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Abstract. Let X be a normal variety of positive dimension over a finite field and let C be either a locally
constant constructible Weil Q`-sheaf, a locally constant constructible quasi-tame Qu-sheaf or an overconver-
gent Qp-F -isocrystal on X. We prove the following Tannakian Cebotarev density theorem: let S be a set of
closed points of X of upper Dirichlet density 1 (resp. > 0) and Φ the union of conjugacy classes of Frobenius
elements corresponding to S in the Tannakian group G(C) of C. Then Φ is Zariski-dense in (resp. contains at
least one connected component of) G(C). We use the theory of companions and its by-product, the existence
of a weight filtration, to reduce the general statement to the case of locally constant constructible Q`-sheaves,
where the assertion is an easy consequence of the (classical) Cebotarev density theorem. The reduction step
relies on group-theoretic arguments which might be of independent interest. When X is smooth, our strategy
can be adapted to reduce the Tannakian Cebotarev density theorem for convergent Qp-F -isocrystals satisfying
a weak form of the parabolicity conjecture of Crew (resp. for overconvergent Qp-F -isocrystals) to the case of
direct sums of isoclinic Qp-F -isocrystals, which is due to Hartl and Pál. Since the parabolicity conjecture is
known for convergent Qp-F -isocrystals admitting an overconvergent extension by recent work of D’Addezio
and is straightforward for convergent Qp-F -isocrystals admitting a slope filtration, this in particular proves
unconditionally the Tannakian Cebotarev density theorem in those two cases. Let us point out that this vari-
ant of our strategy for convergent (resp. overconvergent) Qp-F -isocrystals is purely p-adic and "elementary"
in the sense that it does not resort to automorphic techniques via the companion conjecture (nor to the "à la
Weil II" formalism of Frobenius weights).
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A variety over a field k means a reduced scheme separated and of finite type over k. For a variety X over k,
let |X| denote the set of its closed points and, if X is integral, let η denote its generic point. For a morphism
f : Y → X of varieties over k, write f : Y → X for the base-change of f : Y → X along spec(k)→ spec(k),
where k ↪→ k is an algebraic closure.

Let k be a finite field of characteristic p > 0, k ↪→ k an algebraic closure, π1(k) := Gal(k|k) the corresponding
absolute Galois group and ϕ ∈ π1(k) the geometric Frobenius.

1. Introduction

Let X be a normal, connected variety of positive dimension over k. The classical Cebotarev density theorem
asserts that for every finite continuous quotient π1(X) � Π and union of conjugacy classes ∆ ⊂ Π, the set
S∆ ⊂ |X| of closed points x ∈ |X| such that the corresponding Frobenius elements ϕx ∈ π1(X) map to ∆
has (Dirichlet) density δ(S∆) = |∆|/|Π|. Passing to the limit, one gets that for every S ⊂ |X| with upper
(Dirichlet) density δu(S) = 1 the union of the π1(X)-conjugacy classes of the ϕx ∈ π1(X), x ∈ S is dense in
π1(X) for the profinite topology. This implies that for a Q`-local system C on X (` 6= p), if G(Can) denotes
the image of the corresponding representation of π1(X) on Can := Cη and if, for x ∈ |X|, ΦC

an

x ⊂ G(Can)
denotes the G(Can)-conjugacy class of the image of ϕx in G(Can) then the union of the ΦC

an

x , x ∈ S is
`-adically dense in G(Can). In particular, for every S ⊂ |X| with δu(S) = 1 (resp. > 0)
A) If G(C) denotes the Zariski closure of G(Can) in GLCη and if, for x ∈ |X|, ΦCx ⊂ G(C) denotes the

conjugacy class generated by ΦC
an

x in G(C) then the union ΦC of the ΦCx, x ∈ S is Zariski-dense in G(C)
(resp. the Zariski-closure of ΦC contains a connected component of G(C));

B) If C′ is another Q`-local system on X such that (x∗C)ss ' (x∗C′)ss, x ∈ S then Css ' C′ ss (where (−)ss

stands for semisimplification).

The Cebotarev density theorem plays a fundamental part in arithmetic geometry in that it often enables
to reduce problems about Q`-local systems on X to problems about semisimple Q`-local systems on points
(that is the datum of a vector space with a semisimple automorphism). This prompts the question of similar
statements for local systems with other coefficients such as Qp-local systems (i.e. convergent or overcon-
vergent Qp-F -isocrystals) or Qu-local systems (i.e. quasi-tame ultraproduct local systems) - see Subsection
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1.1. Such coefficients share with Q`-local systems the property that they form a Tannakian category with
good functorial properties with respect to morphisms of varieties. In particular, one can attach to every
such local system C a Tannakian group G(C) and a collection of G(C)-conjugacy classes ΦCx, x ∈ |X|. But,
except in the unit-root case, the Tannakian structure on Qp-local systems does not upgrade to a category
of finite-dimensional continuous Qp-representations of π1(X) while, though the Tannakian structure on Qu-
local systems does upgrade to a category of finite-dimensional continuous Qu-representations of π1(X), the
ultraproduct topology is not Hausdorff so that the classical Cebotarev density theorem is useless. Still, for
such coefficients, the weaker Statements A), B) make sense and are already of significant importance (e.g.
Statement B) for pure local systems is a key ingredient in the proof of the Langlands’ correspondance).

Of course, Statement A) implies Statement B) and, as observed by Tsuzuki and Abe [A18b, Prop. A.4.1], one
can prove Statement B) for S = |X| by a simple L-function argument using weights provided a suitable "à
la Weil II" formalism of Frobenius weights is available, which is the case for overconvergent Qp- and Qu-local
systems (and at the cost of invoking the companion conjecture, the same argument proves Statement B) for
arbitrary S ⊂ |X| with δu(S) = 1). Statement B) for overconvergent Qp-local systems automatically implies
Statement B) for convergent Qp-local systems admitting an overconvergent extension that is those lying in
the essential image of the natural functor C† 7→ C from overconvergent to convergent Qp-local systems (since
over a point, this functor is an equivalence of categories). Statement B) also holds for convergent Qp-local
systems admitting a slope filtration hence, in particular, it always holds over a dense open subscheme (see
Corollary 1.3.2.2 below). In this work, we focus on the upgraded Statement A).

In the remaining part of this introduction, we settle the notation and recall the basic common Tannakian
features of the various categories of local systems we consider, state our results, describe our strategy and
compare our work with the one of Hartl-Pál [HP18] for Qp-local systems, to which we owe a lot.

1.1. (Motivic) Q-coefficients. Fix an infinite set L of primes 6= p and let U denote the set of non-principal
ultrafilters on L.

- For l ∈ L ∪ {p} let Ql denote the algebraic closure of the completion of Q at l;
- For u ∈ U , let Qu denote the quotient of

∏
`∈L F` by the maximal ideal generated by the characteristic

functions of L \ S, S ∈ u.

Let X be a normal variety over k. Let Q be either Q` for ` ∈ L, Qu for u ∈ U or Qp. In the following a
motivic Q-local system or Q-coefficient C on X means either:

- A locally constant constructible Weil Q`-sheaf on X [D80, (1.1)];
- A locally constant constructible quasi-tame Weil Qu-sheaf on X [C19a, §3.6.2];
- An overconvergent Qp-F -isocrystal on X [Cr92, §1] (and e.g. [AM15, §7.3] or [A18b, §4.1] for scalar ex-
tension to Qp).

A motivic Q`-coefficient (resp. Qu-coefficient) on X is said to be étale if it arises from a locally constant
constructible étale Q`-sheaf on X (resp. from a locally constant constructible quasi-tame Qu-sheaf on X).

Let C†(X,Q) denote the category of motivic Q-coefficients on X and, for Q = Q` or Qu, let C†,et(X,Q) ⊂
C†(X,Q) denote the full subcategory of étale motivic Q-coefficients. For Q = Qp, we will also consider the
category C(X,Qp) of convergent Qp-F -isocrystals on X [Cr92, §1] (and e.g. [AM15, §7.3] for scalar extension
to Qp). There is a natural functor α : C†(X,Qp) → C(X,Qp), which is fully faithful if X is smooth over k
[Ked04, Thm. 1.1]; an object in its essential image is said to be †-extendable or to admit an overconvergent
extension.

To unify the presentation, we will use the terminology Q-coefficient on X for either a motivic Q-coefficient
or, when Q = Qp, a convergent Qp-coefficient, that is a convergent Qp-F -isocrystal on X, and we will
write C(†)(X,Q) for the corresponding category (so C(†)(X,Q) = C†(X,Q) for Q = Q` or Q = Qu and
C(†)(X,Qp) = C(X,Qp) or C†(X,Qp)).

For Q = Q` (resp. Q = Qu), let Cgeom,†(X,Q) denote the category of locally constant constructible Q`-
sheaves (resp. locally constant constructible quasi-tame Qu-sheaves) on X. For Q = Qp, let Cgeom(X,Q)
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(resp. Cgeom,†(X,Q)) denote the category of convergent (resp. overconvergent) isocrystals on X. The
category C(†)(X,Q) (resp. Cgeom,(†)(X,Q)) is a Q-linear abelian rigid ⊗-category and if X is connected
(resp. geometrically connected over k), it is (neutral) Tannakian. More precisely, every geometric point
x with value in k over a closed point x ∈ |X| induces an exact ⊗-functor (−)x : C(†)(X,Q) → VectQ
(resp. (−)x : Cgeom,(†)(X,Q) → VectQ), which, if X is connected (resp. geometrically connected over
k), is a fiber functor. Let FX : X → X denote the |k|-th power Frobenius endomorphism on X. (By
abuse of notation, we denote FX × Idspec(k) : X → X again by FX .) Then the pull-back functor F ∗X :

Cgeom,(†)(X,Q)→̃Cgeom,(†)(X,Q) is a Q-linear ⊗-autoequivalence and C(†)(X,Q) identifies with the category
of pairs C = (C,Φ), with C ∈ Cgeom,(†)(X,Q) and Φ : F ∗XC→̃C an isomorphism in Cgeom,(†)(X,Q). (Thus, if
X is geomterically connected over k, C(†)(X,Q) gives rise to a (neutral) Tannakian category with Frobenius.
See [D’A20a, App.].) The natural functor (−) : C(†)(X,Q)→ Cgeom,(†)(X,Q), C = (C,Φ) 7→ C corresponding
to forgetting the Frobenius-structure Φ is an exact ⊗-functor and commutes with the fiber functors (−)x. Let
C(†)

(X,Q) ⊂ Cgeom,(†)(X,Q) denote the smallest full subcategory of Cgeom,(†)(X,Q) containing the essential
image of (−) : C(†)(X,Q) → Cgeom,(†)(X,Q) and stable under tensor products, duals and subquotients
(thus, if X is geometrically connected over k, this is the smallest Tannakian subcategory of Cgeom,(†)(X,Q)

containing the essential image of (−) : C(†)(X,Q)→ Cgeom,(†)(X,Q)). Every morphism f : Y → X of normal
varieties over k induces a commutative diagram of exact ⊗-functors

C(†)(X,Q)
f∗ //

(−)
��

C(†)(Y,Q)

(−)
��

C(†)
(X,Q)

f
∗
// C(†)

(Y,Q).

For Q = Q` or Q = Qu, one has the following Galois-theoretic description of C†,(et)(X,Q) and C†(X,Q). If X
is connected, let π1(X,x) denote the étale fundamental group ofX andW (X,x) = π1(X,x)×π1(k)ϕ

Z the Weil
group of X. Then the fiber functor (−)x : C†(X,Q)→ VectQ factors through the category Rep(W (X,x), Q)

of finite-dimensional Q-representations of W (X,x) and its restriction to the full subcategory C†,et(X,Q) ⊂
C†(X,Q) factors through Rep(π1(X,x), Q); the resulting functors (−)x : C†(X,Q) → Rep(W (X,x), Q),
(−)x : C†,et(X,Q) → Rep(π1(X,x), Q) are fully faithfull hence induce equivalences of categories onto their
essential images, which we denote by Rep†(W (X,x), Q) and Rep†(π1(X,x), Q) respectively. If X is geo-
metrically connected over k, (−)x : C†(X,Q) → VectQ factors through Rep(π1(X,x), Q) and induces an
equivalence of categories onto its essential image Rep†(π1(X,x), Q). To sum it up, one has

C†,et(X,Q) �
� //

(−)x '
��

C†(X,Q)

(−)x'
��

(−) // C†(X,Q)

(−)x'
��

Rep†(π1(X,x), Q) �
�

|W (X,x)

// Rep†(W (X,x), Q)
|π1(X,x)

// Rep†(π1(X,x), Q)

Let Π denote either π1(X,x) or W (X,x) (resp. π1(X,x), if X is geometrically connected over k). For1

Q = Q`, Rep†(Π,Q`) is the (resp. a certain) category of finite-dimensional Q`-representations of Π of the
form V` ⊗Q` Q` with V` a continuous Q`-representation of Π and Q` a finite extension of Q`.

Fix a geometric point x on X. Assume X is connected. For C ∈ C(†)(X,Q), let 〈C〉 ⊂ C(†)(X,Q) denote the
Tannakian subcategory generated by C in C(†)(X,Q) and let G(C, x) denote the attached Tannakian group
that is the group of ⊗-automorphisms of the restriction to 〈C〉 of the fiber functor (−)x : C(†)(X,Q)→ VectQ.
When X is geometrically connected over k, define similarly 〈C〉, G(C, x).

1For Q = Qu, one has a similar "explicit" description (but we will not use it in the following), namely Rep†(Π,Qu) is the
(resp. a certain) category of finite-dimensional Qu-representations of Π of the form V ⊗F Qu where F =

∏
`∈L F` with F` a

finite field extension of F`, V =
∏
`∈L V` with V` a continuous F`-representation of Π and the Π-representation V corresponds

to a quasi-tame locally constant constructible F -sheaf of finite u-rank on X (resp. X).
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If X = spec(k), the fiber functor (−)x : C(†)(X,Q)→ VectQ induces an equivalence of categories onto the cat-
egory of finite-dimensional Q-vector spaces endowed with an action of ϕ (and G(C, x) ⊂ GL(Cx) is the Zariski-
closure of the abstract group generated by the image of ϕ acting on Cx) while (−)x : C(†)

(X,Q)→ VectQ is
an equivalence of categories (and G(C, x) = 1).

More generally, ifX is geometrically connected over k, one has natural closed immersionsG(C, x) ⊂ G(C, x) ⊂
GL(Cx) and it follows from the description of Tannakian categories with Frobenius that G(C, x) is a closed
normal subgroup of G(C, x) and that G(C, x)/G(C, x) is naturally a quotient of the pro-algebraic completion
of ϕZ classifying the "constant objects" in 〈C〉 [D’A20a, Thm. A.2.2]. For Q = Q` or Qu, G(C, x) ⊂ GL(Cx)
(resp. G(C, x) ⊂ GL(Cx)) is the Zariski-closure of the image of W (X,x) (resp. π1(X,x)) acting on Cx.

Every geometric point x over a closed point x ∈ |X|, regarded as a morphism x : spec(k(x)) → X, induces
a closed embedding G(x∗C, x)→ G(C, x) of algebraic groups over Q. Write ϕx ∈ G(x∗C, x) for the image of
the (geometric) Frobenius acting on Cx. Fixing a geometric point × on X with value in k, any isomorphism
of fiber functors γ : (−)x→̃(−)× induces an isomorphism of algebraic groups G(C, x)→̃G(C,×), which is
independent of the choice of γ up to G(C,×)-conjugacy so that the G(C,×)-conjugacy class ΦCx of the image
of ϕx via G(x∗C, x) → G(C, x)→̃G(C,×) is independent of the choice of γ. In the following we will omit
base-points from the notation unless necessary.

1.2. For a subset S ⊂ |X|, the series FS(t) =
∑

s∈S |k(s)|−t converges absolutely and locally uniformly for
Re(t) > d := dim(X). Write

σS(t) := sup

{
FS(t′)

F|X|(t′)
| d < t′ < t

}
, t ∈ R>d

and let δu(S) := lim
t→d, t∈R>d

σS(t) denote the upper Dirichlet density of S (e.g. [P97, Appendix B]). By

definition 0 ≤ δu(S) ≤ 1.

1.3. Let C be a Q-coefficient on X. For a subset S ⊂ |X| of closed points of X, write ΦCS := ∪x∈SΦCx and for
every G(C)-invariant subset ∆ ⊂ G(C), write SC∆ := {x ∈ S | ΦCx ⊂ ∆}. In the following, we will also omit
the superscript (−)C from the notation unless necessary.

With the above notation and definitions, one can formulate the following unified Tannakian version of the
Cebotarev density theorem, which was originally stated for Qp-coefficients by Hartl and Pál as [HP18, Conj.
1.4].

Conjecture. Let X be a normal connected variety of positive dimension over k. Let C be a Q-coefficient on
X and let S ⊂ |X| be a subset of closed points of X. Assume S has upper Dirichlet density δu(S) > 0 (resp.
δu(S) = 1). Then the Zariski-closure of ΦS contains at least one connected component of G(C) (resp. ΦS is
Zariski-dense in G(C)).

The assumptions and conclusions of Conjecture 1.3 remain unchanged if one replaces k with the algebraic
closure of k in the function field of X so that to prove Conjecture 1.3 we may and will assume that X is
geometrically connected over k. Conjecture 1.3 can be reduced to the (classical) Cebotarev density theorem
in the following cases.

1.3.1.Étale Q`-coefficients. This essentially amounts to comparing the Haar density and the Zariski density
in the sense of [Se12, §5.2.1] - see Subsection 5.1 for details.

1.3.2.Unit-root convergent Qp-F -isocrystals. This immediately follows from:

1.3.2.1.Fact. (Katz, Crew [Cr87, Thm. 2.1]) The full subcategory of unit-root convergent Qp-F -isocrystals
on X is equivalent to the category of finite-dimensional continuous Qσ

p -representations of π1(X), where σ is
a lift of Frobenius.
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1.3.2.2.Corollary. Assume δu(S) = 1. Let C, C′ be convergent Qp-coefficients admitting a slope filtration
(see Subsection 9.1) on X and such that (x∗C)ss ' (x∗C′)ss, x ∈ S then Css ' C′ ss. In particular, for every
pair of convergent Qp-coefficients C, C′ on X such that (x∗C)ss ' (x∗C′)ss, x ∈ S there exists a dense open
subscheme U ⊂ X such that (C|U )ss ' (C′|U )ss.

Proof. For the first assertion, one may assume that C, C′ are semisimple. Then, as C, C′ admit a slope
filtration on X, they can be written as C = ⊕1≤i≤sIi, with Ii 6= 0 (semisimple) isoclinic of slope σi,
i = 1, . . . , s and σ1 > σ2 > · · · > σs and C′ = ⊕1≤i≤s′I ′i, with I ′i 6= 0 (semisimple) isoclinic of slope σ′i,
i = 1, . . . , s′ and σ′1 > σ′2 > · · · > σ′s′ . The condition (x∗C)ss ' (x∗C)ss for one x ∈ |X| is already enough
to ensure that {σ1, . . . , σs} = {σ′1, . . . , σ′s′} and that (x∗Ii)ss ' (x∗I ′i)ss, i = 1, . . . , s. For each i = 1, . . . , s,
fix a geometrically constant rank-one convergent Qp-coefficient of slope σi. Then Ii ⊗ L∨i , I ′i ⊗ L∨i are both
unit-root and still satisfy (x∗(Ii ⊗ L∨i ))ss ' (x∗(I ′i ⊗ L∨i ))ss, x ∈ |S|. From Fact 1.3.2.1 and the (classical)
Cebotarev density theorem, this in turn implies Ii ⊗ L∨i ' I ′i ⊗ L∨i hence Ii ' I ′i, i = 1, . . . , s. The second
assertion follows from the first, together with the fact that there exists a dense open suscheme U ⊂ X
such that C|U , C′|U both admit a slope filtration ([K79, Thm. 2.3.1, Cor. 2.6.3], see Fact 9.1.1) and that
δu(S ∩ U) = δu(S) = 1. �

1.3.3.Direct sum of isoclinic convergent Qp-F -isocrystals. As in the proof of Corollary 1.3.2.2 the
idea is to use that an isoclinic convergent Qp-coefficient is, up to twist, unit-root in order to reduce to the
(classical) Cebotarev density theorem via Fact 1.3.2.1. However, the reduction is quite tricky.

Fact. (Hartl-Pál2 [HP18, Thm. 1.8]) Conjecture 1.3 holds for direct sums of isoclinic convergent Qp-
coefficients. In particular, for every convergent Qp-coefficient C on X there exists a dense open subscheme
U ⊂ X such that Conjecture 1.3 holds for (C|U )ss.

The argument of Hartl and Pál goes as follows. From the above, it is enough to prove Conjecture 1.3 for a
convergent Qp-coefficient of the form C = U ⊕ A with U unit-root and A a direct sum of rank-one geomet-
rically constant convergent Qp-coefficients. In particular, G(C) = G(U) ×G(〈U〉∩〈A〉) G(A) ⊂ G(U) × G(A)
(cf. [HP18, Prop. 3.6(c)]). Conjecture 1.3 for U is Fact 1.3.2.1. Conjecture 1.3 for A boils down to a purely
group-theoretic statement [HP18, Thm. 7.4]: If A is a commutative linear algebraic group over Q with
connected component A◦ ' Gr

m,Q ×Gε
a,Q, where ε = 0, 1 and a ∈ A is such that aZ ⊂ A is Zariski-dense in

A then, for every infinite subset S ⊂ Z, the Zariski-closure of aS ⊂ A contains a connected component of
A. The mixed case is quite subtle since, a priori the Zariski-density of ΦUS ⊂ G(U) and ΦAS ⊂ G(A) does
not necessarily imply the Zariski-density of ΦCS ⊂ G(C). Hartl and Pál however prove this is indeed the case
using that the Zariski-density of ΦUS ⊂ G(U) arises from the analytic density of ΦU

an

S ⊂ G(Uan) (where Uan,
G(Uan) and ΦU

an

S are defined similarly to the case of étale Q`-coefficients, cf. Section 1) via an effective
version of the (classical) Cebotarev density theorem [HP18, Thm. 3.16], which enables them to apply an
ad-hoc Zariski-density criterion [HP18, Thm. 7.10]. The latter is a statement in p-adic analytic geometry
involving counting estimates and relying, in particular, on a uniform version of Osterlé’s estimates for the
number of points on the reduction modulo-pn of a p-adic analytic hypersurface of ZNp [HP18, Prop. 7.8].

.
Remarks.

(1) We point out that, though subtle, the proof of Fact 1.3.3 is "purely p-adic" and "elementary" in the sense
that it does not resort to automorphic techniques via the companion conjecture (or to the formalism of
Frobenius weights).

(2) As every irreducible motivic Q`-coefficient is a twist of an étale motivic Q`-coefficient by a geometrically
constant motivic Q`-coefficient, the proof of [HP18, Thm. 1.8] works similarly to show that Conjecture
1.3 holds for direct sums of irreducible motivic Q`-coefficients.

1.4. Motivic Q-coefficients. A Q-coefficient C and a Q′-coefficient C′ are said to be compatible or compan-
ions (with respect to a fixed isomorphism Q ' Q′) if for every x ∈ |X| the characteristic polynomials of ϕx
acting on Cx, C′x coincide (see Subsection 5.2). Let C be a semisimple motivic Q-coefficient. The conjectural
formalism of pure motives predicts that there should exist a reductive group G(Cmot) over Q together with
a faithful finite-dimensional Q-representation Cmot and (semisimple) conjugacy classes ΦC

mot

x ⊂ G(Cmot),

2Though Hartl and Pál assume X is a curve, their proof of [HP18, Thm. 1.8] makes no use of this assumption.
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x ∈ |X| such that for every semisimple motivic Q′-coefficient C′ which is compatible with C and x ∈ |X|,
the Tannakian group G(C′) and the conjugacy class ΦC

′
x ⊂ G(C′) arise from G(Cmot) and ΦC

mot

x ⊂ G(Cmot)
by base-change from Q to Q′. In particular, if C admits a Q`-companion C` which is étale, then Conjecture
1.3 for C should follow from Conjecture 1.3 for C`. Though the existence of G(Cmot) and ΦC

mot

x ⊂ G(Cmot),
x ∈ |X| is still completely conjectural, one now knows that, provided X is smooth over k, C always admits a
Q`-companion C` which is étale for `� 0 (Corollary 5.2.3); this is a consequence of the companion conjecture
of Deligne (see Fact 5.2.1 for references). The first issue is thus to show that the validity of Conjecture 1.3
for C` transfers "automatically" to C only by means of the compatibility property. For this, we reformulate
Conjecture 1.3 in terms of the image of the characteristic polynomial map attached to C (Proposition 3.4.1).
This reformulation reduces Conjecture 1.3 for motivic semisimple Q-coefficients to showing that the image of
the characteristic polynomial map is independent of the companions, which we deduce from Kazhdan-Larsen-
Varshavsky’s reconstruction theorem for connected reductive groups [KaLV14, Thm. 1.2] (Section 6). Using
the weight filtration on C (another by-product of the companion conjecture), we then reduce Conjecture
1.3 for arbitrary motivic Q-coefficients to motivic Q-coefficients C which are direct sums of pure motivic
Q-coefficients (Section 7). Such a C is not semisimple in general but C is, which forces G(C) ' Gε

a,Q×G(Css)
with ε = 0, 1 and Css the semisimplification of C. Conjecture 1.3 for such a C then easily follows from
Conjecture 1.3 for Css (Section 8). This yields our first main result.

Theorem. Conjecture 1.3 holds for motivic Q-coefficients.

1.5. Qp-coefficients. From the motivic point of view, the proof of Theorem 1.4 is "the" natural one but it
does not cover Conjecture 1.3 for convergent Qp-coefficients. Also, considering the deepness of the theory
of companions, one may ask for alternative more "elementary" proofs of Conjecture 1.3, even for motivic
Q-coefficients. For motivic Qp-coefficients and convergent Qp-coefficients satisfying a weak form of the (gen-
eralized) parabolicity conjecture of Crew (in particular, †-extendable convergent Qp-coefficients) one can
provide such an elementary proof by adjusting the Tannakian arguments of the proof of Theorem 1.4 to
reduce Conjecture 1.3 for such Qp-coefficients to Conjecture 1.3 for direct sums of isoclinic convergent Qp-F -
isocrystals (Fact 1.3.3 above). This approach was suggested to us by Ambrosi; it roughly consists in replacing
the weight filtration by the slope filtration. More precisely, as already mentioned in the proof of Corollary
1.3.2.2, for every convergent Qp-coefficient C on X, there exists a dense open subscheme U ⊂ X such that
C|U admits a slope filtration on U (Fact 9.1.1) and as the slope filtration behaves like the weight filtration
with respect to Frobenii, one can apply the same group-theoretic arguments as in the proof of Theorem 1.4
to reduce Conjecture 1.3 for C|U to Conjecture 1.3 for direct sums of isoclinic convergent Qp-coefficients on
U . But Conjecture 1.3 for C|U does not automatically imply Conjecture 1.3 for C since the closed immersion
G(C|U ) ⊂ G(C) is not an isomorphism in general. However, a generalization of the parabolicity conjecture
of Crew (Conjecture 9.2.1) predicts that G(C|U ) should be the stabilizer in G(C) of the slope filtration on
C|U . We show that a weaker form of this conjecture (Conjecture 9.2.4) is enough to deduce Conjecture 1.3
for C from Conjecture 1.3 for C|U . As the parabolicity conjecture is now known for †-extendable convergent
Qp-coefficients by recent works of D’Addezio - see Fact 9.2.2, this yields our second main result:

Theorem. Assume X is smooth over k. Then Conjecture 1.3 holds for convergent Qp-coefficients on X
satisfying the weak (generalized) parabolicity conjecture 9.2.4. In particular, it holds (uncondionally) for:
- convergent Qp-coefficients admitting a slope filtration on X;
- †-extendable convergent Qp-coefficients on X.

1.5.1.Remark. Theorem 1.5 also holds for a direct sum of a convergent Qp-coefficient I admitting a slope fil-
tration and a †-extendable convergent Qp-coefficient C provided that for some (equivalently every) dense open
subscheme U ⊂ X such that C|U admits a slope filtration the canonical morphism G(C|U , I|U )→ G(C, I) is
a closed immersion, where we write G(C, I) := G(〈C〉 ∩ 〈I〉) - See Subsection 9.5.

Our arguments to prove Theorem 1.5 also provide an alternative purely p-adic and "elementary" (in the
sense above) proof of Theorem 1.4 for motivic Qp-coefficients (hence in particular a proof of Statement B)
by reduction to Fact 1.3.3. See Section 9 for details.
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1.5.2.Remark. Though Qu-sheaves are built from étale torsion sheaves (just as Q`-sheaves), quite surpris-
ingly we are not aware for the time being of an "elementary" argument avoiding the companion conjecture
to prove Conjecture 1.3 for Qu-coefficients. Also, Remark 1.3.3 (2) provides an "elementary" proof of Con-
jecture 1.3 for semisimple Q`-coefficients but we do not know how to treat the case of arbitrary (non-étale)
Q`-coefficients without resorting to the theory of companions.

1.6. Tannakian arguments. Aside from the arithmetico-geometric inputs (the companion conjecture, ex-
istence of slope and weight filtrations etc.) and the reconstruction theorem [KaLV14, Thm. 1.2], the main
technical difficulties are in the Tannakian reduction steps, for which we need a series of lemmas (of possibly
independent interest) to transfer Zariski-density properties of conjugacy invariant subsets. The general situa-
tion is the following. Fix an algebraic group Ĝ over an algebraically closed field Q of characteristic 0. Assume
Ĝ is given with a faithful, r-dimensional Q-representation V (r <∞) and that V is endowed with a filtration
S•V : V = S1V ) · · · ) SsV ) Ss+1V = 0 (defined by a cocharacter ω : Gm,Q → Ĝ ⊂ GLV ). Let G ⊂ Ĝ

denote a subgroup of the stabilizer of S•V in Ĝ containing the centralizer of the image of ω in Ĝ and consider
the G-representation Ṽ := ⊕iSiV/Si+1V . Let G̃ denote the image of G acting on Ṽ and R := ker(G� G̃).
Fix also a union Φ ⊂ G of G-conjugacy classes, let Φ̃ ⊂ G̃ (resp. Φ̂ ⊂ Ĝ) denote its image in G̃ (resp. the
conjugacy-invariant subset generated by Φ in Ĝ). Eventually, let χ : GL

Ṽ
→ Pr,Q := Gm,Q × Ar−1

Q denote
the characteristic polynomial map. Fix a g ∈ Φ with image g̃ ∈ G̃. We have:

(*) (Proposition 3.4.1) If G̃ = Ru(G̃) × G̃red and Ψ := Id × χ : G̃ = Ru(G̃) × G̃red → Ru(G̃) × Pr,Q then
Φ̃zar ⊃ G̃◦g̃ iff Ψ(Φ̃)zar ⊃ Ψ(G̃◦g̃).

(**) (Lemma 3.5.2) If for every γ ∈ Φ, Rγss = 1 then Φzar ⊃ G◦g iff Φ̃zar ⊃ G̃◦g̃.

(***) (Lemma 3.6) If Φzar ⊃ G◦g then Φ̂zar ⊃ Ĝ◦g.

Here Ru(G) ⊂ G denotes the unipotent radical and G� Gred := G/Ru(G) the maximal reductive quotient
and for an element γ ∈ G, γ = γuγss = γssγu denotes the multiplicative Jordan decomposition of γ in G.

The proofs of the above assertions are significantly simpler if G is connected. To treat the non-connected case,
we introduce the notion of quasi-Cartan subgroup, which is a well-behaved generalization for non-connected
algebraic groups of the classical notion of Cartan subgroup. For a reductive G the theory of quasi-Cartan
subgroups (then called maximal quasi-tori) is due to Hartl-Pál; our theory of quasi-Cartan subgroups for
arbitrary G is a mild enhancement of theirs.

1.7. Comparison with [HP18]. As mentioned, our work owes a lot to [HP18]. In particular, they treat the
core case of direct sums of isoclinic convergent Qp-coefficients (Fact 1.3.3) and they develop the theory of
maximal quasi-tori ([HP18, Sections 8, 9]), which lead us to the one of quasi-Cartan subgroups. Aside from
Conjecture 1.3 for direct sums of isoclinic convergent Qp-coefficients, they also provide in the following cases:
- ([HP18, Thm. 1.12]) a proof - via equidistribution - of Conjecture 1.3 for semisimple motivic Qp-coefficients
. Their argument relies heavily on the Frobenius weight formalism and also uses indirectly the companion
conjecture for motivic Qp-coefficients through the fact that an irreducible motivic Qp-coefficient with finite
determinant is pure of weight 0. It goes as follows. As in the proof of Fact 1.3.3, it is enough to prove
Conjecture 1.3 for C† = D† ⊕ A† with D† a direct sum of irreducible motivic Qp-coefficients with finite
determinant and A† a direct sum of rank-one geometrically constant motivic Qp-coefficients. Conjecture 1.3
for A† is again by [HP18, Thm. 7.4]. Conjecture 1.3 for D† follows from Deligne’s equidistribution theorem
for motivic Qp-coefficients - a formal consequence of the "à la Weil 2" Frobenius weights formalism, via
the unitarian trick. It is to make the unitarian trick work, that one needs that an irreducible motivic Qp-
coefficient with finite determinant is pure of weight 0. The mixed case is again more delicate and requires
an ad-hoc Zariski-density criterion using a bit of measure theory (after choosing suitable real structures)
and a beatifully simple compactness argument ([HP18, Thm. B.10]). See [HP18, Section 12] for details.

- ([HP18, Thm. 1.11]) a proof - via reduction to the overconvergent case - of Conjecture 1.3 for convergent
Qp-coefficients of the form C = E ⊕ I with I a direct sum of isoclinic convergent Qp-coefficients and E a
semisimple "locally weakly firm" †-extendable convergent Qp-coefficient. Here, "locally weakly firm" means
there exists a non-empty open subscheme U ⊂ X such that F|U has a slope filtration and the maximal
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quasi-torus ofG(F|U ) is abelian. This latter condition is restrictive but holds e.g whenG(F|U ) is connected.

To sum it up, for the time being, the status of Conjecture 1.3 seems to be as follows:
- Qu-coefficients: proof via companion conjecture;
- Motivic Qp-coefficients:
– proof via companion conjecture (semisimple case) and weight filtration;
– proof via equidistribution, using the purity part of companion conjecture (semisimple case) and weight

filtration;
– (purely p-adic and "elementary") proof by reduction to the case of direct sums of isoclinic convergent

Qp-coefficients via slope filtration and parabolicity conjecture for †-extendable convergent Qp-coefficients;
- Convergent Qp-coefficients: assuming the weak (generalized) parabolicity conjecture, (purely p-adic and
"elementary") proof by reduction to the case of direct sums of isoclinic convergent Qp-coefficients via slope
filtration.

1.8. The following diagram provides a synthetical overview of the architecture of our proofs.

Direct sums of isoclinic
Qp-coeff.

Slope
filtration

(∗∗)
+3 Qp-coeff. over
dense open U ⊂ X Parabolicity

Conj.

(∗∗∗) +3

(∗∗∗)
&.VV

VVVV
VVVV

VVVV
VVV

VVVV
VVVV

VVVV
VVVV

V
Convergent Qp-coeff.

Classical Cebotarev

Hartl-Pál
KS

��

Motivic Qp-coeff.

Etale Q`-coeff. Companion
Conj.

(∗) +3Direct sums of pure
motivic Q-coeff. Weight

filtration

(∗∗) +3Motivic Q-coeff.

KS

The paper is organized as follows. Section 2 lists the basic group-theoretical notation used in the paper.
Sections 3-4 contain preliminaries. Section 3 gathers the results from the theory of algebraic groups required
to perform steps (*), (**), (***) of the proofs (namely the corresponding statements (*), (**), (***) of Sub-
section 1.6); it can be read independently of the rest of the paper or be skipped and used as a toolbox by the
reader mostly interested in the global structure and arithmetico-geometric inputs of the proofs. In Section
4, we reduce Theorem 1.4 to the case where X is smooth and explain why the resp. part of Conjecture 1.3
follows from the non-resp. part. Sections 5-8 are devoted to the proof of Theorem 1.4. In Section 5, we recall
why Theorem 1.4 for étale Q`-coefficients follows from the classical Cebotarev density theorem and review
the basic features of the theory of companions; in particular we show there that every motivic Q-coefficient
admits an étale Q`-companion for ` � 0. In Section 6, we prove Theorem 1.4 for semisimple motivic Q-
coefficients. In Section 7, we review the basic features of the weight filtration, describe the structure of
the Tannakian group of a direct sum of motivic pure Q-coefficients and combine both ingredients to reduce
Theorem 1.4 to the case of direct sum of motivic pure Q-coefficients (Step (**) for motivic Q-coefficients in
the above diagram). Eventually, in Section 8, we conclude the proof of Theorem 1.4 for arbitrary motivic
coefficients (Step (*) in the above diagram). Section 9 is devoted to the proof of Theorem 1.5. In Subsection
9.1 we review the basic features of the theory of slopes and in Subsections 9.2 and 9.3 we discuss (some
variants of) the parabolicity conjecture. In Subsections 9.4 and 9.5 we reduce Conjecture 1.3 for C|U to Con-
jecture 1.3 for direct sums of isoclinic convergent Qp-F -isocrystals (Step (**) for convergent Qp-coefficients
in the above diagram) and show that if C satisfies the parabolicity conjecture then Conjecture 1.3 for C|U
implies Conjecture 1.3 for C (Step (***) in the above diagram).
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KAKENHI Grant Numbers 15H03609, 20H01796. The authors thank Marco d’Addezio for constructive
comments and, in particular, pointing out a proof in an ealier version of the paper was incomplete. They
also thank heartily Emiliano Ambrosi for suggesting the strategy for Theorem 1.4 could be adapted to the
case of convergent Qp-F -isocrystals.



VARIATIONS ON A TANNAKIAN CEBOTAREV DENSITY THEOREM 9

2. Notation

For an algebraic group G over a field Q, write
- G◦ ⊂ G for its neutral component and pG◦ : G� π0(G) := G/G◦ for its group of connected components;
- Ru(G) ⊂ G for its unipotent radical and pRu(G) : G � Gred := G/Ru(G) for its maximal reductive
quotient.

As Ru(G) ⊂ G◦, one has a canonical commutative diagram

G
pRu(G) // //

pG◦
����

Gred

p
Gred◦����

π0(G)
' // π0(Gred).

For subgroups H,K ⊂ G, write ZK(H) ⊂ NK(H) ⊂ G for the subgroups of K centralizing and normalizing
H respectively. For g ∈ G, write ZK(g) for ZK(〈g〉zar).

When Q is of characteristic 0, let Q+[G] denote the Grothendieck semiring of the category of semisimple
Q-rational representations of G. Namely, Q+[G] is the set of isomorphism classes of finite-dimensional Q-
rational semisimple representations of G endowed with [V1] + [V2] = [V1 ⊕ V2], [V1] · [V2] = [V1 ⊗ V2].

For an arbitrary (abstract) group Γ, let Γ//Γ denote the set of conjugacy classes of Γ.

3. Preliminaries on algebraic groups

Let Q be an algebraically closed field of characteristic 0. Given an algebraic group G over Q and g ∈ G, let
g = gugss denote its multiplicative Jordan decomposition in G and let Φg denote the G-conjugacy class of
g. For a subset Φ ⊂ G, write Φ? := {g? | g ∈ Φ}, ? = u, ss.

Let G be an (a not necessarily connected) algebraic group over Q.

3.1. We will use the following elementary observation in several places below.

Lemma. Let R,L ⊂ G be closed subgroups such that G = R o L. Let R′ ⊂ R and S, S′ ⊂ L be closed
subgroups. Assume S′ ⊂ NG(R′) and write G′ := R′ o S′. Then ZS′(S) normalizes ZR′(S) and ZG′(S) =
ZR′(S) o ZS′(S)

Proof. Clearly ZS′(S) normalizes ZR′(S) and ZR′(S) o ZS′(S) ⊂ ZG′(S). Conversely, let ρλ ∈ ZG′(S) with
ρ ∈ R′, λ ∈ S′. Then for every s ∈ S, ρλs = sρλ if and only if ρ(λsλ−1)ρ−1(λsλ−1)−1 = s(λsλ−1)−1 ∈
R ∩ L = 1 hence if and only if λsλ−1 = s and ρsρ−1 = s. As this holds for every s ∈ S, this means
ρ ∈ ZR′(S), λ ∈ ZS′(S) as desired. �

For instance, if L ⊂ G is a Levi subgroup, for every g ∈ L, ZG(g) = ZRu(G)(g) o ZL(g).

3.2. Quasi-Cartan. A Cartan in G is the centralizer ZG(T ◦) of a maximal torus T ◦ ⊂ G◦. A quasi-Cartan
in G is a closed algebraic subgroup C ⊂ G of the form

C = NG(B◦) ∩NG(T ◦)

for some Borel B◦ ⊂ G◦ and maximal torus T ◦ ⊂ B◦. In particular [B91, IV, 11.19, Prop. (b)],

C ∩G◦ = ZG◦(T
◦) ⊂ G◦

hence C ∩ G◦ ⊂ G◦ is a Cartan in G◦ and C◦ = C ∩ G◦ [B91, IV, 12.1, Thm. (e)]. One also has
ZG(T ◦)◦ = ZG◦(T

◦) so that the neutral component of the quasi-Cartan of G attached to T ◦ ⊂ B◦ depends
only on T ◦ and coincides with the neutral component of the Cartan of G attached to T ◦. A big quasi-Cartan
in G is a closed algebraic subgroup C̃ ⊂ G of the form C̃ = p−1

Ru(G)(T ) for T ⊂ Gred a quasi-Cartan.

If G is connected, quasi-Cartan are Cartan. If G = Ru(G) × Gred (in particular if G is reductive), big
quasi-Cartan are quasi-Cartan.
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3.2.1. Since all pairs T ◦ ⊂ B◦ of a maximal torus contained in a Borel subgroup of G◦ are conjugate
under G◦ [B91, IV, 11.19, Prop. (c)], all quasi-Cartan in G are conjugate under G◦. In particular, all big
quasi-Cartan in G are conjugate under G◦.

3.2.2. Let C ⊂ G be a quasi-Cartan, then the canonical morphism π0(C)→ π0(G) is an isomorphism.

Indeed, the surjectivity follows from [B91, IV, 11.19, Prop. (c)] and the injectivity follows from C◦ = C∩G◦.

3.2.3. Since a surjective morphism of algebraic groups G � G′ maps Borel subgroups (resp. maximal tori,
resp. the unipotent radical) of G onto Borel subgroups (resp. maximal tori, resp. the unipotent radical) of
G′ [B91, IV, 11.14, Prop. (1); 14.11, Cor.], it also maps quasi-Cartan (resp. big quasi-Cartan) of G onto
quasi-Cartan (resp. big quasi-Cartan) of G′. (Use 3.2.2 for π0 and [B91, IV, 12.4, Prop. (1)] for neutral
components.) In particular, every quasi-Cartan is contained in a big quasi-Cartan and the set of quasi-Cartan
of G coincides with the set of quasi-Cartan of big quasi-Cartan of G.

3.2.4. Let C ⊂ G be a quasi-Cartan. For every g ∈ G the following are equivalent:
- (3.2.4.1) g ∈ Gss;
- (3.2.4.2) there exists γ ∈ G such that γgγ−1 ∈ Css (i.e. Φg ∩ Css 6= ∅);
- (3.2.4.3) there exists γ◦ ∈ G◦ such that γ◦g(γ◦)−1 ∈ Css.

Indeed, since G◦ ⊂ G and Gss ∩ C = Css, (3.2.4.3) ⇒ (3.2.4.2) ⇒ (3.2.4.1) is straightforward and (3.2.4.1)
⇒ (3.2.4.2) follows from [St68, Thm. 7.5], which asserts that every semisimple element is contained in a
quasi-Cartan. Eventually, assume (3.2.4.2). From 3.2.2, there exists γ̃ ∈ C such that γ◦ := γ̃−1γ ∈ G◦ hence
γ◦g(γ◦)−1 = γ̃−1γgγ−1γ̃ ∈ γ̃−1Cssγ̃ = Css. Thus, (3.2.4.3) holds.

Remark. If G is reductive, C◦ ⊂ G◦ is a maximal torus [B91, IV, 13.17, Cor. 2 (c)] hence C = Css.

3.2.5. Let C̃ ⊂ G be a big quasi-Cartan (resp. let C ⊂ G be a quasi-Cartan). For every g ∈ C̃ss,
Z
C̃◦(g)◦ ⊂ ZG◦(g)◦ is a big quasi-Cartan (resp. for every g ∈ Css, ZC◦(g)◦ ⊂ ZG◦(g)◦ is contained in a

Cartan).

Indeed, fix a Levi subgroup L ⊂ G [Ho81, VIII, Thm. 4.3] and a quasi-Cartan T ⊂ L. Then Ru(G) o T ⊂
Ru(G) o L = G is a big quasi-Cartan in G. In particular, from 3.2.1 and [Ho81, VIII, Thm. 4.3], up to
replacing L (and T ) by a conjugate, one may assume C̃ = Ru(G) o T and g ∈ T hence C̃◦ = Ru(G) o T ◦

and (see Lemma 3.1)

Z
C̃◦(g) = ZRu(G)(g) o ZT ◦(g), Z

C̃◦(g)◦ = ZRu(G)(g) o ZT ◦(g)◦

From Fact 3.2.6 below, ZL◦(g) is reductive and ZT ◦(g)◦ ⊂ ZL◦(g)◦ is a Cartan (equivalently, a maximal
torus) while from ZG◦(g) = ZRu(G)(g) o ZL◦(g), one gets

ZG◦(g)◦ = ZRu(G)(g) o ZL◦(g)◦.

The proof for quasi-Cartan is similar. More precisely, one may assume C = ZRu(G)(T
◦)oT and g ∈ T . Then

ZC◦(g)◦ = ZZRu(G)(g)(T
◦) o ZT ◦(g)◦ is contained in the Cartan ZZRu(G)(g)(ZT ◦(g)◦) o ZT ◦(g)◦ ⊂ ZG◦(g)◦.

3.2.6.Fact. ([St68, Thm. 8.1], [HP18, Thm. 8.2]) Let G be a reductive group, T ⊂ G a quasi-Cartan and
g ∈ T . Then ZG◦(g) is reductive and ZT ◦(g)◦ ⊂ ZG◦(g) is a maximal torus.

For general G, let L ⊂ G be a Levi subgroup, B◦ ⊂ L◦ a Borel subgroup and T ◦ ⊂ B◦ a maximal torus.
Write T := NL(B◦) ∩ NL(T ◦) ⊂ L for the corresponding quasi-Cartan of L. Then, for every g ∈ T , ZL(g)
is reductive, Tg := ZT (g)◦ ⊂ ZL(g) is a maximal torus of ZL(g) hence of ZG(g) = ZRu(G)(g) o ZL(g) (see
Lemma 3.1) and the neutral component of the corresponding Cartan subgroup of ZG(g) is

Cg := ZZG(g)◦(Tg)
◦ = ZZRu(G)(g)(Tg)× Tg.

3.3. A criterion for Zariski-density. The following is a slight enhancement of the argument in [HP18,
Thm. 8.9 (c)].
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3.3.1. Lemma. Let g ∈ Gss and write ιg : G → G for left conjugation by g (i.e. ιg(γ) = gγg−1). The
morphism

G◦ × ZG◦(g)◦ → G◦

(γ, ω) → γωιg(γ)−1

is dominant. If G◦ is commutative, it is surjective.

Proof. Since G◦ is connected, it is enough to show that the tangent map at (1, 1) ∈ G◦×ZG◦(g)◦ is surjective.
One can compute it explicitly as

g⊕ ker(Ad(g)− 1) → g
(Γ,Ω) → (1−Ad(g))(Γ) + Ω,

where g := Lie(G◦), Ad(g) : g → g, Ω → gΩg−1 hence Lie(ZG(g)◦) = ker(Ad(g) − 1). As g is semisimple,
Ad(g) : g → g is semisimple as well hence g = im(Ad(g) − 1) ⊕ ker(Ad(g) − 1). If G◦ is commutative,
G◦ × ZG◦(g)◦ → G◦ is a morphism of algebraic groups hence its image is closed [B91, I, 1.4, Cor. (a)]. �

3.3.2.Corollary. Let g ∈ Gss and let Cg ⊂ ZG◦(g)◦(⊂ G◦) be a Cartan subgroup of ZG◦(g)◦.
- (3.3.2.1) The map

p: G◦ × Cgg → G◦g
(γ, cg) → γcgγ−1

is dominant hence p(G◦×Cgg) contains a dense open subset of G◦g. If G◦ is commutative, it is surjective.
- (3.3.2.2) Let Φ ⊂ G be a union of G◦-conjugacy classes. Then the following are equivalent
– (3.3.2.2.1) Φzar ⊃ Cgg;
– (3.3.2.2.2) (Φ ∩ Cgg)zar = Cgg;
– (3.3.2.2.3) (Φ ∩G◦g)zar = G◦g;
– (3.3.2.2.4) Φzar ⊃ G◦g.

Proof. (3.3.2.1) is equivalent to showing that the morphism

G◦ × Cg → G◦

(γ, c) → γcιg(γ)−1

is dominant (or surjective if G◦ is commutative) or, equivalently, that the composite of the morphisms

G◦ × ZG◦(g)◦ × Cg → G◦ × ZG◦(g)◦ → G◦

(γ, (ω, c)) → (γ, ωcιg(ω)−1)
(γ, ω′) → γω′ιg(γ)−1

is dominant (or surjective if G◦ is commutative). This follows from Lemma 3.3.1 and the fact that the
morphism

ZG◦(g)◦ × Cg → ZG◦(g)◦

(ω, c) → ωcω−1 = ωcιg(ω)−1

is dominant (or surjective if G◦ is commutative) since Cg ⊂ ZG◦(g)◦ is a Cartan subgroup [B91, IV, 12.1,
Thm. (b)].

For (3.3.2.2), we show (3.3.2.2.4) ⇒ (3.3.2.2.3) ⇒(3.3.2.2.2) ⇒ (3.3.2.2.1) ⇒ (3.3.2.2.4). The implication
(3.3.2.2.2)⇒ (3.3.2.2.1) is straightforward and the implication (3.3.2.2.4)⇒ (3.3.2.2.3) follows from the fact
that G◦g is open in G. Assume (3.3.2.2.1). Then p(G◦ × Cgg) ⊂ Φzar and (3.3.2.2.1) ⇒ (3.3.2.2.4) follows
from (3.3.2.1). Assume (3.3.2.2.3). From (3.3.2.1) and Chevalley’s constructibility theorem, for every non-
empty open subset U ⊂ Cgg, p(G◦×U) contains again a dense open subset of G◦g. Hence Φ∩p(G◦×U) 6= ∅.
This shows (3.3.2.2.3) ⇒ (3.3.2.2.2). �

3.3.3.Corollary. Assume G is reductive. Let T ⊂ G be a quasi-Cartan and g ∈ T . Let Φ ⊂ G be a union
of G◦-conjugacy classes. The following are equivalent
- (3.3.3.1) Φzar ⊃ ZT ◦(g)◦g;
- (3.3.3.2) (Φ ∩ ZT ◦(g)◦g)zar = ZT ◦(g)◦g;
- (3.3.3.3) (Φ ∩G◦g)zar = G◦g;
- (3.3.3.4) Φzar ⊃ G◦g.

Proof. Since g ∈ T , g is semisimple by the remark after 3.2.4 hence one can apply (3.3.2.2). But from Fact
3.2.6, ZG◦(g) is reductive and ZT ◦(g)◦ ⊂ ZG◦(g)◦ is a maximal torus so that one can take Cg = ZT ◦(g)◦ in
(3.3.2.2). �
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3.4. Assume G = Ru(G) × Gred and write (−)u : G → Ru(G), (−)red : G → Gred for the first and second
projections respectively. Let T ⊂ Gred be a quasi-Cartan. Then for every g ∈ T , Cg := Ru(G)× ZT ◦(g)◦ ⊂
ZG◦(g)◦ is a Cartan. Fix a faithful Q-linear representation V of Gred and an isomorphism V →̃Qr, identifying
GL(V )→̃GLr,Q. Write

χ : GLr,Q → Pr,Q := Gm,Q × Ar−1
Q

g → det(Id− Tg)

for the characteristic polynomial map and ψ := Id×χ : Ru(G)×Gred → Ru(G)×Pr,Q. For a conjugacy class
∆ ⊂ π0(G) with inverse image ∆ := p−1

G◦(∆) = Ru(G)×∆red ⊂ Ru(G)×Gred = G, write χ(G)∆ := χ(∆red)
and ψ(G)∆ := ψ(∆) = Ru(G)× χ(G)∆.

3.4.1.Proposition.
- (3.4.1.1) For every conjugacy class ∆ ⊂ π0(G) and g ∈ T lifting an element g ∈ ∆ (cf. 3.2.2),

ψ(G)∆ = ψ(Cgg) = Ru(G)× χ(G)∆ = Ru(G)× χ(ZT ◦(g)◦g)

and the restriction ψ : Cgg → Ru(G) × Pr,Q is a finite morphism. In particular, ψ(G)∆ ⊂ Ru(G) × Pr,Q
is a closed irreducible subvariety of dimension dim(Cg) and the irreducible components of ψ(G) are the
maximal elements among the ψ(G)∆ for ∆ ⊂ π0(G) varying among all conjugacy classes of π0(G);

- (3.4.1.2) Let ∆ ⊂ π0(G) be a conjugacy class with inverse image ∆ := p−1
G◦(∆) ⊂ G. Let Φ ⊂ ∆ be a union

of conjugacy classes. Then

Φzar = ∆⇔ ψ(Φ)zar = ψ(G)∆.

Proof. For (3.4.1.1), it is enough to prove it when G = Gred hence Cg = ZT ◦(g)◦, which we assume from
now on. Consider a conjugacy class ∆ ⊂ π0(G) with inverse images ∆ := p−1

G◦(∆) ⊂ G and ∆T := p−1
T ◦ (∆)(=

∆ ∩ T ) ⊂ T . Then χ(∆) = χ(∆ss) and from 3.2.4, χ(∆ss) = χ(∆T ) = ∪g∈∆χ(T ◦g) while, from (3.3.2.1)
applied to T , χ(T ◦g) = χ(ZT ◦(g)◦g). This shows that

χ(G)∆ = ∪g∈∆χ(ZT ◦(g)◦g).

But since ZT ◦(g)◦ and g commute, one may assume that the algebraic subgroup 〈ZT ◦(g)◦, g〉zar ↪→ G they
generate in G is contained in the diagonal torus Gr

m,Q ⊂ GLr,Q. Then χ(ZT ◦(g)◦g) is the image of the
morphism

ZT ◦(g)◦g ↪→ 〈ZT ◦(g)◦, g〉zar ⊂ Gr
m,Q

χ→ Pr,Q,

which is finite as the composite of closed immersions with the finite morphism χ : Gr
m,Q → Pr,Q. This

shows that χ(ZT ◦(g)◦g) is a closed irreducible subvariety of dimension dim(ZT ◦(g)◦). Hence χ(G)∆ is
a closed subvariety as well. But χ(G)∆ is also irreducible since for every g ∈ G lifting an element in
∆, χ(G)∆ = χ(G◦g). On the other hand, since for every g, h ∈ T , ZT ◦(hgh−1)◦ = hZT ◦(g)◦h−1, the
χ(ZT ◦(g)◦g), g ∈ ∆ all have the same dimension. This forces χ(G)∆ = χ(ZT ◦(g)◦g) for every g ∈ ∆. The
last part of (3.4.1.1) follows from the tautological equality χ(G) = ∪∆χ(G)∆. We now prove (3.4.1.2). For
every h ∈ Φ, Φh = (Φh)u × (Φh)red with (Φh)u = Φhu ⊂ Ru(G) and (Φh)red = Φhred ⊂ Gred. Note that
hu = hu(hred)

u, hss = (hred)
ss. Set Φ′ := {hu · hss | h ∈ Φ}. We show the following implications:

Φzar = ∆
(1)⇒ ψ(Φ)zar = ψ(G)∆

(2)⇔ ψ(Φ′)zar = ψ(G)∆

(3)⇔ Φ′zar = ∆
(4)⇒ Φzar = ∆.

Implication (1) and the⇐ part of equivalence (3) follow from the fact that ψ(G)∆ is closed (3.4.1.1). Equiv-
alence (2) follows from ψ(Φ) = ψ(Φ′). For the ⇒ part of equivalence (3), let g ∈ T lifting a representative
of ∆ ⊂ π0(G). From 3.2.4 and Lemma 3.3.1 (applied to T ), ψ(Φ′) = ψ(Φ′ ∩ Cgg). Since the restriction
ψ : Cgg → Ru(G) × Pr,Q is (finite hence) closed, ψ((Φ′ ∩ Cgg)zar) = ψ(Φ′ ∩ Cgg)zar. Since the restriction
ψ : Cgg → Ru(G)× Pr,Q is finite, Cgg is irreducible and (Φ′ ∩ Cgg)zar ⊂ Cgg is a closed subset,

ψ((Φ′ ∩ Cgg)zar) = ψ(Cgg)⇔ dim((Φ′ ∩ Cgg)zar) = dim(Cgg)⇔ (Φ′ ∩ Cgg)zar = Cgg,

which, from (3.3.2.2), is also equivalent to Φ′ zar ⊃ G◦g hence Φ′ zar ⊃ ∆. Implication (4) follows from
Φ′ zar ⊂ Φzar. Indeed, for every h ∈ Φ, {hu} × Φhred ⊂ Φ hence {hu} × Φhred

zar ⊂ Φzar. But from [St74,
Lemma on p. 92] (whose proof works for arbitrary (not necessarily connected) reductive groups), Φhred

zar

contains hss. �
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3.4.2.Remark. Though we will not use this in the following, let us point out that one can always choose
V in such a way that it separates the conjugacy classes of π0(G). Namely, there exists a finite-dimensional
faithful Q-representation V of Gred such that, with the above notation, the connected components of
ψ(G) are irreducible and the map sending ∆ ∈ π0(G)//π0(G) to ψ(G)∆ ∈ π0(ψ(G)) induces a bijection
π0(G)//π0(G)→̃Irr(ψ(G))(= π0(ψ(G))).

Again, it is enough to prove the assertion when G = Gred, which we assume. We proceed in two steps.

- (3.4.2.1) Let Γ be a finite group (e.g. Γ = π0(G)). There exists a faithful finite-dimensionalQ-representation
W of Γ whose character τW : Γ→ Q, γ 7→ τW (g) := Tr(γ|W ) induces an injective map Γ//Γ ↪→ Q.

Let N denote the exponent of Γ and let ζN ∈ Q denote a primitive Nth root of unity. Then any character
τ : Γ → Q takes its values in Z[ζN ] ⊂ Q. Fix a non-trivial character τ1 : Γ → Q. If τ1 separates the
conjugacy classes of Γ, we are done. Otherwise, there exists γ1 6= γ′1 ∈ Γ//Γ such that τ1(γ1) = τ1(γ′1).
Fix an integer n1 ≥ 1 such that im(τ1) injects into Z[ζN ]/n1 and a character τ ′2 : Γ→ Z[ζN ] ⊂ Q such that
τ ′2(γ1) 6= τ ′2(γ′1). Set τ2 := τ1+n1τ

′
2. By construction, |im(τ1)| < |im(τ2)|. And one iterates the construction.

- (3.4.2.2) From (3.4.2.1), there exists a faithful finite-dimensional Q-representation W of π0(G) whose
character τW : π0(G) → Q separates the conjugacy classes of π0(G). Fix an arbitrary faithful finite-
dimensional Q-representation V ′ of G of Q-dimension say N . Then V := V ′ ⊕W⊕N+1 has the required
property since one can recover χW from χV by the following recipe. For g ∈ G write χV (g) =

∏
i∈I(T−ti)ai

with ti 6= tj for i 6= j and ai = (N + 1)qi + ri with 0 ≤ ri < N + 1, i ∈ I. Then χW (g) =
∏
i∈I(T − ti)qi .

3.5. Assume G fits into a short exact sequence of algebraic groups over Q

1→ R→ G
p→ G̃→ 1

with R ⊂ Ru(G).

3.5.1. Lemma. Let S ⊂ G be a reductive (not necessarily connected) subgroup such that ZR(S) = 1; set
S̃ := p(S) ⊂ G̃. Then the morphism p : ZG(S)→ Z

G̃
(S̃) is an isomorphism.

Proof. Fix a Levi subgroup L ⊂ G containing S and write L̃ := p(L) ⊂ G̃; this is a Levi subgroup of G̃
containing S̃. From Lemma 3.1, ZG(S) = ZRu(G)(S) o ZL(S) and Z

G̃
(S̃) = Z

Ru(G̃)
(S̃) o Z

L̃
(S̃). Since p

induces an isomorphism p : ZL(S)→̃Z
L̃

(S̃), it is enough to show that it also induces an isomorphism p :

ZRu(G)(S)→̃Z
Ru(G̃)

(S̃). As the Lie correspondence gives an equivalence of categories between the unipotent
algebraic groups and the nilpotent (finite-dimensional) Lie algebras [DG70, Chap. IV, §2, 4.5, Cor. b)], it
is enough to show that p induces an isomorphism from Lie(Ru(G))S to Lie(Ru(G̃))S̃ . This isomorphism
follows from the (S-equivariant) exact sequence 0 → Lie(R) → Lie(Ru(G)) → Lie(Ru(G̃)) → 0, together
with the the fact that Lie(R)S = 0 by assumption and the reductivity of S. �

In particular, for every g ∈ Gss with image g̃ := p(g) ∈ G̃ and such that Rg = 1, the injective morphism
ZG(g) ↪→ Z

G̃
(g̃) induces isomorphisms ZG(g)→̃Z

G̃
(g̃), ZG◦(g)◦→̃Z

G̃◦(g̃)◦.

3.5.2. Let Φ ⊂ G be a union of conjugacy classes. Write Φ̃ := p(Φ).

Lemma. Assume Rg = 1 for every g ∈ Φss. Let g ∈ Φss with image g̃ := p(g) ∈ G̃. Then Φzar ⊃ G◦g if
and only if Φ̃zar ⊃ G̃◦g̃.

Proof. Fix a Levi subgroup L ⊂ G containing g, a maximal torus and a Borel subgroup T ◦ ⊂ B◦ ⊂ L;
write T̃ ◦ := p(T ◦) ⊂ B̃◦ := p(B◦) ⊂ L̃ := p(L) ⊂ G̃. Set T := NL(B◦) ∩ NL(T ◦) ⊂ L for the corre-
sponding quasi-Cartan of L and T̃ := p(T ) = N

L̃
(B̃◦) ∩ N

L̃
(T̃ ◦) ⊂ L̃. From 3.2.4, up to replacing g by

an L◦-conjugate, one may assume g ∈ T hence g̃ ∈ T̃ . From Fact 3.2.6, ZG(g) = ZRu(G)(g) o ZL(g),
ZL(g) is reductive, and Tg := ZT ◦(g)◦ ⊂ ZG(g) is a maximal torus with corresponding Cartan subgroup
Cg = ZZG(g)◦(Tg)

◦ = ZZRu(G)(g)(Tg)×Tg ⊂ ZG(g). Similarly Z
G̃

(g̃) = Z
Ru(G̃)

(g̃)oZ
L̃

(g̃), Z
L̃

(g̃) is reductive,
and Tg̃ := Z

T̃ ◦(g̃)◦ ⊂ Z
G̃

(g̃) is a maximal torus with corresponding Cartan subgroup Cg̃ = ZZ
G̃

(g̃)◦(Tg̃)
◦ =

ZZ
Ru(G̃)

(g̃)(Tg̃) × Tg̃ ⊂ Z
G̃

(g̃). Since Rg = 1 and g ∈ Gss, it follows from 3.5.1 that the injective mor-
phism p : ZG(g) ↪→ Z

G̃
(g̃) induces isomorphisms p : ZG(g)→̃Z

G̃
(g̃), p : ZG◦(g)◦→̃Z

G̃◦(g̃)◦, p : Tg→̃Tg̃ and
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p : Cg→̃Cg̃. From (3.3.2.2) applied to Φ ⊂ G, Φzar ⊃ G◦g if and only if (Φ ∩ Cgg)zar = Cgg. Similarly,

Φ̃zar ⊃ G̃◦g̃ if and only if (Φ̃ ∩ Cg̃ g̃)zar = Cg̃ g̃. From the isomorphism p : ZG(g)→̃Z
G̃

(g̃) (which induces
a homeomorphism p : Cgg→̃Cg̃ g̃), it is thus enough to show that p(Φ ∩ Cgg) = Φ̃ ∩ Cg̃ g̃. The inclusion
p(Φ∩Cgg) ⊂ Φ̃∩Cg̃ g̃ is straightforward. To prove the converse inclusion it is enough to show that for every
φ̃ ∈ Φ̃ ∩ Cg̃ g̃ there exists φ ∈ Φ ∩ ZG(g) such that p(φ) = φ̃. Let φ ∈ Φ such that p(φ) = φ̃.

- We first show that up to replacing φ by an R-conjugate, one may assume φss ∈ L.

Write φ = φRφL with φR ∈ Ru(G), φL ∈ L and φ̃ = φ̃Rφ̃L with φ̃R ∈ Ru(G̃), φ̃L ∈ L̃. As φ̃ ∈
Cg̃ g̃ = ZZ

Ru(G̃)
(g̃)(Tg̃) × Tg̃ g̃ and (Tg̃ g̃ ⊂)〈Tg̃, g̃〉zar is diagonalizable (see the proof of Proposition 3.4.1),

φ̃u ∈ ZZ
Ru(G̃)

(g̃)(Tg̃) ⊂ Ru(G̃) and φ̃ss ∈ Tg̃ g̃ ⊂ L̃. In particular φ̃R = φ̃u, φ̃L = φ̃ss. On the other

hand, p(φ) = φ̃ implies p(φR) = φ̃R, p(φL) = φ̃L and (since the Jordan decomposition is preserved
by morphisms of algebraic groups [B91, I, 4.4, Thm. (4)]) p(φu) = φ̃u, p(φss) = φ̃ss. As a result,
φL(φss)−1 = (φR)−1φu =: r ∈ R. As φss ∈ G is semisimple and normalizes R, the R-conjugacy class
CR(φss) ⊂ G of φss is closed in G and the canonical map R/ZR(φss) → CR(φss), ρ → ρφssρ−1 is an
isomorphism [B91, III, 9.1, 9.2]. But by assumption ZR(φss) = 1, thus CR(φss) ⊂ p−1(φ̃ss) is a closed sub-
variety of dimension dim(R). On the other hand, from the isomorphism R→̃p−1(φ̃ss), ρ→ ρφss, p−1(φ̃ss)

is irreducible of dimension dim(R). This shows CR(φss) = p−1(φ̃ss) = Rφss. In particular, there exists
ρ := ρφss ∈ R such that ρφssρ−1 = rφss = φL ∈ L. As a result, replacing φ with ρφρ−1, one may assume
φss ∈ L as claimed.

- From now on, assume φss ∈ L. Write φ = φRφL with φR ∈ Ru(G), φL ∈ L and φu = φu,Rφu,L with
φu,R ∈ Ru(G), φu,L ∈ L. Since φss ∈ L, we have φR = φu,R and (using again that the Jordan decomposition
is preserved by morphisms of algebraic groups) φss = φL,ss, φu,L = φL,u. But as φss = φL,ss and φu,L = φL,u

commute and φss and φu commute, this shows φss and (φR =)φu,R = φu(φu,L)−1 commute. On the other
hand, φ̃ ∈ Z

G̃
(g̃) imposes φgφ−1g−1 =: r ∈ R. This can be rewritten as:

r−1φR(φLg(φL)−1)(φR)−1(φLg−1(φL)−1) = gφLg−1(φL)−1 ∈ L ∩Ru(G) = 1

hence φL ∈ ZG(g) and φRg(φR)−1g−1 = r ∈ R. But φL ∈ ZG(g) implies φss(= φL,ss) ∈ ZG(g). This shows
φss commutes with both g and φR hence with r. As Rφss = 1 by assumption, r = 1 and φR ∈ ZG(g). This
shows φ = φRφL ∈ ZG(g) as desired.

�

3.6. Assume G acts faithfully on a finite-dimensional Q-vector space V and that V is endowed with a filtra-
tion S•V : V = S1V ) S2V ) · · · ) SsV ) Ss+1V = 0 defined by a cocharacter ω : Gm,Q → G ↪→ GLV .
By this, we mean the following. For every n ∈ Z let Vω(n) := ∩x∈Gm,Q ker(ω(x) − xnId) ⊂ V denote the
Q-vector subspace over which ω acts with weight n and let Sω(V ) := {n ∈ Z | Vω(n) 6= 0} ⊂ Z denote
the set of weights of ω appearing in V . Then, ordering the elements of Sω(V ) as σ1 > · · · > σs, one has
SiV = ⊕n≤σiVω(n), i = 1, . . . , s. Let H ⊂ G be a subgroup of the stabilizer of S•V in G containing the
centralizer ZG(ω) of the image of ω in G (e.g. the stabilizer itself). Let Ψ ⊂ H be a union of H-conjugacy
classes and let Φ ⊂ G for the union of G-conjugacy classes generated by Ψ in G.

Lemma. Let g ∈ Hss and assume that Ψzar ⊃ H◦g. Then Φzar ⊃ G◦g.

Proof. Let T ◦ ⊂ G be a maximal torus containing the image of ω; in particular T ◦ ⊂ ZG(ω) ⊂ H and
T ◦ is a maximal torus of H. Let LH ⊂ H be a Levi subgroup containing T ◦ and B◦H ⊂ LH a Borel
subgroup of LH containing T ◦. Write CH := NLH (B◦H) ∩ NLH (T ◦) ⊂ LH . From 3.2.2, one may assume
g ∈ CH . From Fact 3.2.6, Tg := ZT ◦(g)◦ ⊂ ZL◦H (g) is a maximal torus of ZH(g) with corresponding Cartan
subgroup CH,g := ZZH(g)◦(Tg)

◦ ⊂ ZH(g)◦. Let L ⊂ G be a Levi subgroup containing LH and B◦ ⊂ L a
Borel subgroup of L containing B◦H (hence T ◦). Set C := NL(B◦) ∩ NL(T ◦) ⊂ L. Then CH ⊂ C with
C◦H = C◦ = T ◦ and, again, Tg = ZT ◦(g)◦ ⊂ ZL◦(g) is a maximal torus of ZG(g) with corresponding Cartan
subgroup Cg := ZZG(g)◦(Tg)

◦ ⊂ ZG(g)◦.
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- We claim that CH,g = Cg. Indeed, since LH is reductive (hence linearly reductive) and contains the image
of ω, LH centralizes the image of ω. (Observe that the linear reductivity yields an LH -equivariant isomor-
phism V →̃ ⊕1≤i≤s SiV/Si+1V and that by definition of S•V , ω is pure on each graded piece SiV/Si+1V .)
In particular, g ∈ LH centralizes the image of ω. This shows the image of ω is contained in Tg. But then
Cg also centralizes the image of ω; in particular Cg ⊂ ZG(ω)∩ZG(g) ⊂ H ∩ZG(g) = ZH(g), Cg ⊂ ZH(g)◦,
and Cg ⊂ CH,g. Conversely, the inclusion ZH◦(g)◦ ⊂ ZG◦(g)◦ immediately implies that CH,g ⊂ Cg.

- From (3.3.2.2), Ψzar ⊃ H◦g implies (Ψ ∩ CH,gg)zar = CH,gg. Since Ψ ∩ CH,gg = Ψ ∩ Cgg ⊂ Φ ∩ Cgg this
implies (Φ ∩ Cgg)zar = Cgg, which, applying again (3.3.2.2), implies Φzar ⊃ G◦g as desired.

�

4. Preliminary reductions

4.1. To prove Theorem 1.4, one may assume X is smooth over k. This follows from the following applied to
the smooth locus of X.

Fact. Let U ⊂ X be a dense open subset. Then for every C ∈ C†(X,Q) the restriction functor C†(X,Q) →
C†(U,Q) induces an isomorphism G(C|U )→̃G(C) of algebraic groups.

Proof. (Sketch) Since the induced morphism G(C|U ) → G(C) is compatible with the closed immersions
G(C|U ) ↪→ GL(Cx) and G(C) ↪→ GL(Cx), it is a closed immersion. Thus, it is enough to show the surjectivity.
For Q = Q`, Qu, this directly follows from the fact that the functorial morphism π1(U)→ π1(X) is surjective
and that G(C) (resp. G(C|U ) is the Zariski-closure of W (X) (resp. W (U)) acting on Cx. For Q = Qp, this
follows from the fact that the restriction functor C†(X,Q)→ C†(U,Q) is fully faithful [Ts12] and a Tannakian
trick - see [AE19, §4.6] for details. �

4.2. So from now on and unless otherwise mentioned, we will assume that X is smooth over k.

4.2.1.Fact. Let C be a Q-coefficient on X. For every x ∈ |X| there is a canonical diagram, commutative up
to conjugacy and whose right vertical arrow is continuous

W (x) //

��

π1(X)

cont.
����

G(x∗C) // G // // π0(G)

Proof. (Sketch) See the discussions in [D’A20a, §3.3], [DrKed17, App. B] and [HP18, §6]. The key points
are the following. Let QX denote the trivial Q-coefficient on X. Let Cf (X,Q) ⊂ C(†)(X,Q) denote
the full subcategory of finite Q-coefficients, that is those C ∈ C(†)(X,Q) such that G(C) is finite and let
Cisotr(X,Q) ⊂ C(†)(X,Q) denote the full subcategory of isotrivial Q-coefficients, that is those C ∈ C(†)(X,Q)

such that p∗C = Q
rank(C)
X̃

for some Galois étale cover p : X̃ → X.

- (4.2.1.1) Cf (X,Q) = Cisotr(X,Q) ⊂ C(†)(X,Q).

- (4.2.1.2) The Tannakian group of Cisotr(X,Q) ⊂ C(†)(X,Q) is the pro-algebraic group lim
←−

π1(X)/U , where
the limit is over all normal open subgroups of π1(X).

The inclusion Cisotr(X,Q) ⊂ Cf (X,Q) in (4.2.1.1) and (4.2.1.2) follow from étale descent, namely that for
every Galois étale cover p : X̃ → X, the functor p∗ : C(†)(X,Q) → C(†)(X̃,Q) factors as a composite of an
equivalence of ⊗-categories

p∗ : C(†)(X,Q)→ C(†)(X̃,Q)Aut(X̃|X)

onto the category C(†)(X̃,Q)Aut(X̃|X) of Q-coefficients in C(†)(X̃,Q) equipped with descent data with respect
to p : X̃ → X and the forgetful functor C(†)(X̃,Q)Aut(X̃|X) → C(†)(X̃,Q). This is tautological for Q`- and Qu-
coefficients. For Qp-coefficients, see [O84, Thm. 4.5], [E02, Thm. 1]. The inclusion Cf (X,Q) ⊂ Cisotr(X,Q)

in (4.2.1.1) amounts to showing that for every C ∈ Cf (X,Q) there exists a connected étale cover p : X̃ → X
such that p∗C is trivial. For Q`-coefficients (resp. Qp-coefficients), this follows from the fact that finite
Q`-coefficients (resp. Qp-coefficients) are étale (resp. unit-root since the eigenvalues of ϕx acting on Cx
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are roots of unity) hence correspond to finite-dimensional continuous Q`-representations of π1(X) (resp.3

Qσ
p -representations of π1(X), where σ is a lifting of the Frobenius [Cr87, 2.2, Thm.]). For Qu-coefficients,

by definition, the finite-dimensional Qu-representation of π1(X) corresponding to an almost u-tame sheaf
factors through a topologically finitely generated (profinite) quotient; in particular, if the representation has
finite image, its kernel is automatically open [NS07a], [NS07b]. �

4.2.2.Corollary. The resp. part of Conjecture 1.3 follows from the non-resp. part of Conjecture 1.3.

Proof. Indeed, by the (classical) Cebotarev density theorem [P97, Thm. B.9], for every conjugacy class
∆ ⊂ π0(G) with inverse image ∆ := p−1

G◦(∆) ⊂ G, δu(S∆) ≤ δ(|X|∆) = |∆|
|π0(G)| while, using the decomposition

S = t∆S∆, one gets δu(S) ≤
∑

∆ δ
u(S∆). Therefore δu(S) = 1 implies that for every conjugacy class

∆ ⊂ π0(G), δu(S∆) = |∆|
|π0(G)| > 0. In particular, from the non-resp. part of Theorem 1.4 (applied to S∆),

there exists g ∈ ∆ such that ΦS∆
zar ⊃ G◦g. But every other connected component of G contained in ∆ is

of the form γG◦gγ−1 for some γ ∈ G(Q) and ΦS∆
zar(= γΦS∆

zarγ−1) ⊃ γG◦gγ−1. �

Remark. Using the inequalities δu(S) ≤
∑

∆ δ
u(S∆) and δu(S∆) ≤ δu(|X|∆) = |∆|

|π0(G)| , one can relate more
precisely δu(S) to the number of connected components in which ΦS is Zariski-dense (possibly depending
on the structure of π0(G)). For instance ΦS

zar contains at least dδu(S)|π0(G)|e connected components of G
etc.

4.2.3. The proof of Corollary 4.2.2 also shows that to prove the non-resp. part of Conjecture 1.3 and after
possibly shrinking S, one may assume (i) ΦS ⊂ ∆ := p−1

G◦(∆) for a conjugacy class ∆ ⊂ π0(G) and (ii) every
connected component in ∆ has a representative in Φss

S .

5. Étale Q`-coefficients

5.1. Theorem 1.4 for étale Q`-coefficients. When Q = Q` and C is an étale Q`-coefficient onX, Theorem
1.4 is a consequence of the (classical) Cebotarev density theorem. Indeed, write G := G(C), which we
identify with the Zariski-closure of the image Gan := G(C)an of the continuous Q`-representation V of π1(X)
corresponding to C. For every closed point x ∈ |X|, let Φan

x ⊂ Gan denote the Gan-conjugacy class of the
image ϕx of a geometric Frobenius attached to x so that Φan

x is Zariski-dense in the G-conjugacy class Φx

defined in Subsection 1.4. In particular, for every closed subset C ⊂ G which is a union of conjugacy classes,
the subset SC defined in Subsection 1.4 can also be described as

(5.1.1) SC = {x ∈ |X| | Φan
x ⊂ Gan ∩ C}.

Without loss of generality one may assume V arises from a continuous Q`-representation V` for a finite ex-
tension Q` of Q`. Let Z` denote the ring of integers of Q`. Fix a Gan-stable Z`-lattice Λ` ⊂ V`, set G(Z`) :=
G(Q`) ∩GL(Λ`) and let µ : B(G(Z`)) → [0, |π0(G)|] denote the Haar measure on G(Z`) normalized so that
µ(G◦(Z`)) = 1, where B(G(Z`)) denotes the Borel algebra on G(Z`). Assume C := ΦS

zar does not contain
any connected component of G. Since G(Z`)(⊃ Gan) is Zariski-dense in G, µ(C(Z`)) = 0 [Se12, Prop. 5.12].
On the other hand, since C(Z`) ⊂ G(Z`) is analytically closed, 0 < δu(S) ≤ δu(|X|C(Z`)) ≤ µ(C(Z`)) = 0,
where the last inequality is [Se12, Thm. 6.8] (using the description (5.1.1) of |X|C(Z`)). Whence a contra-
diction.

To prove Theorem 1.4 for arbitrary motivic Q-coefficients we will use that every semisimple motivic Q-
coefficient admits an étale Q`-companion for some prime ` 6= p.

5.2. Existence of étale Q`-companions. Let now Q be any of Ql for some prime l 6= p, Qu for some
u ∈ U or Qp. The field of coefficients QC of a Q-coefficient C is the Q-subextension of Q generated by the
coefficients of the det(Id− Tϕx|Cx), x ∈ |X|.

Given an isomorphism ι : Q→̃C, a Q-coefficient C is said to be ι-pure of weight w ∈ R if for every x ∈ |X|
and eigenvalue α of ϕx acting on Cx one has |ια| = |k(x)|w/2. A Q-coefficient C is said to be pure of weight

3More precsisely, Crew’s theorem is for convergent F -isocrystals but since X is assumed to be smooth over k, the functor
α : C†(X,Qp) → C(X,Qp) is fully faithful (see Subsection 1.1) hence to show that a finite overconvergent F -isocrystal C† is
isotrivial it is enough to show that the convergent F -isocrystal α(C†) is. (Note that α(C†) is also finite, as G(α(C†)) ⊂ G(C†) (⊂
GL(C†x)).
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w if it is ι-pure of weight w ∈ R for every ι : Q→̃C; this forces QC ⊂ Q.

Fix a prime ` 6= p and isomorphisms ι : Q→̃C, ι` : Q`→̃C. A Q-coefficient C and a Q`-coefficient C` are said
to be compatible or companions (with respect to ι, ι`) if

ι`det(Id− Tϕx|C`,x) = ιdet(Id− Tϕx|Cx), x ∈ |X|.
Recall X is assumed to be smooth over k.

5.2.1.Fact. (Companion conjecture, [D80, (2.2.10)], [Dr78], [L02], [A18b], [D12], [Dr12], [Ked18b], [AE19],
[C19a] - see also [C19b] for a survey) Let I be an irreducible motivic Q-coefficient with finite determinant
(i.e. det(I) ∈ Cf (X,Q)). The following hold.

- (5.2.1.1) I is pure of weight 0;
- (5.2.1.2) QI is a finite extension of Q;
- (5.2.1.3) There exists an étale Q`-coefficient I` which is compatible (with respect to ι, ι`) with I.

In (5.2.1.3) I` is automatically irreducible (hence unique) with finite determinant.

5.2.2. Let pX : X → spec(k) denote the structural morphism and given α ∈ Q×, let Q(α) denote the Q-
coefficient on spec(k) corresponding to ϕ acting on Q by multiplication by α. For a Q-coefficient C on X,
write C(α) := C ⊗ p∗XQ(α) for the ‘twist of C by α’. The following is a consequence of class field theory.

5.2.2.1. Fact. ([D80, (1.3.4)], [A18a, Lem. 6.1], [C19a, Prop. 6.1.2]) Every rank-1 motivic Q-coefficient on
X is a twist of a finite Q-coefficient.

In particular, applying Fact 5.2.2.1 to the determinant and using Fact 5.2.1, one gets

5.2.2.2. Corollary. Every irreducible motivic Q-coefficient on X is a twist of an irreducible motivic Q-
coefficient with finite determinant hence, in particular, is ι-pure.

5.2.2.3. Fact. (Grothendieck’s unipotent monodromy theorem, [D80, (1.3.8)], [Cr92, Thm. 4.9] (and
[D’A20a, Thm. 3.4.4] for higher-dimensional varieties), [C19a, 6.1.3]) Let C be a motivic Q-coefficient on X.
Then the radical of G(C) is unipotent.

5.2.3.Corollary. Let C be a semisimple motivic Q-coefficient on X. Then for every prime (p 6=)` � 0,
there exists an isomorphism ι` : Q` → C and a (necessarily unique) semisimple étale Q`-coefficient C` which
is compatible with C (with respect to ι, ι`).

Proof. From Corollary 5.2.2.2, one can write C = ⊕i∈II(αi)
i with Ii an irreducible motivic Q-coefficient

with finite determinant and αi ∈ Q×, i ∈ I. By (5.2.1.3) for every ` 6= p and isomorphism ι` : Q` → C
and for every i ∈ I, there exists an étale Q`-coefficient Ii,` compatible with Ii. As pointed out, Ii,` is

automatically irreducible hence, by construction, C` := ⊕i∈II
(ι−1
` ι(αi))

i,` is a semisimple motivic Q`-coefficient
on X compatible with C. From Lemma 5.2.4 below, for p 6= `� 0 one can furthermore choose ι` : Q`→̃C in
such a way that the ι−1

` ι(αi) are `-adic units that is C` is an étale Q`-coefficient. �

5.2.4. Lemma. Let 0 6= α1, . . . , αm ∈ C. Then for every prime ` � 0 there exists a field isomorphism
ι` : Q`→̃C such that ι−1

` (α1), . . . , ι−1
` (αm) are `-adic units.

Proof. By the Noether normalization lemma there exists t1, . . . , tr ∈ Q[α±1
1 , . . . , α±1

m ], algebraically inde-
pendent over Q and such that the extension Q[t1, . . . , tr] ⊂ Q[α±1

1 , . . . , α±1
m ] is finite. For some integer

N ≥ 1, the extension Q[t1, . . . , tr] ↪→ Q[α±1
1 , . . . , α±1

m ] restricts to a finite extension Z[1/N ][t1, . . . , tr] ↪→
Z[1/N ][α±1

1 , . . . , α±1
m ]. Fix a prime ` 6 |N . Since Z` is uncountable, one can find t1,`, . . . , tr,` ∈ Z` alge-

braically independent over Q, whence an embedding Z[1/N ][t1, . . . , tr] ↪→ Z`. Localizing at the zero-ideals,
one obtains a commutative diagram

Z`_�

��

Z[1/N ][t1, . . . , tr]
_�

��

� � finite//? _oo Z[1/N ][α±1
1 , . . . , α±1

m ]
_�

��
Q` Q(t1, . . . , tr)

� � finite //? _oo Q(α1, . . . , αm)
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hence, taking a connected component Q` of Q(α1, . . . , αm)⊗Q(t1,...,tr) Q`, a commutative diagram of fields

Q(t1, . . . , tr)
� � finite//

_�

��

Q(α1, . . . , αm)
_�

��
Q`
� � finite // Q`

.

Let Z` denote the ring of integers of Q`. Since Z[1/N ][t1, . . . , tr] ⊂ Z[1/N ][α±1
1 , . . . , α±1

m ] is finite and Z` is
normal, one obtains a commutative diagram

Z[1/N ][t1, . . . , tr]
� � finite//

_�

��

Z[1/N ][α±1
1 , . . . , α±1

m ])
_�

��

G g

∃!
tt

Z`
� � // Q`,

where the diagonal dotted arrow is automatically injective. Eventually, using that C and Q` have the same
transcendence degree over Q, the above diagram extends as

Z[1/N ][t1, . . . , tr]
� � finite//

_�

��

Z[1/N ][α±1
1 , . . . , α±1

m ])
_�

��

G g

∃!
uu

� � // Q '
ι // C

Z`
� � // Q`

� � // Q`,

'
ι`

??

where the right up right dotted arrow is an isomorphism. �

6. Theorem 1.4 for semisimple motivic Q-coefficients

6.1. Let now Q be any of Ql for some prime l 6= p, Qu for some u ∈ U or Qp. Let C be a semisimple motivic
Q-coefficient on X. Fix an isomorphism ι : Q→̃C. By Corollary 5.2.3, there exists a prime ` 6= p and an
isomorphism ι` : Q`→̃C such that the semisimple Q`-companion C` of C is an étale Q`-coefficient on X. Write
G := G(C), G` := G(C`), which are reductive.

6.2.Fact. (E.g. [C19b, §8])
- (6.2.1) The group G is connected if and only if the group G` is connected. In particular, if X̃ → X is the
étale cover corresponding to the kernel of π1(X) � π0(G`), the groups π0(G) and π0(G`) are canonically
isomorphic to Aut(X̃/X).

- (6.2.2) The companion correspondence (Ob(〈C〉)/ ')→̃(Ob(〈C`〉)/ ') induces a canonical semiring isomor-
phism C+[ιG]→̃C+[ι`G`], characterized by the fact that it preserves local L-functions and maps irreducible
representations to irreducible representations.

6.3. Lemma. Theorem 1.4 holds for C if and only if for every conjugacy class ∆ ⊂ Aut(X̃/X) (notation as
in (6.2.1)), dim(χ(G)∆) = dim(χ(G`)∆).

Proof. By definition of compatibility, for every subset S ⊂ |X|, ZS := ιχ(ΦCS) = ι`χ(ΦC`S ); set ZS := ZS zar.
For a conjugacy class ∆ ⊂ Aut(X̃/X) with inverse images ∆ := p−1

G◦(∆) ⊂ G, ∆` := p−1
G◦`

(∆) ⊂ G`, write

S∆ := SC∆ = SC`∆`
⊂ |X|.

Then one always has ZS∆
⊂ ιχ(G)∆ (resp. ZS∆

⊂ ι`χ(G`)∆), and, from Proposition 3.4.1 (and Corollary
4.2.2), Theorem 1.4 for C (resp. C`) is equivalent to

δu(S∆) > 0⇒ ZS∆
= ιχ(G)∆ (resp. ZS∆

= ι`χ(G`)∆).

From the (classical) Cebotarev density theorem, one always has δu(|X|∆) > 0 hence from Theorem 1.4 for
étale Q`-coefficients (Subsection 5.1) applied to S = |X|, one gets the inclusion ι`χ(G`)∆(= Z|X|∆) ⊂ ιχ(G)∆.
On the other hand, from (3.4.1.1) ι`χ(G`)∆, ιχ(G)∆ ⊂ Pr,C are closed irreducible subsets hence

dim(χ(G)∆) = dim(χ(G`)∆)⇔ ι`χ(G`)∆ = ιχ(G)∆. �



VARIATIONS ON A TANNAKIAN CEBOTAREV DENSITY THEOREM 19

6.4. Let us show that for every conjugacy class ∆ ⊂ Aut(X̃/X) (notation as in (6.2.1)), dim(χ(G)∆) =
dim(χ(G`)∆) that is, from (3.4.1.1), for some (equivalently every) quasi-Cartan T` ⊂ G` := G(C`), T ⊂ G :=

G(C) and g` ∈ T`, g ∈ T lifting an element g of ∆, ZT ◦` (g`)
◦ and ZT ◦(g)◦ have the same dimension. For this,

fix a Borel B◦` ⊂ G◦` , a maximal torus T ◦` ⊂ B◦` and g` ∈ T` := NG`(B
◦
` )∩NG`(T

◦
` ), g ∈ G lifting an element

g ∈ ∆.

Since C|
X̃

and C`|X̃ are again semisimple and compatible, (6.2.2) yields a canonical semiring isomorphism Σ :

C+[ιG◦]→̃C+[ι`G
◦
` ], characterized by the fact that it preserves local L-functions and maps irreducible repre-

sentations to irreducible representations. It then follows from [KaLV14, Thm. 1.2] that Σ : C+[ιG◦]→̃C+[ι`G
◦
` ]

is induced by an isomorphism of algebraic groups σ : ι`G
◦
`→̃ιG◦, which is unique up to conjugacy. On the

other hand, for every g ∈ Aut(X̃/X) the pullback functors g∗ : 〈C`|X̃〉 → 〈g
∗C`|X̃〉, g

∗ : 〈C|
X̃
〉 → 〈g∗C|

X̃
〉

induce a canonical commutative diagram of semiring isomorphisms - all mapping irreducible representations
to irreducible representations,

C+[ιG◦]
Σ

'
// C+[ι`G

◦
` ]

C+[ιG◦]
Σ

' //

'ιg−ιg−1

OO

C+[ι`G
◦
` ],

' ι`g`−ι`g−1
`

OO

whence a diagram of isomorphisms of algebraic groups

ιG◦

'ιg−ιg−1

��

ι`G
◦
`

σ

'
oo

' ι`g`−ι`g−1
`

��
ιG◦ ι`G

◦
` ,σ

'oo

which is unique and commutative up to conjugacy hence, up to replacing g by a G◦-translate, can be as-
sumed to be commutative. In particular, g normalizes T ◦ := ι−1σ(ι`T

◦
` ) ⊂ B◦ := ι−1σ(ι`B

◦
` ) (that is,

g ∈ T := NG(B◦) ∩NG(T ◦)) and σ maps isomorphically ι`ZT ◦` (g`) onto ιZT ◦(g).

This concludes the proof of Theorem 1.4 for semisimple motivic Q-coefficients.

7. Reduction of Theorem 1.4 to motivic Q-coefficients with semisimple geometric
monodromy

Fix a field isomorphism ι : Q→̃C.

7.1. The ι-weight filtration.

7.1.1. For a motivic Q-coefficient C on X let H1(X, C) denote
- if Q = Q` for some ` ∈ L: the étale cohomology group H1(X, C) := lim

←−
n

(H1(X,H/λn)) ⊗Z` Q`, where H

is an étale sheaf representing C over the ring of integers Z` of a finite extension of Q` and λ a uniformizer.
(e.g. [D80, (1.1)])

- if Q = Qu for some u ∈ U : the étale cohomology group H1(X, C) := (
∏
`∈LH

1(X,M`)) ⊗ Qu, where
M = (M`)`∈L is an almost u-tame sheaf on X representing C ([C19a, §3.6]).

- if Q = Qp: the rigid cohomology group H1(X, C) := H1
rig(X/K, E) ⊗K Qp, where E = (E , λ) is an

overconvergent F -isocrystal over a finite field extension K of W (k)⊗Q representing C (e.g. [A18b, §4.1],
[AE19, §1], [Ked06, §2.1]).

The Q-vector space H1(X, C) is finite-dimensional and equipped with an action of the Frobenius ϕ which
satisfies the fundamental property that if C is ι-pure of weight w then the action of ϕ on H1(X, C) has
ι-weights w + 1 + n with n ≥ 0 integers ([D80], [Ked06] and [ACa18], [C19a]).

7.1.2. Let C1, C2 be motivic Q-coefficients on X. One has an exact sequence

(7.1.2.1) 0→ H0(X, C1 ⊗ C∨2 )ϕ → ExtC†(X,Q)(C2, C1)→ H1(X, C1 ⊗ C∨2 )ϕ,
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We briefly recall the construction of (7.1.2.1). The group ExtC†(X,Q)(C2, C1) is the group of classes of exten-
sions in C†(X,Q) and the right arrow is

ExtC†(X,Q)(C2, C1)
(−)→ ExtC†(X,Q)

(C2, C1) ↪→ H1(X, C1 ⊗ C∨2 )

By construction, its image lies inH1(X, C1⊗C∨2 )ϕ. A class [E ] ∈ ExtC†(X,Q)(C2, C1) becomes trivial onX if and
only if one has a splitting s : C1 → E and the possible splittings are then the s−f with f ∈ HomC†(X,Q)

(C2, C1).
The class [E ] is trivial if and only if one can choose f in such a way that s− f ∈ HomC†(X,Q)(C2, C1) that is
ϕ · s− s = ϕ · f − f .

7.1.3. A Q-coefficient on X is said to be ι-mixed if it is a successive extension of ι-pure Q-coefficients. By
considering Jordan-Hölder filtrations, it follows from Corollary 5.2.2.2 that every motivic Q-coefficient C on
X is ι-mixed. This and 7.1.1, 7.1.2 formally imply the existence on every motivic Q-coefficient C of a ι-weight
filtration in C†(X,Q) - automatically unique and functorial

C := W1C )W2C ) · · · ⊃WrC )Wr+1C = 0

such that GrWi (C) =: WiC/Wi+1C is ι-pure of weight wi, i = 1, . . . , r with w1 > w2 > · · · > wr ([D80, (3.4.1),
(3.4.6), (3.4.7)], [Ked18a, Cor. 10.5], [C19a, 15.1.2]).

7.2. Let C be a motivicQ-coefficient onX. WriteG := G(C), G := G(C) and ϕ ∈ Γ := G/G for ‘the’ geometric
Frobenius. As Γ = 〈ϕ〉zar, Γ = Ru(Γ)×Γred, with Ru(Γ) ' Gε

a,Q and ε = 0, 1, and Γred of multiplicative type.

Lemma. The following are equivalent.
- (7.2.1) G = Ru(G)×Gred;
- (7.2.2) G is semisimple;
- (7.2.3) C is a direct sum of ι-pure motivic Q-coefficients.

Proof. We show (7.2.1) ⇔ (7.2.2) ⇔ (7.2.3). Let C1, C2 be two motivic Q-coefficients on X. Let Wi denote
the set of ι-weights appearing in the ι-weight filtration of Ci, i = 1, 2. We use the exact sequence (7.1.2.1).

(1) Assume W1 = W2 = {w}. Then C1 ⊗ C∨2 is ι-pure of weight 0. Hence H1(X, C1 ⊗ C∨2 ) has ι-weights
≥ 1 and H1(X, C1 ⊗ C∨2 )ϕ = 0. In particular, if C is ι-pure then G is reductive hence semisimple
(Fact 5.2.2.3). This shows (7.2.3) ⇒ (7.2.2).

(2) AssumeW1∩W2 = ∅. Then H0(X, C1⊗C∨2 )ϕ = 0. In particular, an extension 0→ C1 → C → C2 → 0

splits in C†(X,Q) if and only if the resulting extension 0→ C1 → C → C2 → 0 splits in C†(X,Q). By
induction on the length of the weight filtration of C, this shows (7.2.2) ⇒ (7.2.3).

Assume G is semisimple. Then the unipotent radical Ru(G) of G injects into Γ hence the morphism G� Γ
restricts to an isomorphism Ru(G)→̃Ru(Γ). On the other hand,

L := p−1(Γred) = ker(G� Γ = Ru(Γ)× Γred � Ru(Γ)) ⊂ G.

is a normal subgroup splitting the short exact sequence

1→ Ru(G)→ G→ Gred → 1.

Hence
G = Ru(G)× L ' Ru(G)×Gred.

This shows (7.2.2) ⇒ (7.2.1). For (7.2.1) ⇒ (7.2.2), since G is normal in G and the radical of G is unipotent
by Fact 5.2.2.3, it is enough to show that G ⊂ ker(G → Ru(G)). Fix a faithful representation V of Ru(G)
and let V be the corresponding motivic Q-coefficient on X. Since G(V) = Ru(G) is unipotent, V is pure of
weight 0 hence G(V|X) is semisimple by (1) above. As G(V|X) is also unipotent by construction, this forces
G(V|X) = 1. �

7.3. Consider the ι-weight filtration C := W1C ) W2C ) · · · ⊃ WrC ) Wr+1C = 0 in C†(X,Q); recall that
this means that GrWi (C) := WiC/Wi+1C is ι-pure of weight wi, i = 1, . . . , r with w1 > w2 > · · · > wr+1.
Set C̃ := ⊕1≤i≤rGr

W
i (C) and G̃ := G(C̃). Then R := ker(G � G̃) ⊂ Ru(G) while, from (7.2.3) ⇒ (7.2.1),

G̃ ' Gε̃
a,Q ×Gred with ε̃ = 0, 1.
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7.3.1. Lemma. For every x ∈ |X|, Rϕssx = 1.

Proof. Let V denote the Q-representation of G corresponding to C and V = W1 )W2 ) · · · )Wr )Wr+1 =
0 the filtration on V induced by the weight filtration on C. This defines a descending filtration by closed
normal subgroups on G:

F jG = ker(G→
∏

1≤i≤r−j+1

GL(Wi/Wi+j)), 0 ≤ j ≤ r.

(In particular, F 0G = G, F 1G = R and F rG = 1). By construction, the embeddings

F jG/F j+1G ↪→
∏

1≤i≤r−j
Hom(Wi/Wi+1,Wi+j/Wi+j+1), 0 ≤ j ≤ r − 1

are G-equivariant hence ϕx-equivariant. But since wi > wi+j ,

Hom(Wi/Wi+1,Wi+j/Wi+j+1)ϕ
ss
x = 0, 1 ≤ j ≤ r − 1, 1 ≤ i ≤ r − j.

�

7.3.2. It follows from Lemma 7.3.1 and Lemma 3.5.2 applied to the extension 1 → R → G → G̃ → 1 and
Φ = ΦS ⊂ G for any subset S ⊂ |X| that Theorem 1.4 holds for C if and only if Theorem 1.4 holds for C̃.

8. Theorem 1.4 for motivic Q-coefficients with semisimple geometric monodromy

Fix an isomorphism ι : Q→̃C. Let C be a motivic Q-coefficient on X. We retain the notation of Section
7. Assume G is semisimple hence G = Ru(G) × Gred and Ru(G)→̃Ru(Γ) ' Gε

a,Q with ε = 0, 1 (Lemma
7.2). From Theorem 1.4 for semisimple motivic Q-coefficients (Section 6), one may assume ε = 1. Fix the
isomorphism Ru(Γ) ' Ga,Q so that ϕ ∈ Γ = Ru(Γ) × Γred maps to 1 ∈ Ga,Q. Then for every x ∈ |X|,
ϕx ∈ G = Ru(G) × Gred maps to nx := [k(x) : k] ∈ Ga,Q. Fix a prime ` 6= p and an isomorphism
ι` : Q`→̃C such that Css admits a semisimple étale Q`-companion Css` (Corollary 5.2.3). Write U` for the

étale Q`-coefficient on X defined by the 2-dimensional representation π1(X) � π1(k)
ϕ7→U→ GL2(Q`) with

U =

(
1 1
0 1

)
and set C+

` := U` ⊕ Css` . Write G` := G(C+
` ). By construction G` = Ru(G`) × Gred` with

Ru(G`) = G(U`) = Ga,Q`
, Gred` = G(Css` ) and C+

` is a Q`-companion of C+ := C ⊕ I2 (recall I denotes the
trivial motivic Q-coefficient on X) in the sense that

(8.1) ι`ψ(ϕx) = (nx, ι`det(Id− Tϕx|C+
`,x)) = (nx, ιdet(Id− Tϕx|C+

x )) = ιψ(ϕx), x ∈ |X|.

Let S ⊂ |X| such that δu(S) > 0. Without loss of generality, we may assume ΦCS ⊂ ∆ := p−1
G◦(∆) for

some conjugacy class ∆ ⊂ π0(G) = π0(Gred) = π0(Gred` ) = π0(G`). From the (classical) Cebotarev density
theorem and (3.4.1.2) (applied to ΦC`S ⊂ G`),

ι`ψ(ΦC`S )zar = ι`ψ(G`)∆

while from (8.1), ι`ψ(ΦC`S ) = ιψ(ΦCS) ⊂ ψ(G)∆. But since dim(ψ(G)∆) = 1+dim(χ(Gred)∆), dim(ψ(G`)∆) =

1 +dim(χ(Gred` )∆), one has dim(ψ(G)∆) = dim(ψ(G`)∆) from Theorem 1.4 for (C+)ss and Lemma 6.3. This
shows that ψ(ΦCS)zar = ψ(G)∆ since ψ(G)∆ is irreducible hence, from (3.4.1.2) (applied to ΦCS ⊂ G), that
ΦCS

zar = ∆. This concludes the proof of Theorem 1.4 for motivic Q-coefficients with semisimple geometric
monodromy hence, from 7.3.2, the proof of Theorem 1.4.

9. Qp-coefficients

In this section, we assume X is smooth over k.

9.1. Write v : Q×p → Q for the p-adic valuation normalized by v(|k|) = 1. Let C ∈ C(X,Qp). For every
x ∈ |X|, the slopes of C at x are the v(α)

[k(x):k] ∈ Q for α running over the set of eigenvalues (counted with

multiplicities) of ϕx acting on Cx. One says that C is isoclinic of slope σ if v(α)
[k(x):k] = σ for every x ∈ |X| and

eigenvalue α of ϕx acting on Cx.
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9.1.1.Fact. ([K79, Thm. 2.3.1, Cor. 2.6.3]; see also [Ked18a, Thm. 3.12, Cor. 4.2]) For every C ∈ C(X,Qp)

there exists a dense open subscheme U ⊂ X such that C|U admits a slope filtration in C(U,Qp)- automatically
unique and functorial

S•(C|U ) : C|U = S1C|U ) S2C|U ) · · · ) SsC|U ) Ss+1C|U = 0

such that GrSi (C|U ) := SiC|U/Si+1C|U is isoclinic of slope σi, i = 1, . . . , s with σ1 > σ2 > · · · > σs.

Remark. ([Am19, Prop. 6.5.1.4.3]) If C ∈ C(X,Qp) has a slope filtration then for every dense open
subscheme U ⊂ X the canonical closed immersion G(C|U ) ⊂ G(C) is an isomorphism.

9.1.2. With the notation of Fact 9.1.1,

Lemma. The slope filtration S•(C|U ) is defined by a cocharacter ω : Gm,Qp
→ G(C|U ) ⊂ G(C).

Proof. Fix a closed point x ∈ |U | and a k-point + on U . Fix a Qp-basis ε = ε1, . . . , εs of C+ adapted to the
slope filtration S•(C|U )+ (namely, εs is a Qp-basis of (SsC|U )+, εs−1, εs is a Qp-basis of (Ss−1C|U )+ etc.) and
such that Tx := 〈ϕssx 〉zar appears as a subgroup of the corresponding diagonal torus D ⊂ GL(C+) ' GLr,Qp .
Let λ = λ1, . . . , λs denote the basis of X∗(D) corresponding to ε (i.e. τεi,j = λi,j(τ)εi,j for every τ ∈ D)
and χ = χ

1
, . . . , χ

s
the dual basis of λ in X∗(D) (i.e. λi,j ◦ χi′,j′ = δ(i,j),(i′,j′)). Let α1, . . . , αs denote the

eigenvalues of ϕx with αi = αi,1, . . . , αi,ri the eigenvalues of ϕx acting on SiC+/Si+1C+, i = 1, . . . , s. Then,
identifying X∗(D) ' Zr1 ⊕ · · · ⊕ Zrs by means of λ and setting

Qx := {a = a1, . . . , as ∈ X∗(D) | αa1
1 · · ·α

as
s = 1},

Tx =
⋂
a∈Qx

ker(a) ⊂ D.

By definition of the slope filtration, v(αi,j) = [k(x) : k]σi with σ1 > · · · > σs. So taking the p-adic valuation,
the relation αa1

1 · · ·α
ar
s = 1 imposes ∑

1≤i≤s
σi

∑
1≤j≤ri

ai,j = 0.

In particular, Tx - hence a fortiori G(C) - contains the image of the cocharacter

ω = N
∑

1≤i≤s
σi

∑
1≤j≤ri

χi,j

defining the filtration S•(C|U )+, where N stands for the minimal common denominator of σ1, . . . , σs ∈ Q. �

9.2. Parabolicity conjectures. The following is a generalization to arbitrary convergent Qp-coefficients of
a question stated by Crew [Cr92, §4, p. 460]. It was suggested to us by Ambrosi (in [HP18], a variant of it -
[HP18, Conj. 10.1] - is attributed to Pink).

9.2.1.Conjecture. (Generalized parabolicity conjecture) Let C ∈ C(X,Qp). For every dense open subscheme
U ⊂ X such that C|U admits a slope filtration S•(C|U ) on U , G(C|U ) ⊂ G(C) is the stabilizer of S•(C|U ) in
G(C).

It was recently solved by D’Addezio for †-extendable convergent Qp-coefficients. More precisely, D’Addezio
proved the following which, in particular, answers positively Crew’s original question. That D’Addezio’s
results implies Conjecture 9.2.1 is the content of Lemma 9.2.3 below.

9.2.2.Fact. (Crew’s parabolicity conjecture) (D’Addezio [D’A20b, Thm. 1.1.1]; see also [Ts19] for prelimi-
nary results on the minimal slope conjecture of Kedlaya) Let C† ∈ C†(X,Qp). Assume C := α(C†) ∈ C(X,Qp)

admits a slope filtration S•(C) on X. Then G(C) ⊂ G(C†) is the stabilizer of S•(C) in G(C†).
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9.2.3. Lemma. Fact 9.2.2 implies Conjecture 9.2.1 for †-extendable convergent Qp-coefficients.

Proof. Let C† ∈ C†(X,Qp); write C := α(C†) ∈ C(X,Qp). Since X is smooth, it follows from [Ked07,
Thm. 5.2.1 and Prop. 5.3.1] that for every dense open subscheme U ⊂ X, the canonical closed immersion
G(C†|U ) ↪→ G(C†) is an isomorphism. Let U ⊂ X be any dense open subscheme such that C|U admits a slope
filtration S•(C|U ) on U . Then one has a commutative diagram of closed immersions

G(C|U ) �
� //

� _

��

G(C†|U )

'
��

G(C) �
� // G(C†)

Fact 9.2.2 for C†|U implies that G(C|U ) ⊂ G(C†|U ) ' G(C†) is the stabilizer of S•(C|U ). Hence, a fortiori,
G(C|U ) ⊂ G(C)(⊂ G(C†)) is the stabilizer of S•(C|U ) that is, Conjecture 9.2.1 holds for C. �

For our purpose, we only need the following consequence of Conjecture 9.2.1.

9.2.4.Conjecture. (Weak generalized parabolicity conjecture) Let C ∈ C(X,Qp). For every dense open sub-
scheme U ⊂ X such that C|U admits a slope filtration S•(C|U ) on U , G(C|U ) ⊂ G(C) contains the centralizer
in G(C) of the cocharacter ω : Gm,Qp

→ G(C|U ) ⊂ G(C) defining the slope filtration S•(C|U ) (see Lemma
9.1.2).

From Remark 9.1.1, if Conjecture 9.2.1 (resp. Conjecture 9.2.4) holds for one dense open subscheme U ⊂ X
such that C|U admits a slope filtration then it holds for every dense open subscheme U ⊂ X such that C|U
admits a slope filtration.

9.3. Fact 9.2.2 and Lemma 9.2.3 reduce Theorem 1.5 for †-extendable convergent Qp-coefficients to the fol-
lowing.

9.3.1.Proposition. Let C ∈ C(X,Qp). Then Conjecture 9.2.4 for C implies Conjecture 1.3 for C.

The arguments used to prove Proposition 9.3.1 also yield

9.3.2.Proposition. Fact 9.2.2 implies Conjecture 1.3 for motivic Qp-coefficients.

Proposition 9.3.2 provides an alternative purely p-adic and "elementary" proof of Conjecture 1.3 for motivic
Qp-coefficients.

9.4. Proof of Propositions 9.3.1, 9.3.2. Our starting point is Fact 1.3.3. Let C ∈ C(X,Qp) (resp.
C† ∈ C†(X,Qp) and set C := α(C†) ∈ C(X,Qp)).

Lemma. Assume C admits a slope filtration S•(C): C = S1C ) S2C ) · · · ) SsC ) Ss+1C = 0 on X. Then
Conjecture 1.3 holds for C.

Proof. Write C̃ := ⊕1≤i≤sSiC/Si+1C, G := G(C), G̃ = G(C̃) so that one has a short exact sequence

1→ R→ G
p→ G̃→ 1

with R ⊂ Ru(G). (For the surjectivity of p, see [DM82, Prop. 2.21].) Write also Φ := ΦCS , Φ̃ := ΦC̃S(= p(Φ)).
Since there is no non-trivial morphism between isoclinic convergent Qp-coefficients with different slopes,
Rg = 1 for every g ∈ Φss (see the argument in the proof of Lemma 7.3.1 with ‘weight’ replaced by ‘slope’).
From Subsection 4.2.3, one may assume Φ ⊂ ∆ := p−1

G◦(∆) for a conjugacy class ∆ ⊂ π0(G). From Conjecture

1.3 for C̃ (Fact 1.3.3), for every g ∈ Φss with image g̃ := p(g) ∈ Φ̃ss, Φ̃zar ⊃ G̃◦g̃. From Lemma 3.5.2 this
implies Φzar ⊃ G◦g. This concludes the proof of the lemma. �

Remark. D’Addezio pointed out that, using the functoriality of the slope filtration, one can show that
p : G → G̃ admits a canonical splitting (corresponding to the retraction of the natural inclusion functor
〈GrS(E)〉⊗ ⊂ 〈E〉⊗ by the functor sending an object E ′ ∈ 〈E〉⊗ to its graded quotient GrS(E ′)) whose image
contains the centralizer of ω (see [D’A20b, (Proof of) Prop. 5.1.4] for details) so that, at least when G is
connected, one could invoke directly Corollary 3.3.2. rather than Lemma 3.5.2.
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We return to the case where C is arbitrary. Fix a dense open subscheme U ⊂ X such that C|U admits a slope
filtration S•(C|U ) on U (Fact 9.1.1) and assume G(C|U ) contains the centralizer ZG(C)(ω) in G(C) of the image
of the cocharacter ω : Gm,Qp

→ G(C|U ) ⊂ G(C) defining S•(C|U ) (resp. is the stabilizer of S•(C|U ) in G(C†)).

Since δu(S ∩ U) = δu(S) > 0, one may assume S = S ∩ U . Write Ψ := Φ
C|U
S and Φ := ΦCS (resp. Φ := ΦC

†
S ).

From Lemma 9.4 there exists g ∈ Ψss such that Ψzar ⊃ G(C|U )◦g hence Proposition 9.3.1 (resp. Proposition
9.3.2) follows from Corollary 4.2.2, Lemma 9.1.2 and Lemma 3.6 applied with H := G(C|U ) ⊂ G := G(C)
(resp. H := G(C|U ) ⊂ G := G(C†|U ) = G(C†), see the proof of Lemma 9.2.3).

9.5. Proof of the assertion in Remark 1.5.1. Let C = E1 ⊕ E2 with E1, E2 satisfying Conjecture 9.2.4
(e.g. †-extendable or admitting a slope filtration) and assume that for every dense open subscheme U ⊂ X
such that both E1|U and E2|U admit a slope filtration the canonical morphism G(E1|U , E2|U ) → G(E1, E2) is
a closed immersion (where we set G(E1, E2) := G(〈E1〉 ∩ 〈E2〉)). From Proposition 9.3.1 it suffices to prove
C satisfies Conjecture 9.2.4. For this, observe that G(C) = G(E1)×G(E1,E2) G(E2) (cf. [HP18, Prop. 3.6(c)])
and that, for every dense open subscheme U ⊂ X,

G(C|U ) = G(E1|U )×G(E1|U ,E2|U ) G(E2|U ) = G(E1|U )×G(E1,E2) G(E2|U ) ↪→ G(E1)×G(E1,E2) G(E2) = G(C).

Here the second equality follows from the assumption that the canonical morphism G(E1|U , E2|U )→ G(E1, E2)
is a closed immersion. Fix a dense open subscheme U ⊂ X such that both E1|U and E2|U admit a slope
filtration. By construction / definition, for i = 1, 2 the cocharacter ω : Gm,Qp

→ G(C|U ) ⊂ G(C) defining the
slope filtration on C|U (cf. Lemma 9.1.2) composed with the projection G(C) � G(Ei) yields the cocharacter
ωEi : Gm,Qp

→ G(Ei|U ) ⊂ G(Ei) defining the slope filtration on Ei|U . In particular,

ZG(C)(ω) ⊂ ZG(E)(ωE1)×G(E1,E2) ZG(E2)(ωE2) ⊂ G(E1|U )×G(E1,E2) G(E2|U ) = G(C|U ),

which shows C satisfies Conjecture 9.2.4 as well.
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