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A tout groupe algébrique G sur un corps k, on peut associer
’ensemble H1(k, G) des classes d’espaces principaux homogenes
sur G qui sont définis sur k (cf. Weil [23] ainsi que Lang-Tate [*7]).
Lorsque G est un groupe «classique», H'(k, G) a une interpréta-
tion non moins classique; ainsi, si G est le groupe projectif PGLx,
H(k, G) s’identifie 4 la partie du groupe de Brauer de k formée
des éléments décomposés par une extension de k dont le degré
divise n (cf. [20], Chap. X); si G est le groupe orthogonal d’une
forme quadratique non dégénérée Q, les éléments de H(k, G)
correspondent bijectivement aux classes de formes quadratiques
non dégénérées sur k qui ont méme rang que Q; etc. Jusqu’a
présent, ces cas particuliers ont été étudiés séparément. Lorsqu’on
essaie d’unifier les résultats obtenus, pour avoir des énoncés valables
pour tout groupe linéaire, ou tout groupe semi-simple, on est
amené 2 formuler un certain nombre de conjectures; ce sont ces
sonjectures que je me propose de discuter.
~ Je me bornerai au cas des groupes linéaires; les variétés
abéliennes posent des problemes tout aussi intéressants, mais
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comme G est un groupe, cela revient i dire que, pour toute exten-
sion k' de k, le faisceau d’anneaux de ¢ &

@k k' n’a pas d’éléments
nilpotents. La composante connexe de I’élément neutre de G est

alors un «groupe algébrique défini sur k», au sens de Weil

Si K est une extension de k, nous noterons Gk le group;: des
points de G & valeurs dans K (ou, comme on dit, des points de G
«rationnels sur K»). Si K/k est galoisienne, de groupe de Galois g
le groupe 8 Opere sur G; il opére méme continfiment, si Ion
munit Gk de la topologie discréte, et g de sa topologie naturelle
de groupe de Galois; si seq et x e Gk, nous noterons s(x),
ou *x le tran_sformé de x par 5. L’ensemble Hy(a, Gx) des éléments
de Gx invariants par g s’identific & Gy. On définit A1 (g, Gg) de
la maniére suivante (cf. Lang-Tate [17), oy [20], p. 131) : un cocyele
est une application continue s—s x; de g dans Gg telle que
xst = Xs®x¢; deux cocycles x; et x; sont dits cohomologues s’il
existe @ € Gg tel que xs = a~lx,%a; c’est 14 une relation d’équi-
valence entre cocycles, et les classes de cette relation d’équivalence
sont par définition les éléments de H (3, Gk); ’ensemble H (g, Gx)
contient un €lément canonique, noté indifféremment 0 ou 1 §11
correspond au cocycle x; égal a 1 pour tout s €g). Lorsque G
est commutatif, H1(g, Gk) a une structure naturelle de groupe
abélien; de plus, on définit par le procédé habituel les groupes de
cohomologie supérieurs Hi(g, Gx). On écrit souvent H{(K/k, G)
au lieu de Hi(g, Gk); on a Hi(K/k, G) = lim - H!(Ka/k, G), lors-
que Kq parcourt I’ensemble des sous-extensions galoisiennes finies
de K.

Le cas le plus intéressant est celui ol ’on prend pour K la
cloture séparable ks de k; les Hi(ks/k, G) sont alors notés Hi(k, G).

Remarque. Lorsque le groupe G n’est pas simple sur K,
H'(ks/k, G) ne coincide pas nécessairement avec la «vraie» coho-
mologie de G, définie par Cartier et Grothendieck (voir [']); de
cls groupes s’introduisent nécessairement, par exemple lorsque
I"on veut étudier des isogénies inséparables sur un corps imparfait.

1.2. Formes

Soit ¥ un schéma algébrique sur k, et supposons (
le £roupe des automo '_ 11SMes dg F (ﬂ g
“ension Kk, Gy est le groupe




: oit V' héma algébrique sur k; on
it K/k une extension, et soit V un sc : T ic;
gi(fquc/V‘ est une K/k-forme de Vs Ve rKetV' @ K sont K-isomor-
phes (i.e. si Vet V' «deviennent isomorphes sur K»). Supposons

' isi lois g, et que V soit
K/k soit galoisienne, de groupe de Ga ( _
i ¢ classes de Klk-formes de V (pour Ja

i_nrojective; alors /e
E;::;();;r (Jl’équivalencc définie par I'isomorphisme) correspondent
bijectivement aux éléments de H 1(K/k, G). La correspondance se
définit de la maniére suivante : si V' est une K/k-forme de V, on
choisit un isomorphisme f : V&iK — V'®iK, et a tout s €g on
fait correspondre Xs = f~1o 8f, qui est un élément de Gk; on obtient
ainsi un cocycle xs dont la classe ne dépend pas du choix de f;
deux K/k-formes définissent des cocycles cohomologues si et seule-
ment si elles sont isomorphes. Réciproquement, tout cocycle x,
correspond 2 une K/k-forme V' de ¥ (on dit parfois que ¥V se
déduit de V' en «tordant ¥ au moyen de x»); cela se voit en utili-
sant les théorémes de descente du corps de base de Weil (ce qui
revient A faire opérer g dans V®xK et & passer au quotient);
cest 12 que I’hypothése de quasi-projectivité intervient. Lorsque
I’on prend K = ks, on parle simplement d’une k-forme de V; les
classes de k-formes correspondent donc aux éléments de H1(k, G),
du moins si ¥ est quasi-projective.

La correspondance entre formes et classes de cohomologie
s’applique aussi lorsque les variétés considérées sont munies de
structures de groupes (ou d’espaces homogeénes, ou d’algebres, etc.),
Gy étant alors le groupe des automorphismes de V®iK muni
de la structure en question; la démonstration est la méme (bien
entex_ldu, il faut vérifier dans chaque cas que I’espéce de structure
considérée est compatible avec la descente du corps de base dans
une extension galoisienne).

Exemple : prenons pour V le groupe G, et munissons-le de
sa: structure n-aturclie d’espace principal homogéne sur G; le groupe
gn amzzws TSt G lui-méme. Comme G est quasi-projectif,
_ de Hl(gkm connu (cf, Lang—Tﬁte [17]) selon lequel les
dm' i hG) correspondent bijectivement aux classes
MW& principaux homogénes sur G qui ont un point rationnel

. On d’autres exemples dans [20), Chap. X, et dans
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;,I: 1.3. Propriétés formelles des H?

Jii On va se borner a en citer quelques-unes :

Is 1.3.1. Soit K/k une extension finie séparable, soit G un groupe

"y algébrique sur K, et soit H = Rg x(G) le groupe algébrique sur k

- obtenu a partir de G par restriction du corps de base au sens de

- Wweil ([24], p. 4). L .

hr On a alors des bijections canoniques :

nt Hi(k, H) — HI(K, G)

/5 pour i = 0, I (et méme pour tout 7/ si G est commutatif).

o 1.3.2. Soit H un sous-groupe de G, et soit x = (x;) un cocycle

Xs dans G. Pour que x soit cohomologue 4 un cocycle de H, il faut

5S¢ et il suffit que le schéma V = (G/H),, obtenu en tordant G/H

[i- au moyen de x, ait un point a valeurs dans k.

ui 1.3.3. Si H est un sous-groupe invariant de G, on a un analogue

i non commutatif de la suite exacte de cohomologie; cf. [29]

e p. 131-134, qui est d’ailleurs trés incomplet; il n’y a heureusement

ag aucune difficulté a le compléter, en se guidant sur le cas topolo-

, gique pour lequel on dispose des exposés de Dedecker [¢],

g Frenkel [®] et Grothendieck [?].

ie

le

% § 2. CORPS DE DIMENSION < |

ni

: 2.1. Définition

e Soit k un corps. Nous dirons que k est de dimension < 1

18 (ce que nous écrirons d(k) < 1) si, pour toute extension algébrique K
de k, le groupe de Brauer By de K est nul; il suffit d’ailleurs que

le Bg = 0 pour toute extension finie K de k (1). _

e Cette condition équivaut a la suivante (cf. [*°], p. 169,

f, prop. 11) :

>S (*) Si L O K sont deux exrensions finies de k, avec L M

3 sur K, on a Npg(L*) =

el

(1) 11 suffit méme que Bx soit nul ; finie et
séparable K de k. En




Le terme de «dimension» est justifié (au moins pour un corps

= Eo o e l .
arfait) par le résultat suivant . ! , ' )
: PROPOSITION 2.1. Soit ke la cloture séparable de k, soit q le

groupe de Galois de kslk, et soit cd(q) la (!r'mc’n..s'r'm: c.ohomoiogique
de g (au sens de Tate, of. [7)). Si k est de dum*r?,smn <1, ona
cd@) < 1 et la réciproque est vraie si k est {lJatf}‘aH:

[On rappelle que cd(g) est le plus .pctll entier n 'tel que
Hn*1(q, A) = 0 pour tout g-module fini 4 (commutatif, bien

u).

emer;(ii c)f(]k) < 1, on a cd(a) < 1 d’aprés le t_héorérnc 4.2 de [7}.
Si k est parfait, k¥ est un groupe divisible; si cd(g) < 1, on voit
tout de suite que cela entraine H?(g, k¥) = 0, autrement d.lt
Bi — 0. En appliquant le méme argument 4 une extension finie
de k, ce qui est licite vu la prop. 3.2 de [7], on voit bien que k est

de dimension < 1.

2.2. Exemples de corps de dimension < 1

2.2.1. Un corps fini.
2.2.2. Une extension de degré de transcendance 1 d’un corps

algébriquement clos.
2.2.3. Un corps local (i.e. complet pour une valuation discrete)
4 corps résiduel algébriquement clos; plus généralement, ’exten-
sion maximale non ramifiée d’un corps local a corps résiduel parfait.
2.2.4. Une extension algébrique de Q contenant toutes les
racines de I'unité.
- Pour les démonstrations (ou les références a la bibliographie),

MDD

iété suivante (cf. Lang [14]) :
-‘ Jﬁa. s Xn) = 0, de degré




tels que [k : k?] < p, la condition (C1) soit équivalente a la con-

| dition d(k) < 1, mais c’est peu probable.
Les exemples 2.2.1, 2.2.2 et 2.2.3 du n° précédent vérifient
(Cy), cf. Lang [']; on ignore s’il en est de méme de I'exemple 2.2.4.

2.4. Premiére conjecture

CONJECTURE 1. Si k est un corps parfait de dimension < 1,
2 et si G est un groupe linéaire connexe défini sur k, on a H'(k, G)=0(?).

Cette conjecture est démontrée dans les cas suivants :

a) Si k est un corps fini (Lang ['5]); dans ce cas, I’hypothése
que G est un groupe linéaire est inutile.

b) Si k est de caractéristique zéro et vérifie (C1) (cf. 'exposé
de Springer a ce colloque).

¢) Si G est résoluble, ou si c’est un groupe semi-simple «clas-
sique» (cf. § 3).

On peut raisonnablement espérer que la démonstration de
Springer peut étre transposée en caractéristique p +# 0; le fait qu’il
doive remplacer I’hypothése d(k) < 1 par (Ci) n’est pas génant
pour les applications : les corps de dimension < 1 les plus impor-
tants vérifient bien (Cy), cf. n° 2.2.

Remarques
1) Inversement, si Hl(k, G) =0 pour tout groupe semi-
simple G, on a d(k) < 1. En effet, soit K une extension séparable
finie de k, soit n un entier, et soit G le groupe Rg/x(PGL,), obtenu
a partir du groupe projectif PGL, par restriction du corps de base
de K a2 k (cf. n°1.3.1); comme H!(k, G)=0, on voit que
HY(K, PGL,) = 0, et, puisque ceci est vrai pour tout », on en
déduit Bg = 0 (cf. [29], Chap. X), d’ou d(k) < .
2) Si I'on abandonne I’hypothése que k est parfait, on peut
seulement conjecturer que H(k, G) = 0 lorsque G est réductif
3 connexe. On peut en effet construire des groupes unipotents dont
la_cohomologie est non nulle; par exemple, si k = ko((t)), ko
étant un corps de caractéristique p non nulle, le sous-groupe G
de Gu x G, défini par I'équation y» — y = 1z? est tel que

() Lang m’ | cntainiha R
o A ' Sl i s st o

58

it |




Hl(k, G) #0 (si p # 2 — on peut construire des exemples ana-
logues pour p = 2).

2.5. Conjectures supplémentaires

La conjecture I ci-dessus me parait extrémement probable.
Les deux suivantes sont plus hasardeuses :

4 CONJECTURE 1’. Soit k un corps parfait de dimension < 1, et
soit G un groupe linéaire connexe défini sur k. Tout espace homogéne
sur G qui est défini sur k posséde un point rationnel sur k.

(Bien entendu, si X est I’espace homogene en question, on
suppose que l’application de G x X dans X est définie sur k.)

Cette conjecture est plus forte que la conjecture I, comme on
le voit en l'appliquant au cas d’un espace homogene principal.

CONJECTURE 1”. Soit k un corps parfait de dimension < 1,
et soit f : G— G' un homomorphisme de groupes algébriques
(définis sur k, ainsi que f). Si f est surjectif, I’application
H(k, G) — HY(k, G") induite par f est surjective.

Ces deux conjectures sont vraies lorsque k est un corps fini :
la premiere a été démontrée par Lang [1%], et la seconde est immé-
diate. Dans le cas général, elles paraissent nettement plus difficiles
que la conjecture I; la conjecture I”, appliquée au cas ou G et G’
sont finis, entraine que le groupe de Galois de ks/k posséde une
propriété de relévement trés stricte, qui ’apparente & un groupe
libre.

§ 3. DEMONSTRATION DE LA CONJECTURE I POUR DIVERS GROUPES

3.1. Réduction au cas semi-simple

rp. - au mupa add:tif Ga

ﬁiy comme I’on sait que

Wb&e&wm(k G)=0
TaN
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galoisienne finie K/k telle que G soit K-isomorphe & un produit
de groupes multiplicatifs Gm. Si L/k est une extension galoisienne
de k contenant K, de groupe de Galois g, le groupe g opére sur
le groupe X des caractéres de G, et aussi sur le groupe
y = Hom (X, Z); le groupe G s’identifie de fagcon naturelle
au produit tensoriel L* @ Y. Comme d(k) < 1, L* est un g-module
cohomologiquement trivial (cf. [20], p. 169, prop. 11), et d’aprés le
théoréeme de Nakayama, il en est de méme de L*® Y (loc. cit.,
p. 170). On a donc H1(L/k, G) = 0, et en passant 2 la limite sur L
on voit bien que Hl(k, G) = 0.

PROPOSITION 3.1.3. Si k est parfait de dimension < 1, et si G
est un groupe linéaire connexe résoluble défini sur k, on a
Hi(k, G) = 0.

Cela résulte des propositions précédentes, en remarquant qu’un
tel groupe est extension d’un tore par un groupe unipotent connexe.

COROLLAIRE. Pour démontrer la conjecture 1, on peut se borner
au cas des groupes semi-simples.

Cela résulte de la proposition précédente et du fait que tout
groupe linéaire connexe est extension d’un groupe semi-simple
par un groupe résoluble connexe.

PrROPOSITION 3.1.4. Soit f : G — G’ une isogénie de groupes
linéaires connexes définis sur k. Si k est parfait de dimension < 1,
Papplication de H)(k, G) dans H'(k, G') définie par f est bijective.

(Bien entendu, on suppose que f est définie sur k.)

Soit N le noyau de f; c’est un sous-groupe fini du centre
de G; si ks désigne la cloture algébrique de k le groupe Gy, s xden-
tifie au quotient G JN. Comme d(k) < 1, on a H2(k, N)
et la suite exacte de cohomologle (cf. [239], p. 133, prop. 2) montre
que Hl(k, G)— H(k, G') est surjectif. Reste a voir que cette
application est injective. Soient x et y deux éléments de H'(k, G)
ayant méme image dans H'(k, G'); quitte a «tordre» G et G’
au moyen d’un cocycle représentant x, on peut supposer que
x = 0. D’aprés [29], loc. cit., I’élément y provient d'un élément
z & Hi(k, N), et ’on est ramené a démontrer que l'image de
H'(k, N) dans H(k, G) est nulle. Or, d’aprés Rosenlicht M
p. 45), il existe un sous»waupe--:de Cartan C de '
ce sous-groupe eantient N, et -
se factorise a trav
a fortiori résoluble

60




Hi(k, C) = 0, et il s’ensuit bien que I’image de Hl(k, N) dans
Hl(k, G) est nulle.

COROLLAIRE. Pour démontrer la conjecture I, on peut se borner
au cas des groupes semi-simples simplement connexes (ou adjoints.

au choix).
C’est évident.

39 Nullité de la cohomologie pour les extensions quadratiques

Démontrons d’abord un résultat général :

PROPOSITION 3.2.1. Soit k un corps parfait infini, soit G un groupe
linéaire connexe défini sur k, et soit K|k une extension galoisienne
finie, de groupe de Galois g. Toute classe de cohomologie
y € H'(K/k, G) peut étre représentée par un cocycle cs (s € g, ¢s € Gk)
tel que, pour tout s #+ 1, cs soit un élément régulier de Gg (au sens
de Chevalley, [%, p. 7-03).

Soit xs un cocycle représentant y; nous devons montrer qu’il
existe a € Gg tel que ¢s = a1 x; *a soit régulier pour tout s +# 1
dans g. Soit H = Rg/x(G) le groupe obtenu & partir de G par
restriction des scalaires de K a k (cf. n°1.3.1) et soit p I’homomor-
phisme canonique de H dans G; on sait que p est défini sur X, et
gue la collection ¢ = (*p) de ses conjugués est un K-isomorphisme
de Hsur G X ... X G (les facteurs de ce produit étant indexés
par les €léments s de g). Soit U I’ensemble des éléments b € H
tels que p(b)-—1-xs°p(b) soit régulier pour tout s #* 1. En tenant
compte de ce que ¢ est un isomorphisme, on voit que U est un ouvert
non vide (pour la topologie de Zariski de H); d’aprés Rosen-
licht ([*], p. 44), il s’ensuit que Hi n U est non vide. Soit
beHgn U, et soit a=p(b); on a a e Gg, et 5p(b) = %a; vu la
m:m de U, il s’ensuit bien que a~1x;%a est régulier pour tout
- 3.2.2. Si K est une extension quadratique d’un
< 1, et si G est un groupe linéaire

0.




aussi 1'unique sous-groupe de Cartan contenant £, ce qui montre
qu’il est stable par s; il est donc en fait défini sur k. D’aprés la
proposition 3.1.3, on a H'(k, C) = 0 d’ou a fortiori H' (K/k, C)=0;
le cocycle x est cohomologue a zéro dans C, donc aussi dans G,
cqfd.

Remarque. La proposition précédente s’étend au cas d’une
extension galoisienne K/k dont le groupe de Galois est un 2-groupe;
en effet, le corps K s’obtient par extensions quadratiques suc-
cessives & partir de k, et ’on applique la proposition a chacune
de ces extensions.

3.3. Groupes classiques

PROPOSITION 3.3.1. Soit k un corps parfait de dimension < 1,
et soit G un groupe semi-simple défini sur k, dont tous les facteurs
simples (sur la cloture algébrique de k) sont de type An, Bn, Ca
ou Dy (le type Dy étant exclu). Alors H (k, G) = 0.

D’aprés la proposition 3.1.4, on peut supposer que G est un
groupe adjoint; on peut aussi supposer qu’il est simple sur £, i.e.
qu’il n’est pas décomposable en produit de fagon non triviale sur
le corps k. Cela n’implique pas nécessairement que G soit simple
sur la cloture algébrique ks de k; mais, si H désigne un facteur
simple de G, et K/k le corps de rationalité de H, on voit tout de
suite que G s’identifie & Rg/x(H). Comme H(k, G) = H'(K, H),
on est ramené a étudier le groupe H. En d’autres termes, on peut 1
supposer que G est simple (sur ks). Soit Go le groupe «de Tohoku»,
construit par Chevalley (cf. [2] ainsi que [9]), et de méme type que G.
Soit A4 le groupe d’automorphismes de Go; comme Go est son
propre groupe adjoint, on a une suite exacte

0—> Go—>A—>E—0,

ol E est un groupe fini (le groupe des automorphismes externes
de Gg). On sait que E est cyclique d’ordre 1 ou 2 (grice au fait que
I'on a éliminé Dy). Comme G est une k-forme de Go, 1 ni
par un élément g € H'(k, A), lequel a une
I’élément e peut étre inter
ou 2 du groupe de Galois
sion K/k de d 1




pondance bijective avec H(K, Go). Sil’on montre que H.l(K, '(.;0):0,
on en déduira que H(K, G) =0, et comme on sait déja que
H\(K/k, G) =0 (cf. prop. 3.2.2), il en résultera bien que
H! (k, G) = 0. :

Nous sommes donc ramené a montrer la nullité de H'(K, Gy)
lorsque Go est un «groupe de Tohoku» de type An, Bu, Cu, D
De plus, la proposition 3.1.4 nous permet, si besoin est, de rem-
placer Go par un groupe isogéne. Cela rend la vérification presque
triviale : pour Ay (resp. Cp), on remplace Go par SLy (resp. par
Spn), et I'on sait que H'(K, SLn) = HY(K, Sps) = 0 (cf. [%9],
Chap. X); pour B, et Dy, on remplace Go par le groupe spécial
orthogonal correspondant SO(Q), et H(K, SO(Q)) est I’ensemble
des classes de formes quadratiques ayant méme rang et méme dis-
criminant que Q (méme invariant d’Arf si la caractéristique est 2
et si le rang est pair). Or, on sait que, pour tout couple de formes
quadratiques Q, Q’, non dégénérées et de méme rang, il existe
une extension L/K, composée d’extensions quadratiques, et telle
que Q et Q' soient isomorphes sur L. Il s’ensuit que H'(K, SO(Q))
est réunion des H(L/K, SO(Q)); comme ces derniers sont nuls
(n® 3.2.2), on en déduit que H*(K, SO(Q)) = 0, ce qui acheve la
démonstration.

[La nullit¢ de H'(K, SO(Q)) se déduit aussi sans difficultés
des résultats de Witt [25] (en caractéristique = 2) et d’Arf [1]
(en caractéristique 2).]

Remarques

1) Les types Gz et Fy doivent pouvoir se traiter par la méme
méthode, en utilisant l'interprétation de G (resp. F;) comme
groupe d’automorphismes d’une algebre d’octonions (resp. d’une
algébre de Jordan exceptionnelle).

2) Chevalley a démontré que le groupe d’automorphismes A
introduit ci-dessus est produit semi-direct de Gy par E : on peut
réaliser E comme sous-groupe de A laissant stable un sous-groupe
de E de Go. Il en résulte que, si H'(k, G) = 0 pour toute forme G

ion H'(k, A)— H(k, E) est bijective. La conjec-
que les formes de G, c’est-a-dire les groupes

que Gy, correspondent bijectivement aux
dit aux homomorphismes du groupe




que k vérifie la conjecture 1, le fait que £ laisse stable un groupe
de Borel de Go implique que tout groupe . semi-simple sur k posséde
un groupe de Borel défini sur k (du point de vue Borel-Tits, il n’existe
pas de groupe simple «anisotrope»); en fait, cette propriété est
équivalente & la conjecture I (cf. 'exposé de Springer).

§ 4. CONJECTURE II

4.1. Définitions

Nous allons formuler diverses conditions, portant sur un
corps k, et qui signifient plus ou moins que k «est de dimen-
sion < 2». La premiére est de nature cohomologique :

(Hz) — Le groupe de Galois g de ks/k est de dimension coho-

mologique < 2, au sens de Tate (cf. n° 2.1).

Voici des exemples de corps vérifiant (Hs) :

a) Un corps de nombres totalement imaginaire (Tate, non
publié).

b) Une extension de degré de transcendance 1 d’un corps de
dimension < 1; en particulier, un corps de fonctions a 2 variables
sur un corps algébriquement clos, ou un corps de fonctions a 1
variable sur un corps fini.

¢) Un corps local a corps résiduel parfait de dimension < 1;
en particulier, un corps p-adique, ou un corps de séries formelles
sur un corps fini.

La seconde condition est de nature diophantienne :

(Cz) — Toute équation homogeéne f(x1, ..., Xn) = 0, de degré d,
telle que n > d?, a une solution non triviale dans k.

«Expérimentalement», ces deux conditions semblent trés
voisines : on ne connait aucun exemple de corps parfait qui vérifie
"une et qui mette ’autre en défaut. Toutefois, on n’a démontré,
ni Uimplication (Hz) = (Cz) (du reste peu probable), nl l'mphs:&-
tion (Cg) = (Hz); la situation est fmmhmt

Enﬁn, voici la troisieme condi




(i) Si D est un corps gauche fini sur K et de centre K, la norme
réduite Nrd : D¥ — K* est surjective.

11 est immédiat que (C2) = (C3); I'avantage de (Cz) est qu’elle
se vérifie beaucoup plus facilement. Par exemple, on sait que (C2)
est valable pour un corps de nombres totalement imaginaire, alors
que la question analogue pour (Cs) parait extrémement difficile.

4.2. Conjectures

6 CoNJECTURE 11. Si k est un corps parfait vérifiant (Hz), et si G
est un groupe semi-simple simplement connexe défini sur k, on a
Hik, G) = 0(3.

Vu I'incertitude oll nous sommes sur «la bonne» définition
d’un corps de dimension < 2, nous sommes forcés d’énoncer aussi :

ConyecTURE 11 bis (resp. 11’ bis). Méme énoncé que la con-
jecture 11, a cela prés que la condition (Hz) est remplacée par la
condition (Cz) (resp. par la condition (C2)).

Remarques

1) La conjecture II entraine la conjecture I (appliquer le
corollaire a la proposition 3.1.4).

2) Les conjectures 11 bis et II’ bis paraissent les plus accessibles
4 une vérification cas par cas; on en verra un exemple au n°

suivant.

4.3. Groupes semi-simples non simplement connexes

Soit G un tel groupe, défini sur un corps parfait k, et soit G
1 revétement simplement connexe. Soit A le noyau de G — G;
e de cohomologie (non abélienne) définit des appli-




Exemple : Prenons pour G un groupe spécial orthogonal (en
caractéristique # 2); on a G = Spin, A = Z|2Z, H'(k, A)=k*[k*?,
tandis que H2(k, 4) s’identifie au groupe des éléments « du groupe
de Brauer de k tels que 2a = 0. L’homomorphisme dq est la norme
spinorielle; ’application 01 est en rapport étroit avec [l'invariant
de Witt des formes quadratiques (cf. Witt [25], ainsi que
Springer [22]); il est facile de voir que do est surjective et d; injective
lorsque k vérifie (Cs); on en conclut que la conjecture II'bis est
valable pour un groupe Spin.

§ 5. COMPLEMENTS

5.1. Corps p-adiques

Si k est un corps p-adique et G un groupe linéaire défini sur k,
on peut démontrer que Hl(k, G) est fini; le méme résultat vaut
pour le corps R des nombres réels. Voir la-dessus un article en

collaboration avec A. Borel.
I1 est probable que ce résultat de finitude reste valable sur un

corps de séries formelles sur un corps fini, & condition de supposer
en plus que G est réductif.

5.2. Corps de nombres

Soit k un corps de nombres (autrement dit une extension finie
de Q), soit I1’ensemble des topologies définies sur k par des valeurs
absolues non triviales, et pour tout i € I soit k; le complété de k;
on sait que k; est, soit un corps p-adique, soit R, soit C. Si G est
un groupe algébrique défini sur k, notons Gy le groupe algébrique
sur k; défini par extension des scalaires & partir de G. Les injec-
tions k —» k; définissent une application : u

Lorsque G est |




pas 14 une propriété générale des groupes réductifs (ou méme
semi-simples) comme on peut le voir sur des exemples.

Il reste toutefois la possibilité que les groupes semi-simples
simplement connexes se comportent mieux. De fagon précise, soit J
le sous-ensemble de / formé des i € I tels que k; = R, et considérons

I’application canonique

n: Hitk, G) — H H(R, G).
ied

On peut conjecturer que m est bijective si G est semi-simple sim-
plement connexe. Noter que, si la conjecture de Kneser s’applique
a G, on a Hl(ki, Gi) =0 pour i el — J, et n s’identifie 4 w.
Noter également que, si k est totalement imaginaire, J est vide,
et I’on retombe sur un cas particulier de la conjecture IL

5.3. Questions diverses

(i) Comment se traduit en langage cohomologique le point
de vue de Borel et Tits, ramenant la classification des groupes semi-
simples a celle des groupes anisotropes?

(ii) Lorsque G est un groupe orthogonal, Springer [21] a
démontré le résultat suivant : si K/k est une extension de degré
impair, I’application canonique H!(k, G) - H(K, G) est injec-
tive. Peut-on associer de méme, & tout type de groupes semi-
ﬂmples, un entier d tel que Hl(k, G) — HY(K, G) soit injectif si
degré [K : k] est premier & d?
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