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Abstract. We introduce a conjecture on the arithmetic sparcity of the degeneration locus of a p-adic local
system on a smooth variety over a number field and, modulo the Bombieri-Lang conjecture, show that it
follows from a conjecture on the geometry of the level varieties attached to the local system. We present a
few applications of our conjecture to classical problems in arithmetic geometry. Eventually, we give some ev-
idences and discuss a few perspectives to attack it, in particular for p-adic local systems arising from geometry.
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Notation / conventions:

For a scheme S, let |S| denote the set of closed points. A variety over a field k or a k-variety means a reduced
scheme separated and of finite type over k. For a k-variety X and x ∈ X, let k(x) denote the residue field of
x; we often implicitly regard x as a morphism x : spec(k(x))→ X. For every integer d ≥ 1, let |X|≤ d ⊂ |X|
denote the set of all x ∈ |X| with [k(x) : k] ≤ d.

For a field k of characteristic 0, a morphism f : Y → X of k-varieties and an embedding ∞ : k ↪→ C,
we write fan : Y an → Xan for the analytification of the base change fC : YC → XC of f : Y → X along
∞ : spec(C)→ spec(k). As the embedding ∞ : k ↪→ C will always be fixed, omitting the mention of it in the
notation should not cause confusion. If k is a number field and k ↪→ kv its completion at a finite place v of k,
we write fv-an : Y v-an → Xv-an for the rigid analytification of the base change fkv : Ykv → Xkv of f : Y → X
along spec(kv)→ spec(k).

For an algebraic group G over a field Q (of characteristic 0), we write G◦ ⊂ G for its neutral component,
Gder ⊂ G for its derived subgroup and G� Gad for its adjoint quotient. If V is a finite-dimensional Q-vector
space, we write V ∨ for its dual and V ⊗ := ⊕m,n∈Z≥0

V ⊗m ⊗Q V ∨ ⊗n.

1. Introduction

Let k be a number field with fixed algebraic closure k ⊂ k̄. Let X be a smooth, geometrically connected vari-
ety over k, with generic point η. Fix a prime integer p and a Qp-local system Vp on X. For every x ∈ X, fix a
geometric point x over x and an étale path from x to η inducing compatible isomorphisms π1(X,x)→̃π1(X, η),
Vp,x→̃Vp,η. For a morphism Z → X of connected k-schemes and a geometric point z on Z mapping to x on
X, write ΠZ,Vp ⊂ GL(Vp,η) for the image of π1(Z, z) acting on Vp,η via π1(Z, z) → π1(X,x)→̃π1(X, η) and
GZ,Vp ⊂ GLVp,η for its Zariski-closure. If Z is geometrically connected over k, write also ΠZ,Vp ⊂ GL(Vp,η)
for the image of π1(Z ×k k, z) and GZ,Vp ⊂ GLVp,η for its Zariski-closure.

Define the Vp-degeneration locus to be

|X|Vp = {x ∈ |X| | G◦x,Vp ( G◦X,Vp}.

One says that points in |X|Vp are Vp-exceptional and that points in |X| \ |X|Vp are Vp-generic. The aim of
this note is to motivate and discuss Conjecture 1 below, which is the strongest guess we can reasonably make
about the sparcity of the arithmetic truncations |X|Vp ∩ |X|≤ d of |X|Vp .

One says that Vp is geometrically Lie perfect (GLP for short) if Vp|Xk̄ is Lie perfect, that is to say if the
Lie algebra of the p-adic analytic Lie group ΠX,Vp is perfect. One says that Vp is geometrically curve-Lie
perfect (GCLP for short) if for every non constant morphism φ : C → X with C a smooth, connected
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curve over k, the resulting Qp-local system φ∗Vp is Lie perfect. One defines similarly the notion of being
geometrically Lie semisimple (GLS for short) and geometrically curve-Lie semisimple (GCLS for short) by
replacing the condition "perfect" by the condition "semisimple". Note that as a quotient of a perfect (resp.
semisimple) Lie algebra is again perfect (resp. semisimple), the properties of being GLP, GCLP, GLS and
GCLS are preserved by quotient. If Vp is GCLP (resp. GCLS) then, by Bertini theorem, for every smooth,
geometrically connected variety Y over k and non-constant morphism φ : Y → X, φ∗Vp is GLP (resp. GLS);
in particular Vp itself is GLP (resp. GCLS).

Conjecture 1. Let Vp be a GCLP Qp-local system on X. Then, for every integer d ≥ 1,
(1) the set |X|Vp ∩ |X|≤ d is not Zariski-dense in X;
(2) sup{[ΠX,Vp : Πx,Vp ] | x ∈ |X|≤ d \ |X|Vp} < +∞.

For later reference, let us single out the d = 1 case of of Conjecture 1.

Conjecture 2. Let Vp be a GCLP Qp-local system on X. Then,
(1) the set |X|Vp ∩X(k) is not Zariski-dense in X;
(2) sup{[ΠX,Vp : Πx,Vp ] | x ∈ X(k) \ |X|Vp} < +∞.

One could also formulate weaker conjectures with the GCLP condition replaced by the GCLS condition; we
will refer to these variants as Conjecture 1 and Conjecture 2 for GCLS Qp-local systems.

For the time being, the main evidence for Conjecture 1 is that it is known when X is a curve [CT13]. On
the other hand, for higher-dimensional X, it remains widely open.

One says that Vp has positive period dimension if dim(GX,Vp) > 0 and that Vp has zero period-dimension
otherwise.

Remark.
(1) Conjecture 1 and Conjecture 2 are trivial if Vp has zero period dimension.
(2) To prove Conjecture 1 and Conjecture 2 one may replace k with a finite field extension. Conjecture 1

is insensitive to base changes by dominant morphisms. Conjecture 2 is insensitive to base changes by
open immersions with Zariski-dense image but it is very sensitive to base changes by e.g. étale covers of
degree ≥ 2.

(3) One may ask for variants of Conjecture 1 and Conjecture 2 involving integral points rather than rational
points. These are closely related to the Lang-Vojta conjecture (Conjecture 10). More precisely, as we
will recall (Corollary 11), the Lang-Vojta conjecture predicts that, as soon as Vp has positive period
dimension, the set of integral points (not only Vp-exceptional ones) on X is never Zariki-dense. This, in
particular, automatically implies the integral variant of Conjecture 2 (1):

Conjecture 3. Let Vp be a GCLP Qp-local system on X. Then, for every smooth model X of X over a
non-empty open subscheme U ⊂ spec(Ok) the set |X|Vp ∩ X (U) is not Zariski-dense in X.

This note is organized as follows. In Section 2, we briefly review some basic features of Qp-local systems
arising from geometry, which are the most important examples for applications. In Section 3 we give a
sample of classical consequences of Conjecture 1 in order to emphasize its significance. In Section 4, we
explain how Conjecture 2 follows from the Bombieri-Lang conjecture (Conjecture 16) modulo a geometric
conjecture - Conjecture 17 - about the geometric structure of certain level schemes naturally attached to
our Qp-local system; this is the heuristic on which the proof of Conjecture 1 for X a curve is based. In the
last and longest section 5, we give a short survey of what is known about Conjecture 17 and Conjecture
1 and discuss a few perspectives to tackle them. We insist more specifically on Conjecture 3 (and, to a
lesser extent, on Conjecture 2 (1)) for Qp-local systems arising from geometry, for which recent progresses in
the study of complex and p-adic period maps now provide an heuristic bypassing the one exposed in Section 4.

Warning: This note contains only a few and rather basic mathematical proofs. It is more intended as
an introduction to Conjecture 1 (which has obsessed for many years and is still obsessing the author), its
potential applications and to draw a few old and newer perspectives to attack it.
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2. Qp-local systems arising from geometry and conjectures

Fundamental examples of Qp-local systems are those arising from geometry, namely those (cut out by alge-
braic correspondances on Qp-local systems) of the form Vp := Ri(prim)f∗Qp(j) for f : Y → X a smooth proper
(projective) morphism and i, j ∈ Z. We briefly review some basic properties of these and introduce notation
/ terminology that we will use throughout the paper.

So, in the remaining part of Section 2, all Qp-local systems are assumed to arise from geometry.

2.1. Qp-local systems arising from geometry. A Qp-local system of the form Vp := Ri(prim)f∗Qp(j) comes
with a compatible family of Q`-étale / singular realizations.

2.1.1. Compatibility.

V := V` := Ri(prim)f∗Q`(j), ` ∈ |spec(Z)|,V∞ := Ri(prim)f
an
∗ Q(j), ∞ : k ↪→ C,

Here the compatibility is twofold:

- Arithmetic: Let Ok denote the ring of integers of k. Then there exists a non-empty open subscheme
U ⊂ spec(Ok) and a smooth connected model X of X over U such that for every ` ∈ |spec(Z)|, V` extends
to a Q`-local system on X [1

` ] and for every x ∈ |X | of residue characteristic px and prime ` 6= px, the
characteristic polynomial of the geometric Frobenius ϕx ∈ π1(x) acting on V` is in Z[T ], independent of
` 6= px and pure (of weight i− 2j). This follows from the smooth proper base change theorem and [D74].

- Geometric: For every x ∈ Xan one has the canonical Artin comparison isomorphism V∞,x ⊗Q Qp→̃Vp,x,
which is equivariant with respect to the profinite completion morphism π1(Xan, x)→ π1(XC, x)→̃π1(Xk̄, x).
In particular, if GXan,V∞ ⊂ GLV∞,x denotes the Zariski-closure of the image of π1(Xan, x) acting on V∞,x,

(2.1.1) GXan,V∞ ×Q Qp = GX,Vp

modulo the Artin comparison isomorphism V∞,x⊗QQp→̃Vp,x. This shows GX,Vp admits a Q-form which is
independent of p and is a semisimple algebraic group [D71]. In particular, Vp is GCLS and the property that
Vp has positive period dimension is independent of p. In the following, we simply write GX,V := GXan,V∞ .

Another crucial feature of the singular realization is that V∞ underlies a polarizable Z-variation of Hodge
structures (Z-VHS for short) V∞,Z on Xan.

2.1.2. ’Motivic’ tensors and Tannakian groups. For a projective varietyY over C, writeH := H i
(prim)(Y

an,Q(j))

and Hp := H i
(prim)(Y,Qp(j)). Let

Zmot(H) ⊂ ZAH(H) ⊂ ZH(H) ⊂ H⊗

denote the subspaces of motivated tensors, absolute Hodge tensors and Hodge tensors respectively. Let
Z(Hp) ⊂ H⊗p denote the subspace of Tate tensors, namely those v ∈ H⊗p fixed by π1(K) for some finitely
generated extension K of Q over which Y admits a model. Correspondingly, one defines

- The subspaces
Zmot(V∞) ⊂ ZAH(V∞) ⊂ ZH(V∞) ⊂ V⊗∞,x

of generic motivated tensors, absolute Hodge tensors and Hodge tensors to be the set of all v ∈ V⊗∞,x which
extends to a global section of V⊗∞ over a connected étale cover X ′ → XC (equivalently, are fixed by a finite
index subgroup U = π1(X ′ an, x) ⊂ π1(Xan, x)) which specializes, at every x′ ∈ X ′(C), to a motivated
tensor, an absolute Hodge tensor and a Hodge tensor respectively.

- The subspace Z(Vp) ⊂ V⊗p,x of generic Tate tensors as the set of all v ∈ V⊗p,x which extends to a global
section of V⊗p over a connected étale cover X ′ → XC (equivalently, are fixed by an open subgroup U =
π1(X ′, x) ⊂ π1(XC, x)) which specializes to a Tate tensor at every x′ ∈ X ′(C).

Let
GXC,V∞ ⊂ GXC,VAH ⊂ GXC,Vmot ⊂ GLV∞,x

denote the algebraic subgroups fixing all generic motivated tensors, absolute Hodge tensors and Hodge tensors
on V⊗∞,x respectively and let GXC,Vp ⊂ GLVp,x denote the algebraic subgroup fixing all generic Tate tensors
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on V⊗p,x. Note that GXC,Vp = G◦X,Vp , where GX,Vp is the arithmetic monodromy group introduced in Section 1
[A23]. modulo the Artin comparison isomorphism (2.1.1) motivated and absolute Hodge tensors are mapped
to Tate tensors so that one also has the inclusions

G◦X,Vp = GXC,Vp ⊂ GXC,VAH ×Q Qp ⊂ GXC,Vmot ×Q Qp.

The (generic) Mumford-Tate group GXC,V∞ , the (generic) absolute Mumford-Tate group GXC,VAH and the
(generic) motivated motivic group GXC,Vmot are connected reductive groups over Q; the connected (generic)
arithmetic monodromy group G◦X,Vp = GXC,Vp is not known to be reductive in general. For [ = ∞, AH,mot, p

define the V[-degeneration locus as in Subsection 1, namely

X(C)V[ := {x ∈ X(C) | G◦x,V[ ( G◦X,V[}.

The relevancy of X(C)V[ comes from the fact that it is the locus of all x ∈ X(C) such that the powers Y n
x ,

n ≥ 0 of the corresponding fiber Yx are "more simple" or "more symmetric" in the sense that they carry
additional Hodge, absolute Hodge, motivated or Tate cycles than the the powers of the generic fiber.

Note that via the inclusion |X| ⊂ X(C) induced by ∞ : k ↪→ C, |X|Vp = |X| ∩X(C)Vp .

For [ = ∞, AH,mot the fixed part theorem implies that Gder
XC,V[ contains G

◦
X,V as a normal subgroup [A92] and

that for every x ∈ X(C), GXC,V[ is generated by G◦X,V and Gx,V[ . Similarly, for every geometric point x over
x ∈ |X|, the short exact sequence

1→ π1(Xk̄, x̄)→ π1(X, x̄)→ π1(k)→ 1

implies that G◦X,Vp is generated by G◦X,Vp and G◦x,Vp . These observations show

(2.1.2) X(C)Vmot⋂
X(C)Vp ⊃ X(C)VAH ⊂ X(C)V∞

In particular, every sparcity result aboutX(C)Vp (orX(C)V∞) automatically transfers toX(C)Vmot ,X(C)VAH .

2.2. Conjectures. With the above notation / terminology, one can state the following consequences of the
Hodge and Tate conjectures, which can be seen as an arithmetic enhancement of (2.1.1).

Conjecture 4. For every x ∈ X(C),
(Tate conjecture) G◦x,Vp(= Gx,VAH ×Q Qp) = Gx,Vmot ×Q Qp (equivalently, every Tate tensor is motivated);
(Hodge conjecture) Gx,V∞(= Gx,VAH) = Gx,Vmot (equivalently, every Hodge tensor is motivated).

and their by-product,

Conjecture 5. (Mumford-Tate Conjecture) For every x ∈ X(C), Gx,V∞ ×Q Qp = G◦x,Vp (equivalently,
modulo the Artin comparison isomorphism every Tate tensor is a Qp-linear combinaison of Hodge tensors
and conversely).

Conjecture 4 immediately implies that for every x ∈ X(C), G◦x,Vp is reductive and admits a Q-form which is
independent of p and that the inclusions (2.1.2) are equalities:

(2.2.1) X(C)Vp = X(C)mot = X(C)VAH = X(C)V∞ .

In particular, the subsets |X|Vp are independent of p ∈ spec(Z) and, Conjecture 4 combined with Conjecture
1 (1) yields that

Conjecture 6. For [ =∞, AH,mot, p and every integer d ≥ 1, X(C)V[ ∩ |X|≤ d is not Zariski-dense in X.

One can upgrade (2.2.1) as follows. For [ = ∞, AH,mot, p say that a closed integral subvariety Z ↪→ XC is
V[-special if it is maximal among all closed integral subvarieties Z ′ ↪→ XC with G◦Z′,V[ = G◦Z,V[ and let ΣV[
denote the set of strict V[-special subvarieties of XC. Then Conjecture 4 implies more generally

(2.2.2) ΣVp = ΣVmot = ΣVAH = ΣV∞ .

In particular, the subsets ΣVp are independent of p ∈ spec(Z) and Conjecture 6 can be reformulated as
follows.
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Conjecture 7. For any of [ = ∞, AH,mot, p and every integer d ≥ 1, there exists finitely many Z1, . . . , Zr ∈
ΣV[ such that

X(C)V[ ∩ |X|
≤ d =

⋃
1≤i≤r

|Zi|≤ d.

Lemma 8. Conjecture 6 is equivalent to Conjecture 7.

Proof. The implication Conjecture 7⇒ Conjecture 6 is straightforward. For the implication Conjecture 6⇒
Conjecture 7, let Z1, . . . , Zr denote the irreducible components of the Zariski-closure of X(C)V[ ∩ |X|≤ d in
X. Then, for i = 1, . . . , r, G◦Zi,V[ ( G◦X,V[ since, otherwise, X(C)V[ ∩|Zsm

i |≤ d = X(C)V[|Zsm
i

∩|Zsm
i |≤ d, which

would contradict Conjecture 6 applied to V[|Zsm
i

. As G◦Zi,V[ ( G◦X,V[ , there exists Z ′i ∈ ΣV[ with Zi ⊂ Z ′i
(and G◦Zi,V[ = G◦Z′i,V[

). By definition of X(C)V[ , one has

X(C)V[ ∩ |X|
≤ d =

⋃
1≤i≤r

|Zi|≤ d ⊂
⋃

1≤i≤r
|Z ′i|≤ d ⊂ X(C)V[ ∩ |X|

≤ d,

whence the assertion. �

The significance of reformulating Conjecture 6 as Conjecture 7 will appear later in Subsection 5.2.2.

2.3. Constraining the geometry of X. The existence of Qp-local systems arising from geometry with
positive period dimension on a X constrains the geometry of X. More precisely, recall that a variety V over
k is of general type (resp. of log general type) if there exists a diagram

V0 := Vk̄
� � // V1 V2

oo � � // V3

with V0 ↪→ V1 an open immersion, V2 → V1 a proper birational morphism, V2 ↪→ V3 a smooth compactification
(resp. a log smooth compactification) that is an open immersion with V3 a connected variety, smooth and
projective over k̄ (resp. and ∆ := V3 \ V2 a normal crossing divisor) and such that the canonical divisor KV3

is big (resp. KV3 + ∆ is big).

Theorem 9. Assume Vp has positive period dimension. Then after possibly replacing X by a dense open
subscheme, there always exists a dominant morphism α : X ×k k̄ → X ′ of k̄-varieties with X ′ of log-general
type 1 and a Qp-local system V ′p on X ′ such that Vp|X×kk̄ = α∗V ′p.

Proof. Fix a log smooth compactification j1 : X ↪→ X1 by a normal crossing divisor ∆ := X1 \ X. From
[Gr70, Prop.9.11 i)] the complex analytic period Φan : Xan → Γ \ D attached to V∞ (see Subsection 5.2.2
for details) extends to a proper period map Φ̃an : X̃an → Γ \ D over the components of ∆ around which
the monodromy is finite. From [BBrT18, Thm. 1.1] (see also [Kl22, Thm. 3.20]), there exists a dominant
morphism α : X̃C → X ′ of algebraic C-varieties with X ′ quasi-projective and such that Φ̃an : X̃an → Γ \D
factors as

X̃an Φ̃an
//

αan

��

Γ \D

X ′ an
-  Φ̃ an

;;wwwwwwww

with Φ̃ an : X ′ an ↪→ Γ\D a complex analytic closed immersion. By Hironaka, there exists a proper birational
morphism p : X ′1 → X ′ and a log smooth compactification j′1 : X ′1 ↪→ X ′2 by a normal crossing divisor
∆ := X ′2 \ X ′1. The resulting period map X ′1

an → X ′ an ↪→ Γ \ D then satisfies the assumption of Zuo’s
theorem [Z00, Thm. 0.1] so that KX′2

+ ∆ is big. In other words, X ′ is of log general type. By the Lefschetz
principle, one may assume that X ′ and α : X̃C → X ′ descends to k̄. This shows that there exists a dominant
morphism α : X ×k k̄ → X ′ of k̄-varieties with X ′ of log-general type and a polarizable Z-VHS V ′∞Z on
X ′ an such that V∞Z|Xan = αan ∗V ′∞Z. In turn, using the profinite completion morphism π1(X ′ an)→ π1(X ′)
[SGA1, XII, Thm. 5.1] V ′∞Z on X ′ an gives rise to a Zp-local system V ′Zp on X ′ such that V ′p := V ′Zp ⊗Qp has
the requested property. �

Remark: When X is a curve, Theorem 9 boils down to the fact that X is hyperbolic if and only if π1(X×k k̄)
is not abelian.

Theorem 9 combined with the following conjecture of Lang-Vojta

1One could even choose this morphism to be defined over k - see [BBrT18, Par. after Thm.1.1].
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Conjecture 10. (Lang-Vojta, [Vo86]) Assume X is of log general type. Then for every non-empty open
subset U ⊂ spec(Ok) and model X → U of X over U , X (U) ∩ |X| is not Zariski-dense in X.

has the following striking consequence on the set of integral points of X.

Corollary 11. Assume Vp arises from geometry and has positive period dimension (resp. for every smooth
locally closed subvariety Y ↪→ X, Vp|Y has positive period dimension). Then Conjecture 10 implies that for
every non-empty open subset U ⊂ spec(Ok) and model X → U of X over U , X (U)∩|X| is not Zariski-dense
in X (resp. is finite).

3. Arithmetic applications

In this section, we review a sample of (conjectural) arithmetic applications of Conjecture 1. Those collected
in Subsections 3.1, 3.2 and 3.3 only use part (1) of Conjecture 1 while those collected in Subsection 3.4 also
use part (2) of Conjecture 1. For the applications in Subsections 3.2 and 3.4 one can restricts to GCLS
Qp-local systems but the application in Subsection 3.3 requires Conjecture 1 for GCLP Qp-local systems
since the Qp-local systems involved are almost never GCLS.

3.1. A characterization of arithmetic monodromy of subvarieties. For a closed integral subvariety
Z ↪→ X Conjecture 1 (1) gives an arithmetic characterization of G◦Z,Vp ⊂ G◦X,Vp in terms of the Zariski-
topology of Z, namely,

Proposition 12. Assume Conjecture 1 (1) holds. Let Z ↪→ X be a closed integral subvariety, geometrically
connected over k and let H ⊂ G◦X,Vp be a connected algebraic subgroup. Then G◦Z,Vp = H if and only if there
exists an integer d ≥ 1 such that the set of all x ∈ |Z|≤ d with Gx,Vp = H is Zariski-dense in Z.

Proof. The if implication follows from the fact that, for a variety Z over k one can always find an integer
d ≥ 1 such that |Z|≤ d is Zariski-dense in Z and from Conjecture 1 (1) (applied to the GCLP Qp-local system
Vp|Zsm , where Zsm ↪→ Z denote the smooth locus). The only if implication only requires k to be Hilbertian
and is a classical consequence of the Hilbert irreducibility theorem. �

3.2. Degeneration of motivated motivic Galois groups / Exceptional motivated cycles. (See [C12]
for details). Assume Vp arises from geometry (Section 2.1). The inclusions (2.1.2) immediately imply

Proposition 13. Fix an integer d ≥ 1 and assume Conjecture 1 (1) holds for d and Vp. Then XVAH ∩|X|
≤ d

(hence a fortiori XVmot ∩ |X|≤ d) is not Zariski-dense in X.

Example. Let f : Y → X be a smooth proper morphism. As Z2
mot(Yx̄) = Z2

AH(Yx̄) = NS(Yx̄) one gets, in
particular,
(1) (Jumping locus of the Neron-Severi rank) Assume Conjecture 1 (1) holds for d and Vp = R2f∗Qp(1).

Then the set of all x ∈ |X|≤ d such that rank(NS(Yη̄)) < rank(NS(Yx̄)) is not Zariski-dense in X.
When f : Y → X is an abelian scheme, Example (1) in turn, implies
(2) (Jumping locus of the rank of the endomorphism ring of abelian varieties) Assume Conjecture 1 (1) holds

for d and Vp = R2f∗Qp(1). Then the set of all x ∈ |X|≤ d such that rank(End(Yη̄)) < rank(End(Yx̄)) is
not Zariski-dense in X.

3.3. Specialization of 1-cohomology classes. (See [C21] for details). Let Vp be a GCLP Qp-local system
on X such that (Vp,η)Lie(ΠX,Vp ) = 0 and let E ⊂ H1(π1(X),Vp,η) be a finite-dimensional Qp-subvector

space. Consider the Qp-local system Ṽp (which is not GCLS in general, even if Vp is, but which is GCLP)
corresponding to the universal extension of π1(X)-modules

0→ Vp,η → Ẽ → E → 0

classifying the 1-classes in E.

Proposition 14. Fix an integer d ≥ 1 and assume Conjecture 1 (1) holds for d and the GCLP Qp-local
system Ṽp. Then the set of all x ∈ |X|≤ d such that the restriction morphism

E ⊂ H1(π1(X),Vp,η)
resx→ H1(π1(x),Vp,x)

is not injective is not Zariski-dense in X.
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Example. Let f : Y → X be an abelian scheme. The Kummer map and the Néron extension property for
abelian schemes yield a canonical commutative diagram

Yη(k(η))⊗Q �
� κp // H1(π1(η), Vp(Yη))

Y (X)⊗Q �
� //

spx
��

'

OO

H1(π1(X), Vp(Yη))

resx
��

inf'

OO

Yx(k(x)))⊗Q �
� κp // H1(π1(x), Vp(Yx))

.

By the Mordell-Weil theorem, E := Y (X) ⊗ Qp ⊂ H1(π1(X), Vp(Yη)) is a finite-dimensional Qp-subvector
space and if Yη contains no non-zero k- isotrivial abelian subvariety, the condition (Vp,η)Lie(ΠX,Vp ) = 0 is
satisfied for Vp = (R1f∗Qp)

∨ so that one gets
(3) (Dropping locus of the rank of abelian varieties) Fix an integer d ≥ 1 and assume Conjecture 1 (1) holds

for d and the GCLP Qp-local system Ṽp. Then the set of all x ∈ |X|≤ d such that the specialization map

spx : Yη(k(η))⊗Q→ Yx(k(x)))⊗Q
is not injective is not Zariski-dense inX. In particular, the set of all x ∈ |X|≤ d such that rank(Ax(k(x)) <
rank( Aη(k(η))) is not Zariski-dense in X.

3.4. Uniform boundedness of p-primary torsion. We follow closely [CT12, Sec. 4]. For simplicity, we
remove the subscript −p from the notation. Let V be a GCLP (or GCLS) Qp-local system. Write V := Vη.
Let T ⊂ V be a π1(X)-stable Zp-lattice and set D := V/T = T ⊗Zp Qp/Zp so that one has a natural π1(X)-
equivariant isomorphism T/pn→̃D[pn] for each n ≥ 1. Set T(0) := TG

◦
X,V . Let ρ : π1(X) → GL(V ) denote

the representation corresponding to V and for every smooth, connected variety Y and morphism φ : Y → X,
write ρφ : π1(Y )

φ→ π1(X)
ρ→ GL(V ) denote the representation corresponding to φ∗V. Eventually, for a

p-adic character χ : π1(X)→ Z×p , write χφ := χ ◦ φ : π1(Y )→ Z×p and set

Dφ := {v ∈ D | ρφ(σ)v ∈ 〈v〉, σ ∈ π1(Y )}, Dφ(χ) := {v ∈ D | ρφ(σ)v = χφ(σ)v, σ ∈ π1(Y )}

T φ := {v ∈ T | ρφ(σ)v ∈ 〈v〉, σ ∈ π1(Y )}, Tφ(χ) := {v ∈ T | ρφ(σ)v = χφ(σ)v, σ ∈ π1(Y )}
By definition Dφ, T φ (resp. Dφ, Tφ) are π1(Y )-subsets (resp π1(Y )-submodules) of D, T respectively. For
each subset E ⊂ D and n ≥ 0, set E[pn] := E ∩ D[pn] and E[pn]∗ := E ∩ (D[pn] r D[pn−1]), with the
convention D[p−1] := ∅. For each subset E ⊂ T , set E∗ := E ∩ (T r pT ). Then one has

lim
n
Dφ[pn] ' T φ, limDφ[pn]∗ ' T ∗φ,

and
lim
n
Dφ(χ)[pn] ' Tφ(χ), lim

n
Dφ(χ)[pn]∗ ' Tφ(χ)∗.

Proposition 15. Assume Conjecture 1 holds for d and GCLS (or GCLP) Qp-local systems V|Z , for Z ↪→ X
a locally closed smooth subvariety. Then,
(1) Let χ : π1(X) → Z×p be a p-adic character such that, for every x ∈ |X|≤ d, χx does not appear as a

subrepresentation of ρx. Then there exists an integer n := n(V, χ, d) ≥ 0 such that for every x ∈ |X|≤ d

the π1(x)-module Dx(χ) is contained in D[pn];
(2) Assume T(0) = 0. Then there exists an integer n := n(V, d) ≥ 0 such that for every x ∈ |X|≤ d \XV the

π1(x)-set Dx is contained in D[pn].

Proof. We argue as in [CT12, Cor. 4.3] with one additional induction step for (1). Write Π := ΠX,V ,
Π := ΠX,V Let Π(n) denote the kernel of the morphism Π ⊂ GL(T ) � GL(T/pn) induced by reduction
modulo pn. Recall that the Π(n), n ≥ 1 form a fundamental system of neighbourhoods of 1 in Π. From
Conjecture 1, |X|V ∩ |X|≤ d is not Zariski-dense in X and there exists an integer N = N(V, d) ≥ 1 such that
for every x ∈ |X|≤ d \ |X|V , Π(N) ⊂ Πx hence Dx(χ) ⊂ DφN (χ) and Dx ⊂ DφN , where φN : XΠ(N) → X
denote the geometrically connected etale cover corresponding to the open subgroup Π(N) ⊂ Π.

Proof of (2): It is enough to show that DφN is finite. Each 0 6= v ∈ T φN defines a p-adic character
χv : π1(XΠ(N))→ Z×p such that π · v = χv(π)v, π ∈ π1(XΠ(N)). Since Π∩Π(N) has finite abelianization (as
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V is GLP), π1(XΠ(Nv),k) acts trivially on v for some Nv ≥ N . This shows T φN ⊂ T(0) = 0. On the other
hand, if DφN were infinite, DφN [pn]∗ would be nonempty for every n ≥ 0, hence T ∗φN = lim

n
DφN [pn]∗ would

be nonempty: a contradiction.

Proof of (1): Assume first χ is the trivial character 1. One argue by induction on the dimension of X. If
X is 0-dimensional, the assertion is straightforward (as Dx(1) is finite for every x ∈ X(k) by assumption).
Assume X has dimension ≥ 1. For x ∈ |X|≤ d \|X|V , Dx(1) ⊂ DφN (1). By construction, the action of π1(X)
on DφN (1) factors through π1(X) � π1(X)/π1(XΠ(N)) = Π/Π(N) = ΠN . Thus, Dx(1) coincides with the
submodule of elements of DφN (1) fixed by the subgroup (Πx)N ⊂ ΠN . As ΠN is a finite group, there are
only finitely many subgroups of ΠN that coincide with (Πx)N for some x ∈ |X|≤ d \ |X|V . Accordingly,
there are only finitely many submodules of DφN (1) that coincide with Dx(1) for some x ∈ |X|≤ d \ |X|V .
As Dx(1) is finite for every x ∈ |X|≤ d (by assumption), this shows that there exists an integer n0 ≥ 1

such that Dx(1) ⊂ D[pn0 ], x ∈ |X|≤ d \ |X|V . Next, let Z := (|X|V ∩ |X|≤ d)zar ( X denote the Zariski-
closure of XV ∩ |X|≤ d in X. One can cover Z by finitely many locally closed smooth irreducible subvarieties
- say Z1, . . . , Zr, of dimension ≤dim(X) − 1. As for i = 1, . . . , s, V|Zi is again GCLS (and χx does not
appear as a subrepresentation of ρx for every x ∈ Zi(k) ⊂ |X|≤ d), the induction hypothesis ensures that
ni ≥ 1 such that for every x ∈ |Zi|≤ d the π1(x) = π1(k)-module Dx(χ) is contained in D[pni ]. Taking
n := max{n0, n1, . . . , nr} concludes the proof. The case of a general p-adic character χ : π1(X) → Z×p
reduces to the case χ = 1 exactly as in the proof of [CT12, Cor. 4.3] (with "GLP replaced by "GCLS" or
"GCLP"). �

Remark. The proof shows that one may replace replace |X|≤ d with any subset Ξ ⊂ |X|≤ d in Proposition 15.

Examples.
(4) (Uniform boundedness of p-primary torsion of abelian varieties). Let f : Y → X be an abelian scheme

and consider the GCLS Qp-local system Vp = (R1f∗Qp)
∨. By the Mordell-Weil theorem Proposition 15

(1) applies to T = Tp(Aη) ⊂ V = Vp(Aη) and χ = 1 so that one gets: Assume Conjecture 1 holds for d
and GCLS (or GCLP) Qp-local systems V|Z , for Z ↪→ X a locally closed smooth subvariety. Then

sup{|Ax(k(x))[p∞]| | x ∈ |X|≤ d} < +∞.
By the theory of Hilbert moduli schemes, for every integer g ≥ 1, one can construct a variety Xg over Q
and a principally polarized abelian scheme Yg → Xg of relative dimension g such that for every number
field k and g-dimensional principally polarized abelian variety Y over k there exists xY ∈ X(k) with
Y ' Yg,xY . Stratifying Xg by (finitely many) locally closed smooth irreducible subvarieties (and using
that a smooth irreducible variety over k with a k-rational point is geometrically connected) and applying
the above to the pullback of Y 4

g ×Xg Y ∨g 4 → Xg over each of the (finitely many) stratum, one gets the
p-primary part of the torsion conjecture for abelian varieties, namely, for every integer d and prime p
there exists an integer n(d, p, g) ≥ 0 such that for every number field k with [k : Q] ≤ d and g-dimensional
abelian variety Y over k one has |Y(k)[p∞]| ≤ pn(d,p,g).

(5) Let f : Y → X be a smooth proper morphism and consider the GCLS Qp-local system Vp = R2f∗Qp(1).
For a prime p, let Ξp ⊂ X(k) denote the subset of all x ∈ X(k) such that Yx satisfies the p-adic
Tate conjecture for divisors. Then Proposition 15 (1) and the above Remark with Ξ := Ξp apply to
T = Tp(Br(Yη)) ⊂ V = Vp(Br(Yη)) and χ = 1 (e.g. [CCh20, Prop. 2.1.1]) so that one gets: for every
prime p

sup{|Br(Yx̄)π1(k)[p∞]| | x ∈ Ξp} < +∞.
If Y → X is an abelian scheme or a family of K3 surfaces then Ξp = X(k). If2 one assumes Conjecture
1 for every integer d ≥ 1, one obtains as in Example (1) the p-primary part of the uniform boundedness
conjecture [?, Conj. 4.6], namely: for every integer d ≥ 1 and lattice Λ there exists n(d,Λ) ≥ 0 such
that for every number field k with [k : Q] ≤ d and K3-surface Y over k with NS(Yk̄) ' Λ one has
|Br(Yk̄)

π1(k)[p∞]| ≤ pn(d,Λ). See [CCh20, 2.2] for details.

4. The main geometric conjecture

The aim of this Section is to relate Conjecture 2 to the following celebrated Diophantine conjecture, which
is the case ∆ = ∅ of Conjecture 10.

2If one wants to stick to the d = 1 case of Conjecture 1, then one should also involve a fixed level structure in the data.
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Conjecture 16. (Bombieri-Lang, [L86]) Assume X is of general type. Then X(k) is not Zariski-dense in
X.

Modulo a geometric conjecture - Conjecture 17. This is achieved in Corollary 19, Proposition 20, after in-
troducing an ad hoc projective system of level schemes (Subsection 4.1), which is the essential ingredient to
reformulate the (representation-theoretic) Conjecture 2 in diophantine terms.

Before that, let us just briefly mention that Conjecture 10 and Conjecture 16 are widely open in general.
The most important known cases are:
- Conjecture 16: Subvarieties of general type in abelian varieties (in particular curves - Mordell conjecture
[F83], [FW84]) [F91];

- Conjecture 10: Shimura varieties of abelian type - Shafarevich conjecture for abelian varieties (in partic-
ular hyperbolic curves of genus ≤ 1 - Siegel Theorem [Si29]) [F91].

Let us also mention the following consequence of Conjecture 16 for subvarieties of general type in abelian
varieties [Fr94]: Let X be proper, smooth, geometrically connected curve over k of k-gonality ≥ γ. Then for
every integer 0 ≤ d ≤ bγ−1

2 c, |X|
≤ d is finite.

4.1. Level schemes. For a profinite group Π, let Φ(Π) ⊂ Π denote its Frattini subgroup (that is the
intersection of all the maximal open subgroups of Π).

4.1.1. Let Γ be a compact p-adic Lie group. Fix a fundamental system Γ(n), n ≥ 0 of neighbourhoods of 1 in
Γ, that is a decreasing sequence · · · ⊂ Γ(n + 1) ⊂ Γ(n) ⊂ · · · ⊂ Γ of open normal subgroups of Γ such that
∩n≥0Γ(n) = 1 (or, equivalently, such that every open subgroup U ⊂ Γ contains Γ(n) for n � 0). For every
n ≥ 1, let Hn(Γ) denote the set of open subgroups U ⊂ Γ such that Φ(Γ(n− 1)) ⊂ U but Γ(n− 1) 6⊂ U and
let H0(Γ) := {Γ}. Then [CT12, Lem. 3.3, (Proof of Cor. 3.6)],

(1) Hn(Γ) is finite, n ≥ 0.

(2) The maps Hn+1(Γ)→ Hn(Γ), U 7→ UΦ(Γ(n− 1)) (with the convention that Φ(Γ(−1)) = Γ) endow
the Hn(Γ), n ≥ 0 with a canonical structure of projective system (Hn+1(Γ)

φn→ Hn(Γ))n≥0.

(3) For every H := (H[n])n≥0 ∈ lim
n
Hn(Γ),

H[∞] := lim
n
H[n] =

⋂
n≥0

H[n] ⊂ Γ

is a closed subgroup of codimension ≥ 1 in Γ and H[n] = H[∞]Γ(n), n� 0.

(4) For every closed subgroup H ⊂ Γ such that Γ(n−1) 6⊂ H there exists U ∈ Hn(Γ) such that H ⊂ U .

4.1.2. Let now V := Vp be a Qp-local system on X and ρ : π1(X)→ GL(Vη) the corresponding representation.
Write Π := ΠX,V , Π := ΠX,V . For an open subgroup U ⊂ Π, let XU → X denote the connected étale cover
corresponding to ρ−1(U) ⊂ π1(X). Fix a fundamental system Π(n), n ≥ 0 of neighbourhoods of 1 in Π and
let Hn(Π), n ≥ 0 denote the corresponding projective system of 4.1.1. From 4.1.1 (1),

Xn := Xn(Π) :=
⊔

U∈Hn(Π)

XU → X

is a (non-connected) étale cover of X and, by functoriality of étale fundamental group, the maps Hn+1(Π)→
Hn(Π), n ≥ 0 of 4.1.1 (2) endow the Xn, n ≥ 0 with a structure of projective system

· · · → Xn+1 → Xn → Xn−1 → · · · → X1 → X

whose transition morphisms are étale covers. The connected etale cover XU → X is defined over a finite
extension kU of k (namely the one corresponding to the open subgroup im(π1(XU ) → π1(X) → π1(k)) =
π1(kU ) ⊂ π1(k)) and satisfies the following two properties:

(1) XU ×kU k → Xk is the etale cover XU → Xk corresponding to the inverse image of the open subgroup
U := Π ∩ U ⊂ Π in π1(Xk).
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(2) For every morphism Y → X, im(π1(Y ) → π1(X) � Π) ⊂ U (up to conjugacy) if and only if Y → X

factors as XU

��
Y //

==

X

.

4.2. The main geometric conjecture relating Conjecture 2 to Conjecture 16 is the following.

Conjecture 17. (Geometric version of Conjecture 2) Assume k = k̄ (so that Π = Π) and let V be a (G)CLP
Qp-local system on X. Fix a fundamental system Π(n), n ≥ 0 of neighbourhoods of 1 in Π. Then, for every
closed subgroup H ⊂ Π of positive codimension and for n� 0, XHΠ(n) dominates a variety of general type.

Remark. Conjecture 17 is independent of the choice of Π(n), n ≥ 0 as if Π̃(n), n ≥ 0 is another fundamental
system of neighbourhoods of 1 in Π, for every n ≥ 0 there exists Nn ≥ n such that Π(Nn) ⊂ Π̃(n) so that
XHΠ(n) → X

HΠ̃(n)
.

Consider a property P of smooth, irreducible varieties over k̄ which is invariant by birational morphism and
such that, for a generically finite morphism V2 → V1 of smooth irreducible varieties over k̄, V1 satisfies P
implies V2 satisfies P.

Lemma 18. Assume k = k̄ (so that Π = Π). If for every closed subgroup H ⊂ Π of positive codimension
and for n� 0, XHΠ(n) satisfies P then for n� 0, every connected component of Xn also satisfies P.

Proof. Let Hn,¬P(Π) ⊂ Hn(Π) denote the subset of all U ∈ Hn(Π) such that XU does not satisfy P. Then
the projective system Hn+1(Π) → Hn(Π), n ≥ 0 restricts to a projective system Hn+1,¬P(Π) → Hn,¬P(Π),
n ≥ 0. Assume Hn,¬P(Π) 6= ∅, n ≥ 1. By 4.1.1 (1), Hn,¬P(Π) is finite, n ≥ 0 hence lim

n
Hn,¬P(Π) 6= ∅. Let

H := (H[n])n≥1 ∈ lim
n
Hn,¬P(Π). By 4.1.1 (3), H[∞] :=

⋂
n≥1

H[n] ⊂ Π is a closed subgroup of codimension
≥ 1 and H[n] = H[∞]Π(n), for n� 0, which contradicts the assumption for H = H[∞]. �

Lemma 18 applied to the property P ≡ "dominates a variety of general type" immediately yields.

Corollary 19. Assume k = k̄ (so that Π = Π) and let V be a (G)CLP Qp-local system on X for which
Conjecture 17 holds. Then, for n� 0, every connected component of Xn dominates a variety of general type.

Proposition 20. Conjecture 16 and Conjecture 17 imply Conjecture 2.

Proof. Fix a fundamental system Π(n), n ≥ 0 of neighbourhoods of 1 in Π and let

· · · → Xn+1 → Xn → Xn−1 → · · · → X1 → X.

be the projective system of étale covers attached to it in 4.1.2. From 4.1.1 (4) and 4.1.2 (2), the exceptional
locus XV ⊂ X(k) is the image of

limXn(k)→ X(k).

It is in particular enough to show that Xn(k) ⊂ Xn is not Zariski-dense in Xn for n� 0. We choose Π(n),
n ≥ 0 as follows (See Remark 17). Fix a Π-stable Zp-lattice T ⊂ Vη̄. For n ≥ 0 let Π(n) ⊂ Π denote the
kernel of the reduction-modulo-pn morphism Π ⊂ GL(T ) � GL(T/pn). With this choice of Π(n), n ≥ 0
there exists an integer N0 > 0 such that for every n ≥ N0, Φ(Π(n)) = Π(n + 1) and Φ(Π(n)) = Π(n + 1)
[CT12, Lem. 3.2]. From Corollary 19, there exists an integer N1 ≥ N0 such that for every n ≥ N1 and
U ∈ Hn(Π), XU dominates a variety of general type. Since Π is topologically finitely generated, it contains
only finitely many open subgroups U ⊂ Π with [Π : U ] ≤ 2[Π : Π(N1 − 1)]; the intersection of all such open
subgroups is thus again open in Π hence contains Π(N2 − 1) for some integer N2 ≥ N1. Let n ≥ N2 and
U ∈ Hn(Π) so that Π(n)(= Φ(Π(n − 1))) ⊂ U but Π(n − 1) 6⊂ U . Then, by definition, Π(n) ⊂ U . Let N
be the minimal integer ≥ N1 − 1 such that Π(N)(= Φ(Π(N − 1))) ⊂ U . If N ≥ N1, Π(N − 1) 6⊂ U hence
U ∈ HN (Π) and XU dominates a variety of general type. If N = N1−1, Π(N1−1) ⊂ U . Since Π(n−1) 6⊂ U
and n ≥ N2, Π(N2 − 1) 6⊂ U . Thus, by definition of N2, [Π : U ] > 2[Π : Π(N1 − 1)], hence

[kU : k] =
[Π : U ]

[Π : U ]
> 2

[Π : Π(N1 − 1)]

[Π : U ]
≥ 2,

This shows that for n ≥ N2 and every U ∈ Hn(Π), either [kU : k] ≥ 2 - hence XU (k) = ∅ or XU dominates
a variety of general type - hence, by Conjecture 16, XU (k) ⊂ XU is not Zariski-dense in XU . This shows
that |X|V ∩X(k) is not Zariski-dense in X. For the second part of Conjecture 1, we proceed by induction
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on the dimension of X. For every n ≥ N2 let X[n] ⊂ X denote the Zariski-closure of im(Xn(k)→ X(k)) in
X. If X is a curve, X[N2] is finite. For each x ∈ X[N2] \ |X|V(k), there exists Nx ≥ N2 such that x does
not lift to a k-rational points on XNx so that, with N3 := max{Nx | x ∈ I} ≥ N2, and from 4.1.1 (4), for
every x ∈ X(k) \ |X|V(k), Π(N3) ⊂ Πx hence [Π : Πx] ≤ [Π : Π(N3)]. In general, as X is noetherian, there
exists N3 ≥ N2 such that X[n] = X[N3], n ≥ N3. From 4.1.1 (4), for every x ∈ X \X[N3](k), Π(N3) ⊂ Πx

hence [Π : Πx] ≤ [Π : Π(N3)]. Let us examine what happens for x ∈ I := X[N3](k) \ |X|V(k).
- If I is finite. Then, for each x ∈ I, there exists Nx ≥ N3 such that x does not lift to a k-rational points
on XNx so that, with N4 := max{Nx | x ∈ I} ≥ N3, and from 4.1.1 (4), for every x ∈ X(k) \ |X|V(k),
Π(N4) ⊂ Πx.

- If I is not finite, consider Z := Izar ⊂ X[N3]. Then one can cover Z by finitely many locally closed smooth,
irreducible subvarieties - say Z1, . . . , Zr. For each of i = 1, . . . , r, one of the following holds

– Zi(k) = Zi(k) ∩ |X|V . In that case, set ni = N3.

– Zi(k)\Zi(k)∩|X|V is finite and, as above, there exists ni ≥ N3 such that for every x ∈ Zi(k)\Zi(k)∩|X|V ,
Π(ni) ⊂ Πx.

– Zi(k) \ Zi(k) ∩ |X|V is infinite; in particular, Zi has dimension ≥ 1 but, also, <dim(X). Let ΠZi ⊂ Π
denote the image of π1(Zi) acting on Vη via π1(X)→ π1(X). As for x ∈ Zi(k) \Zi(k)∩ |X|V , Πx ⊂ Π is
open, ΠZi ⊂ Π is open; in particular, |X|V ∩ Zi = XV|Zi

. On the other hand, by definition, V|Zi is again
GCLS so that, by induction hypothesis, there exists ni(≥ N3) such that for every x ∈ Zi(k)\Zi(k)∩XV|Zi ,
Π(ni) ⊂ Πx.

As a result, with N4 := max{n1, . . . , nr} ≥ N3, and from 4.1.1 (4), one gets, again, that for every x ∈
X(k) \ |X|V(k), Π(N4) ⊂ Πx.

�

4.3.Remarks.

(1) The proof of Proposition 20 shows that one "only" needs Conjecture 16 for the connected components of
Xn which are of general type and for varieties of general type of dimension ≤ dim(X)− 1. In particular,
if X is a surface, one "only" needs Conjecture 16 for the connected components of Xn which are of
general type.

(2) The proof of Proposition 20 also shows that the non-Zariski density of Xn(k) for n� 0 is only required
for part (2) of Conjecture 2 while for part (1) of Conjecture 2, the non-Zariski density of the image of
limXn(k)→ X(k) in X is enough, which is a much weaker statement. More generally, for every integer
d ≥ 1, one has

im(lim |Xn|≤ d → |X|≤ d) = |X|V ∩ |X|≤ d

so that part (1) of Conjecture 1 for d is equivalent to the non Zariski-density of im(lim |Xn|≤ d → |X|≤ d)
in X. We feel the following conjecture (which would imply part (1) of Conjecture 2) is of independent
interest.

Conjecture 21. Let X be a smooth, geometrically connected variety over k and let

Xn+1 → Xn → · · · → X1 → X

be a projective system of geometrically connected étale covers. Let Πn denote the Galois group of the
Galois closure of Xn ×k k̄ → X ×k k̄, n ≥ 1 and assume that Π := limΠn is a p-adic Lie group with
perfect Lie algebra of dimension ≥ 1. Then im(limXn(k)→ X(k)) is not Zariski-dense in X.

(3) For higher-dimensional smooth varieties over number fields we are not aware of any geometric invariant
expected to control the sparcity of points of bounded degree as the geometric gonality does for curve.
Shifting the perspective, we would like to address the following (possibly too rough) question.

Question 22. Fix integers d0, δ ≥ 1. Does there exists an integer N(d0, δ) ≥ 1 such that if Part (1) of
Conjecture 2 holds for every GCLP Qp-local systems on a smooth, geometrically connected k-variety of
dimension ≤ N(d0, δ) then Part (1) of Conjecture 1 holds for every integer d ≤ d0 and GCLP Qp-local
systems on a smooth, geometrically connected k-variety of dimension ≤ δ.
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5. Results and perspectives

5.1. Conjecture 17. In this subsection, assume k = k.

5.1.1. In full generality Conjecture 17 is known only in the two simplest cases of strongly hyperbolic Artin
neighbourhoods3, namely when X is an hyperbolic curve or the product of two hyperbolic curves. More
precisely, one has:
(1) If X is an hyperbolic curve, the following enhanced version of Conjecture 17 holds ([CT13, Thm.3.3

]): Assume Vp is (G)LP. Then, for every closed subgroup H ⊂ Π := ΠX,Vp of codimension ≥ 1, the
k-gonality of XHΠ(n) goes to +∞ with n.

(2) If X = X1×X2 is the product of two hyperbolic curves, the following enhanced version of Conjecture 17
for (G)CLP Qp-local systems holds ([C22, Thm.1.1 ]): Assume Vp is (G)LP. Fix xi ∈ Xi(k), i = 1, 2 and
set x = (x1, x2) ∈ X(k). These induce closed immersions ι1 : X1→̃X1×x2 ↪→ X, ι2 : X2→̃x1×X2 ↪→ X
splitting the projections X → X1, X → X2 respectively. For i = 1, 2, write Πi := ΠXi,ι∗i Vp ⊂ Π := ΠX,Vp
and let pi : Π1×Π2 → Πi denote the corresponding canonical projection; write also p : Π1×Π2 � Π for
the canonical product morphism. Let Π(n), n ≥ 1 be a fundamental system of neighbourhoods of 1 in
Π. One has the following dichotomy.
(a) Either H ⊂ Π is not transverse that is, for one of i = 1, 2, pip−1(H) ⊂ Πi is a closed subgroup of

codimension ≥ 1. Then one has a projective commutative diagram

· · · // XHΠ(n+1)
//

��

XHΠ(n)
//

��

· · · // X

��
· · · // Bi,H,n+1

// Bi,H,n // · · · // Xi

with Bi,H,n → Xi a connected étale cover with gonality (hence, a fortiori, geometric genus) going
to +∞ with n;

(b) Or H ⊂ Π is transverse. Then XHΠ(n) is birational to a smooth projective surface of general type
and, for every integer g ≥ 0, contains only finitely many closed integral curves with geometric genus
≤ g for n� 0.

In (b), the assertion that XHΠ(n) contains only finitely many closed integral curves with geometric
genus ≤ g for n � 0 is a consequence of a celebrated theorem of Bogomolov ([Bo77]) asserting
that a smooth projective surface of general type with c2

1− c2 > 0 contains only finitely many closed
integral curves with geometric genus ≤ 1 and that for every integer g ≥ 0, closed integral curves
with geometric genus ≤ g form a bounded family.

5.1.2. From Theorem 9, when Vp arises from geometry with positive period dimension and X is projective
then X dominates a variety of general type so that Conjecture 17 automatically holds. More generally, after
possibly replacing X by a dense open subscheme, one may assume that there exists a dominant morphism
α : X → X ′ of k-varieties with X ′ of log general type and that Vp arises by base-change from a Qp-local
system on X ′ so that, to tackle Conjecture 17, one may assume X is of log-general type. The strategy to
achieve the results of Subsection 5.1.1 already uses this ingredient in a crucial way. Roughly, the idea is to
exploit the ramification data of the covers XHΠ(n) → X around the components at infinity in the log smooth
compactification j : X ↪→ X. There are two difficulties to overcome:
- Extract from the p-adic representation Vp,η asympotic estimates for the ramification data. This step should
involve subtle structural results about p-adic Lie groups and their homogeneous spaces;

- Relate the ramification data to the geometric invariants (Hodge numbers, Chern numbers, Kodaira dimen-
sions etc.) one wants to control. This step is purely geometric. For instance, when X is a curve and
one only wants to control the genus of XHΠ(n), the Riemann-Hurwitz formula is enough. When X is the

3To prove Conjectures 1, 17, one may freely replace X by a non-empty open subscheme. In particular, one may assume that
X is a strongly hyperbolic Artin neighbourhood that is it decomposes into a sequence

X = Xd → Xd−1 → · · · → X1 → X0 = spec(k)

of elementary fibrations Xn → Xn−1 into hyperbolic curves with the additionnal property that Xn embeds into a product of
hyperbolic curves. Strongly hyperbolic Artin neighbourhood are anabelian in the sense that they can be reconstructed from
their étale homotopy type [SSt16, Thm. 1.2]. As the level schemes are determined by X and the representation Vp,η of π1(X, η),
one may (at least naively) expect that they should be easier to control when X has some strong anabelian features.
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product of two hyperbolic curves and one wants to control the Chern numbers / Kodaira dimension, one
has to work harder and exploit specific geometric features of product-quotients surfaces.

Carrying out this rough strategy should be significantly simpler if one replaces first XHΠ(n) → X by its
Galois closure X̂HΠ(n) → X. A third step is then to relate the asymptotic estimates for XHΠ(n) and those
for X̂HΠ(n). In the Galois case, a parangon of this strategy appears for instance in [M77, §4].

The basic strategy sketched above is purely algebraic and, except for the assumption that X is of log general
type, might work for arbitrary GCLP Qp-local systems, not only for those arising from geometry. On the
other hand, for a Qp-local system Vp arising from geometry, fixing an embedding ∞ : k ↪→ C, one can
consider the corresponding polarizable Z-VHS V∞,Z on XC with complex period map Φ : Xan → Γ \D that
we may assume to be finite-to-one (Theorem 9); then V∞,Z = Φ ∗Vρ∞,Z for the polarizable Z-VHS Vρ∞,Z on
Γ\D defined by the tautological representation ρ : GX,V∞ ↪→ GLV∞,x . From this viewpoint, Conjecture 17 is
closely related to the hyperbolicity properties of certain covers Γn \D → Γ \D. For results in this direction
see [Br20a] (when D is a bounded symmetric domain), [Br20b].

5.2. Conjecture 1.

5.2.1. In full generality Conjecture 1 is known only when X is a curve ([CT13, Thm. 1.1 ]). This follows
from the fact that a smooth proper curve over a number field k with k-gonality γ has only finitely many
points of bounded degree d ≤ bγ−1

2 c and the enhanced form of Conjecture 17 in Subsection 5.1.1 (1).

Even assuming Conjecture 17, Conjecture 16 stands in the way to make the heuristic of Section 4 uncon-
ditional. On the other hand, as pointed out in 4.3 (2), part (1) of Conjecture 2 does not require the full
strength of Conjecture 16 and should be significantly more accessible than part (2), possibly by diophan-
tine techniques bypassing Conjecture 17. For Qp-local systems arising from geometry, one has at disposal
a broader range of techniques due to the interplay between the various other cohomological incarnations of
Vp. In particular, one can try and control the exceptional loci |X|Vp ∩X(k) directly via period maps.

For the remaining part of this section, let f : Y → X be a smooth proper morphism and set Vp = Ri(prim)f∗Qp,
p ∈ spec(Z) and V∞ = Ri(prim)f

an
∗ Q, ∞ : k ↪→ C. Recall that Vp is then automatically GCLS and that V∞

underlies a polarizable Z-VHS (V∞,Z,V∞,Z ⊗Z OXan ,∇, F •) on Xan.

5.2.2. C-analytic period map. As already discussed in Subsection 2.2, assuming the Mumford-Tate Conjec-
ture (Conjecture 5), Conjecture 1 (1) immediately translates to:

Conjecture 23. For every integer d ≥ 1, the set X(C)V∞ ∩ |X|≤ d is not Zariski-dense in X.

What makes Conjecture 23 possibly more tractable than Conjecture 1 is that the Hodge locus X(C)V∞ is
controlled by the global complex analytic period map Φ : Xan → Γ \ D, which is particularly suited for
studying its geometric properties. Let us briefly review the general conjectural frame, following [Kl22] to
which we refer for further details and references. Fix o ∈ Xan, which we may assume to be V∞-generic and
let u : X̃an → Xan denote the corresponding universal cover of Xan. The polarizable Z-VHS V∞ on Xan

gives rise to a diagram:

X̃an Φ̃ //

u

��

D �
� ι //

��

Ďan

Xan Φ// S := Γ \D.
Set fn := dimC(Fno ), n ∈ Z; write V∞,Z := V∞,Z,o, V∞ := V∞,o and let GV∞ := GXC,V∞ ⊂ GLV∞ denote
the generic Mumford-Tate group of V∞, ho : S → GV∞,R the morphism of algebraic groups over R defin-
ing o∗V∞. Let Ď be the algebraic variety over Q (a closed subvariety of the product of Grassmannians∏
nGr(fn, V∞)) classifying the finite decreasing filtrations F • on V∞ with dimFn = fn, n ∈ Z and such that

(F p)⊥q = Fn+1−p, where q is the polarization on V∞,Z. Let D ⊂ Ďan denote the analytic open subset where
the Hodge form (x, y) 7→ (2πi)nq(x, h(i)y) on V∞⊗R is positive definite. Writing G := GAut(V∞, q) for the
group of similitudes of (V∞, q), G(C) acts transitively on Ď, identifying Ď with the flag variety GC/Po→̃Ď,
where Po ⊂ GC is the parabolic subgroup fixing F •o . Similarly, the neutral component Gder(R)+ of Gder(R)
acts transitively on D and Mo := Gder(R)+∩Po(C) ⊂ Gder(R)+ is a compact subgroup. The Z-VHS u∗V∞ is
canonically trivialized as (V∞,X̃an , (V∞⊗COX̃an , 1⊗d), F •, q) and Φ̃ : X̃an → D is the map which, if Ω ⊂ X̃an
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is a small enough analytic simply connected open subset sends x̃ = (γ, x) ∈ π1(Xan, o) × Ω = u−1(Ω) to
γ · F •x . The map Φ̃ : X̃an → D actually factors through the Gder

V∞(R)+-orbit D ⊂ D of F •o , which is an open
analytic subset of the analytification of the GV∞,C-orbit Ď ⊂ Ď of F •o . Note that one can also identify D
with the Gder

V∞(R)+-orbit of ho : S→ GV∞,R in HomR(S, GV∞,R) and that, modulo this identification, the map
ι : D ↪→ Ďan is the analytic open immersion mapping h : S→ GV∞,R to the filtration defined by the cochar-
acter hC ◦µ : Gm,C → GV∞,C, where µ : GmC → SC = GmC×GmC, z 7→ (z, 1). By construction Φ̃ : X̃an → D
is equivariant with respect to the monodromy representation π1(Xan, o) → Γ := GV∞(Q) ∩ GL(V∞,Z) so
that it factors through Φ : Xan → S := Γ \ D. One usually refers to (G,D) as to the Hodge datum of
V∞ and call D (resp. D) the Mumford-Tate domain or Hodge domain (resp. the period domain) of (G,D)
and the quotient S = Γ\D ofD by the arithmetic lattice Γ := GV∞(Q)∩GL(V∞,Z) a Hodge variety for (G,D).

More generally, a Hodge datum is a pair (G,D), where G is a connected reductive group over Q and
D ⊂ HomR(S, GR) the Gder(R)+-conjugacy class of a morphism h : SR → GR such that h ◦ α : Gm,R → GR
is defined over Q, where α : Gm,R → S is the adjonction morphism; D naturally embeds as an open analytic
subset into its compact dual Ď as above. A morphism of Hodge data (G,D) → (G′, D′) is a morphism of
algebraic groups G → G′ mapping D to D′. If (G,D) is a Hodge datum, a Hodge variety for (G,D) is
the quotient S = Γ \D by an arithmetic lattice Γ ⊂ G(Q) ∩Gder(R)+ so that S is naturally endowed with
the structure of a complex analytic variety which is smooth if Γ is torsion free. A morphism of Hodge data
(G,D) → (G′, D′) mapping an arithmetic lattice Γ ⊂ G(Q) ∩ Gder(R)+ to Γ′ ⊂ G′(Q) ∩ G′ der(R)+ induces
an analytic morphism of Hodge varieties Γ \D → Γ′ \D′.

For a closed integral subvariety Z ↪→ XC, let G
◦
Z,V ⊂ GZ,V∞ denote the connected monodromy group and

generic Mumford-Tate group of V∞|Z respectively; recall that G◦Z,V is normal in GZ,V∞ .

To these data one associates the following classes of subvarieties of XC:

- Special subvarieties: A special subvariety of S is the image S′ ⊂ S of the map D′ → D → S = Γ \ D
induced by a morphism of Hodge data (G′, D′) → (GV∞ , D). The inverse image Φ−1(S′) ⊂ Xan of a
special subvariety S′ ⊂ S is a finite union of closed irreducible subvarieties of XC [CaDK95], [BKT20]. A
closed integral subvariety Z ↪→ XC is said to be special if it is an irreducible component of the preimage
Φ−1(SZ) ⊂ Xan of a special subvariety SZ ⊂ S. Equivalently, a closed integral subvariety Z ↪→ XC is
special if it maximal among the closed integral subvarieties of XC with generic Mumford-Tate group GZ,V∞
so that one recovers the definition of Subsection 2.2.

Define the Hodge codimension of a closed integral subvariety Z ↪→ XC asHcd(Z) := dim(SZ)−dim(Φ(Zan)),
where SZ ↪→ S is the Hodge subvariety defined by GV∞,Z . A special subvariety Z ↪→ XC is said to be
atypical if either Φ(Zan) is contained in the singular locus of Φ(Xan) or if Hcd(Z) < Hcd(X). It is said to
be typical otherwise.

CM points (that is those x ∈ X(C) such that GV∞,x is a torus) are always atypical unless (GV∞ , D) is of
Shimura type and Φ : Xan → S is dominant.

- Weakly special subvarieties: A weakly special subvariety of S is either a special subvariety or a subvariety
of the form v1v

−1
2 (s2) for morphisms of Hodge varieties S v1← S1

v2→ S2 and s2 ∈ S2. The inverse image
Φ−1(S′) ⊂ Xan of a weakly special subvariety S′ ⊂ S is a finite union of closed irreducible subvarieties
of XC [KlO21]. A closed integral subvariety Z ↪→ X is said to be weakly special if it is an irreducible
component of the preimage Φ−1(SZ) ⊂ Xan of a weakly special subvariety SZ ⊂ S. Equivalently, a closed
integral subvariety Z ↪→ X is weakly special if it is maximal among the closed integral subvarieties of XC
with monodromy group G◦Z,V .

- Bi-algebraic subvarieties: For a closed irreducible analytic subvariety Z ↪→ X̃an, write Zzar ⊂ ĎC for its
algebraic model that is the Zariski closure of Φ̃(Z) in ĎC. A closed irreducible analytic subvariety Z ↪→ X̃an

is said to be algebraic if it is an analytic irreducible component of Φ̃−1(Zzar). A closed integral subvariety
Z ↪→ XC is said to be bi-algebraic if one (equivalently every) irreducible component of u−1(Zan) is an
algebraic subvariety of X̃an.

The bi-algebraic subvarieties of XC are exactly the weakly special subvarieties [KlO21].
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- Q-bi-algebraic varieties: An algebraic subvariety Z ↪→ X̃an is said to be Q-algebraic if its algebraic en-
veloppe Zzar ↪→ ĎC is defined over Q. A bi-algebraic subvariety Z ↪→ XC is said to be Q-bi-algebraic if it is
defined over Q and one (equivalently every) irreducible component of u−1(Zan) is a Q-algebraic subvariety
of X̃an.

A closed integral subvariety Z ↪→ XC is said to be of positive period dimension if Φ(Zan) ⊂ S = Γ \D has
dimension > 0. If one decomposes the period domain Γ \ D = Γ1 \ D1 × · · · × Γr \ Dr according to the
decomposition Gad

V∞ = G1 × · · · ×Gr of Gad
V∞ into simple factors then a closed integral subvariety Z ↪→ XC

is said to be factorwise of positive period dimension if the projection of Φ(Zan) onto each factor Γi \ Di,
i = 1, . . . , r has dimension > 0.

Remark: From [BBrT18, Thm. 1.1 and par after Thm. 1.1], one may reduce to the case where the period
map Φ : Xan → S is finite-to-one so that, in particular, a closed integral subvariety Z ↪→ XC is of positive
period dimension if and only if it is of positive dimension.

Let Σtyp
V∞ , Σatyp

V∞ and ΣV∞ = Σtyp
V∞ t Σatyp

V∞ denote the set of special atypical, strict special typical and strict
special subvarieties of X for V∞ respectively. Let also Σf> 0

V∞ ⊂ Σ> 0
V∞ ⊂ ΣV∞ denote the subset of strict

special subvarieties of factorwise positive period dimension and positive period dimension respectively. Set
Σatyp,> 0
V∞ := Σtyp

V∞ ∩ Σ> 0
V∞ , Σatyp, f> 0

V∞ :=... and consider the following subsets of the Hodge locus X(C)V∞

X> 0
V∞ :=

⋃
S∈Σ>0

V∞
S (Hodge locus of positive period dimension);

X f> 0
V∞ :=

⋃
S∈Σf> 0

V∞
S (Hodge locus of factorwise positive period dimension);

Xatyp
V∞ :=

⋃
S∈Σ

atyp
V∞

S (atypical Hodge locus);

Xtyp
V∞ := XV∞ \X

atyp
V∞ (typical Hodge locus);

Xatyp,> 0
V∞ := Xatyp

V∞ ∩X
> 0
V∞ (atypical Hodge locus of positive period dimension).

Xatyp,f> 0
V∞ := Xatyp

V∞ ∩X
f> 0
V∞ (atypical Hodge locus of factorwise positive period dimension).

Note that, when Gad
V∞ is simple, X f> 0

V∞ = X> 0
V∞ .

Eventually, let ΣQ-bizar
V∞ ⊂ Σbizar

V∞ denote the set of strict Q-bialgebraic and strict bi-algebraic (equivalently,
weakly special) subvarieties of X for V∞ respectively.

Conjecture 24.
(1) (Zilber-Pink, [Kl22, Conj. 5.2]) The subset Xatyp

V∞ is a strict closed algebraic subvariety of X.

(2) ([Kl22, Conj. 5.6]) The subset Xtyp
V∞ is either empty or analytically dense in Xan.

When V∞ has level ≥ 3 (see [BaKU21, §4.6] for the definition) and G◦Z,V = Gder
V∞ , Xtyp

V∞ = ∅ [BaKU21, Thm.
3.3] so that, in that case, Conjecture 23 follows from (and is a priori strictly weaker than) Conjecture 24 (1).
When V∞ has level ≥ 3, Conjecture 24 (1) holds for Σatyp, f> 0

V∞ - hence, when Gad
V∞ is simple, for Σatyp, > 0

V∞
[BaKU21, Thm. 1.5]. In constrast to level ≥ 3, typical subvarieties are in general abundant in level ≤ 2;
in particular, for Shimura varieties, XV∞ = Xtyp

V∞ . In the other direction, supporting Conjecture 24 (2), if
Xtyp
V∞ 6= ∅ then XV∞ is analytically dense in Xan [BaKU21, Thm. 3.9].

Conjecture 24 (1) and the results of [BaKU21] suggest to refine Conjecture 23 as follows:

Conjecture 25.
(1) Atypical special locus:

(1-1) (Positive period dimension) The set Xatyp,> 0
V∞ is not Zariski-dense in X;

(1-2) (Zero period dimension) The set of maximal atypical special subvarieties of zero period dimension
for V∞ is finite;

(2) Typical special locus: For every integer d ≥ 1, the set Xtyp
V∞ ∩ |X|

≤ d is not Zariski-dense in X.

For Shimura varieties (level 1), that XV∞ is analytically dense in Xan follows from the classical (and a
priori stronger) fact that the set of special=CM points is analytically dense in Xan. Still, in this setting,
the finiteness (hence the non-Zariski density) of the set of special points of bounded degree ≤ d holds as a
consequence of (part of) the Pila-Zannier strategy for André-Oort. Let us briefly recall the argument for a
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Shimura variety of abelian type. Fix a Weil height H : Ď(Q)→ R≥0. Then one can show that there exists an
integer c ≥ 1 and constants ci, αi > 0, i = 1, 2 (depending only on (G,D) and of the choice of a fundamental
(Siegel) subset Σ ⊂ D for the action of Γ) such that every CM point x ∈ X lifts to a Q-point x̃ ∈ Ď(Q) with

(1) [k(x̃) : Q] ≤ c;
(2) H(x̃) ≤ c1disc(x)α1 ;
(3) c2disc(x)α2 ≤ [Q(x) : Q].

(where disc(x) the discriminant of the center of the endomorphism ring of the abelian variety corresponding
to x). So, ultimately, the finiteness of the set of CM points of bounded degree ≤ d on a Shimura varieties of
abelian type follows from the Northcott property for H. We refer to [KlUY18] and the references therein for
a more detailed survey. Let us only stress that (1) and (2) are essentially (highly technical for (2)) "linear
algebra" but that, for the time being, the only known proof of (3) is based on deep arithmetic inputs - in
particular the so-called average Colmez conjecture [AnGHoM18], [YuZh18]. For a general Shimura variety,
the argument is along the same guidelines using [PShTs21]. See also [OS18] for a proof of the finiteness of
Q-isomorphisms CM abelian varieties of bounded dimension defined over a number field of bounded degree
avoiding the machinery of Shimura varieties, and [V23] for a proof for K3 surfaces avoiding the average
Colmez conjecture.

Remark. One could hope for a similar strategy to attack Conjecture 25 for special points. The first step of
such strategy would be to show that special points areQ-bi-algebraic. However, one cannot expect this to hold
for an arbitrary motive as the following example shows4. Let (G = GSpg, D) denote the Siegel Hodge datum
and XC = Γ \D any high enough level of the corresponding Shimura variety (parametrizing g-dimensional
principally polarized abelian varieties with some level structure). By Bertini, one can construct a closed
smooth integral Q-curve C ↪→ XQ with G◦C,V = G

◦
X,V(= Spg) - hence, in particular GV∞,C = GV∞(= GSpg).

Assume C intersects strictly a strict special subvariety S ↪→ X of positive dimension. Then every point z in
the intersection becomes special for V∞|Can but is not CM. On the other hand, the natural Q-bi-algebraic
structure attached to V∞|Can is simply the one obtained from the Q-bi-algebraic structure attached to V∞
on X as

C̃an //

��

X̃an Φ̃ //

u

��

D �
� ι //

��

Ďan

Can // Xan Φ // S := Γ \D

so that a point of C is Q-bi-algebraic for the natural Q-bi-algebraic structure attached to V∞|Can if and only
if it is Q-bi-algebraic for the natural weak Q-bi-algebraic structure attached to V∞; for the latter, it is known
that Q-bi-algebraic points are CM. To exclude this kind of pathology, one can restrict the definition of a
Q-bi-algebraic structure by requiring that X itself be Q-bi-algebraic, that is for every analytic irreducible
component U of u−1(Xan), U zar ⊂ ĎC is defined over Q. In the example above, this would force C to be
Q-bi-algebraic for the natural Q-bi-algebraic structure attached to V∞ on X which, for Shimura varieties, is
equivalent to being special. Say that such a Q-bi-algebraic structure is arithmetic.

For Conjecture 25 (2), very little seems to be known even for d = 1. Note that, for Shimura varieties, the
d = 1 case of Conjecture 25 (2) (or, equivalently Conjecture 23 as in level 1 X(C)V∞ = Xtyp

V∞) appears as
[U04, Conj. 4.3]. The example of the Shimura variety X = Y (1)× Y (1) over k = Q and the special curves
Y0(n) ⊂ X shows that X can contain an infinite set of (positive dimensional) special typical subvarieties
defined over k. The special typical curves Y0(n) ⊂ X are strongly special in X in the terminology of [UY14].
Actually, the results of [UY14] about lower bound for the degree of Galois orbit of special subvarieties of
Shimura varieties which are not strongly special may pave the way to a partial proof of the d = 1 case of
Conjecture 23 for Shimura varieties. More precisely, say that x ∈ X(C)V∞ is strongly special for V∞ if the
image of GV∞,x → Gad

V∞ is semisimple and let

Xstr
V∞ ⊂ X(C)V∞

denote the subset of strongly special points.

4In particular, it is unclear if one could use the Pila-Zannier strategy to recover the special case of [CT13, Thm. 1.1 ] when
the Qp-local system considered arises from the generic Tate module of an abelian scheme.
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Conjecture 26. If (G,D) is a Hodge datum of Shimura type and X := Γ \D is a (connected) level of the
corresponding Shimura variety defined over k then

(X(C)V∞ \Xstr
V∞) ∩X(k)

is not Zariski-dense in X.

Coming back to our initial Qp-local system arising from geometry, using that for a closed integral subvariety
Z ↪→ XC, G

◦
Z,V (resp. G◦Z,Vp = G

◦
Z,V ×Q Qp) is normal in GZ,V∞ (resp. in GZ,Vp) and that GZ,V∞ (resp.

GZ,Vp) is generated by G◦Z,V and Gz,V∞ (resp. G◦Z,Vp and Gz,Vp), one gets [Kr21a], [Kr21b]
(1) For [ = ∞, AH, p, every V[-special subvariety is weakly special;
(2) Weakly non-factor special subvarieties for V∞ and for Vp all coincide. Here a closed integral subvariety

Z ↪→ XC is said to be weakly non-factor for V∞ if it is not contained in a strict closed integral subvariety
Z ′ ↪→ X with G◦Z,V a strict normal subgroup of G◦Z′,V (in particular, G◦Z,V has to be non-trivial).

As a special case of (2), if Gad
V
◦ is simple, the strict maximal special subvarieties of positive period dimension

for V∞ and for Vp all coincide; in particular

X> 0
V∞ = X> 0

Vp .

For instance, if V∞ has level ≥ 3, this reduces Conjecture 1 (1) to showing that the set (|X|Vp∩|X|≤d)\|X|>0
Vp

of isolated (that is which are not contained in a strict special subvariety of positive period dimension) ex-
ceptional points of degree ≤ d is not Zariski-dense in X.

If Hodge-theoretic methods prove to be powerful to understand the geometry of positive-dimensional special
subvarieties, it seems that, at least currently, they fail to control isolated special points beyond the case of
motives of Shimura type. To go further, one may try to take into account not only the singular incarnations
of our motive but also its crystalline incarnations. This naturally leads to consider p-adic period maps
which since the main conceptual breakthrough of [K05], have been handled successfully to prove the non-
Zariski density of integral points on certain moduli spaces, yielding in particular a new proof of the Mordell
Conjecture [LaVe20] but also higher-dimensional results [LaVe20, Thm. 10.1], [LaS20]. Compared with Kim’s
approach, the main additional input of the Lawrence-Venkatesh method is that it does not only consider
finite v-adic places of k but also infinite places and compare the resulting v-adic and complex period maps,
which enables to exploit both arithmetic information and topological / tame geometric informations.

5.2.3. v-adic period map.

5.2.3.1. The Lawrence-Venkatesh strategy . We describe below the strategy of Lawrence-Venkatesh [LaVe20],
[LaS20] as enhanced by Betts-Stix [BeS22]. More precisely, the basic construction of the v-adic period map
of [LaVe20], [LaS20] relies on the crystalline - de Rham comparison theorem, which requires that the smooth
proper morphism f : Y → X defining our motive has good reduction at v; using Scholze’s relative p-adic
Hodge theory [Sc13] and a potential horizontal semistability theorem of Shimizu [Shi20], Betts and Stix could
extend the construction of the v-adic period map to places v of k where f : Y → X does not necessarily have
good reduction, giving slightly more flexibility in the choice of the non-archimedean place v. See Remark
5.2.3.2 (1).

Fix a finite place v|p of k and write kv for the completion of k at v, Qp ⊂ kv,0 := kv ∩ Qur
p ⊂ kv for the

maximal unramified extension of Qp in kv. Let σ : Qur
p →̃Qur

p denote the Frobenius automorphism.

Let W ⊂ X(kv) be a subset - e.g. W = X (U) for some non-empty open subset U ⊂ spec(Ok), W =
|X|Vp ∩ X(k), |X|Vp ∩ |X|≤d (recall that kv has only finitely many field extensions of degree ≤ d so that,
replacing kv by a finite field extension Kw, one can embed |X|≤d into Kw) etc.. The aim is to show that
W ⊂ X is not Zariski-dense. The naive starting point is to cover Xv-an by "good" admissible open subsets Uv
and, for each such Uv to show that Uv ∩W is not Zariski-dense in X. Here the crucial point is the definition
of a "good" admissible open subset. For this, let HidR(Y/X) denote the relative de Rham cohomology of
f : Y → X; this is a coherent locally free OX -module endowed with
- a canonical decreasing, separated, exhaustive filtration - the Hodge filtration F •, whose graded pieces are
again locally free;

- a flat connection ∇ : HidR(Y/X)→ HidR(Y/X)⊗ Ω1
X|k - the Gauss-Manin connection,
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and such that for every x ∈ X(kv), one has a canonical isomorphism cx : HidR(Y/X)v-an
x →̃H i

dR(Yx/kv). For
every x0 ∈ X(kv) one can always find an admissible open neighbourhood Uv,x0 ⊂ Xv-an of x0, isomorphic to
a closed polydisc and such that (HidR(Y/X)v-an,∇)|Uv,x0

→̃(OUv,x0
, d)⊕r. This yields a canonical isomorphism

T∇x0
: (OUv,x0

⊗kv H i
dR(Yx0/kv), d⊗ 1)→̃(HidR(Y/X)v-an,∇)|Uv,x0

characterized by the fact that (T∇x0
)x0 = Id. In particular, for every x ∈ Uv,x0 one obtains a canonical

isomorphism - the parallel transport

T∇x0,x := (T∇x0
)x : H i

dR(Yx0/kv)→̃H i
dR(Yx/kv).

So that, if Ď denotes again the flag variety parametrizing filtrations on H i
dR(Yx0/k) with the same dimension

data as the Hodge filtration F •H i
dR(Yx0/k), one gets a (local) v-adic analytic period map

Φv
x0

: Uv,x0 → Ďv-an, x 7→ T∇x0,x
−1F •H i

dR(Yx/kv).

Inside Ď×k kv one has the Zariski-closures Wv,x0 ⊂ Uv,x0 ⊂ Ď of

Φv
x0

(W ∩ Uv,x0) ⊂ Φv
x0

(Uv,x0) ⊂ Ď(kv)

respectively. The problem then amounts to finding conditions on a closed subvariety Z ⊂ Uv,x0 ensuring that
Φv
x0

−1(Z) ⊂ Uv,x0 ⊂ X(kv) is not Zariski-dense in X and satisfied by Wv,x0 . For instance, if X is a curve,
it is enough to show that every irreducible component of Wv,x0 is a strict closed subvariety of an irreducible
component of Uv,x0 . To make this rough strategy work, the idea is to combine the informations encoded in
the p-adic étale and singular incarnations of HidR(Y/X). More precisely,

(1) Input from p-adic étale incarnation and p-adic Hodge theory: Set Gv := π1(kv). Let FMkv denote the
category of filtered kv-modules i.e. the category with
- Objects: MdR := (M,F •), where M is a finite-rank kv-module endowed with a decreasing filtration
F • = · · · ⊃ Fn ⊃ Fn+1 ⊃ · · · by kv-submodules on M which is separated (∩nFn = 0) and exhaustive
(∪nFn = M);

- Morphisms: morphisms f : M1 →M2 of kv-modules such that fFnM1 ⊂ FnM2, n ∈ Z.
For a field extension Qp ⊂ k0 ⊂ Qur

p let Mk0(φ,N,Gv) denote the category of (φ,N,Gv)-modules over k0

i.e. the category with
- Objects: Mpst := (M0, φ,N), where M0 is a finite-rank k0-module endowed with
– a σ-semilinear (that is satisfying: φ(αm) = σ(α)φ(m), α ∈ k0, m ∈ M0) Gv-equivariant automor-

phism φ : M0 →M0;
– a discrete (i.e. with open stabilizers) action of Gv by σ-semilinear automorphims;
– a k0-linear nilpotent Gv-equivariant endomorphism N : M0 →M0 satisfying Nφ = pφN ;

- Morphisms: morphisms f0 : M1,0 →M2,0 of k0-modules commuting with φ, N and the Gv-action,
and write Mk0(φ) ⊂ Mk0(φ,N) ⊂ Mk0(φ,N,Gv) for the full subcategories whose objects are those
(Φ, N,Gv)-modules with trivial Gv-action ((φ,N)-modules over k0) and those with trivial Gv-action and
N = 0 (φ-modules over k0). Eventually, let FMkv/k0

(φ,N,Gv) denote the category of filtered (φ,N,Gv)-
modules over kv/k0 i.e. the category with
- Objects: M := (Mpst,MdR, c), where
– Mpst = (M0, φ,N) is a (φ,N,Gv) module over k0;
– MdR = (M,F •) is a filtered kv-module;
– c : M0 ⊗k0 (k0kv)→̃M ⊗kv (k0kv) is a k0kv-linear isomorphism, where k0kv denotes the compositum

of k0 and kv in Qp.
- Morphisms: pairs (fpst : M1,pst →M2,pst, fdR : M1,dR →M2,dR) with fpst : M1,pst →M2,pst a morphism
of (φ,N,Gv) module over k0, fdR : M1,dR →M2,dR a morphism of filtered kv-modules and the following
diagram commutes

M1,0 ⊗k0 (k0kv)
fpst⊗Id//

c '
��

M2,0 ⊗k0 (k0kv)

c'
��

M1,dR ⊗kv (k0kv)
fdR⊗Id

// M2,dR ⊗kv (k0kv)

As above, write FMkv/k0
(φ) ⊂ FMkv/k0

(φ,N) ⊂ Mkv/k0
(φ,N,Gv) for the full subcategories whose objects

are those filtered (Φ, N,Gv)-modules with Mpst an object in Mk0(φ) (filtered φ-modules over kv/k0) and
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Mk0(φ,N) (filtered (φ,N)-modules over kv/k0) respectively.

The relevance of introducing the category FMkv/k0
(φ,N,Gv) is that it is the category of linear objects

that best approximates the category of de Rham representations. More precisely, consider Fontaine’s
period rings Bcris ⊂ Bst ⊂ BdR := BdR(kv) and recall that
- BdR is a complete discrete valued field (in particular, it is endowed with the mBdR-adic filtration F

•BdR)
with residue field Cp, containing Qpk̂

ur
v (but not Cp), equipped with a canonical action of Gv which

restricts to the natural one on Qpk̂
ur
v and it has a distinguished uniformizer t ∈ mdR over which Gv

acts through the cyclotomic character. Futhermore BGv
dR = kv.

- Bcris ⊂ BdR is a k̂ur
v,0-subalgebra stabilized by Gv with BGv

cris = kv,0, containing t and such that the
induced canonical kv-linear morphism kv ⊗kv,0 Bcris ↪→ BdR is an embedding; it is equipped with a
σ-semilinear Frobenius ring-automorphism φ : Bcris→̃Bcris commuting with the Gv action and such
that (Bcris ∩ F 0BdR)φ = Qp.

- Bcris ⊂ Bst = Bcris[u] ⊂ BdR is a Bcris-subalgebra (generated on Bcris by a distinguished element u)
stabilized byGv with BGv

st = kv,0 and such that the induced canonical kv-linear morphism kv⊗kv,0Bst ↪→
BdR is an embedding; the Frobenius φ : Bcris→̃Bcris extends to a Gv-equivariant automorphism φ :
Bst→̃Bst and Bst is endowed with a Bcris-linear Gv-equivariant nilpotent endomorphism N : Bst → Bst,
which is the unique Bcris-derivation of Bst satisfying Nu = −1 (in particular ker(N) = Bcris) and
satisfies Nφ = pφN .

Associated to these period rings, one has Fontaine’s ⊗-functors

DdR : RepQp(Gv)→ FMkv , V 7→ (BdR ⊗Qp V )Gv

Dst : RepQp(Gv)→ FMkv/kv,0(φ,N), V 7→ (Dst(V )0 := (Bst ⊗Qp V )Gv , DdR(V ), cV )

Dpst : RepQp(Gv)→ FMkv/Qurp (φ,N,Gv), V 7→ (Dpst(V )0 := colimG⊂opGvDst(V )G, DdR(V ), cV ),

where the comparison isomorphisms cV are the ones induced by the inclusions Bst ⊂ BdR.

For V ∈ RepQp(Gv), one always has dimQur
p

(Dpst(V )0) ≤ dimQp(V ) (resp. dimkv(DdR(V )) ≤ dimQp(V ))
and one says that V is potentially semistable (resp. de Rham) if dimQur

p
(Dpst(V )0) = dimQp(V ) (resp.

dimkv(DdR(V )) = dimQp(V )). A priori, one only has inclusion of full subcategories

Reppst
Qp(Gv) ⊂ RepdR

Qp(Gv) ⊂ RepQp(Gv)

but the p-adic monodromy theoremasserts that actually Reppst
Qp(Gv) = RepdR

Qp(Gv). Furthermore, the
⊗-functor Dpst : RepQp(Gv)→ MFkv/Qur

p
(φ,N) restricts to a fully faithfull ⊗-functor

Dpst : Reppst
Qp(Gv) ↪→ MFkv/Qur

p
(φ,N,Gv).

From [BeS22, Thm. 3.3], for every open admissible neighbourhood Uv,x0 ⊂ Xv-an of x0 as above and x ∈
Uv,x0 there exists a unique isomorphism Tx0,x : Dpst(H

i(Yx0 ,Qp))0→̃Dpst(H
i(Yx,Qp))0 in MQur

p
(φ,N,Gv)

making the following diagram commute

Dpst(H
i(Yx0 ,Qp))⊗Qur

p
Qp

Tx0,x⊗Id '
��

c

'
// DdR(H i(Yx0 ,Qp))⊗kv Qp

cdR
'

// H i
dR(Yx0/kv)⊗kv Qp

T∇x0,x
'
��

Dpst(H
i(Yx,Qp))⊗Qur

p
Qp

c

'
// DdR(H i(Yx,Qp))⊗kv Qp

cdR
'

// H i
dR(Yx/kv)⊗kv Qp,

where cdR is the p-adic étale / de Rham comparison isomorphism constructed in [Sc13, Cor. 1.8]. Let
M denote the kv-module underlying H i

dR(Yx0/kv) and write for simplicityMet,x for the Gv-representation
H i(Yx̄,Qp),Mpst := Dpst(H

i(Yx0 ,Qp))0, c := cMet,x0
,MdR,x := (M,F •x ) := DdR(H i(Yx,Qp))(' H i

dR(Yx/kv)).
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[BeS22, Thm. 3.3] shows that the v-adic period map Φv
x0

: Uv,x0 → Ďv-an fits into a commutative diagram

Uv,x0

Φvx0 //

Ψv,et
��

Ďv-an

Ψx0

��
π0(RepdR

Qp(Gv))
� �

Dpst
// π0(FMkv/Qur

p
(φ,N,Gv)),

where π0(−) denotes the set of isomorphism classes of objects, Ψv,et : Uv,x0 → π0(RepdR
Qp(Gv) is the map

induced by the p-adic étale period map i.e. the map which sends x ∈ Uv,x0 ⊂ X(kv) to the isomorphism
class of Met,x and Ψx0 : Ďv-an → π0(FMkv/Qur

p
(φ,N,Gv)) is the map which sends F • ∈ Ďv-an to the

isomorphism class of (Mpst, (M,F •), c). By definition of the category FMkv/Qur
p

(φ,N,Gv), the fibers of
Ψx0 are homogeneous spaces for the natural action of Aut(Mpst)(Qp) on Ď(kv) = Reskv/Qp(Ď)(Qp),
where Aut(Mpst) is the Qp-linear algebraic group5

R 7→ (R⊗Qp EndMQur
p

(φ,N,Gv)(Mpst))
×.

Fix a (set theoretic) section s : π0(FMkv/Qur
p

(φ,N,Gv) ↪→ Ďv-an of Ψx0 . Then, for every subset W ⊂
Uv,x0 , the Zariski-closure W ⊂ Ď×k kv of Φv

x0
(W ) is contained in

ZW :=
⋃

µ∈Dpst◦Ψv,et(W )

Aut(Mpst)kv · s(µ).

The strategy thus boils down to finding conditions on W ensuring Φv
x0

−1(ZW ) is not Zariski-dense in X.
In the Hodge-theoretic setting, a sufficient condition is provided by the Ax-Schanuel theorem [BT19].
The crucial observation of [LaVe20] is that, using that the Gauss-Manin connection is defined over k
(which can be embedded simultaneously into kv and C), one can transport statement such as the Ax-
Schanuel theorem from the complex-analytic setting to the v-adic setting.

(2) Input from singular incarnation and complex Hodge theory: More precisely, assume x0 ∈ X(k), fix an
embedding ∞ : k ↪→ C and an isomorphism C→̃Qp(←↩ kv), which induces an isomorphism

c : Ď×k C→̃Ď×k Qp(←↩ Ď×k kv).

Fix also a simply connected open neighbourhood Uan
x0

of x0 in Xan so that the restriction Φ|Uan
x0

: Uan
x0
→

Γ \D of the complex period map Φ : Xan → Γ \D lifts to Φan
x0

:= Φ̃|Uan
x0

: Uan
x0
→ X̃an → D ⊂ Ďan. Then

the following holds:
(a) [LaS20, Lemma 7.2] Modulo the isomorphism c : Ď×k C→̃Ď×k Qp, the image of the v-adic period

map Φv
x0

: Uv,x0 → Ďv-an lies in the image of GX,V · Φ̃an(x0) (which is of the form GX,V/P where
P ⊂ GX,V is the parabolic subgroup stabilizing Φ̃an(x0));

(b) (v-adic Ax-Schanuel - [LaVe20, Lemma 9.3], [LaS20, Thm. 7.3]) Let Z ↪→ Ď ×k kv be a closed
subvariety such that codimGX,V/P

(Z) ≥ dim(X). Then Φv
x0

−1(Z) is not Zariski-dense in X. Actu-
ally, what Lawrence and Venkatesh shows in [LaVe20, Lemma 9.3] is that for every closed subvariety
Z ↪→ Ď×kkv if Φ−1c−1Z∩Uan

x0
⊂ Uan

x0
is not Zariski-dense inX then Φv

x0

−1(Z) ⊂ Uv,x0 is not Zariski-
dense in X; the inequality involving (co)dimension is then just the statement of the Ax-Schanuel
theorem [BT19] for the complex period map. But the use of Ax-Schanuel provides additional infor-
mations. Let W ⊂ Uv,x0 and recall the notation ZW of (1). Assume codimGX,V/P

(ZW ) ≥ dim(X).
Then,

(i) There exists finitely many strict, weakly special subvarieties SW,1, . . . , SW,r ( XC such that
uΦ̃−1c−1ZW ⊂ SW,1 ∪ · · · ∪ SW,r.

(ii) As the closed subvariety ZW ⊂ Ď×k Qp depends only on W ⊂ Uv,x0 and not on x0 ∈W , for
every x ∈W one has (with the same notation as above, replacing x0 with x)

x ∈ Uan
x ⊂ Φan

x
−1(c−1ZW ) ⊂ uΦ̃−1c−1Z ⊂ SW,1 ∪ · · · ∪ SW,r.

5By construction the category MQur
p
(φ,N,Gv) is Qp-linear.
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In particular, when V∞ has level ≥ 3 and Gad
V∞ is simple, combining the above with [BaKU21] and

[Kr21b], X>0
Vp = X>0

V∞ = Xatyp,>0
V∞ ( X is a strict closed subvariety defined over k and one obtains:

LetW ⊂ X(kv) and let Uv ⊂ X(kv) be a good admissible open subset with codimGX,V/P
(ZW∩Uv) ≥

dim(X). Then

(W ∩ Uv)zar>0 ⊂ X>0
Vp ( X.

5.2.3.2. A few comments.

(1) In [LaVe20], [LaS20], one considers W := X (U) with v ∈ U , where U ⊂ spec(Ok) a non-empty open
subscheme over which f : Y → X → spec(k) extends to a smooth proper morphism f : Y → X → U so
that:
(a) The general Tannakian picture described in 5.2.3.1 is significantly simpler: Uv,x0 can be taken to be

the disc of all x ∈ X (Ov) with x ≡ x0modv, [BeS22, Thm. 3.3] boils down to the classical crystalline
- de Rham comparison isomorphism and Dpst : RepQp(Gv) → FMkv/Qurp (φ,N,Gv) is replaced by
Dcris : RepQp(Gv)→ FMkv/kv,0(φ).

(b) W embeds into the compact set X (Ov) hence can be covered by finitely many good admissible open
subsets Uv.

(c) Faltings’ finiteness lemma6 ensures that Ψv,et(W ) is "not too large" namely that Ψv,et(W ) ⊂
Ψv,et(W1 ∩ Uv,x0) ∪ · · · ∪Ψv,et(Wr ∩ Uv,x0), with W1, . . . ,Wr fibers of the canonical map

Ψet : X(k)→ π0(RepQp(π1(k)))→ π0(Repss
Qp(π1(k))),

where the first arrow sends x ∈ X(k) to the π1(x)-representation Vp,x̄ and the second one is π1(k)-
semisimplification.

In the end, the problem is reduced to showing that the dimensions of the "generalized centralizers of
Frobenius" ZWi∩Uv are "small" compared with the dimension of GX,V .

(2) The Lawrence-Vekatesh strategy is well suited to tackle Conjecture 3, which only predicts (compare with
Corollary 11) the non-Zariski-density of the subset |X|Vp ∩ X (U) ⊂ X (U). One may expect that the
assumption that for x ∈W , G◦x,Vp ⊂ H for some strict algebraic subgroup H ⊂ GVp imposes restrictions
on the image of the local representation Met,x, which, in turn should impose some constraints on the
dimension of ZW∩Uv at least for certain classes of subgroups H. As a first illustration of this heursitic
appears in [CS23], where one considers the set |X|torVp ∩X(k) of all x ∈ X(k) such that G◦x,Vp is a torus
(these can be regarded as the étale counterpart of CM points) and, using the above circle of ideas, shows
that if

- For two primes `1 6= `2, V`i admits a Z`i-model V◦`i with V
◦
`i
⊗ F`i constant, i = 1, 2;

- V∞ has positive period dimension,
then for7 a set of primes p of positive density Xtor

Vp ∩ X(k) is not Zariski-dense in X (and more pre-
cisely is contained is a finite union of fibers8 of the complex period map Φ : Xan → Γ \ D). Note
that one intermediate step in the proof of this result is to show (under the same assumptions) that
|X|torVp ∩ X (U) = |X|torVp ∩ X(k) so that even if it does not appear in the statement, this is a statement
about integral rather than rational points.

(3) On the other hand, there are two main obstructions to apply the Lawrence-Venkatesh strategy to tackle
(Conjecture 1 and) Conjecture 2 (1). Set W := |X|Vp ∩X(k). It is no longer true that:
(a) W can be covered by finitely many good open admissible v-adic neighourhoods Uv;
(b) Ψet(W ∩ Uv) is finite.
Overcoming any of both obstructions should require significant improvements of the original strategy. It
seems that a key step would be to extend the construction and study of v-adic period maps along the
boundary of a smooth compactification X ↪→ Xcpt.

6This is the only information coming from the global origin of the points in W that is used.
7Recall that one expects Xtor

Vp ∩X(k) to be independent of p - see Conjectures 4 and 5.
8These are known to be Zariki closed in XC.
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(4) In contrast to what happens for number fields, there are only finitely many extensions of a local field
of bounded degree ≤ d. So that replacing kv by a finite field extension, the above general strategy may
give hints about Conjecture 3 for arbitrary d provided one can control obstruction (b) of (3).
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