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Abstract. Let k be a number field, X a smooth, separated, geometrically connected variety over k and
f : Y → X a smooth projective morphism. Fix an infinite place ∞ : k ↪→ C and let fan

∞ : Y an
∞ → Xan

∞ denote
the resulting morphism of complex analytic spaces. The Hodge conjecture predicts that, for every integers
i ≥ 0, j, generic motivated Q-local subsystems (in the sense of André) in the Tannakian category generated
by the polarizable Q-VHS V∞ := Rifan

∞ ∗Q(j) should give rise to Q-compatible families of Qℓ-local systems
on X. We prove this conjecture under mild assumptions for a specific generic motivated Q-local subsystem
H∞ of V∞ ⊗ V∨

∞ closely related to the "tangent space" L∞ of V∞.

Given a scheme S, we write |S| for the set of closed points and π1(S) for its étale fundamental group1; when
S = spec(R) for a ring R, we sometimes write π1(R) = π1(S).

For a number field k, let Ok ⊂ k denote the ring of integers. For a finite place v of k, let kv denote the
completion of k at v and set mv ⊂ Okv ↠ κv for the maximal ideal, ring of integers and residue field of kv
respectively.

Let k be a field and X a smooth and geometrically connected variety (throughout this paper, a variety
means a scheme separated, reduced and of finite type) over k. For a field extension k ↪→ K, we usually write
XK := X ×k K. If k is a number field, x ∈ |X| with residue field k(x), and v is a finite place of k(x), let
xv : spec(k(x)v)→ spec(k(x)) x→ X denote the resulting k(x)v-point.

1. Introduction

1.1. Q-compatibility and motivic local systems. We first define the notion of Q-compatiblity used in
this paper. Let k be a number field; write Sk := spec(Ok)→ SQ := spec(Z).

Let ℓ ∈ |SQ|, v ∈ |Sk| with residue characteristic p, and Vℓ a Qℓ-local system on spec(kv).

- If ℓ ̸= p and Vℓ is unramified, let χVℓ
∈ Qℓ[T ] denote the characteristic polynomial of the geometric

Frobenius φVℓ
: Vℓ,x̄ → Vℓ,x̄;

- If ℓ = p and Vp is crystalline , let χVp ∈ kv,0[T ] denote the characteristic polynomial of the mvth power
of the crystalline Frobenius φVp := ϕmv

Vp
: Dcris(Vp) → Dcris(Vp), where mv := [kv,0 : Qp] is the degree

of the maximal unramified extension kv,0 of Qp contained in kv and Dcris : Repcris
Qp

(π1(kv)) → FMkv(ϕ) is
Fontaine’s (fully faithful) period functor from the category of crystalline Qp-representations of π1(kv) to
the category of filtered ϕ-modules over kv.

One says that a family of Qℓ-local systems V := (Vℓ)ℓ∈|SQ| on spec(kv) is Q-compatible (resp. and pure of
weight w ∈ Z) if Vℓ is unramified for ℓ ̸= p and crystalline for ℓ = p, and if the polynomial χV := χVℓ

is in
Q[T ] and independent of ℓ (resp. and for every root α of χxv and infinite place∞ : Q(α) ↪→ C, |α|∞ = |κv|

w
2 ).

Let ℓ ∈ |SQ| and Vℓ a Qℓ-local system on spec(k). Let Uk,Vℓ
⊂ |Sk| denote the set of all v ∈ |Sk| such that,

x∗vVℓ is unramified if ℓ ̸= p and x∗vVp is crystalline, where p denotes the residue characteristic of v. One
says that a family of Qℓ-local systems V := (Vℓ)ℓ∈|SQ| on spec(k) is Q-compatible (resp. and pure of weight
w ∈ Z) if there exists a non-empty open subset Uk,V ⊂ |Sk| such that Uk,V ⊂ ∩ℓUk,Vℓ

and for every v ∈ Uk,V

1As fiber functors will play no part in the following, we will in general omit them from our notation.
1
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the resulting family x∗vV is Q-compatible (resp. and pure of weight w ∈ Z).

Let X be a smooth and geometrically connected variety over k. One says that a family of Qℓ-local systems
V := (Vℓ)ℓ∈|SQ| on X is (pointwise) Q-compatible (resp. and pure of weight w ∈ Z) if x∗V is Q-compatible
(resp. and pure of weight w ∈ Z), x ∈ |X| and that it is almost (pointwise) Q-compatible (resp. and pure of
weight w ∈ Z) if there exists a connected étale cover f : X ′ → X such that f∗V is (pointwise) Q-compatible
(resp. and pure of weight w ∈ Z).

The fundamental example of Q-compatible families of Qℓ-local systems on X are those of the form Vℓ =
Rif∗Qℓ(j) for a smooth projective morphism f : Y → X and integers i ≥ 0, j (these are pure of weight
w = i− 2j) [D74], [F89], [KM74]. More generally, if f : Y → X is of relative dimension d every codimension
d algebraic cycle ϵ on the generic fiber of f (2) : Y ×X Y → X inducing an idempotent correspondence gives
rise to a Q-compatible subfamily ϵV := (ϵVℓ)ℓ∈|SQ| ⊂ V (Lemma 10); we will say that such (families of)
Qℓ-local systems are motivic. Conversely, for a given prime ℓ, a central problem in arithmetic geometry is to
determine which Qℓ-local systems on X are motivic. A weaker but still almost completely open variant of
this problem is to determine which sub Qℓ-local systemsWℓ of T (Vℓ) := ⊕m,n≥0(V⊗m

ℓ )⊗(V∨ℓ )⊗m are motivic.
A necessary condition for a Qℓ-local system Wℓ to be motivic is that it lies in a Q-compatible family while
a conjectural sufficient condition is that it be motivated in the sense of André [An96]. As motivic cycles
are motivated, an intermediate problem is whether every motivated Qℓ-local system Wℓ lies in an almost
Q-compatible family. Actually, by definition / construction, a motivated Qℓ-local system Wℓ automatically
comes as part of a canonical family W = (Wℓ)ℓ∈|SQ| of motivated Qℓ-local systems on X which is expected
to be motivic, so the problem boils down to proving that W is almost Q-compatible. This is the question
we want to address, for a specific motivated family W, which we will define in Subsection 1.4 as a special
case of the more general construction explained in Subsection 1.2.

1.2. Constructing generic motivated cycles. Let f : Y → X be a smooth projective morphism of
relative dimension d. Fix an infinite place ∞ : k ↪→ C, let (−)∞ denote the base-change functor along
spec(C) ∞→ spec(k) and (−)an the analytification functor from varieties over C to complex analytic spaces.
Consider the pure polarizable Q-variation of Hodge structure (Q-VHS for short) V∞ := R2df

an(2)
∞∗ Q(d). For

x ∈ Xan
∞ , let G∞ ⊂ GLV∞ denote the Zariski-closure of the image Π∞ of the topological fundamental

group π1(X
an
∞ ) acting on V∞ := V∞,x; it is a semisimple subgroup of GLV∞ ; in particular, the normalizer

N∞ := NorGLV∞ (G
◦
∞) ⊂ GLV∞ of its neutral component G

◦
∞ in GLV∞ is reductive. As G

◦
∞ is a normal

subgroup of the generic Mumford-Tate group G∞ ⊂ GLV∞ of V∞ [An92, Thm. 1], one has G∞ ⊂ N∞ hence
the classes in V N∞

∞ are G∞-fixed viz generic Hodge classes.

Fix ℓ ∈ |SQ| and consider the Qℓ-local system Vℓ := R2df
(2)
∗ Qℓ(d). For x ∈ X, let Gℓ ⊂ GLVℓ

denote
the Zariski-closure of the image Πℓ of π1(Xk̄) acting on Vℓ := Vℓ,x̄. Modulo the singular-étale comparison
isomorphism V∞Qℓ

→̃Vℓ, the group Gℓ identifies with G∞Qℓ
so that Nℓ := NorGLVℓ

(G
◦
ℓ ) = N∞Qℓ

⊂ GLVℓ
. Let

Gℓ ⊂ GLVℓ
denote the Zariski-closure of the image Πℓ of π1(X) acting on Vℓ. As π1(Xk̄) is a closed normal

subgroup of π1(X), the group Gℓ is a normal subgroup of Gℓ ⊂ GLVℓ
hence Gℓ ⊂ Nℓ and the classes in

(V N∞
∞ )Qℓ

≃ V Nℓ
ℓ ⊂ Vℓ are G◦

ℓ -fixed viz generic Tate classes.

Eventually, let Gmot ⊂ GLV∞ denote André’s generic motivated motivic Galois group [An96, §5.2]; this is a
reductive group such that G◦

∞ ⊂ G∞ ⊂ G◦
mot with G

◦
∞ normal in Gmot [An96, §5.3] and, modulo the singular-

étale comparison isomorphism V∞Qℓ
→̃Vℓ, G

◦
ℓ ⊂ G◦

ℓ ⊂ G◦
motQℓ

. To sum it up, one has G∞ ⊂ Gmot ⊂ N∞
hence, for a class in V∞,

N∞-fixed ⇒ generic motivated ⇒ generic Hodge;

and, modulo the singular-étale comparison isomorphism V∞Qℓ
→̃Vℓ, one has G◦

ℓ ⊂ GmotQℓ
⊂ N∞Qℓ

hence, for
a class in Vℓ,

N∞Qℓ
-fixed ⇒ Qℓ-linear combination of generic motivated ⇒ generic Tate.
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1.3. The main conjecture. Returning to the case where V∞ := Rifan
∞∗Q(j), Vℓ := Rif∗Qℓ(j), ℓ ∈ |SQ|

for some smooth projective morphism f : Y → X and integers i ≥ 0, j, every finite-dimensional N∞-
subrepresentation W∞ ⊂ T (V∞) is generically motivated (as Gmot ⊂ N∞), and gives rise to a polarizable Q-
VHSW∞ on Xan

∞ (as G∞ ⊂ N∞) and to a family of Qℓ-local systemsW := (Wℓ)ℓ∈|SQ| on X (as Gℓ ⊂ N∞Qℓ
).

The following is implicitly formulated in [An96, §0.7] in the more general setting of motivated local systems
(not only those arising from N∞-subrepresentations); it is a consequence of the Hodge conjecture (Corollary
12).

Conjecture 1. The family of Qℓ-local systems W is almost Q-compatible.

Example 2. The polarizable Q-VHS L∞ ⊂ E∞ := V∞ ⊗ V∨∞ corresponding to the N∞-subrepresentation
L∞ := Lie(G∞) ⊂ E∞ := E∞,x is motivated with Qℓ-incarnation the Qℓ-local system Lℓ ⊂ Eℓ := Vℓ ⊗ V∨ℓ
corresponding to the Nℓ-subrepresentation Lℓ := Lie(Gℓ) ⊂ Eℓ := Eℓ,x. This is true, more generally, replacing
L∞ by any of its isotypical Lie ideal.

1.4. A specific generic motivated cycle. We retain the notations of Subsection 1.2.

1.4.1. Construction. Define H∞ := ∩U◁f.i.Π∞
Q[U ] ⊂ E∞, where the intersection is over all normal finite

index subgroups U of Π∞ and Hℓ := ∩U◁opΠℓ
Qℓ[U ] ⊂ Eℓ, where the intersection is over all normal open

subgroups U of Πℓ respectively. By construction

ZH∞(E∞) = EG
◦
∞

∞ , ZHℓ
(Eℓ) = E

G
◦
ℓ

ℓ .

Lemma 3. The canonical map H∞ ↪→ Eℓ induced by Π∞ → Πℓ ↪→ Eℓ yields an isomorphism of Qℓ-algebras

H∞ ⊗Q Qℓ→̃Hℓ.

Proof. By left exactness of −⊗QQℓ, the morphism of Qℓ-algebras H∞⊗QQℓ → Eℓ is injective; we are to prove
that its image is Hℓ. For a finite index subgroup U ⊂ Π∞, let Uℓ ⊂ Πℓ denote the closure of its image in Πℓ.
As Q is dense in Qℓ and Eℓ is finite-dimensional, the isomorphism E∞⊗QQℓ→̃Eℓ restricts to an isomorphism
of Qℓ-algebras Q[U ]⊗QQℓ→̃Qℓ[Uℓ]. On the other hand, for every normal, open subgroup U ⊂ Πℓ, the inverse
image U∞ ⊂ Π∞ of U via Π∞ → Πℓ is a normal, finite index subgroup and, as Π∞ is dense in Πℓ, one gets
U∞,ℓ = U . Thus, using that the (filtered) intersections of subspaces of a finite-dimensional vector space
commute with base change2, one eventually gets:

H∞ ⊗Q Qℓ = (∩U◁f.i.Π∞
Q[U ])⊗Q Qℓ = ∩U◁f.i.Π∞

(Q[U ]⊗Q Qℓ) = ∩U◁f.i.Π∞
Qℓ[Uℓ] = ∩U◁opΠℓ

Qℓ[U ] = Hℓ

as desired. □

Let H∞ ⊂ E∞ denote the Q-local subsystem corresponding to the π1(X
an
∞ )-representation H∞ ⊂ E∞.

Lemma 4. Then H∞ ⊂ E∞ is motivated.

Proof. It is enough to show that H∞ is N∞-stable. As already observed in the proof of Lemma 3, H∞ = Q[U ]
for U ⊂ Π∞ a sufficiently small normal subgroup of finite index, which we may assume to be contained in
G

◦
∞(Q). Let n := dimQ(V∞), N := dimQ(H∞). Let AN

Q ≃ H∞ ⊂ E∞ ≃ An2

Q denote the varieties over Q
underlying H∞ ⊂ E∞ and let GLV∞ acts by conjugacy on E∞. It is enough to show that the subgroup
N∞ ⊂ GLV∞ stabilizes H∞ ⊂ E∞. Letting GLV∞ acts trivially on AN

Q and diagonally on (E∞)N , the
morphism of Q-varieties

p : AN
Q ×Q (E∞)N → E∞

(a, f) 7→
∑

1≤i≤N aifi.

is GLV∞-equivariant. As, by definition, N∞ ⊂ GLV∞ stabilizes the subvariety AN
Q×Q(G

◦
∞)N ⊂ AN

Q×Q(E∞)N ,
it is enough to show that p : AN

Q ×Q (E∞)N → E∞ has image contained in H∞ and that the resulting
morphism p : AN

Q ×Q (G
◦
∞)N → H∞ is dominant. That p : AN

Q ×Q (E∞)N → E∞ has image contained in
H∞ follows from the facts that QN × UN ⊂ p−1(H∞) and QN × UN ⊂ AN

Q ×Q (G
◦
∞)N is Zariski-dense.

That the resulting morphism p : AN
Q ×Q (G

◦
∞)N → H∞ is dominant follows from the fact its image contains

H∞(Q) = H∞ = p(QN × UN ) (as the N -dimensional Q-vector space H∞ = Q[U ] admits a basis contained
in U). □

2Indeed, by duality of finite-dimensional vector spaces, this is reduced to the commutativity of (filtered) unions (or, more
generally, colimits) and base change, which is well known.
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Lemma 5. One has Z(H∞) ⊗Q Qℓ ≃ Z(Hℓ); in particular d(V) := dimQℓ
(Z(Hℓ)) = dimQ(Z(H∞)) is

independent of ℓ, ∞ : k ↪→ C.

Proof. This follows from Z(H∞) = H∞∩ZH∞(E∞) = H∞∩(E∞)G
◦
∞ , Z(Hℓ) = Hℓ∩ZHℓ

(Eℓ) = Hℓ∩(Eℓ)
G

◦
ℓ ,

Lemma 3, ((E∞)G
◦
∞)Qℓ

= (E∞Qℓ
)G

◦
∞Qℓ = (Eℓ)

G
◦
ℓ and the exactness of −⊗Q Qℓ. □

1.4.2. Main result. For every ℓ ∈ |SQ|, let Hℓ ⊂ Eℓ := Vℓ ⊗ V∨ℓ denote the Qℓ-local system corresponding to
the π1(X)-representation Hℓ ⊂ Eℓ. From Lemma 4 and Conjecture 1, the family H := (Hℓ)ℓ∈|SQ| should be
almost Q-compatible. The main result of this paper is the proof of this fact modulo a mild condition on the
center of Hℓ.

Theorem 6. Assume d(V) = 1. Then Conjecture 1 holds for H namely, H is almost Q-compatible.

Remark 7. We are not able to prove that L = (Lℓ)ℓ∈|SQ| (Example 2) is almost Q-compatible though L
and H are related. More precisely, using the ℓ-adic exponential / logarithm, it is easy to prove that Hℓ is
the largest subalgebra of Eℓ containing Lℓ.

Our initial motivation for Theorem 6 arises from the following consequence of the unramified Fontaine-
Mazur conjecture and which, in the case of motivic Qℓ-local systems, is also predicted by the Mumford-Tate
conjecture (see [CT25] for details). It roughly predicts that, for a Qℓ-local system Vℓ on X, the arithmetic
and geometric parts of the corresponding representation of π1(X) are far from commuting, unless Vℓ is
geometrically isotrivial. More precisely, for a Qℓ-local system Vℓ on X and for every x ∈ |X|, let Πℓ,x ⊂ Πℓ

denote the image of π1(x) acting on Vℓ := Vℓ,x̄ through π1(x)→ π1(X) and Gℓ,x ⊂ Gℓ its Zariski closure.

Conjecture 8. Let Vℓ be a Qℓ-local system on X. Assume there exists x ∈ |X| such that G◦
ℓ,x ⊂ ZGℓ

(G
◦
ℓ ).

Then G
◦
ℓ = 1.

By considering the Qℓ-local system Hℓ attached to Vℓ, Conjecture 8 for Vℓ is reduced to Conjecture 9 below
for Hℓ.

Conjecture 9. Let Vℓ be a Qℓ-local system on X. Assume there exists x ∈ |X| such that G◦
ℓ,x = 1. Then

G◦
ℓ = 1.

In [CT25], we prove Conjecture 9 when Vℓ is part of a Q-compatible family V of Qℓ-local systems on X. In
particular, Theorem 6 implies Conjecture 8 for motivic Qℓ-local system of the form Vℓ = Rif∗Qℓ(j) under
the assumption d(V) = 1.

The paper is organized as follows. In Section 2, we review some basic facts from the specialization theory
of étale and crystalline cohomologies in the good reduction setting. In particular we give there the detailed
argument showing that Conjecture 1 follows from the Hodge conjecture - Corollary 12 (which is certainly
well-known to experts but for which we could not find a suitable reference) and prove that global sections
are compatible with specialization (Lemma 14 and Lemma 15). In Section 3, we gather the ingredients from
linear algebra - in particular the key lemma 17 - involved in the proof of Theorem 6. The proof of Theorem
6 is carried out in Section 4.

2. Review of specialization in the good reduction setting

Let v ∈ |Sk| with residue characteristic p. For a morphism X → S := spec(Okv), we use the notation in the
following Cartesian diagram for the generic and special fibers respectively.

X //

□
��

X

��

Xv

��
□

oo

spec(kv) // S spec(κv)oo

2.1. Specialization and cycle class map.
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2.1.1. Let Y → S be a smooth, proper, geometrically connected morphism of relative dimension d. Fix an
integer r ≥ 0 and Let spv : CHr(Y )→ CHr(Yv) denote the specialization map for codimension r Q-algebraic
cycles modulo rational equivalence ([Fu75, 4.4], [Fu84, 20.3]). For every prime ℓ and integer r ≥ 0, let also cℓ :
CHr(Y )→ H2r(Yk̄v ,Qℓ)(r) and cv,ℓ : CHr(Yv)→ H2r(Yv̄,Qℓ)(r), ℓ ̸= p, cv,cris : CHr(Yv)→ H2r

cris(Yv/kv,0)(r)
denote the cycle class maps in étale Qℓ-cohomology and crystalline cohomology respectively. One can compare
the Qℓ-cohomology groups of Y with:

(2.1.1) if ℓ ̸= p: the Qℓ-cohomology groups of Yv. More precisely, for every integers i ≥ 0, j, smooth proper
base-change yields a functorial3 equivariant specialization diagram

π1(kv)

))

// // π1(S)
≃ //

��

π1(κv)

��
Hi(Yk,Qℓ)(j)

≃ // Hi(Yv,Qℓ)(j),

In particular, for i = 2r, j = r, the following diagram commutes

H2r(Yk,Qℓ)(r)
≃ // H2r(Yv,Qℓ)(r)

CHr(Y )

cℓ

OO

spv // CHr(Yv)

cv,ℓ

OO

and is compatible with the intersection product on Chow groups and the cup-product on cohomology
groups.

(2.1.2) if ℓ = p, the rational crystalline cohomology group of Yv. More precisely, for every integers i ≥ 0,
j the p-adic étale - crystalline comparison theorem yields a functorial isomorphism of filtered ϕ-
module Dcris(Hi(Yk̄,Qp(j)))→̃Hi

cris(Yv/kv,0)(j). In particular, for i = 2r, j = r, the following diagram
commutes

Dcris(H2r(Yx,Qp)(r))
≃ // H2r

cris(Yv/kv,0)(r)

CHr(Y )

cp

OO

spv // CHr(Yv),

cv,cris

OO

and is compatible with the intersection product on Chow groups and the cup-product on cohomology
groups.

Write pi : Y
2 → Y for the ith projection, i = 1, 2. Fix an algebraic cycle ϵ ∈ CHd(Y 2) such that the induced

morphism
eℓ : H(Yk̄v ,Qℓ)→ H(Yk̄v ,Qℓ) α 7→ p2∗(p

∗
1α ∪ cℓ(ϵ)),

is idempotent (note that this property is independent of ℓ ∈ |SQ|).
Lemma 10. The family of π1(kv)-representations W = (Wℓ := im(eℓ))ℓ∈|SQ| is Q-compatible.

Proof. To simplify notation, set Vℓ := H(Yk̄v ,Qℓ). If ℓ ̸= p, the specialization properties recalled in (2.1.1)
show that eℓ : Vℓ → Vℓ identifies with the idempotent

(2.1.1’) ev,ℓ : H(Yv̄,Qℓ)→ H(Yv̄,Qℓ), α 7→ p2∗(p
∗
1α ∪ cv,ℓ(spv(ϵ))).

If ℓ = p, note that im(ep) is crystalline (as a subrepresentation of the crystalline representation Vp) hence,
by exactness of Dcris : Repcris

Qp
(π1(kv)) → FMkv(ϕ), the image of Dcris(ep) : Dcris(Vp) → Dcris(Vp) coincides

with Dcris(im(ep)) in FMkv(ϕ) while, on the other hand, the specialization properties recalled in (2.1.2) show
that Dcris(ep) : Dcris(Vp)→ Dcris(Vp) identifies with the idempotent

(2.1.2’) ev,p : Hcris(Yv/kv,0)→ Hcris(Yv/kv,0), α 7→ p2∗(p
∗
1α ∪ cv,cris(ϵv)).

Let Φn
xv
∈ CHd(Y2

v ) denote the graph of the nth power of the geometric Frobenius Frnv : Yv → Yv. Using
(2.1.1’), (2.1.2’), one can compute the traces of the powers φn

Wℓ
, n ≥ 1 of the geometric Frobenius φWℓ

acting on im(eℓ) using the Lefschetz trace formula for Qℓ-cohomology (if ℓ ̸= p) and crystalline cohomology
(if ℓ = p) to get,∑

0≤i≤2d

(−1)itr(φn
Wℓ
◦ ev,ℓ|Hi(Yv,Qℓ)) = Φn

xv
∪ tϵv =

∑
0≤i≤2d

(−1)itr(φn
Wp
◦ ev,p|Hi

cris(Yv/kv,0), ℓ ̸= p

3viz compatible with pullbacks, pushforwards, Poincaré duality, Künneth decomposition, cup products and cycle class maps.
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whence∏
0≤i≤2d

det(1− φWℓ
◦ ev,ℓT |Hi(Yv,Qℓ))

(−1)i+1
=

∏
0≤i≤2d

det(1− φWp ◦ ev,pT |Hi(Yv/kv,0))(−1)i+1
, ℓ ̸= p

and, by purity, [D74], [KM74]

det(1− φWℓ
◦ ev,ℓT |Hi(Yv,Qℓ) = det(1− φWp ◦ ev,pT |Hi

cris(Yv/kv,0)), i ≥ 0, ℓ ̸= p.

□

2.1.2. Recall the statement of the Hodge conjecture.

Conjecture 11. (Hodge [Ho52]) Let Y be a smooth, projective variety over C. For every integer i ≥ 0,
the image of the cycle class map c∞ : CHi(Y ) → H2i(Y an,Q(i)) coincides with the sub Q-vector space
Hodgei(Y ) ⊂ H2i(Y an,Q(i)) of Hodge classes.

Corollary 12. Conjecture 11 implies Conjecture 1.

Remark 13. Actually, one only needs Conjecture 11 in middle degree for a smooth compactification of a
sufficiently large fibered power of f : Y → X.

Proof. We retain the notation of Subsection 1.2. By Künneth formula and Poincaré duality, and up to
replacing f : Y → X by a suitable fibered power and increasing i, one may assume W∞ ⊂ V∞ := Rifan

∞Q(j)
for some smooth projective morphism f : Y → X and, as Q-compatibility is invariant under Tate twist,
that j = 0. As almost Q-compatibility is also insensitive under base change by finite covers, one may
assume G∞ is connected; this ensures G∞ ⊂ G∞. As G∞ ⊂ N∞, W∞ := W∞,x is a G∞-subrepresentation
of V∞ := V∞,x or, equivalently, W∞ is a sub Q-VHS of the polarizable Q-VHS V∞. Hence, one has a
(canonical if one chooses a polarization) decomposition V∞ =W∞⊕(W∞)⊥ of Q-VHS whence an idempotent
morphism e∞ : V∞ ↠ W∞ ↪→ V∞ of Q-VHS such that W∞ = im(e∞). For every x∞ ∈ Xan

∞ above
x ∈ |X|, let Gx,∞ ⊂ G∞ denote the Mumford-Tate group of the polarizable Q-Hodge structure x∗V∞. The
idempotent e∞ : V∞ → V∞ corresponds to a G∞-equivariant idempotent e∞ : V∞ → V∞ hence to a Hodge
class ex,∞ ∈ H2d((Y an

x,∞)2,Q(d)) (as e∞ : V∞ → V∞ is Gx,∞-equivariant) lying in H0(Xan
∞ , R2dfan

∞∗Q(d)) (as
e∞ : V∞ → V∞ is G∞-equivariant). Fix a smooth compactification Y ↪→ Y cpt of Y and consider the canonical
commutative diagram

H2d((Y cpt,an
∞ )2,Q)(d)

|(Y an∞ )2 // H2d((Y an
∞ )2,Q)(d)

ϵ // H0(Xan
∞ , R2dfan

∞∗Q(d)) �
�(−)x // H2d((Y an

x,∞)2,Q)(d)

CHd((Y cpt
∞ )2)

c

OO

|(Yx,∞)2

// CHd((Yx,∞)2)

cx∞ ,

OO

where ϵ : H2d(Y an
∞ ,Q(d))→ H0(Xan

∞ , R2dfan
∞∗Q(d)) is the edge morphism

H2d(Y an
∞ ,Q(d)) ↠ E0,2d

∞ ↪→ E0,2d
2 = H0(Xan

∞ , R2dfan
∞∗Q(d))

from the Leray spectral sequence for fan
∞ : Y an

∞ → Xan
∞ . From the theorem of the fixed part [D71, Thm.

(4.1.1)], the morphism ϵ ◦ −|(Y an∞ )2 : H2d((Y cpt,an
∞ )2,Q)(d) → H0(Xan

∞ , R2dfan
∞∗Q(d)) is surjective so that

e∞ ∈ H0(Xan
∞ , R2dfan

∞∗Q(d)) lifts to a Hodge class ecpt
∞ ∈ H2d((Y cpt,an

∞ )2,Q)(d) hence, by Conjecture 11 to an
algebraic class ẽcpt

∞ ∈ CHd((Y cpt
∞ )2). As every algebraic cycle on (Y cpt

∞ )2 is actually defined over a finitely
generated extension K of k and as cycle class maps are compatible with specialization ([Fu75, 4.4], [Fu84,
20.3]), the images of c∞ : CHd((Y cpt

∞ )2) → H2d((Y cpt,an
∞ )2,Q)(d) and of CHd((Y cpt

k̄
)2) → CHd((Y cpt

∞ )2) →
H2d((Y cpt,an

∞ )2,Q)(d) coincide so that one may assume ẽcpt
∞ = ẽcpt ∈ CHd((Y cpt

k̄
)2). Up to replacing k by a

finite field extension, one may even assume ẽcpt ∈ CHd((Y cpt)2). On the other hand, writing ẽx := ẽcpt|(Yx)2 ,
it follows from the definition of Wℓ that Wℓ identifies with the image of the idempotent morphism

ex,ℓ : Hi(Yx,Qℓ)→ Hi(Yx,Qℓ), α 7→ p2∗(p
∗
1(α) ∪ cx,ℓ(ẽx)).

The assertion thus follows from Lemma 10. □

2.2. Specialization and global sections.

2.2.1. Let X → S be a smooth, geometrically connected morphism. Fix ℓ ∈ |SQ| and a Qℓ-local system Vℓ
on X.
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2.2.1.1. Assume p ̸= ℓ and Vℓ extends to a Qℓ-local system on X ; set Vℓ,v := Vℓ|Xv . Assume also that there
exists a smooth, proper geometrically connected morphism X cpt → S and an open S-immersion X ↪→ X cpt

such that D := X cpt \ X → S is a relative normal crossing divisor.

Lemma 14. One has a canonical π1(S)-equivariant isomorphism H0(Xk̄v ,Vℓ)→̃H0(Xv̄,Vℓ,v).

Proof. As X is regular and the generic points of D have characteristic 0, the action of π1(Xv) on Vℓ factors
through the tame fundamental group π1(X )→̃πt

1(X cpt;D)←̃πt
1(X cpt

v ;Dv). The assertion then follows from the
surjectivity of the tame specialization morphism sp : πt

1(X
cpt
k̄v

, Dk̄v) ↠ πt
1(X

cpt
v̄ ,Dv̄) in the tame specialization

diagram [G71, XIII]

1 // πt
1(X

cpt
k̄v

, Dk̄v)
//

sp
����

πt
1(X

cpt, D) //

����

π1(kv) //

����

1

1 // πt
1(X

cpt
v̄ ,Dv̄) // πt

1(X cpt,D) // π1(S) // 1

1 // πt
1(X

cpt
v̄ ,Dv̄) // πt

1(X cpt
v ,Dv) //

≃

OO

π1(v) //

≃

OO

1

□

2.2.1.2. Assume p = ℓ and Vp = ⊗1≤a≤rR
iafa∗Qp, where fa : Ya → X is the generic fiber of some smooth

projective morphism fa : Ya → X , a = 1, . . . , r and integers i1, . . . , ir ≥ 0. Assume furthermore that X → S
admits a section x : S → X and that for every a = 1, . . . , r there exist a smooth, projective geometrically
connected morphism Ycpt

a → S and an open S-immersion Ya ↪→ Ycpt
a . Set Vp,v := ⊗1≤a≤rR

iafa,v,cris∗OYv/kv,0 .

Lemma 15. One has a canonical isomorphism Dcris(H0(Xk̄v ,Vp))→̃H0
cris(Xv,Vp,v) of filtered ϕ-modules over

kv.

Proof. Assume first r = 1, i1 =: i and f1 =: f . The restriction morphism Hi(Y cpt
k̄

,Qp)
(0)→ Hi(Yx̄,Qp) factors

as

(*) Hi(Y cpt
k̄v

,Qp)
(0)//

(1)

��

Hi(Yx̄,Qp) = Vp,x̄,

Hi(Yk̄v ,Qp)
(2) // H0(Xk̄v ,Vp)

� ?

(3)

OO

where (2) is the edge morphism Hi(Yk̄v ,Qp) ↠ E0,i
∞ ↪→ E0,i

2 = H0(Xk̄v ,Vp) from the Leray spectral se-
quence for f : Y → X, (1) is the restriction morphism and (3) is taking the stalk at x, which is in-
jective since the functor "stalk at x" is faithful (as Xkv

is connected). Furthermore, (3) induces an

isomorphism H0(Xk̄v ,Vp)→̃V
π1(Xk̄v

)
p,x̄ ↪→ Vp,x̄. From the theorem of the fixed part [D71, Thm. (4.1.1)]

and singular-étale comparison, (2) ◦ (1) is surjective hence, in particular, E0,i
∞ = E0,i

2 and the image of

Hi(Y cpt
k̄v

,Qp)
(0)→ Vp,x̄ identifies π1(kv)-equivariantly with H0(Xk̄v ,Vp). As Ycpt → S, Yx → S are both

smooth projective morphisms, the π1(kv)-representations Hi(Y cpt
k̄v

,Qp), Vp,x̄ are crystalline hence, by exact-

ness of Dcris : Repcris
Qp

(π1(kv))→ FMkv(ϕ), the image of the morphism Dcris(Hi(Y cpt
k̄v

,Qp))
Dcris((0))→ Dcris(Vp,x̄)

identifies with Dcris(H0(Xk̄v ,Vp)) as filtered ϕ-modules over kv. On the other hand, by compatibility of Dcris

with pullbacks, the morphism Dcris(Hi(Y cpt
k̄v

,Qp))
Dcris((0))→ Dcris(Vp,x̄) identifies with the restriction morphism

Hi
cris(Ycpt

v /kv,0)
(0)→ Hi

cris(Yv,xv/kv,0) in crystalline cohomology, which factors again as

(**) Hi
cris(Ycpt

v /kv,0)
(0) //

(2)◦(1) (( ((QQ
QQQ

QQQ
QQQ

QQ
Hi

cris(Yv,xv/kv,0),

H0
cris(Xv,Vp,v)

) 	 (3)

66mmmmmmmmmmmmm

with (1), (2), (3) defined as in (∗). In particular (3) is injective (again because the functor "stalk at xv" is
faithful) and (2) ◦ (1) is surjective by the theorem of the fixed part in crystalline cohomology [M19, Sec. 2,



8 ANNA CADORET AND AKIO TAMAGAWA

esp. Thm. 2.5]. This proves Dcris(H0(Xk̄v ,Vp)) identifies with the image

im(Hi
cris(Ycpt

v /kv,0)
(0)→ Hi

cris(Yv,xv/kv,0)) ≃ H0
cris(Xv,Vp,v)

as filtered ϕ-modules over kv. For the general case, applying (**) to

Ycpt := Ycpt
1 × · · · × Ycpt

r ←↩ Y := Y1 ×X · · · ×X Yr
f→ X

with i = i1 + · · ·+ ir, and using Künneth decomposition, one gets a commutative diagram:

⊕
j1+···+jr=i

r⊗
a=1

Hja
cris(Ycpt

a,v/kv,0)
(0) //

(2)◦(1)
)) ))SSS

SSSS
SSSS

SSSS

⊕
j1+···+jr=i

r⊗
a=1

Hja
cris(Ya,v,xv/kv,0).

⊕
j1+···+jr=i

H0
cris(Xv,Vp,v)

' �
(3)

55jjjjjjjjjjjjjjjj

As (0) is the restriction and (3) is taking the stalk at xv, both (0) and (3) are compatible with the Künneth
direct sum decompositions. As (2) is the edge morphism arising from the Leray spectral sequence for
fv : Yv → Xv in crystalline cohomology, it is a priori unclear that (2) ◦ (1) is compatible with the Künneth
direct sum decompositions but as (3) is injective, this formally follows from the compatibility of (0) and
(3). The claim follows from the surjectivity of (2) ◦ (1) and the injectivity of (3) by taking the component
(j1, . . . , jr) = (i1, . . . , ir) of the above diagram. □

Remark 16. The proof of Lemma 15 uses the existence of a section of X → S but the statement of Lemma
15 remains valid without this assumption (using that, by formal smoothness, X → S always admits a section
after replacing S by a finite étale cover S′ → S and that the morphisms (2) ◦ (1) in diagrams (*), (**) as
well as the isomorphism Dcris(Hi(Y cpt

k̄v
,Qp))→̃Hi

cris(Ycpt
v /kv,0), are canonical - i.e. independent of the choice

of a section - and defined over the base field kv). As for our purpose we can reduce to the case where X → S
has a section, we do not elaborate.

3. Linear algebra

Let Q be a field of characteristic 0.

3.1. Extracting eigenvalues. For a finite-dimensional Q-representation V of Z, let χV ∈ Q[T ] denote the
characteristic polynomial of 1 acting on V ; let EV denote the multiset of the roots of χV and Ered

V ⊂ Q
×

the underlying set. For i = 1, 2, let Q ↪→ Qi be a field extension and Ai, Bi, Ci three finite-dimensional
Qi-representations of Z. Assume the following:

(1) One has Ai ⊗Qi Bi ≃ Ci Z-equivariantly, i = 1, 2;

(2) χAi , χCi lie in Q[T ], i = 1, 2 and χA1 = χA2 , χC1 = χC2 ;

(3) By (2) one has Γ := ⟨Ered
A1

, Ered
C1
⟩ = ⟨Ered

A2
, Ered

C2
⟩ ⊂ Q

× as subgroups of Q×. Assume Γ is torsion-free.

Lemma 17. Then χBi also lies in Q[T ], i = 1, 2 and χB1 = χB2.

Proof. By assumption (2) EA := EA1 = EA2 and EC := EC1 = EC2 while, by assumption (1), one has
Γ = ⟨Ered

A , Ered
Bi
⟩ ⊂ Q

×, i = 1, 2. By definition Γ is a finitely generated abelian group hence, by assumption
(3), one also has Γ ≃ Zr for some integer r ≥ 1 so that the group algebra Z[Γ] ≃ Z[T1, T

−1
1 , . . . , Tr, T

−1
r ] is an

integral domain. Let [EA], [EC ], [EB1 ], [EB2 ] ∈ Z[Γ] denote the element representing the multisets EA, EC ,
EB1 , EB2 respectively. Then by assumption (1), [EA][EB1 ] = [EC ] = [EA][EB2 ] in Z[Γ]. As Z[Γ] is integral,
this implies [EB1 ] = [EB2 ] hence χB1 = χB2 as polynomials in Q[T ]. It remains to prove that χB1 = χB2 lies
in Q[T ]. But, for i = 1, 2, by assumption (2), EA, EC (or, equivalently, [EA], [EC ]) are fixed by the action
of π1(Q) while by assumption (1) and the integrality of Z[Γ], [EBi ] (or, equivalently, EBi) is fixed by the
action of π1(Q), which means χBi lies in Q[T ], as Q is perfect. □

Remark.

(1) The proof only exploits the integrality of Z[Γ] ≃ Z[T1, T
−1
1 , . . . , Tr, T

−1
r ]. It would be interesting to try

and exploit the fact that Z[Γ] is the localization of Z[T1, . . . , Tr] at the multiplicative monoid generated
by T1, . . . , Tr hence, in particular, is a unique factorization domain.
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(2) Set ΓA := ⟨Ered
A1
⟩ = ⟨Ered

A2
⟩ ⊂ Γ. Then assumption (3) can be replaced by the following weaker assumption

(3’) ΓA is torsion-free. Indeed, Lemma 17 amounts to proving that [EA] is a non-zero divisor in Z[Γ].
Assumption (3’) ensures Z[ΓA] is integral. As Z[ΓA] → Z[Γ] endows Z[Γ] with the structure of a free
Z[ΓA]-module (with Z[ΓA]-basis any system of representatives of Γ/ΓA), Z[Γ] is a flat Z[ΓA]-algebra; in
particular, every non-zero element in Z[ΓA] is a non-zero divisor in Z[Γ]. This is in particular the case
for [EA] ∈ Z[ΓA].

3.2. Semisimple algebras. Let V be a finite-dimensional Q-vector space and set E := EndQ(V ). Let
H ⊂ E be a semisimple Q-subalgebra. Set

ZE(H) := {f ∈ E | fh = hf, h ∈ H}, Z(H) := ZE(H) ∩H.

Lemma 18. The canonical morphism of Z(H)-modules

H ⊗Z(H) ZE(H)→ ZE(Z(H))

is an isomorphism.

Proof. Let Ĥ denote a system of representatives of the isomorphism classes (as left H-modules) of simple left
ideals in H. For I ∈ Ĥ, set DI := EndH(I), ZI := Z(DI) and let HI ≃ I⊕nI ⊂ H denote the I-isotypical
component of H viewed as a left H-module. Then H = ⊕

I∈ĤHI and write 1 =
∑

I∈Ĥ eI with eI ∈ HI , I ∈ Ĥ.
With this notation, HI ⊂ H, endowed with the product of H, carries a natural structure of central simple
algebra over ZI = Z(HI) with unit eI , and the isotypical decomposition of H = ⊕

I∈ĤHI = ⊕
I∈ĤeIH as

left H-modules gives an isomorphism H ≃
∏

I∈Ĥ HI of rings. Write EI := eIEeI , I ∈ Ĥ. One immediately
checks that the natural morphisms

ZE(H)→
∏
I∈Ĥ

ZEI
(HI), f 7→ (eIf)I∈Ĥ

and
ZE(Z(H))→

∏
I∈Ĥ

ZEI
(Z(HI)), f 7→ (eIf)I∈Ĥ

are isomorphisms of rings so that one gets a canonical commutative diagram of Z(H)-modules

H ⊗Z(H) ZE(H) //

≃
��

ZE(Z(H))

≃
��∏

I∈Ĥ HI ⊗Z(HI) ZEI
(HI) //

∏
I∈Ĥ ZEI

(Z(HI)).

This reduces the proof of Lemma 18 to the case where H is a simple ring, which follows from [B58, §10, 2.,
Cor. of Thm. 2].

□

In particular, if Z(H) = QId then one has a canonical isomorphism of Q-modules H ⊗Q ZE(H)→̃E.

4. Proof of Theorem 6

4.1. Adding level. Let Vℓ be a Qℓ-local system on X and Πℓ ⊂ GL(Vℓ) the image of π1(X) acting on
Vℓ := Vℓ,x̄. Consider the following level condition

Lev(Vℓ) There exists a Πℓ-stable Zℓ-lattice V ◦
ℓ ⊂ Vℓ such that Πℓ ⊂ Id + ℓ̃EndZℓ

(V ◦
ℓ ), where ℓ̃ = 4 if ℓ = 2

and ℓ̃ = ℓ otherwise.

Note that Condition Lev(Vℓ) can always be achieved after replacing Vℓ on X with α∗Vℓ on X ′ for the con-
nected étale cover α : X ′ → X trivializing the local system V◦ℓ /ℓ̃, where V◦ℓ denotes the Zℓ-local system
corresponding to the π1(X)-stable Zℓ-lattice V ◦

ℓ ⊂ Vℓ .

Condition Lev(Vl) for a single l ∈ |SQ| implies the following. Recall that Gℓ ⊂ GLVℓ
denotes the Zariski-

clsoure of Πℓ and, for every x ∈ |X|, Gℓ,x ⊂ Gℓ denotes the Zariski closure of the image Πℓ,x ⊂ Πℓ of
π1(x) acting on Vℓ through π1(x)→ π1(X). For every x ∈ |X| and v ∈ Uk(x),x∗V with residue characteristic
p ̸= l, the subgroup Ξxv ⊂ Q× generated by the roots of χxv := χVl,xv is contained in 1+ l̃Zl hence torsion-free.
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4.2. Q-compatibility of isotrivial tensors. Let fa : Ya → X be a smooth projective morphism, a =
1, . . . , r. For every ℓ ∈ |SQ|, integer j and r-tuples i = (i1, . . . , ir), n = (n1, . . . , nr) of integers with
i1, . . . , ir ≥ 0, let I := {1 ≤ a ≤ r | na ≥ 0} and set

Vℓ := ⊗a∈I(R
iafa∗Qℓ)

⊗na ⊗a̸∈I (R
iafa∗Qℓ)

∨ ⊗−na(j)

and let Cℓ ⊂ Vℓ denote the (geometrically constant) sub-Qℓ-local system corresponding to the π1(X)-
submodule H0(Xk̄,Vℓ) = V

π1(Xk̄)
ℓ ⊂ Vℓ := Vℓ,x. By construction, Cℓ is the pullback along the structural

morphism X → spec(k) of a Qℓ-local system on spec(k), which we again denote by Cℓ.

Proposition 19. The family C := (Cℓ)ℓ∈|SQ| is a Q-compatible family of Qℓ-local systems on X.

Proof. By Poincaré duality, one may assume that I = {1, . . . , r}, up to increasing r, that n1 = · · · =
nr = 1 and, as Q-compatibility is invariant under Tate twist, that j = 0. Fix smooth, normal crossing
compactifications X ↪→ Xcpt, Ya ↪→ Y cpt

a , a = 1, . . . , r [N62], [N63], [H64] and a non-empty open subscheme
U ⊂ spec(Ok) such that for every a = 1, . . . , r one has Cartesian diagrams

Ya
fa //

��
□

X �
� //

��
□

Xcpt //

��
□

spec(k)

��
Ya

fa
// X �
� // X cpt // U

Ya
� � //

��
□

Y cpt
a

//

��
□

spec(k)

��
Ya �
� // Ycpt

a
// U

with X → U smooth, fa : Ya → X smooth projective, a = 1, . . . , r, and X → X cpt → U , Ya → Ycpt
a → U ,

a = 1, . . . , r relative smooth normal crossing compactifications; set D := X cpt \ X and D := Xcpt \X. By
smooth proper base change Vℓ = ⊗1≤a≤rR

iafa∗Qℓ extends to the Qℓ-local system ⊗1≤a≤rR
iafa∗Qℓ, which

we again denote Vℓ, on X [1ℓ ]. Fix x ∈ |X|; without loss of generality one may assume k(x) = k and, up to
shrinking U , that x : spec(k) → X extends to a U -point x : U → X . Let v ∈ Up and for every a = 1, . . . , r
consider the base-change diagram

Ya,v
fa,v //

_�

��
□

Xv
� � //
_�

��
□

X cpt
v

//
_�

��
□

spec(κv)
_�

��

xv

tt

Ya,Okv
//

��
□

XOkv

� � //

��
□

X cpt
Okv

//

��
□

spec(Okv)

��

xv

tt

Ya
fa

// X �
� // X cpt // U.

x

ii

Write Vℓ,v := Vℓ|Xv , ℓ ̸= p and Vp,v :=
⊗

1≤i≤r

Riafa,v,cris,∗OYv/kv,0 . From [A23, Thm. 2.1.1.2], Vp,v lifts to a

unique (up to isomorphism) overconvergent F-isocrystal V†p,v on Xv.

From Lemma 14 (resp. Lemma 15), the characteristic polynomial χCℓ,xv ∈ Qℓ[T ] of the geometric Frobenius
φCℓ,xv : Cℓ,x̄ → Cℓ,x̄ identifies with the one of the geometric Frobenius φxv : H0(Xv,Vℓ) → H0(Xv,Vℓ),
ℓ ̸= p (resp. the characteristic polynomial χCp,xv ,p ∈ kv,0[T ] of the mvth power of the crystalline Frobenius
φCp,xv := ϕmv

xv
: Dcris(x

∗
vCp) → Dcris(x

∗
vCp) identifies with the one of the mvth power of the crystalline

Frobenius φxv := ϕmv
xv

: H0
cris(Xv,Vp,v) → H0

cris(Xv,Vp,v)). Let d denote the dimension of X. The fact that
χCℓ,xv lies in Q[T ] and is independent of ℓ ∈ |SQ| now classically follows from

(i) Lefschetz trace formula for cohomology with compact support:

L(V∨ℓ,v, T ) =
∏

0≤w≤2d det(TId− φxv |Hw
c (Xv,V∨ℓ,v))(−1)w+1

, ℓ ̸= p

L(V†∨p,v, T ) =
∏

0≤w≤2d det(TId− φxv |Hw
rig,c(Xv/kv,0,V†∨p,v))(−1)w+1 [EL93, Thm. 6.3]

plus the fact that the L-functions L(V†∨p,v, T ) and L(V∨p,v, T ) coincide. (Note that H0
cris(Xv,Vp,v) ≃

H0
rig(Xv/kv,0,V†p,v)).
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(ii) The Q-compatibility of (Vℓ,v)ℓ∈|SQ| [D74], [KM74], which ensures that the left-hand sides of (i) is
independent of ℓ ∈ |SQ|;

(iii) The fact that Hw
c (Xv,V∨ℓ ) is mixed of weights ≤ w− i, for w < 2d while H2d

c (Xv,V∨ℓ ) is pure of weight
2d− i [D80, Thm. (3.3.1)] and the similar statement for rigid cohomology [Ke06b, Thm. 6.6.2]. Here
i = i1 + · · ·+ ir is the weight of Vℓ.

(iv) Poincaré duality: H2d
c (Xv,V∨ℓ,v)∨(−d)→̃H0(Xv,Vℓ,v), ℓ ̸= p

H2d
rig,c(Xv/kv,0,V†∨p,v)∨(−d)→̃H0

rig(Xv/kv,0,V†∨p,v) [Ke06a, Thm. 1.2.3]

□

Remark 20. Actually, the proof of Proposition 19 also shows the (a priori stronger) fact that C is Q-
compatible as a family of Qℓ-local systems over spec(k). If X has a k-rational point, this immediately
follows from Proposition 19. Otherwise, fix models Ya → X ↪→ X cpt → U over some non-empty open
subscheme U of spec(Ok) as in the proof of Proposition 19. By formal smoothness of X → U and the Weil
bounds, for p ≫ 0 and every v|p in U , X has an Okv -point. One can then conclude as in the proof of
Proposition 19.

4.3. Proof of Theorem 6. Recall that V = (Vℓ := Rif∗Qℓ(j))ℓ∈SQ for some smooth projective morphism
f : Y → X of relative dimension d and that E := (Eℓ := Vℓ ⊗ V∨ℓ )ℓ∈SQ . Both V and E are Q-compatible and
pure of weight i − 2j and 0, respectively. We are to prove that the corresponding family H ⊂ E is almost
Q-compatible.

As the assumptions and conclusions of Theorem 6 are invariant under base-change by a connected étale
cover, one may assume that

- G
◦
∞ = G∞ so that G

◦
ℓ = Gℓ, ℓ ∈ |SQ|.

- Condition Lev(Vℓ) holds for at least one ℓ ∈ |SQ|.
For every ℓ ∈ |SQ|, let Cℓ denote the isotrivial Qℓ-local system on X corresponding to the π1(X)-submodule

E
π1(Xk̄)
ℓ = EGℓ

ℓ = ZEℓ
(Hℓ) ⊂ Eℓ.

From Proposition 19, C = (Cℓ)ℓ∈|SQ| is Q-compatible. As π1(Xk̄) acts semisimply on Vℓ, Hℓ is a semisimple Qℓ-
algebra and, by assumption Z(Hℓ) = Qℓ so that by Lemma 18 one has a canonical isomorphism Hℓ⊗Cℓ→̃Eℓ
of Qℓ-local systems on X. As E and C are both Q-compatible, and as Lev(Vℓ) ensures the torsion-freeness
in Condition (3) of Subsection 3.1, the assertion follows from Lemma 17.
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