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Groupes algébriques sur un corps local
Chapitre III. Compléments et applications
a la cohomologie galoisienne

A Nagayoshi Iwahori pour son soixantiéme anniversaire

Par F. BRUHAT et J. TITSﬂ

Dans un travail antérieur ([8] et [9], notés I et II dans la suite), nous avons exposé une
théorie des groupes algébriques G définis sur un corps ”local” K, i. e. un corps complet pour
une valuation discréte a corps résiduel k parfait. (Les hypotheses de [8] et [9] sont d’ailleurs
plus générales.) Cette théorie fait en quelque sorte apparaitre G comme "objet de dimension
infinie” sur k et présente des analogies frappantes avec la théorie classique des groupes réductifs
sur un corps L quelconque (cf. [1], [18]), le rdle joué par la cléture séparable de L étant pour
nous joué par I'extension non ramifiée maximale (ou hensélisé strict) K de K. Nous renvoyons

a I'Introduction de I pour un développement de cette analogie.

Apreés un premier paragraphe consacré a la fixation de notations et a quelques rappels, nous
introduisons les notions de groupe résiduellement déployé ou résiduellement quasi-déployé sur
K. Ce sont les analogues des notions de groupe déployé ou quasi-déployé sur L. Cependant,
alors qu’'un groupe semi-simple est toujours une "forme” d’un et "un seul” groupe déployé sur
L, la réponse a la question analogue dans notre théorie (G est-il K-isomorphe & un groupe
résiduellement déployé sur K 7 Si oui, y a-t-il unicité ?) n’est pas si simple, et fait objet de
I’essentiel du paragraphe 2. On y voit apparaitre des différences sensibles, un peu surprenantes
a priori, entre le cas absolument presque simple et le cas général.

Au paragraphe 3, nous appliquons notre théorie a 1’étude de la cohomologie galoisienne de G
et de certains de ses sous-groupes. L’utilisation des schémas en groupes introduits en II permet
de la ramener a celle d’'un nombre fini de groupes algébriques définis sur k.

Les résultats sont particulierement simples lorsque le corps résiduel k est de dimension co-
homologique < 1, cas qui fait Pobjet du paragraphe 4. On démontre par exemple en quelques
lignes que G est automatiquement résiduellement quasi-déployé et que H'(G) = {0} dés que G
est simplement connexe (condition qui est pour nous I’analogue de la connexité du cas classique).
On y détermine aussi explicitement tous les groupes anisotropes sur K. Nous retrouvons ainsi
en les généralisant et par des démonstrations courtes et unifiées les résultats obtenus par M.
Kneser lorsque K est un corps localement compact de caractéristique zéro ([15]), au moyen de
vérifcations cas par cas, souvent difficiles.

Les résultats exposés ici ont été partiellement annoncés dans [5], [6], [7].

Qu’il nous soit permis de terminer cette Introduction en rappelant tout ce que notre théorie
doit a N. Iwahori. C’est lui qui le premier, en collaboration avec O. Goldman, a fait apparaitre
pour le groupe linéaire général 'importance des ”sous-groupes d’Iwahori” ([12]), puis nous a
ouvert la voie par un article fondamental, écrit en collaboration avec H. Matsumoto, sur les
groupes de Chevalley ([14]). Il voudra bien trouver ici le témoignage de notre fidéle amitié.

1Réécrit en latex par Anis Zidani.
Pour toute erreur ou suggestion, veuillez me contacter a ’adresse : zidani@math.univ-lyonl.fr.
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1. Notations et rappels.

1.1. Sauf au n° 1.3 K désigne un corps commutatif, complet pour une valuation discrete w telle
que w(K*) = Z. On note 7 une uniformisante de K, O anneau des entiers, p son idéal maximal,
k = O/p le corps résiduel, que l'on suppose parfait. On note K une cloture séparable de K,
K la sous-extension étale maximale de K,, O I'anneau des entiers de K, p son idéal maximal,
k= O/f) son corps résiduel, qui est une cloture algébrique de k. On pose I's = Gal(K;/K) et
I' = Gal(K/K), que l'on identifie canoniquement & Gal(k/k). L’expression “extension de K”
signifie "sous-extension de K.

1.2. On désigne par G un groupe algébrique (dans ce travail, tous les groupes algébriques
sont supposés linéaires) défini sur K. On note G° sa composante neutre, qu’on suppose réductive,
2GY 1e groupe dérivé de G, j : G’ = G un K-revétement universel de 2G° et Ad: G = AdG
la représentation adjointe (cf. [2] 2.25 et 26). On se permet, lorsqu’aucune confusion n’est a
craindre, de désigner par la méme lettre un groupe algébrique défini sur K et le groupe de ses
points rationnels sur K.

On note S un tore K-déployé maximal de G, S un tore K-déployé maximal contenant S et
défini sur K (on sait qu'un tel tore existe (II 5.1.12)), T le centralisateur de S dans G° (rappelons
que GO est quasi-déployé sur K, puisque K est de dimension cohomologique < 1, et que T est un
tore maximal de ), N le normalisateur de S dans G. On pose Sgs = SN PGP et S.s = SN2G°
et 'on note ® (resp. ®) le systéme de racines de G suivant S (resp. S).

1.3. Dans ce numéro exclusivement, K est un corps commutatif quelconque, K une extension
galoisienne de K, K une cloture séparable de K. On note H un groupe semi-simple connexe
défini sur K, (donc déployé sur Ki). Nous allons fixer quelques notations, rappeler quelques
résultats classiques et en tirer des conséquences faciles dont nous laissons la démonstration au
lecteur.

(a) Au groupe H est associé son graphe de Dynkin D = Dyn H, canoniquement isomorphe au
graphe de Dynkin du systéme de racines de H par rapport & un tore maximal. A un graphe
de Dynkin D est associé un groupe commutatif fini C(D), quotient du groupe des poids
par le groupe des poids radiciels. Si C' est un sous-groupe de C(D), on note Aut(D,C)
le sous-groupe de Aut D stabilisant C. Au groupe H correspond un sous-groupe C'(H)
de C(Dyn H), image du groupe des poids des représentations linéaires de H, appelé le
cocentre de H. On a C(H) = {1} (resp. C(H) = C(D)) si et seulement si H est adjoint
(resp. simplement connexe). Si H est défini sur K, la loi d’opération du groupe de Galois
I' = Gal(K,/K) sur H fournit un homomorphisme pg x : I' = Aut(D, C(H)).

(b) A tout triple formé d’un graphe de Dynkin D, d’un homomorphisme p de I' dans Aut D
et d'un sous-groupe C de C(D) stable par l'image de p, correspond un groupe semi-
simple connexe H quasi-déployé sur K, et un seul a K-isomorphisme pres, tel que le
triple (Dyn H, pp x, C(H)) soit isomorphe a (D, p,C). Le type de H, ou de la classe de
K-isomorphisme de H, est le couple (D,Im p), ou plutdt la classe d’isomorphisme de ce
couple. Le groupe H est déployé sur K si et seulement si Im p = {1}. La plus petite exten-
sion E de K telle que H soit déployé sur E (que nous appellerons K-extension déployante
de H) est le corps des invariants du noyau de p. On peut donc considérer py g comme un
homomorphisme injectif de Gal(E/K) dans Aut D.

(¢) Supposons H défini sur K. Il existe un groupe H? quasi-déployé sur K, et un seul a K-
isomorphisme pres, tel que H soit une forme intérieure de H? (ou ce qui revient au méme,
que HY soit une forme intérieure de H), c’est-a-dire soit obtenu par torsion de HY par
un cocycle z € ZY(T, (Ad H?)(Kj)) (pour la notion de torsion, voir [17] et aussi le n°3.3
ci-dessous). Remarquons que Aut H? est produit semi-direct (en tant que I'-groupe) du
sous-groupe formé des automorphismes conservant un épinglage de Steinberg (cf. II 4.1.3)
par Ad HY. Par suite, I'application canonique de H°(Aut H9) dans H(Aut H/ Ad H?)
est surjective et le noyau de Papplication canonique de H*(Ad H?) dans H'(Aut HY) est
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nul. Autrement dit, H et H? sont K-isomorphes si et seulement si le cocycle z ci-dessus
est un cobord.

Si de plus H est quasi-déployé sur K, alors H et H? sont deux groupes quasi-déployés
sur K formes intérieures 'un de lautre. I1 résulte alors de l'alinéa précédent qu’ils sont
K-isomorphes et que la restriction de z & Gal(KS/K) est un cobord, qu’on peut supposer
nul, quitte & le remplacer par un cocycle cohomologue. Par suite, H est K -isomorphe au
groupe ,(HY) obtenu par torsion par un cocycle z € Z'(Gal(K /K), (Ad HY(K)).

(d) Supposons H quasi-déployé sur K. Soit E sa K-extension déployante minimale et soit C' son
cocentre. Soit () ’ensemble des classes de K-isomorphisme de groupes H? quasi-déployés
sur K et K-isomorphes & H. Soit £’ I’'ensemble des homomorphismes de Gal(K,/K) dans
Aut(D, C) prolongeant py x et soit £’ le quotient de £’ par l'action de Aut(D,C) par
automorphismes intérieurs. A p € £’ faisons correspondre la classe de K-isomorphismes de
groupes quasi-déployés sur K correspondant au triple (D, p, C'). Il résulte immédiatement

de (b) que I'on obtient ainsi une bijection, dite canonique, de £’ sur Q.

Soit p € L', et soit E le corps des invariants de Ker p. La donnée de p équivaut a celle de
E et de ’homomorphisme p : Gal(E/K) = Gal(K,/K)/Ker p — Aut(D, C). D’autre part,
Cal(K,/F) = Ker P = Kerpn Cal(K,/K) est un sous-groupe distingué de Gal(K,/K),
E est une extension galoisienne de K égale 4 EK et Gal(E / K ) s’identifie canoniquement
a4 Gal(E/E N K) par restriction, d’ott la définition de py x : Gal(E/EN K) — Aut(D, C).
On en déduit aussitdt que £’ s’identifie canoniquement & 1’ensemble £ des couples (F, p)
satisfaisant aux deux conditions suivantes ;

(i) E est une extension galoisienne de K telle que E = EK (ce qui permet d’identifier
Gal(E/K) et Gal(E/ENK)) :

(ii) p est un homomorphisme injectif de Gal(E/K) dans Aut(D,C) prolongeant py g :
Cal(E/ENK) — Aut(D,C).

En composant la bijection £ — £’ ainsi définie avec I’application canonique de £’ sur Q,
on obtient une surjection, dite canonique et notée A, de L sur @), puis, par passage au
quotient, une bijection A sur Q du quotient £ de £ par la relation d’équivalence "E; = Ej
et il existe o € Aut(D, C) tel que py = int o p”.

REMARQUES. 1) Si H est défini sur K, on peut prendre p = py i et () est non vide. Par
suite, une condition nécessaire pour que H soit K-isomorphe a un groupe défini sur K est que
E soit une extension galoisienne de K (ce qui est entrainé par (i)).

2) Si ENK = K, la condition (ii) signifie simplement que p = Pui !

1.4. Immeubles. Au groupe G sont associés deux immeubles, qui restent inchangés si ’on
remplace G par G’ ou par Ad G (pour la définition d’un immeuble, voir I; rappelons simplement
que c’est un complexe polysimplicial muni d’'une métrique et d’une famille de sous-complexes
appelés appartements; pour les résultats ci-dessous, voir II, notamment 4.2 et 5.1 : le groupe G
y est supposé connexe, mais on passe immédiatement au cas général grace a II 4.2.12), & savoir :

— limmeuble Z de G sur K, sur lequel opérent par automorphismes les groupes G’ (f( ),

G(K) et AdG(K) de maniére compatible avec les homomorphismes j et Ad. Au tore S est
associé un appartement A qui est un espace affine euclidien dont I'espace des translations
V g’identifie au dual de X*(Ss5) ® R. Par transport de structure, le groupe de Galois I’

opeére par automorphismes sur Z, de maniére compatible avec son action sur X*(Ss;).

— l'immeuble Z de G sur K, qui s’identifie & ’ensemble des points fixes de Ii dans g et sur
lequel opeérent les groupes G'(K),G(K) et AdG(K). L’intersection A = ANZ en est un
appartement, c’est un espace affine sous le dual V' de X*(Sss) @ R et les facettes de Z sont

les intersections avec Z des facettes de Z invariantes par L.
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Toute chambre de Z (resp. I) est contenue dans un appartement et G'(K) (resp. G'(K))
opere transitivement sur ’ensemble des chambres, sur I’ensemble des appartements et méme sur
I’ensemble des couples formés d’une chambre et d’un appartement la contenant.

1.5. Graphe résiduel. La structure de complexe polysimplicial de A (resp. A) est celle
associée au groupe de Weyl affine W (resp. W) d'un systéme de racines réduit dans 1% (resp.
V) ayant méme groupe de Weyl que ® (resp. ®). Plus précisément, elle est donnée par un
échelonnage (au sens de I 1.4 ou "affine root system” au sens de [19]) de ® (resp. @), dont le
graphe de Dynkin est appelé le graphe résiduel (resp. le K-graphe résiduel) de G et est noté
A (resp. Ag). Le groupe W (resp. W) est irréductible si et seulement A (resp. Ag) est
connexe et si et seulement si 2G° est K-presque simple (resp. K-presque simple). Les facettes
de Z (resp. T) sont alors des simplexes et si C' est une chambre de Z (resp. Z), les sommets
de C correspondent aux sommets de A, ou plutdét aux complémentaires de sommets. D’une
maniere générale, les facettes F' de C' correspondent bijectivement aux parties X de I’ensemble
des sommets de A (resp. Ag) ne contenant aucune composante connexe : on dit que X est le
type de F (I 1.3.5). Toute facette F de Z (resp. Z) est transformée par G'(K) (resp. G'(K))
d’une facette de C' et d’une seule, d’ou la définition du type d’une facette quelconque.

On trouvera dans I 1.4 (compte tenu de IT E 1, qui répare 'omission du graphe By — BCs:
oo ) la liste des K-graphes résiduels connexes possibles ; on notera que seules peuvent in-
tervenir (et interviennent effectivement) comme classes du graphe résiduel ”absolu” A celles
qui n’ont pas de sommets multipliables (IT 4.2.23) c’est-a-dire les graphes de Dynkin complétés
des systemes de racines réduits irréductibles et les graphes obtenus a partir de ces derniers en
changeant le sens d’une ou deux fleches.

Le groupe des automorphismes de I"immeuble 7 opere sur A. On en déduit des homomor-
phismes &,&,£%,,7 de G(K),G'(K),(AdG)°(K),T dans Aut A, compatibles avec j, Ad et les
actions de I'. L’homomorphisme ¢ est trivial. On pose Int A = Tm &9 aq - on vérifie aisément que,
si Ay,---, A, sont les composantes connexes de A, on a Int A =Int Ay x --- x Int A, et que, si
A est irréductible, alors Int A = Aut A sauf si A est le graphe de Dynkin complété d’un systéme
de racines de type A,, pour n = 2, D,, pour n 2 4 ou Eg, cas ou Int A est le sous-groupe d’ordre
respectivement n 4+ 1, 4 et 3 noté I'. dans [4], p. 176 et C dans [18]. En particulier, Int A ne
dépend que de A, ce qui justifie la notation. Observons que Int A est toujours commutatif.

1.6. Schémas. Le mot schéma signifie schéma affine. Il s’agira toujours de schémas en
groupes lisses sur Panneau O ou O. La fibre générique (resp. la fibre fermée, notée H) d’'un tel
schéma H sera considérée comme un groupe algébrique défini sur K ou K (resp. k ou l~c) (cf. I
1.2).

On note S (resp. S,T) le O-schéma en groupes lisse canonique de fibre générique S (resp.
S,T) (IT 4.4).

Soit F une facette de .#. I lui est associé un O-schéma en groupes lisse de fibre générique
G°, dont le groupe des points & valeurs dans O s’identifie au stabilisateur de F dans Go(f( ) (IT
4.6.18), condition qui le caractérise a isomorphisme unique prés. En imitant la démonstration de
IT 4.6.18 (ou G était supposé connexe), on construit aisément un O-schéma en groupes lisse dont
le groupe des points entiers est le stabilisateur Stab F' de F' dans G (f{ ) et dont la fibre générique
est le groupe algébrique Stab F' - GO (la démonstration est d’ailleurs beaucoup plus simple qu’en
IT 4.6.18 : on fait la somme directe de copies du schéma précédent, indexée par un systeme de
représentants de Stab F'//(Stab F' N G°), au lieu d’avoir des "recollements”, et les questions de
séparation et d’affinité, délicates dans IT 4.6.18, sont triviales). Ce schéma est noté Gp (au lieu
de G}, notation de II), et sa composante neutre est notée GY%.

1.7. Sous-groupes parahoriques. On appelle sous-groupe parahorique de G associé
a la facette F' de_ 7 et Pon note Pp I'image canonique du groupe G (O) des points entiers
de G% dans G°(K) (IT 5.2.6). Les sous-groupes d’ITwahori de G sont par définition les sous-
groupes parahoriques minimaux, ¢’est-a-dire ceux associés aux chambres de Z. La correspondance
F — Pp est bijective (IT 5.1.39) et Stab F' = Norm Pr. C’est pourquoi, si P est un sous-groupe
parahorique de G, associé a la facette F, on note aussi P (resp. N(P)) le schéma G4 (resp. Gr).
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L’application qui a un l;—sous—groupe parabolique p de P fait correspondre I'image réciproque
dans P = P(O) de p(k) est une bijection croissante sur I’ensemble des sous-groupe parahoriques
de G contenus dans P, qui envoie ’ensemble des k-sous-groupes de Borel de P sur I’ensemble
des sous-groupes d’Iwahori contenus dans P.

Si la facette F' est invariante par I, cest-a-dire correspond & une facette de Z, tous les sché-
mas précédents proviennent par changement de base de O-schémas en groupes lisses, notés de
la méme maniére. Les sous-groupes parahoriques correspondant aux facettes invariantes sont
ceux invariants par [. On les appelle sous-groupes K-parahoriques de G (ou K-sous-groupes
parahoriques). Si P est un tel sous-groupe, les sous-groupes K-parahoriques de G contenus dans
P correspondent bijectivement comme plus haut aux k-sous-groupes paraboliques de P (rap-
pelons que k est supposé parfait). Les sous-groupes K-parahoriques minimaux correspondent
aux chambres de Z. Ce sont les sous-groupes K-parahoriques P tels que le groupe algébrique
P soit "presque anisotrope” sur k, c’est-a-dire n’admette pas de k-sous-groupe parabolique pro-
pre. Comme G'(K) opére transitivement sur I’ensemble des chambres de Z, deux sous-groupes

K-parahoriques minimaux sont conjugués par un élément de G'(K), et a fortiori par un élément
de G(K).

1.8. Composante résiduellement neutre. On appelle composante résiduellement neu-
tre de G et 'on note G% le sous-groupe de G(f( ) engendré par la réunion des sous-groupes
parahoriques. On a G = T%(0).j(G'(K)) € GO(K) (II 5.2.11), ot T désigne la composante
neutre de T. Soit C' une chambre de A, B le sous-groupe d’Iwahori correspondant et posons
N = G% N N(K) : le triple (G, B, N%) est un systéme de Tits de groupe de Weyl W (II
5.2.12). Par suite, tout sous-groupe parahorique est son propre normalisateur dans G, De la
conjugaison par G'(K) des sous-groupes K-parahoriques minimaux, on déduit aisément que le
groupe G N G(K), noté GY, est le sous-groupe engendré par les points rationnels sur K des
sous-groupes K-parahoriques de G. Le triple (G%, By, N%) ott B (resp. NY) est le stabilisa-
teur dans G% d’une chambre de A (resp. de A) est un systéme de Tits de groupe de Weyl W
(I 5.2.12).

Posons G°' = Keré N GY(K) (1.5). Vu la transitivité de G'(K) sur les couples formés
d’une chambre de 7 et d’un appartement la contenant, G est produit de G°° par le noyau
de ’homomorphisme N(K) N G°(K) — Aut A. Si GO est semi-simple, ce noyau est le groupe
H= T(O) (I1 4.6.3). Il en résulte que le groupe quotient G /G est alors isomorphe au ”groupe
des composantes connexes” T(0)/T°(O) du schéma T. En particulier, on a G°' = G des que
GY est simplement connexe ou adjoint (II 4.4.18 IX).

2. Groupes résiduellement déployés ou quasi-déployés.

2.1. On dit que G est résiduellement déployé sur K si le rang sur K de 2GY est le méme que
son rang sur K autrement dit si Sg = SSS, ousi I’ opere trivialement sur X* (S s), Ou encore

sur A. On a alorsNA A (mais non 7 = 7 1). Ceci entraine que G est quasi-déployé sur K
puisqu’il I'est sur K. Plus précisément :

PROPOSITION. Pour que G soit résiduellement déployé sur K, il faut et il suffit que G soit
quasi-déployé sur K et que les orbites de I's = Gal(Ks/K) dans le graphe de Dynkin D de G
soient les mémes que celles de Gal(K/K).

C’est immédiat, puisque le rang sur K de 2G° est égal au nombre d’orbites de I';.

Remarquons que si G est quasi-déployé sur K et si la K-extension déployante de G est to-
talement ramifiée, alors G est résiduellement déployé sur K. La réciproque n’est pas toujours
vraie (contrairement a ce qui est dit dans [19], p. 37) ; elle l'est cependant si G est absolument
simple et n’est pas de type 3Dy sur K et D, sur K.

2.2. On dit que G est résiduellement quasi-déployé sur K s’il possede un sous-groupe
d’Twahori stable par T, ou encore s’il existe une chambre C de Z stable par I'. L’intersection
C N T est alors une chambre de Z et, par conjugaison par un élément de G°(K), on peut sup-
poser C' C A. Si G est quasi-déployé sur K, alors G est résiduellement quasi-déployé sur K (la
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réciproque est inexacte, cf. §4). En effet, soit (aq,- - ,@,) un systéme de racines simples de G
suivant S stable par I et soit a € A ; 'ensemble D des z € A tels que oy (z—a) = - - - = . (z —a)
est une droite de A, fixée par T, et n’est contenu dans aucun des hyperplans afﬁnes murs des
racines affines de A. Par suite, D rencontre une chambre de A, qui est stable par L.

Supposons G résiduellement quasi-déployé sur K; alors, G est résiduellement déployé sur
K si et seulement si T opére trivialement sur le graphe résiduel A de G (1.5) : cette derniére
condition revient en effet & dire que I laisse fixes les sommets d'une chambre C' C I invariante
par [, ou encore que r opére trivialement sur A.

2.3. Soit L un corps et soit L une cloture séparable de L. Les deux assertions suivantes
sont bien connues (cf. 1.3) :

(D) Tout groupe semi-simple connexe H défini sur L, est Ls-isomorphe & un groupe H¢ défini
et déployé sur L, unique & L-isomorphisme pres.

D) Tout groupe semi-simple connexe H défini sur L est une forme intérieure (cf. 1.3 (¢)) d’'un
g
groupe H? défini et quasi-déployé sur L, unique a L-isomorphisme prés.

L’analogie entre le "cas classique” des groupes semi-simples sur un corps quelconque et le
”cas local” conduit naturellement a poser les deux questions :

(RD) Tout groupe semi-simple connexe H défini sur K est-il K-isomorphe & un groupe H? défini
et résiduellement déployé sur K ? Si oui, ce dernier est-il unique & K-isomorphisme pres ?

(RQD) Tout groupe semi-simple connexe H défini sur K est-il une "forme intérieure” (i.e. obtenue
par torsion par un cocycle z € Z*(T', (Ad H?)(K))) d’un groupe H? défini et résiduellement
quasi-déployé sur K 7 Si oui, ya-t- 11 unicité a K-isomorphisme pres ?

La réponse & (RQD) est immédiate : Oui pour l'existence, car il suffit de prendre le groupe H?
donné par (QD). Il est en effet résiduellement quasi-déployé et 1'on passe de H? & H par torsion
par un cocycle & valeurs dans (Ad H9)(K) d’aprés 1.3 (¢). Non pour I'unicité : par exemple,
soit D un corps gauche de centre K, de degré d > 1, d’indice de ramification égal a d ; on
montre alors aisément que SL;(D) et SLy sont des groupes résiduellement quasi-déployés formes
intérieures l'un de lautre (cf. §4 et [10]). Une question plus "naturelle” serait d’ailleurs obtenue
en remplagant dans (RQD) le groupe (Ad H?)(K) par sa composante résiduellement neutre :
nous espérons revenir ultérieurement la-dessus. Disons simplement qu’ici encore, 'unicité n’est
pas exacte en général (i.e. dés que dimk > 1) : un contre-exemple est fourni par les deux groupes
SL1(D4), ot D1 est le corps des quaternions sur K = R((¢)) correspondant au couple (—1, +t).

La réponse a (RD) est plus délicate et plus nuancée : elle fait 'objet du reste de ce paragraphe.

2.4. Classification. Dans la suite de ce paragraphe, on note H un groupe semi-simple
connexe défini sur K. On désigne par D son graphe de Dynkin, C son cocentre, E sa K-extension
déployante, Q (resp. R) lensemble (éventuellement vide) des classes de K-isomorphismes de
groupes K-isomorphes & H et quasi-déployés (resp. résiduellement déployés) sur K, de sorte que
R C Q.

Reprenons les notations de 1.3 (d) et considérons 'application canonique A de £ sur Q.

PROPOSITION. L ’image réciproque de R dans L par X est l’ensemble L des couples (E,p) € L
(i.e. satisfaisant aux conditions (i) et (ii) de 1.3 (d)) tels que les orbites de Imp et de Impy
dans D soient les mémes.

Cela résulte de 2.1.

COROLLAIRE 1. Soit E une extension galoisienne totalement ramifiée de K telle que E = EK.
1l existe un élément et un seul dans R dont la K-extension déployante soit E.

On a en effet ENK = K et £ contient un et un seul élément de la forme (E,p), a savoir
(E,p H. i), qui satisfait évidemment a la condition de la proposition.

COROLLAIRE 2. Supposons que Im P i SOit son propre normalisateur dans Aut(D). Alors,
R est en correspondance bijective avec | ‘ensemble des extensions galoisiennes totalement ramifiées
E de K telles que E = EK.
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Soit (E,p) € L. Comme p est injectif et que Gal(E/E N K) est distingué dans Gal(E/K),
on a nécessairement £ N K = K.

2.5. Le cas déployé. 1l est trivial :

PROPOSITION. Supposons que H est déployé sur K Il existe un groupe H® et un seul ¢ K-
isomorphisme pres qui soit résiduellement déployé sur K et K-isomorphe a H. C’est le groupe
semi-simple connexe déployé sur K ayant méme graphe de Dynkin et méme cocentre que H.

C’est évident : les conditions imposées & H? entrainent qu'il est déployé puisque rg H? =
g H = I8y H.

2.6. Le cas absolument simple.

PROPOSITION. Supposons que H est défini sur K, absolument presque simple et non déployé
sur K (cf. 2.5). Il existe un groupe H?, et un seul a K -isomorphisme prés, satisfaisant aus deux
conditions :

(i) H? est résiduellement déployé sur K ;
(ii) 11 existe un K -isomorphisme i de H sur H tel que les lois d’opération de s sur les graphes
de Dynkin de H et de H? identifiés grice a i, soient les mémes.

L’unicité résulte de 1.3 (b). Prenons pour H? le groupe quasi-déployé sur K correspondant
au triple (D, pu i, C(H)) (1.3 (b)). Il est clair que (ii) est satisfaite. Vu 2.1, il reste & montrer
que les orbites de pp, i et celles de sa restriction py z a Gal(K,/K) sont les mémes. Or si, sur
f(,H est de type 24,, pour n £ 2,2D,, pour n = 5,2Eg ou %Dy, on a Impp g =AutD ;si H est
de type 2Dy, Im Py & est son propre normalisateur dans Aut D et coincide donc avec Im pg g
enfin, si H est de type 3Dy, les orbites de Pu i sont celles de Aut D, d’ou le résultat.

REMARQUES.

1) H? peut étre de type °Dy sur K et 2Dy sur K. La K-extension déployante est alors de
degré 6 et d’indice de ramification 3 et n’est pas totalement ramifiée.

2) Supposons que H (toujours absolument presque simple) soit seulement défini sur K et
soit non déployé sur K. 1l peut se faire que R soit vide (nous verrons en 2.7 que ceci
exige cark = 2, ou 3 dans le cas D, trialitaire). En tout état de cause, les arguments
ci-dessus et le cor. 2 de 2.4 entrainent que, si H n’est pas de type >D, sur K, alors R
est en correspondance bijective avec les extensions galoisiennes totalement ramifiées E de
K telles que E = EK, donc quadratiques sauf si H est de type D, sur K (ce qui exige
cark = 3). Si H est de type 2Dy sur K, on montre aisément que ou bien R = ), ou bien
R # 0 est en correspondance bijective avec les extensions E de K totalement ramifiées
cycliques d’ordre 3 telles que E=EK , ol bien R # () est en correspondance bijective avec
les extensions galoisiennes E de K, de groupe de Galois &3, d’indice de ramification 3,
telles que E = EK (compte tenu de ce que tout automorphisme de Aut Dy = &3 laissant
fixes les éléments d’ordre 3 est intérieur) ; pour voir qu’il ne peut y avoir simultanément
des groupes H? de type 3D, et d’autres de types °D,, on remarque que la composée F
des deux extensions E; et Fy correspondantes serait une extension galoisienne de degré
18, d’indice de ramification 3 puisque E = FK, et dont le groupe de Galois aurait trois
quotients d’ordre 6 distincts, & savoir Gal(E1(Ey N K)/K), Gal(Ey/K) et Gal(F N K/K),
le premier étant isomorphe & Z/27 x Z/37Z et le second a &3 : la classification des groupes
d’ordre 18 montre que c’est impossible.

Ainsi, lorsque H est absolument presque simple, les groupes H? sont tous de méme type.
Nous verrons que ce n’est pas vrai en général (2.9).

3) Supposons H simplement connezxe (ou adjoint), défini sur K et K -presque simple. Alors,
R est non vide.

En effet, Gal(E/K) opére transitivement sur les composantes connexes de D. Soit Dy I'une
d’elles et soit ¥ son stabilisateur dans Gal(E/K). Distinguons deux cas :
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(a) ¥ = {1}. Alors, H est K-isomorphe a HE/f(H/ ott H' est un groupe déployé sur E.
De plus, Gal(E/K) est produit direct de Gal(E/K) et de Ker pp k. Si E est le corps
des invariants de Ker pg i, on a donc E= EK KNE =K et E est 'extension étale
maximale de E. Appliquant 2.5, on trouve un groupe H'¢ résiduellement déployé sur
E et E-isomorphe & H’, et il suffit de poser H? = HE/KH'd.

(b) ¥ # {1}. On raisonne alors comme en 2.6 : les orbites de py x et de P i sont les
mémes.

Dans le cas (b), contrairement au cas (a) (cf. 2.8), il n’est pas nécessaire de supposer H
simplement connexe ou adjoint.

2.7. Le cas de caractéristique résiduelle nulle ou premiéere a [E : R] Posons
n = [E : K]. On note K, lextension cyclotomique de niveau n de K (“corps des racines
n-iemes de 'unité”). On sait que Gal(K,/K) s’identifie canoniquement & un sous-groupe de
(Z/nZ)* ([3]., p-V 78). On note A,, le "groupe affine” de 'anneau Z/nZ, c’est-a-dire le groupe
des transformations
Yap i T — ax +b

de Z/nZ (avec a € (Z/nZ)* et b € Z/nZ), et AX le sous-groupe de A,, formé des v, avec
a € Gal(K,/K).
On suppose dans la suite de ce n° que la condition suivante est satisfaite :

(CO) cark =0, ou, plus généralement, n est premier a l’exposant caractéristique de k.

Alors, E est Uextension cyclique K(x'/™) : voir par exemple [16] pp. 75-76 (les résultats
y sont énoncés pour un corps complet, mais on vérifie aisément que les démonstrations restent
valables en le supposant seulement hensélien ; si car k = 0, la prop. 8, p. 76, donne explicitement
le résultat ; si cark = p # 0, le cor. 4, p. 75, montre que E est cyclique et on raisonne comme
dans la démonstration de la prop. 8 pour montrer que K a une seule extension de degré n). Par
suite, F est une extension galoisienne de K. On note ¢ une racine primitive n-iéme de 1'unité,
de sorte que a € Gal(K,,/K) C (Z/nZ)* opeére sur K,, par ( — (. On identifie d'une part Z/nZ
et Gal(E/K) en posant b - 7'/™ = ¢*x'/™ pour b € Z/nZ, d’autre part Gal(E/K) et son image
dans Aut D, notée I', grace a l'isomorphisme py 5.

Soit U 'ensemble des u € K tels que u™ soit une uniformisante de K. Pour u € U, on pose
E,=K,(u) et Ey, = K(u) : ce sont des extensions totalement ramifiées de degré n de K, et
K respectivement, la premiere étant galoisienne.

LEMME. Soit uw € U. Il existe un isomorphisme ¢, et un seul de AT sur Gal(E,/K) tel que

Pu(Vap) (CFu) = (FHPu
pour a € Gal(K,,/K) C (Z/nZ)*, be Z/nZ et k € Z.

La vérification est immédiate, compte tenu de ce que Gal(E, /K) est produit semi-direct de
Gal(Ey/Ep,) = Gal(K,,/K) par Gal(E,/K,,) = Z/nZ.

PROPOSITION. Supposons que (CO) est satisfaite et que H est simplement conneze ou adjoint,
ou plus généralement que Aut(D,C) = Aut D. L’ensemble R est alors non vide.

Supposons de plus que H est K -presque simple. Il existe alors un zsomorphwme ¢ de AK sur
un sous-groupe de Aut D tel que L% (2.4) est I’ensemble des couples (E,, ¢ o ¢7) (cf. lemme
précédent) pour uw € U. L’élément N(u) = AN(Ey,p o ¢,1)) de R ne dépend que de limage de
7™ dans kX /(k*)™ et on obtient par passage au quotient une bijection de k> /(k*)"™ sur R.
Tout élément de R est donc de type (D, p(AK)).

Si de plus car K = cark et st Hy et Ho sont deux groupes résiduellement déployés sur K et
K -isomorphes a H, il existe un k-automorphisme T de K tel que Hy et Hy soient T-isomorphes.

Supposons d’abord que H est K-presque simple. Le groupe de Galois I’ = Gal(E / K )=27Z/nZ
opere alors transitivement sur les composantes connexes de D. Soit Dy une telle composante
connexe. Le stabilisateur de Dy dans I' est un sous-groupe cyclique de Aut Dy, un coup d’oeil
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sur la classification montre qu’il est d’ordre ng = 1,2 ou 3 et il existe une orbite 2y de I" telle
que Card(Qg N Dy) = ng, d’ott Card Qg = n. Choisissons un point so € Qp N Dy, de sorte que
b+ b so est une bijection de T' sur Qg et que Qo N Dy = {b- sg | ngb = 0}. Soient Q1,--- , Qi
les autres orbites de I' dans D, et, pour j =1,--- , k, soit s; un point arbitrairement choisi dans
Q; N Dy. Posons

I'={yeAutD 4Ty ' =T ety Q=0 pour 0 < j <k}

Soit a ’homomorphisme de ' dans Aut Z/nZ = (Z/nZ)* tel que vy~ = a(y)z pour v E r
et € I' = Z/nZ. Puisque I' opére de maniére simplement transitive sur {2, le groupe I est
produit semi-direct du stabilisateur I‘O de sg dans r par I'. Mais un élément de I‘O laisse fixes
tous les s;. Pour v € Lo, a=a(y), z€Z/nZ et 0 < j <k, on a donc

v (zs;) = (yay™h) 55 = (az) - 55 (*)

Inversement, on vérifie sans peine que, pour tout a € (Z/nZ)*, la formule (x) définit un
élément de T'y. Autrement dit, il existe un isomorphisme ¢ du groupe affine A, sur I tel que

¢(Yap) - (x85) = (az +D) - s

pour a € (Z/nZ)*, b,z € Z/nZ et 0 < j < k. On note ¢ la restriction de ¢ a AX.

Soit alors (E, p) € £d et soit L = K ﬁ E la sous-extension étale maximale de £. On a vu
que lopération de restriction fournit un isomorphisme canonique de T" sur Gal(E/L) qui nous
permet d’identifier ces deux groupes. Mais on sait qu’il existe un isomorphisme 6y de Gal(E/L)
dans le groupe des racines de 'unité du corps résiduel [ de L ([16], p. 75). Par suite, | contient
les racines n-iemes de 'unité et, vu le lemme de Hensel, L contient K,. Il existe donc v € L tel
que E = L(a), avec a™ = v. Montrons que l’on peut prendre pour v une uniformisante de L. En
effet, posons v = ur® avec u € L, w(u) =0 et k € Z. Sid = (k,n), on a u = (o™ g~/ d)d et
I'image % de u dans le corps résiduel de E est une puissance d-ieme. Mais le corps résiduel de L
est le méme que celui de E et le lemme de Hensel entraine qu'’il existe € L avec w(x) = 0 et
u =z On aalors (/%)% = (z7*/4)4 et o/® appartient & L puisque L D K,, D K4. Par suite,
d =1 et il suffit de remplacer a par o"7®, ou r et s sont des entiers tels que kr +ns = 1, ce qui
remplace v par u’.

Comme p est injectif, que Im p contient et normalise I' et a les mémes orbites que I, on voit
que p est un isomorphisme de Gal(E/K) sur un sous-groupe de I’ contenant I', donc produit
semi-direct de son intersection avec Iy par I'. Soit 'y I'image réciproque de cette intersection
dans Gal(E/K) et soit Ey le corps des invariants de I'y. Ce qui précéde entraine que E = LEy,
que L et Ey sont linéairement disjointes et que Ey est une extension (non galoisienne) totalement
ramifiée de degré n de K.

Soit 0 € I'y. On a E = L(a) = L(o(«)) et, d’apres la théorie de Kummer, ceci signifie que
a™ et o(a)™ engendrent le méme sous-groupe de L™ /(L*)™ ([3], V 85), autrement dit qu’il existe
un entier r premier avec n et un z, € L* tels que o(a)™ = o™ 2. Prenant les valuations des
deux membres, on trouve 1 = r + nw(z, ), d’olt o(a)” = a™y? avec y, = a~ ")z, € L*. Par
suite, on a o(a) = ¢, - @, o ¢, € L¥est 'une des racines n-iémes de y?. L’application o — ¢,
est alors un 1-cocycle de I'y = Gal(L/K) a valeurs dans L* et, vu le théoreme 90 de Hilbert,
il existe ¢ € L* tel que ¢, = o(c)c™!. Quitte & multiplier ¢ par une puissance de 7, on peut
supposer w(c) = 0. Comme u = ¢~ est invariant par tout o € Iy = Gal(E/Ey), on voit que u
est une uniformisante de Ey et que u” = ¢~ "a™ € LN Ey = K est une uniformisante de K.

Autrement dit, nous avons montré qu’il existe u € U tel que E = L(u) et Ey = Ey, = K(u).

Comme 720" € K, on a n= /"y € K, d’ott b-u = ¢’u pour b € . 1l en résulte que I'action
de Ty = Gal(L/K) = Gal(E/K)/ Gal(E/L) sur Gal(E/L) se factorise par 'homomorphisme de
restriction Gal(L/K) — Gal(K, /K). Mais, cette action est fidéle puisque celle de Ty sur T' Iest.
Par suite, on a« L = K,, et E = FE,,.

Enfin, les éléments p(¢y(7a,0)) €t ©(Va,0) de o opérent de la méme maniere sur I', donc
sont égaux. Comme, apres nos identifications, p o ¢,, et ¢ sont I'identité sur I', il en résulte que

p=pod,t.
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En résumé, nous avons montré que tout élément de L est de la forme (E,,¢ o ¢ ') pour
un u € U. La réciproque est immédiate : si u € U, alors E = E, K, ’homomorphisme pogrt
prolonge py i, il est injectif et son image est contenue dans I', donc a mémes orbites que
I'=Im pH,f{'

Montrons maintenant qu'une condition nécessaire et suffisante pour que A\((E,, ¢ o ¢;1)) =
M(Ey, 0o ¢,1)) (pour u,u’ € U) est que (w'u!)" € (OX)". Comme un élément de O* est une
puissance n-iéme si et seulement si son image dans k* en est une, ceci achévera la démonstration
du deuxieme alinéa de la proposition. Que la condition soit suffisante est immédiat : elle entraine
en effet v = (“uv avec ¢ € Z et v € O%, don E, = E,/, et un calcul simple montre que
Oy = ¢y 0inty; ., dott o ¢;,1 = int(p(y1,)) "t o o ¢ t. Réciproquement, si les éléments de
R images de u et u’ sont les mémes, alors E, = E,/, et il existe a € Aut D centralisant " et
transformant o o ¢, ! en ¢ o d);,l. Or le centralisateur I'y de I' dans Aut D est le produit de T’
par le stabilisateur de Dy dans I';. On en déduit que I'y est réduit a I' lorsque ng = 2 ou 3 et
est produit direct de I' par un sous-groupe isomorphe a Aut Dy et commutant avec I' lorsque
no = 1. Par suite, on peut supposer a € T et les deux lois d’opération de Gal(F,/K) dans D se
déduisent 1'une de I’autre par un automorphisme intérieur de Gal(E, /K) défini par un élément
o de I' = Gal(E,/K,). Comme Ey, est le corps des invariants du stabilisateur de sg, on a
Ey, = 0(Ep.) et il existe un entier ¢ tel que K (u) = K(¢“u'). Par suite, u et (“u’ sont deux
uniformisantes de K (u) et il existe z € K (u) tel que w(z) = 0 et que u™ = z™u'™. Mais les corps
résiduels de K et de K (u) sont les mémes et le lemme de Hensel entraine qu’il existe y € O tel
que y" = z", d'ott (u™tu')" € (O*)", ce qu'il fallait démontrer.

La derniere assertion de la proposition est évidente puisqu’en égale caractéristique, K est,
pour tout u € U, le corps des séries formelles k((u™)) en u™.

Enfin, on passe du cas K -presque simple au cas simplement connexe (ou adjoint) par produit
direct (notons que l'extension déployante de toute composante K -presque simple de H est une
sous-extension de E, donc satisfait & (CO)), puis au cas général par isogénie stricte, au sens de
[18] (isogénie centrale dans la terminologie de [2]).

2.8. La prop. 2.7 devient inexacte si I’on supprime I'hypotheése Aut(D,C) = Aut D. Plus
précisément, gardons les hypotheses de 2.7, en supposant H simplement connexe et K -presque
simple, et soit H' un groupe défini sur K, strictement isogéne a H, de cocentre C' C C. Soit
R’ T'ensemble des classes de K-isomorphisme de groupes résiduellement déployés sur K et K-
isomorphes & H’. Alors, on voit aussitdt que R’ est non vide si et seulement si p(AK) C
Aut(D,C") et que sous cette condition 2.7 reste valable en remplagant H par H'.

Donnons un exemple ot R' = 0. Prenons K = R((t)), de sorte que, pour n = 3, on a
K = K, = C((t)) et que AKX est le groupe diédral d’ordre 2n. Prenons H = He /7)) /ey Sk
(groupe obtenu par restriction des scalaires & partir de SLy). La représentation de I' dans C' est
alors la représentation réguliere de Z/7Z sur le corps Fa et se décompose en somme directe de
trois représentations irréductibles inéquivalentes, la représentation unité et deux représentations
de degré 3 échangées par automorphisme x — —x de Z/7Z, correspondant 'une aux racines
7-iemes de I'unité, c’est-a-dire aux éléments de Fg, racines de I’équation X3 + X2 +1 = 0, autre
aux racines de X3 + X +1 = 0. 1l suffit alors de prendre pour C’ 'espace V de I'une de ces deux
représentations.

On peut avoir R’ = ) méme si H' est défini et quasi-déployé sur K et K-presque simple. Par
exemple, soit Hy le groupe simplement connexe quasi-déployé sur E = R((t'/7)), de type 2Dy,
(n = 2) correspondant & I'extension quadratique E = C((t'/7)) de E. On prend H = gk Ho.
La représentation de I' dans C' est somme directe de deux exemplaires de la représentation
réguliere de I" sur Fy, échangés par le générateur o de Gal(E /E). 1l suffit alors de prendre pour
H' le groupe strictement isogéne & H de cocentre V + o (V).

2.9. Dans les cas que nous venons d’étudier, tous les éléments de R sont de méme type. Ceci
n’est pas toujours vrai lorsque car k # 0. Donnons un contre-exemple. Soit p = car k > 0 et soit r
un entier > 1, premier a p. Supposons que K possede une extension galoisienne étale L cyclique
d’ordre r et une extension galoisienne totalement ramifiée E de degré e = rp”, dont le groupe
de Galois T" soit produit semi-direct d’un sous-groupe A cyclique d’ordre r par un sous-groupe
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distingué d’ordre p" sur lequel A opere fidélement (cf. [16] p. 75). On pose E = EK et I'on
identifie Gal(E/K) a T.

Prenons H = g,k SLy. Alors, H est f(—isomorphe a HE/RSLQ (cf. I 1.5.3), Aot rg, H =
gz H =1 et H est résiduellement déployé sur K. Le graphe de Dynkin D se compose de e
points et le choix d’un ”point origine” d € D permet de l'identifier a I' opérant sur lui-méme par
translations a gauche.

Posons maintenant ' = FL & E ®k L, de sorte que Gal(E’'/K) s’identifie canoniquement
au produit direct I' x Gal(L/K). Le choix d’un isomorphisme de Gal(L/K) sur A nous permet
donc d’identifier Gal(E’/K) a T' x A. Prolongeons alors la loi d’opération de I sur D =T" en
une loi d’opération de Gal(E’'/K) =T' x A en faisant opérer le second facteur par translations
a droite sur I, de sorte que I' x A opere fidélement sur D. Le stabilisateur de d dans I' x A
est le sous-groupe B formé des (a=!,a) pour a € A et I' x A est produit semi-direct de B par
I' =T x {1}. Soit F' le corps des invariants de B dans E’ : l'assertion précédente entraine que
E' = FL et que FNL = K. Par suite, F est une extension totalement ramifiée (non galoisienne)
de Ket F=FK >~ F®gK.

Soit alors H' le groupe simplement connexe quasi-déployé sur K, d’extension déployante E’,
de graphe de Dynkin D, correspondant & la loi d’opération fidele de Gal(E’/K) dans D introduite
ci dessus. Il est immédiat que H' = [/ SLy. Par suite, H' est R—isomorphe a HE/RSLQ donc
a H, et est résiduellement déployé sur K puisque rg; H' =rgz H = 1.

On a ainsi construit deux groupes simplement connexes H et H', résiduellement déployés
sur K, K-presque simples et K-isomorphes, mais qui ne sont pas de méme type sur K : la
K-extension déployante de H est E, de degré e et celle de H' est E’, de degré re.

2.10. Terminons cette entomologie par un exemple d’un groupe H simplement connexe,
défini et quasi-déployé sur K, K-presque simple, pour lequel R est vide. 1l faut évidemment vu
2.7 supposer car k = p > 0. Donnons-nous trois extensions L, E; et Ey de K telles que

— L est une extension quadratique étale de K;

— FE; est une extension galoisienne totalement ramifiée de L et tout ¢ € I'y induisant sur L
le K-automorphisme non trivial de L permute E; et Fo;

— posons E; = E;K ; alors, Ey # Es.

Remarquons que ces conditions ne sont pas compatibles si car k = 0.

Prenons alors H =[] By /K SLo, de sorte que H est bien quasi-déployé sur K, de rang 1. De
plus, H est f(—isomorphe a HEI/RSLQ X HEZ/RSLQ (car By ® g L =2 Fy x Es, donc Fy Qg K=~
E; x E~|2) d’ott rgp H = 2. Si H' est un groupe défini sur K et K-isomorphe & H, laction sur
H'(K) = H(K) d’un élément o € Gal(K/K) non trivial sur L, doit permuter les deux facteurs,
donc rgy H' < 1, et H' n’est pas résiduellement déployé.

Reste a construire explicitement un exemple d’extensions L, E'1, Es convenables. Tout d’abord,
on prend pour L une extension quadratique étale de K, définie par une équation irréductible
X2 —aX +b=0, avec a,b € O*. On note u;,us les deux racines de cette équation, de sorte
que u] + ug = a.

Si car K = 0, on suppose que K contient les racines p-iemes de 1'unité et on pose E; =
L((1+7u;)'/P). La seule chose non évidente & vérifier est que E; # Fs. Or dans le cas contraire,
il existerait, d’aprés Kummer, un entier 7 et un z € K tels que 1 4 7u; = 2P(1 + 7uy)". Ceci
entraine w(z) = 0, puis * = 1 mod 7, puis u; = rus mod 7, c’est-a-dire a = (r + 1)ug mod 7,
ce qui est impossible puisque d’une part a # 0 mod 7, d’autre part ’équation X2 —aX +b =0
reste irréductible apres réduction modr.

Si car K = p, on pose E; = L(v;), otl v; est racine de I'équation XP —7P~1 X —7u; = 0. Alors,
7 1v; est racine d’une équation d’Artin-Schreier et on raisonne comme ci-dessus, en remplacant
la théorie de Kummer par celle d’Artin-Schreier.

REMARQUE. Le groupe Ilz / #SLo est un exemple de groupe défini sur K, simplement con-
nexe, K-presque simple, pour lequel R = § : il n’existe méme pas de groupe défini sur K et
K-isomorphe & H.

En supposant p = 2 (resp. p = 3) et en considérant le groupe SU3 quasi-déployé sur K (resp.
le groupe simplement connexe quasi-déployé de type 3D, sur K ) correspondant & 1’extension
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cyclique de degré 2 (resp. 3) Fy de K, on trouve un exemple de groupe H simplement connexe
défini sur K, absolument presque simple, pour lequel R = @), pour la méme raison que ci-dessus.

2.11. En résumé :

— si H est simplement connexe ou adjoint, alors R # () dés que ou bien car k ne divise pas
[E : f(] (2.7), ou bien H est défini sur K et K-presque simple (2.6, Remarque 3). 1l y a
un exemple ol R = () avec H défini sur K et K-presque simple, ou avec H absolument
presque simple (2.10).

— si le cocentre de H est quelconque, alors R # () dés que ou bien H est déployé sur K (2.5),
ou bien H est défini sur K et absolument presque simple (2.6). Il y a un exemple ou R =
avec H défini sur K, K-presque simple et car k = 0 (2.8).

3. Cohomologie.

On donne une extension galoisienne étale K de K, avec K ¢ K’ C K, d’anneau des entiers ',
d’idéal maximal p’, de corps résiduel &’ et de groupe de Galois I' = Gal(K'/K) = Gal(k'/k).

3.1. Soit X un groupe compact totalement discontinu ; un X -groupe est un groupe discret
sur lequel X opére contintiment (autrement dit le stabilisateur de chaque point est ouvert, donc
d’indice fini) par automorphismes.

Soit A un T-groupe et soit A(K’) le groupe des points fixes de Gal(K/K’) dans A. Le
groupe I' opeére sur A(K') et on peut considérer 'ensemble Z*(T', A(K')) des cocycles continus
a: s+ as de I' & valeurs dans A(K') et les ensembles de cohomologie H' (I, A(K')) (pour
i = 0 si A est commutatif, pour i = 0,1 sinon). On les note simplement Z*(A) et H'(A) lorsque
aucune confusion n’est a craindre.

Quatre cas seront principalement envisagés :

(1) A= G(K) : on écrit Z(G) et H'(G) au lieu de Z'(A), H'(A).

(2) A= H est un sous-groupe de G(K) contenant G* et stable par I.
(3) A= G(0O), ou G est un O-schéma en groupes lisse de fibre générique G.
Notations : Z'(G), H'(G).

(4) A= g(k), olt g est un groupe algébrique défini sur k. Notations: Z¢(g), H(g).

3.2. Pour simplifier 'exposé, nous ferons les démonstrations des assertions qui suivent en
supposant de plus que le degré [K' : K] est fini. On passe de la au cas général par les procédés
habituels de limite inductive ([17] 1.9) : nous en laisserons le soin au lecteur.

3.3. Torsion. Soit E un I'-groupe opérant sur G par automorphismes de f(—groupe al-
gébrique, de maniére compatible avec I'action de I'y : pour s € I'y, d’image § € T', on a
S(a-g)=°%a-%gpour a € E,g € G(Kj).

Rappelons la définition du K-groupe algébrique G obtenu a partir de G par torsion par un
cocycle a € ZY(T', E) : comme K,-groupe algébrique, on a .G = G et l'action de s € T'y sur
«G(Ks) = G(K) est donnée par s : g — as - °g, ou § est 'image de s dans T' ([17] I-59). 11
s’ensuit que G = G comme K'-groupe algébrique.

On peut en particulier prendre F = G(K') opérant sur G par automorphismes intérieurs,
d’ott la définition du groupe ,G obtenu par torsion de G par un cocycle a € Z'(G). On sait
(loc. cit.) que si a et b sont deux cocycles cohomologues, alors ,G et ,G sont K-isomorphes, de
mani¢re d’ailleurs non canonique : si ¢ € G(L) est tel que by = ¢ tas®c (s € T), alors int ¢ est
un K-isomorphisme de ,G sur ,G. D’autre part, si b € Z1(,G), alors ba € Z'(G), 'application
b+ ba est une bijection de Z!(,G) sur Z1(G) et définit par passage aux quotients une bijection
74 HY(,G) — H(G) appelée translation par a (loc. cit.). On a y(,G) = p.G.

On a des définitions et résultats semblables dans chacun des trois autres cas envisagés ci-
dessus. Nous laissons au lecteur le soin de les expliciter.

3.4. Enongons deux lemmes ”bien connus”, en en rappelant brievement la démonstration.
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LEMME 1. Soit A un groupe algébrique défini sur k, soit U un sous-groupe distingué défini
sur k unipotent et conneze, et soit B= A/U.
(i) L’application canonique de H°(A) dans H°(B) est surjective.
(i) L’application canonique de H*(A) dans H'(B) est bijective.
(iii) Plus précisément, pour tout cocycle 2 € Z*(B), il existe un cocycle z € Z*(A) d’image z
et, si deuz cocycles z,z' € Z'(A) ont méme image dans Z'(B), alors il existe u € U tel
que zl = u" zs%u pour tout s € T.

Par récurrence sur dim U on se raméne au cas ou U est commutatif, et ’on sait qu un groupe
unipotent connexe commutatif défini sur un corps parfait est cohomologiquement trivial (i.e.
HY(U) = {0} pour i > 0). L’assertion (i) résulte alors de l'exactitude de la suite H%(A4) —
H°(B) — HY(U) ([17], 1-59). De plus, les groupes A et B opérent sur U par automorphismes
intérieurs et pour tout cocycle z appartenant & Z'(A) ou a Z!(B), le groupe tordu .U est toujours
unipotent connexe commutatif. L’assertion (ii) résulte alors du cor. 2 a la prop. 39 et de la prop.
41 de [17] (1-67 et 70). La premiére partie de l'assertion (iii) résulte de la démonstration de la
prop. 41 de [17]. Pour la seconde, on vérifie que, si 2., = asz, avec a5 € U, alors a € Z1(,U), et

il existe u € U tel que a5 = u™t2,%uz;t, dou 2/ = u=tzs%u.

LEMME 2. Soit G un O-schéma en groupes lisse.
(i) L’application canonique de H°(G) = G(O) dans H(G) = G(k) est surjective.
(ii) L’application canonique de H'(G) dans H'(G) est bijective.

L’assertion (i) est le lemme de Hensel. Plus généralement, pour n entier = 0, posons O,, =
O/p™"tt et O, = O'/p™*! (de sorte que Oy = k et O) = k’): le lemme de Hensel dit que
Papplication canonique de G(O) (resp. G(O,+1)) dans G(O,,) est surjective et G(O) est la
limite projective des G(O,,). Les mémes assertions restent vraies en remplacant la lettre O par
O’ (rappelons que dans les démonstrations on suppose que [K’ : K] est fini, donc que K’ est
complet). D’autre part, soit G,, le O,,-schéma en groupes lisse obtenu par le changement de base
O — O, ; par application du foncteur de Greenberg aux G,,, on obtient une suite de groupes
algébriques Q,, définis sur k, telle que @, (k') s’identifie canoniquement en tant que I'-groupe
a G, (0;,) et lapplication canonique de G(O;, ;) sur G(O},) a un "morphisme de transition”
An : Qni1 — Qn défini sur k, surjectif, séparable et & noyau unipotent connexe (cf. [13]).

Soit alors zg € Z1(Gy). Par application du lemme 1, on construit par récurrence une suite
de cocycles z, € Z1(G(O))) telle que z, = A\, 0 2,41, d’ot, par passage a la limite projective,
un cocycle z € Z'(G) d’image 29. Soient maintenant z,z’ € Z'(G), dont les images zy et 2,
dans Z'(Gg) sont cohomologues ; il nous reste & montrer que z et 2’ sont cohomologues. Vu
la surjectivité de 1'application canonique de G(O’) dans G(k’), on peut, supposer que z{, = 2y,
quitte & remplacer z’ par un cocycle cohomologue. En appliquant le lemme 1 (iii), on construit
par récurrence une suite d’éléments u,, € ker A, telle que les images z, et z/, de z et 2’ dans
ZY(G(0))) satisfassent a

2(s)=u;t - urt - za(s) - S(ur---u,)  (pour s €T).

Si u est la limite projective de la suite des produits uj - - u,, on a alors 2/(s) = u~!
pour tout s, ce qui acheve la démonstration.

z(s)%u

3.5. On note désormais H un sous-groupe de G (f( ) stable par I et contenant la composante
neutre résiduelle G,

Soit P un sous-groupe K-parahorique de G. Notons Ny (P) le sous-schéma en groupes ouvert
de N(P) (1.7) tel que Nz (P)(O) = Normpy (P) (cf. 11 4.6.21). On appelle application canonique
de H*(N g (P)) dans H(H) la composée de I'inverse de la bijection H! (N (P)) — HY(Ngz(P)))
donnée par le lemme 2 et de 'application canonique de H'(Ny(P)) = H'(Normg(P)) dans
H'(H).

3.6. On dit quun cocycle z appartenant & Z1(Ng(P)) ou & Z1(Ng(P)) est anisotrope si le
k-groupe algébrique ,P déduit de P par torsion par z (les groupes Nz (P) et Ng(P) opérant
sur P par automorphismes intérieurs) est presque anisotrope (1.7), condition qui ne dépend
que de la classe de cohomologie de z puisque P et ,,P sont K-isomorphes lorsque z et 2z’ sont
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cohomologues ([17] I-5). On note Z'(Nz(P))an (resp. Z'(Ng(P))an) I'ensemble de ces cocycles
et HY(Ng(P))an (resp. HY(Ng(P))an) ensemble de leurs classes de cohomologie.

Remarquons que si P est un sous-groupe d’Iwahori, on a H*(Ng (P))en = H*(Ng(P)); par
contre, si P n’est pas un sous-groupe K-parahorique minimal de G, alors H' (N (P))4, ne con-
tient pas I’élément neutre de H'(Ng(P)) et peut étre vide.

3.7. LEMME. Soit P un sous-groupe K -parahorique de G et soit z € Z'(H).

(i) Pour que P soit un sous-groupe K -parahorique de .G, il faut et il suffit que z € Z' (N (P)).
(ii) Pour que P soit un sous-groupe K-parahorique minimal de ,G, il faut et il suffit que
2€ ZYNg(P))an-

Dire que P est un sous-groupe K-parahorique de ,G signifie que z,°Pz;1 = P pour tout

s € I'. L’assertion (i) en résulte puisque *P = P. L’assertion (ii) est alors évidente puisque P

minimal équivaut a P presque anisotrope.

3.8. LEMME. Soit P un sous-groupe K -parahorique de G et soit 2 € H'(H). Les conditions
suivantes sont équivalentes :

(a) # appartient a l'image canonique de H' (N (P)) (resp. de HY(Ng(P))an) ;

(b) il existe un cocycle z € % tel que P soit un sous-groupe K -parahorique (resp. un sous-groupe
K -parahorique minimal) de .G ;

(c) pour tout cocycle z € %, il existe h € H tel que hPh™1 soit un sous-groupe K -parahorique
(resp. un sous-groupe K -parahorique minimal) de ,G.

Les équivalences (a) < (b) sont une reformulation du lemme 3.7. Que (b) entraine (c) résulte
de ce que int h est un K-isomorphisme de /G sur .G deés que 2, = h=12,°h (s € T'). Inversement,
si (c) est satisfaite, on obtient (b) en remplagant z par le cocycle cohomologue 2, = h=1z,%h.

3.9. LEMME. Soit P un sous-groupe K-parahorique de G. La restriction a H' (N (P))an de
lapplication canonique de H*(N g (P)) dans H'(H) est injective.

Soient z,2" € Z'(Ng(P))an ayant méme image dans H'(H) et soit h € H tel que 2, =
h='z,°h pour s € I'. Comme P est un sous-groupe K-parahorique minimal & la fois de .G et
de /G (3.7) et que int h est un K-isomorphisme de . G sur .G, on voit que P et hPh™! sont
deux sous-groupes K-parahoriques minimaux de ,G. Mais on sait que deux tels sous-groupes
sont conjugués par un élément de ,G’(K) (1.7). Par suite, il existe g € G°N,G(K) C H tel que
hPh™ = gPg~'. On a alors g~'h € Normp (P) = Ny (P)(O) et, pout tout s € T', g = z,°g2; !,
d’ott z, = g thzl*(h~lg). Le lemme en résulte.

3.10. Soit z € Z'(H). On peut appliquer les résultats précédents au groupe .G : on obtient
des objets que l'on distinguera par un indice z a gauche. Par exemple, si () est un sous-groupe
K-parahorique de .G, le O-schéma Ny (Q) est celui pour lequel ,Nx(Q)(O) = NormyQ,
'opération de I étant induite par celle sur ,G. Les notations telles que ,H, H* (:Ng(Q))an ete.
s’expliquent d’elles-mémes.

PROPOSITION.  L’application composée de l'injection canonique de H'(,Ng(Q))an dans
H(,H) suivie de la translation 7, de H*(,H) dans H*(H) est une bijection, dite canonique, de

HY(.Ny(Q))an sur lensemble des classes de cohomologie des cocycles a € Z1(H) tels que les
sous-groupes K -parahoriques minimauz de ,G soient conjugués de QQ par des éléments de H.

Lorsque z = 1, ce n’est qu’une reformulation des deux lemmes précédents. Le cas général
s’en déduit aussitot par translation par z.

3.11. Soit O I'ensemble des classes de conjugaison 6 par H de sous-groupes parahoriques
de G possédant la propriété suivante : il existe 2 € Z*(H) tel que ,G posséde un sous-groupe
K-parahorique Q appartenant a 6. Une telle classe est invariante par T : on a *Q = 271Qz
pour s € I. Choisissons alors pour tout # € © un cocycle z(f) € Z'(H) et un sous-groupe
K-parahorique Q(0) de .G tels que Q(0) € 6. La prop. 3.10 décrit 'ensemble des cocycles
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a € Z'(H) tels que les sous-groupes K-parahoriques minimauz de ,G appartiennent a 6. D’ott
immédiatement :

3.12. THEOREME. L application dans H*(H) de la somme (ensembliste) des H' ((9)Nu(Q(0)))an
pour 6 € ©, somme des applications canoniques, est une bijection.

3.13. REMARQUES.
1) On peut avoir H' ()N (Q(0)))an = 0 (cf. 4.7).

2) On peut remplacer Q(f) par n’'importe quel élément @ de 6 : si Q@ = hQ(O)h~' (avec
h € H), il suffit de remplacer z par le cocycle s — h~1z,°h. En particulier, si 6 contient
un sous-groupe K-parahorique P de G, on peut prendre z(0) = 1 et Q(f) = P. Mais,
bien qu’invariante par T, une classe § € © ne contient pas toujours de sous-groupe K-
parahorique de G. Prenons par exemple pour K’ une extension quadratique de K, pour
G le groupe adjoint PGUs de la forme hermitienne z°z + y°y et pour H le groupe G(K')
On voit aisément que G est résiduellement quasi-déployé, de graphe résiduel de type A;
(cf. I, p. 29), et que " et £(H ), qui sont tous deux d’ordre 2, opérent par permutation des
deux sommets de A. Les sous-groupes parahoriques maximaux de G constituent donc une
seule classe § de H-conjugaison, qui contient deux classes de G°°-conjugaison permutées
par I ; il n’y a donc pas de sous-groupe K-parahorique de G appartenant & 0. Cependant, 6
appartient & ©. En effet, G est une forme intérieure de PGLy et il existe z € Z1(G) = Z(H)
tel que .G soit K-isomorphe a PGLo, donc soit résiduellement déployé et posseéde un sous-
groupe K-parahorique appartenant a 6.

3) Une classe de H -conjugaison de sous-groupes parahoriques invariante par T n'appartient pas
toujours ¢ ©, méme si G est connexe et simplement connexe (ce qui entraine H = G(K)).
Par exemple, soit D un corps gauche de centre K, de degré d, non ramifié (autrement dit, le
corps résiduel D de D est un corps gauche de centre k, de degré d), et prenons G = SL; (D).
C’est un groupe connexe et simplement connexe, forme intérieure anisotrope de SL;. On
voit aisément (cf. [10]) que l'unique point 2 de 'immeuble Z est un point spécial de Z
et que la fibre fermée P, du schéma correspondant est SL; (D). Comme G est une forme
intérieure de SLg, le groupe de Galois T’ opére sur le graphe résiduel A de G (qui est de
type Ag—1) par permutations circulaires. Mais il laisse fixe le sommet correspondant & la

classe du sous-groupe parahorique maximal P, ; par suite, I' opére trivialement sur A.

Soit 0y la classe de conjugaison des sous-groupes d’Iwahori. Elle est évidemment invari-
ante par I'. Supposons que 6y appartienne & © et soit z € H H@G) tel que .G posséde un
K-sous-groupe d’Iwahori, c’est-a-dire soit résiduellement quasi-déployé. Le groupe G est
simplement connexe, donc opére trivialement sur A et 'action de T sur le graphe résiduel de
»G est triviale puisqu’obtenue a partir de I'action triviale par torsion par un cocycle trivial.
Par suite, .G est résiduellement déployé, donc est K-isomorphe a SLgy, et G est obtenu a
partir de SL, par torsion par le cocycle z~! € Z'(SL,). Mais on sait que H!(SLy) = {0}
et 'on obtient finalement que G est K-isomorphe a SLg, ce qui est absurde. Par suite,

0o ¢ 0.

3.14. Supposons G résiduellement déployé. Soit B un K-sous-groupe d’Iwahori. Toute
classe de G%°-conjugaison de sous-groupes parahoriques posséde un élément contenant B, qui
est automatiquement invariant par [. De plus, deux tels sous-groupes parahoriques sont H-
conjugués si et seulement si ils sont transformés 'un de Pautre par un élément de £(H). D’ou :

COROLLAIRE. Soient Py = B, Py,--- , P, des représentants des orbites de £(H) dans ’ensemble
des sous-groupes parahoriques contenant B. L’application de la somme des H* (N (Pj))an dans
HY(H) somme des applications canoniques (pour 0 < j < 1) est une bijection.

3.15. COROLLAIRE. Supposons G résiduellement quasi-déployé. Soit B un K-sous-groupe
d’Iwahori et soient Py = B, - -+ , P, les sous-groupes K-parahoriques de G contenant B. Prenons
pour H la composante neutre résiduelle G*°, de sorte que Ngu(P;) = P;. L’application de la
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somme des H' (N g (P}))an dans H'(G") somme des applications canoniques (pour 0 < j < r)
est une bijection.

En effet, toute classe 6 de G°°-conjugaison de sous-groupes parahoriques contient un élément
et un seul contenant B, soit P(#), et la classe 6 est I-invariante si et seulement si P(6) est.

3.16. REMARQUES.

1) Rappelons que si G est connexe et simplement connexe, on a G% = G(R ) : le corollaire
précédent donne donc une détermination de H'(G) lorsque G est connexe, simplement
connexe et résiduellement quasi-déployé.

2) On peut dans le cor. 3.15 remplacer ’hypothése H = G par I'hypotheése plus faible
H C Ker& : on obtient alors une bijection de la somme des H' (N (P;))an sur H'(H).

3) Le corps K est de dimension cohomologique < 1 ([16] p. 170). Si G est connere, on a
donc H'(Gal(K,/K),G(K,)) = {0} ; par suite, H'(T's, G(K,)), ensemble de cohomologie
galoisienne "total” de G, que I'on a généralement I’habitude de noter H'(G), s’identifie
canoniquement & H'(T', G(K)), c’est-a-dire, en prenant K’ = K dans ce qui précede, i
I'ensemble que nous avons noté H'(G).

4. Corps résiduel de dimension < 1.

Dans ce paragraphe, nous supposons que le corps résiduel k est de dimension cohomologique < 1.
Rappelons que tout groupe algébrique défini sur k est alors quasi-déployé, c’est-a-dire possede
un sous-groupe de Borel défini sur k, et que, plus généralement, on a H'(g) = {0} pour tout
groupe algébrique connexe g défini sur k.

4.1. THEOREME. G est résiduellement quasi-déployé sur K.

Soit F' une facette de Z invariante par I'. La fibre fermée du O-schéma P posséde un sous-
groupe de Borel b défini sur k et I'image réciproque de b dans P est un sous-groupe d’Iwahori
de G invariant par I' (1.7).

4.2. Tl existe donc une chambre de A invariante par Z (1.7). On note C' une telle chambre
et B le sous-groupe d’Iwahori correspondant.

4.3. COROLLAIRE. Pour que G soit presque anisotrope sur K (1.7), il faut et il suffit que,
pour toute composante connere Aoy du graphe résiduel A de G, le stabilisateur de Ay dans T
opére transitivement sur Ag.

Dire que G est presque anisotrope sur K veut dire que le tore K-déployé maximal Sy, de
PGP est réduit a I'élément neutre, ou encore que 'appartement A (ou I'immeuble Z) est réduit a
un point. Pour cela, il faut et il suffit que la seule facette de C' invariante par I soit C' elle-méme,
ou encore que toute partie non vide de A stable par I contienne une composante connexe de A.
D’ou le corollaire.

4.4. Un coup d’oeil sur la liste des graphes résiduels connexes montre que le seul graphe
résiduel connexe A tel que Aut A soit transitif sur A est celui de type 4, (n = 1). Il en ré-
sulte aussitot que, si G est presque anisotrope sur K, le K-revétement universel G' de G est
K -isomorphe & un produit direct de groupes de la forme HL/RSLH, obtenus par restriction des
scalaires & K & partir d’'un groupe SL,, considéré comme groupe algébrique défini sur une exten-
sion séparable finie (automatiquement totalement ramifiée) L de K.

4.5. Plus précisément, le groupe des automorphismes du graphe résiduel A de type A,, est
d’ordre 2 pour n = 1 et est, pour n = 2, le groupe diédral Dy(,41), produit semi-direct de Z/27
opérant par une symétrie par le sous-groupe distingué cyclique Int A = Z/(n + 1)Z opérant par
permutations circulaires. On voit alors aisément que les seuls sous-groupes de Aut A transitifs
sur A sont Aut A lui-méme, Int A et, lorsque n est impair = 3, le sous-groupe diédral D, 1)
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produit semi-direct de Z/2Z, opérant par une symétrie sans points fixes, et du sous-groupe
d’ordre (n+1)/2 de Int A.

Utilisant la classification des groupes semi-simples ([18]), on en déduit que si G est conneze,
simplement conneze, absolument presque simple et K-anisotrope (on passe ensuite au cas général
d’un groupe presque anisotrope par les procédés habituels: restriction des scalaires, produit
direct, épimorphisme central), alors G est K-isomorphe d l'un des groupes suivants :

ler cas : SL1(D), ot D est un corps gauche de centre K, de degré n + 1

(n=1,4T)=IntA =7/(n+1)Z) (cf. 1.5));

2¢me cas : SUp(D), o D est un corps gauche ayant pour centre une extension quadratique étale L de
K, de degré n + 1, muni d’une involution o de seconde espece triviale sur K
(n 22 et y(I') = Aut A = Doy11));

3éme cas : SUz(D) ot D est comme dans le 2éme cas, mais de degré (n + 1)/2, la forme hermitienne
étant, aprés un éventuel ”"changement de coordonnées” (cf. 1I 10.1.3), la forme 2z + “ydy
sur D?, ot § est une uniformisante de D (pour n impair 2 3,v(T') = D(,,41))-

4.6. Remarquons que si 'y(f) est commutatif (par exemple si r Pest), alors seuls peuvent se
produire le ler cas (G = SL1(D)) et le 3¢me cas pour n = 3 (G = SUs(D), out D est un corps
de quaternions sur une extension quadratique étale L de K, muni d’une involution de seconde
espéce ; remarquons d’une part que ce cas a été omis par erreur dans [7], d’autre part que le
groupe SU; (D) correspondant n’apparait pas dans cette classification car il est isomorphe & un
SL1(D")).

Si y(T') est cyclique, par exemple si k est fini, ou quasifini ([16] p. 198), ou plus généralement
si I' est limite projective de groupes cycliques, alors seul le ler cas peut se produire. On a ainsi
généralisé les résultats de M. Kneser sur les groupes anisotropes sur un corps localement compact

de caractéristique zéro ([15]).

4.7. Reprenons les notations du paragraphe 2 (en conservant ’hypothése dimk < 1).

THEOREME.
(i) L’application canonique de H'(N g (B)) dans H'(H) est bijective.
(i) Si G est connexe et simplement connexe, on a H'(G) = {0}.

Pour tout z € Z'(H), le groupe .G est résiduellement quasi-déployé. Il résulte alors de la
prop. 3.10 que H*(N#(Q(0)))an = 0 pour tout § € © distinct de la classe 6y des sous-groupes
d’Twahori (ceci résulte aussi de ce que tout groupe semi-simple connexe anisotrope défini sur k
est réduit & I’élément neutre). D’autre part, on a évidemment H'(Ny(B))a, = H'(Ny(B))
puisque B est résoluble. Cela démontre (i).

Si de plus G est connexe et simplement connexe, alors N(B) = B est connexe et 1’on sait que
H'(g) = {0} pour tout groupe algébrique g connexe défini sur k, d’ott (ii).
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