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Groupes algébriques sur un corps local
Chapitre III. Compléments et applications

à la cohomologie galoisienne

A Nagayoshi Iwahori pour son soixantième anniversaire

Par F. Bruhat et J. Tits1

Dans un travail antérieur ([8] et [9], notés I et II dans la suite), nous avons exposé une
théorie des groupes algébriques G définis sur un corps ”local” K, i. e. un corps complet pour
une valuation discrète à corps résiduel k parfait. (Les hypothèses de [8] et [9] sont d’ailleurs
plus générales.) Cette théorie fait en quelque sorte apparaitre G comme ”objet de dimension
infinie” sur k et présente des analogies frappantes avec la théorie classique des groupes réductifs
sur un corps L quelconque (cf. [1], [18]), le rôle joué par la clôture séparable de L étant pour
nous joué par l’extension non ramifiée maximale (ou hensélisé strict) K̃ de K. Nous renvoyons
à l’Introduction de I pour un développement de cette analogie.

Après un premier paragraphe consacré à la fixation de notations et à quelques rappels, nous
introduisons les notions de groupe résiduellement déployé ou résiduellement quasi-déployé sur
K. Ce sont les analogues des notions de groupe déployé ou quasi-déployé sur L. Cependant,
alors qu’un groupe semi-simple est toujours une ”forme” d’un et ”un seul” groupe déployé sur
L, la réponse à la question analogue dans notre théorie (G est-il K̃-isomorphe à un groupe
résiduellement déployé sur K ? Si oui, y a-t-il unicité ?) n’est pas si simple, et fait l’objet de
l’essentiel du paragraphe 2. On y voit apparaître des différences sensibles, un peu surprenantes
a priori, entre le cas absolument presque simple et le cas général.

Au paragraphe 3, nous appliquons notre théorie à l’étude de la cohomologie galoisienne de G
et de certains de ses sous-groupes. L’utilisation des schémas en groupes introduits en II permet
de la ramener à celle d’un nombre fini de groupes algébriques définis sur k.

Les résultats sont particulièrement simples lorsque le corps résiduel k est de dimension co-
homologique ≦ 1, cas qui fait l’objet du paragraphe 4. On démontre par exemple en quelques
lignes que G est automatiquement résiduellement quasi-déployé et que H1(G) = {0} dès que G
est simplement connexe (condition qui est pour nous l’analogue de la connexité du cas classique).
On y détermine aussi explicitement tous les groupes anisotropes sur K. Nous retrouvons ainsi
en les généralisant et par des démonstrations courtes et unifiées les résultats obtenus par M.
Kneser lorsque K est un corps localement compact de caractéristique zéro ([15]), au moyen de
vérifcations cas par cas, souvent difficiles.

Les résultats exposés ici ont été partiellement annoncés dans [5], [6], [7].
Qu’il nous soit permis de terminer cette Introduction en rappelant tout ce que notre théorie

doit à N. Iwahori. C’est lui qui le premier, en collaboration avec O. Goldman, a fait apparaitre
pour le groupe linéaire général l’importance des ”sous-groupes d’Iwahori” ([12]), puis nous a
ouvert la voie par un article fondamental, écrit en collaboration avec H. Matsumoto, sur les
groupes de Chevalley ([14]). Il voudra bien trouver ici le témoignage de notre fidèle amitié.

1Réécrit en latex par Anis Zidani.
Pour toute erreur ou suggestion, veuillez me contacter à l’adresse : zidani@math.univ-lyon1.fr.
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1. Notations et rappels.
1.1. Sauf au n° 1.3 K désigne un corps commutatif, complet pour une valuation discrète ω telle
que ω(K×) = Z. On note π une uniformisante de K, O l’anneau des entiers, p son idéal maximal,
k = O/p le corps résiduel, que l’on suppose parfait. On note Ks une clôture séparable de K,
K̃ la sous-extension étale maximale de Ks, Õ l’anneau des entiers de K̃, p̃ son idéal maximal,
k̃ = Õ/p̃ son corps résiduel, qui est une clôture algébrique de k. On pose Γs = Gal(Ks/K) et
Γ̃ = Gal(K̃/K), que l’on identifie canoniquement à Gal(k̄/k). L’expression ”extension de K”
signifie ”sous-extension de Ks”.

1.2. On désigne par G un groupe algébrique (dans ce travail, tous les groupes algébriques
sont supposés linéaires) défini sur K. On note G0 sa composante neutre, qu’on suppose réductive,
DG0 le groupe dérivé de G0, j : G′ → G un K-revêtement universel de DG0 et Ad : G → AdG
la représentation adjointe (cf. [2] 2.25 et 26). On se permet, lorsqu’aucune confusion n’est à
craindre, de désigner par la même lettre un groupe algébrique défini sur K̃ et le groupe de ses
points rationnels sur K̃.

On note S un tore K-déployé maximal de G, S̃ un tore K̃-déployé maximal contenant S et
défini sur K (on sait qu’un tel tore existe (II 5.1.12)), T le centralisateur de S̃ dans G0 (rappelons
que G0 est quasi-déployé sur K̃, puisque K̃ est de dimension cohomologique ≦ 1, et que T est un
tore maximal de G), N le normalisateur de S̃ dans G. On pose Sss = S∩DG0 et S̃ss = S̃∩DG0

et l’on note Φ (resp. Φ̃) le système de racines de G suivant S (resp. S̃).

1.3. Dans ce numéro exclusivement, K est un corps commutatif quelconque, K̃ une extension
galoisienne de K,Ks une clôture séparable de K. On note H un groupe semi-simple connexe
défini sur Ks (donc déployé sur Ks). Nous allons fixer quelques notations, rappeler quelques
résultats classiques et en tirer des conséquences faciles dont nous laissons la démonstration au
lecteur.

(a) Au groupe H est associé son graphe de Dynkin D = DynH, canoniquement isomorphe au
graphe de Dynkin du système de racines de H par rapport à un tore maximal. A un graphe
de Dynkin D est associé un groupe commutatif fini C(D), quotient du groupe des poids
par le groupe des poids radiciels. Si C est un sous-groupe de C(D), on note Aut(D,C)
le sous-groupe de AutD stabilisant C. Au groupe H correspond un sous-groupe C(H)
de C(DynH), image du groupe des poids des représentations linéaires de H, appelé le
cocentre de H. On a C(H) = {1} (resp. C(H) = C(D)) si et seulement si H est adjoint
(resp. simplement connexe). Si H est défini sur K, la loi d’opération du groupe de Galois
Γ = Gal(Ks/K) sur H fournit un homomorphisme ρH,K : Γ → Aut(D,C(H)).

(b) A tout triple formé d’un graphe de Dynkin D, d’un homomorphisme ρ de Γ dans AutD
et d’un sous-groupe C de C(D) stable par l’image de ρ, correspond un groupe semi-
simple connexe H quasi-déployé sur K, et un seul à K-isomorphisme près, tel que le
triple (DynH, ρH,K , C(H)) soit isomorphe à (D, ρ,C). Le type de H, ou de la classe de
K-isomorphisme de H, est le couple (D, Im ρ), ou plutôt la classe d’isomorphisme de ce
couple. Le groupe H est déployé sur K si et seulement si Im ρ = {1}. La plus petite exten-
sion E de K telle que H soit déployé sur E (que nous appellerons K-extension déployante
de H) est le corps des invariants du noyau de ρ. On peut donc considérer ρH,K comme un
homomorphisme injectif de Gal(E/K) dans AutD.

(c) Supposons H défini sur K. Il existe un groupe Hq quasi-déployé sur K, et un seul à K-
isomorphisme près, tel que H soit une forme intérieure de Hq (ou ce qui revient au même,
que Hq soit une forme intérieure de H), c’est-à-dire soit obtenu par torsion de Hq par
un cocycle z ∈ Z1(Γ, (AdHq)(Ks)) (pour la notion de torsion, voir [17] et aussi le n◦3.3
ci-dessous). Remarquons que AutHq est produit semi-direct (en tant que Γ-groupe) du
sous-groupe formé des automorphismes conservant un épinglage de Steinberg (cf. II 4.1.3)
par Ad Hq. Par suite, l’application canonique de H0(AutHq) dans H0(AutHq/AdHq)
est surjective et le noyau de l’application canonique de H1(AdHq) dans H1(AutHq) est
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nul. Autrement dit, H et Hq sont K-isomorphes si et seulement si le cocycle z ci-dessus
est un cobord.
Si de plus H est quasi-déployé sur K̃, alors H et Hq sont deux groupes quasi-déployés
sur K̃ formes intérieures l’un de l’autre. Il résulte alors de l’alinéa précédent qu’ils sont
K̃-isomorphes et que la restriction de z à Gal(Ks/K̃) est un cobord, qu’on peut supposer
nul, quitte à le remplacer par un cocycle cohomologue. Par suite, H est K̃-isomorphe au
groupe z(H

q) obtenu par torsion par un cocycle z ∈ Z1(Gal(K̃/K), (AdHq(K̃)).

(d) Supposons H quasi-déployé sur K̃. Soit Ẽ sa K̃-extension déployante minimale et soit C son
cocentre. Soit Q l’ensemble des classes de K-isomorphisme de groupes Hq quasi-déployés
sur K et K̄-isomorphes à H. Soit L′ l’ensemble des homomorphismes de Gal(Ks/K) dans
Aut(D,C) prolongeant ρH,K et soit L′ le quotient de L′ par l’action de Aut(D,C) par
automorphismes intérieurs. A ρ ∈ L′ faisons correspondre la classe de K-isomorphismes de
groupes quasi-déployés sur K correspondant au triple (D, ρ,C). Il résulte immédiatement
de (b) que l’on obtient ainsi une bijection, dite canonique, de L′ sur Q.
Soit ρ ∈ L′, et soit E le corps des invariants de Ker ρ. La donnée de ρ équivaut à celle de
E et de l’homomorphisme ρ : Gal(E/K) = Gal(Ks/K)/Ker ρ → Aut(D,C). D’autre part,
Gal(Ks/Ẽ) = Ker ρH,K̃ = Ker ρ∩Gal(Ks/K̃) est un sous-groupe distingué de Gal(Ks/K),
Ẽ est une extension galoisienne de K égale à EK̃ et Gal(Ẽ/K̃) s’identifie canoniquement
à Gal(E/E ∩ K̃) par restriction, d’où la définition de ρH,K : Gal(E/E ∩ K̃) → Aut(D,C).
On en déduit aussitôt que L′ s’identifie canoniquement à l’ensemble L des couples (E, ρ)
satisfaisant aux deux conditions suivantes ;

(i) E est une extension galoisienne de K telle que Ẽ = EK̃ (ce qui permet d’identifier
Gal(Ẽ/K̃) et Gal(E/E ∩ K̃)) :

(ii) ρ est un homomorphisme injectif de Gal(E/K) dans Aut(D,C) prolongeant ρH,R̄ :

Gal(E/E ∩ K̃) → Aut(D,C).

En composant la bijection L → L′ ainsi définie avec l’application canonique de L′ sur Q,
on obtient une surjection, dite canonique et notée λ, de L sur Q, puis, par passage au
quotient, une bijection λ sur Q du quotient L de L par la relation d’équivalence ”E1 = E2

et il existe α ∈ Aut(D,C) tel que ρ2 = intα ◦ ρ1”.

Remarques. 1) Si H est défini sur K, on peut prendre ρ = ρH,K et Q est non vide. Par
suite, une condition nécessaire pour que H soit K̃-isomorphe à un groupe défini sur K est que
Ẽ soit une extension galoisienne de K (ce qui est entraîné par (i)).

2) Si E ∩ K̃ = K, la condition (ii) signifie simplement que ρ = ρH,K̃ !

1.4. Immeubles. Au groupe G sont associés deux immeubles, qui restent inchangés si l’on
remplace G par G′ ou par AdG (pour la définition d’un immeuble, voir I; rappelons simplement
que c’est un complexe polysimplicial muni d’une métrique et d’une famille de sous-complexes
appelés appartements; pour les résultats ci-dessous, voir II, notamment 4.2 et 5.1 : le groupe G
y est supposé connexe, mais on passe immédiatement au cas général grâce à II 4.2.12), à savoir :

− l’immeuble Ĩ de G sur K̃, sur lequel opèrent par automorphismes les groupes G′(K̃),
G(K̃) et AdG(K̃) de manière compatible avec les homomorphismes j et Ad. Au tore S̃ est
associé un appartement Ã qui est un espace affine euclidien dont l’espace des translations
Ṽ s’identifie au dual de X∗(S̃ss) ⊗ R. Par transport de structure, le groupe de Galois Γ̃
opère par automorphismes sur Ĩ, de manière compatible avec son action sur X∗(S̃ss).

− l’immeuble I de G sur K, qui s’identifie à l’ensemble des points fixes de Γ̃ dans g̃ et sur
lequel opèrent les groupes G′(K), G(K) et AdG(K). L’intersection A = Ã ∩ I en est un
appartement, c’est un espace affine sous le dual V de X∗(Sss)⊗R et les facettes de I sont
les intersections avec I des facettes de Ĩ invariantes par Γ̃.
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Toute chambre de Ĩ (resp. I) est contenue dans un appartement et G′(K̃) (resp. G′(K))
opère transitivement sur l’ensemble des chambres, sur l’ensemble des appartements et même sur
l’ensemble des couples formés d’une chambre et d’un appartement la contenant.

1.5. Graphe résiduel. La structure de complexe polysimplicial de Ã (resp. A) est celle
associée au groupe de Weyl affine W̃ (resp. W ) d’un système de racines réduit dans Ṽ (resp.
V ) ayant même groupe de Weyl que Φ̃ (resp. Φ). Plus précisément, elle est donnée par un
échelonnage (au sens de I 1.4 ou ”affine root system” au sens de [19]) de Φ̃ (resp. Φ), dont le
graphe de Dynkin est appelé le graphe résiduel (resp. le K-graphe résiduel) de G et est noté
∆ (resp. ∆K). Le groupe W̃ (resp. W ) est irréductible si et seulement ∆ (resp. ∆K) est
connexe et si et seulement si DG0 est K̃-presque simple (resp. K-presque simple). Les facettes
de Ĩ (resp. I) sont alors des simplexes et si C est une chambre de Ĩ (resp. I), les sommets
de C correspondent aux sommets de ∆, ou plutôt aux complémentaires de sommets. D’une
manière générale, les facettes F de C correspondent bijectivement aux parties X de l’ensemble
des sommets de ∆ (resp. ∆K) ne contenant aucune composante connexe : on dit que X est le
type de F (I 1.3.5). Toute facette F de Ĩ (resp. I) est transformée par G′(K̃) (resp. G′(K))
d’une facette de C et d’une seule, d’où la définition du type d’une facette quelconque.

On trouvera dans I 1.4 (compte tenu de II E 1, qui répare l’omission du graphe B2 − BC2:
) la liste des K-graphes résiduels connexes possibles ; on notera que seules peuvent in-

tervenir (et interviennent effectivement) comme classes du graphe résiduel ”absolu” ∆ celles
qui n’ont pas de sommets multipliables (II 4.2.23) c’est-à-dire les graphes de Dynkin complétés
des systèmes de racines réduits irréductibles et les graphes obtenus à partir de ces derniers en
changeant le sens d’une ou deux flèches.

Le groupe des automorphismes de l’immeuble Ĩ opère sur ∆. On en déduit des homomor-
phismes ξ, ξ′, ξ0Ad, γ de G(K̃), G′(K̃), (AdG)0(K̃), Γ̃ dans Aut∆, compatibles avec j, Ad et les
actions de Γ̃. L’homomorphisme ξ′ est trivial. On pose Int∆ = Im ξ0Ad : on vérifie aisément que,
si ∆1, · · · ,∆r sont les composantes connexes de ∆, on a Int∆ = Int∆1 × · · · × Int∆r et que, si
∆ est irréductible, alors Int∆ = Aut∆ sauf si ∆ est le graphe de Dynkin complété d’un système
de racines de type An pour n ≧ 2, Dn pour n ≧ 4 ou E6, cas où Int∆ est le sous-groupe d’ordre
respectivement n + 1, 4 et 3 noté Γc dans [4], p. 176 et C dans [18]. En particulier, Int∆ ne
dépend que de ∆, ce qui justifie la notation. Observons que Int∆ est toujours commutatif.

1.6. Schémas. Le mot schéma signifie schéma affine. Il s’agira toujours de schémas en
groupes lisses sur l’anneau O ou Õ. La fibre générique (resp. la fibre fermée, notée H) d’un tel
schéma H sera considérée comme un groupe algébrique défini sur K ou K̃ (resp. k ou k̃) (cf. II
1.2).

On note S (resp. S̃,T) le O-schéma en groupes lisse canonique de fibre générique S (resp.
S̃, T ) (II 4.4).

Soit F une facette de Ĩ . Il lui est associé un Õ-schéma en groupes lisse de fibre générique
G0, dont le groupe des points à valeurs dans Õ s’identifie au stabilisateur de F dans G0(K̃) (II
4.6.18), condition qui le caractérise à isomorphisme unique près. En imitant la démonstration de
II 4.6.18 (où G était supposé connexe), on construit aisément un Õ-schéma en groupes lisse dont
le groupe des points entiers est le stabilisateur StabF de F dans G(K̃) et dont la fibre générique
est le groupe algébrique StabF ·G0 (la démonstration est d’ailleurs beaucoup plus simple qu’en
II 4.6.18 : on fait la somme directe de copies du schéma précédent, indexée par un système de
représentants de StabF/(StabF ∩ G0), au lieu d’avoir des ”recollements”, et les questions de
séparation et d’affinité, délicates dans II 4.6.18, sont triviales). Ce schéma est noté GF (au lieu
de G+

F , notation de II), et sa composante neutre est notée G0
F .

1.7. Sous-groupes parahoriques. On appelle sous-groupe parahorique de G associé
à la facette F de Ĩ et l’on note PF l’image canonique du groupe G0

F (Õ) des points entiers
de G0

F dans G0(K̃) (II 5.2.6). Les sous-groupes d’Iwahori de G sont par définition les sous-
groupes parahoriques minimaux, c’est-à-dire ceux associés aux chambres de Ĩ. La correspondance
F → PF est bijective (II 5.1.39) et StabF = NormPF . C’est pourquoi, si P est un sous-groupe
parahorique de G, associé à la facette F , on note aussi P (resp. N(P )) le schéma G0

F (resp. GF ).
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L’application qui à un k̃-sous-groupe parabolique p de P fait correspondre l’image réciproque
dans P = P(Õ) de p(k̃) est une bijection croissante sur l’ensemble des sous-groupe parahoriques
de G contenus dans P , qui envoie l’ensemble des k̃-sous-groupes de Borel de P sur l’ensemble
des sous-groupes d’Iwahori contenus dans P .

Si la facette F est invariante par Γ̃, c’est-à-dire correspond à une facette de I, tous les sché-
mas précédents proviennent par changement de base de O-schémas en groupes lisses, notés de
la même manière. Les sous-groupes parahoriques correspondant aux facettes invariantes sont
ceux invariants par Γ̃. On les appelle sous-groupes K-parahoriques de G (ou K-sous-groupes
parahoriques). Si P est un tel sous-groupe, les sous-groupes K-parahoriques de G contenus dans
P correspondent bijectivement comme plus haut aux k-sous-groupes paraboliques de P (rap-
pelons que k est supposé parfait). Les sous-groupes K-parahoriques minimaux correspondent
aux chambres de I. Ce sont les sous-groupes K-parahoriques P tels que le groupe algébrique
P soit ”presque anisotrope” sur k, c’est-à-dire n’admette pas de k-sous-groupe parabolique pro-
pre. Comme G′(K) opère transitivement sur l’ensemble des chambres de I, deux sous-groupes
K-parahoriques minimaux sont conjugués par un élément de G′(K), et a fortiori par un élément
de G0(K).

1.8. Composante résiduellement neutre. On appelle composante résiduellement neu-
tre de G et l’on note G00 le sous-groupe de G(K̃) engendré par la réunion des sous-groupes
parahoriques. On a G00 = T0(Õ).j(G′(K̃)) ⊂ G0(K̃) (II 5.2.11), où T0 désigne la composante
neutre de T. Soit C une chambre de A, B le sous-groupe d’Iwahori correspondant et posons
N00 = G00 ∩ N(K̃) : le triple (G00, B,N00) est un système de Tits de groupe de Weyl W̃ (II
5.2.12). Par suite, tout sous-groupe parahorique est son propre normalisateur dans G00. De la
conjugaison par G′(K) des sous-groupes K-parahoriques minimaux, on déduit aisément que le
groupe G00 ∩ G(K), noté G00

K , est le sous-groupe engendré par les points rationnels sur K des
sous-groupes K-parahoriques de G. Le triple (G00

K , BK , N00
K ) où BK (resp. N00

K ) est le stabilisa-
teur dans G00

K d’une chambre de A (resp. de A) est un système de Tits de groupe de Weyl W
(II 5.2.12).

Posons G01 = Ker ξ ∩ G0(K̃) (1.5). Vu la transitivité de G′(K̃) sur les couples formés
d’une chambre de Ĩ et d’un appartement la contenant, G01 est produit de G00 par le noyau
de l’homomorphisme N(K̃) ∩ G0(K̃) → Aut Ã. Si G0 est semi-simple, ce noyau est le groupe
H = T(Õ) (II 4.6.3). Il en résulte que le groupe quotient G01/G00 est alors isomorphe au ”groupe
des composantes connexes” T(Õ)/T0(Õ) du schéma T. En particulier, on a G01 = G00 dès que
G0 est simplement connexe ou adjoint (II 4.4.18 IX).

2. Groupes résiduellement déployés ou quasi-déployés.
2.1. On dit que G est résiduellement déployé sur K si le rang sur K de DG0 est le même que
son rang sur K̃, autrement dit si Sss = S̃ss, ou si Γ̃ opère trivialement sur X∗(S̃ss), ou encore
sur Ã. On a alors A = Ã (mais non I = Ĩ !). Ceci entraîne que G est quasi-déployé sur K
puisqu’il l’est sur K̃. Plus précisément :

Proposition. Pour que G soit résiduellement déployé sur K, il faut et il suffit que G soit
quasi-déployé sur K et que les orbites de Γs = Gal(Ks/K) dans le graphe de Dynkin D de G
soient les mêmes que celles de Gal(Ks/K̃).

C’est immédiat, puisque le rang sur K de DG0 est égal au nombre d’orbites de Γs.
Remarquons que si G est quasi-déployé sur K et si la K-extension déployante de G est to-

talement ramifiée, alors G est résiduellement déployé sur K. La réciproque n’est pas toujours
vraie (contrairement à ce qui est dit dans [19], p. 37) ; elle l’est cependant si G est absolument
simple et n’est pas de type 3D4 sur K̃ et 6D4 sur K.

2.2. On dit que G est résiduellement quasi-déployé sur K s’il possède un sous-groupe
d’Iwahori stable par Γ̃, ou encore s’il existe une chambre C de Ĩ stable par Γ̃. L’intersection
C ∩ I est alors une chambre de I et, par conjugaison par un élément de G0(K), on peut sup-
poser C ⊂ Ã. Si G est quasi-déployé sur K, alors G est résiduellement quasi-déployé sur K (la
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réciproque est inexacte, cf. §4). En effet, soit (α1, · · · , αr) un système de racines simples de G
suivant S̃ stable par Γ̃ et soit a ∈ A ; l’ensemble D des x ∈ Ã tels que α1(x−a) = · · · = αr(x−a)
est une droite de Ã, fixée par Γ̃, et n’est contenu dans aucun des hyperplans affines murs des
racines affines de Ã. Par suite, D rencontre une chambre de Ã, qui est stable par Γ̃.

Supposons G résiduellement quasi-déployé sur K; alors, G est résiduellement déployé sur
K si et seulement si Γ̃ opère trivialement sur le graphe résiduel ∆ de G (1.5) : cette dernière
condition revient en effet à dire que Γ̃ laisse fixes les sommets d’une chambre C ⊂ Γ̃ invariante
par Γ̃, ou encore que Γ̃ opère trivialement sur Ã.

2.3. Soit L un corps et soit Ls une clôture séparable de L. Les deux assertions suivantes
sont bien connues (cf. 1.3) :
(D) Tout groupe semi-simple connexe H défini sur Ls est Ls-isomorphe à un groupe Hd défini

et déployé sur L, unique à L-isomorphisme près.
(QD) Tout groupe semi-simple connexe H défini sur L est une forme intérieure (cf. 1.3 (c)) d’un

groupe Hq défini et quasi-déployé sur L, unique à L-isomorphisme près.
L’analogie entre le ”cas classique” des groupes semi-simples sur un corps quelconque et le

”cas local” conduit naturellement à poser les deux questions :
(RD) Tout groupe semi-simple connexe H défini sur K̃ est-il K̃-isomorphe à un groupe Hd défini

et résiduellement déployé sur K ? Si oui, ce dernier est-il unique à K-isomorphisme près ?
(RQD) Tout groupe semi-simple connexe H défini sur K est-il une ”forme intérieure” (i.e. obtenue

par torsion par un cocycle z ∈ Z1(Γ̃, (AdHq)(K̃))) d’un groupe Hq défini et résiduellement
quasi-déployé sur K ? Si oui, ya-t-il unicité à K-isomorphisme près ?

La réponse à (RQD) est immédiate : Oui pour l’existence, car il suffit de prendre le groupe Hq

donné par (QD). Il est en effet résiduellement quasi-déployé et l’on passe de Hq à H par torsion
par un cocycle à valeurs dans (AdHq)(K̃) d’après 1.3 (c). Non pour l’unicité : par exemple,
soit D un corps gauche de centre K, de degré d > 1, d’indice de ramification égal à d ; on
montre alors aisément que SL1(D) et SLd sont des groupes résiduellement quasi-déployés formes
intérieures l’un de l’autre (cf. §4 et [10]). Une question plus ”naturelle” serait d’ailleurs obtenue
en remplaçant dans (RQD) le groupe (AdHq)(K̃) par sa composante résiduellement neutre :
nous espérons revenir ultérieurement là-dessus. Disons simplement qu’ici encore, l’unicité n’est
pas exacte en général (i.e. dès que dim k > 1) : un contre-exemple est fourni par les deux groupes
SL1(D±), où D± est le corps des quaternions sur K = R((t)) correspondant au couple (−1,±t).

La réponse à (RD) est plus délicate et plus nuancée : elle fait l’objet du reste de ce paragraphe.

2.4. Classification. Dans la suite de ce paragraphe, on note H un groupe semi-simple
connexe défini sur K̃. On désigne par D son graphe de Dynkin, C son cocentre, Ẽ sa K̃-extension
déployante, Q (resp. R) l’ensemble (éventuellement vide) des classes de K-isomorphismes de
groupes K̃-isomorphes à H et quasi-déployés (resp. résiduellement déployés) sur K, de sorte que
R ⊂ Q.

Reprenons les notations de 1.3 (d) et considérons l’application canonique λ de L sur Q.

Proposition. L’image réciproque de R dans L par λ est l’ensemble Ld des couples (E, ρ) ∈ L
(i.e. satisfaisant aux conditions (i) et (ii) de 1.3 (d)) tels que les orbites de Im ρ et de Im ρH,K̃

dans D soient les mêmes.

Cela résulte de 2.1.

Corollaire 1. Soit E une extension galoisienne totalement ramifiée de K telle que Ẽ = EK̃.
Il existe un élément et un seul dans R dont la K-extension déployante soit E.

On a en effet E ∩ K̃ = K et L contient un et un seul élément de la forme (E, ρ), à savoir
(E, ρH,K̃), qui satisfait évidemment à la condition de la proposition.

Corollaire 2. Supposons que Im ρH,K̃ soit son propre normalisateur dans Aut(D). Alors,
R est en correspondance bijective avec l’ensemble des extensions galoisiennes totalement ramifiées
E de K telles que Ẽ = EK̃.
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Soit (E, ρ) ∈ L. Comme ρ est injectif et que Gal(E/E ∩ K̃) est distingué dans Gal(E/K),
on a nécessairement E ∩ K̃ = K.

2.5. Le cas déployé. Il est trivial :

Proposition. Supposons que H est déployé sur K̃ Il existe un groupe Hd et un seul à K-
isomorphisme près qui soit résiduellement déployé sur K et K̃-isomorphe à H. C’est le groupe
semi-simple connexe déployé sur K ayant même graphe de Dynkin et même cocentre que H.

C’est évident : les conditions imposées à Hd entraînent qu’il est déployé puisque rgK Hd =
rgK̃ H = rgKs

H.

2.6. Le cas absolument simple.

Proposition. Supposons que H est défini sur K, absolument presque simple et non déployé
sur K̃ (cf. 2.5). Il existe un groupe Hd, et un seul à K-isomorphisme près, satisfaisant aux deux
conditions :

(i) Hd est résiduellement déployé sur K ;
(ii) Il existe un K̃-isomorphisme i de Hd sur H tel que les lois d’opération de Γs sur les graphes

de Dynkin de H et de Hd identifiés grâce à i, soient les mêmes.

L’unicité résulte de 1.3 (b). Prenons pour Hd le groupe quasi-déployé sur K correspondant
au triple (D, ρH,K , C(H)) (1.3 (b)). Il est clair que (ii) est satisfaite. Vu 2.1, il reste à montrer
que les orbites de ρH,K et celles de sa restriction ρH,K̃ à Gal(Ks/K̃) sont les mêmes. Or si, sur
K̃,H est de type 2An pour n ≦ 2, 2Dn pour n ≧ 5, 2E6 ou 6D4, on a Im ρH,E = AutD ; si H est
de type 2D4, Im ρH,K̃ est son propre normalisateur dans AutD et coïncide donc avec Im ρH,K ;
enfin, si H est de type 3D4, les orbites de ρH,K̃ sont celles de AutD, d’où le résultat.

Remarques.
1) Hd peut être de type 6D4 sur K et 3D4 sur K̃. La K-extension déployante est alors de

degré 6 et d’indice de ramification 3 et n’est pas totalement ramifiée.
2) Supposons que H (toujours absolument presque simple) soit seulement défini sur K̃ et

soit non déployé sur K̃. Il peut se faire que R soit vide (nous verrons en 2.7 que ceci
exige car k = 2, ou 3 dans le cas D4 trialitaire). En tout état de cause, les arguments
ci-dessus et le cor. 2 de 2.4 entraînent que, si H n’est pas de type 3D4 sur K̃, alors R
est en correspondance bijective avec les extensions galoisiennes totalement ramifiées E de
K telles que Ẽ = EK̃, donc quadratiques sauf si H est de type 6D4 sur K̃ (ce qui exige
car k = 3). Si H est de type 3D4 sur K̃, on montre aisément que ou bien R = ∅, ou bien
R 6= ∅ est en correspondance bijective avec les extensions E de K totalement ramifiées
cycliques d’ordre 3 telles que Ẽ = EK̃, ou bien R 6= ∅ est en correspondance bijective avec
les extensions galoisiennes E de K, de groupe de Galois S3, d’indice de ramification 3,
telles que Ẽ = EK̃ (compte tenu de ce que tout automorphisme de AutD4 = S3 laissant
fixes les éléments d’ordre 3 est intérieur) ; pour voir qu’il ne peut y avoir simultanément
des groupes Hd de type 3D4 et d’autres de types 6D4, on remarque que la composée F
des deux extensions E1 et E2 correspondantes serait une extension galoisienne de degré
18, d’indice de ramification 3 puisque Ẽ = FK̃, et dont le groupe de Galois aurait trois
quotients d’ordre 6 distincts, à savoir Gal(E1(E2 ∩ K̃)/K), Gal(E2/K) et Gal(F ∩ K̃/K),
le premier étant isomorphe à Z/2Z×Z/3Z et le second à S3 : la classification des groupes
d’ordre 18 montre que c’est impossible.
Ainsi, lorsque H est absolument presque simple, les groupes Hd sont tous de même type.
Nous verrons que ce n’est pas vrai en général (2.9).

3) Supposons H simplement connexe (ou adjoint), défini sur K et K̃-presque simple. Alors,
R est non vide.
En effet, Gal(Ẽ/K̃) opère transitivement sur les composantes connexes de D. Soit D0 l’une
d’elles et soit Σ son stabilisateur dans Gal(Ẽ/K̃). Distinguons deux cas :
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(a) Σ = {1}. Alors, H est K̃-isomorphe à ΠẼ/K̃H ′, où H ′ est un groupe déployé sur Ẽ.
De plus, Gal(Ẽ/K) est produit direct de Gal(Ẽ/K̃) et de Ker ρH,K . Si E est le corps
des invariants de Ker ρH,K , on a donc Ẽ = EK̃, K̃ ∩E = K et Ẽ est l’extension étale
maximale de E. Appliquant 2.5, on trouve un groupe H ′d résiduellement déployé sur
Ẽ et Ẽ-isomorphe à H ′, et il suffit de poser Hd = ΠE/KH ′d.

(b) Σ 6= {1}. On raisonne alors comme en 2.6 : les orbites de ρH,K et de ρH,K̃ sont les
mêmes.

Dans le cas (b), contrairement au cas (a) (cf. 2.8), il n’est pas nécessaire de supposer H
simplement connexe ou adjoint.

2.7. Le cas de caractéristique résiduelle nulle ou première à [Ẽ : K̃]. Posons
n = [Ẽ : K̃]. On note Kn l’extension cyclotomique de niveau n de K (”corps des racines
n-ièmes de l’unité”). On sait que Gal(Kn/K) s’identifie canoniquement à un sous-groupe de
(Z/nZ)× ([3]., p.V 78). On note An le ”groupe affine” de l’anneau Z/nZ, c’est-à-dire le groupe
des transformations

γa,b : x → ax+ b

de Z/nZ (avec a ∈ (Z/nZ)× et b ∈ Z/nZ), et AK
n le sous-groupe de An formé des γa,b avec

a ∈ Gal(Kn/K).
On suppose dans la suite de ce n° que la condition suivante est satisfaite :

(CO) car k = 0, ou, plus généralement, n est premier à l’exposant caractéristique de k.

Alors, Ẽ est l’extension cyclique K̃(π1/n) : voir par exemple [16] pp. 75-76 (les résultats
y sont énoncés pour un corps complet, mais on vérifie aisément que les démonstrations restent
valables en le supposant seulement hensélien ; si car k = 0, la prop. 8, p. 76, donne explicitement
le résultat ; si car k = p 6= 0, le cor. 4, p. 75, montre que Ẽ est cyclique et on raisonne comme
dans la démonstration de la prop. 8 pour montrer que K̃ a une seule extension de degré n). Par
suite, Ẽ est une extension galoisienne de K. On note ζ une racine primitive n-ième de l’unité,
de sorte que a ∈ Gal(Kn/K) ⊂ (Z/nZ)× opère sur Kn par ζ → ζa. On identifie d’une part Z/nZ
et Gal(Ẽ/K̃) en posant b · π1/n = ζbπ1/n pour b ∈ Z/nZ, d’autre part Gal(Ẽ/K̃) et son image
dans AutD, notée Γ, grâce à l’isomorphisme ρH,K̃ .

Soit U l’ensemble des u ∈ Ks tels que un soit une uniformisante de K. Pour u ∈ U , on pose
Eu = Kn(u) et E0,u = K(u) : ce sont des extensions totalement ramifiées de degré n de Kn et
K respectivement, la première étant galoisienne.

Lemme. Soit u ∈ U . Il existe un isomorphisme ϕu et un seul de Ax
n sur Gal(Eu/K) tel que

ϕu(γa,b)(ζ
ku) = ζak+bu

pour a ∈ Gal(Kn/K) ⊂ (Z/nZ)×, b ∈ Z/nZ et k ∈ Z.

La vérification est immédiate, compte tenu de ce que Gal(Eu/K) est produit semi-direct de
Gal(Eu/E0,u) = Gal(Kn/K) parGal(Eu/Kn) = Z/nZ.

Proposition. Supposons que (CO) est satisfaite et que H est simplement connexe ou adjoint,
ou plus généralement que Aut(D,C) = AutD. L’ensemble R est alors non vide.

Supposons de plus que H est K̃-presque simple. Il existe alors un isomorphisme φ de AK
n sur

un sous-groupe de AutD tel que Ld (2.4) est l’ensemble des couples (Eu, φ ◦ ϕ−1
u ) (cf. lemme

précédent) pour u ∈ U . L’élément λ(u) = λ((Eu, φ ◦ ϕ−1
u )) de R ne dépend que de l’image de

π−1un dans k×/(k×)n et on obtient par passage au quotient une bijection de k×/(k×)n sur R.
Tout élément de R est donc de type (D,φ(AK

n )).
Si de plus carK = car k et si H1 et H2 sont deux groupes résiduellement déployés sur K et

K̃-isomorphes à H, il existe un k-automorphisme τ de K tel que H1 et H2 soient τ -isomorphes.

Supposons d’abord que H est K̃-presque simple. Le groupe de Galois Γ = Gal(Ẽ/K̃) = Z/nZ
opère alors transitivement sur les composantes connexes de D. Soit D0 une telle composante
connexe. Le stabilisateur de D0 dans Γ est un sous-groupe cyclique de AutD0, un coup d’oeil
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sur la classification montre qu’il est d’ordre n0 = 1, 2 ou 3 et il existe une orbite Ω0 de Γ telle
que Card(Ω0 ∩ D0) = n0, d’où CardΩ0 = n. Choisissons un point s0 ∈ Ω0 ∩ D0, de sorte que
b 7→ b · s0 est une bijection de Γ sur Ω0 et que Ω0 ∩D0 = {b · s0 | n0b = 0}. Soient Ω1, · · · ,Ωk

les autres orbites de Γ dans D, et, pour j = 1, · · · , k, soit sj un point arbitrairement choisi dans
Ωj ∩D0. Posons

Γ̂ = {γ ∈ AutD | γΓγ−1 = Γ et γ · Ωj = Ωj pour 0 ≦ j ≦ k}.

Soit a l’homomorphisme de Γ̂ dans AutZ/nZ = (Z/nZ)× tel que γxγ−1 = a(γ)x pour γ ∈ Γ̂
et x ∈ Γ = Z/nZ. Puisque Γ opère de manière simplement transitive sur Ω0, le groupe Γ̂ est
produit semi-direct du stabilisateur Γ̂0 de s0 dans Γ̂ par Γ. Mais un élément de Γ̂0 laisse fixes
tous les sj . Pour γ ∈ Γ̂0, a = a(γ), x ∈ Z/nZ et 0 ≦ j ≦ k, on a donc

γ · (xsj) = (γxγ−1) · sj = (ax) · sj (∗)

Inversement, on vérifie sans peine que, pour tout a ∈ (Z/nZ)×, la formule (∗) définit un
élément de Γ̂0. Autrement dit, il existe un isomorphisme φ̂ du groupe affine An sur Γ̂ tel que

φ̂(γa,b) · (xsj) = (ax+ b) · sj

pour a ∈ (Z/nZ)×, b, x ∈ Z/nZ et 0 ≦ j ≦ k. On note φ la restriction de φ̂ à AK
n .

Soit alors (E, ρ) ∈ Ld et soit L = K̃ ∩ E la sous-extension étale maximale de E. On a vu
que l’opération de restriction fournit un isomorphisme canonique de Γ sur Gal(E/L) qui nous
permet d’identifier ces deux groupes. Mais on sait qu’il existe un isomorphisme θ0 de Gal(E/L)
dans le groupe des racines de l’unité du corps résiduel l de L ([16], p. 75). Par suite, l contient
les racines n-ièmes de l’unité et, vu le lemme de Hensel, L contient Kn. Il existe donc v ∈ L tel
que E = L(α), avec αn = v. Montrons que l’on peut prendre pour v une uniformisante de L. En
effet, posons v = uπk avec u ∈ L, ω(u) = 0 et k ∈ Z. Si d = (k, n), on a u = (αn/dπ−k/d)d et
l’image ū de u dans le corps résiduel de E est une puissance d-ième. Mais le corps résiduel de L
est le même que celui de E et le lemme de Hensel entraîne qu’il existe x ∈ L avec ω(x) = 0 et
u = xd. On a alors (αn/d)d = (xπk/d)d et αn/d appartient à L puisque L ⊃ Kn ⊃ Kd. Par suite,
d = 1 et il suffit de remplacer α par αrπs, où r et s sont des entiers tels que kr + ns = 1, ce qui
remplace v par urπ.

Comme ρ est injectif, que Im ρ contient et normalise Γ et a les mêmes orbites que Γ, on voit
que ρ est un isomorphisme de Gal(E/K) sur un sous-groupe de Γ̂ contenant Γ, donc produit
semi-direct de son intersection avec Γ̂0 par Γ. Soit Γ0 l’image réciproque de cette intersection
dans Gal(E/K) et soit E0 le corps des invariants de Γ0. Ce qui précède entraîne que E = LE0,
que L et E0 sont linéairement disjointes et que E0 est une extension (non galoisienne) totalement
ramifiée de degré n de K.

Soit σ ∈ Γ0. On a E = L(α) = L(σ(α)) et, d’après la théorie de Kummer, ceci signifie que
αn et σ(α)n engendrent le même sous-groupe de L×/(L×)n ([3], V 85), autrement dit qu’il existe
un entier r premier avec n et un xσ ∈ L× tels que σ(α)n = αnrxn

σ. Prenant les valuations des
deux membres, on trouve 1 = r + nω(xσ), d’où σ(α)n = αnynσ avec yσ = α−nω(xσ)xσ ∈ L×. Par
suite, on a σ(α) = cσ · α, où cσ ∈ L×est l’une des racines n-ièmes de ynσ . L’application σ 7→ cσ
est alors un 1-cocycle de Γ0 = Gal(L/K) à valeurs dans L× et, vu le théorème 90 de Hilbert,
il existe c ∈ L× tel que cσ = σ(c)c−1. Quitte à multiplier c par une puissance de π, on peut
supposer ω(c) = 0. Comme u = c−1α est invariant par tout σ ∈ Γ0 = Gal(E/E0), on voit que u
est une uniformisante de E0 et que un = c−nαn ∈ L ∩ E0 = K est une uniformisante de K.

Autrement dit, nous avons montré qu’il existe u ∈ U tel que E = L(u) et E0 = E0,u = K(u).
Comme π−1un ∈ K, on a π−1/nu ∈ K̃, d’où b · u = ζbu pour b ∈ Γ. Il en résulte que l’action

de Γ0 = Gal(L/K) = Gal(E/K)/Gal(E/L) sur Gal(E/L) se factorise par l’homomorphisme de
restriction Gal(L/K) → Gal(Kn/K). Mais, cette action est fidèle puisque celle de Γ̂0 sur Γ l’est.
Par suite, on a L = Kn et E = Eu.

Enfin, les éléments ρ(ϕu(γa,0)) et φ(γa,0) de Γ0 opèrent de la même manière sur Γ, donc
sont égaux. Comme, après nos identifications, ρ ◦ ϕu et φ sont l’identité sur Γ, il en résulte que
ρ = φ ◦ ϕ−1

u .
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En résumé, nous avons montré que tout élément de Ld est de la forme (Eu, φ ◦ ϕ−1
u ) pour

un u ∈ U . La réciproque est immédiate : si u ∈ U , alors Ẽ = EuK̃, l’homomorphisme φ ◦ ϕ−1
u

prolonge ρH,K̃ , il est injectif et son image est contenue dans Γ̂, donc a mêmes orbites que
Γ = Im ρH,K̃ .

Montrons maintenant qu’une condition nécessaire et suffisante pour que λ((Eu, φ ◦ ϕ−1
u )) =

λ((Eu′ , φ ◦ ϕ−1
u′ )) (pour u, u′ ∈ U) est que (u′u−1)n ∈ (O×)n. Comme un élément de O× est une

puissance n-ième si et seulement si son image dans k× en est une, ceci achèvera la démonstration
du deuxième alinéa de la proposition. Que la condition soit suffisante est immédiat : elle entraîne
en effet u′ = ζcuv avec c ∈ Z et v ∈ O×, d’où Eu = Eu′ , et un calcul simple montre que
ϕu′ = ϕu ◦ int γ1,c, d’où φ ◦ ϕ−1

u′ = int(φ(γ1,c))
−1 ◦ φ ◦ ϕ−1

u . Réciproquement, si les éléments de
R images de u et u′ sont les mêmes, alors Eu = Eu′ , et il existe α ∈ AutD centralisant Γ et
transformant φ ◦ ϕ−1

u en φ ◦ ϕ−1
u′ . Or le centralisateur Γ1 de Γ dans AutD est le produit de Γ

par le stabilisateur de D0 dans Γ1. On en déduit que Γ1 est réduit à Γ lorsque n0 = 2 ou 3 et
est produit direct de Γ par un sous-groupe isomorphe à AutD0 et commutant avec Γ lorsque
n0 = 1. Par suite, on peut supposer α ∈ Γ et les deux lois d’opération de Gal(Eu/K) dans D se
déduisent l’une de l’autre par un automorphisme intérieur de Gal(Eu/K) défini par un élément
σ de Γ = Gal(Eu/Kn). Comme E0,u est le corps des invariants du stabilisateur de s0, on a
E0,u = σ(E0,u′) et il existe un entier c tel que K(u) = K(ζcu′). Par suite, u et ζcu′ sont deux
uniformisantes de K(u) et il existe x ∈ K(u) tel que ω(x) = 0 et que un = xnu′n. Mais les corps
résiduels de K et de K(u) sont les mêmes et le lemme de Hensel entraîne qu’il existe y ∈ O tel
que yn = xn, d’où (u−1u′)n ∈ (O×)n, ce qu’il fallait démontrer.

La dernière assertion de la proposition est évidente puisqu’en égale caractéristique, K est,
pour tout u ∈ U , le corps des séries formelles k((un)) en un.

Enfin, on passe du cas K̃-presque simple au cas simplement connexe (ou adjoint) par produit
direct (notons que l’extension déployante de toute composante K̃-presque simple de H est une
sous-extension de Ẽ, donc satisfait à (CO)), puis au cas général par isogénie stricte, au sens de
[18] (isogénie centrale dans la terminologie de [2]).

2.8. La prop. 2.7 devient inexacte si l’on supprime l’hypothèse Aut(D,C) = AutD. Plus
précisément, gardons les hypothèses de 2.7, en supposant H simplement connexe et K̃-presque
simple, et soit H ′ un groupe défini sur K̃, strictement isogène à H, de cocentre C ′ ⊂ C. Soit
R′ l’ensemble des classes de K-isomorphisme de groupes résiduellement déployés sur K et K̃-
isomorphes à H ′. Alors, on voit aussitôt que R′ est non vide si et seulement si φ(AK

n ) ⊂
Aut(D,C ′) et que sous cette condition 2.7 reste valable en remplaçant H par H ′.

Donnons un exemple où R′ = ∅. Prenons K = R((t)), de sorte que, pour n ≧ 3, on a
K̃ = Kn = C((t)) et que AK

n est le groupe diédral d’ordre 2n. Prenons H = ΠC((t1/7))/C(t))SL2

(groupe obtenu par restriction des scalaires à partir de SL2). La représentation de Γ dans C est
alors la représentation régulière de Z/7Z sur le corps F2 et se décompose en somme directe de
trois représentations irréductibles inéquivalentes, la représentation unité et deux représentations
de degré 3 échangées par l’automorphisme x 7→ −x de Z/7Z, correspondant l’une aux racines
7-ièmes de l’unité, c’est-à-dire aux éléments de F8, racines de l’équation X3+X2+1 = 0, l’autre
aux racines de X3+X +1 = 0. Il suffit alors de prendre pour C ′ l’espace V de l’une de ces deux
représentations.

On peut avoir R′ = ∅ même si H ′ est défini et quasi-déployé sur K et K̃-presque simple. Par
exemple, soit H0 le groupe simplement connexe quasi-déployé sur E = R((t1/7)), de type 2D2n

(n ≧ 2) correspondant à l’extension quadratique Ẽ = C((t1/7)) de E. On prend H = ΠE/KH0.
La représentation de Γ dans C est somme directe de deux exemplaires de la représentation
régulière de Γ sur F2, échangés par le générateur σ de Gal(Ẽ/E). Il suffit alors de prendre pour
H ′ le groupe strictement isogène à H de cocentre V + σ(V ).

2.9. Dans les cas que nous venons d’étudier, tous les éléments de R sont de même type. Ceci
n’est pas toujours vrai lorsque car k 6= 0. Donnons un contre-exemple. Soit p = car k > 0 et soit r
un entier > 1, premier à p. Supposons que K possède une extension galoisienne étale L cyclique
d’ordre r et une extension galoisienne totalement ramifiée E de degré e = rph, dont le groupe
de Galois Γ soit produit semi-direct d’un sous-groupe A cyclique d’ordre r par un sous-groupe
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distingué d’ordre ph sur lequel A opère fidèlement (cf. [16] p. 75). On pose Ẽ = EK̃ et l’on
identifie Gal(Ẽ/K̃) à Γ.

Prenons H = ΠE/KSL2. Alors, H est K̃-isomorphe à ΠẼ/K̄SL2 (cf. II 1.5.3), d’où rgK H =
rgK̃ H = 1 et H est résiduellement déployé sur K. Le graphe de Dynkin D se compose de e
points et le choix d’un ”point origine” d ∈ D permet de l’identifier à Γ opérant sur lui-même par
translations à gauche.

Posons maintenant E′ = EL ∼= E ⊗K L, de sorte que Gal(E′/K) s’identifie canoniquement
au produit direct Γ×Gal(L/K). Le choix d’un isomorphisme de Gal(L/K) sur A nous permet
donc d’identifier Gal(E′/K) à Γ × A. Prolongeons alors la loi d’opération de Γ sur D = Γ en
une loi d’opération de Gal(E′/K) = Γ × A en faisant opérer le second facteur par translations
à droite sur Γ, de sorte que Γ × A opère fidèlement sur D. Le stabilisateur de d dans Γ × A
est le sous-groupe B formé des (a−1, a) pour a ∈ A et Γ × A est produit semi-direct de B par
Γ = Γ × {1}. Soit F le corps des invariants de B dans E′ : l’assertion précédente entraîne que
E′ = FL et que F ∩L = K. Par suite, F est une extension totalement ramifiée (non galoisienne)
de K et Ẽ = FK̃ ∼= F ⊗K K̃.

Soit alors H ′ le groupe simplement connexe quasi-déployé sur K, d’extension déployante E′,
de graphe de Dynkin D, correspondant à la loi d’opération fidèle de Gal(E′/K) dans D introduite
ci dessus. Il est immédiat que H ′ = ΠF/KSL2. Par suite, H ′ est K̃-isomorphe à ΠẼ/K̃SL2 donc
à H, et est résiduellement déployé sur K puisque rgK H ′ = rgK̃ H ′ = 1.

On a ainsi construit deux groupes simplement connexes H et H ′, résiduellement déployés
sur K, K̃-presque simples et K̃-isomorphes, mais qui ne sont pas de même type sur K : la
K-extension déployante de H est E, de degré e et celle de H ′ est E′, de degré re.

2.10. Terminons cette entomologie par un exemple d’un groupe H simplement connexe,
défini et quasi-déployé sur K, K-presque simple, pour lequel R est vide. Il faut évidemment vu
2.7 supposer car k = p > 0. Donnons-nous trois extensions L,E1 et E2 de K telles que

− L est une extension quadratique étale de K;
− Ei est une extension galoisienne totalement ramifiée de L et tout σ ∈ Γs induisant sur L

le K-automorphisme non trivial de L permute E1 et E2;
− posons Ẽi = EiK̃ ; alors, Ẽ1 6= Ẽ2.
Remarquons que ces conditions ne sont pas compatibles si car k = 0.
Prenons alors H =

∏
E1/K

SL2, de sorte que H est bien quasi-déployé sur K, de rang 1. De
plus, H est K̃-isomorphe à ΠẼ1/K̄

SL2 × ΠẼ2/K̄
SL2 (car E1 ⊗K L ∼= E1 × E2, donc E1 ⊗K K̃ ∼=

Ẽ1 × Ẽ2) d’où rgK̂ H = 2. Si H ′ est un groupe défini sur K et K̃-isomorphe à H, l’action sur
H ′(K̃) = H(K̃) d’un élément σ ∈ Gal(K̃/K) non trivial sur L, doit permuter les deux facteurs,
donc rgK H ′ ≦ 1, et H ′ n’est pas résiduellement déployé.

Reste à construire explicitement un exemple d’extensions L,E1, E2 convenables. Tout d’abord,
on prend pour L une extension quadratique étale de K, définie par une équation irréductible
X2 − aX + b = 0, avec a, b ∈ O×. On note u1, u2 les deux racines de cette équation, de sorte
que u1 + u2 = a.

Si carK = 0, on suppose que K contient les racines p-ièmes de l’unité et on pose Ei =
L((1+πui)

1/p). La seule chose non évidente à vérifier est que Ẽ1 6= Ẽ2. Or dans le cas contraire,
il existerait, d’après Kummer, un entier r et un x ∈ K̃ tels que 1 + πu1 = xp(1 + πu2)

r. Ceci
entraîne ω(x) = 0, puis x ≡ 1 mod π, puis u1 ≡ ru2 mod π, c’est-à-dire a ≡ (r + 1)u2 mod π,
ce qui est impossible puisque d’une part a 6= 0 mod π, d’autre part l’équation X2 − aX + b = 0
reste irréductible après réduction modπ.

Si carK = p, on pose Ei = L(vi), où vi est racine de l’équation Xp−πp−1X−πui = 0. Alors,
π−1vi est racine d’une équation d’Artin-Schreier et on raisonne comme ci-dessus, en remplaçant
la théorie de Kummer par celle d’Artin-Schreier.

Remarque. Le groupe ΠẼ1/K̃
SL2 est un exemple de groupe défini sur K̃, simplement con-

nexe, K̃-presque simple, pour lequel R = ∅ : il n’existe même pas de groupe défini sur K et
K̃-isomorphe à H.

En supposant p = 2 (resp. p = 3) et en considérant le groupe SU3 quasi-déployé sur K̃ (resp.
le groupe simplement connexe quasi-déployé de type 3D4 sur K̃) correspondant à l’extension
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cyclique de degré 2 (resp. 3) Ẽ1 de K̃, on trouve un exemple de groupe H simplement connexe
défini sur K̃, absolument presque simple, pour lequel R = ∅, pour la même raison que ci-dessus.

2.11. En résumé :
− si H est simplement connexe ou adjoint, alors R 6= ∅ dès que ou bien car k ne divise pas

[Ẽ : K̃] (2.7), ou bien H est défini sur K et K̃-presque simple (2.6, Remarque 3). Il y a
un exemple où R = ∅ avec H défini sur K et K-presque simple, ou avec H absolument
presque simple (2.10).

− si le cocentre de H est quelconque, alors R 6= ∅ dès que ou bien H est déployé sur K̃ (2.5),
ou bien H est défini sur K et absolument presque simple (2.6). Il y a un exemple où R = ∅
avec H défini sur K, K̃-presque simple et car k = 0 (2.8).

3. Cohomologie.
On donne une extension galoisienne étale K ′ de K, avec K ⊂ K ′ ⊂ K̃, d’anneau des entiers O′,
d’idéal maximal p′, de corps résiduel k′ et de groupe de Galois Γ = Gal(K ′/K) = Gal(k′/k).

3.1. Soit X un groupe compact totalement discontinu ; un X-groupe est un groupe discret
sur lequel X opère continûment (autrement dit le stabilisateur de chaque point est ouvert, donc
d’indice fini) par automorphismes.

Soit A un Γ̃-groupe et soit A(K ′) le groupe des points fixes de Gal(K̃/K ′) dans A. Le
groupe Γ opère sur A(K ′) et on peut considérer l’ensemble Zi(Γ, A(K ′)) des cocycles continus
a : s 7→ as de Γ à valeurs dans A(K ′) et les ensembles de cohomologie Hi(Γ′, A(K ′)) (pour
i ≧ 0 si A est commutatif, pour i = 0, 1 sinon). On les note simplement Zi(A) et Hi(A) lorsque
aucune confusion n’est à craindre.

Quatre cas seront principalement envisagés :
(1) A = G(K̃) : on écrit Zi(G) et Hi(G) au lieu de Zi(A),Hi(A).
(2) A = H est un sous-groupe de G(K̃) contenant G00 et stable par Γ̃.
(3) A = G(Õ), où G est un O-schéma en groupes lisse de fibre générique G.

Notations : Zi(G),Hi(G).
(4) A = g(k̃), où g est un groupe algébrique défini sur k. Notations: Zi(g),Hi(g).

3.2. Pour simplifier l’exposé, nous ferons les démonstrations des assertions qui suivent en
supposant de plus que le degré [K ′ : K] est fini. On passe de là au cas général par les procédés
habituels de limite inductive ([17] 1.9) : nous en laisserons le soin au lecteur.

3.3. Torsion. Soit E un Γ-groupe opérant sur G par automorphismes de K̃-groupe al-
gébrique, de manière compatible avec l’action de Γs : pour s ∈ Γs, d’image s̄ ∈ Γ, on a
s(α · g) = s̄α · sg pour α ∈ E, g ∈ G(Ks).

Rappelons la définition du K-groupe algébrique αG obtenu à partir de G par torsion par un
cocycle α ∈ Z1(Γ, E) : comme Ks-groupe algébrique, on a αG = G et l’action de s ∈ Γs sur
αG(Ks) = G(Ks) est donnée par s : g 7→ αs̄ · sg, où s̄ est l’image de s dans Γ ([17] I-59). Il
s’ensuit que αG = G comme K ′-groupe algébrique.

On peut en particulier prendre E = G(K ′) opérant sur G par automorphismes intérieurs,
d’où la définition du groupe aG obtenu par torsion de G par un cocycle a ∈ Z1(G). On sait
(loc. cit.) que si a et b sont deux cocycles cohomologues, alors aG et bG sont K-isomorphes, de
manière d’ailleurs non canonique : si c ∈ G(L) est tel que bs = c−1as

sc (s ∈ Γ), alors int c est
un K-isomorphisme de bG sur aG. D’autre part, si b ∈ Z1(aG), alors ba ∈ Z1(G), l’application
b 7→ ba est une bijection de Z1(aG) sur Z1(G) et définit par passage aux quotients une bijection
τa : H1(aG) → H1(G) appelée translation par a (loc. cit.). On a b(aG) = baG.

On a des définitions et résultats semblables dans chacun des trois autres cas envisagés ci-
dessus. Nous laissons au lecteur le soin de les expliciter.

3.4. Enonçons deux lemmes ”bien connus”, en en rappelant brièvement la démonstration.



Groupes algébriques 13

Lemme 1. Soit A un groupe algébrique défini sur k, soit U un sous-groupe distingué défini
sur k unipotent et connexe, et soit B = A/U .

(i) L’application canonique de H0(A) dans H0(B) est surjective.
(ii) L’application canonique de H1(A) dans H1(B) est bijective.
(iii) Plus précisément, pour tout cocycle z̄ ∈ Z1(B), il existe un cocycle z ∈ Z1(A) d’image z̄

et, si deux cocycles z, z′ ∈ Z1(A) ont même image dans Z1(B), alors il existe u ∈ U tel
que z′s = u−1zs

su pour tout s ∈ Γ.

Par récurrence sur dimU on se ramène au cas où U est commutatif, et l’on sait qu’un groupe
unipotent connexe commutatif défini sur un corps parfait est cohomologiquement trivial (i.e.
Hi(U) = {0} pour i > 0). L’assertion (i) résulte alors de l’exactitude de la suite H0(A) →
H0(B) → H1(U) ([17], I-59). De plus, les groupes A et B opèrent sur U par automorphismes
intérieurs et pour tout cocycle z appartenant à Z1(A) ou à Z1(B), le groupe tordu zU est toujours
unipotent connexe commutatif. L’assertion (ii) résulte alors du cor. 2 à la prop. 39 et de la prop.
41 de [17] (1-67 et 70). La première partie de l’assertion (iii) résulte de la démonstration de la
prop. 41 de [17]. Pour la seconde, on vérifie que, si z′s = aszs avec as ∈ U , alors a ∈ Z1(zU), et
il existe u ∈ U tel que as = u−1zs

suz−1
s , d’où z′s = u−1zs

su.
Lemme 2. Soit G un O-schéma en groupes lisse.

(i) L’application canonique de H0(G) = G(O) dans H0(G) = G(k) est surjective.
(ii) L’application canonique de H1(G) dans H1(G) est bijective.

L’assertion (i) est le lemme de Hensel. Plus généralement, pour n entier ≧ 0, posons On =
O/pn+1 et O′

n = O′/p′n+1 (de sorte que O0 = k et O′
0 = k′): le lemme de Hensel dit que

l’application canonique de G(O) (resp. G(On+1)) dans G(On) est surjective et G(O) est la
limite projective des G(On). Les mêmes assertions restent vraies en remplaçant la lettre O par
O′ (rappelons que dans les démonstrations on suppose que [K ′ : K] est fini, donc que K ′ est
complet). D’autre part, soit Gn le On-schéma en groupes lisse obtenu par le changement de base
O → On ; par application du foncteur de Greenberg aux Gn, on obtient une suite de groupes
algébriques Qn définis sur k, telle que Qn(k

′) s’identifie canoniquement en tant que Γ-groupe
à Gn(O′

n) et l’application canonique de G(O′
n+1) sur G(O′

n) à un ”morphisme de transition”
λn : Qn+1 → Qn défini sur k, surjectif, séparable et à noyau unipotent connexe (cf. [13]).

Soit alors z0 ∈ Z1(G0). Par application du lemme 1, on construit par récurrence une suite
de cocycles zn ∈ Z1(G(O′

n)) telle que zn = λn ◦ zn+1, d’où, par passage à la limite projective,
un cocycle z ∈ Z1(G) d’image z0. Soient maintenant z, z′ ∈ Z1(G), dont les images z0 et z′0
dans Z1(G0) sont cohomologues ; il nous reste à montrer que z et z′ sont cohomologues. Vu
la surjectivité de l’application canonique de G(O′) dans G(k′), on peut, supposer que z′0 = z0,
quitte à remplacer z′ par un cocycle cohomologue. En appliquant le lemme 1 (iii), on construit
par récurrence une suite d’éléments un ∈ kerλn telle que les images zn et z′n de z et z′ dans
Z1(G(O′

n)) satisfassent à

z′n(s) = u−1
n · · ·u−1

1 · zn(s) · s(u1 · · ·un) (pour s ∈ Γ).

Si u est la limite projective de la suite des produits u1 · · ·un, on a alors z′(s) = u−1z(s)su
pour tout s, ce qui achève la démonstration.

3.5. On note désormais H un sous-groupe de G(K̃) stable par Γ̃ et contenant la composante
neutre résiduelle G00.

Soit P un sous-groupe K-parahorique de G. Notons NH(P ) le sous-schéma en groupes ouvert
de N(P ) (1.7) tel que NH(P )(Õ) = NormH(P ) (cf. II 4.6.21). On appelle application canonique
de H1(NH(P )) dans H1(H) la composée de l’inverse de la bijection H1(NH(P )) → H1(NH(P )))
donnée par le lemme 2 et de l’application canonique de H1(NH(P )) = H1(NormH(P )) dans
H1(H).

3.6. On dit qu’un cocycle z appartenant à Z1(NH(P )) ou à Z1(NH(P )) est anisotrope si le
k-groupe algébrique zP déduit de P par torsion par z (les groupes NH(P ) et NH(P ) opérant
sur P par automorphismes intérieurs) est presque anisotrope (1.7), condition qui ne dépend
que de la classe de cohomologie de z puisque zP et z′P sont K-isomorphes lorsque z et z′ sont
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cohomologues ([17] I-5). On note Z1(NH(P ))an (resp. Z1(NH(P ))an) l’ensemble de ces cocycles
et H1(NH(P ))an (resp. H1(NH(P ))an) l’ensemble de leurs classes de cohomologie.

Remarquons que si P est un sous-groupe d’Iwahori, on a H1(NH(P ))an = H1(NH(P )); par
contre, si P n’est pas un sous-groupe K-parahorique minimal de G, alors H1(NH(P ))an ne con-
tient pas l’élément neutre de H1(NH(P )) et peut être vide.

3.7. Lemme. Soit P un sous-groupe K-parahorique de G et soit z ∈ Z1(H).
(i) Pour que P soit un sous-groupe K-parahorique de zG, il faut et il suffit que z ∈ Z1(NH(P )).
(ii) Pour que P soit un sous-groupe K-parahorique minimal de zG, il faut et il suffit que

z ∈ Z1(NH(P ))an.

Dire que P est un sous-groupe K-parahorique de zG signifie que zs
sPz−1

s = P pour tout
s ∈ Γ. L’assertion (i) en résulte puisque sP = P . L’assertion (ii) est alors évidente puisque P
minimal équivaut à P presque anisotrope.

3.8. Lemme. Soit P un sous-groupe K-parahorique de G et soit ż ∈ H1(H). Les conditions
suivantes sont équivalentes :

(a) ż appartient à l’image canonique de H1(NH(P )) (resp. de H1(NH(P ))an) ;
(b) il existe un cocycle z ∈ ż tel que P soit un sous-groupe K-parahorique (resp. un sous-groupe

K-parahorique minimal) de zG ;
(c) pour tout cocycle z ∈ ż, il existe h ∈ H tel que hPh−1 soit un sous-groupe K-parahorique

(resp. un sous-groupe K-parahorique minimal) de zG.

Les équivalences (a) ⇔ (b) sont une reformulation du lemme 3.7. Que (b) entraîne (c) résulte
de ce que inth est un K-isomorphisme de z′G sur zG dès que z′s = h−1zs

sh (s ∈ Γ). Inversement,
si (c) est satisfaite, on obtient (b) en remplaçant z par le cocycle cohomologue z′s = h−1zs

sh.

3.9. Lemme. Soit P un sous-groupe K-parahorique de G. La restriction à H1(NH(P ))an de
l’application canonique de H1(NH(P )) dans H1(H) est injective.

Soient z, z′ ∈ Z1(NH(P ))an ayant même image dans H1(H) et soit h ∈ H tel que z′s =
h−1zs

sh pour s ∈ Γ. Comme P est un sous-groupe K-parahorique minimal à la fois de zG et
de z′G (3.7) et que inth est un K-isomorphisme de z′G sur zG, on voit que P et hPh−1 sont
deux sous-groupes K-parahoriques minimaux de zG. Mais on sait que deux tels sous-groupes
sont conjugués par un élément de zG

′(K) (1.7). Par suite, il existe g ∈ G00∩ zG(K) ⊂ H tel que
hPh−1 = gPg−1. On a alors g−1h ∈ NormH(P ) = NH(P )(Õ) et, pout tout s ∈ Γ, g = zs

sgz−1
s ,

d’où zs = g−1hz′s
s(h−1g). Le lemme en résulte.

3.10. Soit z ∈ Z1(H). On peut appliquer les résultats précédents au groupe zG : on obtient
des objets que l’on distinguera par un indice z à gauche. Par exemple, si Q est un sous-groupe
K-parahorique de zG, le O-schéma zNH(Q) est celui pour lequel zNH(Q)(Õ) = NormHQ,
l’opération de Γ̃ étant induite par celle sur zG. Les notations telles que zH,H1(zNH(Q))an etc.
s’expliquent d’elles-mêmes.

Proposition. L’application composée de l’injection canonique de H1(zNH(Q))an dans
H1(zH) suivie de la translation τz de H1(zH) dans H1(H) est une bijection, dite canonique, de
H1(zNH(Q))an sur l’ensemble des classes de cohomologie des cocycles a ∈ Z1(H) tels que les
sous-groupes K-parahoriques minimaux de aG soient conjugués de Q par des éléments de H.

Lorsque z = 1, ce n’est qu’une reformulation des deux lemmes précédents. Le cas général
s’en déduit aussitôt par translation par z.

3.11. Soit Θ l’ensemble des classes de conjugaison θ par H de sous-groupes parahoriques
de G possédant la propriété suivante : il existe z ∈ Z1(H) tel que zG possède un sous-groupe
K-parahorique Q appartenant à θ. Une telle classe est invariante par Γ̃ : on a sQ = z−1

s Qzs
pour s ∈ Γ̃. Choisissons alors pour tout θ ∈ Θ un cocycle z(θ) ∈ Z1(H) et un sous-groupe
K-parahorique Q(θ) de z(θ)G tels que Q(θ) ∈ θ. La prop. 3.10 décrit l’ensemble des cocycles
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a ∈ Z1(H) tels que les sous-groupes K-parahoriques minimaux de aG appartiennent à θ. D’où
immédiatement :

3.12. Théorème. L’application dans H1(H) de la somme (ensembliste) des H1(z(θ)NH(Q(θ)))an
pour θ ∈ Θ, somme des applications canoniques, est une bijection.

3.13. Remarques.
1) On peut avoir H1(z(θ)NH(Q(θ)))an = ∅ (cf. 4.7).
2) On peut remplacer Q(θ) par n’importe quel élément Q de θ : si Q = hQ(θ)h−1 (avec

h ∈ H), il suffit de remplacer z par le cocycle s 7→ h−1zs
sh. En particulier, si θ contient

un sous-groupe K-parahorique P de G, on peut prendre z(θ) = 1 et Q(θ) = P . Mais,
bien qu’invariante par Γ̃, une classe θ ∈ Θ ne contient pas toujours de sous-groupe K-
parahorique de G. Prenons par exemple pour K ′ une extension quadratique de K, pour
G le groupe adjoint PGU2 de la forme hermitienne xσx+ yσy et pour H le groupe G(K̃).
On voit aisément que G est résiduellement quasi-déployé, de graphe résiduel de type A1

(cf. I, p. 29), et que Γ et ξ(H), qui sont tous deux d’ordre 2, opèrent par permutation des
deux sommets de ∆. Les sous-groupes parahoriques maximaux de G constituent donc une
seule classe θ de H-conjugaison, qui contient deux classes de G00-conjugaison permutées
par Γ̃ ; il n’y a donc pas de sous-groupe K-parahorique de G appartenant à θ. Cependant, θ
appartient à Θ. En effet, G est une forme intérieure de PGL2 et il existe z ∈ Z1(G) = Z1(H)
tel que zG soit K-isomorphe à PGL2, donc soit résiduellement déployé et possède un sous-
groupe K-parahorique appartenant à θ.

3) Une classe de H-conjugaison de sous-groupes parahoriques invariante par Γ̃ n’appartient pas
toujours à Θ, même si G est connexe et simplement connexe (ce qui entraîne H = G(K̃)).
Par exemple, soit D un corps gauche de centre K, de degré d, non ramifié (autrement dit, le
corps résiduel D̄ de D est un corps gauche de centre k, de degré d), et prenons G = SL1(D).
C’est un groupe connexe et simplement connexe, forme intérieure anisotrope de SLd. On
voit aisément (cf. [10]) que l’unique point x de l’immeuble I est un point spécial de Ĩ
et que la fibre fermée Px du schéma correspondant est SL1(D̄). Comme G est une forme
intérieure de SLd, le groupe de Galois Γ̃ opère sur le graphe résiduel ∆ de G (qui est de
type Ad−1) par permutations circulaires. Mais il laisse fixe le sommet correspondant à la
classe du sous-groupe parahorique maximal Px ; par suite, Γ̃ opère trivialement sur ∆.
Soit θ0 la classe de conjugaison des sous-groupes d’Iwahori. Elle est évidemment invari-
ante par Γ̃. Supposons que θ0 appartienne à Θ et soit z ∈ H1(G) tel que zG possède un
K-sous-groupe d’Iwahori, c’est-à-dire soit résiduellement quasi-déployé. Le groupe G est
simplement connexe, donc opère trivialement sur ∆ et l’action de Γ̃ sur le graphe résiduel de
zG est triviale puisqu’obtenue à partir de l’action triviale par torsion par un cocycle trivial.
Par suite, zG est résiduellement déployé, donc est K-isomorphe à SLd, et G est obtenu à
partir de SLd par torsion par le cocycle z−1 ∈ Z1(SLd). Mais on sait que H1(SLd) = {0}
et l’on obtient finalement que G est K-isomorphe à SLd, ce qui est absurde. Par suite,
θ0 /∈ θ.

3.14. Supposons G résiduellement déployé. Soit B un K-sous-groupe d’Iwahori. Toute
classe de G00-conjugaison de sous-groupes parahoriques possède un élément contenant B, qui
est automatiquement invariant par Γ̃. De plus, deux tels sous-groupes parahoriques sont H-
conjugués si et seulement si ils sont transformés l’un de l’autre par un élément de ξ(H). D’où :

Corollaire. Soient P0 = B,P1, · · · , Pr des représentants des orbites de ξ(H) dans l’ensemble
des sous-groupes parahoriques contenant B. L’application de la somme des H1(NH(Pj))an dans
H1(H) somme des applications canoniques (pour 0 ≦ j ≦ r) est une bijection.

3.15. Corollaire. Supposons G résiduellement quasi-déployé. Soit B un K-sous-groupe
d’Iwahori et soient P0 = B, · · · , Pr les sous-groupes K-parahoriques de G contenant B. Prenons
pour H la composante neutre résiduelle G00, de sorte que NH(Pj) = Pj. L’application de la
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somme des H1(NH(Pj))an dans H1(G00) somme des applications canoniques (pour 0 ≦ j ≦ r)
est une bijection.

En effet, toute classe θ de G00-conjugaison de sous-groupes parahoriques contient un élément
et un seul contenant B, soit P (θ), et la classe θ est Γ̃-invariante si et seulement si P (θ) l’est.

3.16. Remarques.
1) Rappelons que si G est connexe et simplement connexe, on a G00 = G(K̃) : le corollaire

précédent donne donc une détermination de H1(G) lorsque G est connexe, simplement
connexe et résiduellement quasi-déployé.

2) On peut dans le cor. 3.15 remplacer l’hypothèse H = G00 par l’hypothèse plus faible
H ⊂ Ker ξ : on obtient alors une bijection de la somme des H1(NH(Pj))an sur H1(H).

3) Le corps K̃ est de dimension cohomologique ≦ 1 ([16] p. 170). Si G est connexe, on a
donc H1(Gal(Ks/K̃), G(Ks)) = {0} ; par suite, H1(Γs, G(Ks)), ensemble de cohomologie
galoisienne ”total” de G, que l’on a généralement l’habitude de noter H1(G), s’identifie
canoniquement à H1(Γ̃, G(K̃)), c’est-à-dire, en prenant K ′ = K̃ dans ce qui précède, à
l’ensemble que nous avons noté H1(G).

4. Corps résiduel de dimension ≦≦≦ 1.
Dans ce paragraphe, nous supposons que le corps résiduel k est de dimension cohomologique ≦ 1.
Rappelons que tout groupe algébrique défini sur k est alors quasi-déployé, c’est-à-dire possède
un sous-groupe de Borel défini sur k, et que, plus généralement, on a H1(g) = {0} pour tout
groupe algébrique connexe g défini sur k.

4.1. Théorème. G est résiduellement quasi-déployé sur K.
Soit F une facette de Ĩ invariante par Γ̃. La fibre fermée du O-schéma PF possède un sous-

groupe de Borel b défini sur k et l’image réciproque de b dans PF est un sous-groupe d’Iwahori
de G invariant par Γ̃ (1.7).

4.2. Il existe donc une chambre de Ã invariante par Ĩ (1.7). On note C une telle chambre
et B le sous-groupe d’Iwahori correspondant.

4.3. Corollaire. Pour que G soit presque anisotrope sur K (1.7), il faut et il suffit que,
pour toute composante connexe ∆0 du graphe résiduel ∆ de G, le stabilisateur de ∆0 dans Γ̃
opère transitivement sur ∆0.

Dire que G est presque anisotrope sur K veut dire que le tore K-déployé maximal Sss de
DG0 est réduit à l’élément neutre, ou encore que l’appartement A (ou l’immeuble I) est réduit à
un point. Pour cela, il faut et il suffit que la seule facette de C invariante par Γ̃ soit C elle-même,
ou encore que toute partie non vide de ∆ stable par Γ̃ contienne une composante connexe de ∆.
D’où le corollaire.

4.4. Un coup d’oeil sur la liste des graphes résiduels connexes montre que le seul graphe
résiduel connexe ∆ tel que Aut∆ soit transitif sur ∆ est celui de type An (n ≧ 1). Il en ré-
sulte aussitôt que, si G est presque anisotrope sur K, le K-revêtement universel G′ de G est
K̃-isomorphe à un produit direct de groupes de la forme ΠL/K̃SLn, obtenus par restriction des
scalaires à K̃ à partir d’un groupe SLn considéré comme groupe algébrique défini sur une exten-
sion séparable finie (automatiquement totalement ramifiée) L de K̃.

4.5. Plus précisément, le groupe des automorphismes du graphe résiduel ∆ de type An est
d’ordre 2 pour n = 1 et est, pour n ≧ 2, le groupe diédral D2(n+1), produit semi-direct de Z/2Z
opérant par une symétrie par le sous-groupe distingué cyclique Int∆ = Z/(n+ 1)Z opérant par
permutations circulaires. On voit alors aisément que les seuls sous-groupes de Aut∆ transitifs
sur ∆ sont Aut∆ lui-même, Int ∆ et, lorsque n est impair ≧ 3, le sous-groupe diédral D(n+1)



Groupes algébriques 17

produit semi-direct de Z/2Z, opérant par une symétrie sans points fixes, et du sous-groupe
d’ordre (n+ 1)/2 de Int∆.

Utilisant la classification des groupes semi-simples ([18]), on en déduit que si G est connexe,
simplement connexe, absolument presque simple et K-anisotrope (on passe ensuite au cas général
d’un groupe presque anisotrope par les procédés habituels: restriction des scalaires, produit
direct, épimorphisme central), alors G est K-isomorphe à l’un des groupes suivants :

1er cas : SL1(D), où D est un corps gauche de centre K, de degré n+ 1
(n ≧ 1, γ(Γ̃) = Int∆ = Z/(n+ 1)Z) (cf. 1.5)) ;

2ème cas : SU1(D), où D est un corps gauche ayant pour centre une extension quadratique étale L de
K, de degré n+ 1, muni d’une involution σ de seconde espèce triviale sur K
(n ≧ 2 et γ(Γ̃) = Aut∆ = D2(n+1));

3ème cas : SU2(D) où D est comme dans le 2ème cas, mais de degré (n+ 1)/2, la forme hermitienne
étant, après un éventuel ”changement de coordonnées” (cf. II 10.1.3), la forme σxx+ σyδy
sur D2, où δ est une uniformisante de D (pour n impair ≧ 3, γ(Γ̃) = D(n+1)).

4.6. Remarquons que si γ(Γ̃) est commutatif (par exemple si Γ̃ l’est), alors seuls peuvent se
produire le 1er cas (G = SL1(D)) et le 3ème cas pour n = 3 (G = SU2(D), où D est un corps
de quaternions sur une extension quadratique étale L de K, muni d’une involution de seconde
espèce ; remarquons d’une part que ce cas a été omis par erreur dans [7], d’autre part que le
groupe SU1(D) correspondant n’apparaît pas dans cette classification car il est isomorphe à un
SL1(D

′)).
Si γ(Γ̃) est cyclique, par exemple si k est fini, ou quasifini ([16] p. 198), ou plus généralement

si Γ̃ est limite projective de groupes cycliques, alors seul le 1er cas peut se produire. On a ainsi
généralisé les résultats de M. Kneser sur les groupes anisotropes sur un corps localement compact
de caractéristique zéro ([15]).

4.7. Reprenons les notations du paragraphe 2 (en conservant l’hypothèse dim k ≦ 1).

Théorème.
(i) L’application canonique de H1(NH(B)) dans H1(H) est bijective.
(ii) Si G est connexe et simplement connexe, on a H1(G) = {0}.

Pour tout z ∈ Z1(H), le groupe zG est résiduellement quasi-déployé. Il résulte alors de la
prop. 3.10 que H1(NH(Q(θ)))an = ∅ pour tout θ ∈ Θ distinct de la classe θ0 des sous-groupes
d’Iwahori (ceci résulte aussi de ce que tout groupe semi-simple connexe anisotrope défini sur k
est réduit à l’élément neutre). D’autre part, on a évidemment H1(NH(B))an = H1(NH(B))
puisque B est résoluble. Cela démontre (i).

Si de plus G est connexe et simplement connexe, alors N(B) = B est connexe et l’on sait que
H1(g) = {0} pour tout groupe algébrique g connexe défini sur k, d’où (ii).
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