
NOTES ON TALK 1. ANABELIAN GEOMETRY:

INTRODUCTION

ALENA PIRUTKA

1. What is contained in “Galois type” data?

Gauss: The regular n-gon can be constructed by straightedge and compass if and
only if n = 2kp1 . . . pr where pi = 22ni + 1 are Fermat primes. For example, n = 17.
(Based on the study of the extension Q(ζn)/Q and cyclotomic polynomials). Here
the key is that the hidden symmetries are in the Galois group action (not in the
geometric symmetry). Later we will consider the “hidden” structures in the absolute
Galois group of a field (such as a projective structure).

1.1. Inverse Galois Problem.

• Inverse Galois Problem: which finite groupsG can be realized as Galois groups
of an extension over Q? (OPEN).
Hilbert: yes for groups G that can be realized as a Galois group of K =
Q(x1, . . . xr).
Noether: If V is a (linear) representation of a finite group G over the field k,
then G = Gal(k(V ) : k(V )G) so that if k(V )G is purely transcendental over
k and k = Q, one can apply Hilbert’s theorem: G is a Galois group over Q.
• Remark: Shafarevich showed that any solvable finite group is a Galois group

over Q.

1.2. Noether Problem. When k(V )G/k is purely transcendental? I.e. when V/G
is rational?

Counterexamples (when k(V )G/k is not purely transcendental) with k algebraically
closed:

• Saltman (1984): G of order `9;
• Bogomolov (1988): G of order `6;
• Moravec (2011): G of order `5;
• more examples for nonlinear actions.

Counterexamples with k = Q:

• Swan, Voskresenskii: G = Z/47;
• Saltman, Voskresenskii: G = Z/8.
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In section 2 we discuss in details the examples of F. Bogomolov: the invariants
that obstruct the rationality of V/G come from (a quotient of) the absolute Galois
group of k(V )G: more precisely, from the subgroup of unramified elements in the
second Galois cohomology of this group.

1.3. Reconstructing of fields from their absolute Galois group. The dis-
cussion above motivates the following question: how much one can read from the
absolute Galois group Gk = Gal(ksep/k) of a field k? Could one “reconstruct” the
field from its Galois-theoretic invariant(s)?

• Artin-Schreier (1920): if Gk is a finite non-trivial group, then Gk ' GR = Z/2
and k is real closed. Here GR is simple to understand.
• The group GQp (more generally, Gk for k a p-adic field), p 6= 2, is much more

complicated, but its structure is known (Jakovlev, Poitou, Jannsen-Wingberg
and others), see Neukirch, Schmidt, Cohomology of Number Fields, section
7.5. The Galois group Gk of the maximal tamely ramified extension is a
profininte group generated by two elements σ, τ with one relation στσ−1 = τ q

(where q is the cardinality of the residue field). The wild ramifiation group
is a pro-p-subgroup and is also described by generators and relations (cf.
the explicit desciption by Demuskin). Jannsen-Wingberg give the complete
description: if [k : Qp] = n, then Gk is a profinite group with n+ 3 generators
σ, τ, x0, . . . xn, satisfying the explicit relations (too long to copy it here).
• Neukirch (1969, a p-adic analogue of Artin-Schreier result): if k ⊂ Q̄ and
Gk ' GQp , then k is the decomposition field of an extension of | |p to Q̄
(extended by Pop to the general case, not necessarily a subfield of Q̄).
• Example of Perlis: non-isomorphic field extensions of Q, with the same Dedekind

zeta-functions (i.e. this local data does not determine the field).
• Uchida (1976) (notes by Iwasawa, unpublished): the Galois group character-

izes a global field. More precisely, if k, k′ are global fields with

Gk
φ
' Gk′ as profinite groups, then k ' k′ as fields: there exits a field

isomorphism ψ : k
′sep → ksep with ψ(k′) = k and φ(g) = ψ−1 ◦g ◦ψ.

Remark: it is enough to have an isomorphism between Galois groups of max-
imal solvable extensions of k and k′.
• Pop: generalization to arbitrary fields. There is a “group-theoretical recipe”

to recover finitely generated infinite fields k from their absolute Galois groups
Gk. Moreover, the same fonctoriality property as above holds. (Also, there
are results by Mochizuki for the correspondance between homomorphisms
Gk → Gk′ and embeddings of fields k → k′). Some steps in the argument:

a) view k as a function field of a normal complete scheme over Z or over Fp;
b) develop an analogue of the Neukirch’s local theory: in higher dimensions,

places correspond to valuations, whose decomposition and inertia groups
are encoded in Gk;

c) recover k from the local data (a difficulty is to indentify k in k̂).
• Bogomolov’s anabelian program, results by Bogomolov-Tschinkel: the en-

tire group Gk is too large and often difficult to understand. The goal is to
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reconstruct the field k from much smaller amount of data. Let Gk be a pro-`-
completion of Gk for ` 6= char k. Let Gak be the abelinization Gak = Gk/[Gk,Gk]
and Gck = Gk/[Gk, [Gk,Gk]] the canonical central extension. Let Σk be the set
of all (topologically) non-cyclic subgroups of Gak that lift to abelian subgroups
of Gck. The main result (see also Pop, On the birational anabelian program
initiated by Bogomolov I) says that if k is a function field of an algebraic
variety over F̄p, then the couple (Gak ,Σk) determines k. Should also work (to
do!) over any algebraically closed field (not only over F̄p).

1.4. Curves and the fundamental group. To a connected scheme X with a
geometric base point x̄ one associates the étale fundamental group π1(X, x̄), defined
as the automorphism group of the fiber functor on the category of the étale covers
of X. We will ignore the point x̄ and write simply π1(X) (more accurately, we view
π1(X) in the category of all profinite groups with outer continuous homomorphisms).
If X is a geometrically connected scheme over a field k, then there is an exact
sequence:

1→ π1(X̄)→ π1(X)→ Gk → 1.

If k ⊂ C, then, the base change to C realizes π1(X̄) as the profinite completion
of the topological fundamental group of X(C).

If X is complete and regular, π1(X) is a birational invariant.
Now assume that X is a smooth and connected curve, Xc is a smooth compact-

ification, S = Xc \ X, g = g(Xc) and r = |S̄|. Recall that X is hyperbolic if
2−2g−r < 0. If chark = 0, then the group π1(X̄) is well understood via generators
and relations (2g generators and one relation for X complete, and free with 2g+r−1
for r > 0 and X not isomorphic to A1). In positive characteristic, one considers
the tame fundamental group πt1(X) as the maximal quotient of π1(X) that classifies
étale connected covers X ′ → X whose ramification is tame above the points in S.

Following Grothendieck, a property of X is anabelian if it is encoded in the
fundamental group π1(X):

• Anabelian conjecture for curves: an isomorphism type of X can be recovered
from π1(X) (up to pure inseparable covers and Frobenious twists), functori-
ally with respect to isomorphisms and homomorphisms, as in Uchida’s and
Mochizuki’s results. I.e. do we haveHomk(X,Y ) = HomGk

(π1(X), π1(Y ))/ ∼?
(note: by Faltings, for X, Y abelian varieties over a number field, we have

HomGk
(πa1(X), πa1(Y )) = Homk(X,Y )⊗ Ẑ. )

• Section conjecture (resp. birational form): sections of π1(X)→ Gk (resp. of
Gk(X) → Gk ) arise from rational points of Xc, for X a hyperbolic curve over
an infinite field k.

Some results. Voevodsky (1990) investigated this problem in Etale topologies of
schemes over fields of finite type over Q. Tamagawa: recovering a smooth affine
curve X over a finite field from π1(X), if X is hyperbolic - from πt1(X); also affine
hyperbolic curves over finitely generated fields in characteristic zero. Functorially
for isomorphisms. Mochizuki: extension to complete hyperbolic curves over finitely
generated fields in characteristic zero. Stix: some hyperbolic curves over infinite
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fields in positive characteristic. Tamagawa: if X = P1
F̄p \ {0, 1,∞, x1, . . . xn}, then

it can be recovered from πt1(U).

2. Origins for the study of Gck: unramified Brauer group of k(V )G,
after Bogomolov

For a proof as discussed during Talk 1 see J.-L. Colliot-Thélène, The rationality
problem for fields of invariants under linear algebraic groups (with special regards to
the Brauer group), Thm. 6.1, Prop. 4.3, Thm. 7.1, Thm. 7.3 and Example 7.5.

3. Overview of the reading group

3.1. Talks 2-3. The main goal is to prove:

Theorem 1. Let K,K ′ be function fields of algebraic varieties over algebraically
closed fields k, k′. Assume that the transcedence degree of K over k is at least 2.
Assume that there exist compatible isomorphisms of abelian groups φi : K̄M

i (K) →
K̄M
i (K ′), i = 1, 2, where K̄M

i = KM
i /〈infinitely divisible elements〉. Then there is

an isomorphism of fields φ : K → K ′ compatible with φ1.

We will in fact discuss a stronger version of this result, when φ1 and φ2 are
compatible homomorphisms with φ1 injective, such that its image is not contained
in a one-dimensional subfield. Then there exists a homomorphism φ : K → K ′ such
that the induced map on K̄M

1 is a rational power of φ1.
This result should hold for any fields K and K ′ (not necessarily function field

over algebraically closed fields k and k′).

3.1.1. TALK 2: elementary theorems on K1 and K2.

a) A motivation for using Milnor K-theory to reconstruct fields. In fact, one
can view K1 as a “dual” discrete analogue of Ga, and K2 - of Gc. (see section
2 of Milnor K2 and field homomorphisms and section 1 in Galois theory and
projective geometry ) and also the introduction in Introduction to birational
anabelian geometry.

b) The proof of the reconstruction from the K-theory uses several technical but
elementary results from Milnor K-theory and for polynomial rings. For the
first one, see section 5 of Milnor K2 and field homomorphisms. For the second
one, the key statements are Proposition 11, Theorem 22, as well as formulas
(3.12) and (3.13) there in. The proof is quite long and it is probably possible to
simplify it. See Introduction to birational anabelian geometry for a simplified
proof that works in characteristic zero only (proposition 9).

c) An observation: for the K-theory, only these “elementary” results are needed,
but for Galois groups more sophisticated tools from the valuation theory are
used. Why?
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3.1.2. TALK 3: Abstract projective geometry and reconstruction of fields via KM
1

and KM
2 . Introducing the Galois setting.

a) A classical reconstruction result allows to reconstruct a field, with its additive
and multiplicative structures, from projective geometry:

Theorem 2. Let K/k and K ′/k′ be field extensions of degree at least 3 and

S = Pk(K) ' Pk′(K ′) = S′

be a bijection of sets which is an isomorphism of abelian groups and of pro-
jective structures. Then k ' k′ and K ' K ′.

(see Introduction to birational anabelian geometry, section 1 and Galois
theory and projective geometry , section 2.) We first discuss basic notions
from the projective geometry and this result.

b) The proof of theorem 1 follows Milnor K2 and field homomorphisms, section 4
and the end of section 5, using the result from the projective geometry above.

c) The setting: Gck, `-adic difficulties: section 11 in Reconstruction of function
fields.

3.2. Talks 4-7. The main goal is to prove:

Theorem 3. Let K,L be function fields over algabraic closures of finite fields k, l
respectively, of characteristic different from `. Assume that the transcendence degree
of K over k is at least 2 and that there is an isomorphism Ψ : GaK

∼→ GaL of abelian
pro `-groups inducing a bijection of sets ΣK and ΣL. Then

(i) k ' l;
(ii) there is a unique (up to the composition with a power of the absolute Frobenius

automorphism), isomorphism of perfect closures Ψ̄ : L̄→ K̄, such that e−1Ψ
is induced from Ψ̄, for some e ∈ Z∗` .

The main steps of the reconstruction in the surface case could be described as
follows:

a) The first key construction is to obtain, from a subgroup σ ∈ ΣK an inertia
element of some valuation. One can then describe the decomposition group,
too.

b) From all possible valuations one distinguishes divisorial ones (the idea is that
the residue field is not algebraically closed).

c) From a valuation one fixes a choice of an actual divisor: in fact, it is enough
to “fix” one.

d) One obtains functions by pairing with divisors (note: we do not fix a model,
so that one should consider non-rational divisors as a support).

e) Once we have functions the only remaining step to reduce the reconstruction
to the projective geometry case (theorem 2) is to describe which functions are
algebraically independent.

Remarks: This result should also work for any algebraically closed field (to do!).
The current proof uses that there is no nontrivial valuations on the algebraic closures
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of F̄p. For arbitrary algebraically closed field one will have to find a method to
separate the valuations coming from the base field from the valuations on K. Also,
one needs roots of unity in k (but probably one could relax the condition that k is
algebraically closed, too).

3.2.1. Talk 4.

a) Valuation theory, as in Commuting elements in Galois groups of function
fields, sections 2 and 3, and theorem 13 in Introduction to birational anabelian
geometry. Finding one inertia element: characterisation of “flag functions”
(AF-functions), recovering the intertia elements using AF-functions (section
6.3 in Commuting elements in Galois groups of function fields).

b) Characterizing decomposition subgroups (Proposition 8.3 in Reconstruction
of function fields).

3.2.2. Talk 5.

a) Choosing divisorial valuations and divisors (remark: see proposition 15.7 in
Reconstruction of function fields, Proposition 6.4 in Reconstruction of higher-
dimensional function fields, section 6 ).

b) Choosing functions: section 12 in Reconstruction of function fields.

3.2.3. Talk 6. Analysis on curves: sections 13, 14 in Reconstruction of function
fields.

3.2.4. Talk 7. The dimension 2 case: end of proof, following Reconstruction of func-
tion fields: sections 15 and 16.

3.2.5. Talk 8. The general case, following Reconstruction of higher dimensional
function fields.

3.3. Talk 9. If time permits, here we plan to discuss several open questions, in par-
ticular the freedom conjecture and the connections with the Block-Kato conjecture.
Let π : Gk → Gak , πc : Gk → Gck and πa : Gck → Gak be the canonical projections.
Then:

Theorem 4. The Bloch-Kato conjecture is equivalent to

(i) the map π∗ : H∗(Gak ,Z/`n)→ H∗(Gk,Z/`n) is surjective, and
(ii) Ker (π∗a)=Ker(π).

Consider now S` an `-Sylow subgroup of Gk and put S
(1)
` = [S`,S`]. The

freeness conjecture of Bogomolov claims that H i(S
(1)
` ,Z/`m) = 0 for all i ≥ 2,

n ∈ N. A proof of this conjecture would provide a different proof of the Bloch-Kato
conjecture. See Galois theory and projective geometry, sections 5 and 6, Introduction
to birational anabelian geomeetry, section 3.
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