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ABSTRACT. Let k be a number field, X a smooth, separated, geometrically connected variety over k and
f:Y — X a smooth projective morphism. Fix an infinite place c : k < C and let f&': Y&' — X3 denote
the resulting morphism of complex analytic spaces. The Hodge conjecture predicts that, for every integers
i > 0, j, generic motivated Q-local subsystems (in the sense of André) in the Tannakian category generated
by the polarizable Q-VHS Voo := R f32,Q(j) should give rise to Q-compatible families of Q,-local systems
on X. We prove this conjecture under mild assumptions for a specific generic motivated Q-local subsystem
Hoo of Voo ® VY, closely related to the "tangent space" Loo of Voo.

Given a scheme S, we write |S| for the set of closed points and 71 (S) for its étale fundamental group’; when
S = spec(R) for a ring R, we sometimes write 71 (R) = 71(S5).

For a number field k, let O, C k denote the ring of integers. For a finite place v of k, let k, denote the
completion of k£ at v and set m, C Oy, — K, for the maximal ideal, ring of integers and residue field of &,
respectively.

Let k be a field and X a smooth and geometrically connected variety (throughout this paper, a variety
means a scheme separated, reduced and of finite type) over k. For a field extension k < K, we usually write
Xk = X xi K. If k is a number field, z € | X| with residue field k(x), and v is a finite place of k(x), let

z, @ spec(k(z),) — spec(k(x)) = X denote the resulting k(z),-point.

1. INTRODUCTION

1.1. Q-compatibility and motivic local systems. We first define the notion of Q-compatiblity used in
this paper. Let k be a number field; write Sy := spec(Oy) — Sg := spec(Z).

Let £ € |Sgl|, v € |Sk| with residue characteristic p, and Vy a Q-local system on spec(k,).

- If ¢ # p and Vy is unramified, let xy, € Q[T denote the characteristic polynomial of the geometric
Frobenius oy, : Viz — Vi z;

- If £ = p and V), is crystalline , let xy, € k,o[T] denote the characteristic polynomial of the m,th power
of the crystalline Frobenius ¢y, := qﬁ’;;“  Deris(Vp) = Deis(Vp), where my, := [kyo : Qp] is the degree
of the maximal unramified extension k, o of Q, contained in k, and D : Rep(‘éf;s(m(kv)) — FMy, (¢) is
Fontaine’s (fully faithful) period functor from the category of crystalline Q,-representations of (k) to
the category of filtered ¢-modules over k.

One says that a family of Qg-local systems V := (Vg)gasm on spec(ky) is Q-compatible (resp. and pure of
weight w € Z) if Vy is unramified for £ # p and crystalline for £ = p, and if the polynomial xy := xy, is in
Q|T] and independent of £ (resp. and for every root a of X, and infinite place co : Q(ar) < C, |at]os = || 2 ).

Let £ € |Sp| and V; a Q-local system on spec(k). Let Uy, C |Sk| denote the set of all v € |Si| such that,
2y Ve is unramified if ¢ # p and V), is crystalline, where p denotes the residue characteristic of v. One
says that a family of Q-local systems V := (V) g5, | on spec(k) is Q-compatible (resp. and pure of weight
w € Z) if there exists a non-empty open subset Uy C |Si| such that Uy C MUy, and for every v € Uy y

LAs fiber functors will play no part in the following, we will in general omit them from our notation.
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the resulting family z}V is Q-compatible (resp. and pure of weight w € Z).

Let X be a smooth and geometrically connected variety over k. One says that a family of Q-local systems
V= (Ve)ee|sy on X is (pointwise) Q-compatible (resp. and pure of weight w € Z) if 2V is Q-compatible
(resp. and pure of weight w € Z), x € | X| and that it is almost (pointwise) Q-compatible (resp. and pure of
weight w € Z) if there exists a connected étale cover f : X’ — X such that f*V is (pointwise) Q-compatible
(resp. and pure of weight w € Z).

The fundamental example of Q-compatible families of @Qg-local systems on X are those of the form V, =
R £,Qq(j) for a smooth projective morphism f : ¥ — X and integers i > 0, j (these are pure of weight
w =1—2j7) [D74], [F89], [KMT74]. More generally, if f : Y — X is of relative dimension d every codimension
d algebraic cycle € on the generic fiber of f2): Y xx Y — X inducing an idempotent correspondence gives
rise to a Q-compatible subfamily €V := (eVy)ec|s, C V (Lemma 10); we will say that such (families of)
Q¢-local systems are motivic. Conversely, for a given prime ¢, a central problem in arithmetic geometry is to
determine which Qg-local systems on X are motivic. A weaker but still almost completely open variant of
this problem is to determine which sub Q-local systems Wy of T(V,) := @mn>0(VZ™) @ (V) )®™ are motivic.
A necessary condition for a Qg-local system W, to be motivic is that it lies in a Q-compatible family while
a conjectural sufficient condition is that it be motivated in the sense of André [An96|. As motivic cycles
are motivated, an intermediate problem is whether every motivated Qs-local system W, lies in an almost
Q-compatible family. Actually, by definition / construction, a motivated Qg-local system W, automatically
comes as part of a canonical family W = (W) es,| of motivated Qg-local systems on X which is expected
to be motivic, so the problem boils down to proving that W is almost Q-compatible. This is the question
we want to address, for a specific motivated family W, which we will define in Subsection 1.4 as a special
case of the more general construction explained in Subsection 1.2.

1.2. Constructing generic motivated cycles. Let f : Y — X be a smooth projective morphism of
relative dimension d. Fix an infinite place oo : k < C, let (—)s denote the base-change functor along
spec(C) =% spec(k) and (—)* the analytification functor from varieties over C to complex analytic spaces.
Consider the pure polarizable Q-variation of Hodge structure (Q-VHS for short) V., := R?? fsollg)@(d). For
r € X¥ let G, C GLy, denote the Zariski-closure of the image I, of the topological fundamental

group 71 (X2") acting on V, := V. ; it is a semisimple subgroup of GLy,_; in particular, the normalizer
Ny = Norar,,_ (G2,) € GLy,, of its neutral component G-, in GLy._ is reductive. As G-, is a normal

subgroup of the generic Mumford-Tate group G, C GLy,_ of V., [An92, Thm. 1], one has G, C N, hence
the classes in VY are G-fixed viz generic Hodge classes.

Fix ¢ € |Sp| and consider the Q-local system V, := R2df£2)(@g(d). For z € X, let G; C GLy, denote
the Zariski-closure of the image II, of m(X}) acting on V; := Vyz. Modulo the singular-étale comparison
isomorphism Vg, —Vs, the group Gy identifies with G g, so that N; := NorGLVZ (@;) = Noq, C GLy,. Let
G¢ C GLy, denote the Zariski-closure of the image II; of m1(X) acting on V. As m1(X%) is a closed normal
subgroup of 71(X), the group G is a normal subgroup of Gy C GLy, hence Gy C Ny and the classes in
(V<) g, ~ VZNZ C Vp are Gy-fixed viz generic Tate classes.

Eventually, let G,os C GLy,, denote André’s generic motivated motivic Galois group [An96, §5.2|; this is a
reductive group such that ézo C G C Gy, With ézo normal in Gy, [An96, §5.3] and, modulo the singular-

étale comparison isomorphism Vq,—V, @; Cc Gy C anoth. To sum it up, one has Gy C Guot C Nuo
hence, for a class in V,

N-fixed = generic motivated = generic Hodge;

and, modulo the singular-étale comparison isomorphism V,.g,—V, one has Gy C Gyotq, C Noog, hence, for
a class in Vp,

Noog,-fixed = Q-linear combination of generic motivated = generic Tate.
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1.3. The main conjecture. Returning to the case where V., := R'f2.Q(j), Vo := R'f.Qu(j), ¢ € |Sg|
for some smooth projective morphism f : Y — X and integers ¢ > 0,7, every finite-dimensional N.-
subrepresentation W, C T'(V,.) is generically motivated (as Gnor C No), and gives rise to a polarizable Q-
VHS W, on X3 (as Goo C Noo) and to a family of Qp-local systems W := (Wp)e|s,) on X (as Gy C Nuogy,)-

The following is implicitly formulated in [An96, §0.7] in the more general setting of motivated local systems
(not only those arising from N, -subrepresentations); it is a consequence of the Hodge conjecture (Corollary
12).

Conjecture 1. The family of Qg-local systems W is almost Q-compatible.

Example 2. The polarizable Q-VHS L., C &, = V. ® VY corresponding to the N, -subrepresentation
Lo := Lie(Gw) C Ey := €4 is motivated with Qp-incarnation the Qg-local system £, C & = V,; ® ng
corresponding to the Ny-subrepresentation Ly := Lie(ég) C Ey := &p,. This is true, more generally, replacing
L., by any of its isotypical Lie ideal.

1.4. A specific generic motivated cycle. We retain the notations of Subsection 1.2.

1.4.1. Construction. Define Hoo = Ny, <1fiﬁooQ[U | € EL, where the intersection is over all normal finite
index subgroups U of I, and Hy := Ny, qOpﬁ[(@g[U] C Ey, where the intersection is over all normal open

subgroups U of II; respectively. By construction
—o éo
Zg_ (Bx) = ESe, Zg,(Ed) = B,
Lemma 3. The canonical map H., — Ey induced by I, — II;, < E, yields an isomorphism of Qg-algebras
H, (2400) Qg%ﬁg.

Proof. By left exactness of —®gQy, the morphism of Q-algebras H. ®oQr — E is injective; we are to prove
that its image is H,. For a finite index subgroup U C Il let U, C II, denote the closure of its image in II,.
As Q is dense in Q, and FEj is finite-dimensional, the isomorphism F., ®q Q;—FE restricts to an isomorphism
of Qy-algebras Q[U]®g Qr—Qy[Uy]. On the other hand, for every normal, open subgroup U C II,, the inverse
image Uy, C Iy of U via Iy, — II; is a normal, finite index subgroup and, as I, is dense in II;, one gets
Usoe = U. Thus, using that the (filtered) intersections of subspaces of a finite-dimensional vector space
commute with base change?, one eventually gets:

Hoo ®q Q¢ = (Nyrg,, 1., QD) ® Q = Ny, , 71, (QUU] ®q Qo) = Ny, , 7, QelUe] = Ny, 77, UelU] = Hy
as desired. 0
Let Ho, C & denote the Q-local subsystem corresponding to the m1(X2")-representation H., C Fo..
Lemma 4. Then Ho, C E is motivated.

Proof. 1t is enough to show that H ., is Ny-stable. As already observed in the proof of Lemma 3, H,, = Q[U]
for U C Il a sufficiently small normal subgroup of finite index, which we may assume to be contained in
G.(Q). Let n := dimg(Va), N := dimg(H). Let A ~H_C E_ ~ Ag denote the varieties over Q
underlying H,, C E and let GLy,, acts by conjugacy on E . It is enough to show that the subgroup
No C GLy,, stabilizes H  C E_. Letting GLy, acts trivially on Ag and diagonally on (E_ )%, the
morphism of Q-varieties
p: Ag xg (B )V — E,
(a; f) = Z1§i§N a; fi-

is GLy, -equivariant. As, by definition, N, C GLy,_ stabilizes the subvariety Ag xo(GL)N c Ag xo(EL)Y,
it is enough to show that p : Ag xg (E.)Y — E_ has image contained in H__ and that the resulting
morphism p : Ag xq (G2)N — H__ is dominant. That p : Ag xq (E. )N — E_ has image contained in
H__ follows from the facts that QY x Ui C p_l(goo) and QY x UN c Ag xq (Go,) is Zariski-dense.
That the resulting morphism p : Ag xg (Go,)N — H__ is dominant follows from the fact its image contains

H_(Q) = Hy =p(QN x UY) (as the N-dimensional Q-vector space H+, = Q[U] admits a basis contained
in U). O

2Indeed, by duality of finite-dimensional vector spaces, this is reduced to the commutativity of (filtered) unions (or, more
generally, colimits) and base change, which is well known.
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Lemma 5. One has Z(H) ®qg Q¢ ~ Z(Hy); in particular d(V) := dimg,(Z(H,)) = dimg(Z(H)) is
independent of £, oo : k — C.

Proof. This follows from Z(Ho) = HaNZg_(Ex) = HoN(Ew) %, Z(Hy) = HoN Zgg, (Eq) = HeN (B0,
Lemma 3, ((Em)éZO)QZ = (EOCQZ)GOOQE = (Eg)az and the exactness of — ®g Q. O

1.4.2. Main result. For every ¢ € |Sg|, let H, C & =V, ® V) denote the Qs-local system corresponding to
the 71 (X)-representation Hy C Ey. From Lemma 4 and Conjecture 1, the family H := (He)e| S| should be
almost Q-compatible. The main result of this paper is the proof of this fact modulo a mild condition on the
center of Hy.

Theorem 6. Assume d(V) = 1. Then Conjecture 1 holds for H namely, H is almost Q-compatible.

Remark 7. We are not able to prove that £ = (L£¢) | so| (Example 2) is almost Q-compatible though L

and H are related. More precisely, using the f-adic exponential / logarithm, it is easy to prove that Hy is
the largest subalgebra of E, containing L.

Our initial motivation for Theorem 6 arises from the following consequence of the unramified Fontaine-
Mazur conjecture and which, in the case of motivic Qp-local systems, is also predicted by the Mumford-Tate
conjecture (see [CT25| for details). It roughly predicts that, for a Qg-local system V, on X, the arithmetic
and geometric parts of the corresponding representation of 71(X) are far from commuting, unless Vy is
geometrically isotrivial. More precisely, for a Q-local system V, on X and for every z € | X|, let I, , C II,
denote the image of 7 (x) acting on Vj := V; z through 7 (z) — 71 (X) and Gy, C Gy its Zariski closure.

Conjecture 8. Let V; be a Qq-local system on X. Assume there exists x € |X| such that G, C Zg,(Gy).
Then EZ =1.

By considering the Q-local system H, attached to V;, Conjecture 8 for Vy is reduced to Conjecture 9 below
for H,.

Conjecture 9. Let V; be a Qq-local system on X. Assume there ezists x € |X| such that G, = 1. Then
Gy =1

In [CT25], we prove Conjecture 9 when Vy is part of a Q-compatible family V of Qg-local systems on X. In
particular, Theorem 6 implies Conjecture 8 for motivic Q-local system of the form Vy, = R’ f.Qy(j) under
the assumption d(V) = 1.

The paper is organized as follows. In Section 2, we review some basic facts from the specialization theory
of étale and crystalline cohomologies in the good reduction setting. In particular we give there the detailed
argument showing that Conjecture 1 follows from the Hodge conjecture - Corollary 12 (which is certainly
well-known to experts but for which we could not find a suitable reference) and prove that global sections
are compatible with specialization (Lemma 14 and Lemma 15). In Section 3, we gather the ingredients from
linear algebra - in particular the key lemma 17 - involved in the proof of Theorem 6. The proof of Theorem
6 is carried out in Section 4.

2. REVIEW OF SPECIALIZATION IN THE GOOD REDUCTION SETTING

Let v € |Sg| with residue characteristic p. For a morphism X — S := spec(Oy, ), we use the notation in the
following Cartesian diagram for the generic and special fibers respectively.

1

spec(k,) — S <—— spec(ky)

2.1. Specialization and cycle class map.
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2.1.1. Let Y — S be a smooth, proper, geometrically connected morphism of relative dimension d. Fix an
integer 7 > 0 and Let sp, : CH"(Y') — CH"()),) denote the specialization map for codimension r Q-algebraic
cycles modulo rational equivalence ([Fu75, 4.4|, [Fu84, 20.3]). For every prime £ and integer r > 0, let also ¢, :
CH™(Y) — H? (Y}, ,Q¢)(r) and ¢y : CH (V) = H¥ (Y5, Qo) (r), £ # p, Coenis : CH (Vo) = H25 (Vo /kv,0) (1)
denote the cycle class maps in étale Qg-cohomology and crystalline cohomology respectively. One can compare
the Qg-cohomology groups of Y with:

(2.1.1) if £ # p: the Qg-cohomology groups of },,. More precisely, for every integers i > 0, j, smooth proper
base-change yields a functorial® equivariant specialization diagram

7r1(kju)

m1(S) —————mi(k0)
) \
| L
H(Yg, Qo) () — H' (M5, Q1) (5),
In particular, for ¢ = 2r, j = r, the following diagram commutes
H" (Y, Qo) (r) —== H*" (U5, Qo) (r)
T
CH"(Y) —2— CH" ()

and is compatible with the intersection product on Chow groups and the cup-product on cohomology
groups.

(2.1.2) if ¢ = p, the rational crystalline cohomology group of ),. More precisely, for every integers i > 0,
J the p-adic étale - crystalline comparison theorem yields a functorial isomorphism of filtered ¢-
module De,;s(H* (Yz, Qp(5)))=>Hyi (Vo /kv,0) (7). In particular, for i = 2r, j = r, the following diagram

cris

commutes
Derio(H" (Yz, Q) (r)) —— HZ (Vo /ku,0) ()
Cp T ch,cris
CH"(Y) e CH" (D),
and is compatible with the intersection product on Chow groups and the cup-product on cohomology
groups.

Write p; : Y2 — Y for the ith projection, i = 1,2. Fix an algebraic cycle e € CH?%(Y?) such that the induced
morphism
ee : H(Yg,, Qo) — H(YE,, Q) o= pas(piaUce)),
is idempotent (note that this property is independent of ¢ € |Sgp|).
Lemma 10. The family of m1(ky)-representations W = (W 1= im(e¢))ee|s,| is Q-compatible.

Proof. To simplify notation, set V; := H(Y; , Q). If £ # p, the specialization properties recalled in (2.1.1)
show that ey : V; — V} identifies with the idempotent

(2.1.1) ey H(V5, Q) = H(V5, Qr), = pas(pia U cye(spu(e))).
If ¢ = p, note that im(ep) is crystalline (as a subrepresentation of the crystalline representation V},) hence,
by exactness of D : Rep&s(m(kv)) — FMj, (¢), the image of Deyis(€p) © Deris(Vp) = Deis(Vp) coincides
with De,;s(im(ep)) in FMy, (¢) while, on the other hand, the specialization properties recalled in (2.1.2) show
that Deyis(€p) @ Deris(Vp) = Deis(Vp) identifies with the idempotent
(2-1-27) Evp - Hcris(yv/kU,O) — Hcris(yv/kv,O)7 a PQ*(PTOZ U Cv,cris(ev))~

Let ) € CH d(yg) denote the graph of the nth power of the geometric Frobenius Fr]' : V5 — Vy. Using
(2.1.1), (2.1.2"), one can compute the traces of the powers @iy,» n > 1 of the geometric Frobenius ¢,
acting on im(ey) using the Lefschetz trace formula for Qg-cohomology (if £ # p) and crystalline cohomology
(if £ = p) to get,

D (=D, 0 g H (W5, Qp)) = @2 U fep = > (—1)'tr (e, 0 euplHi(Vo/ ko), £#p
0<i<2d 0<i<2d

Sviz compatible with pullbacks, pushforwards, Poincaré duality, Kiinneth decomposition, cup products and cycle class maps.
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whence
[T det@ — ow, o eo TIH V5, @)V = [ det(1 — ow, 0 copTIH (Vo ko)) """, € p
0<i<2d 0<i<2d

and, by purity, [D74], [KM74]
det(1 — ow, o ey T|H Vg, Q¢) = det(1 — pw, 0 ey T|HL (Vo /kvo)), >0, 4 p.

2.1.2. Recall the statement of the Hodge conjecture.

Conjecture 11. (Hodge [Ho52|) Let Y be a smooth, projective variety over C. For every integer i > 0,
the image of the cycle class map co, : CH'(Y) — H? (Y™, Q(i)) coincides with the sub Q-vector space
Hodge!(Y) € H¥(Y**,Q(i)) of Hodge classes.

Corollary 12. Conjecture 11 implies Conjecture 1.

Remark 13. Actually, one only needs Conjecture 11 in middle degree for a smooth compactification of a
sufficiently large fibered power of f:Y — X.

Proof. We retain the notation of Subsection 1.2. By Kiinneth formula and Poincaré duality, and up to
replacing f : Y — X by a suitable fibered power and increasing i, one may assume W., C V., := R f2*Q(4)
for some smooth projective morphism f : Y — X and, as Q-compatibility is invariant under Tate twist,
that j = 0. As almost Q-compatibility is also insensitive under base change by finite covers, one may
assume G is connected; this ensures Go C Goo. As Goo C Noo, Woo = .z 15 a G-subrepresentation
of Voo 1= Vs or, equivalently, Wy, is a sub Q-VHS of the polarizable Q-VHS V... Hence, one has a
(canonical if one chooses a polarization) decomposition V., = W., @ (W )+ of Q-VHS whence an idempotent
morphism ey, : Voo — W, — V. of Q-VHS such that W,, = im(e.,). For every z, € X2 above
x € |X|, let Gz oo C G denote the Mumford-Tate group of the polarizable Q-Hodge structure z*V,,. The
idempotent e, : Voo = V4 corresponds to a Geo-equivariant idempotent e, : V., — V,, hence to a Hodge
class ez o € HQd((Yf’go)Q,(@(d)) (a8 €ao : Vo — Vi is Gy so-equivariant) lying in HO(X2 R2fan Q(d)) (as
oo : Voo = Vo is éoo—equivariant). Fix a smooth compactification Y < YP* of Y and consider the canonical
commutative diagram

‘(Y&H)Q
—_—

H24((Yertam)2, Q) (d) H24((Y2m)2, Q)(d) — S HO(X2, B2 fon ()2 H2((v2m, )2, @)(d)

Tc =

CHY((Y)?) CHY((Ya,0)?)

l(va,0002
where € : H24(Y2* Q(d)) — HO(X2, R% f2» Q(d)) is the edge morphism
BV, Q(d) - B o By™ = HO(X22, R f2,Q(d))

oo

from the Leray spectral sequence for f3* : Y2* — X2 From the theorem of the fixed part [D71, Thm.
(4.1.1)], the morphism € o —|yany2 : H24((yertam)2 Q) (d) — HO(X2, R¥f2 Q(d)) is surjective so that
oo € HO(X20 R f20 (d)) lifts to a Hodge class e®t € H2((Y.P%#")2 Q)(d) hence, by Conjecture 11 to an
algebraic class e € CHY((Y<PY)?). As every algebraic cycle on (Y.P%)? is actually defined over a finitely
generated extension K of k and as cycle class maps are compatible with specialization ([Fu75, 4.4], [Fu84,
20.3]), the images of ¢y : CHI((Y)?) — H2((YPt)2, Q)(d) and of CHY((YP)?) — CHA(YP)?) —
H24((Yr2)2 Q) (d) coincide so that one may assume et = gt € CHd((Y’—spt)Q). Up to replacing k by a
finite field extension, one may even assume ¢°** € C H4((Y°®)2). On the other hand, writing ¢, := Py,
it follows from the definition of W, that W, identifies with the image of the idempotent morphism
€x e Hz(Yfa QZ) — HZ(va Qf)v Q= Doy (pT (O[) U Cx,é(gx))-

The assertion thus follows from Lemma 10. O
2.2. Specialization and global sections.

2.2.1.Let X — S be a smooth, geometrically connected morphism. Fix ¢ € [Sg| and a Q-local system Vy
on X.
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2.2.1.1. Assume p # ¢ and V, extends to a Qs-local system on X set V;,, := Vy|x,. Assume also that there
exists a smooth, proper geometrically connected morphism X°?* — S and an open S-immersion X — X°Pt
such that D := X®*\ X — S is a relative normal crossing divisor.

Lemma 14. One has a canonical w1 (S)-equivariant isomorphism HO(X,;U,VK)%HO(X@, Vi)

Proof. As X is regular and the generic points of D have characteristic 0, the action of 71 (X)) on V; factors
through the tame fundamental group 71 (X)=>7] (XY D)7} (XP'; D,). The assertion then follows from the
surjectivity of the tame specialization morphism sp : 7§ (X gi’t, Dy,) — (X", D) in the tame specialization
diagram |G71, XIII|

ky ke
X | |

1 —— 7} (X", Dy) — 7 (AP, D) m1(5) 1

1 —— 7} (X5, Dy) —— mf (X", D) m1(v) 1
O
2.2.1.2. Assume p = { and V, = ®15a§rRi“fa*Qp, where f, : Y, — X is the generic fiber of some smooth
projective morphism f, : YV, = X, a =1,...,r and integers i1,...,4. > 0. Assume furthermore that X — S
admits a section z : § — X and that for every a = 1,...,r there exist a smooth, projective geometrically

connected morphism YP* — S and an open S-immersion YV, — VP, Set V,,,, 1= ®1§a§rRia fa,v,0xis: Oy, Jkv.o-
Lemma 15. One has a canonical isomorphism Des(H(Xy, , Vp))=SH2 (X, Vo) of filtered ¢-modules over
k.

- 0
Proof. Assume first r =1, 41 =:4 and f; =: f. The restriction morphism H'(Y; Pt Qp) (—2
as

H'(Yz,Q,) factors

(*) HZ(Y’Cfta Qp) 4(2 HZ(Yma Qp) p,za

(Ul (3)
i 2) 0
H (YEU’QP) H (X;gv,Vp)

where (2) is the edge morphism H'(Y; ,Q,) — E%' < Eg’i = HO(X,-%,VP) from the Leray spectral se-
quence for f : Y — X, (1) is the restriction morphism and (3) is taking the stalk at Z, which is in-
jective since the functor "stalk at T" is faithful (as X7 is connected). Furthermore, (3) induces an

isomorphism H°(Xj, ,V, )—>Vm( W) Vpz. From the theorem of the fixed part [D71, Thm. (4.1.1)]

and singular-étale comparison, (2) o (1) is surjective hence, in particular, E% = Eg’i and the image of
: 0
H’(Y]—fft,@p) © Vpz identifies i (k,)-equivariantly with HO(Xj ,V,). As Y®* — S, Y, — S are both

smooth projective morphisms, the m (k,)-representations HZ(Y—Cpt, Qp), Vpz are crystalline hence, by exact-

ness of Dy : Repcm( 1(ky)) = FMg, (¢), the image of the morphism Dcris(H’(YkC Pt Qp)) Peris(0)) Deis(Vp z)
identifies with DCHS(HO(X k.o Vp)) as filtered ¢g-modules over k,. On the other hand, by compatibility of De.s

with pullbacks, the morphism Dms(Hi(Y,}C P Qp)) Dmig(o)) D.is(Vp,z) identifies with the restriction morphism
H! (VP kv o) @ H ..(Vv.z,/Fuvo) in crystalline cohomology, which factors again as

(0)

<**) cris ycpt/kv O) Crls(yU xv/kv 0)
(2)o(1) (3)
HO (XU’ VP,U)

cris

with (1), (2),(3) defined as in (*). In particular (3) is injective (again because the functor "stalk at z," is
faithful) and (2) o (1) is surjective by the theorem of the fixed part in crystalline cohomology [M19, Sec. 2,
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esp. Thm. 2.5]. This proves Dms(HO(X,*€ ,Vp)) identifies with the image

( crls yCPt/kU 0 _; Hirls y’UJv/k’U,O)) H?rls(XU7 prv)
as filtered ¢-modules over k,. For the general case, applying (**) to

VP = P x Y o Y= Py Xy xa Y D X
with ¢ =41 + -+ - 4 ¢,, and using Kiinneth decomposition, one gets a commutative diagram:

. )
@ ®Hcr15(y(§?v/kvyo> @ ®HCrlb(ya7U7IU/kU70)'

J1+-Fir=ia= j1+-tir=ia=

(2)o(1) (3)
@ HSYIS(XU7 VP,U)

g1t tir=i
As (0) is the restriction and (3) is taking the stalk at x,, both (0) and (3) are compatible with the Kiinneth
direct sum decompositions. As (2) is the edge morphism arising from the Leray spectral sequence for
fv : Yo — X, in crystalline cohomology, it is a priori unclear that (2) o (1) is compatible with the Kiinneth
direct sum decompositions but as (3) is injective, this formally follows from the compatibility of (0) and
(3). The claim follows from the surjectivity of (2) o (1) and the injectivity of (3) by taking the component
(J1y--sJr) = (i1, ..., 1) of the above diagram. O

Remark 16. The proof of Lemma 15 uses the existence of a section of X — S but the statement of Lemma
15 remains valid without this assumption (using that, by formal smoothness, X — S always admits a section
after replacing S by a finite étale cover S’ — S and that the morphisms (2) o (1) in diagrams (*), (**) as
well as the isomorphism Dcris(Hi(Ylg’t, Qp))>H: (VP /ky ), are canonical - i.e. independent of the choice

of a section - and defined over the base field k,). As for our purpose we can reduce to the case where X — S
has a section, we do not elaborate.

3. LINEAR ALGEBRA

Let @ be a field of characteristic 0.

3.1. Extracting eigenvalues. For a finite-dimensional Q-representation V' of Z, let xy € Q[T] denote the

characteristic polynomial of 1 acting on V; let Ey denote the multiset of the roots of xy and Ej#? C Q"
the underlying set. For ¢ = 1,2, let Q — @; be a field extension and A;, B;, C; three finite- dlmensional
Q;-representations of Z. Assume the following:

(1) One has A; ®q, B; ~ C; Z-equivariantly, i = 1, 2;
(2) xais xc; liein Q[T7], i =1,2 and x4, = X45; X1 = XCo}
(3) By (2) one has ' := (E}?, EgY) = (EXY, EgY) C Q™ as subgroups of Q. Assume I is torsion-free.

Lemma 17. Then xp, also lies in Q[T], i = 1,2 and xB, = XB,-

Proof. By assumption (2) E4 := E4, = Ea, and E¢ := E¢, = E¢, while, by assumption (1), one has
I = (E7%Y, E§j> - @X, 1 = 1,2. By definition I' is a finitely generated abelian group hence, by assumption
(3), one also has I' =~ Z" for some integer r > 1 so that the group algebra Z[T'] ~ Z[T}, Ty ', ..., T, T;'] is an
integral domain. Let [E4], [Ec], [EB,], [EB,] € Z|I'] denote the element representing the multisets E4, E¢,
Ep,, Ep, respectively. Then by assumption (1), [E4][EB,] = [Ec] = [Ea][EB,] in Z[[']. As Z[I'] is integral,
this implies [Ep,] = [EB,] hence xp, = xB, as polynomials in Q[T]. It remains to prove that x5, = x5, lies
in Q[T]. But, for ¢ = 1,2, by assumption (2), E4, Ec (or, equivalently, [E4], [E¢c]) are fixed by the action
of m1(Q) while by assumption (1) and the integrality of Z['|, [Es,] (or, equivalently, Eg,) is fixed by the
action of 7 (@), which means xp, lies in Q[T], as @ is perfect. O

Remark.

(1) The proof only exploits the integrality of Z[['| ~ Z[T1, T} -, ! , T, 1. Tt would be interesting to try

and exploit the fact that Z[I'] is the localization of Z[T7, ... ,Tr] at the multiplicative monoid generated
by T1,...,T, hence, in particular, is a unique factorization domain.



ON Q-COMPATIBILITY OF CERTAIN FAMILIES OF Q,-LOCAL SYSTEMS 9

(2) Set Ty := (E%%) = (E%Y) C T'. Then assumption (3) can be replaced by the following weaker assumption
(3’) T'4 is torsion-free. Indeed, Lemma 17 amounts to proving that [E4] is a non-zero divisor in Z[T'].
Assumption (3’) ensures Z[I'4] is integral. As Z[I'4] — Z[I'] endows Z[I'| with the structure of a free
Z[T g]-module (with Z[T" 4]-basis any system of representatives of I'/T"4), Z[I'] is a flat Z[I" 4]-algebra; in
particular, every non-zero element in Z[I" 4] is a non-zero divisor in Z[I']. This is in particular the case
for [E4] € Z|T 4].

3.2. Semisimple algebras. Let V' be a finite-dimensional @Q-vector space and set £ := Endg(V). Let
H C F be a semisimple ()-subalgebra. Set

Zg(H):={f€E|fh=hf, he H}, Z(H):=Zg(H)N H.
Lemma 18. The canonical morphism of Z(H)-modules

H @z Ze(H) — Zp(Z(H))

s an isomorphism.
Proof. Let H denote a system of representatives of the isomorphism classes (as left H-modules) of simple left
ideals in H. For I € H, set Dy := Endy(I), Z; := Z(Dy) and let Hy ~ I®"1 C H denote the I-isotypical
component of H viewed as a left H-module. Then H = @Ieﬁﬂf and write 1 = Zleﬁ erwithey € Hy, I € H.

With this notation, Hy C H, endowed with the product of H, carries a natural structure of central simple
algebra over Z; = Z(Hy) with unit ey, and the isotypical decomposition of H = @IeﬁHI = ®Ieﬁ61H as

left H-modules gives an isomorphism H ~ [] I Hj of rings. Write Er := ejFey, I € H. One immediately
checks that the natural morphisms

Zp(H) — H Zp(Hr), [ (e1f)ieq
IeH
and

are isomorphisms of rings so that one gets a canonical commutative diagram of Z(H )-modules
H®yzpy Zp(H) Zp(Z(H))
Hien Hr ®z;) Ze,(Hr) —11;c5 Z6,(Z(H)).

This reduces the proof of Lemma 18 to the case where H is a simple ring, which follows from [B58, §10, 2.,
Cor. of Thm. 2]|.

]
In particular, if Z(H) = QId then one has a canonical isomorphism of Q-modules H ®¢g Zg(H)>E.

4. PROOF OF THEOREM 6

4.1. Adding level. Let Vy be a Qg-local system on X and IT, C GL(V;) the image of 71(X) acting on
Vi := Vi z. Consider the following level condition

Lev(Vy) There exists a II;-stable Zg-lattice V,° C V4 such that II, C Id + gEndZZ(I/go), where £ = 4 if £ = 2
and ¢ = ¢ otherwise.

Note that Condition Lev()V,) can always be achieved after replacing V, on X with a*V on X’ for the con-
nected étale cover o : X' — X trivializing the local system Vy /¢, where V; denotes the Zs-local system
corresponding to the m (X )-stable Z,-lattice V> C V} .

Condition Lev(V)) for a single [ € |Sp| implies the following. Recall that Gy C GLy, denotes the Zariski-
clsoure of II, and, for every x € |X|, Gy, C Gy denotes the Zariski closure of the image I, C II, of
m1(z) acting on V; through 71 (z) — 71(X). For every x € |X| and v € Uy(y) o+ With residue characteristic

p # [, the subgroup =, C Q" generated by the roots of x,, := xV, 2, is contained in 1-+17Z; hence torsion-free.
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4.2. Q-compatibility of isotrivial tensors. Let f, : ¥, — X be a smooth projective morphism, a =
1,...,r. For every { € |Sg|, integer j and r-tuples i = (i1,...,4r), n = (n1,...,n,) of integers with
iy..50r > 0,1et IT:={1<a<r|n, >0} and set

Vi i= Qaer (R0 Qe) " Qagr (R'*faxQe)" 7" (5)

and let C; C V; denote the (geometrically constant) sub-Qg-local system corresponding to the 7 (X)-

submodule HY(Xp, V) = V;l(x’;) C Vi := Vyz. By construction, C; is the pullback along the structural
morphism X — spec(k) of a Qg-local system on spec(k), which we again denote by Cy.

Proposition 19. The family C := (CZ)ZG\S@\ 1s a Q-compatible family of Qg-local systems on X.

Proof. By Poincaré duality, one may assume that I = {1,...,r}, up to increasing r, that n; = --- =
n, = 1 and, as Q-compatibility is invariant under Tate twist, that 7 = 0. Fix smooth, normal crossing
compactifications X — X' Y, — Y a=1,...,r [N62|, [N63|, [H64] and a non-empty open subscheme

U C spec(Oy) such that for every a = 1,...,r one has Cartesian diagrams
Y, e X xRt spec(k) Yol YoMt spec(k)
o led o | o] o]
Vo X X U Ve v

with X — U smooth, f, : Vo — X smooth projective, a = 1,...,r, and X — X" - U, ), — YP* - U,
a = 1,...,r relative smooth normal crossing compactifications; set D := X°P*\ X and D := X°**\ X. By
smooth proper base change V, = ®1§a§TRiafa*Qg extends to the Q-local system ®1§a§rRiafa*@g, which
we again denote Vy, on X[¢]. Fix z € |X|; without loss of generality one may assume k(z) = k and, up to
shrinking U, that z : spec(k) — X extends to a U-point « : U — X. Let v € U, and for every a =1,...,r
consider the base-change diagram

Ty
Vaw —22 e 2, X spec(y)
0 0 2 O l
Va,05, Xo,, Xéit spec(O
i m 0 J{ 0 l
Y, pe Yept U

fa s&\\\5“~‘_ﬁ_-’~%_'~’,,//

Write Vi, = Vila,, £ # pand Vp, == ® Riafa’v,ms,*oyv/kv,o. From [A23, Thm. 2.1.1.2], V,, lifts to a

1<i<r

unique (up to isomorphism) overconvergent F-isocrystal V;v on &,.

From Lemma 14 (resp. Lemma 15), the characteristic polynomial x¢, », € Q¢[T] of the geometric Frobenius
©cpae @ Cog — Cyz identifies with the one of the geometric Frobenius ¢, : HO (X5, V) — HY(&5, V),
¢ # p (resp. the characteristic polynomial xc, z,» € kuv,0[T] of the m,th power of the crystalline Frobenius
0z = Pp’ ¢ Deis(23Cp) — Deris(23Cp) identifies with the one of the m,th power of the crystalline
Frobenius ¢z, 1= ¢ : Hgm(?(v, Vov) — Hgm(XU, Vpw)). Let d denote the dimension of X. The fact that
XC,.z, lies in Q[T] and is independent of £ € |Sg| now classically follows from

(i) Lefschetz trace formula for cohomology with compact support:

LV T) = Tocwzaq det(T1d — @a, [HE (X5, VY,)

1)w+1

A Fp
LOVES,T) = Tpcweng det(TId — @, [HY, (Xo /Koo, Vi)D" [ELY3, Thm. 6.3]

plus the fact that the L-functions L(V;,\{,,T) and L(V,,,T) coincide. (Note that HY . (X0, Vo) =~
rlg( U/k:U Ovvpv))
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(ii) The Q-compatibility of (Veu)ee|sy [D74], [KM74], which ensures that the left-hand sides of (i) is
independent of ¢ € |Sgl;

iii) The fact that H(Xy, V)) is mixed of weights < w — i, for w < 2d while H?¢(X;, VYY) is pure of weight
c 4 c l
2d — i [D80, Thm. (3.3.1)] and the similar statement for rigid cohomology [Ke06b, Thm. 6.6.2]. Here
1 =141+ -+ i, is the weight of V.

(iv) Poincaré duality: H2* (&g, V),)¥ (—d)=H (X5, Vi), £ #p

H2d

rig,c

(X /K0, Vio)¥ (—d)SHO, (X ku 0, Vi) [KeO6a, Thim. 1.2.3]
O

Remark 20. Actually, the proof of Proposition 19 also shows the (a priori stronger) fact that C is Q-
compatible as a family of Qg-local systems over spec(k). If X has a k-rational point, this immediately
follows from Proposition 19. Otherwise, fix models YV, — X < X' — U over some non-empty open
subscheme U of spec(Oy) as in the proof of Proposition 19. By formal smoothness of X — U and the Weil
bounds, for p > 0 and every v|p in U, X has an O, -point. One can then conclude as in the proof of
Proposition 19.

4.3. Proof of Theorem 6. Recall that V = (V, := Rif*(@g(j))ges(@ for some smooth projective morphism
f:Y — X of relative dimension d and that £ := (& =V, ® Vg/)geg(@. Both V and £ are Q-compatible and

pure of weight i — 25 and 0, respectively. We are to prove that the corresponding family H C & is almost
Q-compatible.

As the assumptions and conclusions of Theorem 6 are invariant under base-change by a connected étale
cover, one may assume that

- G-, = G, so that G, = Gy, £ € |Sg|.
- Condition Lev(Vy) holds for at least one ¢ € |Sg.
For every £ € |Sg|, let Cy denote the isotrivial Qg-local system on X corresponding to the 71 (X )-submodule

E]'Y% = E% — 75, (H,) C Ey.

From Proposition 19, C = (C¢)e|s,| is Q-compatible. As m(X}) acts semisimply on V, Hy is a semisimple Q-
algebra and, by assumption Z(H/) = Q so that by Lemma 18 one has a canonical isomorphism H, ® Cy—+&;
of Q-local systems on X. As & and C are both Q-compatible, and as Lev(Vy) ensures the torsion-freeness
in Condition (3) of Subsection 3.1, the assertion follows from Lemma 17.
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