Γ = F car les deux facettes contiennent
le barycentre de FΓ. Réciproquement, (F̃)Γ = F car les deux facettes contiennent le bary-
centre de F .

Notons que les deux ensembles sont G(K)-stables. La flèche directe est évidemment
G(K)-équivariante puisque tout élément de G(K) est fixé par Γ et puisque l’action de Γ
sur B(GL) est compatible à l’action de G(L). La flèche réciproque l’est donc également.

La croissance pour l’inclusion est bien sûr évidente dans les deux sens.
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Regardons l’incidence pour la flèche directe. D’après le lemme 3.2 , on a
F ∩B(G) = F ∩B(G). Par conséquent, si une facette Γ-invariante F ′ est dans F , alors
F ′ ∩B(G) ⊂ F ∩B(G) = F ∩B(G). Autrement dit, F ′Γ est incident à FΓ. C’est ce que
l’on voulait.

Pour la flèche réciproque, si F ⊂ F ′, alors le barycentre de F est contenu dans F ′ ⊂ F̃ ′.
Donc F̃ ⊂ F̃ ′ puisque F̃ l’unique L-facette contenant le barycentre. □

Rappelons les définitions suivantes :

Définition 3.4.

(1) On dit que G est résiduellement déployé si G et GKnr ont même rang semi-simple
relatif.

(2) On dit que G est résiduellement quasi-déployé s’il existe une Knr-chambre
Γnr-invariante dans B(GKnr) (ou encore s’il existe une Γnr-chambre qui est une
Knr-chambre).

On a également une correspondance au niveau des types :

Proposition 3.5.

(1) La correspondance de la proposition 3.3 préserve les types.
En particulier, l’orbite par l’action d’un sous-groupe global conforme de G(K) d’une
Γ-multifacette (resp. d’une K-multifacette) décrit exactement les Γ-multifacettes de
même L-type (resp. les K-multifacettes de même K-type).

(2) Notons T̃max, le type d’une Γ-chambre (qui est indépendant du choix de la
Γ-chambre). On a donc les bijections naturelles Ξ-équivariantes croissantes pour l’in-
clusion et l’incidence (sous un sens évident) suivante :{

L-multitypes fortement

Γ-inv. de B(GL) dans T̃max

}
∼←

{
Ensembles de Γ-multifacettes de

B(GL) de même L-multitype

} α→
β←

{
K-multitypes

de B(G)

}

En particulier, si G est résiduellement quasi-déployé, l’ensemble de gauche est exac-
tement celui des L-multitypes fortement Γ-invariants de B(GL).

Démonstration.

(1) Considérons deux Γ-multifacettes F̃ et F̃ ′ et prenons H un sous-groupe L-conforme
de G(K) (par exemple G(K)+). Notons également F := F̃Γ et F ′ := (F̃ ′)Γ.

Supposons que F et F ′ soient de même K-type. Alors, F̃ et F̃ ′ ont même L-types.
En effet, il existe g ∈ H tel que g · F = F ′. Par bijectivité et G(K)-équivariance de
la correspondance de la proposition 3.3, on a g · F̃ = F̃ ′. D’où le résultat puisque H
ne change pas les L-types.

Supposons maintenant que F̃ et F̃ ′ soient de même L-type. On sait qu’il existe
g ∈ H tel que g · F et F ′ vivent dans la même adhérence d’une K-chambre. Notons
C̃ la Γ-chambre correspondante. Or, (g · F̃)Γ = g · F . Ceci signifie que g · F̃ et F̃ ′

sont dans l’adhérence de C̃ par croissance. En particulier, ils vivent dans la même
adhérence d’une L-chambre. Comme g ne change pas les L-types, cela signifie que
g · F̃ = F̃ ′. En particulier, g · F et F ′ sont égaux. Comme g ne change pas non plus
les K-types, on en déduit que F et F ′ ont le même K-type. D’où le résultat.
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(2) La correspondance du point (2) donnée par α et β s’obtient alors en factorisant
les applications α et β de la proposition 3.3 au niveau des orbites par H. En ef-
fet, d’une part, l’orbite d’une K-multifacette par H est en correspondance avec les
K-multitypes. D’autre part, l’orbite d’une Γ-multifacette par H décrit des
Γ-multifacettes qui sont par ailleurs de même L-type par caractère L-conforme. Réci-
proquement, les Γ-multifacettes de même L-type sont en fait toutes décrites d’après
le point (1).

Prouvons maintenant la première bijection du point (2). Prenons une Γ-chambre
C̃. Comme C̃ est en correspondance avec l’ensemble des L-multitypes dans T̃max,
on peut relever un L-multitype T̃ fortement Γ-invariant vivant dans T̃max en une
L-multifacette F̃ dans l’adhérence de C̃. Mais comme C̃ est Γ-invariant, l’orbite de F̃
par Γ reste dans C̃. Comme T̃ est fortement Γ-invariant, Γ agit de manière conforme
sur F̃ , et donc F̃ est fortement Γ-invariant. Ceci montre donc la surjectivité, l’injec-
tivité étant bien sûr évidente.

Si G est résiduellement quasi-déployé, alors T̃max est le type d’une L-chambre.
Ceci donne le résultat.

Enfin, notons que ces correspondances sont bien entendu G(K)-équivariantes.
Comme G(K)c agit trivialement sur les K-multitypes, il agit également trivialement
sur les autres ensembles et l’action se factorise donc partout par G(K)/G(K)c ∼= Ξ.
Ceci montre en particulier que l’orbite par l’action d’un sous-groupe global conforme
de G(K) d’une Γ-multifacette décrit exactement les Γ-multifacettes de même L-type,
d’où la seconde remarque de la proposition.

□

Établissons maintenant quelques corollaires à la proposition 3.5 :

Corollaire 3.6.
(1) Tout sous-groupe global de G(K) qui est L-conforme est conforme. En particu-

lier, étant donné H, un sous-groupe global de G(K), on a H ∩ G(L)c ⊂ Hc et
H ∩G(L)b ⊂ Hb.

(2) Tout sous-groupe global de G(K) est conforme si et seulement s’il agit de manière
conforme sur les Γ-multifacettes de B(GL).

Remarque 3.7. Attention ! Il est possible que l’inclusion G(K)tc ⊂ G(K)c soit stricte, et
donc qu’un sous-groupe global conforme ne soit pas très conforme. Un contre-exemple où G
est l’unique forme interne de PGL2 sur Qp, avec p premier (puisque H2(Qp, µ2) = Z/2Z), est
donné en [KP23, Example 2.6.31]. Elle est donc adjointe, anisotrope et résiduellement quasi-
déployée. Autrement dit, G(K) permute les sommets de l’échelonnage sur Knr, c’est-à-dire
A1 ( ).

Notons également le résultat suivant :

Proposition 3.8. Soit H̃ un sous-groupe global Γ-invariant de G(L). Prenons F̃ une
Γ-multifacette de B(GL). Posons H := H̃Γ et F := F̃Γ. Alors

H̃
(F̃)
∩H = H

(F̃)
= H(F).

Démonstration. Le résultat se ramène bien évidemment au cas des facettes. Soit h ∈ HF
Comme ∅ ̸= F ⊂ h · F̃ ∩ F̃ , on a h · F̃ = F̃ . Donc h ∈ HF̃ . Réciproquement, si h ∈ HF̃ ,
prenons x ∈ F . Alors h · x ∈ F̃ . Mais σ(h · x) = σ(h) · σ(x) = h · x pour tout σ ∈ Γ. Donc
h · x ∈ F et h ∈ HF . □
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De ceci, on peut introduire la définition suivante :

Définition 3.9. Prenons H̃ un sous-groupe global Γnr-invariant de G(Knr). Posons
H := H̃Γnr .

(1) Considérons F , une facette de B(G) et F̃ sa Γnr-facette associée par la correspon-
dance de la proposition 3.3.

(a) On dit qu’un R-modèle lisse et séparé de G ayant comme Rnr-points le groupe
H̃F̃ (resp. H̃ f

F̃
) est un schéma en groupes stabilisateur (resp. fixateur)

de F relativement à H. Il est aussi appelé un modèle de Bruhat-Tits de
HF (resp. H f

F).

(b) Son groupe des R-points est donné par (H̃F̃ )
Γnr

= HF̃ = HF (resp.
(H̃ f

F̃
)Γ

nr
= H f

F̃
= H f

F) d’après la proposition 3.8.

(2) Supposons cette fois que F soit une multifacette.

(a) On dit qu’un R-modèle lisse et séparé de G ayant comme Rnr-points le groupe
H̃

(F̃)
est un schéma en groupes multistabilisateur de F relativement à

H. Il est aussi appelé un modèle de Bruhat-Tits de H(F).

(b) Son groupe des R-points est donné par (H̃
(F̃)

)Γ
nr

= H
(F̃)

= H(F) d’après la
proposition 3.8.

Si H̃ = G(Knr), relativement à H peut être omis dans les définitions précédentes.

Remarque 3.10. Les définitions précédentes sont bien sûr compatibles aux extensions algé-
briques galoisiennes non ramifiées Knr/L/K sous un sens évident.

Remarque 3.11. Un R-schéma lisse et affine est unique à isomorphisme près si l’on fixe ses
Rnr-points (cf. [KP23, Corollary 2.10.11]). Par conséquent, en reprenant les notations de la
définition, il y a au plus un seul modèle de Bruhat-Tits affine étant donné le choix de H̃ et
de F .

La question de l’unicité dans le cas où le modèle n’est pas affine sera discutée dans un
article ultérieur.

Remarque 3.12. Cette définition inclut en particulier les schémas en groupes définis par
Bruhat et Tits dans [BT84a] et également les schémas en groupes définis dans [KP23]. Il
inclut également les modèles de Néron des tores (qui donne donc un exemple de situation
où le modèle n’est pas nécessairement affine). La question de l’existence, sous certaines
hypothèses, des modèles de Bruhat-Tits (notamment lorsqu’ils ne sont pas affines) sera
abordée dans un article ultérieur.

4. Résultats cohomologiques théoriques

Dans toute la suite, on note ξ̃, le morphisme type associé à GL. On note également D
(resp. D̃) le diagramme de Dynkin affine relatif de G (resp. GL).

Considérons également Ξext (resp. Ξext
L ), le sous-groupe d’automorphismes de Dynkin de

D (resp. D̃) induit par les automorphismes polysimpliciaux d’un appartement de B(G)
(resp. B(GL)) qui induisent vectoriellement un élément du groupe de Weyl vectoriel (cf.
[KP23, Definition 1.3.71]). Plus précisément, cette construction est indiquée dans [KP23,
Remark 1.3.76].
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Notons que l’action de G(L) sur B(GL) est compatible à l’action de G(L) sur l’immeuble
vectoriel de G sur L, au sens où cette dernière donne l’action vectorielle sous-jacente. De plus,
l’action vectorielle est, sur chaque appartement, induite par des éléments du groupe de Weyl
vectoriel, et en conséquence préserve les types vectoriels (cf. [Rou, 2.2.16.(c) Theorem.]).
Ceci implique que l’image du morphisme type sur K (resp. L) est incluse dans Ξext (resp.
Ξext
L ).
De plus, l’action de Galois sur B(GL) est compatible à l’action de Galois sur l’immeuble

vectoriel sur L, et comme dans le cas affine, l’immeuble vectoriel sur K se plonge dans
l’immeuble vectoriel sur L (cf. [Rou, 2.3.1.(2) Theorem.]).

On définit également le type étendu : à un couple (F , ∗) composé d’une K-multifacette
et d’un point de VG, on associe (T , ∗), le couple formé du type de F et de ∗ (vu donc dans
D̃ × VG). L’action de G(K) sur (F , ∗) induit une action sur (T , ∗) donnée par
g · (T , ∗) = (ξ(g) · T , g · ∗) et donc un morphisme ξe associé, dont le noyau est par défi-
nition G(K)b := G(K)c ∩G(K)1. Étant donné un sous-groupe global H de G(K), on note
Ξe
H := ξe(H) ∼= H/Hb.
Bien entendu, on généralise tout cela sur L, et l’action de Γ sur Be(GL) se factorise par

D̃ × VGL
. On note ξ̃e le morphisme associé sur L.

Commençons par le théorème suivant :

Théorème 4.1. Soit H̃ un sous-groupe global Γ-invariant de G(L). Notons H := H̃Γ.
Notons également T̃max, le type d’une Γ-chambre.

(1) (a) Le groupe Ξ
H̃

est muni de l’action de Γ par conjugaison (donnée par
σ 7→ (ω 7→ σ ◦ω ◦σ−1)), de telle sorte que l’on ait la suite exacte de Γ-groupes :

1 H̃c H̃ Ξ
H̃

1.
ξ̃

(b) De même, Ξe
H̃

est muni de l’action de Γ par conjugaison, de telle sorte à ce que
l’on ait la suite exacte de Γ-groupes :

1 H̃b H̃ Ξe
H̃

1.
ξ̃e

(2) Les suites exactes précédentes donnent lieu aux suites exactes suivantes d’ensembles
pointés :

(a) 1 (Ξ
H̃
)Γ/ξ̃(H) H1(Γ, H̃c) H1(Γ, H̃) H1(Γ,Ξ

H̃
).

(b) 1 (Ξe
H̃
)Γ/ξ̃e(H) H1(Γ, H̃b) H1(Γ, H̃) H1(Γ,Ξe

H̃
).

(3) On a les inclusions suivantes : ξ̃(H) ⊂ (Ξ
H̃,T̃max

)Γ ⊂ (Ξ
H̃
)Γ.

(4) Le groupe (Ξ
H̃,T̃max

)Γ agit naturellement sur D et induit une flèche
(Ξ

H̃,T̃max
)Γ → Ξext.

(5) Le noyau Ker
(
(Ξ

H̃,T̃max
)Γ → Ξext

)
est donné par les éléments de (Ξ

H̃
)Γ stabilisant

chacune des Γ-orbites de D̃ dans T̃max, ou de manière équivalente, stabilisant T̃max

et stabilisant une Γ-orbite se descendant un en K-sommet spécial.
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(6) Si D̃ admet un sommet spécial x dans T̃max (par exemple si G est résiduellement
quasi-déployé), alors un élément ω du noyau s’écrit σ ◦ ϕ = ϕ ◦ σ avec σ ∈ Γ et
ϕ ∈ Aut(D̃), ce dernier fixant x, les Γ-orbites dans T̃max et envoyant une Γ-orbite
quelconque vers une autre. Par ailleurs, ω est le seul élément du noyau ayant une
décomposition avec σ.

(7) Le cardinal du noyau est majorée par la taille de la Γ-orbite de x. En particulier,
si x est fixé par Γ (par exemple s’il est hyperspécial, cf. la définition 5.1), alors le
noyau est trivial.

(8) La restriction de la flèche (Ξ
H̃,T̃max

)Γ → Ξext à ξ̃(H) a comme image ΞH et comme

noyau ξ̃(Hc) ∼= Hc/(H ∩ H̃c). En particulier, Hc = H ∩ H̃c lorsque G admet un
L-sommet spécial dans T̃max fixé par Γ.

Démonstration.

(1) (a) D’après le point (3) de la proposition 2.11, H̃c est un sous-groupe Γ-invariant de
H̃. Par conséquent, l’application h 7→ σ(h) 7→ ξ̃(σ(h)) de H̃ vers Ξ

H̃
se factorise

par Ξ
H̃

. On en déduit alors que l’action de Γ sur H̃ se factorise en une action de
Γ sur Ξ

H̃
de telle sorte que la suite exacte de l’énoncé soit réalisée. La relation

σ(h) · F = σ(h · σ−1(F)) pour toute facette F , tout σ ∈ Γ et h ∈ H̃, et le
fait que tout élément de Γ induit un automorphisme de Dynkin sur les types,
implique la relation ξ̃(σ(h)) = σ ◦ ξ̃(h) ◦ σ−1.

(b) Ce point se fait de manière analogue au point précédent.

(2) (a) La suite exacte en cohomologie donne alors :

1 (H̃c)Γ H (Ξ
H̃
)Γ H1(Γ, H̃c) H1(Γ, H̃) H1(Γ,Ξ

H̃
).

Elle implique alors la suite exacte :

1 ξ̃(H) (Ξ
H̃
)Γ H1(Γ, H̃c) H1(Γ, H̃) H1(Γ,Ξ

H̃
).

Et de même, cette dernière implique la suite exacte de l’énoncé.
(b) Ce point se fait de la même manière.

(3) L’inclusion ξ̃(H) ⊂ (Ξ
H̃,T̃max

)Γ provient du fait que H envoie une Γ-chambre sur une
Γ-chambre.

(4) Prenons un K-appartement A et une K-chambre C dans A. Il existe un
Knr-appartement Ã qui contient A. Considérons l’unique Γ-chambre C̃ telle que
C = (C̃)Γ. Puisque C ⊂ A ⊂ Ã, il s’avère que C̃ est dans Ã. Notons C , une
Knr-chambre de Ã telle que C̃ soit incidente à celle-ci.

Prenons alors h ∈ H̃ tel que ξ̃(h) ∈ (Ξ
H̃,T̃max

)Γ. Ceci signifie que ξ̃(h) = ξ̃(σ(h))

et que h · C̃ est de même type que C̃. Quitte à translater h par un élément de H̃b, on
peut supposer que h · (C , Ã) = (C , Ã). Ceci implique que h · C̃ = C̃.

Étudions maintenant h−1σ(h). Observons que :

C̃ = σ(C̃) = σ(h · C̃) = σ(h) · σ(C̃) = σ(h) · C̃
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Ceci implique que h−1σ(h)·C̃ = C̃. Mais, par hypothèse, h−1σ(h) ∈ H̃c. Ceci implique
que C̃ est fixée par h−1σ(h). D’où :

h · C = {h · x ∈ h · C̃ | ∀σ ∈ Γ, σ(x) = x}

= {h · x ∈ h · C̃ | ∀σ ∈ Γ, h−1σ(h) · σ(x) = x}

= {h · x ∈ h · C̃ | ∀σ ∈ Γ, σ(h · x) = h · x}

= (h · C̃)Γ = C.

Par conséquent, h stabilise la K-chambre C. Ceci implique en particulier que h

stabilise le sous-espace affine de Ã engendré par C, c’est-à-dire le K-appartement A.
L’élément h agit évidemment sur A par automorphismes affines.

Montrons maintenant que l’action est vectoriellement par automorphismes de
Weyl. Ceci nous donnera le résultat. En effet, rappelons que C est en correspon-
dance avec D , de sorte qu’une action sur C provenant d’une action sur A par auto-
morphismes affines qui sont vectoriellement par automorphismes de Weyl détermine
exactement une action sur D par automorphismes provenant de Ξext.

Considérons Ṽ et V les espaces vectoriels associés respectivement à Ã etA. D’après
[Rou, 2.3.1.(2) Théorème.], l’application entre les immeubles vectoriels sur K et sur
Knr est compatible à Weyl. En particulier, dans notre cas, cela signifie que l’inclusion
naturelle V ⊂ Ṽ est tel que tout élément du groupe de Weyl sur Knr restreint à V
est exactement un élément du groupe de Weyl sur K (cf. [Rou, 2.4.3.1. Définitions]).
Par conséquent, puisque h agit sur Ṽ par automorphismes de Weyl d’après [Rou,
2.1.7.(b) Théorème.], son action induite sur V est encore par automorphismes de
Weyl.

(5) La description de Ker
(
Ξ
H̃,T̃max

)Γ → Ξext
)

provient du fait que les Γ-orbites de D̃

dans T̃max sont en correspondance avec les sommets de D . La condition équivalente
provient du fait que le seul élément de Ξext fixant un point spécial est l’identité (cf.
[KP23, Remark 1.3.76]).

(6) Comme ω est dans le noyau, il envoie x sur un élément de sa Γ-orbite. Autrement
dit, il existe σ ∈ Γ tel que ω ·x = σ ·x. Donc ϕ := σ−1◦ω fixe x. Comme σ et ω fixent
les Γ-orbites dans T̃max, il en est de même pour ϕ. Par ailleurs, comme σ−1 ω σ = ω,
on a également σ ◦ ϕ = ϕ ◦ σ. Enfin, comme σ et ω envoient une Γ-orbite vers une
autre, il en est de même pour ϕ.

D’après [KP23, Remark 1.3.76], le morphisme ω′ 7→ ω′ · x de Ξ
H̃

vers les points
spéciaux de D̃ est injectif. On en déduit également que ω est le seul élément du
noyau ayant σ dans sa décomposition puisque ω · x = σ · x.

(7) On réutilise [KP23, Remark 1.3.76]. Comme un élément du noyau envoie x vers un
élément de sa Γ-orbite, on en déduit la majoration. Si G admet un point hyperspécial,
il est Γ-invariant et son orbite est réduite à lui-même. D’où le résultat.
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(8) Observons qu’un élément ξ̃(h) ∈ (Ξ
H̃
)Γ (pour h ∈ H) est dans le noyau

Ker
(
Ξ
H̃,T̃max

)Γ → Ξext
)

si et seulement s’il stabilise chacune des Γ-orbites de D̃

dans T̃max d’après le point (5). Cela est équivalent à demander que ξ̃(h) stabilise les
K-types d’après la proposition 3.5, ou encore que h ∈ Hc. Le noyau est donc donné
par ξ̃(Hc). Notons que Ker(ξ̃) = H̃c. Par ailleurs, le point (1) du corollaire 3.6 donne
que H ∩ H̃c ⊂ Hc. D’où Hc/(H ∩ H̃c) ∼= ξ̃(Hc).

D’après la proposition 3.5, le groupe H∩H̃c agit transitivement sur les Γ-chambres,
puisqu’agit transitivement sur les K-chambres. En conséquence, tout élément de
ξ̃(H) provient d’un h ∈ H qui stabilise une certaine Γ-chambre C. Comme vu dans
le point (4), l’action de h sur CΓ détermine l’image de ξ̃(h) dans Ξext. Or, cette
action n’est autre que l’action naturelle de h sur la K-chambre CΓ dans l’immeuble
B(G) ∼= B(GL)

Γ. Par définition, cette action définit un élément de ΞH , et bien
entendu, tout élément de ΞH s’obtient de cette manière.

D’après le point (7), si G admet un L-sommet spécial dans T̃max fixé par Γ,
alors le noyau Ker

(
Ξ
H̃,T̃max

)Γ → Ξext
)

est trivial. En conséquence, ξ̃(Hc), et donc

Hc/(H ∩ H̃c) est trivial. Ceci implique l’égalité Hc = H ∩ H̃c.

□

Remarque 4.2. Il existe des situations où T̃max ne contient aucun sommet spécial de D̃ . En ef-
fet, posons q0 = X2

1 + X2
2 + X2

3 + X2
4 et considérons la forme quadratique

q = q0(X1, X2, X3, X4) + t q0(X
′
1, X

′
2, X

′
3, X

′
4) dans R((t)). Elle est anisotrope de discri-

minant 1, donc Spin(q) est un groupe anisotrope simplement connexe absolument presque

simple de type 1D4. Son indice de Tits affine est donné par , d’où le contre-exemple
voulu puisque le point central n’est pas spécial dans D4 d’après [KP23, Table 1.3.5].

En effet, observons en premier lieu qu’il y a une inclusion naturelle de SO(q0) × SO(q0)
dans SO(q) sur R((t)). Cette inclusion se relève en un morphisme au niveau des revêtements
simplement connexes Spin(q0)×Spin(q0)→ Spin(q) d’après [Con14, Exercise 6.5.2.(iii)]. On
constate ensuite que le noyau µ du relevé est inclus dans Ker (Spin(q0)× Spin(q0)→ SO(q0)× SO(q0)) :
en conséquence µ est un sous-groupe de type multiplicatif fini déployé central.

Notons P l’unique schéma en groupes parahorique de Spin(q) sur R[[t]]. Puisque Spin(q)
est anisotrope sur R((t)) et simplement connexe, on a P(R[[t]]) = Spin(q)(R((t))) d’après
[BT84a, 5.2.10.(i) Proposition.]. Par ailleurs, comme q0 est défini et régulier sur R[[t]], le
groupe (Spin(q0)× Spin(q0))/µ est défini et réductif sur R[[t]]. On le note alors Q.

Montrons ensuite qu’il existe un morphisme Q → P de R[[t]]-schémas en groupes étendant
les inclusions (Spin(q0)× Spin(q0))/µ→ Spin(q) et Q(R[[t]]) ⊂ P(R[[t]]) = Spin(q)(R((t))).
Il suffit pour cela de montrer que Q est étoffé (cf. [BT84a, 1.7.1. Définition.]).

D’après [BT84a, 1.7.2.], il suffit de montrer que Q vérifie (ET 1) et (ET 2). [BT84a, 1.7.3.]
nous donne déjà que (ET 1) est satisfait. (ET 2) signifie que l’image de Q(R) vers Q(κ) est
schématiquement dense dans Qκ. Comme Q est lisse et R hensélien, cela revient à montrer
que Q(κ) est schématiquement dense dans Qκ d’après le lemme de Hensel ([KP23, Lemma
8.1.3]). Cela est vrai d’après [Mil17, Theorem 17.93].

Comme Q est réductif sur R[[t]] et qu’il est de rang 4, il admet R[[t]]-tore maximal T de
rang 4. L’application induite T → P a un noyau de type multiplicatif d’après [SGA3, Exp.
IX, Théorème 6.8.]. Or, ce dernier est trivial sur la fibre générique : il est donc trivial d’après
[SGA3, Exp. IX, Remarque 1.4.1.b)]. En conséquence, T → P et en particulier le rang de
PC est d’au moins 4.
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Également, comme le groupe est anisotrope, son indice affine contient qu’une seule orbite
distinguée. Enfin, d’après [Tit79, 3.5.2.], l’indice de Tits du quotient réductif de PR est
obtenu en supprimant tous les sommets associés à la facette de P dans l’indice de Tits affine
de Spin(q) (en outre, l’unique orbite distinguée). Notons d’ailleurs que l’indice de Tits affine
de Spin(q) admet 5 sommets. L’observation précédente sur le rang montre qu’un sommet
est au plus supprimé, et donc que l’orbite distinguée est réduite à un point.

Il reste donc à éliminer le cas de figure suivant : (modulo rotation). Supposons, en
raisonnant par l’absurde, que son indice soit de cette forme. Cela signifie que Spin(q) admet
un point hyperspécial (cf. la définition 5.1) et donc un modèle réductif G sur R[[t]] (cf. le
lemme 5.2). Considérons alors une forme quadratique régulière q′ sur R tel que GR = Spin(q′)
(G est simplement connexe). Grâce à l’inclusion R → R[[t]], ceci définit un groupe réductif
Spin(q′) sur R[[t]].

Les deux groupes G et Spin(q′) sont alors des formes de Spin8 qui coïncident sur R.
Or, d’après [SGA3, Exp. XXIV, Proposition 8.1.(ii)], puisque Aut(Spin8) est lisse, on a
H1(R[[t]],Aut(Spin8))

∼→ H1(R,Aut(Spin8)). On en déduit alors que G et Spin(q′) sont
isomorphes.

En particulier, on a un isomorphisme entre Spin(q′) et Spin(q) sur R((t)). Montrons alors
que ceci implique que q′ et q sont équivalents à homothétie par un scalaire de R((t)) près.
De ceci, on en déduit alors une absurdité car q n’est pas régulière lorsque l’on réduit modulo
t, et donc pas régulière sur R[[t]], contrairement à q′.

D’après [KMRT98, (44.8) Theorem.], il y a une équivalence de catégories entre les algèbres
trialitaires et les groupes simplement connexes de type D4 au travers de T 7→ Spin(T ).
En l’occurrence, dans le cadre de groupes de type 1D4, les choses se simplifient gran-
dement. On considère les algèbres à involutions (M8(R((t))), ∗) et (M8(R((t))), ∗′) avec
∗ := X 7→ M−1

q
tXMq et ∗′ := X 7→ M−1

q′
tXMq′ , où Mq et Mq′ sont respectivement

les matrices des formes quadratiques q et q′. Les groupes "Spin" associés sont simplement
Spin(q) et Spin(q′). Les algèbres sont donc isomorphes. Pour conclure, on utilise ensuite
[KMRT98, (12.34) Proposition.] qui donne que (M8(R((t))), ∗) et (M8(R((t))), ∗′) sont des
algèbres à involutions isomorphes si et seulement si q et q′ sont équivalentes à homothétie
près.

Montrons maintenant le théorème suivant, qui est au cœur de cette partie :

Théorème 4.3. Soit Ω̃ une union disjointe de parties
⊔

i∈I Ω̃i de B(GL) où chaque Ω̃i est
Γ-invariant. Prenons H̃ ⊂ G(L), un sous-groupe global Γ-invariant et posons H := H̃Γ.
Choisissons ∗, un point quelconque de la partie vectorielle VG de Be(G).

(1) On a les isomorphismes naturels (où les quotients considérés sont des quotients d’ac-
tions) :

(a) (Orb((Ω̃i)i∈I)H̃)Γ/H
∼→ Ker

(
H1(Γ, H̃

(Ω̃i)i∈I
)→ H1(Γ, H̃)

)
.

(b) (Orb((Ω̃i)i∈I , ∗))H̃)Γ/H
∼→ Ker

(
H1(Γ, H̃1

(Ω̃i)i∈I
)→ H1(Γ, H̃)

)
.

L’action sur les familles est celle terme à terme.

(2) Prenons cette fois une Γ-multifacette F̃ de type T̃ . On a les isomorphismes suivants
induits en passant aux types :

(a) (Orb((F̃))
H̃
)Γ/H

∼→
(
{ω · T̃ ≺ T̃max | ω ∈ Ξ

H̃
}Γ

)
/ΞH .

(b) (Orb((F̃), ∗)
H̃
)Γ/H

∼→
(
{(ω · T̃ , ω · ∗) | ω · T̃ ≺ T̃max , ω ∈ Ξe

H̃
}Γ

)
/Ξe

H .
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Démonstration.
(1) (a) Le résultat provient de [Ser94, I.§5.4., Corollaire 1.]. En effet, il suffit

d’appliquer le tout au Γ-morphisme H̃
(Ω̃i)i∈I

→ H̃, et d’observer que

H̃/H̃
(Ω̃i)i∈I

∼= Orb((Ω̃i)i∈I)H̃ . en tant que Γ-ensemble muni d’une action de

H̃ (terme à terme).
(b) Le second point se prouve de la même manière. En effet, il suffit d’observer que

H̃1
(Ω̃i)i∈I

= H̃
((Ω̃i)i∈I ,∗).

(2) (a) Notons déjà que la flèche (Orb((F̃))
H̃
)Γ → {ω · T̃ ≺ T̃max | ω ∈ ΞH̃}Γ est

bien définie puisque toute Γ-multifacette est incident à une Γ-chambre, et cette
incidence passe aux types. Par ailleurs, d’après la proposition 3.5, l’action de H
sur les types fortement Γ-invariants se factorise par ΞH . Ceci prouve la bonne
définition de la flèche de l’énoncé.
Montrons l’injectivité. Prenons g, g′ ∈ H̃ tels que g · F̃ et g′ · F̃ soient
Γ-fortement invariants. Supposons également qu’il existe h ∈ H tel que h ·(g ·F̃)
et g′ · F̃ aient même L-type. D’après la proposition 3.5, cela signifie qu’il existe
hb ∈ Hb tel que (hbhg) · F̃ et g′ · F̃ soient égaux. Puisque hb h ∈ H, cela signifie
donc que g · F̃ et g′ · F̃ sont dans la même orbite par H. D’où l’injectivité.
Montrons maintenant la surjectivité. Prenons C̃, une Γ-chambre tel que F̃ soit
incident à celle-ci. Soit h ∈ H̃ tel que ξ(h) · T̃ soit un type fortement Γ-invariant
incident à T̃max. Il se relève en la L-multifacette h · F̃ , que l’on peut supposer
incident à C̃, quitte à bouger h par un élément de H̃b.
Soit donc σ ∈ Γ. On a alors σ(h · F̃) incident à σ(C̃) = C̃. Or, comme ξ(h) · T̃
est Γ-invariant, σ(h · F̃) est également de ce type. On a donc σ(h · F̃) et h · F̃ de
même type dans C̃, ils sont donc égaux en tant que multifacette. Par conséquent,
h · F̃ est Γ-fortement invariant et la surjectivité est prouvée comme voulu.

(b) Comme précédemment, la flèche (définie en prenant le type sur le premier fac-
teur), est bien définie pour les mêmes raisons. Ajoutons également que l’action
de H sur l’ensemble de gauche se factorise par Ξe

H car Hb ⊂ Hc agit trivia-
lement sur les types fortement Γ-invariants (comme montré précédemment),
et Hb ⊂ H1 agit trivialement sur ∗ ∈ VG. La preuve de l’injectivité et de la
surjectivité se fait, mutatis mutandis, comme le cas précédent.

□

Remarque 4.4. En combinant le point (1) et le point (2) dans le cadre d’une multifacette,
on en déduit que les noyaux du point (1) ne dépendent que des types, plus précisément que
du diagramme de Dynkin affine relatif sur L muni de son action de Galois et l’ensemble de
sommets T̃max (ce que l’on pourrait appeler un L/K-indice de Tits affine) et de l’action de
H̃ dessus.

Pour réaliser des calculs dans le cas où L = Knr, on peut notamment s’aider de la classi-
fication des indices de Tits affines faite dans [Tit79, 4. Classification.] pour les corps locaux,
ou encore de la récente classification des groupes résiduellement quasi-déployés lorsque κ est
parfait dans [Rou, 6.5.13].

On peut également déterminer la liste des indices de Tits affines dans le cas hyperspé-
cial (cf. définition 5.1), et donc réaliser un calcul, en utilisant la liste des indices de Tits
(classiques) dans [Tit66] sur lequel on adjoint un point hyperspécial à l’aide de la liste des
diagrammes de Dynkin affines (cf. [KP23, Table 1.3.4 / 1.3.5]).
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Remarque 4.5. Les deux ensembles du point (2) (a) du théorème 4.3 sont donc finis puisqu’il
y a un nombre fini de types distincts.

Remarque 4.6. Si G est semi-simple simplement connexe, quasi-déployé sur Knr, il a déjà été
prouvé dans [BT84a, 5.2.10.(ii)] que (Orb(F̃)G(Knr))

Γnr
/G(K) = 1 pour toute

Γnr-facette F . On peut aussi le déduire de [BT84a, 5.2.10.(i)] (qui dit que G(Knr) est
conforme) et du point (2) (a) du théorème 4.3.

On déduit du théorème 4.3 les cas particuliers suivants :

Corollaire 4.7. Soit F̃ une Γ-multifacette de B(GL). Prenons H̃ ⊂ G(L) global,
Γ-invariant, et agissant de manière conforme sur F̃ . On a :

Ker
(
H1(Γ, H̃

(F̃)
)→ H1(Γ, H̃)

)
= 1.

Démonstration. Notons T̃ , le type de F̃ . L’hypothèse signifie que H̃ agit trivialement sur
T̃ . Par conséquent, (Orb(T̃ )

H̃
)Γ est trivial. On conclut alors grâce au théorème 4.3. □

Corollaire 4.8. Prenons H̃ ⊂ G(L), un sous-groupe global Γ-invariant. Soit C̃ une
Γ-chambre de B(GL). On a :

Ker
(
H1(Γ, H̃C̃)→ H1(Γ, H̃)

)
= 1.

Démonstration. Notons T̃max, le type de C̃. D’après le théorème 4.3, le noyau de l’énoncé est
égal au sous-ensemble de (Orb(T̃max)H̃)Γ composé des types incidents à T̃max. Cet ensemble
est donc bien évidemment réduit à {T̃max}. □

Attardons-nous maintenant sur quelques résultats exprimant dans quelle mesure l’exten-
sion L/K peut être changée pour les calculs de cohomologie.

Lemme 4.9. Supposons que G ait même rang relatif sur L que sur K. Prenons S un K-tore
déployé maximal. Notons Z := ZG(S) et N := NG(S). Prenons également un sous-groupe
global Γ-invariant H̃ de G(L) contenant Z(L)1 (ou de manière équivalente, G(L)b) et notons
H := H̃Γ. On a les assertions suivantes :

(1) La flèche naturelle (H ∩N(K))/Z(K)1 → (H̃ ∩N(L))/Z(L)1 est un isomorphisme.
(2) L’immeuble Be(G) s’identifie canoniquement à un sous-ensemble de Be(GL) qui

envoie un appartement sur K sur un appartement Γ-invariant sur L.
(3) Considérons A l’appartement étendu associé à S dans Be(G) ⊂ Be(GL). Le point

(1) signifie également que HA et H̃A ont la même image dans Autaff(A).
(4) On a les isomorphismes naturels ΞH

∼= Ξ
H̃

et Ξe
H
∼= Ξe

H̃
.

Démonstration. Notons que H̃ contient Z(L)1 si et seulement s’il contient G(L)b puisque ce
dernier vaut G(L)+Z(L)1 d’après le lemme 2.8.

(1) On a le diagramme commutatif à lignes exactes suivant :

1 (H ∩N(K))/(H ∩ Z(K)) (H ∩N(K))/Z(K)1 (H ∩ Z(K))/Z(K)1 1

1 (H̃ ∩N(L))/(H ∩ Z(K)) (H̃ ∩N(L))/Z(L)1 (H̃ ∩ Z(L))/Z(L)1 1.
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Notons déjà que N(K)/Z(K) → N(L)/Z(L) est un isomorphisme puisque N/Z
est un groupe fini constant (cf. [Mil17, 25.16]). Comme HZ(K) = G(K) et
H̃Z(L) = G(K) (puisque G(K)+Z(K) = G(K) et G(L)+Z(L) = G(L) d’après
[BT73, 6.11.(i) Proposition.]), H∩N(K) (resp. H̃∩N(L)) se surjecte dans N(K)/Z(K)
(resp. N(L)/Z(L)). Ceci donne que la flèche verticale de gauche est un isomorphisme.

Prenons une base B de caractères de Z. Elle est donc de cardinal r, où r est le rang
relatif de G sur K. Comme il a même rang relatif sur L, il s’agit également d’une
base de caractères de ZL. La flèche z 7→ (v(χ(z)))χ∈B définit un isomorphisme de
Z(K)/Z(K)1 vers Zr. Comme L/K est non ramifié, elle s’étend en un isomorphisme
Z(L)/Z(L)1 ∼= Zr. D’où un isomorphisme naturel Z(K)/Z(K)1 ∼= Z(L)/Z(L)1.
Étant donné h ∈ H̃ ∩ Z(L), il existe donc z ∈ Z(K) et z1 ∈ Z(L)1 tel que h = zz1.
Comme Z(L)1 ⊂ H̃, il s’avère que z ∈ Z(K) ∩ H̃ = Z(K) ∩ H. Ceci prouve donc
que la flèche verticale de droite est un isomorphisme.

En conclusion, la flèche verticale centrale est un isomorphisme puisque c’est le cas
des flèches de gauche et de droite. D’où l’isomorphisme souhaité.

(2) Il s’agit d’une conséquence immédiate de [Rou77, Proposition 2.3.1.] et du théorème
de descente non ramifiée.

(3) Rappelons que l’on a une flèche d’action N(L)→ Autaff(A) dont le noyau est Z(L)1

(cf. fin de la section 1). D’après le point précédent, cette flèche est compatible à celle
associée à N(K). Il suffit alors d’observer que HA = H ∩N(K) et H̃A = H̃ ∩N(L)
pour conclure grâce au point (1).

(4) Observons tout d’abord que Hb = H̃b ∩ H et que Hc = H̃c ∩ H. En effet, c’est
une conséquence de la proposition 3.5 puisque Γ agit trivialement sur Be(GL) et
donc sur les types, et l’égalité des rangs relatifs signifie que toute L-chambre est une
K-chambre. En d’autres termes, être conforme sur L est équivalent à être conforme
sur K.

Montrons alors que H̃ = H H̃b pour conclure. Cela impliquera bien entendu
H̃ = H H̃c. Comme Z(L)1 ⊂ H̃, on a en fait H̃b = G(L)b. Le point (1) dit que
(H ∩N(K))Z(L)1 = (H̃ ∩N(L)) = H̃A. En multipliant par G(L)+ et en utilisant
le lemme 2.8, on obtient (H ∩N(K))G(L)b = H̃AG(L)+ = H̃. D’où le résultat.

□

Proposition 4.10. Considérons L′/K, une extension galoisienne non ramifiée contenant L
de groupe de Galois Γ′. Supposons que G ait le même rang relatif sur L′ que sur L. Soit F̃ ′,
une Γ′-multifacette. Elle induit une Γ-multifacette que l’on note F̃ .

Prenons également un sous-groupe global Γ-invariant H̃ ′ de G(L′) contenant G(L′)b, et
notons H̃ := (H̃ ′)Gal(L′/L) et H := (H̃ ′)Γ

′ . On a les égalités :

(1) (a) Ker
(
H1(Γ, H̃c)→ H1(Γ, H̃)

)
= Ker

(
H1(Γ′, (H̃ ′)c)→ H1(Γ′, H̃ ′)

)
.

(b) Ker
(
H1(Γ, H̃b)→ H1(Γ, H̃)

)
= Ker

(
H1(Γ′, (H̃ ′)b)→ H1(Γ′, H̃ ′)

)
.

(2) (a) Ker
(
H1(Γ, H̃F̃ )→ H1(Γ, H̃)

)
= Ker

(
H1(Γ′, (H̃ ′)F̃ ′)→ H1(Γ′, H̃ ′)

)
.

(b) Ker
(
H1(Γ, H̃1

F̃
)→ H1(Γ, H̃)

)
= Ker

(
H1(Γ′, (H̃ ′)1

F̃ ′)→ H1(Γ′, H̃ ′)
)
.
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Démonstration. Observons que L′/L est galoisien. D’après le lemme 4.9, puisque G a même
rang relatif sur L′ que sur L, l’inclusion Be(GL) ⊂ Be(GL′) envoie un appartement sur un
appartement invariant par Gal(L′/L). Cette inclusion est donc telle que Γ et Γ′ agissent de
la même manière sur les L-types (qui donc sont en correspondance avec les L′-types). Par
ailleurs, notons qu’une Γ′-chambre est naturellement une Γ-chambre, de sorte que le type
T̃max est le même sur L et sur L′. Notons alors que facette F̃ n’est autre que l’image de F̃ ′

sous cette inclusion.

(1) (a) D’après le point (2) du théorème 4.1 (et son caractère fonctoriel), il suffit de
montrer que la flèche (Ξ

H̃
)Γ/ξ̃(H)→ (Ξ

H̃′)
Γ′
/ξ̃′(H) est un isomorphisme. C’est

une conséquence immédiate de l’isomorphisme Ξ
H̃

∼→ Ξ
H̃′ d’après le point (4)

du lemme 4.9, ce dernier isomorphisme identifiant également ξ̃(H) avec ξ̃′(H).
(b) Ce cas se traite de la même manière.

(2) (a) On a le diagramme commutatif suivant d’après le point (2) (a) du théorème
4.3 :

Ker
(
H1(Γ, H̃F̃ )→ H1(Γ, H̃)

)
Ker

(
H1(Γ′, H̃ ′

F̃ ′)→ H1(Γ′, H̃ ′)
)

(Orb(F̃)
H̃
)Γ/H (Orb(F̃ ′)

H̃′)
Γ′
/H

(
{ω · T̃ ≺ T̃max | ω ∈ Ξ

H̃
}Γ

)
/ΞH

(
{ω · T̃ ≺ T̃max | ω ∈ Ξ

H̃′}Γ
′
)
/ΞH

∼=

∼=

∼=

∼=

et la dernière flèche horizontale est un isomorphisme d’après le point (4) du
lemme 4.9 puisque ce dernier donne Ξ

H̃

∼→ Ξ
H̃′ .

(b) Ce cas se traite de manière analogue.

□

Remarque 4.11. On peut en particulier appliquer cette proposition lorsque L′ = Knr et
avec une extension galoisienne finie L/K telle que G a même rang sur L que sur Knr. En
conséquence, les noyaux sont triviaux si G est déployé sur K, ou encore si G est semi-simple
et résiduellement déployé.

Les noyaux sont également triviaux dans le cas où G est un groupe absolument presque
simple quasi-déployé sur K et déployée par une extension totalement ramifiée, car dans ce
cas, G est résiduellement déployé. En effet, un groupe quasi-déployé admet une K-extension
galoisienne déployante minimale K ′ (qui n’est autre que l’extension galoisienne de groupe
de Galois le noyau de la ∗-action). Cette extension est totalement ramifiée par hypothèse.
En conséquence, G est résiduellement déployé car, dans le cas contraire, il existerait une
extension non ramifiée entre K et K ′.

Notons que, d’après [Gil15, 2.9. Calculs galoisiens.], étant donné un R-schéma en groupes
G, tout Γ-cocycle dans Z1(Γ,G(RL)) (où RL est l’anneau d’entiers de L) définit un G-torseur
sur R, et donc un élément de H1(R,G) (en fait, tout G-torseur sur R trivialisé sur RL provient
d’un unique tel cocycle d’après [Gil15, Lemme 2.2.1.]). De même, un cocycle de Z1(Γ, G(L))
définit un élément de H1(K,G). Par ailleurs, deux torseurs sont isomorphes si et seulement
si les cocycles associés sont cohomologues.
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On définit donc le tordu de G par un cocycle z ∈ Z1(Γ,G(RL)), noté zG, comme étant le
tordu au travers du torseur qu’il induit (cf. [Gil15, 2.1.]). On définit de même le tordu de
G par un cocycle de Z1(Γ, G(L)). Deux cocycles cohomologues induisent bien entendu des
tordus isomorphes.

Notons enfin que tordre G par un cocycle z ∈ Z1(Γ,G(RL)) est compatible à la torsion
de G(RL) par le même cocycle dans le sens suivant : (zG)(RL) est égal à z(G(RL)) en tant
que Γ-module (il en est bien sûr de même pour G).

Terminons cette section avec quelques propriétés sur le comportement par torsion par un
cocycle de l’immeuble, des facettes, et des stabilisateurs :

Proposition 4.12. Prenons un cocycle z ∈ Z1(Γ, G(L)).

(1) Les tordus zG(L) et zB(GL) sont tels que d’une part, zG(L) soit G(L) muni de l’ac-
tion donnée par σ⋆g := z(σ)σ(g)z(σ)−1, et d’autre part, tel que zB(GL) soit B(GL)
muni de l’action σ ⋆ x = z(σ)σ(x). Par ailleurs, ces deux actions sont compatibles,
autrement dit : σ ⋆ (g ·x) = (σ ⋆ g) · (σ ⋆x). De plus, (zB(GL))

Γ s’identifie à B(zG).

(2) Soit z′ un cocycle cohomologue à z via un élément g0 ∈ G(L) (de telle sorte à ce que
z′ = σ 7→ g−1

0 z(σ)σ(g0)). Alors on a les isomorphismes suivants :

z′G(L)
∼→ zG(L)

g 7→ g0gg
−1
0

et
z′B(GL)

∼→ zB(GL)

x 7→ g0 · x

où le premier isomorphisme est un isomorphisme de Γ-groupes, et où le second iso-
morphisme est un isomorphisme de Γ⋉G(L)-ensembles. Par ailleurs, zG et z′G sont
isomorphes.

Démonstration.

(1) Il s’agit d’une conséquence immédiate de [Ser94, 5.3. Torsion] et notamment de
[Ser94, Proposition 34.] pour la compatibilité. En effet, B(GL) peut être vu comme
un Γ-ensemble muni d’une action compatible du Γ-groupe G(Knr).

Pour ce qui est des points fixes, cela provient du théorème de descente modérément
ramifiée ([Rou77, Proposition 5.1.1.]), notant que zG est réductif sur K puisque l’est
sur L, et du fait que (zG)(L) = z(G(L)) en tant que Γ-groupes.

(2) La vérification est immédiate. Pour ce qui est de l’isomorphisme entre zG et z′G, cela
est une conséquence du fait que z et z′ proviennent de torseurs isomorphes puisqu’ils
sont cohomologues.

□

Proposition 4.13. Prenons F̃ une Γ-multifacette de B(GL) et z ∈ Z1(Γ, G(L)
(F̃)

). Écri-

vons F̃ =
⊔

i∈I F̃i, sa décomposition en Γ-facettes et notons F =
⊔

i∈I Fi la K-multifacette
associée. Le cocycle z définit pour tout i ∈ I une classe dans Z1(Γ, G(L)F̃i

) et dans Z1(Γ, G(L))

que l’on note aussi z. Alors :

(1) La multifacette tordue zF̃ est également compatible à zB(GL), dans le sens sui-
vant : F̃ est Γ-fortement invariante pour l’action ⋆ introduite dans le point (1) la
proposition 4.12 et le Γ ⋉ G(L)

(F̃ )
-ensemble induit est exactement zF̃ . L’ensemble

des points fixes est noté zF . Ce dernier est une multifacette de B(zG) et admet la
décomposition en facettes zF =

⊔
i∈I

zFi.
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(2) Soit z′ ∈ Z1(Γ, G(L)
(F̃)

) un cocycle cohomologue à z dans Z1(Γ, G(L)), donc via
un élément g0 ∈ G(L) (de telle sorte à ce que z′ = σ 7→ g−1

0 z(σ)σ(g0)). Alors
l’isomorphisme du point (2) de la proposition 4.12 envoie z′F̃ sur la facette g0F̃ qui
est Γ-invariante dans zB(GL). En conséquence, zF est envoyé sur (g0F̃)Γ.

En particulier, si g0 ∈ G(L)
(F̃ )

(et donc z et z′ sont cohomologues dans Z1(Γ, G(L)
(F̃)

),

alors z′F̃ est envoyé sur zF̃ (et zF sur z′F).

Démonstration.

(1) Comme précédemment, on utilise [Ser94, 5.3. Torsion]. Puisque F̃ est fortement
Γ-invariante et que G(L)

(F̃)
opère sur F̃ de manière compatible à Γ, on peut consi-

dérer le tordu zF̃ . On obtient de même les zF̃i pour tout i ∈ I. Comme, pour tout
i ∈ I, on a F̃i ⊂ F̃ ⊂ B(GL) en tant que Γ ⋉ G(L)

(F̃ )
-ensembles, alors de même,

zF̃i ⊂ zF̃ ⊂ zB(GL) en tant que Γ ⋉ G(L)
(F̃ )

-ensembles. D’où la compatibilité

et la forte Γ-invariance de zF̃ . La proposition 3.3 nous dit alors que zF est une
multifacette de B(zG) de décomposition

⊔
i∈I

zFi.

(2) La vérification est immédiate.

□

Proposition 4.14. Prenons H̃, un sous-groupe global Γ-invariant de G(L) et posons
H := H̃Γ. Prenons également z ∈ Z1(Γ, H̃). On a :

(1) Le sous-groupe zH := (zH̃)Γ est global dans (zG)(K).

Supposons de plus que z ∈ Z1(Γ, H̃
(F̃)

) (qui définit bien entendu un cocycle dans Z1(Γ, G(L)
(F̃)

)

et dans Z1(Γ, H̃) que l’on note aussi z). On a :

(2) Le sous-groupe zH(F) := (zH̃
(F̃)

)Γ est le multistabilisateur de zF dans B(zG) rela-
tivement à zH. Autrement dit, zH(F) = (zH)(zF).

(3) Supposons que L = Knr. Si de plus H(F) admet un modèle de Bruhat-Tits H(F),
alors (zH)(zF) également et un est donné par zH(F).

Démonstration. Observons que les groupes tordus zH̃
(F̃)

, zH̃Fi pour tout i ∈ I, zH̃ et zG(L)

sont munis de Γ-actions compatibles. Notons aussi que zH̃ est global puisque son groupe
sous-jacent est H̃.

(1) Comme zH̃ est global, zH est aussi global d’après le point (2) de la proposition 2.11.

(2) Pour ce qui est du multistabilisateur, on observe d’après la proposition 3.8 et la
compatibilité des Γ-groupes :

(zH)(zF) =
zH ∩ zH̃

(F̃)
= (zH̃

(F̃)
)Γ = zH(F).

(3) Supposons maintenant que H(F) admette un modèle de Bruhat-TitsH(F). Observons
alors que le groupe zH(F) a comme Rnr-points (muni de sa Γ-action) zH̃

(F̃)
et donc

comme R-points zH(F) = (zH)(zF). C’est donc bien un modèle de Bruhat-Tits de
(zH)(zF).

□
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5. Cas des points hyperspéciaux

Intéressons-nous au cas des points hyperspéciaux. Rappelons la définition :

Définition 5.1. On dit que x ∈ B(G) est un point hyperspécial de G si G est déployé sur
Knr et si x est un sommet spécial de B(GKnr) (via l’identification B(G) ∼= B(GKnr)Γ

nr).

La notion de point hyperspécial dépend donc du Γnr-ensemble B(GKnr), mais également
de G. Notons aussi qu’un point hyperspécial est un sommet de B(G) d’après la proposition
3.3. Rappelons maintenant quelques résultats reliant les points hyperspéciaux et les modèles
réductifs :

Lemme 5.2. Soit G un groupe réductif sur K et x un point hyperspécial de G (le groupe G
est donc déployé sur Knr). On a les énoncés suivants :

(1) Le modèle de Bruhat-Tits affine de G(K)1x est réductif (à fibres connexes) sur R.

(2) Réciproquement, tout modèle réductif de G s’obtient de cette manière.

(3) En particulier, si G est un R-groupe réductif, alors D(G) (resp. G) est K-anisotrope
si et seulement si G(R) = G(K)1 (resp. G(R) = G(K)).

Démonstration.

(1) Par définition, le point x est spécial dans B(GKnr). D’après [BT84a, 4.6.22.] et
[BT84a, 4.6.28.(ii)], le modèle affine associé à G(Knr)1x est réductif (à fibres connexes).
Comme le modèle affine de G(K)1x est simplement le descendu à R (qui existe en
utilisant le procédé [BT84a, 5.1.30.] puisque x est Γnr-invariant), on a le résultat.

(2) Réciproquement, [BT84a, 4.6.31.] nous dit qu’un modèle réductif G de G est iso-
morphe sur Rnr au schéma associé à G(Knr)1x pour un certain point spécial
x ∈ B(GKnr). Comme G est défini sur R, G(Knr)1x est Γnr-invariant et donc
G(Knr)1x = G(Knr)1σ(x) pour tout σ ∈ Γnr. D’après le point (3) de la proposition
2.7, x est donc aussi Γnr-invariant. Il provient donc d’un point sur B(G) qui est
donc hyperspécial et alors G(R) = G(K)1x.

(3) Enfin, si D(G) est anisotrope, G(R) est le stabilisateur sous l’action de G(K)1 de
l’unique point (hyperspécial) de B(G). C’est donc exactement G(K)1. Si de plus G
est anisotrope, G(K)1 = G(K) et on a le résultat.

Réciproquement, si G(R) = G(K), alors G(K) est borné, et donc ne peut pas
contenir l’image d’un K-cocaractère (qui est non borné). Donc G est K-anisotrope.
Si cette fois G(R) = G(K)1, alors D(G)(K) ⊂ G(K)1 est borné et on raisonne
comme précédemment.

□

On en déduit donc :

Proposition 5.3. Soit G, un groupe réductif sur R. Les propriétés suivantes sont équiva-
lentes :

(1) D(G) (resp. G) est anisotrope sur κ.

(2) D(G) (resp. G) est anisotrope sur K.

(3) G(R) = G(K)1 (resp. G(R) = G(K)).

Démonstration. L’équivalence entre (2) et (3) est une conséquence du lemme 5.2. Montrons
maintenant que (1) et (2) sont équivalents.
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Rappelons que G est isogène à D(G)×R(G), de telle sorte à ce qu’il y a une correspondance
entre les cocaractères non centraux de G et les cocaractères de D(G), et les cocaractères
centraux et les cocaractères de R(G).

Rappelons d’après la décomposition de [SGA3, Exp. XXVI, Corollaire 3.5.] que le
R-schéma des sous-groupes paraboliques propres de G, noté Par(G)+ est lisse et projec-
tif. D’après le critère valuatif de propreté, on a Par(G)+(R) = Par(G)+(K). Or, on a une
flèche naturelle Par(G)+(R) → Par(G)+(κ). Par conséquent, si Par(G)+(K) est non vide,
alors Par(G)+(κ) aussi. Donc si G a un cocaractère non central sur K, alors il en a un sur
κ.

Or, la lissité permet également d’utiliser le lemme de Hensel, de telle sorte que la flèche
Par(G)+(R)→ Par(G)+(κ) est surjective. On a donc finalement :

Par(G)+(K) = Par(G)+(R) ↠ Par(G)+(κ)

Par conséquent, si G n’admet aucun parabolique propre sur K, alors il n’en admet pas
non plus sur κ. Autrement dit, si G n’a pas de cocaractère non central sur K, alors il n’en
admet pas non plus sur κ.

Maintenant, occupons-nous des caractères centraux. On peut revenir au cas d’un tore T .
C’est une conséquence immédiate du fait que :

HomKnr(Gm,Knr , TKnr)
∼← HomRnr(Gm,Rnr , TRnr)

∼→ Homκs(Gm,κs , Tκs)

en tant que Γnr-groupes, puisque T est déployé sur Rnr. □

Ceci étant, le cas des tores peut être compris assez facilement grâce au lemme suivant.
Ce lemme semble être connu de certains spécialistes, mais on n’en a pas trouvé de référence
dans la littérature.

Lemme 5.4. Soit un K-tore déployé sur Knr. Il admet donc un modèle torique sur R que
l’on note T . Considérons le Γnr-groupe T̂ ◦ := HomRnr(Gm,Rnr , TRnr).

(1) On a un isomorphisme canonique de Γnr-modules :

T (Knr)1 × T̂ ◦ = T (Rnr)× T̂ ◦ ∼= T (Knr).

(2) Pour tout i ≥ 1, on a :

Ker
(
H i(Γnr, T (Knr)1)→ H i(Γnr, T (Knr))

)
= 0.

Démonstration.

(1) On a la suite exacte naturelle de Γnr-groupes :

0 (Rnr)× (Knr)× Z 0.

Elle est scindée par 1 7→ π (où π est une uniformisante de K, et donc aussi de Knr).
Cette section est Γnr-invariante. En tensorisant la suite exacte précédente par T̂ ◦,
on obtient la suite exacte de Γnr-groupes :

0 T (Rnr) T (Knr) T̂ ◦ 0.

car on a des isomorphismes canoniques T̂ ◦ ⊗Z (Rnr)× ∼= T (Rnr) et
T̂ ◦ ⊗Z (Knr)× ∼= T (Knr) donnés par θ ⊗ x 7→ θ(x). Elle est aussi scindée par
θ 7→ θ ⊗ π ∼= θ 7→ θ(π), section qui est aussi Γnr-invariante. D’où l’isomorphisme de
Γnr-modules.

Notons d’ailleurs que, par définition de la suite exacte, on a T (Rnr) = T (Knr)1.
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(2) Ce point provient alors du fait que cet isomorphisme induit l’isomorphisme cano-
nique :

H i(Γnr, T (Rnr))×H i(Γnr, T̂ ◦) ∼= H i(Γnr, T (Knr)).

et donc l’injectivité voulue.

□

Notons que Bruhat et Tits ont déjà traité le cas des points hyperspéciaux lorsque G est
semi-simple dans [BT84a, 5.2.14. Proposition.]. On peut en fait ajuster leur preuve pour
inclure le cas réductif :

Proposition 5.5. Soit x un point hyperspécial de G. On a :

Ker
(
H1(Γnr, G(Knr)1x)→ H1(Γnr, G(Knr))

)
= 1.

Démonstration. Rappelons que, comme x est hyperspécial, il s’agit d’un sommet à la fois
dans B(G) et dans B(GKnr). Prenons x = (x, λ), un point de Be(G). Grâce au théorème
4.3, la question revient à montrer que (Orb(x)G(Knr))

Γnr
/G(K) = 1.

Prenons alors un point y = (y, µ) de Be(G) tel qu’il existe g ∈ G(Knr) tel que g · x = y.
On observe alors que y est un sommet hyperspécial. Comme G(K)+ agit transitivement
sur les K-chambres et est très conforme, il existe g′ ∈ G(K)+ tel que x′ := g′ · x soit
toujours hyperspécial et tel que x′ et y soient dans la même adhérence d’une K-chambre (et
donc même adhérence d’une Knr-chambre, que l’on note C). Par ailleurs, g′ · λ = λ puisque
G(K)+ ⊂ G(K)1. Quitte à remplacer x := (x, λ) par (x′, λ), on peut donc supposer cela.
On peut en fait supposer que x, y et même C vivent dans un Knr-appartement spécial (de
telle sorte à ce que le Knr-tore déployé maximal associé T soit défini sur K et contienne un
K-tore déployé maximal). Comme G est déployé sur Knr, le tore T est un Knr-tore maximal,
et donc est également son propre centralisateur.

Notons I := G(Knr)+C . Notons N(Knr) le normalisateur associé à l’appartement spécial.
La décomposition de Bruhat (proposition 2.9) donne alors que G(Knr) = I N(Knr) I. On
peut donc écrire g = i n i′ avec des notations évidentes. Par conséquent, i n i′ · x = y. Donc
n · x = y puisque I fixe x et y (car fixant la chambre où ils sont et I ⊂ G(Knr)1).

Par ailleurs, puisque x est spécial sur Knr, G(Knr)bx∩N(Knr) se surjecte sur le groupe de
Weyl (vectoriel) de GKnr , c’est à dire N(Knr)/T (Knr) (cf. [BT84a, 4.6.22.]). Il existe donc
n′ ∈ G(Knr)bx ∩N(Knr) tel que n′ et n ont même image dans le groupe de Weyl. Autrement
dit, t := nn′−1 ∈ T (Knr). Or, n′−1 · x = x. Donc t · x = n · x.

Considérons σ 7→ t−1 σ(t). Il s’agit d’un cobord dans B1(Γnr, T (Knr)) et également d’un
cocycle dans Z1(Γnr, T (Knr)1). En effet :

t · x = y = σ(y) = σ(t · x) = σ(t) · x

puisque x et y sont Γnr-invariants. Par conséquent, t−1 σ(t) fixe x. Or, T (Knr) agit par
translation sur l’appartement (étendu). Donc s’il fixe x, il fixe l’appartement (étendu). Cela
signifie que l’on a en fait t−1 σ(t) ∈ T (Knr)1. La classe de cohomologie associée vit donc
dans

Ker
(
H1(Γnr, T (Knr)1)→ H1(Γnr, T (Knr)

)
.

Ce noyau est en fait trivial d’après le lemme 5.4. Par conséquent, il existe t′ ∈ T (Knr)1 tel
que σ 7→ t−1 σ(t) = σ 7→ t′−1 σ(t′), ou encore tel que t t′−1 soit Γnr-invariant, et donc vit
dans G(K). Par conséquent, t t′−1 ·x = t ·x = y. Donc x et y sont dans la même orbite sous
G(K). □
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Remarque 5.6. On a la factorisation H1(Γnr, G(Knr)1x)→ H1(Γnr, G(Knr)1)→ H1(Γnr, G(Knr)).
Le théorème précédent implique donc :

Ker
(
H1(Γnr, G(Knr)1x)→ H1(Γnr, G(Knr)1)

)
= 1.

Une démonstration alternative de ce résultat peut être aussi obtenu en reprenant la preuve
précédente avec l’immeuble réduit.

Remarque 5.7. Il n’est toutefois pas toujours vrai que Ker(H1(Γnr, G(Knr)1)→ H1(Γnr, G(Knr)))
soit trivial, même si G admet un point hyperspécial. Considérons l’exemple suivant :

Soit D une algèbre à division de degré d sur un corps k. Considérons ici K = k((t)). Grâce
à la proposition 5.3 appliqué à GL1(D ⊗k k[[t]]), l’algèbre D définit une algèbre à division
D ⊗k k((t)) sur k((t)). Elle est par ailleurs déployée sur Knr. Prenons ici G = GL1(D)K
(qui admet d’ailleurs le modèle réductif G = GL1(D)k[[t]]). Le groupe GL1(D)Knr admet
un unique caractère donné par la norme réduite. Par conséquent, GL1(D)(Knr)1 est donné
par le noyau de la valuation de la norme réduite sur Knr (qui est surjectif puisque D est
déployée sur Knr).

Observons également que, puisque D est de dimension finie sur k, on a les isomorphismes
canoniques D ⊗k k((t)) ∼= D((t)) et D ⊗k k[[t]] ∼= D[[t]].

Or, on a la décomposition :

(D ⊗k k((t)))
× = k((t))×(D ⊗k k[[t]])

×.

En effet, un élément de D((t))× s’écrit tix avec x de réduction modulo t non nulle. On note
x0 ∈ D× cette réduction. Cela donne la décomposition voulue. En effet, ti ∈ k((t))× et x
est de la forme x0(1− ty) avec y ∈ D[[t]], dont l’inverse est (

∑+∞
k=0(ty)

k)x−1
0 ∈ D[[t]].

Par conséquent, l’image de (D⊗k k((t)))
× par la valuation de la norme réduite est donnée

par k((t))× puisque (D⊗k k[[t]])
× est borné. Comme la norme sur k((t)) est compatible avec

la norme réduite de Dk((t)), on a que l’image est finalement dZ (cf. [TW15, Theorem 1.4.]).
La suite exacte en cohomologie implique alors :

Ker(H1(Γnr, G(Knr)1)→ H1(Γnr, G(Knr))) = Z/dZ ̸= 1.

Remarque 5.8. Il s’avère que Ker(H1(Γnr, G(Knr)x)→ H1(Γnr, G(Knr))) n’est pas toujours
trivial. Un contre-exemple est donné dans [BT84a, 5.2.15. Remarque.]. Explicitons cela.

Prenons l’extension L/K = C((t))/R((t)), et h la forme hermitienne donnée par
z1z1−z2z2. On prend G = U(h) (aussi noté U(1, 1)). C’est une forme quasi-déployée de GL2

qui vérifie d’une part D(G) = SU(h) ∼= SL2, et d’autre part Z(G) ∼= R1
L/K(Gm), qui n’est pas

déployé. En fait, G est résiduellement déployé, de telle sorte que B(G) = B(GL) = B(SL2).
D’après le théorème 4.3, il suffit de trouver deux points hyperspéciaux dans la même

orbite par G(L) et dont les types ne soient pas conjugués par G(K) pour que le noyau soit
non nul.

Comme dit plus haut, l’immeuble de G est exactement celui de SL2. Son diagramme de
Dynkin affine relatif est donné par dont les deux sommets sont spéciaux (cf. [BT84a,
4.2.23.] et [BT72, (1.4.6)]).

Ces deux points ne sont cependant pas conjugués dans G(K). En fait, ce dernier agit
en préservant les types. En effet, d’une part on a G(K) = G(K)1 puisque le radical de
G est anisotrope. D’autre part, comme GL = GL2, le morphisme de Kottwitz de G (cf.
[KP23, Chapter 11]) est obtenu en restreignant celui de GL2. Pour les mêmes raisons que la
remarque 1.4, on conclut que G(K)0 = G(K)1 et donc que G(K) agit trivialement sur les
types.
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Pour GL2, on a le même diagramme de Dynkin. Les deux sommets du diagramme sont
d’ailleurs fixes par Galois, car dans le cas contraire, la descente non ramifiée nous dirait que
le diagramme de G serait composé d’un unique point. Les deux sommets du diagramme de
G sont donc hyperspéciaux.

Il suffit maintenant de trouver deux sommets de types différents conjugués par GL2(L).
Cela a déjà été fait dans la remarque 1.4. Ceci conclut donc.

6. Application : cas des groupes adjoints quasi-déployés

Terminons enfin cet article en utilisant tout ce que l’on a montré dans les parties précé-
dentes pour calculer de manière exacte les noyaux

Ker
(
H1(Γnr, G(Knr)0F̃ )→ H1(Γnr, G(Knr))

)
et

Ker
(
H1(Γnr, G(Knr)F̃ )→ H1(Γnr, G(Knr))

)
pour les K-groupes G semi-simples adjoints et quasi-déployés sur K, et où F̃ est une
Γnr-facette de l’immeuble B(GKnr).

Occupons-nous d’abord du cas des sous-groupes parahoriques. D’après [BT84a, 5.2.12.
Proposition.], les sous-groupes parahoriques sur K sont donnés par les stabilisateurs de
facettes sous l’action de la composante résiduellement neutre G(K)0. Or, puisque G est
quasi-déployé et adjoint, on a le lemme suivant :

Lemme 6.1. On a les égalités : G(K)0 = G(K)b = G(K)c.

Démonstration. Notons que, puisque G est semi-simple, l’immeuble étendu est égal à l’im-
meuble réduit et donc G(K)b = G(K)c.

Soit T un K-tore maximal contenant un tore déployé maximal. D’après [BT84a, 4.4.16.
Proposition.], il s’agit d’un tore induit. Son schéma canonique (c’est-à-dire son modèle de
Néron de type fini) est donc lisse et connexe. Ses R-points sont donnés par T (K)1.

Par ailleurs, d’après [BT84a, 5.2.11.], G(K)0 est engendré par G(K)+ et les R-points
de la composante de l’identité du schéma canonique de T , c’est-à-dire ici T (K)1 d’après la
discussion précédente.

Or, d’après le lemme 2.8, G(K)b = G(K)+ T (K)1. D’où G(K)0 = G(K)b. □

La question se ramène alors à se demander si la flèche composée suivante a un noyau
trivial :

H1(Γnr, G(Knr)cF̃ )→ H1(Γnr, G(Knr)c)→ H1(Γnr, G(Knr))

pour F̃ , une facette Γnr-invariante de B(GKnr).

La première flèche est de noyau trivial d’après le corollaire 4.7. Intéressons-nous alors à
la seconde flèche.

Pour cela, on a besoin de démontrer que tout groupe réductif quasi-déployé est résiduel-
lement quasi-déployé. Cela est déjà connu lorsque le corps résiduel κ est parfait (cf. [KP23,
Proposition 9.10.5]). Il s’avère que le résultat subsiste en général, mais notre preuve nécessite
d’utiliser la théorie des groupes pseudo-réductifs (i.e. des groupes avec un radical unipotent
trivial sur le corps de base).
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Rappelons qu’un sous-groupe pseudo-parabolique d’un groupe pseudo-réductif est appelé
pseudo sous-groupe de Borel s’il est un pseudo-parabolique minimal sur la clôture séparable.
C’est en fait équivalent à exiger que ce soit un pseudo parabolique résoluble. Un groupe
pseudo-réductif possédant un pseudo sous-groupe de Borel est dit quasi-déployé. Dans ce
cas, tous ces sous-groupes pseudo-paraboliques minimaux sont des pseudo sous-groupes de
Borel puisqu’ils sont conjugués. Tout ceci est expliqué au début de [CP16, Section C.2]).

Ces définitions s’étendent naturellement au cas des groupes lisses connexes affines puisqu’il
y a une correspondance entre ses sous-groupes pseudo-paraboliques et ceux de son quotient
pseudo-réductif maximal (cf. [CGP15, Proposition 2.2.10]).

Par ailleurs, introduisons (en toute généralité) la définition suivante :

Définition 6.2. Supposons que le modèle de Bruhat-Tits affine de G(K)1F existe.
On le note G1F . On définit alors le schéma en groupes parahorique (resp. le
sous-groupe parahorique) associé à une facette F de B(G) comme étant G0F := (G1F )◦
(resp. G(K)0F := (G1F )◦(R)).

Remarque 6.3. Notons les schémas en groupes affines G1F sont construits par Bruhat et Tits
dans le cas où G est quasi-déployé sur Knr dans [BT84a, 5.1.30.].

Ceci étant, cette définition coïncide avec la définition de [BT84a] dans le cas quasi-déployé
sur Knr. En effet, d’une part, dans le cas quasi-déployé, [BT84a, 4.6.21. Proposition. (ii)]
combiné avec [BT84a, 4.6.26.] et [BT84a, 4.6.28. Proposition.] implique que (G1F )◦ est bien
le schéma en groupes parahorique associé au sous-groupe parahorique de [BT84a, 5.2.6.
Définition.]. En général, comme indiqué dans [BT84a, 5.1.30.], les schémas se descendent
sur R et ses R-points sont les sous-groupes parahoriques d’après le dernier paragraphe de
[BT84a, 5.2.8. Proposition.].

On peut donc proposer une généralisation de [KP23, Proposition 9.10.1], qui donne des
propositions équivalentes au fait d’être résiduellement quasi-déployé :

Proposition 6.4. Soit G un groupe réductif sur K, quasi-déployé sur Knr. Les propositions
suivantes sont équivalentes :

(1) Il existe une K-chambre C tel que le κ-groupe (G0C)κ est résoluble.

(2) Il existe une Knr-chambre Γnr-invariante dans B(GKnr).

(3) Toute Γnr-chambre dans B(GKnr) est une Knr-chambre Γnr-invariante.

(4) Pour toute K-chambre C, le κ-groupe (G0C)κ est résoluble.

(5) Pour toute K-facette, le κ-groupe (G0F )κ est quasi-déployé.

Démonstration.

(1) =⇒ (2) La K-chambre C provient d’une Γnr-chambre C̃. Elle provient d’une Γnr-chambre C̃
qui est donc une Knr-chambre. Cela induit une compatibilité (G0C)Rnr = G0

C̃
, donc

(G0C)κs = (G0
C̃
)κs et ce dernier est donc résoluble. Il ne possède donc pas de sous-

groupe parabolique non trivial. D’après la correspondance paraboliques-parahoriques
sur Knr ([BT84a, 5.1.32.(i) Proposition.]), on en déduit que C̃ est une Knr-chambre.

(2) =⇒ (3) D’après la proposition 3.3, les Γnr-chambres sont G(K)-conjugués puisque les
K-chambres le sont. Par conséquent, si une Γnr-chambre est une Knr-chambre, alors
toutes les Γnr-chambres le sont par conjugaison.
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(3) =⇒ (4) Prenons une K-chambre C. Elle provient d’une Γnr-chambre C̃ qui est donc une
Knr-chambre. Comme précédemment, on a (G0C)κs = (G0

C̃
)κs . Ce dernier groupe ne

possède pas de sous-groupe parabolique non trivial et est donc résoluble d’après
[CGP15, Proposition 3.5.1.(4)], puisque son quotient pseudo-réductif est pseudo-
déployé.

(4) =⇒ (1) C’est trivial.
(4) =⇒ (5) Soit F , une K-facette et C, une K-chambre contenant F . D’après la correspondance

paraboliques-parahoriques, l’image de (G0C)κ → (G0F )κ est un sous-groupe pseudo-
parabolique de (G0F )κ. Par hypothèse, il est résoluble. Donc (G0F )κ est quasi-déployé.

(5) =⇒ (4) Réciproquement, prenons une K-chambre C. Par hypothèse, (G0C)κ est quasi-déployé.
Il est donc résoluble car il n’admet aucun sous-groupe pseudo-parabolique non trivial.

□

Remarque 6.5. L’hypothèse de quasi-déploiement sur Knr intervient notamment dans la
preuve pour utiliser la correspondance paraboliques-parahoriques. On ignore si la corres-
pondance reste valide en général, et donc a fortiori si l’hypothèse de quasi-déploiement sur
Knr peut être supprimée.

On en déduit alors le résultat que l’on souhaite :

Proposition 6.6. Tout K-groupe réductif quasi-déployé est résiduellement quasi-déployé.

Démonstration. Prenons un groupe réductif G quasi-déployé. D’après la proposition 6.4, il
suffit de montrer que, pour toute facette K-facette F , le κ-groupe (G0F )κ est quasi-déployé.

Prenons S, un tore déployé maximal de G. Son centralisateur dans G est un tore T .
D’après [BT84a, 4.6.4.(ii) Proposition.] et [BT84a, 4.6.26.], G0F admet un unique sous-tore
déployé fermé S de fibre générique S et son centralisateur T dans G0F est la composante
de l’identité du modèle de Néron de T . En particulier, le centralisateur de Sκ est Tκ, qui
est commutatif. Prenons alors un cocaractère λ tel que le centralisateur de son image dans
G soit celui de Sκ, c’est-à-dire Tκ. Le sous-groupe pseudo-parabolique associé à λ est donc
résoluble. Cela prouve que (G0F )κ est quasi-déployé. □

Revenons à notre problème. Notons pour la suite ξnr le morphisme type sur Knr, et Ξnr

l’image de G(Knr) par ce morphisme. On peut alors prouver la trivialité du noyau de la
seconde flèche :

Proposition 6.7. On a l’égalité ξnr(G(K)) = (Ξnr)Γ
nr et le fait que ces deux groupes soient

canoniquement isomorphes à Ξext. En conséquence :

Ker
(
H1(Γnr, G(Knr)c)→ H1(Γnr, G(Knr))

)
= 1.

Démonstration. Notons que G est résiduellement quasi-déployé d’après la proposition 6.6.
Par conséquent, d’après le point (4) du théorème 4.1, il y a un morphisme canonique
(Ξnr)Γ

nr → Ξext. Sa restriction à ξnr(G(K)) a comme image Ξ, qui vaut dans notre cas
de figure Ξext d’après [KP23, Proposition 6.6.2]. Le morphisme canonique précédent est
donc surjectif.

Par ailleurs, puisque G est quasi-déployé, il admet un sommet spécial qui le reste après
passage à n’importe quelle extension séparable. En effet, le cas déployé est évident. On ob-
tient alors le cas général par descente quasi-déployée (cf. [BT84a, 4.2.3.-4.2.4.], une valuation
de Chevalley sur un groupe déployé représente un point spécial, et cette valuation, donc ce
point, se descend).

Le point (7) du théorème 4.1 dit alors que Ker
(
(Ξnr)Γ

nr → Ξext
)

est trivial.
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On en déduit donc finalement que ξnr(G(K)) et (Ξnr)Γ
nr sont isomorphes à Ξext à travers

le même morphisme, de telle sorte à ce que ξnr(G(K)) = (Ξnr)Γ
nr comme voulu. La trivialité

du noyau provient alors du point (2) du théorème 4.1. □

De tout ceci, on en déduit finalement le théorème :

Théorème 6.8. Soit G un groupe semi-simple adjoint et quasi-déployé sur K. On a :

Ker
(
H1(Γnr, G(Knr)0F̃ )→ H1(Γnr, G(Knr))

)
= 1

où F̃ est une facette Γnr-invariante de l’immeuble B(GKnr).

Intéressons-nous cette fois au cas des stabilisateurs de facettes. On souhaite alors déter-
miner le noyau de l’application :

H1(Γnr, G(Knr)F̃ )→ H1(Γnr, G(Knr))

pour F̃ , une facette Γnr-invariante de B(GKnr).

La stratégie est de se ramener au cas absolument presque simple et de réaliser des calculs
explicites.

Notons GK :=
∏

i∈I Gi, la décomposition de GK en produit de groupes K-presque simples.
On a alors la bijection équivariante et compatible à Galois : B(GKnr) ∼=

∏
i∈I B(Gi,Knr), et

donc une décomposition F̃ =
∏

i∈I F̃i en facettes Γnr-invariantes. Ceci donne alors :

Ker
(
H1(Γnr, G(Knr)F̃ )→ H1(Γnr, G(Knr))

)
=

∏
i∈I

Ker
(
H1(Γnr, Gi(K

nr)F̃i
)→ H1(Γnr, Gi(K

nr))
)
.

Le problème se ramène alors au cas où G est un K-groupe K-presque simple. Il s’écrit
donc G := RL/K(G′) où G′ est un L-groupe adjoint absolument presque simple et L/K
est une extension finie séparable. Le calcul du noyau se ramène ensuite au cas absolument
presque simple grâce au lemme suivant :

Lemme 6.9. Soit L/K, une extension finie séparable et H ′ un groupe réductif sur L.
Notons Γnr

L := Gal(Lnr/L) et H := RL/K(H ′). Prenons une facette Γnr-invariante F̃ dans
B(HKnr). Elle induit une K-facette dans B(H) ∼= B(H ′), et correspond alors à une facette
Γnr
L -invariante F̃ ′ dans B(H ′

Lnr). On a alors les identifications :

H1(Γnr, H(Knr)) = H1(Γnr
L , H ′(Lnr))

H1(Γnr, H(Knr)F̃ ) = H1(Γnr
L , H ′(Lnr)F̃ ′)

et ce, de manière fonctorielle, de telle sorte que :

Ker
(
H1(Γnr, H(Knr)F̃ )→ H1(Γnr, H(Knr))

)
= Ker

(
H1(Γnr

L , H ′(Lnr)F̃ ′)→ H1(Γnr
L , H ′(Lnr))

)
.

Démonstration. Remarquons que HKnr est donné par RL⊗KKnr/Knr(H ′
L⊗KKnr).

Posons Lnr := Knr ∩ L, l’extension maximale non ramifiée de K dans L. On a alors :
L⊗Lnr K

nr ∼= LKnr = Lnr. Considérons l’identification Γnr
L := Gal(Lnr/L) ∼= Gal(Knr/Lnr).

Il s’agit d’un sous-groupe ouvert de Γnr. Posons Σ := HomK(Lnr,K
nr) et observons les

isomorphismes de Γnr-modules suivants :

Knr ⊗K L ∼= (Knr ⊗K Lnr)⊗Lnr L
∼= (

∏
σ∈Σ

σKnr)⊗Lnr L

∼=
∏
σ∈Σ

(σKnr ⊗Lnr L)
∼=

∏
σ∈Σ

σLnr
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Or, comme Knr/Lnr est séparable, Σ se relève dans Γnr. Notons toujours Σ un de ses
relevés. Il s’agit alors d’un ensemble de représentants dans Γnr pour Γnr/Γnr

L . On peut donc
utiliser le lemme de Shapiro (en cohomologie des groupes) :

H1(Γnr, H(Knr)) = H1(Γnr, H ′(Knr ⊗K L)) = H1(Γnr,
∏
σ∈Σ

σH ′(Lnr)) = H1(Γnr
L , H ′(Lnr)).

Occupons-nous désormais de H1(Γnr, H(Knr)F̃ ). Notons que :

RL⊗KKnr/Knr(H ′
L⊗KKnr) =

∏
σ∈Σ

σRLnr/Knr(H ′
Lnr).

La compatibilité des immeubles aux restrictions de Weil séparables (cf. preuve de [Rou77,
Proposition 5.1.5.]) et au produit donne les bijections équivariantes et compatibles à Galois :

B(HKnr) ∼=
∏
σ∈Σ

B(σRLnr/Knr(H ′
Lnr)) ∼=

∏
σ∈Σ

σB(H ′
Lnr).

Notons que F̃ ′ est l’image de F̃ dans B(H ′
Lnr) (c’est à dire en regardant le facteur tel que

σ = id). Dans ce cas, l’image de F̃ sous la correspondance ci-dessus est (σF̃ ′)σ∈Σ. Cette iden-
tification induit alors l’identification : H(Knr)F̃

∼=
∏

σ∈Σ
σH ′(Lnr)σF̃ ′ =

∏
σ∈Σ

σ(H ′(Lnr)F̃ ′).
On peut donc une fois de plus appliquer le lemme de Shapiro :

H1(Γnr, H(Knr)F̃ ) = H1(Γnr,
∏
σ∈Σ

σ(H ′(Lnr)F̃ ′)) = H1(Γnr
L , H ′(Lnr)F̃ ′).

La fonctorialité de l’isomorphisme de Shapiro permet d’en déduire l’égalité des noyaux vou-
lue. □

Continuons notre investigation. D’après la remarque 4.11, les groupes semi-simples rési-
duellement déployés sont tels que le noyau

H1(Γnr, G(Knr)F̃ )→ H1(Γnr, G(Knr))

est trivial pour toute Γnr-facette F̃ . Comme on s’est ramené au cas absolument presque
simple, et que G est quasi-déployé, cela élimine donc les groupes déployés, et les groupes
de la forme 2Xy déployés par une extension (quadratique) ramifiée (comme expliqué dans
la remarque 4.11). Par ailleurs, on remarque que les groupes de type 6D4 et 3D4 ont même
rang, on peut donc éliminer la situation d’un groupe de type 6D4 devenant de type 3D4

sur Knr. Enfin, puisqu’un groupe de type 6D4 est déployé par une extension de groupe de
Galois S3, il n’existe aucune extension galoisienne telle qu’il devienne de type 2D4.

Il ne reste donc que les groupes de type 2E6, 2An (pour n ≥ 1), 2Dn (pour n ≥ 4), 3D4

et 6D4 déployés sur Knr à traiter.

Ensuite, comme G est quasi-déployé, il est résiduellement quasi-déployé d’après la proposi-
tion 6.6, et donc T̃max, le type d’une Γnr-chambre, est exactement le type d’une
Knr-chambre. Le point (2) (a) du théorème 4.3 se simplifie alors en :

Ker
(
H1(Γnr, G(Knr)F̃ )→ H1(Γnr, G(Knr))

) ∼= (Orb(T̃ )Ξnr)Γ
nr
/Ξ

où T̃ est le Knr-type de F̃ .

Par ailleurs, puisque G est quasi-déployé et adjoint, d’après la proposition 6.7, on a
Ξnr = Ξext

Knr et Ξ = (Ξnr)Γ
nr

= Ξext. On utilise donc de manière interchangeable les no-
tations Ξ et Ξext (resp. Ξnr et Ξext

Knr) dans la suite.
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Récoltons quelques données au sujet des cas restants. La liste en [BT84a, 4.2.23.] permet
alors de déterminer les échelonnages sur K, et même plus précisément l’action de Galois sur
l’échelonnage sur Knr, et la liste [KP23, Remark 1.3.76] donne les diagrammes de Dynkin
affines associés et les groupes Ξ et Ξnr. On en déduit alors la table 1.

Notons que l’on a rajouté des numérotations sur certains diagrammes pour faciliter les
raisonnements dans la suite.

Commençons par le type 2An (pour n ≥ 1) :

Proposition 6.10. Considérons le diagramme de Dynkin affine de type An (pour n ≥ 1)
muni de l’action de Galois Γnr donnée par la symétrie axiale de la table 1. Son Ξnr vaut
alors Z/(n+1)Z et est donné par la rotation décrite dans la table 1. Considérons un type T̃
de ce diagramme et notons m le cardinal de son orbite par Ξnr (on a donc m | n + 1). On
a :

— Si m est impair, alors (Orb(T̃ )Ξnr)Γ
nr est trivial.

— Si m est pair, alors n + 1 aussi, l’ensemble (Orb(T̃ )Ξnr)Γ
nr contient 2 éléments, et

on a de plus les cas suivants :

— Si n+1
m est impair, alors (Orb(T̃ )Ξnr)Γ

nr
/Ξ est trivial.

— Sinon, si n+1
m est pair, alors (Orb(T̃ )Ξnr)Γ

nr
/Ξ contient 2 éléments.

En particulier, (Orb(T̃ )Ξnr)Γ
nr
/Ξ est trivial si n ̸≡ 3 (mod 4).

Démonstration. Pour le type An, le groupe des automorphismes est donné par le groupe
diédral. Il est donc donné par la présentation ⟨r, σ | rn+1 = 1, σ2 = 1, σrσ = r−1⟩. Le groupe
Ξnr associé est alors le sous-groupe engendré par r (qui est donc Z/(n+1)Z), et Γnr agit au
travers du sous-groupe engendré par σ.

Considérons donc un type Γnr-invariant T̃ , qui est donc donné par un sous-ensemble de
sommets. Essayons de voir si l’orbite de T̃ par Ξnr admet un autre type Γnr-invariant. Soit
T̃ ′ un éventuel type de la sorte. Considérons m ∈ N∗, le plus petit entier strictement positif
tel que rm · T̃ = T̃ (c’est aussi le cardinal de l’orbite par Ξnr).

Considérons donc k ∈ {0, ...,m− 1} tel que rk · T̃ = T̃ ′. Comme T̃ ′ est Γnr-invariant, on
a σ · T̃ ′ = T̃ ′. On a donc :

rk · T̃ = T̃ ′ = σ · T̃ ′ = σ · (rk · T̃ ) = σrk · (σ · T̃ ) = σrkσ · T̃ = r−k · T̃

On conclut donc que r2k · T̃ = T̃ . Comme 2k ∈ {0, ..., 2m − 2}, ou bien 2k = 0, ou bien
2k = m par minimalité de m : c’est à dire k = 0 ou k = m

2 . Si m est impair, la seconde
possibilité est à proscrire et seul donc k = 0 est valide. Sinon, les deux possibilités sont
valides. Il y a donc 1 élément Γnr-invariants dans l’orbite de T̃ par Ξnr si m est impair, et 2
sinon.

Comme m | n+1, si n est pair, alors m est toujours impair. Par conséquent, il y a donc 1
élément Γnr-invariants dans l’orbite de T̃ par Ξnr. Étudions maintenant le cas où n = 2n′+1
est impair et où m = 2m′ est pair. On a donc m′ | n′ + 1.

Considérons maintenant Ξ, qui, selon la table 1, n’est autre que le groupe ⟨rn′+1⟩.
Quand est-ce que T̃ et T̃ ′ = rm

′ · T̃ sont conjugués par cette rotation ? On a :

rn
′+1 · T̃ = rm

′ · T̃ ⇐⇒ rm
′ n′+1

m′ · T̃ = rm
′ · T̃

Si n′+1
m′ = n+1

m est impair, alors rm
′ n′+1

m′ = rm
′ puisque r2m

′ · T̃ = rm · T̃ = T̃ , et dans ce
cas l’égalité est satisfaite. On en déduit alors que T̃ et T̃ ′ sont conjugués par cette rotation.
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Dans le cas contraire, si n+1
m est pair, on a rm

′ n′+1
m′ · T̃ = T̃ . Il faut donc satisfaire

T̃ = rm
′ · T̃ . Cela est impossible par minimalité de m. Les deux types T̃ et T̃ ′ ne sont alors

pas conjugués par cette rotation. On a donc considéré tous les cas. □

Remarque 6.11. [BT84a, 5.2.13] donne un exemple de groupe quasi-déployé adjoint G de type
2A3 et déployé par une extension non ramifiée avec une Γ-facette F̃ tel que
(Orb(F̃)G(L))

Γ/G(K) est non trivial, et donc, d’après le point (1) (a) du théorème 4.3, tel que
Ker

(
H1(Γ, G(L)F̃ )→ H1(Γ, G(L)

)
est non trivial.

Le calcul précédent généralise en fait ce résultat. Dans l’exemple [BT84a, 5.2.13], on choisit
en fait une Γnr-arête tel que son orbite par Ξnr soit de cardinal m = 2. Comme n+1

m = 4
2 = 2,

la proposition précédente permet de conclure que (Orb(T̃ )Ξnr)Γ
nr
/Ξ admet deux éléments.

Occupons-nous maintenant du cas du type 2Dn (pour n ≥ 4).

Pour cela, on a besoin des morphismes introduits dans la table 1, c’est à dire τ, τ ′, σ et φ.
Ils sont par ailleurs définis peu importe si n est pair ou impair. Plus précisément, τ est la
symétrie par rapport à l’axe vertical central, τ ′ est la symétrie par rapport à l’axe horizontal
(ou la rotation des deux branches extrémales), σ est la rotation de la branche 3− 4, et φ est
en fait τ ◦ σ. Notons d’ailleurs que φ2 = τ ′.

Introduisons également le symbole ⊕ pour désigner la "concaténation de types". Autre-
ment dit, à deux types, cela associe le type donné par l’union des sommets composant chacun
des types.

On peut alors formuler le résultat :

Proposition 6.12. Considérons le digramme de Dynkin affine de type Dn (pour n ≥ 4)
muni des actions indiquées par la table 1 (pour D4, on regarde le cas non trialitaire). Prenons
T̃ , un type Γnr-invariant de ce diagramme. Il s’écrit alors S̃ ⊕ R̃ où S̃ est un type sans les
quatre sommets numérotés de la table 1 (donc Γnr-invariant) et R̃, un type Γnr-invariant
dont les sommets sont parmi les quatre sommets numérotés. Alors on a :

(1) Si R̃ admet zéro ou quatre sommets, alors :

(a) Si τ(S̃) = S̃, alors les ensembles (Orb(T̃ )Ξnr)Γ
nr et (Orb(T̃ )Ξnr)Γ

nr
/Ξ sont tous

deux triviaux.
(b) Sinon, ils sont tous deux de cardinal 2.

(2) Si R̃ admet un nombre impair de sommets, alors l’ensemble (Orb(T̃ )Ξnr)Γ
nr est de

cardinal 2 et (Orb(T̃ )Ξnr)Γ
nr
/Ξ est trivial.

(3) Si R̃ admet deux sommets, alors les ensembles (Orb(T̃ )Ξnr)Γ
nr et (Orb(T̃ )Ξnr)Γ

nr
/Ξ

sont tous deux de cardinal 2.

Démonstration. Bien entendu, puisque T̃ et S̃ sont Γnr-invariants, il en est de même pour
R̃. On observe alors que les seules possibilités pour R̃ sont :

∅, (1), (2), (1, 2), (3, 4), (1, 3, 4), (2, 3, 4), (1, 2, 3, 4)

Il faut donc traiter chacun de ces cas.
Observons par ailleurs que l’orbite de T̃ sous ⟨φ⟩ est la même que sous ⟨τ, τ ′⟩. En effet,

cela est une conséquence du fait que φ = τ ◦ σ et φ2 = τ ′. En conséquence, les calculs sont
les mêmes peu importe si n est pair ou impair.
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De rapides calculs grâce à la table 1 permettent alors d’obtenir :

(1) R̃ = ∅. On trouve que (Orb(T̃ )Ξnr)Γ
nr

= {S̃, τ(S̃)}. Il est donc trivial si et seulement
si S̃ = τ(S̃). On observe ensuite qu’il en est de même pour (Orb(T̃ )Ξnr)Γ

nr
/Ξ.

(2) R̃ ∈ {(1), (2)}. On trouve que (Orb(T̃ )Ξnr)Γ
nr

= {S̃ ⊕ (1), S̃ ⊕ (2)}. On observe
ensuite que (Orb(T̃ )Ξnr)Γ

nr
/Ξ est trivial.

(3) R̃ = (1, 2). On trouve (Orb(T̃ )Ξnr)Γ
nr

= {S̃⊕(1, 2), τ(S̃)⊕(3, 4)}. On observe ensuite
que (Orb(T̃ )Ξnr)Γ

nr
/Ξ admet deux éléments.

(4) R̃ = (3, 4). On trouve (Orb(T̃ )Ξnr)Γ
nr

= {S̃⊕(3, 4), τ(S̃)⊕(1, 2)}. On observe ensuite
que (Orb(T̃ )Ξnr)Γ

nr
/Ξ admet deux éléments.

(5) R̃ ∈ {(1, 3, 4), (2, 3, 4)}. On trouve (Orb(T̃ )Ξnr)Γ
nr

= {S̃ ⊕ (1, 3, 4), S̃ ⊕ (2, 3, 4)}. On
observe ensuite que (Orb(T̃ )Ξnr)Γ

nr
/Ξ est trivial.

(6) R̃ = (1, 2, 3, 4). On trouve (Orb(T̃ )Ξnr)Γ
nr

= {S̃ ⊕ (1, 2, 3, 4), τ(S̃) ⊕ (1, 2, 3, 4)}. Il
est donc trivial si et seulement si S̃ = τ(S̃). On observe ensuite qu’il en est de même
pour (Orb(T̃ )Ξnr)Γ

nr
/Ξ.

Ceci conclut donc. □

Proposition 6.13. Considérons le diagramme de Dynkin affine de type D4 muni de l’action
de Galois Γnr donnée, ou bien par la rotation de 3 points, ou bien toutes les permutations
possibles de ces 3 points (autrement dit le cas trialitaire de la table 1). Son groupe Ξnr vaut
alors (Z/2Z)2. On a alors que (Orb(T̃ )Ξnr)Γ

nr est trivial pour tout type de ce diagramme.

Démonstration. Réutilisons la numérotation de la table 1. On identifie un type avec le n-
uplet de ses points. Observons alors que les seuls types Γnr-invariants sont (0), (1), (0, 1),
(2, 3, 4), (0, 2, 3, 4), (1, 2, 3, 4) et (0, 1, 2, 3, 4). Comme l’action par Ξnr préserve la taille des
types, on peut déjà dire que (Orb(T̃ )Ξnr)Γ

nr est trivial pour T̃ dans {(0, 1), (2, 3, 4), (0, 1, 2, 3, 4)}.
Comme (0) est fixe par Ξnr, on peut également éliminer (0) et (1). De même, tout type dans
l’orbite de (0, 2, 3, 4) par Ξnr doit contenir 0, donc (1, 2, 3, 4) ne peut pas être dans l’orbite.
On a donc traité tous les cas et (Orb(T̃ )Ξnr)Γ

nr est trivial pour tout type Γnr-invariant T̃ . □

Proposition 6.14. Considérons le diagramme de Dynkin affine de type E6 muni de l’action
de Galois Γnr donnée par la symétrie axiale de la table 1. Son Ξnr vaut Z/3Z et est donné
par la rotation décrite dans la table 1. On a alors que (Orb(T̃ )Ξnr)Γ

nr est trivial pour tout
type de ce diagramme.

Démonstration. La preuve est essentiellement la même que pour le cas An. Soit T̃ , un type
de ce diagramme. Prenons r ∈ Ξnr et σ ∈ Γnr. Une fois encore, on a σ ◦ r = r2 ◦ σ. Si r · T̃
est Γnr-invariant, il est tel que :

r · T̃ = (σ ◦ r) · T̃ = (r2 ◦ σ) · T̃ = r2 · (σ · T̃ ) = r2 · T̃

En conséquence, T̃ = r · T̃ = r2 · T̃ et donc (Orb(T̃ )Ξnr)Γ
nr est trivial. □
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Résumons tout ceci grâce au tableau 2 (en reprenant les notations des propositions pré-
cédentes) :

Type de G #(Orb(T̃ )Ξnr)Γ
nr

#(Orb(T̃ )Ξnr)Γ
nr
/Ξ

2An déployé sur Knr

(pour n ≥ 1)

m impair : 1

m pair : 2

m impair : 1

m pair et n+1
m impair : 1

m pair et n+1
m pair : 2

2Dn déployé sur Knr

(pour n ≥ 4)

τ(S̃) = S̃ et #R̃ ∈ {0, 4} : 1

τ(S̃) ̸= S̃ et #R̃ ∈ {0, 4} : 2

#R̃ = {1, 2, 3} : 2

τ(S̃) = S̃ et #R̃ ∈ {0, 4} : 1

τ(S̃) ̸= S̃ et #R̃ ∈ {0, 4} : 2

#R̃ ∈ {1, 3} : 1

#R̃ = 2 : 2

Autres types 1 1

Table 2. Résumé des calculs précédents.

On observe en particulier que seules les valeurs 1 ou 2 sont présentes, et que 2 n’apparaît
que lorsque G est de type 2A4n+3 (pour n ≥ 0) ou 2Dn (pour n ≥ 4), déployé sur Knr.

En conclusion, on obtient le théorème suivant :

Théorème 6.15. Soit G un groupe semi-simple adjoint et quasi-déployé sur K. Soit égale-
ment F̃ , une facette Γnr-invariante de l’immeuble B(GKnr). Alors le noyau :

Ker
(
H1(Γnr, G(Knr)F̃ )→ H1(Γnr, G(Knr)

)
est de cardinal 2k où k est un entier majoré par le nombre de facteurs restriction de Weil
d’un groupe absolument presque simple de type 2Dn (pour n ≥ 4) ou 2A4n+3 (pour n ≥ 0)
déployé par une extension non ramifiée.

Remarque 6.16. Bien entendu, il est possible de calculer explicitement ce noyau en se rédui-
sant au cas absolument presque simple grâce à la compatibilité du noyau au produit et à la
restriction de Weil (cf. le lemme 6.9) et en utilisant la table 2.
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