Proofs of Lemmas 10.4 and 10.5

Alexei Skorobogatov

December 4, 2019

1 Small Frobenius centraliser

Let $X \rightarrow Y$ be a smooth and proper morphism of $\mathbb{Z}\left[S^{-1}\right]$-schemes whose fibres are geometrically connected of dimension d. For $y \in Y\left(\mathbb{Z}\left[S^{-1}\right]\right)$ write $V_{y}=\mathrm{H}^{d}\left(X_{y, \mathbb{C}}, \mathbb{Q}\right)^{\text {prim }}$. Write $V_{0}=V_{y_{0}}$.

Let \mathbf{G}^{\prime} be the reductive \mathbb{Q}-group consisting of the automorphisms of V_{0} that multiply the intersection form by a constant. Let $\varphi_{0}: S^{1} \rightarrow \mathbf{G}^{\prime}(\mathbb{C})$ be the homomorphism describing the Hodge structure on V_{0}.
If $y \in Y\left(\mathbb{Z}\left[S^{-1}\right]\right)$, then X_{y} has good reduction modulo any $\ell \notin S$ so we can consider the primitive crystalline cohomology group $\mathrm{H}_{\text {cris }}^{d}\left(X_{y, \mathbb{F}_{\ell}} / \mathbb{Q}_{\ell}\right)^{\text {prim }}$ of the reduction mod ℓ. It carries a Frobenius, which is linear and not just semilinear because \mathbb{F}_{ℓ} is a prime field. Hence

$$
F_{y}^{\text {cris }, \ell} \in \text { GAut }:=\text { GAut } \mathrm{H}_{\text {cris }}^{d}\left(X_{y, \mathbb{F}_{\ell}} / \mathbb{Q}_{\ell}\right)^{\text {prim }},
$$

where GAut is the group of the automorphisms that multiply the intersection form by a constant.

Recall that the semisimplifications are taken with respect to the reductive groups G^{\prime} or GAut (as introduced by Serre in "Complète réductibilité"). This means that a representation is called irreducible if its image is not contained in a proper parabolic subgroup (equivalently, if the group is orthogonal or symplectic, an invariant subspace must be isotropic). A representation is called completely reducible if any parabolic containing the image has a Levi factor also containing the image. A semisimplification of a representation is defined by taking the minimal parabolic containing the image and projecting to a Levi factor. The result is well defined up to conjugation. The Zariski closure of the semisimplification is a reductive group (in char 0), see Serre, op. cit.

Lemma 10.4 There exists an integer L with the following property:
for any $y \in Y\left(\mathbb{Z}\left[S^{-1}\right]\right)$ there is a prime $\ell<L$ not in S such that

$$
\operatorname{dim} Z_{\mathrm{GAut}}\left(\left(F_{y}^{\mathrm{cris}, \ell}\right)^{\mathrm{ss}}\right) \leq \operatorname{dim} Z_{\mathbf{G}^{\prime}(\mathbb{C})}\left(\varphi_{0}\right) .
$$

Proof The superscript Zar will denote the Zariski closure.
Step 1.
Fix $p \notin S$ and let $\rho_{y, p}: G_{\mathbb{Q}} \rightarrow \mathbf{G}^{\prime}\left(\mathbb{Q}_{p}\right)$ be the continuous representation in
 weight $d / 2$. By Faltings' lemma there are only finitely many possibilities for the semisimplification $\rho_{y, p}^{\mathrm{ss}}$.

Let $\mathbf{H}=\rho_{y, p}^{\mathrm{ss}}\left(G_{\mathbb{Q}}\right)^{\mathrm{Zar}} \subset \mathbf{G}^{\prime}$, and let $\mathbf{H}^{\circ} \subset \mathbf{H}$ be the connected component of the identity. Since $\rho_{y, p}^{\mathrm{ss}}$ is semisimple, \mathbf{H}° is a reductive group.

Recall that an element in $\mathbf{H}^{\circ}\left(\overline{\mathbb{Q}}_{p}\right)$ is called regular if its centraliser has the least possible dimension (equal to the rank of \mathbf{H}°). A semisimple element is called very regular if its centraliser taken in $\operatorname{Aut}\left(V_{0} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_{p}\right)$ has the least possible dimension.

Let $\mathbf{T}_{0} \subset \mathbf{H}^{\circ}$ be a maximal torus defined over $\overline{\mathbb{Q}}_{p}$. Consider the adjoint representation of the Lie group $\operatorname{Aut}\left(V_{0} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_{p}\right)$ on its Lie algebra, and restrict it to \mathbf{T}_{0}. Let Φ be the characters of \mathbf{T}_{0} that show up in this representation of \mathbf{T}_{0}. It is clear that $t \in \mathbf{T}_{0}\left(\overline{\mathbb{Q}}_{p}\right)$ is very regular if and only if $\alpha(t) \neq 1$ for all roots $\alpha \in \Phi$. Then the centraliser of t is the centraliser of \mathbf{T}_{0}, which means that t is regular in \mathbf{H}°. Since any semisimple element is contained in a maximal torus, this implies that a very regular element is regular in \mathbf{H}°. This also implies that a very regular element of $\mathbf{H}^{\circ}\left(\overline{\mathbb{Q}}_{p}\right)$ is also very regular as an element of $\mathbf{G}^{\prime}\left(\overline{\mathbb{Q}}_{p}\right) \subset \operatorname{Aut}\left(V_{0} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_{p}\right)$.

The set of very regular elements is a non-empty Zariski open subset of \mathbf{H}°. Indeed, the function $f=\prod_{\alpha \in \Phi}(\alpha(t)-1)$ is a regular function on \mathbf{T}_{0} which is invariant under the Weyl group W. By a result of Steinberg (Cor. 6.4 in Steinberg's "Regular elements in semisimple groups", Appendix 1 to Ch. 3 of Serre's "Galois cohomology"), the algebra $\overline{\mathbb{Q}}_{p}\left[\mathbf{T}_{0} / W\right]$ is naturally isomorphic to the algebra of class functions on \mathbf{H}° (i.e., regular functions invariant under conjugation). Thus f comes from a class function on \mathbf{H}°, and the locus of very regular elements is the set of non-zeros of this function.

As $\rho_{y, p}^{\mathrm{ss}}$ is continuous and $\rho_{y, p}^{\mathrm{ss}}\left(G_{\mathbb{Q}}\right)$ is Zariski dense in \mathbf{H}, the preimage of the set of very regular elements under $\rho_{y, p}^{\mathrm{ss}}$ is non-empty and open in $G_{\mathbb{Q}}$. Since $\rho_{y, p}^{\mathrm{ss}}$ is unramified outside S, by Chebotarev density theorem the images of Frobenii at primes outside S are dense in $\rho_{y, p}^{\mathrm{ss}}\left(G_{\mathbb{Q}}\right)$, so there is a prime ℓ such that $\rho_{y, p}^{\mathrm{ss}}\left(\mathrm{Frob}_{\ell}\right)$ is a very regular element of \mathbf{H}°. By Faltings' lemma, for given S, p, and dimension of the representation, there are only finitely many possibilities for $\rho_{y, p}^{\mathrm{ss}}$. So such an ℓ is bounded by a constant L depending only on these.

Step 2.
Now consider the restriction of $\rho_{y, p}$ to $G_{\mathbb{Q}_{p}}$. Then $\rho_{y, p}\left(G_{\mathbb{Q}_{p}}\right)^{\mathrm{Zar}}$ is an algebraic subgroup of \mathbf{G}^{\prime}. The claim of Step 2 is that this algebraic group contains a subgroup \mathbf{S} which is conjugate, over $\overline{\mathbb{Q}}_{p} \simeq \mathbb{C}$, to the Hodge torus $\varphi_{0}\left(S^{1}\right)^{\mathrm{Zar}} \subset \mathbf{G}^{\prime}(\mathbb{C})$.

The group $\rho_{y, p}\left(G_{\mathbb{Q}_{p}}\right)^{\mathrm{Zar}}$ is interpreted as the group associated to the neutral Tannakian category generated by the $G_{\mathbb{Q}_{p}}$-module $V_{y} \otimes_{\mathbb{Q}} \mathbb{Q}_{p}$ (i.e., the automorphism group of the natural fibre functor). The attached filtered ϕ-module gives another fibre functor on this category; it gives rise to another Tannakian group. By DeligneMilne, the fibre functors on the category of representations of a group bijectively correspond to the torsors of this group. Thus over $\overline{\mathbb{Q}}_{p}$ the two Tannakian groups become isomorphic.

But Wintenberger [W] shows that the Hodge filtration is canonically split, and this allows one to define an associated cocharacter φ_{W} acting as a scalar on each quotient. Using an isomorphism $\overline{\mathbb{Q}}_{p} \simeq \mathbb{C}$ both φ_{W} and φ_{0} can be considered as maps to $\mathbf{G}^{\prime}(\mathbb{C})$. They both preserve the Hodge filtration and act as multiplication by the same number on the quotients. This implies their conjugacy by Lemma 2.5.

Step 3.

The claim of Step 2 formally implies

$$
\operatorname{dim} Z_{\mathbf{G}^{\prime}\left(\mathbb{Q}_{p}\right)}(\mathbf{S})=\operatorname{dim} Z_{\mathbf{G}^{\prime}(\mathbb{C})}\left(\varphi_{0}\right)
$$

Moreover, \mathbf{S} is conjugate to a subgroup of $\rho_{y, p}^{\mathrm{ss}}\left(G_{\mathbb{Q}}\right)^{\mathrm{Zar}}$. For this take a minimal parabolic subgroup $P=M U$ containing $\rho_{y, p}\left(G_{\mathbb{Q}}\right)$. Then $\rho_{y, p}^{\mathrm{ss}}$ is obtained by projecting $\rho_{y, p}$ to the Levi factor M. Hence $\rho_{y, p}^{\mathrm{ss}}\left(G_{\mathbb{Q}}\right)^{\mathrm{Zar}}$ contains the projection of $\rho_{y, p}\left(G_{\mathbb{Q}}\right)^{\text {Zar }}$. By Lemma 2.5 any torus in P is conjugate under U to its projection to M. (This uses the fact that all Levi subgroups are conjugate under U.)

By the same argument we get that $\rho_{y, p}\left(\mathrm{Frob}_{\ell}\right)^{\mathrm{ss}}$ is conjugate to $\rho_{y, p}^{\mathrm{ss}}\left(\mathrm{Frob}_{\ell}\right)$ in $\mathbf{H}^{\circ}\left(\overline{\mathbb{Q}}_{p}\right)$. By Step 1 this last element is very regular (and \mathbf{S} is topologically generated by one element), so

$$
\operatorname{dim} Z_{\mathbf{G}^{\prime}\left(\overline{\mathbb{Q}}_{p}\right)}\left(\rho_{y, p}\left(\text { Frob }_{\ell}\right)^{\mathrm{ss}}\right) \leq \operatorname{dim} Z_{\mathbf{G}^{\prime}\left(\overline{\mathbb{Q}}_{p}\right)}(\mathbf{S})=\operatorname{dim} Z_{\mathbf{G}^{\prime}(\mathbb{C})}\left(\varphi_{0}\right)
$$

Step 4.
By Katz-Messing [KM], the eigenvalues of $F_{y}^{\mathrm{cris}, \ell}$ are the same as of the Frobenius Frob ${ }_{\ell}$ acting on $\mathrm{H}_{\mathrm{ett}}^{d}\left(X_{y, \overline{\mathbb{F}}_{\ell}}, \mathbb{Q}_{p}\right)^{\text {prim }}$ for any prime $p \neq \ell$. Thus $\rho_{y, p}\left(\mathrm{Frob}_{\ell}\right)^{\text {ss }}$ and $\left(F_{y}^{\text {cris }, \ell}\right)^{\text {ss }}$ have the same characteristic polynomial and both scale the bilinear form by the same number ℓ.

Let us decompose $V_{0} \otimes_{\mathbb{Q}} \mathbb{Q}_{p}=\oplus V_{\lambda}$, where the V_{λ} are eigenspaces for $\rho_{y, p}\left(\text { Frob }_{\ell}\right)^{\text {ss }}$. The bilinear form gives a perfect pairing $V_{\lambda} \times V_{\ell / \lambda} \rightarrow \mathbb{Q}_{p}$. The centraliser of $\rho_{y, p}\left(\mathrm{Frob}_{\ell}\right)^{\text {ss }}$ in \mathbf{G}^{\prime} is the subgroup of $\Pi \operatorname{Aut}\left(V_{\lambda}\right)$ preserving these pairings, so its dimension is uniquely determined by the eigenvalues taken with their multiplicities. The same applies to $\left(F_{y}^{\text {cris }, \ell}\right)^{\text {ss }}$. This gives the desired inequality.
Remark By the Jordan-Chevalley decomposition, the semisimple part $\alpha^{\text {ss }}$ of a linear transformation α can be written as $p(\alpha)$ for some polynomial $p(x)$. Hence

$$
Z_{\mathrm{GAut}}\left(F_{y}^{\mathrm{cris}, \ell}\right) \subset Z_{\mathrm{GAut}}\left(\left(F_{y}^{\mathrm{cris}, \ell}\right)^{\mathrm{ss}}\right) .
$$

Thus we can drop "ss" in Lemma 10.4.

2 Not Zariski dense

Lemma 10.5 Let ℓ be a prime not in S and let $y_{0} \in Y\left(\mathbb{Z}\left[S^{-1}\right]\right)$ be such that

$$
\operatorname{dim} Z_{\mathrm{GAut}}\left(F_{y_{0}}^{\text {cris }, \ell}\right) \leq \operatorname{dim} Z_{\mathbf{G}^{\prime}(\mathbb{C})}\left(\varphi_{0}\right) .
$$

Then the set of $y \in Y\left(\mathbb{Z}\left[S^{-1}\right]\right)$ in the residue disk of y_{0} modulo ℓ such that the representations $\rho_{y, \ell}^{\mathrm{ss}}$ and $\rho_{y_{0}, \ell}^{\mathrm{ss}}$ are conjugate in \mathbf{G}^{\prime} is not Zariski dense in Y.
Proof In the proof we write p instead of ℓ. The proof proceeds by reducing this, via the p-adic version of Bakker-Tsimerman theorem, to essentially a linear algebra computation (Proposition 10.6).

Recall that $\rho_{y_{0}, p}^{\mathrm{ss}}$ is obtained by taking a maximal self-dual flag of $\rho_{y_{0}, p^{-}}$-stable subspaces of $H_{\text {ett }}^{d}\left(X_{y_{0}}, \mathbb{Q}_{p}\right)^{\text {prim }}$ such that each quotient is irreducible (and the middle quotient has no isotropic invariant subspace). We refer to this as the "semisimplification flag". Since $\rho_{y, p}^{\mathrm{ss}}$ and $\rho_{y_{0}, p}^{\mathrm{ss}}$ are conjugate in \mathbf{G}^{\prime}, there is a similar filtration for $\rho_{y, p}^{\mathrm{ss}}$ with isomorphic respective quotients.

Since the morphism $X_{y} \rightarrow \operatorname{Spec}\left(\mathbb{Z}\left[S^{-1}\right]\right)$ is smooth and proper, our representation is cristalline. The functor $D_{\text {cris }}: ? \mapsto\left(B_{\text {cris }} \otimes_{\mathbb{Q}_{p}} \text { ? }\right)^{G_{\mathbb{Q}_{p}}}$ sends the cristalline $G_{\mathbb{Q}_{p}}$ representation $\mathrm{H}_{\text {et }}^{d}\left(\left(X_{y}\right)_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right)$ to the filtered ϕ-module

$$
\mathrm{H}_{\mathrm{dR}}^{d}\left(\left(X_{y}\right)_{\mathbb{Q}_{p}}\right) \cong \mathrm{H}_{\text {cris }}^{d}\left(\left(X_{y}\right)_{\mathbb{F}_{p}} / \mathbb{Q}_{p}\right),
$$

where ϕ is the semilinear Frobenius which in fact is linear here (as we work over $K=\mathbb{Q}$ so that the residue field is a prime field \mathbb{F}_{p}), and the filtration is the Hodge filtration on de Rham cohomology. Since y is in the residue disk of y_{0}, the \mathbb{Q}_{p}-vector spaces $\mathrm{H}_{\mathrm{dR}}^{d}\left(\left(X_{y}\right)_{\mathbb{Q}_{p}}\right)$ are canonically identified with $\mathrm{H}_{\mathrm{dR}}^{d}\left(\left(X_{y_{0}}\right)_{\mathbb{Q}_{p}}\right)$ since $\mathrm{H}_{\text {cris }}^{d}\left(\left(X_{y}\right)_{\mathbb{F}_{p}} / \mathbb{Q}_{p}\right)$ depends only on the fibre $\left(X_{y}\right)_{\mathbb{F}_{p}}=\left(X_{y_{0}}\right)_{\mathbb{F}_{p}}$ over the residue field \mathbb{F}_{p}. This identification preserves ϕ, the intersection forms, and the primitive subspaces.

Let us denote by F_{0} the descreasing Hodge filtration on $V=\mathrm{H}_{\mathrm{dR}}^{d}\left(\left(X_{y_{0}}\right) \mathbb{Q}_{p}\right)^{\text {prim }}$. Let \mathfrak{H}_{p} be the set of self-dual flags in V with subspaces of the same dimensions as the subspaces in F_{0}.

Fontaine's functor $D_{\text {cris }}$ transforms the $G_{\mathbb{Q}_{p}}$-invariant semisimplification flags for y_{0} and y into corresponding flags in V. Let us denote them by \mathfrak{f}_{0} and \mathfrak{f}, respectively. Because of $G_{\mathbb{Q}_{p}}$-invariance the graded quotients of \mathfrak{f}_{0} and \mathfrak{f} are filtered ϕ-modules; by assumption they are isomorphic in each degree (in the middle quotient the isomorphism preserves the bilinear form).

Sending y to the Hodge filtration on $\mathrm{H}_{\mathrm{dR}}^{d}\left(\left(X_{y}\right)_{\mathbb{Q}_{p}}\right)^{\text {prim }}$, which is canonically identified with V, we obtain a period map

$$
\Phi_{p}: \text { the residue disk at } y_{0} \text { modulo } p \longrightarrow \mathfrak{H}_{p}
$$

Let $\mathfrak{S} \subset \mathfrak{H}_{p}$ be the space of filtrations F on V such that there is another self-dual filtration \mathfrak{f} with the following properties:
(1) \mathfrak{f} is ϕ-stable;
(2) the filtration induced by F on each graded quotient gr $_{j}^{f}$ has weight $d / 2$;
(3) for each j there is an isomorphism of filtered ϕ-modules (i.e. of vector spaces respecting the Hodge filtration and Frobenius)

$$
\left(\mathrm{gr}_{j}^{\mathrm{f}}, \text { filtration induced by } F\right) \simeq\left(\mathrm{gr}_{j}^{\mathrm{f}_{0}}, \text { filtration induced by } F_{0}\right),
$$

where the isomorphism of the middle graded quotient preserves the bilinear form.
Remark Recall that the weight of a decreasing filtration F on V is

$$
(\operatorname{dim} V)^{-1} \sum_{i \geq 0} i \operatorname{dim} \operatorname{gr}^{i}(V)
$$

That (2) holds for the Hodge filtration of y follows from Lemma 2.9 since $G_{\mathbb{Q}^{-}}$ representation $\rho_{y, p}^{\mathrm{ss}}$ is cristalline at p and pure of weight $d / 2$. (This is the calculation that the Hodge-Tate weight of a continuous character of $G_{\mathbb{Q}} \rightarrow \mathbb{Q}_{p}^{*}$ unramified outside S, pure of weight d and locally algebraic at p equals $d / 2$. This is applied to $\operatorname{det}(V))$.

Proposition 10.6 says that if the Hodge numbers of the adjoint filtration of F on the Lie algebra of $\operatorname{GAut}(V)$ satisfy inequalities (10.23) and (10.24) with $e=\operatorname{dim}(Y)$, then $\operatorname{codim}(\mathfrak{S}) \geq \operatorname{dim}(Y)$. Then Lemma 9.3 (p-adic transcendence of the period map) implies that $\Phi_{p}^{-1}(\mathfrak{S})$ is not Zariski dense in Y. This proves Lemma 10.5.

References

[KM] N.M. Katz and W. Messing. Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math. 23 (1974), 73-77.
[LV] B. Lawrence and A. Venkatesh. Diophantine problems and p-adic period mappings. arXiv:1807.02721
[P] R. Pink. ℓ-adic algebraic monodromy groups, cocharacters, and the MumfordTate conjecture. J. Reine Angew. Math. 495 (1998), 187-237.
[W] J.-P. Wintenberger. Un scindage de la filtration de Hodge pour certaines variétés algébriques sur les corps locaux. Ann. of Math. (2) 119 (1984), no. 3, 511-548.

