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Introduction

Le point de départ de cet article provient de la question posée par Eva Bayer-Fluckiger
et Uriya A. First dans [BFF17] sur des objets qui généralisent les schémas en groupes de
Bruhat-Tits sur des anneaux de Dedekind semi-locaux.

Considérons donc R, un anneau de Dedekind semi-local connexe de dimension 1 et K
son corps de fractions. Par définition, un idéal maximal m de R définit par localisation un
anneau de valuation discrète Rm, de complété noté R̂m. Notons également K̂m, le corps de
fractions de R̂m.

Introduisons la définition suivante :
Définition 0.1. Soit G un groupe algébrique réductif sur K et G un schéma en groupes lisse
sur R tel que G := GK . On dit que G est un schéma en groupes stabilisateur d’une
facette (resp. schéma en groupes parahorique) de G si pour tout idéal maximal m de
R, le schéma en groupes G

R̂m
est stabilisateur d’une facette dans l’immeuble de Bruhat-Tits

B(G
K̂m

), cf. [Zid, Définition 3.9.] (resp. est parahorique, cf. [Zid, Définition 6.2.]).
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Grâce à [Zid26, Proposition A.15.] et à [Zid26, Proposition A.16.], cette définition est
compatible avec la définition que l’on avait donné dans le cas hensélien (i.e. avec [Zid,
Définition 3.9.] et [Zid, Définition 6.2.]).

Notons que cette définition coïncide avec celle prise par Heinloth dans [Hei10], dans le
cas semi-simple, et dans le cas où la base est une courbe projective lisse sur un corps.

Par ailleurs, dans le cas des tores, un schéma en groupes stabilisateur d’une facette peut
correspondre au modèle de Néron du tore (sachant que l’immeuble d’un tore est réduit à
un sommet). Notons d’ailleurs qu’il s’agit d’un exemple où le modèle considéré n’est pas
nécessairement affine.

La question de Bayer-Fluckiger et First sur les torseurs rationnellement triviaux s’énonce
donc ainsi :

Question 0.2 ([BFF17, Question 6.4]). Soit G, un schéma en groupes sur R tel que G := GK
est réductif. Est-ce que le morphisme de changement de base :

H1
ét(R,G)→ H1

ét(K,G)

est injectif lorsque G est :

(1) un schéma en groupes stabilisateur d’une facette de G ?

(2) un schéma en groupes parahorique de G ?

Dans l’article, les auteurs supposent également que les corps résiduels de R sont parfaits,
mais précisent toutefois que cela est simplement une hypothèse simplificatrice.

Dans [BFFH19], les mêmes auteurs ont trouvé un contre-exemple dans le cas où le groupe
G est non connexe et de composante neutre adjointe. Ce contre-exemple est plus précisément
construit en [BFFH19, §4.]. Ceci les a conduit à formuler une conjecture plus faible dans le
dernier paragraphe de [BFFH19, §5.] : est-ce que la question (1) de 0.2 est satisfaite lorsque
la facette considérée est une chambre et G est résiduellement quasi-déployé sur chaque K̂m ?
(cf. [Zid, Définition 3.4.]). Ceci était déjà connu de Bruhat et Tits dans le cas complet à
corps résiduel parfait (cf. [BT87, 3.9. Lemme]). On répond positivement à cette conjecture
dans cet article. C’est l’objet du théorème 3.9.

Comme signalé dans [Zid], il s’avère qu’un contre-exemple où G est connexe avait déjà
été trouvé pour le cas (1) de la question 0.2 dans le cas d’un anneau de valuation discrète
complet et d’un groupe adjoint quasi-déployé de type 2A3 et déployé par une extension non
ramifiée par Bruhat et Tits dans [BT84, 5.2.13.].

Dans l’article [Zid], on a alors généralisé ce contre-exemple et calculé tous les noyaux
possibles dans le cas quasi-déployé et adjoint sur un corps valué hensélien (cf. [Zid, Théorème
6.15.]). On a également montré que le noyau du morphisme de la question 0.2 dans le cas
(2) est trivial dans ce cas de figure. On se propose dans le présent article de généraliser ces
résultats pour n’importe quel groupe G adjoint sur K et quasi-déployé sur chaque K̂m (cf.
les théorèmes 3.13 et 3.12).

Malgré nos efforts, le cas (2) de la question 0.2 est toujours une question ouverte lorsque
R est un anneau de valuation discrète hensélien. Lorsqu’il n’est pas forcément hensélien, des
contre-exemples ont été construits dans [Zid26, Chapter 3].

Notons également que cette question 0.2 est une généralisation de la conjecture de
Grothendieck-Serre dans le cas d’un anneau de valuation discrète. En effet, il s’agit du
cas où le schéma en groupes parahorique est associé à un sommet hyperspécial (dans ce cas,
le schéma en groupes est réductif, cf. [Zid, Lemme 5.2.]).
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La première tentative de preuve de ce cas est due à Nisnevich dans sa thèse [Nis82]. L’idée
est d’utiliser les techniques de recollements pour montrer que le problème se ramène au cas
complet et à un problème de décomposition.

Dans notre cas de figure, en reprenant les notations de la question 0.2, un problème de
décomposition reviendrait à se demander si l’égalité suivante est satisfaite :∏

m

G(K̂m) = G(K)
∏
m

G(R̂m) :=

{
(gKgm)m | (gK , (gm)m) ∈ G(K)×

∏
m

G(R̂m)

}
.

Le problème de décomposition de Nisnevich est alors le cas où G est supposé réductif.
Notons d’ailleurs qu’obtenir cette décomposition signifie également que le groupe de classes

(qui est a priori seulement un ensemble pointé) c(G) :=
∏

m G(R̂m)\
∏

mG(K̂m)/G(K) est
trivial. Cet objet a aussi été étudié par Nisnevich dans sa thèse (cf. [Nis82, Chapter I]).

Ensuite, dans la note [Nis84], Nisnevich apporte des améliorations à sa tentative et indique
un résultat de Bruhat et Tits non encore publié à l’époque qui donne le cas semi-simple
complet.

Ce résultat (et sa preuve) va ensuite être publié dans [BT84, 5.2.14. Proposition.], bien
qu’il ne soit pas formulé de manière cohomologique. On a montré dans [Zid] que c’est ef-
fectivement équivalent à l’énoncé du cas complet, et que le cas réductif peut être également
obtenu en ajustant la preuve (cf. [Zid, Proposition 5.5.]).

Le cas des tores a été ensuite prouvé plus tard par Colliot-Thélène et Sansuc dans [CTS87,
Theorem. 4.1.] mais dans un contexte bien plus général. Il s’avère que dans notre contexte
on peut en fournir une preuve bien plus simple dans le cas complet : cela est l’objet de [Zid,
Lemme 5.4.(2)].

Enfin, Guo dans [Guo22] clarifie la preuve de Nisnevich tout en optant cette fois pour une
autre preuve du cas complet en passant par une technique de réduction au cas anisotrope.
Il ajoute également le cas où l’anneau est de plus semi-local.

On propose également dans cet article d’obtenir une preuve simplifiée et nouvelle de ce
résultat en obtenant une autre preuve du problème de décomposition, et en combinant cela
au cas complet que l’on a déjà traité dans [Zid, Proposition 5.5.].

Notre objectif principal est donc de répondre de la manière la plus exhaustive possible à
la question 0.2. Les corps résiduels de R ne sont donc pas supposés parfaits (sauf mention
explicite du contraire).

Notre stratégie reprend essentiellement celle de Nisnevich. On utilise les techniques de
recollements pour découper le problème en deux : résoudre le cas complet (ce qui a déjà
été exploré dans [Zid]) et résoudre un problème de décomposition. Le fait de sortir du cas
réductif nécessite toutefois d’utiliser de nouvelles méthodes (ou d’utiliser de manière plus
astucieuse celles déjà connues).

Discutons désormais du problème de décomposition. La stratégie que l’on adopte dans ce
papier utilise, pour tout m, le groupe G(K̂m)

+ engendré par les K̂m-points des sous-groupes
de racines de G

K̂m
. Elle repose sur le fait de montrer que

∏
mG(K̂m)

+ ⊂ G(K)
∏

m G(R̂m),
ce qui simplifie grandement la problématique, car

∏
mG(K̂m)

+ est en pratique suffisamment
gros pour conclure sur un certain nombre de cas.

Lorsque G est K-isotrope, il était déjà connu dans la littérature que l’on pouvait appro-
cher

∏
mG(K̂m)

+ avec des éléments de G(K)+ (cf. [Gil09, Lemme 5.6.]). Le cas où G est
K-anisotrope et où il existe un m ∈ Specm(R) tel que G soit K̂m-isotrope est nettement
plus délicat et n’a pas été étudié dans la littérature.
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L’idée novatrice dans cet article réside alors en l’utilisation du théorème de Prasad (cf.
proposition 2.1) pour montrer que

∏
mG(K̂m)

+ ⊂ G(K)
∏

m G(R̂m), et ce, même si G est
K-anisotrope : le problème de décomposition est ainsi simplifié dans tous les cas de figure.

Le plan de cet article est le suivant :

(1) La première partie est dédiée aux techniques de recollements. On y généralise ce qui
a déjà été fait par Nisnevich et Guo pour inclure le cas de schémas en groupes plus
généraux non nécessairement affines (en particulier ceux qui nous intéressent).

(2) La seconde partie est dédiée aux techniques d’approximation. On y développe des
résultats qui simplifient considérablement l’étude du problème de décomposition.

(3) La troisième partie est dédiée à l’établissement de lemmes cruciaux et des principaux
théorèmes de l’article.

On peut déjà annoncer tout de suite que dans le cas où les corps résiduels sont parfaits,
et que le groupe G est semi-simple simplement connexe, la question 0.2 admet une réponse
positive :

Théorème 0.3. Supposons que les corps résiduels de R soient parfaits. Soit G un groupe
semi-simple simplement connexe. Alors les schémas en groupes stabilisateur d’une facette
et parahoriques pour G coïncident et lorsque G en est un, le morphisme de changement de
base :

H1
ét(R,G)→ H1

ét(K,G)

est injectif.

Notons également que, bien que l’on ait une preuve essentiellement uniforme, ce qui
limite nos résultats cet article (et plus généralement dans ce sujet), est le fait que la théorie
de Bruhat-Tits a été peu examinée dans le cas d’un groupe sur un corps complet valué
discrètement non quasi-déployé par une extension non ramifiée.
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Notations et conventions

Pour tout corps k, la notation ks désigne une clôture séparable de k.

Rappelons que tout schéma X localement de présentation finie séparé sur un schéma
intègre S de corps de fonctions k est tel que X(S) → X(k) est injectif. Cette inclusion est
implicite tout le long du document (cf. [GW10, Corollary 9.9.]).

Nous utilisons la définition de groupe réductif de Chevalley et Borel (cf. [Bor91]). En
particulier, ils sont affines, lisses et connexes.
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Le premier ensemble non abélien de cohomologie étale et fppf considéré dans cet article
est défini par Milne dans [Mil80, III.§4.] par le procédé de Čech. De manière équivalente, ils
sont donnés par les classes d’isomorphismes de torseurs faisceautiques, et sont donc a priori
non nécessairement représentables par des schémas (cf. [Mil80, III. Proposition 4.6.]).

Dans toute la suite on considère R un anneau de Dedekind semi-local connexe de di-
mension 1 et K son corps de fractions. Tout ce qui va suivre dans cet article se généralise
trivialement au cas non connexe et au cas où une composante est de dimension 0.

L’ensemble Specm(R) désigne le spectre maximal de R, c’est-à-dire l’ensemble de ses
idéaux maximaux. Observons que dans le cas de R, il s’agit également des idéaux premiers
non nuls.

Pour tout m ∈ Specm(R), notons que Rm est un anneau de valuation discrète et qu’il
munit donc K d’une valuation discrète. Son corps résiduel est noté κm. On note K̂m et R̂m

les complétés associés respectifs de K et Rm. Notons également Rh
m, l’hensélisé de Rm et Kh

m

son corps de fractions (cf. [Stacks, Tag 0BSK]).

Étant donné m ∈ Specm(R), on considère un corps valué par m, noté K̃m, compris entre
K et K̂m. Le corps K est donc dense dans K̃m pour la topologie m-adique. Ce corps est
également supposé hensélien. On a donc : K ⊂ Kh

m ⊂ K̃m ⊂ K̂m. Son anneau d’entiers est
noté R̃m. Son corps résiduel est également κm.

Il arrive parfois dans l’article d’alléger les hypothèses faites sur les K̃m. Ceci est alors
mentionné explicitement.

Notons également :

— K̃ :=
∏

m∈Specm(R) K̃m, le produit des corps valués choisis,

— R̃ :=
∏

m∈Specm(R) R̃m, le produit de leurs anneaux d’entiers,

— κ :=
∏

m∈Specm(R) κm, le produit de leurs corps résiduels,

— K̃nr :=
∏

m∈Specm(R) K̃
nr
m , le produit des extensions maximales non ramifiées,

— R̃nr :=
∏

m∈Specm(R) R̃
nr
m , le produit des hensélisés stricts,

— κs :=
∏

m∈Specm(R) κ
s
m, le produit des clôtures séparables,

— et enfin I :=
∏

m∈Specm(R) Im :=
∏

m∈Specm(R)Gal(K̃s
m/K̃

nr
m ), produit des sous-groupes

d’inertie.
Observons que R ⊂ R̃ et K ⊂ K̃ au travers de l’inclusion diagonale. Cette inclusion est

implicite tout le long du document.

Dans le cas où l’on a R̃m = R̂m pour tout m ∈ Specm(R), observons que R̂ := R̃ est aussi
le complété de R par son radical de Jacobson (cf. [Mat86, Theorem 8.15.]). Dans ce cas, on
utilise également la notation K̂ := K̃.

Prenons m ∈ Specm(R). Observons que K̃nr
m ⊂ K̂nr

m ⊂
̂̃
Knr

m , de telle sorte que K̃nr
m est

dense dans K̂nr
m . Cela implique qu’un élément de Gal(K̃nr

m /K̃m) se relève en un élément de
Gal(K̂nr

m /K̂m). En fait, l’application induite Gal(K̃nr
m /K̃m)→ Gal(K̂nr

m /K̂m) est bijective, et
ils sont tous deux isomorphes à Gal(κsm/κm).

Soulignons que l’extension maximale non ramifiée d’un corps complet n’est pas toujours
complète. Par exemple, l’extension maximale non ramifiée de κ((t)) n’est pas κs((t)) si κs/κ
est infini.

https://stacks.math.columbia.edu/tag/0BSK
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Étant donné un groupe réductif G sur K̃ (ce qui est équivalent à se donner des groupes
réductifs sur les corps K̃m), on note B(G) :=

∏
m∈Specm(R) B(G

K̃m
), le produit des im-

meubles de Bruhat-Tits des G
K̃m

(ils existent d’après [Zid, Proposition 1.1.]). Le groupe
G(K̃) =

∏
m∈Specm(R)G(K̃m) agit naturellement sur B(G) :=

∏
m∈Specm(R) B(G

K̃m
).

Une facette (resp. chambre, resp. appartement) dans B(G) est le produit de facettes (resp.
chambres, resp. appartements) dans chacun des facteurs.

De la même manière, en considérant tout facteur par facteur, on généralise la notion de
sous-groupes parahoriques, de sous-groupes stabilisateurs, de schémas en groupes de Bruhat-
Tits, etc.

Notons aussi que Γnr :=
∏

m∈Specm(R) Γ
nr
m agit naturellement sur G(K̃nr) :=

∏
m∈Specm(R)G(K̃nr

m ).

1. Découpage du problème et techniques de recollements

On se donne comme objectif dans cette partie d’utiliser les techniques de recollements
(ou patching en anglais) pour séparer le problème qui nous intéresse en deux questions
intermédiaires.

Plus précisément, on reprend l’idée développée par Nisnevich ([Nis82], [Nis84]) et Guo
([Guo22]). Autrement dit, essayer de se ramener au cas où R est local et complet (ou toute
autre situation plus élémentaire) et comprendre l’injectivité dans ce cas de figure. Ceci utilise
donc les techniques de recollements.

On a par ailleurs fait le choix dans cette section de travailler avec les espaces algébriques
au lieu des schémas affines. En effet, comme les techniques de recollements ne sont pas
disponibles pour les schémas quelconques, travailler avec les espaces algébriques permet de
contourner cette difficulté et d’obtenir tout de même des résultats utiles pour notre problème.
Dans une première approche, le lecteur peut donc considérer seulement des schémas affines.

Dans cette partie, les corps valués K̃m sont seulement supposés contenir K et avoir les
mêmes corps résiduels que K sous les valuations m-adiques (c’est-à-dire les κm). Ils ne sont
donc ni nécessairement henséliens, ni nécessairement dans K̂m.

Soit G un schéma en groupes sur R séparé et localement de présentation finie. Notons
également G := GK .

Question 1.1. Considérons le diagramme commutatif suivant :

H1
∗ (R,G) H1

∗ (R̃,G)
∏

m∈Specm(R)

H1
∗ (R̃m,G)

H1
∗ (K,G) H1

∗ (K̃,G)
∏

m∈Specm(R)

H1
∗ (K̃m, G)

avec ∗ ∈ {fppf, ét}. Quelle est l’obstruction de ce diagramme à être cartésien ?
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Faisons un rappel sur les techniques de recollements :

Rappel 1.2 (Techniques de recollements). Le foncteur suivant est une équivalence de caté-
gories :

Catégorie des R-espaces
algébriques séparés et

loc. de présentation finie

→


Catégorie des triplets (X ′,X′, τ : X ′
K̃
→ X′

K̃
)

où X ′ (resp. X′) est un espace algébrique séparé

loc. de prés. finie sur K (resp. R̃) et τ un isomorphisme


X 7→

(
XK ,X

R̃
, (XK)

K̃

∼→ (X
R̃
)
K̃

)
.

Démonstration. Il s’agit d’une conséquence de [MB96, Corollaire 5.6.(1)], puisque
Spec(R̃)→ Spec(R) est plat d’après [Liu06, Corollary 1.2.14.] et induit un isomorphisme au
niveau des points fermés, puisque R et R̃ ont les mêmes corps résiduels. □

Par fonctorialité, on vérifie qu’un tel foncteur se restreint et corestreint aux espaces al-
gébriques en groupes. D’après [Ana73, 4.B. Théorème], les espaces algébriques en groupes
considérés sont représentables par des schémas. On obtient donc :

Proposition 1.3. Le foncteur suivant est une équivalence de catégories :
Catégorie des R-schémas

en groupes séparés et
loc. de présentation finie

→


Catégorie des triplets (G′,G′, τ : G′
K̃
→ G′

K̃
)

où G′ (resp. G′) est un schéma en groupes séparé

loc. de prés. finie sur K (resp. R̃) et τ un isomorphisme


G 7→

(
GK ,G

R̃
, (GK)

K̃

∼→ (G
R̃
)
K̃

)
.

Que dire maintenant des torseurs ? On a besoin de quelques lemmes qui sont d’ailleurs
valides sur une base quelconque S (qui est un schéma) ; G est donc supposé être un schéma
en groupes sur S non nécessairement séparé, ni nécessairement localement de présentation
finie.

Définition 1.4. On dit que X, un faisceau fppf sur S, est un pseudo G-torseur sur S
si X est muni d’une action libre et transitive de G. Autrement dit, une action telle que
G ×S X→ X×S X, (g, x) 7→ (g.x, x) est un isomorphisme.

On note H1
Pseudo(S,G) (resp. H1

SLPF(S,G)) l’ensemble des classes d’isomorphismes de
pseudo G-torseurs sur S représentables par des espaces algébriques (resp. de pseudo
G-torseurs sur S représentables par des espaces algébriques séparés et localement de pré-
sentation finie).

Par ailleurs, on définit un G-torseur sur S pour la topologie fppf (resp. étale) comme
étant un faisceau muni d’une action de G, localement isomorphe à G muni de son action par
translation (à gauche ou à droite selon la convention que l’on prend).

On note [X] la classe d’isomorphisme de X. Notons qu’il n’y a pas (ni ici, ni dans la suite)
d’ambiguïté sur la catégorie ambiante dans notre situation.

Remarque 1.5. Un pseudo G-torseur sur S est isomorphe au pseudo torseur trivial (G muni
de son action par translation) si et seulement s’il admet une section sur S (cf. [Stacks, Tag
03AI]).

https://stacks.math.columbia.edu/tag/03AI
https://stacks.math.columbia.edu/tag/03AI


8 A. ZIDANI

Lemme 1.6. Tout torseur pour la topologie fppf/étale est représentable par un
espace algébrique qui est un pseudo-torseur. On a donc les inclusions naturelles
H1

ét(S,G) ⊂ H1
fppf(S,G) ⊂ H1

Pseudo(S,G). Plus précisément :

(1) Si G est plat et localement de présentation finie (resp. et aussi séparé), l’ensemble
pointé H1

fppf(S,G) est égal à l’ensemble pointé des classes d’isomorphismes d’espaces
algébriques pseudo G-torseurs sur S fidèlement plats et localement de présentation
finie (resp. et aussi séparé).

(2) Si G est lisse (resp. et aussi séparé), l’ensemble pointé H1
ét(S,G) est égal à l’ensemble

pointé des classes d’isomorphismes d’espaces algébriques pseudo G-torseurs sur S
lisses et surjectifs (resp. et aussi séparé).

Démonstration. Notons que les torseurs pour la topologie fppf/étale sont représentables par
des espaces algébriques car la descente fppf/étale est toujours effective pour eux (cf. [Stacks,
Tag 0ADV]).

Montrer que G ×S X → X ×S X est un isomorphisme peut se faire après localisation
fppf/étale. Comme les torseurs fppf/étales sont triviaux fppf/étale localement, on a donc le
résultat.

Comme être plat, localement de présentation finie, lisse ou encore séparé est local pour la
topologie fppf ou étale, si G l’est, alors les torseurs fppf ou étales le sont. Notons d’ailleurs
que G est toujours surjectif sur S puisque le morphisme G → S admet une section.

Réciproquement, soit X un pseudo G-torseur sur S. Notons que X ×S X → X est un
GX-torseur trivial puisqu’il possède une section.

Considérons maintenant un morphisme étale surjectif U → X où U est représentable par
un schéma. On en déduit que (X ×S X)×X U = X ×S U → U est également un GU -torseur
trivial sur U .

Donc U → S est un recouvrement trivialisant X. Si X est fidèlement plat et localement
de présentation finie, U l’est également aussi par composition. Donc X est trivialisé par un
recouvrement fppf. De même, si X est lisse et surjectif, U aussi et donc X est trivialisé par
un recouvrement lisse. Puisque tout recouvrement lisse peut être raffiné en un recouvrement
étale (cf. [Stacks, Tag 055V]), on a le résultat. □

On en déduit donc le résultat suivant :

Corollaire 1.7. Si G est lisse, alors H1
ét(S,G) = H1

fppf(S,G).

Démonstration. Un torseur fppf X est fppf localement isomorphe à G. Par descente fppf, X
est également lisse et surjectif. D’après le lemme précédent, [X] ∈ H1

ét(S,G). □

Revenons maintenant au cas où S = Spec(R) et G séparé et localement de présentation
finie. On peut enfin énoncer les techniques de recollements pour les torseurs :

Proposition 1.8. Le foncteur suivant est une équivalence de catégories :
Catégorie des R-esp. alg.

pseudo G-torseur sép.
et loc. de prés. finie

→


Catégorie des triplets (X ′,X′, τ : X ′
K̃
→ X′

K̃
)

où X ′ (resp. X′) est un esp. alg. pseudo torseur sur G (resp. G
R̃
)

sép. loc. de prés. finie sur K (resp. R̃) et τ un isomorphisme


X 7→

(
XK ,X

R̃
, (XK)

K̃

∼→ (X
R̃
)
K̃

)
.

Si de plus G est plat (resp. lisse), alors l’équivalence de catégories précédente en induit
également une au niveau des torseurs fppf (resp. torseurs étales).

https://stacks.math.columbia.edu/tag/0ADV
https://stacks.math.columbia.edu/tag/055V


ARITHMÉTIQUE DES SCHÉMAS EN GROUPES DE BRUHAT-TITS (CAS SEMI-LOCAL) 9

Démonstration. Le premier résultat est évident par définition des pseudo torseurs et par
fonctorialité des techniques de recollements (rappel 1.2) : on peut restreindre et corestreindre
sans difficulté.

Pour le second résultat, lorsque G est plat (resp. lisse) on peut également restreindre et
corestreindre aux pseudo torseurs qui sont de plus fidèlement plats (resp. lisses et surjectifs).
En effet, comme Spec(R̃) → Spec(R) est fidèlement plat et quasi-compact, si un pseudo
torseur est tel que X

R̃
est fidèlement plat (resp. lisse et surjectif), alors X l’est également

par descente fpqc.
On a donc le résultat d’après le lemme 1.6. □

Utilisons donc les techniques de recollements pour reformuler notre problème. Nous don-
nons alors une variante de [Nis84, Théorème 2.1.], ou encore de [Guo22, Proposition 10.] :

Théorème 1.9. Prenons ∗ ∈ {SLPF, fppf, ét} (supposant de plus que G est plat (resp. lisse)
si ∗ = fppf (resp. ét)). Désignons par τg : G

K̃
∼= G

K̃
l’isomorphisme de torseurs obtenu en

translatant (à gauche) par un élément g ∈ G(K̃). L’application g 7→ (G,G
R̃
, τg) induit par

recollement la bijection d’ensembles pointés suivant :

G(R̃)\G(K̃)/G(K) ∼= Ker
(
H1

∗ (R,G)→ H1
∗ (K,G)×

H1
∗(K̃,G)

H1
∗ (R̃,G)

)
.

Par conséquent, on a la suite exacte naturelle :

1 G(R̃)\G(K̃)/G(K) H1
∗ (R,G) H1

∗ (K,G)×
H1

∗(K̃,G)
H1

∗ (R̃,G) 1.

Démonstration. On a un morphisme naturel H1
∗ (R,G) → H1

∗ (K,G) ×
H1

∗(K̃,G)
H1

∗ (R̃,G)
donné par [X]→ ([X

R̃
], [X

K̃
]). Ce morphisme est en fait surjectif. En effet, prenons ([X], [X′])

dans le produit fibré. Par définition, X et X′ ont même classe dans H1
∗ (K̃,G). Cela signifie

qu’il existe un isomorphisme de torseurs τ : X
K̃
→ X′

K̃
. On peut donc utiliser les techniques

de recollements (proposition 1.8) pour obtenir un R-torseur X sur G qui recolle X et X′ et
donc tel que [X] s’envoie sur ([X], [X′]) comme souhaité. D’où la surjectivité.

Que peut-on dire du noyau de ce morphisme ? On recherche donc les R-torseurs sur G qui
sont triviaux sur R̃ et K̃, à isomorphisme près. D’après les techniques de recollements, cela
revient à comprendre les triplets de la forme (G,G

R̃
, τ : G

K̃

∼→ (G
R̃
)
K̃

= G
K̃
) à isomorphisme

près. L’isomorphisme τ est d’ailleurs déterminé par l’image de l’élément neutre qui est un
élément de G(K̃). Réciproquement, tout élément g ∈ G(K̃) détermine un isomorphisme τg
en translatant par cet élément. Les triplets que l’on cherche sont donc exactement déterminés
par un élément de G(K̃).

Comprenons maintenant les triplets isomorphes. Un triplet (G,G
R̃
, τĝ) est isomorphe à un

triplet (G,G
R̃
, τĝ′) si et seulement s’il existe g ∈ G(K) et p ∈ G(R̃) tel que le carré suivant

commute :
G

K̃
(G

R̃
)
K̃

G
K̃

(G
R̃
)
K̃

τĝ

τg τp

τ
ĝ′

En d’autres termes, τĝ′ = τp ◦ τĝ ◦ τ−1
g .

En évaluant en l’élément neutre, on a alors ĝ′ = p ĝ g−1, supposant que l’on manipule des
torseurs à gauche. Les classes d’isomorphismes sont donc données par G(R̃)\G(K̃)/G(K).

□
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Remarque 1.10. Remarquons que G(R̃)\G(K̃)/G(K) est en bijection d’ensembles pointés
avec G(K)\G(K̃)/G(R̃) grâce à g 7→ g−1. On obtient en fait l’un ou l’autre ensemble par les
calculs précédents en fonction de si l’on souhaite travailler avec des torseurs à gauche ou à
droite. Ce choix n’a aucune importance.

Remarque 1.11. Il est intéressant de noter que, lorsque G est affine, G est lisse, et
K̃ = K̂, le double quotient G(R̂)\G(K̂)/G(K) est isomorphe à H1

Nis(R,G) d’après [Nis82,
2.8. Theorem]. Si G est de plus plat, alors d’après [Nis82, 1.3. Proposition], on a
G(Rh)\G(Kh)/G(K) = G(R̂)\G(K̂)/G(K).

Notons que dire que le diagramme de la question 1.1 est cartésien est équivalent à dire
que l’on a une bijection d’ensembles pointés H1(R,G) ∼→ H1(R̃,G) ×

H1(K̃,G)
H1(K,G).

En particulier, Ker
(
H1(R,G)→ H1(R̃,G)×

H1(K̃,G)
H1(K,G)

)
, donc G(R̃)\G(K̃)/G(K),

doit être trivial.

Rappelons cependant que l’on manipule des ensembles pointés et non des groupes a priori.
Par conséquent, le noyau ne suffit pas à comprendre les fibres du morphisme.

Toutefois, les techniques dites de torsion (ou twist en anglais) permettent de comprendre
ses fibres. Supposons désormais à partir de maintenant que G est plat. Il peut alors être
identifié avec le faisceau fppf qu’il représente. Par ailleurs, dans toute la suite, on prend
∗ ∈ {fppf, ét} (en supposant que G est de plus lisse si ∗ = ét). Faisons quelques rappels :

Prenons un torseur X avec donc [X] ∈ H1
∗ (R,G), et considérons le groupe tordu de G

par X par automorphismes intérieurs, noté GX (cf. [Gil15, 2.1.]). C’est une forme fppf (ou
étale) sur R de G telle que sa classe dans H1

∗ (R,Aut(G))) est donnée par l’image de [X]
par l’application naturelle H1

∗ (R,G)→ H1
∗ (R,Aut(G))) (cf. [Gir71, Chapitre III, Corollaire

2.5.4.]). En conséquence, deux torseurs isomorphes induisent des tordus isomorphes.
Il est aussi tel qu’il existe une bijection canonique φX de H1

∗ (R,GX) dans H1
∗ (R,G) qui

envoie la classe du torseur trivial vers [X] (cf. [Gir71, Chapitre III, 2.6.]). Notons par ailleurs
que tordre GX par un torseur Y avec donc [Y] ∈ H1

∗ (R,GX) donne à isomorphisme près le
même groupe que si l’on tordait G par un torseur dans la classe φX([Y]) ∈ H1

∗ (R,G).
Enfin, observons que grâce à [Ana73, 4.A. Théorème], un tordu fppf/étale d’un schéma

en groupes sur R, plat, séparé et localement de présentation finie (qui, par descente, est un
R-espace algébrique en groupes plat, séparé et localement de présentation finie) est en fait
représentable par un R-schéma en groupes. Dans la suite, on peut alors réutiliser pour les
tordus de G ce que l’on a déjà fait.

De ceci, on en déduit les lemmes suivants :

Lemme 1.12. Soit [X] ∈ H1
∗ (R,G). On a :

Ker
(
H1

∗ (R,GX)→ H1
∗ (K,GX)

)
∼= g−1(g([X])),

où g désigne H1
∗ (R,G)→ H1

∗ (K,G).

Démonstration. On a le diagramme commutatif suivant à flèches verticales bijectives :

1 Ker
(
H1

∗ (R,GX)→ H1
∗ (K,GX)

)
H1

∗ (R,GX) H1
∗ (K,GX) 1

1 g−1(g([X])) H1
∗ (R,G) H1

∗ (K,G) 1.

17→[X] 17→[XK ]

f

La première ligne est exacte. La seconde ligne l’est également en choisissant [X] et [XK ]
comme éléments neutres. D’où le résultat. □
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Lemme 1.13. Soit [X] ∈ H1
∗ (R,G). On a :

(GX)(R̃)\(GX)(K̃)/(GX)(K) ∼= f−1(f([X])),

où f désigne H1
∗ (R,G)→ H1

∗ (R̃,G)×
H1

∗(K̃,G)
H1

∗ (K,G).

Démonstration. On a le diagramme commutatif suivant à flèches verticales bijectives :

1 (GX)(R̃)\(GX)(K̃)/(GX)(K) H1
∗ (R,GX) H1

∗ (R̃,GX)×
H1

∗(K̃,GX)
H1

∗ (K,GX) 1

1 f−1(f([X])) H1
∗ (R,G) H1

∗ (R̃,G)×
H1

∗(K̃,G)
H1

∗ (K,G) 1.

17→[X] (1,1)7→([X
R̃
],[XK ])

f

La première ligne est exacte. La seconde ligne l’est également en choisissant [X] et ([X
R̃
], [XK ])

comme éléments neutres. D’où le résultat. □

Cela nous permet notamment d’avoir des résultats sur les noyaux des flèches du diagramme
de la question 1.1 :

Proposition 1.14. Notons C, l’ensemble des GX pour [X] parcourant l’ensemble
Ker

(
H1

∗ (R,G)→ H1
∗ (K,G)

)
(en choisissant qu’un seul représentant pour chaque classe d’iso-

morphisme). On a :

∀G′ ∈ C,

G′(R̃)\G′(K̃)/G′(K)
est trivial.

⇐⇒
les noyaux de H1

∗ (R,G)→ H1
∗ (K,G)

et H1
∗ (R̃,G)→ H1

∗ (K̃,G)
sont en bijection naturelle.

Démonstration. Soit [X′] ∈ Ker
(
H1

∗ (R̃,G)→ H1
∗ (K̃,G)

)
. D’après le théorème précédent,

le couple (1, [X′]) dans H1
∗ (K,G) ×

H1
∗(K̃,G)

H1
∗ (R̃,G) provient d’une classe [X] ∈ H1

∗ (R̃,G).
Par définition, son image dans H1

∗ (K,G) est triviale. D’où la surjectivité.
Soit un élément [X] ∈ Ker

(
H1

∗ (R,G)→ H1
∗ (K,G)

)
. D’après le lemme 1.13, on a l’iso-

morphisme (GX)(R̃)\(GX)(K̃)/(GX)(K) ∼= f−1(f([X])). En conséquence, le double quotient
est trivial si et seulement si f−1(f([X])) est trivial ; c’est-à-dire si et seulement si [X] est
l’unique élément de H1

∗ (R,G) qui s’envoie sur ([X
R̃
], 1) par f , ou encore, si et seulement

si c’est l’unique élément de Ker
(
H1

∗ (R,G)→ H1
∗ (K,G)

)
valant [X

R̃
] dans H1

∗ (R̃,G). Ceci
prouve l’équivalence. □

On en déduit finalement :

Théorème 1.15. Notons C, l’ensemble des GX pour [X] parcourant l’ensemble H1
∗ (R,G) (en

choisissant qu’un seul représentant pour chaque classe d’isomorphisme). On a :

∀G′ ∈ C,

G′(R̃)\G′(K̃)/G′(K)
est trivial.

⇔

∀G′ ∈ C, les noyaux de
H1

∗ (R,G′)→ H1
∗ (K,G′)

et H1
∗ (R̃,G′)→ H1

∗ (K̃,G′)
sont en bijection naturelle.

⇔

les fibres de
H1

∗ (R,G)→ H1
∗ (K,G)

et H1
∗ (R̃,G)→ H1

∗ (K̃,G)
sont en bijection naturelle.

⇔
le diagramme de
la question 1.1
est cartésien.

Démonstration. La première équivalence est une conséquence immédiate de la proposition
1.14. La deuxième équivalence provient du lemme 1.12. Enfin, la dernière équivalence est un
résultat classique sur les diagrammes cartésiens. □
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En résumé, pour répondre positivement à la question d’injectivité 0.2 pour une certaine
classe de groupes de Bruhat-Tits, grâce au théorème 1.15, la stratégie est d’établir les trois
faits suivants :

(1) La classe des groupes de Bruhat-Tits que l’on étudie est stable par torsion intérieure
(ces groupes sont toujours lisses et séparés) ;

(2) Le double quotient est trivial pour tout élément de cette classe ;

(3) La trivialité du noyau est réalisée sur R̂ pour tout élément de cette classe.

Bien entendu, on peut envisager une stratégie analogue si on est seulement intéressé par la
trivialité du noyau grâce à la proposition 1.14.

Remarque 1.16. Comme annoncé en début de section, le lecteur peut éviter la notion d’es-
pace algébrique en se limitant aux schémas affines (par exemple si le groupe étudié est
semi-simple). Les preuves peuvent alors être simplifiées. En effet, on utilise d’une part que
toute descente fpqc est effective pour les schémas affines, et d’autre part les techniques de
recollements au niveau des schémas affines (cf. [MB96, Theorème 1.1]).

Remarque 1.17. Le point de vue des schémas ind-quasi-affines ([Stacks, Tag 0AP5]) ne couvre
pas non plus tous les cas qui nous intéressent bien qu’ils vérifient également la descente fpqc
([Stacks, Tag 0APK]) et les techniques de recollements (cf. plus bas). En effet, le modèle de
Néron Gm du tore Gm (exemple simple d’un schéma en groupes de Bruhat-Tits non affine)
n’est pas ind-quasi-affine comme nous allons l’établir ci-dessous (preuve communiquée par
Gabber).

Prenons R local d’uniformisante π pour simplifier. Il suffit de voir que l’union, que
l’on note U , de πaGm,R, πbGm,R et πcGm,R dans Gm pour un choix a, b, c d’entiers tous
différents, n’est pas quasi-affine. En effet, U est quasi-compact, donc le caractère ind-
quasi-affine devrait impliquer que U est quasi-affine par définition. Cela signifierait que
U → Spec(OU (R)) est une immersion ouverte (cf. (4) de [Stacks, Tag 01SM]) et donc que
πbGm,R → U → Spec(OU (R)) l’est également.

Par exemple, dans le cas où (a, b, c) = (0, 1, 2), l’anneau des fonctions globales de U
vaut R[X,π2X−1]. En effet, le corps des fonctions de Gm est exactement K(X,X−1). Les
fonctions définies sur Gm,R sont alors R[X,X−1]. Pour être défini également sur πGm,R et
π2Gm,R, il faut préserver πR× et π2R×. On réalise alors que les fonctions en question sont
exactement R[X,π2X−1].

Pour ce qui est de πGm,R, on réalise qu’il s’agit de R[π−1X,πX−1]. Le morphisme
πGm,R → Spec(OU (R)) est alors donné au niveau des algèbres par l’inclusion
R[X,π2/X] ⊂ R[π−1X,πX−1].

De manière un peu plus formelle, cela donne le morphisme suivant :

R[Y1, Y2]/(Y1Y2 − π2)
φ→ R[Z1, Z2]/(Z1Z2 − 1)

Y1, Y2 7→ πZ1, πZ2

Au niveau des fibres spéciales, on a donc :

κ[Y1, Y2]/(Y1Y2)
φ→ κ[Z1, Z2]/(Z1Z2 − 1)

Y1, Y2 7→ 0, 0

Autrement dit, on a la factorisation : (πGm,R)κ → Spec(κ)→ Spec(OU (R))κ.
Le morphisme πGm,R → Spec(OU (R)) ne peut donc pas être une immersion ouverte,

puisque cela n’est pas le cas sur κ.

https://stacks.math.columbia.edu/tag/0AP5
https://stacks.math.columbia.edu/tag/0APK
https://stacks.math.columbia.edu/tag/01SM
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Proposition 1.18 (Techniques de recollements sur les schémas ind-quasi-affines).
Notons INDQAFF, la catégorie fibrée des espaces algébriques ind-quasi-affines et reprenons le
contexte de [MB96, 0.9] et l’hypothèse de platitude en [MB96, 1.0]. Le foncteur ΦINDQAFF/S

est une équivalence de catégories.

Démonstration. C’est une conséquence immédiate de [MB96, Corollaire 5.4.4.] puisque les
ind-quasi-affines sont séparés, vérifient la descente fpqc ([Stacks, Tag 0APK]) et que c’est
une propriété locale sur la base pour la topologie fpqc ([Stacks, Tag 0AP8]). □

2. Techniques d’approximation

Dans cette partie, K désigne un corps infini (non nécessairement le corps de fractions
d’un anneau de Dedekind semi-local). Soit G un groupe algébrique réductif sur K.

On considère Σ un ensemble non vide (éventuellement infini) de valuations discrètes non
triviales de K deux à deux non équivalentes. Posons KΣ :=

∏
v∈ΣKv, où les Kv sont

des corps henséliens pour la valuation v contenant K. On suppose par ailleurs que K est
dense dans chacun des Kv. Posons alors G(KΣ) :=

∏
v∈ΣG(Kv). Pour tout v ∈ Σ, on voit

également G(Kv) dans G(KΣ) en l’identifiant avec G(Kv)×
∏

w∈Σ\{v}{1}.
Notons d’ailleurs que les G(Kv) sont munis de la topologie adique (cf. [GGMB14, 3.1]).
Rappelons que la notation G(K)+ désigne le sous-groupe de G(K) engendré par les

K-points des groupes de racines de G (réduit à {1} s’il y en a pas), ou encore par les
K-points des sous-groupes unipotents déployés de G, et que RG(K) désigne l’ensemble
des éléments R-équivalents à l’élément neutre dans G(K) (cf. [CTS87, §3]). Notons alors
G(KΣ)

+ :=
∏

v∈ΣG(Kv)
+ et RG(KΣ) :=

∏
v∈ΣRG(Kv).

L’objectif de cette partie est de montrer que G(KΣ)
+ ⊂ G(K). La motivation sous-jacente

étant que G(KΣ)
+ est un objet à la fois très maniable et suffisamment gros dans G(KΣ)

pour nous aider à montrer la trivialité du double quotient de la partie précédente. On a
même mieux. Désignons par RG(K) l’adhérence de RG(K) dans G(KΣ). On va montrer
que G(KΣ)

+ ⊂ RG(K).

Pour tout v ∈ Σ, considérons donc les sous-groupes Kv-presque simples Gv,i de D(G)Kv ,
pour i dans un ensemble fini Iv (cf. [Mil17, Theorem 21.51.]).

La proposition suivante de Prasad va jouer un rôle crucial :

Proposition 2.1 ([KP23, Proposition 2.2.14]). Soit L un corps valué discrètement hensélien
et H un L-groupe L-presque simple. Tout sous-groupe ouvert non borné de H(L) contient le
sous-groupe H(L)+.

On va donc montrer que l’on est bien dans le cadre de validité de cette proposition. Pour
cela, on a besoin de montrer quelques lemmes.

Commençons par le lemme suivant bien connu dont on rappelle la preuve.

Lemme 2.2. Soit H un groupe réductif sur un corps infini L et T un tore maximal de H.
Il existe h1, .., hn ∈ H(L) tel que Lie(H) =

∑n
i=1

hiLie(T ).

Démonstration. Dans la suite, on utilise le gras pour désigner le schéma vectoriel sous-jacent
à un espace vectoriel. Considérons l’application :

H × Lie(T )
φ→ Lie(H)

(h, t) 7→ ad(h)(t)

https://stacks.math.columbia.edu/tag/0APK
https://stacks.math.columbia.edu/tag/0AP8
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Elle est dominante d’après l’implication (i) =⇒ (iv) de [SGA3, Exp. XIII, Théorème
5.1.] puisque les sous-groupes de Cartan dans un groupe réductif sont exactement les tores
maximaux.

En conséquence, la H-enveloppe de Lie(T ), - c’est à dire le plus petit sous-schéma vectoriel
de Lie(H) contenant Lie(T ) sur lequel H agit -, est exactement Lie(H).

Notons E :=
∑

h∈H(L)
hLie(T ). C’est la H(L)-enveloppe de Lie(T ). Montrons alors que

E est H-stable. Par définition, E est H(L)-stable. Comme la H-stabilité est une condition
fermée et que H(L) est dense dans H (puisque H est unirationnel), on a la H-stabilité de
E comme voulu.

Par conséquent, E = Lie(H), et donc E = Lie(H). Comme Lie(H) est de dimension finie,
la somme définissant E0 contient un nombre fini de termes. Ceci prouve le résultat. □

Montrons maintenant que Gv,i(Kv) ∩RG(K) est ouvert pour tous les Gv,i.

Lemme 2.3. Soit v ∈ Σ. Le sous-groupe RG(K) ∩G(Kv) est ouvert dans G(Kv)

(et donc RG(K) est ouvert dans G(KΣ) quand Σ est fini).
En particulier, pour tout i ∈ Iv, Gv,i(Kv) ∩RG(K) est un sous-groupe ouvert de Gv,i(Kv).

Démonstration. On utilise la technique de Raghunathan (qui provient de [Rag94, 1.2]).
Considérons un K-tore maximal T de G. D’après le lemme 2.2, il existe g1, ..gn tel que
Lie(G) =

∑n
i=1

giLie(T ). Prenons une suite exacte de tores 1→ S → E
π→ T → 1 où E est

quasi-trivial (par ex. une résolution flasque de T , cf. [CTS87, Proposition 1.3.(1.3.3)]).

On peut donc considérer le morphisme (seulement de schémas !) :

f : En −→ G

(xi) 7−→ g1π(x1) · ... · gnπ(xn)

On a alors le diagramme commutatif suivant :

Lie(En) Lie(G)

Lie(Tn)

Lie(f)

Lie(πn)
(xi)7→

∑n
i=1

gixi

où l’on sait d’une part que Lie(E) → Lie(T ) est surjectif puisque π est lisse car S l’est ; et
d’autre part Lie(Tn)→ Lie(G) est surjectif puisque Lie(G) =

⊕n
i=1

giLie(T ). On en déduit
alors que Lie(f) l’est. Cela montre que f est lisse au voisinage de l’élément neutre.

D’après [GGMB14, 3.1.2 Lemme], pour tout v ∈ Σ, il existe un ouvert Ωv ⊂ G(Kv) tel
que f−1(Ωv)→ Ωv admette une section. Donc Ωv ⊂ f(E(Kv)

n).

Comme E est quasi-trivial, il est K-rationnel (cf. [Mil17, Proposition 12.64.]). Par consé-
quent, d’après [CTG04, Proposition 2.1.], E(K) est dense dans

∏
v∈ΣE(Kv). On en déduit

que f(E(K)n) est également dense dans
∏

v∈Σ f(E(Kv)
n). Donc comme

f(E(K)n) ⊂ RG(K), le groupe RG(K) contient
∏

v∈Σ f(E(Kv)
n) et en particulier

∏
v∈ΣΩv.

Comme RG(K) ∩ G(Kv) contient l’ouvert non vide Ωv, c’est un sous-groupe ouvert de
G(Kv). □

On se propose ensuite de montrer que Gv,i(Kv)∩RG(K) est non borné pour un éventuel
Gv,i isotrope sur Kv. Pour cela, on va s’aider d’un lemme sur les tores :
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Lemme 2.4. Soit T un K-tore. On a RT (KΣ) ⊂ RT (K).

Démonstration. Prenons une résolution flasque 1 → S → E → T → 1 de T . On sait
que E(K) est dense dans E(KΣ) par quasi-trivialité. Comme l’image de E(K) dans T (K)

(resp. de E(KΣ) dans T (KΣ)) est RT (K) (resp. RT (KΣ)), on a RT (KΣ) ⊂ RT (K) (car
E(KΣ)→ T (KΣ) est continu pour la topologie adique d’après [GGMB14, 3.1.(ii)]). □

Corollaire 2.5. Gv,i est Kv-isotrope si et seulement si RG(K) ∩Gv,i(Kv) est non borné.

Démonstration. Le sens réciproque est évident d’après [KP23, Theorem 2.2.9]. Regardons le
sens direct.

Prenons Ti ⊂ Gv,i un tore isotrope de Gv,i. Il est inclus dans un tore maximal T de
D(G)Kv . Comme D(G) est défini sur K, par approximation faible des tores (cf. par ex. la
preuve de [Guo22, Lemma 2.]), il existe g ∈ D(G)(Kv) tel que T ′ := gTg−1 soit défini sur
K. Notons T ′

i := gTig
−1. Comme Gv,i est distingué dans D(G)Kv , T ′

i est un tore de Gv,i

qui est d’ailleurs isotrope puisque Ti l’est. Prenons un Gm inclus dans T ′
i . Comme Gm est

déployé, il est R-trivial. Par conséquent, on a la suite d’inclusions d’après le lemme 2.4 :

K×
v = Gm(Kv) ⊂ RT ′

i (Kv) ⊂ RT ′
i (KΣ) ⊂ RT ′(KΣ) ⊂ RT ′(K).

Comme T ′(KΣ) est fermé dans G(KΣ), la notation RT ′(K) désigne le même objet, que
l’on se place dans T ′(KΣ) ou bien dans G(KΣ). Comme on a évidemment RT ′(K) ⊂ RG(K),
on a RT ′(K) ⊂ RG(K). Mais donc, K×

v appartient à RG(K) ∩Gv,i(Kv), on en déduit que
ce dernier est non borné comme voulu ! □

On a donc enfin prouvé les lemmes nécessaires à notre théorème :

Théorème 2.6. Soit G un K-groupe réductif. On a :

G(KΣ)
+ = D(G)(KΣ)

+ ⊂ RD(G)(K) ⊂ RG(K) ⊂ G(K) ⊂ G(KΣ).

Démonstration. Prenons v ∈ Σ. On a que Gv,i(Kv)∩RG(K) est sous-groupe ouvert (d’après
le lemme 2.3) non borné (d’après le corollaire 2.5) de Gv,i(Kv) pour tout Gv,i isotrope. Ceci
implique alors que Gv,i(Kv)

+ ⊂ RG(K) d’après la proposition 2.1.
Observons ensuite que, d’après [Mil17, Theorem 21.51.], le morphisme naturel∏
i∈Iv Gv,i → D(G)Kv est une isogénie. D’après [BT73, Corollaire 6.3.], il envoie surjective-

ment
∏

i∈Iv Gv,i(Kv)
+ sur D(G)(Kv)

+. Autrement dit, les Gv,i(Kv)
+ engendrent D(G)(Kv)

+.
Par ailleurs, notons que D(G)(KΣ)

+ et G(KΣ)
+ sont les mêmes groupes dans G(KΣ) grâce

à [BT73, Corollaire 6.3.] appliqué à D(G)→ G.
On conclut donc des deux paragraphes précédents que G(KΣ)

+ ⊂ RG(K). En appliquant
ce que l’on vient de faire pour G = D(G), on trouve D(G)(KΣ)

+ ⊂ RD(G)(K). Il suffit
alors d’utiliser que RD(G)(K) ⊂ RG(K) ⊂ G(K) et que les inclusions passent à l’adhérence
pour en déduire le théorème. □

Remarque 2.7. De toute évidence, RG(K) et donc RG(K) est inclus dans
∏

v∈ΣRG(Kv) (un
produit quelconque de fermés est fermé). Par conséquent, si G est semi-simple simplement
connexe, le théorème précédent dit que, si pour tout v ∈ Σ, GKv est strictement isotrope,
alors

∏
v∈ΣRG(Kv) = G(KΣ)

+ = RG(K) (d’après [Gil09, Théorème 7.2.]). Dans le cas où
on a un Gv,i anisotrope, on ne sait pas si RGv,i(Kv) ⊂ RG(K) ; cela impliquerait l’égalité∏

v∈ΣRG(Kv) = RG(K) en toute généralité (puisque dans ce cas, GKv =
∏

i∈Iv Gv,i, cf.
[Mil17, Theorem 24.3.]).
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Il y a toutefois un cas où l’on peut conclure que l’égalité est effectivement réalisée :

Pour un groupe de type 1An, c’est-à-dire de la forme G := SL1(D), où D est une
algèbre à division de dimension finie sur K, on a bien RG(Kv) ⊂ RG(K). En effet,
RG(K) = [D×, D×] d’après [Vos77]. De même, en posant Dv := D ⊗K Kv,
RG(Kv) = [D×

v , D
×
v ]. Par conséquent, le fait que [D×

v , D
×
v ] ⊂ [D×, D×] (puisque D× vérifie

l’approximation faible) donne le résultat.

On a également la proposition suivante en complément :

Proposition 2.8. Soit T un K-tore de G. On a RT (KΣ) ⊂ RG(K). En particulier, si T
est R-trivial (par ex. si T est déployé), alors on a T (KΣ) ⊂ RG(K).

Par ailleurs, pour T un KΣ-tore inclus dans GKΣ
(c’est à dire la donnée de tores dans

chaque GKv), il existe g ∈ G(KΣ) tel que l’on ait gRT (KΣ)g
−1 ⊂ RG(K). En particulier,

si T est R-trivial, alors on a gT (KΣ)g
−1 ⊂ RG(K).

Démonstration. Soit T un K-tore de G. On sait déjà d’après le lemme 2.4 que
RT (KΣ) ⊂ T (K). Comme T (KΣ) est fermé dans G(KΣ), la notation RT (K) désigne le
même objet, que l’on se place dans T (KΣ) ou bien dans G(KΣ). Comme on a évidemment
RT (K) ⊂ RG(K), on a RT (K) ⊂ RG(K). D’où RT (KΣ) ⊂ RG(K).

Prenons désormais T un KΣ-tore de GKΣ
. On écrit T =

∏
v∈Σ Tv tel que pour tout v ∈ Σ,

Tv est un Kv-tore. Prenons v ∈ Σ. Par approximation faible des tores (cf. par ex. la preuve
de [Guo22, Lemma 2.]), il existe gv ∈ G(Kv) tel que T ′

v := gvTvg
−1
v soit défini sur K.

Observons alors, d’après le début de la preuve, les inclusions suivantes :

gvRTv(Kv)g
−1
v = RT ′

v(Kv) ⊂ RT ′
v(KΣ) ⊂ RG(K).

D’où gRT (KΣ)g
−1 ⊂ RG(K) en posant g = (gv)v∈Σ. □

Remarque 2.9. On ignore en général si RG(K) (ou G(K)) est un sous-groupe distingué de
G(KΣ).

Terminons cette partie avec le lemme général suivant.

Lemme 2.10. Soit H un groupe topologique, E une partie de H et U un sous-groupe ouvert
de H.

(1) L’ensemble EU := {eu | (e, u) ∈ E × U} est ouvert et fermé dans H.

(2) On a EU = EU , où E est l’adhérence de E dans H.

Démonstration. D’après [Bou42, Chapitre III, §2, 5., Proposition 14.], H/U vu en tant qu’es-
pace topologique homogène est discret. Notons p : H → H/U la projection. En particulier,
p(E) est ouvert et fermé dans H/U . Par conséquent, EU = p−1(p(E)) est ouvert et fermé
dans H par continuité de p.

Le second point provient du précédent. En effet, on a alors : EU ⊂ EU ⊂ EU = EU . □

Comme cela est vu en partie 3, ce lemme nous permet de faire le pont entre G(K) et le
double quotient obtenu par les méthodes de recollements.

3. Résultats principaux

Reprenons maintenant notre contexte général, c’est-à-dire R semi-local de Dedekind, K
son corps de fractions, R̃ et K̃, etc. Par ailleurs, toutes les définitions de [Zid] se généralisent
à K̃ =

∏
m∈Specm(R) K̃m en considérant tout facteur par facteur.
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Rappelons notamment qu’un sous-groupe H de G(K̃) est dit global s’il est ouvert et qu’il
contient G(K̃)+. Un tel groupe est dit également conforme si son action sur B(G

K̃
) préserve

les types (cf. [Zid, Définition 2.1.]).

Commençons par récolter des informations relatives au double quotient.

Lemme 3.1. Soit G un schéma en groupes localement de présentation finie et séparé sur
R̃. Supposons que G := G

K̃
soit réductif. Prenons H un sous-groupe global de G(K̃), un

appartement A de B(G
K̃
) et C, une chambre dans A. Supposons que H(A,C) ⊂ G(R̃).

(1) On a H ⊂ G(K̃)+ G(R̃).

(2) Si de plus G est défini sur R, et donc G sur K, pour g ∈ G(K̃), on a également
G(K) g G(R̃) = G(K) gG(R̃), g G(K̃)+ G(R̃) ⊂ G(K) gG(R̃), et gH ⊂ G(K) gG(R̃).

Démonstration.

(1) Notons que G(K̃)+ G(R̃) est un sous-groupe de G(K̃) puisque G(K̃)+ est distingué
dans G(K̃) (cf. [BT73, 6.1.]). On a donc H = G(K̃)+H(A,C) ⊂ G(K̃)+ G(R̃) d’après
[Zid, Lemme 2.8.].

(2) D’après le lemme 2.10, on a G(K) g G(R̃) = G(K)g G(R̃) = G(K) g G(R̃). En effet,
il suffit de voir que G(R̃) est un sous-groupe ouvert de G(K̃). C’est bien le cas car
les G(R̃m) sont ouverts dans les G(K̃m) d’après [GMB23, 3.5.1 Lemme.].

Ceci étant, on peut utiliser le théorème 2.6 qui nous dit que G(K̃)+ ⊂ G(K). En
particulier,

g G(K̃)+ G(R̃) = G(K̃)+ g G(R̃) ⊂ G(K) g G(R̃) = G(K) g G(R̃).

D’où le résultat d’après la première partie du lemme.

□

On en déduit donc :

Proposition 3.2. Reprenons le contexte du lemme précédent (G supposé défini sur R).
Lorsque cela a du sens (par exemple quand G(K)G(R̃) est un sous-groupe de G(K̃)), on
note c′(G) := G(K̃)/G(K)G(R̃). Supposons que D(Z(K̃)) ⊂ H, où Z est un sous-groupe de
Levi de G

K̃
.

(1) H et G(K)H sont des sous-groupes distingués de G(K̃) de quotient abélien.
On note cH(G) := G(K̃)/G(K)H le quotient de G(K̃) par G(K)H.

(2) Si H(A,C) ⊂ G(R̃) (resp. H = G(K̃)+ G(R̃)), alors G(K)G(R̃) est un sous-groupe
distingué de G(K̃) contenant G(K)H (resp. est égal à G(K)H) et de quotient abé-
lien. D’où une flèche surjective (resp. bijective) cH(G) → c′(G). De plus, on a une
bijection canonique :

c(G) := G(K)\G(K̃)/G(R̃)
∼→ G(K̃)/G(K)G(R̃) =: c′(G).

En particulier, c(G) a une structure de groupe abélien.
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Démonstration.
(1) D’après [Zid, Lemme 1.5.], on a D(G(K̃)) = G(K̃)+D(Z(K̃)). Par conséquent :

D(G(K̃)) = G(K̃)+D(Z(K̃)) ⊂ H ⊂ G(K)H.

Comme l’image de H et de G(K)H dans G(K̃)ab sont des groupes distingués (car
abéliens), il en est de même pour H et G(K)H, et leurs quotients par G(K̃) sont
bien sûr abéliens.

(2) D’après le lemme 3.1, on a H ⊂ G(K̃)+ G(R̃). On observe alors :

D(G(K̃)) ⊂ H ⊂ G(K̃)+ G(R̃) ⊂ G(K)G(R̃) = G(K)G(R̃).

On conclut alors comme précédemment.

Pour le dernier point, il suffit d’observer que, étant donné g ∈ G(K̃), on a :

G(K)
(
g G(K̃)+ G(R̃)

)
= G(K)

(
G(K̃)+ g G(R̃)

)
= G(K)G(K̃)+ g G(R̃) = G(K) g G(R̃).

D’où finalement :

G(K) g G(R̃) = G(K) g G(R̃) = G(K) g
(
G(R̃) G(K̃)+

)
=

(
G(R̃) G(K̃)+

)
G(K) g = G(R̃)G(K) g = G(R̃)G(K) g

puisque G(K̃)+G(R̃) est un sous-groupe distingué de G(K̃) (car contient D(G(K̃)))
et G(K) g G(R̃) = G(K) g G(R̃) d’après le lemme 3.1.

□

Lemme 3.3. Soient G un K-groupe réductif, S un K̃-tore déployé de G et Z := ZG
K̃
(S)

(Z désigne donc cette fois un sous-groupe de Levi de G
K̃

non nécessairement minimal).
Notons p : Z(K̃) → (Z/S)(K̃) la projection canonique. Prenons également H un sous-
groupe global de G(K̃) tel que D(Z(K̃)) ⊂ H.

(1) Le sous-groupe H ∩ Z(K̃) est global dans Z(K̃).
De plus, p est ouvert et p(H ∩ Z(K̃)) est global dans (Z/S)(K̃).

(2) On a :

(Z/S)(K̃)/p(H ∩ Z(K̃))
∼← Z(K̃)/S(K̃) (H ∩ Z(K̃)) ↠ cH(G).

(3) Si de plus S est défini sur K, alors Z également, et on a :

c
p(H∩Z(K̃))

(Z/S) = (Z/S)(K̃)/(p(H ∩ Z(K̃)) (Z/S)(K))

∼← Z(K̃)/((H ∩ Z(K̃))Z(K)S(K̃)) = c
H∩Z(K̃)

(Z) ↠ cH(G).

Démonstration.
(1) Comme Z(K̃) et (Z/S)(K̃) n’ont pas de sous-groupes de racines (car n’ont pas

de cocaractères non centraux), on a Z(K̃)+ et (Z/S)(K̃)+ qui sont triviaux. Par
conséquent, un sous-groupe de Z(K̃) (ou (Z/S)(K̃)) est global si et seulement s’il
est ouvert.

Le sous-groupe H ∩ Z(K̃) est bien sûr ouvert dans Z(K̃) puisque ce dernier est
muni de la topologie induite par celle de G(K̃) et H est ouvert dans G(K̃).

Par ailleurs, p est ouvert d’après [GGMB14, 3.1.2 Lemme] puisque Z → Z/S

est lisse (car son noyau S est lisse). Par conséquent, p(H ∩ Z(K̃)) est ouvert dans
(Z/S)(K̃).
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(2) Le théorème 90 de Hilbert montre que (Z/S)(K̃) = Z(K̃)/S(K̃). L’isomorphisme
est donc une conséquence du troisième théorème d’isomorphisme ([Bou70, §4, 6.,
Théorème 4.b)]).

Par ailleurs, d’après la proposition 2.8, on a S(K̃) ⊂ G(K)H = G(K)H. Donc
(H ∩ Z(K̃)S(K̃) ⊂ G(K)H. La surjectivité Z(K̃) ↠ cH(G) vient du fait que
G(K̃) = G(K̃)+ Z(K̃) et que G(K̃)+ ⊂ H. Il suffit donc de quotienter par
(H ∩ Z(K̃))S(K̃) pour obtenir la flèche surjective voulue.

(3) Enfin, le théorème 90 de Hilbert et le troisième théorème d’isomorphisme donne
encore l’isomorphisme. Il suffit ensuite de voir que

S(K̃) ⊂ (H ∩ Z(K̃))Z(K) = (H ∩ Z(K̃))Z(K)

d’après le lemme 2.10 et la proposition 2.8 pour obtenir l’égalité
Z(K̃)/((H∩Z(K̃))Z(K)S(K̃)) = c

H∩Z(K̃)
(Z). Enfin, la flèche surjective se construit

comme précédemment en observant que (H ∩ Z(K̃))Z(K) ⊂ H G(K).

□

Faisons ensuite le pont entre la cohomologie galoisienne et la cohomologie étale par le
lemme simple suivant :

Lemme 3.4. Soit G un schéma en groupes lisse sur R̃. Notons G := G
K̃

. Rappelons que
Γnr :=

∏
m∈Specm(R) Γ

nr
m agit naturellement sur G(K̃) =

∏
m∈Specm(R)G(K̃m). On a :

Ker
(
H1

ét(R̃,G)→ H1
ét(K̃,G)

)
= Ker

(
H1(Γnr,G(R̃nr))→ H1(Γnr, G(K̃nr))

)
.

Démonstration. De toute évidence, l’égalité peut se montrer facteur par facteur. Autrement
dit, on peut se ramener au cas où R̃ est un anneau de valuation discrète hensélien. Observons
que H1(Γ, G(K̃s)) = H1

ét(K̃,G) d’après [MA64, VIII, Corollaire 2.3.] (où Γ désigne le groupe
de Galois absolu de K̃). Par ailleurs, H1(Γnr,G(R̃nr)) vaut H1

ét(R̃,G). Cela est une consé-
quence de [Gil15, 2.9.2.(2)] et du fait que H1

ét(R̃
nr,G) = 1 puisque H1

ét(R̃
nr,G) ∼= H1

ét(κ
s,G)

d’après [SGA3, XXIV, Proposition 8.1.].
Observons ensuite que l’application naturelle H1(Γnr,G(R̃nr))→ H1(Γ, G(K̃s)) se facto-

rise par H1(Γnr, G(K̃nr)). D’après la suite exacte inflation-restriction ([Ser94, I.§5.8.a)]), on
a l’injection H1(Γnr, G(K̃nr))→ H1(Γ, G(K̃s)). Ceci permet de conclure. □

Dans la preuve précédente, on a également montré que H1(Γnr,G(R̃nr)) = H1
ét(R̃,G). En

fait, tout R̃-torseur sur G provient d’un unique cocycle dans Z1(Γnr,G(R̃nr)) (cf. [Gil15,
Lemme 2.2.1.] et [Gil15, 2.9. Calculs galoisiens.]). Comme dans la fin de la section [Zid, 4.],
on définit alors le tordu zG de G par un cocycle z ∈ Z1(Γnr,G(R̃nr)) comme étant le tordu
au travers du torseur que z définit.

Démontrons maintenant les principaux théorèmes de cet article. Afin de rester fidèle à la
définition 0.1, nous utilisons ici les complétés (i.e. K̂ au lieu de K̃). On a tout d’abord le
théorème suivant :

Théorème 3.5. Soit G un groupe réductif sur K tel que G(K̂nr) est conforme. L’application
suivante est injective :

H1
ét(R,G)→ H1

ét(K,G)

où G est un R-schéma en groupes stabilisateur d’une facette de G.
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Démonstration. D’après le théorème 1.15, il suffit de montrer que la classe des groupes de
Bruhat-Tits étudiée est stable par torsion intérieure, que le double quotient est trivial pour
tout élément de cette classe, et que la trivialité du noyau de l’application est réalisée sur R̂.

Regardons la stabilité. Pour X, un G-torseur sur R, le tordu GX est un schéma en groupes
de fibre générique GXK . Ce dernier groupe est d’ailleurs isomorphe sur K̂nr à G

K̂nr . En
particulier, (GXK )(K̂nr) ∼= G(K̂nr) est conforme. Considérons maintenant X

R̂
. Il provient

d’un unique cocycle z ∈ Z1(Γnr,G(R̂nr)). D’après [Zid, Proposition 4.14.(3)], le tordu zG
R̂

est un schéma en groupes stabilisateur d’une facette de (GX)
K̂

. Par définition, G l’est donc.
Ceci conclut la stabilité.

Le double quotient est trivial. En effet, prenons C, une chambre de B(G
K̂
) contenant la

facette de l’énoncé du théorème. Comme G(K̂nr) est conforme, G(K̂) est donc K̂-conforme.
Par conséquent, G(K̂)C fixe C et donc la facette. Donc G(K̂)C ⊂ G(R̂). D’après le lemme
3.1, G(K̂) ⊂ G(K)G(R̂).

Enfin, montrons que la trivialité du noyau est réalisée sur R̂. D’après le lemme 3.4, l’énoncé
sous forme de cohomologie étale est équivalent à un énoncé sous forme de cohomologie
galoisienne sur Γnr. Le résultat découle alors de [Zid, Corollaire 4.7.] puisque G(K̂nr) est
conforme. □

Du théorème 3.5, on en déduit :

Corollaire 3.6. Soit G un groupe semi-simple simplement connexe quasi-déployé sur K̂nr

(c’est-à-dire, tel que, pour tout m ∈ Specm(R), G
K̂nr

m
est quasi-déployé). L’application sui-

vante est injective :
H1

ét(R,G)→ H1
ét(K,G)

où G est un schéma en groupes stabilisateur d’une facette de G (ou encore parahorique de
G, les deux coïncident).

Démonstration. D’après le théorème 3.5, il suffit de voir que G(K̂nr) est conforme. C’est une
conséquence de [BT84, 5.2.10.(i)]. Le résultat [BT84, 5.2.9.] assure également que G est à
fibres connexes. □

Cela permet d’en déduire le théorème 0.3 :

Démonstration du théorème 0.3. D’après le corollaire précédent, il suffit de montrer que tout
groupe semi-simple simplement connexe sur un corps valué hensélien à corps résiduel parfait
est quasi-déployé sur l’extension maximale non ramifiée. C’est en effet le cas d’après [BT84,
5.1.1.]. □

Remarque 3.7. Il est raisonnable de se demander si le corollaire s’étend à des groupes semi-
simples simplement connexes non quasi-déployés sur K̂nr. Cela est une question délicate qui
nécessite une étude séparée qui va être réalisée dans un article ultérieur.

Ce résultat donne en particulier le cas semi-simple simplement connexe du théorème de
Nisnevich-Guo. Avec un peu plus d’efforts, on peut également prouver le cas réductif :

Théorème 3.8. Soit G un groupe réductif sur R. L’application suivante est injective :

H1
ét(R,G)→ H1

ét(K,G).
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Démonstration. Comme précédemment, grâce au théorème 1.15, il suffit de montrer que la
classe des groupes réductifs sur R est stable par torsion intérieure, que le double quotient
est trivial pour tout élément de cette classe, et que la trivialité du noyau de l’application est
réalisée sur R̂.

La stabilité vient du fait qu’être réductif est local pour la topologie étale (cf. [SGA3, Exp.
XIX, Définition 2.7.]).

Montrons maintenant que le double-quotient est trivial. Comme G est réductif sur R, on
peut prendre un R-tore déployé maximal S (de fibre générique S) et Z (de fibre générique
Z) le sous-groupe de Levi minimal associé (et Z est un sous-groupe de Levi minimal de GK

pour S). Le quotient Z/S est alors un modèle réductif de Z/S et

(Z/S)(R̂) = (Z/S)(K̂) = (Z/S)(K̂)

d’après [Zid, Lemme 5.2.], de telle sorte que Hilbert 90 donne que Z(R̂)S(K̂) = Z(K̂). Or,
[Zid, Lemme 5.2.] donne que Z(R̂) = Z(K̂)1. Donc :

D(Z(K̂)) ⊂ D(Z)(K̂) ⊂ Z(K̂)1 = Z(R̂) ⊂ G(R̂) ⊂ G(K̂)+G(R̂).

D’après le point (2) du lemme 3.3 et la décomposition obtenue, on a donc G(K)
(
G(K̂)+G(R̂)

)
.

Mais le lemme 3.1 donne que G(K̂)+G(R̂) ⊂ G(K)G(R̂). D’où finalement G(K̂) = G(K)G(R̂)
comme voulu.

Enfin, montrons le cas hensélien. D’après [Zid, Lemme 5.2.], on peut revenir à l’étude
de points hyperspéciaux. D’après le lemme 3.4, comme précédemment, on se ramène à un
énoncé sous forme de cohomologie galoisienne sur Γnr. Le résultat est alors une conséquence
de [Zid, Proposition 5.5.]. □

Le cas particulier où la facette est une chambre donne également un résultat positif :

Théorème 3.9. Soit G un groupe réductif sur K. Soit G, un R-schéma en groupes stabili-
sateur d’une chambre de G. Considérons l’application suivante :

H1
ét(R,G)→ H1

ét(K,G).

(1) L’application est de noyau trivial.

(2) Si de plus G
K̂

est résiduellement quasi-déployé, alors l’application est injective.

Démonstration.

(1) D’après la proposition 1.14, il faut montrer que tordre G par un élément d’une classe
dans Ker

(
H1

ét(R,G)→ H1
ét(K,G)

)
donne toujours un schéma en groupes stabilisa-

teur d’une chambre, puis que la trivialité du double quotient et du noyau sur R̂ est
réalisée pour ces groupes.

La trivialité du noyau sur R̂ se ramène encore à de la cohomologie galoisienne sur
Γnr d’après le lemme 3.4. On conclut alors en utilisant [Zid, Corollaire 4.8.].

De ceci, on en déduit également la stabilité, car être un schéma en groupes stabi-
lisateur d’une chambre se vérifie sur R̂. Or, par trivialité sur noyau sur R̂, tout tordu
de G par un élément de Ker

(
H1

ét(R,G)→ H1
ét(K,G)

)
est isomorphe sur R̂ à G

R̂
.

Enfin, le double quotient G(R̂)\G(K̂)/G(K) est trivial d’après le lemme 3.1. En
effet, comme G(K̂)(A,C) ⊂ G(K̂)C = G(R̂) le point (2) donne G(K̂) ⊂ G(K)G(R̂).
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(2) Toujours grâce au théorème 1.15, il suffit de montrer que la classe des groupes sur R
que l’on considère est stable par torsion intérieure, que le double quotient est trivial
pour tout élément de cette classe, et que la trivialité du noyau de l’application est
réalisée sur R̂.

Considérons C, la K̂-chambre associée à G et la Γnr-chambre C̃ correspondante.
Prenons X, un G-torseur sur R et un cocycle z ∈ Z1(Γnr, G(K̂nr)C̃) correspondant à
X
R̂
. Le point crucial à observer est que C̃ est Γnr-invariant dans le tordu zB(G

K̂nr)
d’après [Zid, Proposition 4.13.(1)]. Puisque G

K̂
est résiduellement quasi-déployé,

C̃ est une K̂nr-chambre. Cela signifie donc que zG
K̂

est également résiduellement
quasi-déployé, que zC est une K̂-chambre de B(zG

K̂
), et que zG

R̂
est un schéma en

groupes stabilisateur de zC d’après [Zid, Proposition 4.14.]. Il en est donc de même
pour GX.

La trivialité du double quotient et l’injectivité dans le cas de R̂ se fait alors comme
précédemment.

□

Terminons enfin cet article en calculant de manière exacte le noyau :

Ker
(
H1

ét(R,G)→ H1
ét(K,G)

)
pour les K-groupes G semi-simples adjoints et quasi-déployés sur K̂, et où G est un schéma
en groupes stabilisateur d’une facette de G ou un schéma en groupes parahorique de G.

Commençons donc par montrer que le double quotient G(R̂)\G(K̂)/G(K) est trivial :

Lemme 3.10. Soit G un groupe semi-simple adjoint sur K et quasi-déployé sur K̃.
On a G(K̃) = RG(K). En particulier, G(K̃) = G(K)G(R̃) pour n’importe quel schéma
en groupes G localement de présentation finie et séparé sur R tel que GK = G.

Démonstration. D’après le théorème 2.6 et la proposition 2.8, on a d’une part
G(K̃)+ ⊂ RG(K), et d’autre part l’existence d’un g ∈ G(K̃) tel que g T (K̃) g−1 ⊂ RG(K),
où T est le centralisateur d’un K̃-tore déployé maximal de G

K̃
. En effet, puisque G est

adjoint et quasi-déployé sur K̃, le centralisateur T est un tore induit, et donc R-trivial (cf.
[BT84, 4.4.16. Proposition.]). On conclut alors que

G(K̃) = g G(K̃)+ T (K̃) g−1 = G(K̃)+ g T (K̃) g−1 ⊂ RG(K)

grâce à [BT73, 6.11.(i) Proposition.].
Utilisons ensuite le point (2) du lemme 3.1 pour en déduire

G(K̃) = G(K)G(R̃) = G(K)G(R̃).

□

Ceci nous permet donc de se ramener immédiatement au cas hensélien, et donc à de la
cohomologie galoisienne :

Corollaire 3.11. Reprenons les notations du lemme précédent et supposons de plus que G
est lisse. On a alors :

Ker
(
H1

ét(R,G)→ H1
ét(K,G)

)
= Ker

(
H1

ét(R̃,G)→ H1
ét(K̃,G)

)
= Ker

(
H1(Γnr,G(R̃nr))→ H1(Γnr, G(K̃nr))

)
.
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Démonstration. Utilisons la proposition 1.14. Il suffit de montrer que le double quotient
associé à un tordu de G par un élément d’une classe dans Ker

(
H1

ét(R,G)→ H1
ét(K,G)

)
est

trivial. Cela est en fait évident d’après le lemme précédent car un tel tordu a une fibre
générique isomorphe à G, par trivialité de l’élément dans H1

ét(K,G).
La seconde égalité est ensuite une conséquence immédiate du lemme 3.4. □

On peut désormais réutiliser les résultats [Zid, Théorème 6.8.] et [Zid, Théorème 6.15.]
pour obtenir :

Théorème 3.12. Soit G un groupe semi-simple adjoint sur K et quasi-déployé sur K̂.
On a :

Ker
(
H1

ét(R,G)→ H1
ét(K,G)

)
= 1

où G est un schéma en groupes parahorique de G.

Théorème 3.13. Soit G un groupe semi-simple adjoint sur K et quasi-déployé sur K̂.
Soit également G, un schéma en groupes stabilisateur d’une facette de G. Le noyau :

Ker
(
H1

ét(R,G)→ H1
ét(K,G)

)
est de cardinal 2

∑
m∈Specm(R) km où, pour tout m ∈ Specm(R), l’entier km est majoré par le

nombre de facteurs restriction de Weil d’un groupe absolument presque simple de type 2Dn

(pour n ≥ 4) ou 2A4n+3 (pour n ≥ 0) déployé par une extension non ramifiée dans G
K̂m

.

Remarque 3.14. Bien entendu, il est possible de calculer explicitement ce noyau en se ra-
menant à K̂ grâce au corollaire 3.11 puis en se réduisant au cas absolument presque simple
grâce à la compatibilité du noyau au produit et à la restriction de Weil (cf. [Zid, Lemme
6.9.]) et en utilisant la table [Zid, Table 2.].
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