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1. Introduction

1.1. Let k be a field of characteristic p ≥ 0. A variety over k means a separated scheme of
finite type over k. Let S be a smooth, geometrically connected variety over k. Set S := S×k k.
Let η denote the generic point of S, |S| the set of closed points of S. For a subset Σ ⊂ |S|
and an integer d ≥ 1, let Σ≤d denote the set of all s ∈ Σ with [k(s) : k] ≤ d (in particular,
|S|≤1 = S(k)). For every s ∈ S, fix a geometric point s over s and an étale path η→̃s, which
induces an isomorphism π1(s, s) ' π1(s, η). By functoriality of the étale fundamental group,
s ∈ S regarded as a morphism s : spec(k(s)) → S induces a continuous group morphism
σs : π1(s, s) ' π1(s, η) → π1(S, η), which is injective if s ∈ |S|. As the choice of base points
will basically play no part in the following, we will omit them from the notation unless necessary.

For a field K and an (any) algebraic closure K of K, write π1(K) := π1(spec(K), spec(K)) for
the absolute Galois group of K.

1.2. Fix a prime ` 6= p and V a finite-dimensional Q`-vector space endowed with a continuous
action of π1(S). Write ΠV , ΠV and Πs,V for the image of π1(S), π1(S) and π1(s) acting on V
respectively. Let S(V ) ⊂ |S| denote the set of all s ∈ |S| such that Πs,V ⊂ ΠV is open. For a
finite-dimensional Q`-subvector space E ↪→ H1(π1(S), V ), let S(E, V ) ⊂ |S| denote the set of
all s ∈ |S| such that

ress|E : E ↪→ H1(π1(S), V )
ress→ H1(π1(s), V )

is injective, where ress denotes the restriction morphism with respect to σs : π1(s)→ π1(S).

The problem addressed in this note is to describe the arithmetico-geometric structure of S(E, V )
when k is ‘arithmetically rich’ that is, essentially, with a ”large absolute Galois group π1(k)”.

This is motivated by studying the variation of certain type of arithmetico-geometric invariants
in families of smooth, proper varieties. Here is an example. Let A→ S be an abelian scheme.
The Kummer map and the Néron extension property for abelian schemes give rise to a canonical
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commutative diagram

Aη(k(η))⊗Q � � κ` // H1(π1(η), V`(Aη))

A(S)⊗Q � � //

sps

��

'

OO

H1(π1(S), V`(Aη))

ress
��

infl'

OO

As(k(s)))⊗Q � � κ` // H1(π1(s), V`(As)),

where V`(−) := (lim
←−
− [`n]) ⊗ Q` denotes the Q`-Tate module of −. Taking V = V`(Aη) and

E = Aη(k(η)) ⊗ Q, the locus S(E, V ) ⊂ |S| is the set of all s ∈ |S| where the specialization
map sps : Aη(k(η))⊗Q→ A(S)⊗Q is injective and, in particular, it is contained in the set of
all s ∈ |S| where rank(Aη(k(η))) ≤ rank(As(k(s))).

1.3. In general, one expects S(E, V ) to be ‘huge’. This relies on the observation that one
can attach to (E, V ) a ”universal extension” Ẽ, which is a finite-dimensional Q`-vector space
endowed with a continuous action of π1(S) fitting into a π1(S)-equivariant short exact sequence
0 → V → Ẽ → E → 0 (with E endowed with the trivial π1(S)-action) and with the property
that S(Ẽ) ⊂ S(E, V ); see Subsection 2.1 and Lemma 2.1.3 for details. The point is that, under
mild assumptions on V , one expects S(Ẽ) to be ‘huge’ (see 3). More precisely, if k is Hilbertian,
there always exists an integer d ≥ 1 such that S(Ẽ)≤d is infinite (Fact 3.1.1). This is already
enough for applications which only require the existence of a single closed point in S(E, V )
(see e.g Subsection 6.1). Under mild assumptions on V (satisfied by representations V arising
from geometry as in the example of 1.2) and when k is finitely generated over Q, one expects
stronger abundance results for S(E, V ). For higher dimensional varieties S such results are still
highly conjectural but when S is a curve, one can ensure that if ΠV has perfect Lie algebra
then for every integer d ≥ 1, (|S| \ S(E, V ))≤d is finite (Fact 3.1.2.1). To apply our strategy,
we have to find conditions on V which can be checked in practice and which ensure that ΠẼ

has perfect Lie algebra. This is basically the content of Lemma 2.2.

We also provide a variant of our results for families V = V`, ` ∈ L of finite dimensional F`-
vector spaces of bounded rank and endowed with a continuous action of π1(S) for ` varying in
an infinite set L of primes.

1.4. The group-theoretical results described in Subsection 1.3 are stated and proved in Section
2. The remaining sections of the paper (Sections 4 - 6) are devoted to applications of these
result to motivic representations (that is those arising from the étale cohomology of smooth
proper morphisms X → S). We discuss in particular the injectivity of the specialization map
for the second graded piece of the `-adic Abel-Jacobi filtration on Chow groups in the fibers of
a smooth projective morphism X → S. This provides a generalization (to Chow groups and
arbitrary finitely generated fields) of a theorem of Silverman about the sparsity of the dropping
locus of the rank in the fibers of an abelian scheme; the theorem of Silverman corresponds to
the example of Subsection 1.2 (see Corollary 5.2.3 and, for the case of Abelian schemes, 6.2).
We also show that the locus where the unipotent part of the Mumford-Tate group of a 1-motive
degenerates is sparse (See ??). The reader who is mostly interested in these applications can
jump directly to Sections 4 - 6 and browse the formal Section 2 only when needed.

1.5. This note does not intend to exhaustivity but rather to present a method that could hope-
fully be applied to other situations. In particular, we only deal with Q` or F`-coefficients but
the method extend to more general coefficients. It would also be interesting to investigate what
could be said for higher cohomology groups (for i smaller than the cohomological dimension of
the fields k(s), s ∈ |S|). The method itself (see Section 2) relies on elementary group-theoretic
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observations. What is not elementary and involves subtle arithmetico-geometric inputs are the
specialization results (see Subsection 3) we inject in the method and the fact that the method
can be applied to motivic representations (see Section 4). It seems unlikely that our spar-
sity results could be enhanced for arbitrary E ⊂ H1(π1(S), V ). But when E ⊂ H1(π1(S), V )
parametrizes cocycles of geometric origin (as it is the case in our application to Chow groups),
one expects stronger sparsity results (algebraicity, finiteness, bounded height - see Subsection
6.2.4 for discussion). This illustrates both the generality of the method (which applies to
arbitrary cohomology classes) and its limits (since it cannot see the difference between tran-
scendental and geometric cohomology classes).

1.6. In a first version of this note, we also included additional applications to the case where
the base field k has characteristic p > 0 (and for primes ` 6= p). These applications were relying
on specialization results in [CT19], [A18], which in turn were relying on [EEHK09, Thm.
2] - a tentative positive characteristic analogue of the Mordell conjecture. But just before
resubmitting the revised version of this note, Akio Tamagawa exhibited a counter-example
to [EEHK09, Thm. 2], showing that the statement of [EEHK09, Thm. 2] has to be refined
(to include some isotriviality phenomena). The results of [CT19], [A18] should be adjusted
consequently. These could then be (re)injected in the strategy described in this note to obtain
similar applications when the base field k has characteristic p > 0.

1.7. Acknowledgements. I thank Jean-Louis Colliot-Thélène and Ofer Gabber for their
technical explanations about the specialization of the `-adic Abel Jacobi filtration. I am very
grateful to Bruno Kahn for his interest, accurate comments and the time he devoted to explain
me some aspects of the problems about Chow groups. I also thank Cédric Pépin for our
discussion on Remark 6.2.5.3.

2. Representation-theoretic results

Let Λ denote Q`, Z` or F` for some prime ` and let Π be a profinite group. Write ModΛ(Π)
for the (abelian) category of finitely generated Λ-modules equipped with a continuous Λ-linear
action of Π. In particular, ModΛ := ModΛ(1) is just the category of finitely generated Λ-
modules. For V ∈ ModΛ(Π) let ΠV ⊂ AutΛ(V ), ΠV ⊂ Π′ denote respectively the image and
kernel of the corresponding morphism Π→ AutΛ(V ) so that one has a short exact sequence of
profinite groups

1→ ΠV → Π→ ΠV → 1.

For a continuous morphism of profinite groups Γ→ Π, write −|Γ :ModΛ(Π)→ModΛ(Γ) for
the obvious restriction functor. Let Hi(Π,−) : ModΛ(Π) → ModΛ denote the ith continuous
cohomology group functor of Π (defined by means of the continuous i-cochains Zi(Π, V )- see
[T76]).

2.1. The universal extension Ẽ. Let Λ denote Q` or F` for some prime ` and let Π be a
profinite group. Fix V ∈ ModΛ(Π). Recall that if Λ = Q`, ΠV being a closed subgroup of
AutΛ(V ) is a (compact) `-adic Lie group; we write Lie(ΠV ) for its Lie algebra (as a `-adic Lie
group).

2.1.1. Construction. Let Ext1

ModΛ(Π)
(−, V ) : ModΛ → Ab denote the functor sending E ∈

ModΛ to the abelian group Ext1

ModΛ(Π)
(E, V ) of equivalence classes of extensions

0→ V → Ẽ → E → 0

in ModΛ(Π). There is a canonical isomorphism of functors ModΛ → ModZ

φ := φ(Π, V ) : HomModΛ
(−,H1(Π, V ))→̃Ext1

ModΛ(Π)
(−, V )
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defined as follows. Let −̃ : H1(Π, V ) ↪→ Z1(Π, V ) be a section in ModΛ of the canonical
projection Z1(Π, V ) � H1(Π, V ). For E ∈ModΛ and a morphism f : E → H1(Π, V ) in ModΛ,
a representative of the isomorphism class φ(E)(f) ∈ Ext1

ModΛ(Π)
(E, V ) is given by Ẽ = V ⊕E

endowed with the Λ-linear action of Π given by π·(m⊕e) = (πm+f̃(e)(π))⊕e, π ∈ Π. One easily
checks that φ(E)(f) does not depend on the choice of the section −̃ : H1(Π, V ) ↪→ Z1(Π, V )
and that the construction defines a morphism of functors ModΛ → Ab. To show that φ is
an isomorphism, one can exhibit an explicit inverse ψ := ψ(Π, V ) : Ext1

ModΛ(Π)
(−, V ) →

HomModΛ
(−,H1(Π, V )) as follows. For the isomorphism class [Ẽ] ∈ Ext1

ModΛ(Π)
(E, V ) of an

extension Ẽ, the morphism ψ(E)([Ẽ]) : E → H1(Π, V ) sends e ∈ E to the cohomology class of
the 1-cocycle

Π → V
π → πẽ− ẽ,

where −̃ : E → Ẽ is a section in ModΛ of the projection Ẽ � E. Again, one easily checks
that ψ(E)([Ẽ]) does not depend on the choice of −̃ : E → Ẽ and that ψ(E) ◦ φ(E) = Id,
φ(E) ◦ ψ(E) = Id.

2.1.2. Functoriality. The construction of φ := φ(Π, V ) is functorial in Π, V . In particular,
for short exact sequence of profinite groups 1 → N → Π → Π/N → 1, one has a canonical
inflation-restriction commutative diagram with exact lines

0 // HomModΛ
(−,H1(Π/N, V N))

infl //

φ(Π/N,V N )

��

HomModΛ
(−,H1(Π, V ))

res //

φ(Π,V )

��

HomModΛ
(−,H1(N, V ))

φ(N,V )

��

0 // Ext1

ModΛ(Π/N)
(−, V N)

(V N ↪→V )∗

// Ext1

ModΛ(Π)
(−, V )

|N
// Ext1

ModΛ(N)
(−, V )

2.1.3. Injectivity criterion for the restriction morphism on H1. Let Γ→ Π be a morphism of
profinite groups, let V ∈ ModΛ(Π) and ι : E ↪→ H1(Π, V ) a finitely generated Λ-submodule.
Let Ẽ be a representative of φ(E)(ι) ∈ Ext1

ModΛ(Π)
(E, V ). Recall that ΠẼ ⊂ AutΛ(Ẽ) denote

the image of Π acting on ΠẼ and that ΠẼ = ker(Π→ ΠẼ).

Lemma. Fix a closed normal subgroup N ⊂ ΠẼ. Assume Λ = Q` (resp. Λ = F`) and
(SS) ΠẼ/N acts semisimply on V N (resp. and `� 0 compared with the Λ-rank of V N).
(O) ΓẼ ∩N ⊂ N is open of index [N : ΓẼ ∩N ] invertible in Λ.

Then E
ι
↪→ H1(Π, V )

res→ H1(Γ, V ) is injective.

Proof. By construction, φ(E)(ι)|ΠẼ = 0 hence by 2.1.2, ι : E ↪→ H1(Π, V ) factors through

(∗) E_�

ι
��

J j

ι

ww

0

((PP
PPP

PPP
PPP

PP

0 // H1(ΠẼ, V )
infl //

res

��

H1(Π, V )
res //

res

��

H1(ΠẼ, V )

res
��

0 // H1(ΓẼ, V )
infl // H1(Γ, V )

res// H1(Γ ∩ ΠẼ, V )
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So it is enough to prove that the left vertical arrow of (∗) is injective. From the inflation-
restriction diagram

(∗∗) 0 // H1(ΠẼ/N, V
N)

infl //

res
��

H1(ΠẼ, V )
res //

res
��

H1(N, V )

res
��

0 // H1(ΓẼ ∩N/N, V N)
infl // H1(ΓẼ, V )

res // H1(ΓẼ ∩N, V )

to show that res : H1(ΠẼ, V )→ H1(ΓẼ, V ) is injective it is enough to show that H1(ΠẼ/N, V
N) =

0 and res : H1(N, V ) → H1(ΓẼ ∩ N, V ) is injective. The injectivity of res : H1(N, V ) →
H1(ΓẼ ∩ N, V ) follows from (O) by corestriction while H1(ΠẼ/N, V

N) = 0 follows from (SS).
More precisely, if Λ = Q` then ΠẼ/N is a compact `-adic Lie group hence its `-adic Lie algebra
Lie(ΠẼ/N) is reductive. This implies H1(Lie(ΠẼ/N), V ) = 0 and the assertion follows from the
injectivity of the canonical morphism H1(ΠẼ/N, V

N)→ H1(Lie(ΠẼ/N), V N) [Se64, Prop. 12].
If Λ = F`, this is [N87, Thm. E]. �

In applications, we will consider N = ΠẼ (in which case Condition (SS) is empty) or N =
ker(ΠẼ � ΠV ).

2.2. Transfer of perfectness. We retain the notation and conventions of Subsection 2.1. If
Λ = Q` (resp. Λ = F`) we say that V ∈ ModΛ(Π) has no Π-Lie-coinvariants (resp. has no
Π-coinvariants ) if WLie(ΠV ) = 0 for every subobject W ⊂ V in ModΛ(Π) (resp. if WΠ = 0 for
every subobject W ⊂ V in ModΛ(Π)).

In practice, to ensure Condition (O) of Lemma 2.1.3 holds for the groups Γ(:= π1(s)) ⊂ Π(:=
π1(S)) we are interested in, we will use the following observation.

Lemma. Let E ∈ ModΛ and Ẽ ∈ Ext1

ModΛ(Π)
(E, V ). Assume Λ = Q` (resp. Λ = F`) and

V has no Π-Lie-coinvariants (resp. no Π-coinvariants). Then Lie(ΠẼ)ab = Lie(ΠV )ab (resp.
Πab
Ẽ

= Πab
V ), where (−)ab denote the abelianization functor for Lie algebras (resp. finite groups).

Proof. We only give the proof for Λ = Q`; the proof for Λ = F` is exactly similar, working
in the category of groups instead of Lie algebras. Applying the Lie functor to the short exact
sequence of `-adic Lie groups 1 → N → ΠẼ → ΠV → 1 we get the short exact sequence of
Q`-Lie algebras

0→ Lie(N)→ Lie(ΠẼ)→ Lie(ΠV )→ 0

and, applying the abelianization functor, the short exact sequence

0→ Lie(N) ∩ [Lie(ΠẼ),Lie(ΠẼ)]→ Lie(N)→ Lie(ΠẼ)ab → Lie(ΠV )ab → 0.

To show Lie(N) ⊂ [Lie(ΠẼ),Lie(ΠẼ)], it is enough to show Lie(NE) = [Lie(ΠẼ),Lie(N)], which
follows from

Lie(N)/[Lie(ΠẼ),Lie(N)] = Lie(N)Lie(ΠẼ)

and Lie(N)Lie(ΠẼ)
= 0 since Lie(N) ⊂ E∨ ⊗ V ' V dim(E∨) is a Π-invariant submodule. �

3. Specialization of representations of the étale fundamental group and
injectivity of the restriction morphism on H1

Let S be a smooth, geometrically connected variety over k. We are now going to apply the
results of Section 2 to the case where Π := π1(S) and Γ = Πs := π1(s) for s ∈ |S|.
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3.1. Λ = Q`. Let H ∈ ModQ`(Π). Recall that S(H) ⊂ |S| denote the set of all s ∈ |S| such

that Πs,H ⊂ ΠH is open. By definition, when H = Ẽ is the universal extension attached to a
pair (E, V ) (Subsection 2.1) Condition (O) of Lemma 2.1.3 is satisfied for N = ΠẼ, ΓẼ := Πs,Ẽ,

s ∈ S(Ẽ). In particular, S(Ẽ) ⊂ S(E, V ).

When k is ’arithmetically rich’ in the sense that it has a huge non-abelian absolute Galois
group, one expect S(H)≤d to be ‘huge’.

3.1.1. The first result in this direction is the following elementary group-theoretical and very
general observation.

3.1.1.1. Fact.1 ([Se89, 10.6])Assume k is Hilbertian of characteristic p ≥ 0 and let L be a finite
set of primes 6= p. For each ` ∈ L fix H` ∈ ModQ`(Π). Then there exists an integer d ≥ 1
such that for infinitely many s ∈ |S|≤d, the images of Πs and Π acting on ⊕`∈LH` coincide. In
particular, ∩`∈LS(H`)

≤d is infinite.

Fact 3.1.1 applies in particular to fields k which are finitely generated over their prime field
[Se89, 9.5 - Rem. 4), 5), 9.6].

3.1.1.2. Combining Fact 3.1.1 and Lemma 2.1.3, one gets:

Corollary. Assume k is Hilbertian of characteristic p ≥ 0 and let L be a finite set of primes
6= p. For each ` ∈ L, let V` ∈ ModQ`(Π) and E` ⊂ H1(Π, V`) a finite-dimensional Q`-vector
subspace. Then there exists an integer d ≥ 1 such that ∩`∈LS(E`, V`)

≤d is infinite.

3.1.2. When k is finitely generated and provided ΠH satisfies some mild assumption, one ex-
pects S(H)≤d satisfies much stronger abundance results. For instance, if H is motivic, d = 1
and k is a number field, it should follow from the Bombieri-Lang conjecture and some (more
tractable) conjectures on the geometric properties of some projective systems of étale covers of
S attached to V that (|S| \ S(H))(k) is not Zariski-dense in S (See e.g. the brief discussion in
[CCh20, §2.2]). In this direction, one has the following unconditional result, which ultimately
relies on Mordell and Mordell-Lang conjectures.

3.1.2.1. Fact. (([CT12], [CT13]) Assume k is finitely generated over Q and S is a curve.
Suppose (P) Lie(ΠH) is perfect. Then for every integer d ≥ 1, (|S| \ S(H))≤d is finite.

Remark.
(1) Furthermore, sup{[ΠV : Πs,V ] | s ∈ (|S| \ S(V ))≤d} < +∞ but we will not need this

uniformity result in our applications.
(2) For an analogue of Fact 3.1.2.1 to the char p > 0 case when d = 1 see [A18].

3.1.2.2. From Lemma 2.2, the condition that V has no Π-Lie-coinvariants ensures Condition
(P) of Fact 3.1.2.1 is satisfied by the universal extension Ẽ attached to any pair (E, V ). Com-
bining this with Lemma 2.1.3 and Fact 3.1.2.1, one gets:

Corollary. Assume k is finitely generated of characteristic 0 and S is a curve. Let V ∈
ModQ`(Π). Assume

1More generally, if Π � Π′′ is any continuous quotient such that the Frattini subgroup of Π′′ is open in
Π then there exists an integer d ≥ 1 such that for infinitely many s ∈ |S|≤d, the images of Πs and Π in Π′′

coincide. The condition that the Frattini subgroup of Π′′ is open in Π is equivalent to the fact that the set
of primes dividing the order of Π′′ is finite and that the p-Sylow of Π′′ are topologically finitely generated. In
particular, it is satisfied if Π′′ is a closed subgroup of a finite product of compact `-adic Lie groups. See [Se89,
10.6, Prop. p. 148].
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(P) Lie(ΠV ) is perfect;
(cI) V has no Π-Lie-coinvariants.

Then, for every finite-dimensional Q`-vector subspace E ⊂ H1(Π, V ) and integer d ≥ 1,
(|S| \ S(E, V ))≤d is finite.

3.2. Λ = F`. Let H ∈ ModF`(Π). Let S(H) ⊂ |S| denote the set of all s ∈ |S| such that

Πs,H ⊂ ΠH is of index prime-to-`. By definition, when H = Ẽ is the universal extension at-
tached to a pair (E, V ) (Subsection 2.1) Condition (O) of Lemma 2.1.3 is satisfied for N = ΠẼ,

ΓẼ := Πs,Ẽ, s ∈ S(Ẽ). In particular, S(Ẽ) ⊂ S(E, V ).

Let L be an infinite set of primes and let H = H`, ` ∈ L be a family of elements in ModF` of
uniformly bounded Λ`-rank r` ≤ r. Since L is infinite, Fact 3.1.1 (under its general form stated
in footnote 1) fails. Still, one has the following analogue of Fact 3.1.2. For a finite subgroup
G ⊂ GL(V`), let G+ ⊂ G denote the (characteristic) subgroup of G generated by its order `
elements.

3.2.1. Fact. ([EHK12], [CT19, §7]) Assume k is finitely generated over Q and S is a curve.
Suppose H satisfies

(U) There exists an open subgroup U ⊂ Π such that UH` = U+
H`

, ` ∈ L;

(P) Π
+

H`
is perfect for `� 0.

Then for every integer d ≥ 1 there exists an integer Bd ≥ 1 such that for ` � 0 the set of all
s ∈ |S|≤d with [ΠH` : Πs,H` ] > Bd is finite. In particular, (|S| \ S(H`))

≤d is finite.

Remark. For an analogue of the above Fact to the char p > 0 case see [CT19], [CT20].

3.2.2. Again, from Lemma 2.2, the condition that V` has no Π-coinvariants ensures Condition
(P) of Fact 3.2 is satisfied by the universal extension Ẽ` attached to any pair (E`, V`). Com-
bining this with Lemma 2.1.3 and Fact 3.2, one gets:

Corollary. Assume k is finitely generated of characteristic 0 and S is a curve. Let L be an
infinite set of primes and let V = V`, ` ∈ L be a family of elements in ModF`(Π). Assume

(U) There exists an open subgroup U ⊂ Π such that UV` = U+
V`

, ` ∈ L;

(P) Π
+

V`
is perfect for `� 0;

(cI) V has no Π-quasi-coinvariants,

Then, for every family of finitely generated F`-submodules E` ⊂ H1(Π, V`), ` ∈ L of uniformly
bounded F`-dimension r` ≤ r and integer d ≥ 1, (|S| \ S(V`, E`))

≤d) is finite, `� 0.

3.3. Base change. Let Λ = Q` or F` and V ∈ ModΛ(Π). Let f : S ′ → S be a Galois cover
and write Π′ := π1(S ′) ⊂ Π. Let s ∈ |S| and s′ ∈ |S ′| lying over s. The restriction morphisms
induce a canonical commutative diagram

H1(Π, V )
res //

ress
��

H1(Π′, V )

ress′

��

H1(Πs, V )
res // H1(Πs′ , V )

and the inflation-restriction exact sequence shows that the horizontal arrows are injective pro-
vided S ′ → S has degree invertible in Λ. In particular, f−1(S(E, V )) = S(res(E), V |Π′).

This shows that the following are equivalent:
- Corollary 3.1.1.2 for V`, ` ∈ L (resp. Corollary 3.1.2.2 for V );
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- Corollary 3.1.1.2 for V`|Π′ , ` ∈ L (resp. Corollary 3.1.2.2 for V |Π′) for some Galois cover
S ′ → S;

- Corollary 3.1.1.2 for V`|Π′ , ` ∈ L (resp. Corollary 3.1.2.2 for V |Π′) for every Galois cover
S ′ → S.

and, similarly, that the following are equivalent:
- Corollary 3.2.2 for V ;
- Corollary 3.2.2 for V for some Galois cover S ′ → S;
- Corollary 3.2.2 for V for every Galois cover S ′ → S.

In particular, to apply Corollaries 3.1.1.2, 3.1.2.2, 3.2.2 we may freely replace S by a connected
étale cover hence, in the setting2 of Corollary 3.2.2 , replace (U) with the seemingly stronger
assumption

(U+) ΠV` = Π
+

V`
for `� 0.

3.4. Remarks about assumptions (P), (SS), (cI), (I).

3.4.1. (P) in Corollary 3.1.2.2 (resp. in Corollary 3.2.2) can be ensured by the stronger (resp.
- see [CT17, Cor. 3.3]) assumption (SS) Lie(ΠV ) is semisimple. (resp. (SS) Π acts semisimply
on V`, ` � 0). But (SS), contrary to (P), does not transfer in general from V to Ẽ (Lemma
2.2).

3.4.2. In the setting of Corollary 3.1.2.2 (resp. of Corollary 3.2.2), consider the condition (I)

V Lie(ΠV ) = 0 (resp. (I) V Π
` = 0, `� 0). Then, under (SS), (I) and (cI) are equivalent.

3.4.3. The restriction that E ⊂ H1(Π, V ) be a finite dimensional Q`-vector subspace in Corol-
laries 3.1.1.2, 3.1.2.2 (resp. that E` ⊂ H1(Π, V`), ` ∈ L be of uniformly bounded F`-dimension
r` ≤ r in Corollary 3.2.2) becomes tautological under (I) (resp. provided the V`, ` ∈ L are of
uniformly bounded F`-dimension, ` ∈ L). Indeed, if (I) holds, the inflation-restriction exact
sequence implies that the restriction morphism H1(Π, V ) → H1(Π, V ) is injective (resp. that
the restriction morphism H1(Π, V`) → H1(Π, V`) is injective, ` � 0). Thus it is enough to
prove that dimQ`(H

1(Π, V )) < +∞ (resp. that dimF`(H
1(Π, V`)) is uniformly bounded, ` ∈ L).

In the non resp. situation, this follows from the fact that H1(Π, V )→̃H1
et(Sk, V ). In the resp.

situation, the fact that H1(Π, V`)→̃H1
et(Sk, V ) already shows that E` := H1(Π, V`) has finite

F`-dimension. Let Ẽ` denote the universal extension attached to (E`, V`).
- (i) By construction, N` := ker(ΠẼ`

� ΠV`) ⊂ HomF`(E`, V`) is an elementary `-group.
- (ii) By construction and the inflation-restriction exact sequence, we have a canonical isomor-

phism H1(ΠẼ`
, V`)→̃H1(Π, V`).

Now, recall Π is topologically finitely generated; let s denote the minimal number of topological
generators of Π. Then ΠẼ`

is generated by ≤ s elements. As H1(ΠẼ`
, V`) is a quotient of the

F`-module of 1-cocycles Z1(ΠẼ`
, V`) and as 1-cocyles are entirely determined by their image on

generators of ΠẼ`
, one has

dimF`(H
1(ΠẼ`

, V`)) ≤ dimF`(Z
1(ΠẼ`

, V`)) ≤ sdimF`(V`).

3.4.4. In the setting of Corollary 3.1.2.2 (resp. Corollary 3.2.2), (P) implies (I) for V/V Lie(ΠV )

(resp. (U+) and (P) imply (I) for V`/V
Π
` , ` ∈ L). Indeed, if for every v ∈ V the 1-cocycle

Lie(ΠV ) → V , g → gv takes its value in V Lie(ΠV ), it factors through Lie(ΠV )ab, which is 0 by

(P) (resp. if for every v ∈ V`, ` ∈ L the 1-cocycle ΠV` → V`, π → πv − v takes its value in V Π
` ,

it factors through ΠV`
ab, which is 0 by (U+) and (P)).
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3.4.5. (cI) does not hold in general. However by (3.4.4), in the setting of Corollary 3.1.2.2,

(SS) implies (cI) (=(I)) for V/V Lie(ΠV ) and, in the setting of Corollary 3.2.2, (U+), (SS) imply

(cI) (=(I)) for V`/V
Π
` , ` ∈ L.

4. Motivic representations

The formulation of the group-theoretical Corollaries 3.1.2.2, 3.2.2 is motivated by its possible
applications to motivic representations that is (subquotients cut out by algebraic correspon-
dance of) those of the form

- V = Hu(Xη,Q`(v)) ∈ModQ`(Π);
- V` = Hu(Xη, µ

⊗v
` ) ∈ModF`(Π), ` 6= p.

for some smooth proper morphism X → S (smooth-proper base change - see [SGA4-III, Exp.
XVI]).

We recall briefly the arguments ensuring assumptions (SS) (hence (P)), (U) and (I) (hence (cI))
and give references for more details.

- In Corollary 3.1.2.2, (P) is a consequence of (SS), which follows from comparison between
Betti and étale cohomology and Deligne’s semisimplicity theorem for variation of polarizable
Hodge structures ([D71]).

- In Corollary 3.2.2,

– The fact that the F`-rank of V` is uniformly bounded follows from the comparison between
Betti and étale cohomology and the fact that Betti-cohomology with Z-coefficients in finitely
generated;

– for p ≥ 0: the torsion-freeness of H∗(Xη,Z`) for `� 0 ([?]) and the Weil conjectures ([?]).

– For (U), see [CT17].

– (P) is a consequence of (SS) which follows from comparison between Betti and étale co-
homology, the fact that Betti-cohomology with Z-coefficients in finitely generated and the
constructibility of semisimplicity - see [CT11, 2.2].

- (I) does not hold in general; this is closely related to isotriviality. For instance, if u = 1,
by the geometric Lang-Néron theorem ([LN59]), (I) holds if and only if Pic◦(Xη) contains no

non-trivial k-isotrivial abelian subvariety.

5. Specialization of the `-adic Abel-Jacobi filtration on Chow groups

For a noetherian scheme X and an integer i ≥ 0, let Zi(X ) denote the group of codimension i
algebraic cycles and CHi(X ) denote the Chow group of codimension i algebraic cycles modulo
rational equivalence. Let X be a smooth projective geometrically connected scheme of dimen-
sion g over a field K of characteristic p ≥ 0. Determining the structure of the groups CHi(X),
i ≥ 0 is a difficult still widely open problem. In particular, these groups are not finitely gen-
erated in general and they are very sensitive to extensions of the base field K. If K is finitely
generated over its prime field, one technics is to endow CHi(X) with the so-called `-adic Abel-
Jacobi filtrations, ` 6= p and study the graded pieces of these, which embed in continuous Galois
cohomology groups. To simplify the exposition, we work with Q`-coefficients. Our arguments
can be basically transposed as they are to F`-coefficients provided ` � 0. We refer to [J88]
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for the technical setting of continuous cohomology and to [R95] for a nice introduction to the
formalism of `-adic Abel-Jacobi filtrations and related motivic conjectures (see also [J90]).

5.1. Absolute setting. Let X be a smooth projective geometrically connected scheme of
dimension g over a finitely generated field K of characteristic p ≥ 0.

5.1.1. Construction. Consider the Hochschild-Serre spectral sequence for continuous étale co-
homology

Ej,2i−j
2 = Hj(K,H2i−j(XK ,Q`)(i))⇒ H2i(X,Q`(i)),

and pull-back the induced filtration

F i,0
H,`(X) = H2i(X,Q`(i)) ⊃ F i,1

H,`(X) ⊃ · · · ⊃ F i,2i
H,` (X) ⊃ 0

to CHi(X) ⊗ Q via the cycle class map cli` : CHi(X) ⊗ Q → H2i(X,Q`(i)). The resulting
filtration

F i,0
` (X) = CHi(X)⊗Q ⊃ F i,1

` (X) ⊃ · · · ⊃ F i,2i
` (X) ⊃ 0

is called the `-adic Abel-Jacobi filtration and the canonical morphisms

ai,j` : F i,j
` (X)→ F i,j

H,`(X)/F i,j+1
H,` (X) =: Gri,jH,`(X), j ≥ 0

the `-adic Abel-Jacobi maps. Write Gri,j` (X) := F i,j
` (X)/F i,j+1

` (X). The `-adic Abel-Jacobi

maps induce an injective graded morphism Gri,•` (X) ↪→ Gri,∗H,`(X). It is known that the
Hochschild-Serre spectral sequence degenerates at E2 ([R95, Th. 1]) so, what we get, actu-
ally, is a morphism of graded groups⊕

0≤j≤2i

Gri,j` (X)→
⊕

0≤j≤2i

Hj(K,H2i−j(XK ,Q`)(i))

which is injective in degree ≤ 2i− 1.

Warning: A priori, the canonical morphism Gri,•` (X) ⊗ Q` → Gri,•H,`(X) is neither injective

nor surjective in general. In particular, the Q-rank of Gri,•` (X) might be infinite even though

the Q`-rank of Gri,•H,`(X) is finite.

5.1.2. Example. For codimension 1 and dimension 0-cycles, the filtration is rather explicit.

For an abelian variety A over a field K and an integer n ≥ 1, let A[n] denote the kernel of
the multiplication-by-n morphism on A(K). For a prime `, write T`(A) := lim

←−
A[`n], V`(A) :=

T`(A)⊗Q`.

Let α : X → AlbX denote the Albanese variety and PicX the Picard variety of X; let
Pic◦X ⊂ PicX denote the connected component of PicX . One has canonical isomorphisms
H1(XK ,Q`(1))→̃V`(Pic◦X) and H2g−1(XK ,Q`(g))→̃V`(AlbX). These isomorphisms induce com-
mutative diagrams (see e.g. [R95, Appendix]), where κ` is the `-adic Kummer morphism
(induced by taking cohomology, projective limit and − ⊗Z` Q` from the projective system of
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Kummer short exact sequences 0→ AlbX [`n]→ AlbX
`n→ AlbX → 0, n ≥ 1)

Gr1,1
H,`(X) = H1(K,V`(Pic◦X))

F 1,1
` (X) = Pic◦(X)⊗Q

& �

a1,1
` =κ`

33hhhhhhhhhhhhhhhhhhh

_�

��

//

�

F 1,1
H,`(X)

OOOO

_�

��

F 1,0
` (X) = Pic(X)⊗Q //

cl1` ++VVVV
VVVVV

VVVVV
VVVVV

V
F 1,0
H,`(X)

����

Gr1,0
H,`(X) = H2(XK ,Q`(1))π1(K)

F g,1
` (X)

ag,1`//

α

��

Grg,1H,`(X) = H1(K,V`(AlbX))

AlbX(K)⊗Q
' �

κ`

44iiiiiiiiiiiiiiii

5.2. Relative setting. Let S be a smooth, geometrically connected curve (to simplify) over
a field k of characteristic p ≥ 0. Let f : X → S be a smooth, projective morphism with
geometrically connected fibers. Fix an integer i ≥ 1 and a prime ` 6= p. We first compare the
`-adic Abel-Jacobi filtrations on CHi(Xη) and CHi(Xs). This can be done using the arguments
in [R95, 2], which we recall briefly.

5.2.1. For s ∈ |S|, let Os denote the local ring of S at s and Ohs its henselisation. Write
X(s) → S(s) and X(s)h → S(s)h for the base-change of X → S via S(s) := spec(Os) → S
and S(s)h := spec(Ohs ) → S respectively. Let ηs denote the generic point of S(s)h. Then one
has a canonical commutative specialization diagram ([Fu75, 4.4], [Fu84, 20.2, 20.3])

CHi(X(s))
η∗

xxxxqqq
qqq

qqq
qq

s∗

&&NN
NNN

NNN
NNN

CHi(Xη) sps
// CHi(Xs),

which is compatible with the cycle maps, that is such that the following diagram commutes

CHi(Xη)

��

sps

**
CHi(X(s))

η∗
oo

i∗
//

��

CHi(Xs)

��

H2i(Xη,Q`(i))

��

H2i(X(s),Q`(i))
η∗

oo
i∗
//

��

H2i(Xs,Q`(i))

H2i(Xηs ,Q`(i)) H2i(X(s)h,Q`(i))
η∗s

oo

'
i∗

55llllllllllllll

One also has the Leray spectral sequence Ej,2i−j
2 = Hj(S(s)h,H2i−j(Xηs ,Q`(i))⇒ H2i(X(s)h,Q`(i)),

which is compatible with the Hoschshild-Serre spectral sequences of 5.1.1 for Xs over k(s) and
Xηs over k(ηs). The key point is that the morphisms

Hj(S(s)h,H2i−j(Xηs ,Q`)(i))→ Hj(ηs,H
2i−j(Xηs ,Q`)(i))
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are injective ([R95, Lemma 2.13]; see also [CTHK97, Thm. B.2.1]). This shows that the Leray
spectral sequence degenerates at E2 (since the Hoschshild-Serre spectral sequence does) and
then, by a straightforward induction on j, that

sps(F
i,j
` (Xη)) ⊂ F i,j

` (Xs), j ≥ 0

As a result, we obtain a commutative specialization diagram of graded groups

(5.2.1.1)
⊕

j≥0Gr
i,j
` (Xη) //

sps

��

⊕
j≥0

Hj(Πη,H
2i−j(Xη,Q`(i))) //

⊕
j≥0

Hj(Πηs ,H
2i−j(Xηs ,Q`(i)))

⊕
j≥0

Hj(Π,H2i−j(Xηs ,Q`(i)))

infl
OO

//

ress

��

⊕
j≥0

Hj(S(s)h, R2i−jf∗Q`(i))

� ?

OO

'
ttjjjj

jjjj
jjjj

jjj

⊕
j≥0Gr

i,j
` (Xs) //

⊕
j≥0

Hj(Πs,H
2i−j(Xs,Q`(i)))

In (5.2.1.1), the central upper vertical arrow is the inflation map attached to the epimorphism
Πη � Π (recall that S is smooth hence normal) and the right vertical arrow is the one induced
by the morphisms of sites S(s)het → Set → BΠ. Write V := H2i−1(Xηs ,Q`(i)).

5.2.2. Lemma. The inflation morphism infl : H1(Π, V ) ↪→ H1(Πη, V ) is an isomorphism.

Proof. Let S ↪→ Scpt denote the smooth compactification of S and set ∂S := Scpt \ S. The
kernel N of Πη � Π is generated by the inertia groups at s ∈ ∂S. By the Hochschild-Serre
spectral sequence, it is enough to show that H1(N, V )Π = 0. By the smooth-proper base change
theorem N acts trivially on V so that H1(N, V )Π = HomΠ(N, V ). Hence it is enough to show

that for every inertia group Is ⊂ N at s ∈ ∂S one has HomΠs(I
(`)
s , V ) = 0, where (−)(`) denotes

pro-` completion. But, as Πs-modules, I
(`)
s ' Z`(1) hence has Weil weight −2 whereas V has

Weil weights −1. �

5.2.3. Write Ṽ := V/V Lie(ΠV ). Since V is a semisimple Π-module (see 4) that is V satisfies

(SS), Ṽ Lie(ΠV ) = 0. Equivalently, Ṽ satisfies (I). Since Ṽ also satisfies (SS), it satisfies (cI).

Eventually, from 3.4.3, dimQ`(H
1(Πη, Ṽ )) < +∞.

For s ∈ S, let G̃r
i,1

` (Xs) denote the image of

F i,1
` (Xs)

ai,1`→ H1(Πs, V )→ H1(Πs, Ṽ ).

For s ∈ |S| the specialization morphism sps : Gri,1` (Xη) → Gri,1` (Xs) induces a commutative
square

G̃r
i,1

` (Xη)

sps
��

� � // H1(Πη, Ṽ )

ress
��

G̃r
i,1

` (Xs)
� � // H1(Πs, Ṽ )

If k is finitely generated over its prime field, the image of Gri,1` (Xη) in H1(Π, V ) always generates
a Q`-submodule of finite Q`-rank ([R95, Prop. 2.5]). Combining these observations and Lemma
5.2.2, Corollary 3.1.1 and Corollary 3.1.2.2 yield the following results about specialization of
Gri,1` .
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5.2.3.1. Corollary. Assume k is Hilbertian. Let L be a finite set of primes not containing p.
Set V` := H2i−1(Xηs ,Q`(i)), ` ∈ L and let E` ⊂ Gri,1` (Xη) whose image in H1(Π, V`) generates
a finite-dimensional Q`-subvector space, ` ∈ L. Then there exists an integer d ≥ 1 such that
the specialization morphisms

sp1
s : E` ↪→ Gri,1` (Xη)→ Gri,1` (Xs), ` ∈ L

are injective for infinitely many s ∈ |S|≤d.

In particular, if k is finitely generated over its prime field, there always exists s ∈ |S| such that
rank(Gri,1` (Xη)) ≤ rank(Gri,1` (Xs)), ` ∈ Σ (where we allow infinite Q-rank).

5.2.3.2. Corollary. Assume k is finitely generated over its prime field and p = 0. Then
for every integer d ≥ 1 and all but finitely many s ∈ |S|≤d, the specialization morphism

s̃p1
s : G̃r

i,1

` (Xη)→ G̃r
i,1

` (Xs) is injective.

Remark. Since the specialization morphism Gri,0` (Xη) → Gri,0` (Xs) is injective for every

s ∈ |S|, we may replace Gri,1` (resp. G̃r
i,1

` ) with Gri,0` ⊕Gr
i,1
` (resp. Gri,0` ⊕ G̃r

i,1

` ) in Corollaries
5.2.3.1, 5.2.3.2.

5.3. Note that our method only allows to tackle specialization issues for families over a ‘geo-
metric’ basis that is schemes of finite type over a field k. Very little seems to be known for
specialization over ‘arithmetic’ bases that is scheme of finite type over Z. See however [Sc06]
for a discussion about `-primary torsion classes in Chow groups.

6. Applications, examples

6.1. About the `-independence of the second step of the `-adic Abel-Jacobi filtra-
tion in characteristic 0. Jannsen’s injectivity conjecture ([J90, Conj. 9.15]; see also [BlK90,
Conj. 5.3]) predicts that for a smooth, projective scheme X over a global field K the morphisms
induced by the the `-adic Abel-Jacobi maps

ai,1` : F i,1
` (X)⊗Q` → H1(K,H2i−1(XK ,Q`)(i))

are injective, i ≥ 0. On the other hand, Beilinson’s conjecture on the existence of filtrations on
Chow groups predicts that, at least in characteristic 0, the `-adic Abel-Jacobi filtration should
be independent of ` ([J94, Lemma 2.7]). The following is a typical application of a specializa-
tion result as Corollary 5.2.3.1.

Corollary. Assume Jannsen’s injectivity conjecture for number fields. Then for every smooth,
projective scheme X over a field K finitely generated over Q, the second piece F i,2

` (X) ⊂
CHj(X)⊗Q of the `-adic Abel-Jacobi filtration is independent of `.

Proof. By comparison between Betti and `-adic cohomologies2, F i,1
` (X) ⊂ CHi(X) ⊗ Q is

independent of `. We proceed by induction on the transcendence degree d of K. If d = 0,
this follows from Jannsen’s conjecture [J90, Conj. 9.15]. If d ≥ 1, K = k(η) for k a field
finitely generated over Q of transcendence degree d − 1 and η the generic point of a smooth,
geometrically connected curve S over k. Up to replacing S by a non-empty open subscheme,
one may assume X extends to a smooth projective scheme X → S. From Corollary 5.2.3.1,
there exists s ∈ |S| such that the restriction morphisms ress,` : H1(Π, V`) → H1(Πs, V`) and

2This is the only place where we use the assumption that K is of characteristic 0; it does not seem that for
p > 0 one knows that F i,1

` (X) ⊂ CHi(X)⊗Q is independent of `.
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ress,`′ : H1(Π, V`′) → H1(Πs, V`′) are injective on the image of the corresponding first higher
`-adic Abel-Jacobi maps (here we write V` = H2i−1(XK ,Q`(i))). But, then

F i,2
` (X) = sp−1

s (F i,2
` (Xs) ∩ F i,1

` (X))
(∗)
= sp−1

s (F i,2
`′ (Xs) ∩ F i,1

`′ (X)) = F i,2
`′ (X),

where (*) follows from the `-independence of F i,1
` (X) ⊂ CHi(X) ⊗ Q and the induction hy-

pothesis applied to Xs. �

6.2. Abelian schemes (5.1.2 cont.) Assume X = A → S is an abelian scheme. The
specialization diagram of 5.2.3 reads as

Aη(k(η))⊗Q � � κ` // H1(Πη, V`(Aη))

A(S)⊗Q � � //

sps

��

'

OO

H1(S, V`(1)) ' H1(Π, V`(Aη))

ress
��

infl'

OO

As(k(s)))⊗Q � � κ` // H1(Πs, V`(As)),

where the upper left isomorphism is the Néron extension property for abelian schemes. In
particular, Corollary 5.2.3.1 and Corollary 5.2.3.2 together with the Lang-Néron theorem [LN59]
imply respectively the following.

6.2.1. Corollary. Assume k is finitely generated over its prime field. Then there exists an
integer d ≥ 1 such that the specialization morphism sps : Aη(k(η)) ⊗ Q → As(k(s)) ⊗ Q is
injective for infinitely many s ∈ |S|≤d. In particular, rank(Aη(k(η))) ≤ rank(As(k(s))) for
infinitely many s ∈ |S|≤d.

6.2.2. Corollary. Assume k is finitely generated over Q and Xη contains no non-zero k-
isotrivial abelian subvariety. Then for every integer d ≥ 1 and all but finitely many s ∈
|S|≤d, the specialization map sps : Aη(k(η)) ⊗ Q → As(k(s)) ⊗ Q is injective. In particular,
rank(Aη(k(η))) ≤ rank(As(k(s))).

6.2.3. Comparison with Silverman’s theorem. When k is a number field, one recovers Silver-
man’s specialization theorem [Si83, Thm. C]. More precisely, in this setting, our method
shows, more generally, that for all but finitely many s ∈ |S|≤d, the restriction morphism
ress : H1(Π, V`(Xη)) → H1(Πs, V`(Xs)) is injective and Corollary 6.2.2 appears as a special
case of a more general specialization theorem about cohomology classes. On the other hand,
Silverman’s specialization theorem says more about algebraic classes, namely that the set of all
s ∈ |S| where the specialization map sps : Xη(k(η))⊗Q→ Xs(k(s))⊗Q is non-injective is of
bounded height.

Silverman’s theorem follows from the non-degeneracy of the Néron-Tate height pairing 〈−,−〉Xη :
Xη(k(η))Q ×Xη(k(η))Q → R at the generic fiber, the limit formula: for every P,Q ∈ X(S)

lim
s∈|S|, hS(s)→+∞

〈Ps, Qs〉Xs
hS(s)

= 〈Pη, Qη〉Xη .

and the Northcott property for heights over number fields.

So provided a good theory of heights is available for Chow groups, Silverman’s argument should
extend to Gr1,i

` (Aη). Several constructions of height pairings on Chow groups generalizing the
Néron-Tate height pairing have been proposed ([Bei87], [Bl84], [GiS84]) but the constructions
and properties (such as the non-degeneracy or limit formula) of these height pairings are still
partly conjectural. However, for cycles geometrically algebraically equivalent to zero modulo
incidence equivalence, which are parametrized by abelian varieties - the so-called higher Picard
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varieties (see [S79] for details) - one can essentially reduces to Silverman’s theorem. More
precisely, let

F i,1
inc(Aη) ⊂ F i,1

alg(Aη) ⊂ F i,1
` (Aη)

denote the Q-subvector spaces of cycles geometrically incidence equivalent to zero and geomet-
rically algebraically equivalent to zero respectively. Set

F i,2
alg,`(Aη) := F i,1

alg(Aη) ∩ F
i,2
` (Aη) ⊂ F i,1

alg(Aη).

Then F i,2
alg,`(Aη) ⊂ F i,1

inc(Aη) that is,

F i,1
alg(Aη)/F

i,1
inc(Aη) � F i,1

alg(Aη)/F
i,1
alg,`(Aη) ↪→ Gri,1` (Aη).

Let I ⊂ F i,1
alg(Aη)/F

i,1
alg,`(Aη) be any Q-vector subspace mapping injectively into F i,1

alg(Aη)/F
i,1
inc(Aη).

Then, if the higher Picard variety PiciXη contains no non-zero k-isotrivial abelian subvariety,

Silverman’s theorem shows that the set of all s ∈ |S| such that the induced morphism

I ⊂ Gri,1` (Aη)
sps→ Gri,1` (As)

is non-injective is of bounded height.

Remark: The geometric meaning of the condition that PiciAη contains no non-zero k-isotrivial
abelian subvariety is unclear to us. We do not know if there is a simple criterion that ensures
it.

6.2.4. The set S1(E, V ). When k is finitely generated, V := V`(Aη) is a semisimple π1(S)-
module hence for every finite-dimensional Q`-vector subspace E ⊂ H1(Π, V ) one can apply
Lemma 2.1.3 with N = ker(ΠẼ → ΠV ). Define Π := ΠE : |S| → Z≥0 by Π(s) = dim(N) −
dim(N ∩ Πs,Ẽ). Let S1(E, V ) ⊂ |S| denote the set of all s ∈ |S| such that Π(s) = 0. Then one
has

S0(E, V ) := S(E, V ) ⊃ S1(E, V ) ⊃ S2(E, V ) := S(Ẽ) = S1(E, V ) ∩ S(V ) ⊂ S(V )

6.2.4.1. Interpretation of S1(E, V ) (abelian schemes). Let A be an abelian variety over a field
K of characteristic p ≥ 0. Fix a prime ` 6= p and consider V := V`(AK) ∈ ModQ`(Π). Fix a
free Z-module E0 ⊂ A(K) of finite rank and set E =: E0⊗Q`, which we identify with its image
in H1(π1(K), V ) via the `-adic Kummer morphism. Then the ‘universal’ extension Ẽ of 2.1.1
is the Tate module V`([E → A]) of the 1-motive [E → A] defined by E (see [Jo14]). Pick a
Z-basis P = (P1, . . . , Pr) ∈ E0. Let A(P ) ⊂ Xr denote the connected component of the Zariski
closure of ZP ⊂ Ar and set V (P ) := V`(A(P )K). Up to non-canonical isomorphism, A(P ) and
V (P ) only depend on E and not on P . By construction, N ↪→ HomQ`(E, V ) ' V r and we have
the following description of N ([Jo14, (Comment after) Thm. 2]),

Fact. (Unipotent part of the Mumford-Tate conjecture for 1-motives) The inclusion N ↪→ V r

factors through V (P ) and induces an (a non-canonical) isomorphism of `-adic Lie groups
N ⊗Q` ' V (P ).

We come back to our abelian scheme A → S. If E0 ⊂ A(S) is a free Z-module of finite rank
and P = (P1, . . . , Pr) ∈ E0 a Z-basis, for s ∈ |S|, one has

Π(s) = dim(V (P η))− dim(V (P s)) = dim(A(P η))− dim(A(P s)).

On the one hand, this shows that S1(E, V ) is independent of ` and, on the other hand that

6.2.4.2. Corollary. Assume k is finitely generated over Q. Then the set of all s ∈ S(k) (resp.
for every integer d ≥ 1 the set of all s ∈ |S|≤d) where the unipotent part A(P s) of the motivic
Galois group of [Es → As] degenerates is finite.
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6.2.5. An example with F`-coefficients. We conclude by a refinement of Corollary 6.2.2, using
Corollary 3.2.2. For an abelian group M and a prime `, let Mtors and M [`∞] denote the torsion
subgroup of M and the `-Sylow of Mtors respectively. With the notation of 6.2, one has

6.2.5.1. Corollary. Assume k is finitely generated over Q and Aη contains no non-zero k-
isotrivial abelian subvariety. Then for every integer d ≥ 1 and all but finitely many s ∈ |S|≤d,
the specialization morphism sps : Aη(k(η))→ As(k(s)) is injective and satisfies coker(sps)[`] =
0.

Proof. For s ∈ |S|, the specialization map induces a morphism

sps : Aη(k(η))tors → As(k(s))tors

which is injective. Since Aη(k(η)) is a finitely generated abelian group, Aη(k(η))[`] = 0 for
` � 0. By the geometric Lang-Néron theorem ([LN59]), the assumption that Aη contains no

non-zero k-isotrivial abelian subvariety ensures (I). This, in turn, implies that for every integer
B ≥ 1, for ` � 0 and every 0 6= v` ∈ Aη[`] one has [ΠV` : StabΠV`

(v`)] > B2 ([CT16a, Lemma

2.8]). Then for every integer d ≥ 1, there exists an integer B ≥ 1 such that for ` � 0 and all
but finitely many s ∈ |S|≤d, [ΠV` : Πs,V` ] ≤ B 3.2 . Hence

B[Πs,V` : StabΠs,V`
(v`)] ≥ [ΠV` : StabΠs,V`

(v`)] ≥ [ΠV` : StabΠV`
(v`)] ≥ [ΠV` : StabΠV`

(v`)] > B2,

which shows that As(k(s))[`] = 0. On the other hand, by Theorem ??, for every integer d ≥ 1,
for ` � 0 and for all but finitely many s ∈ |S|≤d, the specialization map sps : Aη(k(η))/` →
As(k(s))/` is injective. The conclusion thus follows from the formal Lemma 6.2.5.2. �

6.2.5.2. Lemma. Let R be a principal ideal domain, ϕ : N → M a morphism in ModR
and let 0 6= r ∈ R \ R× such that the induced morphism ϕ : N/r → M/r is injective. If
ker(ϕ)tors = M [r] = 0 then ϕ : N →M is injective and coker(ϕ)[r] = 0.

Proof. Apply the snake lemma to

0 // M
r //

ϕ

��

M //

ϕ

��

M/r //

ϕ

��

0

0 // N
r // N // N/r // 0 �

6.2.5.3. Remark. For ` fixed, increasing k produces lots of s ∈ S(k) such that coker(sps)[`] 6=
0. More precisely, if Aη contains no non-zero k-isotrivial abelian subvariety, A(Sk) is a finitely
generated Z-module. Up to replacing S by a finite cover, we may assume A(Sk) has rank ≥ 1
and up to replacing k with a finite field extension, we may assume X(S) = X(Sk). Then,
X(S) remains unchanged when k is replaced with a finite field extension. Pick x ∈ A(S) a
non-torsion, non-divisible section and s ∈ S(k) such that sps : A(S) ↪→ As(k(s)) is injective
(after replacing k by a finite field extension, such an s always exists by Corollary 6.2.5.1).
But then, up to replacing k by a finite field extension, we may assume sps(x) =: xs ∈ k(s)
is `-divisible that is there exists a ∈ As(k(s)) such that xs = `a. Then 0 6= a ∈ coker(sps)[`]
since, otherwise, there would exist x′ ∈ A(S) such that a = sps(x

′) hence, by injectivity of
sps : A(S)⊗Q ↪→ As(k(s))⊗Q, x = `x′. This would contradict our assumption on x.
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17

[CTHK97] J.-L. Colliot-Thélène, R. T. Hoobler and B. Kahn The Bloch-Ogus-Gabber theorem, Fields
Institute Comm. 16, A.M.S., p.31–94, 1997.

[CCh20] A. Cadoret and F. Charles, A remark on uniform boundedness for Brauer groups, Algebraic Ge-
ometry, to appear.

[CHT17] A. Cadoret, C.-Y. Hui and A. Tamagawa, Geometric monodromy – semisimplicity and maximality,
Annals of Math. vol. 186, p. 205–236, 2017.

[CT11] A. Cadoret and A. Tamagawa, On a weak variant of the geometric torsion conjecture, Journal of
Algebra 346, p. 227–247, 2011.

[CT12] A. Cadoret and A. Tamagawa, A uniform open image theorem for l-adic representations I, Duke
Math. Journal 161, p. 2605–2634, 2012.

[CT13] A. Cadoret and A. Tamagawa, A uniform open image theorem for `-adic representations II, Duke
Math. J. 162, p. 2301–2344, 2013.

[CT16a] A. Cadoret and A. Tamagawa, Gonality of abstract modular curves in positive characteristic with an
appendix Gonality, isogonality and points of bounded degree on curves, Compos. Math. 152, p. 2405-2442,
2016.

[CT17] A. Cadoret and A. Tamagawa, On the geometric image of F`-linear representations of étale funda-
mental groups, I.M.R.N. 2017, p. 1–28, 2017.

[CT19] A. Cadoret and A. Tamagawa, Genus of abstract modular curves with level-` structures, Journal für
die reine und angewandte Mathematik (Crelle’s Journal) 752, p. 25–61, 2019.

[CT20] A. Cadoret and A. Tamagawa, Erratum to Genus of abstract modular curves with level-` structures,
2020.
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