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1 Small Frobenius centraliser

LetX → Y be a smooth and proper morphism of Z[S−1]-schemes whose fibres are ge-
ometrically connected of dimension d. For y ∈ Y (Z[S−1]) write Vy = Hd(Xy,C,Q)prim.
Write V0 = Vy0 .

Let G′ be the reductive Q-group consisting of the automorphisms of V0 that multi-
ply the intersection form by a constant. Let ϕ0 : S1 → G′(C) be the homomorphism
describing the Hodge structure on V0.

If y ∈ Y (Z[S−1]), thenXy has good reduction modulo any ` /∈ S so we can consider
the primitive crystalline cohomology group Hd

cris(Xy,F`
/Q`)

prim of the reduction mod
`. It carries a Frobenius, which is linear and not just semilinear because F` is a
prime field. Hence

F cris,`
y ∈ GAut := GAut Hd

cris(Xy,F`
/Q`)

prim,

where GAut is the group of the automorphisms that multiply the intersection form
by a constant.

Recall that the semisimplifications are taken with respect to the reductive groups
G′ or GAut (as introduced by Serre in “Complète réductibilité”). This means that a
representation is called irreducible if its image is not contained in a proper parabolic
subgroup (equivalently, if the group is orthogonal or symplectic, an invariant sub-
space must be isotropic). A representation is called completely reducible if any
parabolic containing the image has a Levi factor also containing the image. A
semisimplification of a representation is defined by taking the minimal parabolic
containing the image and projecting to a Levi factor. The result is well defined up
to conjugation. The Zariski closure of the semisimplification is a reductive group
(in char 0), see Serre, op. cit.

Lemma 10.4 There exists an integer L with the following property:

for any y ∈ Y (Z[S−1]) there is a prime ` < L not in S such that

dimZGAut((F
cris,`
y )ss) ≤ dimZG′(C)(ϕ0).
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Proof The superscript Zar will denote the Zariski closure.

Step 1.

Fix p /∈ S and let ρy,p : GQ → G′(Qp) be the continuous representation in
Hd

ét(Xy,Q,Qp)
prim ' Vy ⊗Q Qp. It is continuous, unramified outside S and pure of

weight d/2. By Faltings’ lemma there are only finitely many possibilities for the
semisimplification ρss

y,p.

Let H = ρss
y,p(GQ)Zar ⊂ G′, and let H◦ ⊂ H be the connected component of the

identity. Since ρss
y,p is semisimple, H◦ is a reductive group.

Recall that an element in H◦(Qp) is called regular if its centraliser has the least
possible dimension (equal to the rank of H◦). A semisimple element is called very
regular if its centraliser taken in Aut(V0 ⊗Q Qp) has the least possible dimension.

Let T0 ⊂ H◦ be a maximal torus defined over Qp. Consider the adjoint repre-
sentation of the Lie group Aut(V0 ⊗Q Qp) on its Lie algebra, and restrict it to T0.
Let Φ be the characters of T0 that show up in this representation of T0. It is clear
that t ∈ T0(Qp) is very regular if and only if α(t) 6= 1 for all roots α ∈ Φ. Then the
centraliser of t is the centraliser of T0, which means that t is regular in H◦. Since
any semisimple element is contained in a maximal torus, this implies that a very
regular element is regular in H◦. This also implies that a very regular element of
H◦(Qp) is also very regular as an element of G′(Qp) ⊂ Aut(V0 ⊗Q Qp).

The set of very regular elements is a non-empty Zariski open subset of H◦. Indeed,
the function f =

∏
α∈Φ(α(t)−1) is a regular function on T0 which is invariant under

the Weyl group W . By a result of Steinberg (Cor. 6.4 in Steinberg’s “Regular ele-
ments in semisimple groups”, Appendix 1 to Ch. 3 of Serre’s “Galois cohomology”),
the algebra Qp[T0/W ] is naturally isomorphic to the algebra of class functions on
H◦ (i.e., regular functions invariant under conjugation). Thus f comes from a class
function on H◦, and the locus of very regular elements is the set of non-zeros of this
function.

As ρss
y,p is continuous and ρss

y,p(GQ) is Zariski dense in H, the preimage of the
set of very regular elements under ρss

y,p is non-empty and open in GQ. Since ρss
y,p

is unramified outside S, by Chebotarev density theorem the images of Frobenii at
primes outside S are dense in ρss

y,p(GQ), so there is a prime ` such that ρss
y,p(Frob`)

is a very regular element of H◦. By Faltings’ lemma, for given S, p, and dimension
of the representation, there are only finitely many possibilities for ρss

y,p. So such an
` is bounded by a constant L depending only on these.

Step 2.

Now consider the restriction of ρy,p to GQp . Then ρy,p(GQp)Zar is an algebraic
subgroup of G′. The claim of Step 2 is that this algebraic group contains a subgroup
S which is conjugate, over Qp ' C, to the Hodge torus ϕ0(S1)Zar ⊂ G′(C).

2



The group ρy,p(GQp)Zar is interpreted as the group associated to the neutral Tan-
nakian category generated by the GQp-module Vy ⊗Q Qp (i.e., the automorphism
group of the natural fibre functor). The attached filtered φ-module gives another
fibre functor on this category; it gives rise to another Tannakian group. By Deligne–
Milne, the fibre functors on the category of representations of a group bijectively
correspond to the torsors of this group. Thus over Qp the two Tannakian groups
become isomorphic.

But Wintenberger [W] shows that the Hodge filtration is canonically split, and
this allows one to define an associated cocharacter ϕW acting as a scalar on each
quotient. Using an isomorphism Qp ' C both ϕW and ϕ0 can be considered as maps
to G′(C). They both preserve the Hodge filtration and act as multiplication by the
same number on the quotients. This implies their conjugacy by Lemma 2.5.

Step 3.

The claim of Step 2 formally implies

dimZG′(Qp)(S) = dimZG′(C)(ϕ0).

Moreover, S is conjugate to a subgroup of ρss
y,p(GQ)Zar. For this take a minimal

parabolic subgroup P = MU containing ρy,p(GQ). Then ρss
y,p is obtained by pro-

jecting ρy,p to the Levi factor M . Hence ρss
y,p(GQ)Zar contains the projection of

ρy,p(GQ)Zar. By Lemma 2.5 any torus in P is conjugate under U to its projection to
M . (This uses the fact that all Levi subgroups are conjugate under U .)

By the same argument we get that ρy,p(Frob`)
ss is conjugate to ρss

y,p(Frob`) in

H◦(Qp). By Step 1 this last element is very regular (and S is topologically generated
by one element), so

dimZG′(Qp)(ρy,p(Frob`)
ss) ≤ dimZG′(Qp)(S) = dimZG′(C)(ϕ0).

Step 4.

By Katz–Messing [KM], the eigenvalues of F cris,`
y are the same as of the Frobenius

Frob` acting on Hd
ét(Xy,F`

,Qp)
prim for any prime p 6= `. Thus ρy,p(Frob`)

ss and
(F cris,`

y )ss have the same characteristic polynomial and both scale the bilinear form
by the same number `.

Let us decompose V0⊗QQp = ⊕Vλ, where the Vλ are eigenspaces for ρy,p(Frob`)
ss.

The bilinear form gives a perfect pairing Vλ × V`/λ → Qp. The centraliser of
ρy,p(Frob`)

ss in G′ is the subgroup of
∏

Aut(Vλ) preserving these pairings, so its
dimension is uniquely determined by the eigenvalues taken with their multiplicities.
The same applies to (F cris,`

y )ss. This gives the desired inequality.

Remark By the Jordan–Chevalley decomposition, the semisimple part αss of a
linear transformation α can be written as p(α) for some polynomial p(x). Hence

ZGAut(F
cris,`
y ) ⊂ ZGAut((F

cris,`
y )ss).

Thus we can drop “ss” in Lemma 10.4.
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2 Not Zariski dense

Lemma 10.5 Let ` be a prime not in S and let y0 ∈ Y (Z[S−1]) be such that

dimZGAut(F
cris,`
y0

) ≤ dimZG′(C)(ϕ0).

Then the set of y ∈ Y (Z[S−1]) in the residue disk of y0 modulo ` such that the
representations ρss

y,` and ρss
y0,`

are conjugate in G′ is not Zariski dense in Y .

Proof In the proof we write p instead of `. The proof proceeds by reducing this,
via the p-adic version of Bakker–Tsimerman theorem, to essentially a linear algebra
computation (Proposition 10.6).

Recall that ρss
y0,p

is obtained by taking a maximal self-dual flag of ρy0,p-stable sub-
spaces of Hd

ét(Xy0 ,Qp)
prim such that each quotient is irreducible (and the middle

quotient has no isotropic invariant subspace). We refer to this as the “semisimplifi-
cation flag”. Since ρss

y,p and ρss
y0,p

are conjugate in G′, there is a similar filtration for
ρss
y,p with isomorphic respective quotients.

Since the morphism Xy → Spec(Z[S−1]) is smooth and proper, our representation
is cristalline. The functor Dcris : ? 7→ (Bcris⊗Qp?)GQp sends the cristalline GQp-
representation Hd

ét((Xy)Qp
,Qp) to the filtered φ-module

Hd
dR((Xy)Qp) ∼= Hd

cris((Xy)Fp/Qp),

where φ is the semilinear Frobenius which in fact is linear here (as we work over
K = Q so that the residue field is a prime field Fp), and the filtration is the
Hodge filtration on de Rham cohomology. Since y is in the residue disk of y0, the
Qp-vector spaces Hd

dR((Xy)Qp) are canonically identified with Hd
dR((Xy0)Qp) since

Hd
cris((Xy)Fp/Qp) depends only on the fibre (Xy)Fp = (Xy0)Fp over the residue field

Fp. This identification preserves φ, the intersection forms, and the primitive sub-
spaces.

Let us denote by F0 the descreasing Hodge filtration on V = Hd
dR((Xy0)Qp)prim.

Let Hp be the set of self-dual flags in V with subspaces of the same dimensions as
the subspaces in F0.

Fontaine’s functor Dcris transforms the GQp-invariant semisimplification flags for
y0 and y into corresponding flags in V . Let us denote them by f0 and f, respectively.
Because of GQp-invariance the graded quotients of f0 and f are filtered φ-modules;
by assumption they are isomorphic in each degree (in the middle quotient the iso-
morphism preserves the bilinear form).

Sending y to the Hodge filtration on Hd
dR((Xy)Qp)prim, which is canonically iden-

tified with V , we obtain a period map

Φp : the residue disk at y0 modulo p −→ Hp
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Let S ⊂ Hp be the space of filtrations F on V such that there is another self-dual
filtration f with the following properties:

(1) f is φ-stable;

(2) the filtration induced by F on each graded quotient grfj has weight d/2;

(3) for each j there is an isomorphism of filtered φ-modules (i.e. of vector spaces
respecting the Hodge filtration and Frobenius)

(grfj, filtration induced by F ) ' (grf0j , filtration induced by F0),

where the isomorphism of the middle graded quotient preserves the bilinear form.

Remark Recall that the weight of a decreasing filtration F on V is

(dim V )−1
∑
i≥0

i dim gri(V ).

That (2) holds for the Hodge filtration of y follows from Lemma 2.9 since GQ-
representation ρss

y,p is cristalline at p and pure of weight d/2. (This is the calculation
that the Hodge–Tate weight of a continuous character of GQ → Q∗p unramified
outside S, pure of weight d and locally algebraic at p equals d/2. This is applied to
det(V )).

Proposition 10.6 says that if the Hodge numbers of the adjoint filtration of F on
the Lie algebra of GAut(V ) satisfy inequalities (10.23) and (10.24) with e = dim(Y ),
then codim(S) ≥ dim(Y ). Then Lemma 9.3 (p-adic transcendence of the period
map) implies that Φ−1

p (S) is not Zariski dense in Y . This proves Lemma 10.5.
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