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The terminology "companion" (the English transla-
tion of the French "camarade") refers to a celebrated
conjecture formulated by Deligne in his founda-
tional paper Weil II [Del80, Conj. (1.2.10)]. This
conjecture lies at the intersection of Grothendieck’s
theory of motives and the Langlands program; it
reflects the expectation that every finite-dimensional
continuous Q`-representation of the absolute Galois
group of a finitely generated field K of characteristic
p 6= ` satisfying (very!) mild assumptions arises
from geometry in the sense that it is cut out by
an algebraic correspondence on the Q`-cohomology
group of a variety X over K. In particular, such a
representation should admit, for every prime `′ 6= p,
a Q`′ -companion, namely the representation cut
out by the same algebraic correspondance on the
Q`′-cohomology group of X. For function fields
of smooth varieties over a finite field, it is now a
theorem. In contrast, its number field analogue - the
Fontaine-Mazur conjecture [FM95], is still widely
open.

Companions and motives. The story begins with
the strategy elaborated by Grothendieck to prove
the Weil conjectures [Wei49]. Fix a finite field k of
characteristic p and for every integer n, let kn denote
its degree-n extension. A k-Weil number of weight
w ∈ Z is an algebraic number whose complex conju-
gates all have complex absolute value |k|w2 . The Weil
conjectures give precise estimates for the number
Nn(X) of kn-points on a smooth projective variety
X of dimension d over k. This is expressed in terms
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of the zêta function ZX(T ) = exp(
∑
n≥1Nn

Tn

n ) as
follows: there exists P1(T ), . . . , P2d(T ) ∈ Z[T ] such
that P0(T ) = 1− T , P2d(T ) = 1− |k|dT and

[Rationality] ZX(T ) =
∏

1≤w≤2d

Pw(T )
(−1)w+1

;

[Riemann hypothesis] the roots of Pw(T ) are
k-Weil numbers of weight w;

[Funct. equation] ZX( 1
|k|dT ) = ε|k|

nχ(X)
2 ZX(T ),

with χ(X) =
∑

1≤w≤2d

(−1)wdeg(Pw(T )), s ε = ±1.

What is hidden behind the formulation of the Weil
conjectures is the Lefschetz formula in algebraic
topology, which counts the number of fixed points of
a continuous endomorphism F : X → X on a com-
pact topological space X as the alternating sum of
its traces

∑
w≥0 Tr(F

∗|Hsing,w(X,Q)) on the singu-
lar homology groups of X. Observing that Nn(X) is
the number of fixed points of the nth power Frobe-
nius endomorphism F : X → X of X on X(k), Weil
had the bright intuition was that there should ex-
ist a good cohomology theory for smooth projective
varieties over k that could play the part of singular
cohomology. In particular, the Pw(T ) appearing in
the expression of ZX(T ) should be the inverse char-
acteristic polynomials of F acting on these prospec-
tive cohomology groups.
The first part of the strategy was thus to construct
a cohomology theory for varieties over fields of char-
acteristic p > 0 satisfying the usual axioms of sin-
gular cohomology (Kunneth formula, Poincaré dual-
ity, existence of cycle class maps etc); such a good
cohomology theory is now called a Weil cohomol-
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ogy theory. This part of the problem was solved by
Grothendieck and his school during the 60s with the
formidable construction of étale cohomology and its
by-product `-adic cohomology. The existence of `-
adic cohomology was enough to solve the Weil con-
jectures except for the Riemann hypothesis, which
can now be reformulated by saying that the roots
of det(1 − TF ∗|Hw(Xk,Q`)) are k-Weil numbers of
weight w.
To prove the Riemann hypothesis, it would be enough
to show that the normalized Frobenius |k|−w2 F ∗
arises from an anti-autoadjoint operator on a Q-
vector spaceH equipped with a positive definite bilin-
ear form and such that H ⊗Q` = Hw(Xk,Q`). This
observation lead Grothendieck to formulate a coher-
ent net of conjectures - the standard conjectures - on
algebraic cycles, from which the above property of
the normalized Frobenius should follow straightfor-
wardly [Kle68].
While the Riemann hypothesis was eventually proved
by Deligne using a wonderful combination of geomet-
ric and analytic methods (relying deeply on the prop-
erties of `-adic cohomology!) [Del74], the standard
conjectures remain widely open. But this does not al-
ter their significance, which goes far beyond providing
a conceptual proof of the Riemann hypothesis. In the
first place they reposition the original problem in a
broader setting - the one of pure motives, which can
be roughly regarded as an attempt to linearize the
category SmP (K) of smooth projective varieties over
a field K. More precisely, Grothendieck constructed
a natural pseudo-abelian Q-linear ⊗-category MotK
- the category of pure motives over K - which comes
with a "linearization" ⊗-functor h : SmP (K) →
MotK . Assuming the standard conjectures, the cat-
egory MotK is polarizable (hence semisimple), Tan-
nakian and, for every Weil cohomology theory H :
SmP (K)→ V ectQ with coefficients in a characteris-
tic 0 field Q, is endowed with a Q-linear "realization"
fiber functor H : MotK ⊗Q Q → V ectQ such that
H ◦ h = H : SmP (K) → V ectQ. In particular, the
"linearization" ⊗-functor h : SmP (K) → MotK can
also be regarded as a "universal Weil cohomology"
functor.
An important feature of Weil cohomologies is that
they usually factor through a natural "enriched" Tan-

nakian subcategory TH ↪→ V ectQ. E.g.,
(1) for K = C and H = Hsing : SmP (K) → V ectQ
singular cohomology, THsing is the category Q-PHS
of Q-rational polarizable Hodge structures;
(2) for H = H` : SmP (K) → V ectQ` `-adic coho-
mology, TH` is the category RepQ`(π1(K)) of finite-
dimensional Q`-vector spaces equipped with a con-
tinuous action of the absolute Galois group π1(K) of
K.
As H :MotK ⊗Q Q→ V ectQ induces an equivalence
onto its essential image T essH , understanding MotK
essentially amounts to understanding T essH . This may
sound tautological since Grothendieck’s construc-
tion of MotK tells us exactly what T essH should be.
Namely, the morphisms should be those induced by
algebraic correspondences and the objects should be
those cut out by algebraic correspondences on the Q-
vector spaces H(X) for X ∈ SmP (K). However, this
description is not really useful because we know al-
most nothing about algebraic correspondences. The
expected miracle is that, however, T essH can be easily
described as a subcategory of TH , at least under suit-
able assumptions on K. For morphisms, one expects
H : MotK ⊗Q Q→ TH to be fully faithful. This is a
fancy way to restate what is called, in (1) and when
K = C, the Hodge conjecture and in (2) and when
K is finitely generated, the Tate conjecture. In (2),
there is an additional issue due to the fact MotK
is conjecturally semisimple while RepQ`(π1(K)) is
not. So that the latter should be replaced by the
full subcategory RepQ`(π1(K))ss ↪→ RepQ`(π1(K))
of semisimple representations of π1(K). On the other
hand, T essH should contain the π1(K)-representations
Hw(XK ,Q`) for X ∈ SmP (K) but the semisimplic-
ity of these is still a widely open conjecture.
Anyway, assuming it, what remains to describe are
the simple objects in T essH or, as it is more convenient
to work with coefficients in an algebraically closed
field, in T essH ⊗Q. This is the problem the companion
conjecture answers (implicitly) in the situation of (2)
when K has characteristic p > 0, i.e. is the function
field K = κ(η) of a smooth, geometrically irreducible
variety S over a finite field k, with generic point η.
Fix a prime ` 6= p. From the construction of
MotK , the simple objects in T essH`

⊗ Q` are π1(K)-
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subquotients V` of Hi(XK ,Q`(j)) for X ∈ SmP (K).
As X → spec(K) extends to a smooth projective
morphism f : X → U over a dense open subscheme
U ↪→ S, such a V` actually arises as the stalk of
a subquotient V` of the Q`-local system Rif∗Q`(j).
In particular, for every closed point s ∈ |S| with
residue field k(s) the inverse characteristic polyno-
mial det(1− TFs|V`,s) of the geometric Frobenius Fs
at s divides Pi,j,s(T ) := det(1 − TFs|Hi(Xs,Q`(j))
which, according to the Weil conjectures, has co-
efficients in Z, is independent of ` and with roots
k(s)-Weil numbers of weight i − 2j. Since the num-
ber field Qs the roots of Pi,j,s generate is a de-
gree ≤ deg(Pi,j,s)! extension of Q, unramified out-
side p and since deg(Pi,j,s) = dimHi(Xs,Q`(j)) is
independent of s, by Hermite-Minkowski, there are
only finitely many possibilities for Qs as s varies
in the (infinite!) set |S|. This a fortiori implies
that the field QV` (usually called the field of coef-
ficients or the field of traces of V`) the coefficients of
det(1 − TFs|V`,s) generate when s varies in |S| is a
number field. Morally, QV` is the field of definition
of the motive V ∈ Motk ⊗Q Q from which V` arises.
Now, if we fix another prime `′ 6= p, one can con-
sider the `′-adic realization V`′ = H`′(V ). Again, the
construction of MotK shows that (up to replacing S
by a dense open subscheme which only depends on
V and not on `), V`′ also arises as the stalk of a Q`′ -
local system V`′ on S which is compatible with (or a
companion / camarade of V`) in the sense that

det(1− TFs|V`,s) = det(1− TFs|V`′,s), s ∈ |S|.

So far, what we explained, is that a simple object V`
in T essH`

⊗ Q` with finite determinant (to get rid of
Tate twists) should arise (after possibly shrinking S)
as the stalk of a simple Q`-local system V` with finite
determinant on S satisfying the following properties.

[Purity] The roots of det(1−TFs|V`,s) are k(s)-Weil
numbers of weight 0, s ∈ |S|;

[Finiteness] QV` is a number field;

[Companion] For every prime `′ 6= p there is a Q`′ -
local system V`′ on S which is compatible with V`.

The companion conjecture predicts that every simple
Q`-local system on S with finite determinant behaves
as if it were, indeed, arising from the `-adic realiza-
tion of a motive! Namely,

Conjecture 1 (Companion; [Del80, (1.2.10)]) Let
V` be a simple Q`-local system with finite determi-
nant on S. Then V` satisfies the above properties
[Purity], [Finiteness] and [Companion].

So, if RepQ`(π1(K))ss,ur ⊂ RepQ`(π1(K))ss de-
notes the full subcategory of π1(K)-representations
which are unramified over a dense open sub-
scheme of S, what, in essence, the combination
of the standard conjectures, the Tate conjec-
ture and the companion conjecture suggests very
strongly is that the `-adic realization functor
H` : MotK ⊗Q Q` → RepQ`(π1(K))ss,ur is an equiv-
alence of categories. But while the standard and the
Tate conjectures are still widely open, Conjecture 1 is
now a theorem. The proof of Conjecture 1 runs over
more than fourty years with decisive contributions
by several authors among whom Deligne, Drinfeld
and L. Lafforgue.

A few words about the proof. When S is a
curve, Conjecture 1 follows almost directly from
the Langlands correspondance for GLr and the
Ramanujan-Petersson conjecture. To put it in a
nutshell, if AK denotes the ring of adèles of K,
the former predicts that there exists a canonial
bijection π → σπ / πσ ← σ between isomorphism
classes of automorphic cuspidal representations π
of GLr(AK) and of simple rank-r representations σ
in RepQ`(π1(K))ss,ur characterized by the fact that
π and σπ have the same local L-factors while the
latter predicts that the Hecke eigenvalues of π are
k-Weil numbers of weight 0. So in the context of the
Langlands program, the part of motives is played
by automorphic representations. This is not only an
analogy since the general strategy to prove instances
of the Langlands correspondance is to construct an
algebraic stack X overK whose compactly supported
Q`-cohomology Hc(XK ,Q`) is naturally equipped
with an action of GLr(AK) commuting with the
one of π1(K) and realizes the correspondance in the
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sense that there exists a family π ⊗ σπ of simple
GLr(AK) × π1(K)-constituants of Hc(XK ,Q`),
indexed by the cuspidal automorphic representations
π of GLr(AK) with π and σπ having the same local
L-factors. One expects those π ⊗ σπ to be cut out
by algebraic correspondences on Hc(XK ,Q`). The
first breakthrough is due to Drinfeld, who proved the
Langlands correspondance for GL2 in the late 70s
and introduced the stack of chtoucas to play the part
of X and it is probably Drinfeld’s work that lead
Deligne to formulate Conjecture 1. Drinfeld’s proof
was later generalized by L. Lafforgue to r ≥ 2, who
also proved the Ramanujan-Petersson conjecture
[Laf02].
The proof of Conjecture 1 when S is a curve is
"almost motivic" in the sense that it exhibits a po-
tential candidate - the stack of chtoucas - from which
one should be able to construct explicitly the motive
supporting σ. In constrast, for higher dimensional
S, there is currently no such constructive strategy
to prove Conjecture 1 and, just as for the Riemann
hypothesis, the solution eventually came from a com-
bination of geometric arguments, relying on the curve
case and the theory of weights developed in [Del80].
The basic strategy is to show that a (semisimple)
Q`-local system V on S can be reconstructed from
the collection of its restrictions ψ∗V to smooth
irreducible curves ψ : C → S together with the obvi-
ous glueing conditions ψ∗V|C×XC′ ' ψ′ ∗V ′|C×XC′ .
This is how Deligne completed the proof of [Purity]
and [Finiteness] in Conjecture 1 [Del12] and how,
building on this, Drinfeld completed the proof of
[Companion] [Dri12]. Along the way, Deligne also
proved that there are - up to twists - only finitely
many simple Q`-local systems on S and that their
number is independent of `.

Beyond Q`-local systems. The original formula-
tion of Conjecture 1 was also including a vaguely for-
mulated p-adic part "on espère des petits camarades
cristallins". And indeed, on top of `-adic cohomology,
one has now at disposal other natural Weil cohomol-
ogy theories for varieties over fields of characteristic
p > 0 - in particular crystalline cohomology (with co-
efficients in Qp) and ultraproduct cohomology (with

coefficients in the ultraproducts Qu, that is the quo-
tients of

∏
` 6=p F` by its non-principal maximal ideals

u) with natural notions of local systems. As pre-
dicted by the motivic picture drawn above, Conjec-
ture 1 extends for p-adic and ultraproduct local sys-
tems (except for the existence of Qp-companions) by
Abe, Abe-Esnault, Kedlaya in the p-adic setting and
Cadoret in the ultraproduct setting. This general-
ized form of Conjecture 1 enables to transfer prop-
erties of local systems from one cohomological realm
to the other. For instance, Cadoret-Tamagawa used
[Companion] to reduce the Tannakian form of the
Cebotarev density theorem for Qp- and Qu-local sys-
tems to the (classical) Cebotarev density theorem
for Q`-local systems [CT20]. In a slightly different
spirit, using that rigid C-local systems on a variety
X over C can be "specialized" to Q`-local systems
on reductions of X over finite fields and a beautiful
counting argument based on [Companion], Esnault-
Groechenig proved Simpson’s integrality conjecture
for cohomologically rigid C-local systems [EG18].
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