Proofs of Lemmas 10.4 and 10.5

Alexei Skorobogatov

December 4, 2019

1 Small Frobenius centraliser

Let $X \to Y$ be a smooth and proper morphism of $\mathbb{Z}[S^{-1}]$ -schemes whose fibres are geometrically connected of dimension d. For $y \in Y(\mathbb{Z}[S^{-1}])$ write $V_y = \mathrm{H}^d(X_{y,\mathbb{C}},\mathbb{Q})^{\mathrm{prim}}$. Write $V_0 = V_{y_0}$.

Let \mathbf{G}' be the reductive \mathbb{Q} -group consisting of the automorphisms of V_0 that multiply the intersection form by a constant. Let $\varphi_0 : S^1 \to \mathbf{G}'(\mathbb{C})$ be the homomorphism describing the Hodge structure on V_0 .

If $y \in Y(\mathbb{Z}[S^{-1}])$, then X_y has good reduction modulo any $\ell \notin S$ so we can consider the primitive crystalline cohomology group $\mathrm{H}^d_{\mathrm{cris}}(X_{y,\mathbb{F}_\ell}/\mathbb{Q}_\ell)^{\mathrm{prim}}$ of the reduction mod ℓ . It carries a Frobenius, which is linear and not just semilinear because \mathbb{F}_ℓ is a prime field. Hence

$$F_{\boldsymbol{y}}^{\operatorname{cris},\ell} \in \operatorname{GAut} := \operatorname{GAut} \operatorname{H}^{d}_{\operatorname{cris}}(X_{\boldsymbol{y},\mathbb{F}_{\ell}}/\mathbb{Q}_{\ell})^{\operatorname{prim}},$$

where GAut is the group of the automorphisms that multiply the intersection form by a constant.

Recall that the semisimplifications are taken with respect to the reductive groups \mathbf{G}' or \mathbf{GAut} (as introduced by Serre in "Complète réductibilité"). This means that a representation is called *irreducible* if its image is not contained in a proper parabolic subgroup (equivalently, if the group is orthogonal or symplectic, an invariant subspace must be isotropic). A representation is called *completely reducible* if any parabolic containing the image has a Levi factor also containing the image. A *semisimplification* of a representation is defined by taking the minimal parabolic containing the image and projecting to a Levi factor. The result is well defined up to conjugation. The Zariski closure of the semisimplification is a reductive group (in char 0), see Serre, *op. cit.*

Lemma 10.4 There exists an integer L with the following property: for any $y \in Y(\mathbb{Z}[S^{-1}])$ there is a prime $\ell < L$ not in S such that

 $\dim Z_{\mathrm{GAut}}((F_y^{\mathrm{cris},\ell})^{\mathrm{ss}}) \leq \dim Z_{\mathbf{G}'(\mathbb{C})}(\varphi_0).$

Proof The superscript Zar will denote the Zariski closure.

Step 1.

Fix $p \notin S$ and let $\rho_{y,p} : G_{\mathbb{Q}} \to \mathbf{G}'(\mathbb{Q}_p)$ be the continuous representation in $\mathrm{H}^{d}_{\mathrm{\acute{e}t}}(X_{y,\overline{\mathbb{Q}}}, \mathbb{Q}_p)^{\mathrm{prim}} \simeq V_y \otimes_{\mathbb{Q}} \mathbb{Q}_p$. It is continuous, unramified outside S and pure of weight d/2. By Faltings' lemma there are only finitely many possibilities for the semisimplification $\rho_{y,p}^{\mathrm{ss}}$.

Let $\mathbf{H} = \rho_{y,p}^{ss}(G_{\mathbb{Q}})^{Zar} \subset \mathbf{G}'$, and let $\mathbf{H}^{\circ} \subset \mathbf{H}$ be the connected component of the identity. Since $\rho_{y,p}^{ss}$ is semisimple, \mathbf{H}° is a reductive group.

Recall that an element in $\mathbf{H}^{\circ}(\overline{\mathbb{Q}}_p)$ is called *regular* if its centraliser has the least possible dimension (equal to the rank of \mathbf{H}°). A *semisimple* element is called *very regular* if its centraliser taken in $\operatorname{Aut}(V_0 \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_p)$ has the least possible dimension.

Let $\mathbf{T}_0 \subset \mathbf{H}^\circ$ be a maximal torus defined over $\overline{\mathbb{Q}}_p$. Consider the adjoint representation of the Lie group $\operatorname{Aut}(V_0 \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_p)$ on its Lie algebra, and restrict it to \mathbf{T}_0 . Let Φ be the characters of \mathbf{T}_0 that show up in this representation of \mathbf{T}_0 . It is clear that $t \in \mathbf{T}_0(\overline{\mathbb{Q}}_p)$ is very regular if and only if $\alpha(t) \neq 1$ for all roots $\alpha \in \Phi$. Then the centraliser of t is the centraliser of \mathbf{T}_0 , which means that t is regular in \mathbf{H}° . Since any semisimple element is contained in a maximal torus, this implies that a very regular element is regular in \mathbf{H}° . This also implies that a very regular element of $\mathbf{H}^\circ(\overline{\mathbb{Q}}_p)$ is also very regular as an element of $\mathbf{G}'(\overline{\mathbb{Q}}_p) \subset \operatorname{Aut}(V_0 \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_p)$.

The set of very regular elements is a non-empty Zariski open subset of \mathbf{H}° . Indeed, the function $f = \prod_{\alpha \in \Phi} (\alpha(t) - 1)$ is a regular function on \mathbf{T}_0 which is invariant under the Weyl group W. By a result of Steinberg (Cor. 6.4 in Steinberg's "Regular elements in semisimple groups", Appendix 1 to Ch. 3 of Serre's "Galois cohomology"), the algebra $\overline{\mathbb{Q}}_p[\mathbf{T}_0/W]$ is naturally isomorphic to the algebra of class functions on \mathbf{H}° (i.e., regular functions invariant under conjugation). Thus f comes from a class function on \mathbf{H}° , and the locus of very regular elements is the set of non-zeros of this function.

As $\rho_{y,p}^{ss}$ is continuous and $\rho_{y,p}^{ss}(G_{\mathbb{Q}})$ is Zariski dense in **H**, the preimage of the set of very regular elements under $\rho_{y,p}^{ss}$ is non-empty and open in $G_{\mathbb{Q}}$. Since $\rho_{y,p}^{ss}$ is unramified outside S, by Chebotarev density theorem the images of Frobenii at primes outside S are dense in $\rho_{y,p}^{ss}(G_{\mathbb{Q}})$, so there is a prime ℓ such that $\rho_{y,p}^{ss}(\text{Frob}_{\ell})$ is a very regular element of \mathbf{H}° . By Faltings' lemma, for given S, p, and dimension of the representation, there are only finitely many possibilities for $\rho_{y,p}^{ss}$. So such an ℓ is bounded by a constant L depending only on these.

Step 2.

Now consider the restriction of $\rho_{y,p}$ to $G_{\mathbb{Q}_p}$. Then $\rho_{y,p}(G_{\mathbb{Q}_p})^{\operatorname{Zar}}$ is an algebraic subgroup of \mathbf{G}' . The claim of Step 2 is that this algebraic group contains a subgroup \mathbf{S} which is conjugate, over $\overline{\mathbb{Q}}_p \simeq \mathbb{C}$, to the Hodge torus $\varphi_0(S^1)^{\operatorname{Zar}} \subset \mathbf{G}'(\mathbb{C})$. The group $\rho_{y,p}(G_{\mathbb{Q}_p})^{\operatorname{Zar}}$ is interpreted as the group associated to the neutral Tannakian category generated by the $G_{\mathbb{Q}_p}$ -module $V_y \otimes_{\mathbb{Q}} \mathbb{Q}_p$ (i.e., the automorphism group of the natural fibre functor). The attached filtered ϕ -module gives another fibre functor on this category; it gives rise to another Tannakian group. By Deligne– Milne, the fibre functors on the category of representations of a group bijectively correspond to the torsors of this group. Thus over $\overline{\mathbb{Q}_p}$ the two Tannakian groups become isomorphic.

But Wintenberger [W] shows that the Hodge filtration is canonically split, and this allows one to define an associated cocharacter φ_W acting as a scalar on each quotient. Using an isomorphism $\overline{\mathbb{Q}}_p \simeq \mathbb{C}$ both φ_W and φ_0 can be considered as maps to $\mathbf{G}'(\mathbb{C})$. They both preserve the Hodge filtration and act as multiplication by the same number on the quotients. This implies their conjugacy by Lemma 2.5.

Step 3.

The claim of Step 2 formally implies

$$\dim Z_{\mathbf{G}'(\mathbb{Q}_p)}(\mathbf{S}) = \dim Z_{\mathbf{G}'(\mathbb{C})}(\varphi_0).$$

Moreover, **S** is conjugate to a subgroup of $\rho_{y,p}^{ss}(G_{\mathbb{Q}})^{Zar}$. For this take a minimal parabolic subgroup P = MU containing $\rho_{y,p}(G_{\mathbb{Q}})$. Then $\rho_{y,p}^{ss}$ is obtained by projecting $\rho_{y,p}$ to the Levi factor M. Hence $\rho_{y,p}^{ss}(G_{\mathbb{Q}})^{Zar}$ contains the projection of $\rho_{y,p}(G_{\mathbb{Q}})^{Zar}$. By Lemma 2.5 any torus in P is conjugate under U to its projection to M. (This uses the fact that all Levi subgroups are conjugate under U.)

By the same argument we get that $\rho_{y,p}(\operatorname{Frob}_{\ell})^{ss}$ is conjugate to $\rho_{y,p}^{ss}(\operatorname{Frob}_{\ell})$ in $\mathbf{H}^{\circ}(\overline{\mathbb{Q}}_p)$. By Step 1 this last element is very regular (and **S** is topologically generated by one element), so

$$\dim Z_{\mathbf{G}'(\overline{\mathbb{Q}}_p)}(\rho_{y,p}(\mathrm{Frob}_{\ell})^{\mathrm{ss}}) \leq \dim Z_{\mathbf{G}'(\overline{\mathbb{Q}}_p)}(\mathbf{S}) = \dim Z_{\mathbf{G}'(\mathbb{C})}(\varphi_0).$$

Step 4.

By Katz–Messing [KM], the eigenvalues of $F_y^{\text{cris},\ell}$ are the same as of the Frobenius Frob_{ℓ} acting on $\mathrm{H}^d_{\text{\acute{e}t}}(X_{y,\overline{\mathbb{F}}_{\ell}},\mathbb{Q}_p)^{\text{prim}}$ for any prime $p \neq \ell$. Thus $\rho_{y,p}(\text{Frob}_{\ell})^{\text{ss}}$ and $(F_y^{\text{cris},\ell})^{\text{ss}}$ have the same characteristic polynomial and both scale the bilinear form by the same number ℓ .

Let us decompose $V_0 \otimes_{\mathbb{Q}} \mathbb{Q}_p = \oplus V_{\lambda}$, where the V_{λ} are eigenspaces for $\rho_{y,p}(\operatorname{Frob}_{\ell})^{\operatorname{ss}}$. The bilinear form gives a perfect pairing $V_{\lambda} \times V_{\ell/\lambda} \to \mathbb{Q}_p$. The centraliser of $\rho_{y,p}(\operatorname{Frob}_{\ell})^{\operatorname{ss}}$ in \mathbf{G}' is the subgroup of $\prod \operatorname{Aut}(V_{\lambda})$ preserving these pairings, so its dimension is uniquely determined by the eigenvalues taken with their multiplicities. The same applies to $(F_y^{\operatorname{cris},\ell})^{\operatorname{ss}}$. This gives the desired inequality.

Remark By the Jordan–Chevalley decomposition, the semisimple part α^{ss} of a linear transformation α can be written as $p(\alpha)$ for some polynomial p(x). Hence

$$Z_{\text{GAut}}(F_y^{\text{cris},\ell}) \subset Z_{\text{GAut}}((F_y^{\text{cris},\ell})^{\text{ss}}).$$

Thus we can drop "ss" in Lemma 10.4.

2 Not Zariski dense

Lemma 10.5 Let ℓ be a prime not in S and let $y_0 \in Y(\mathbb{Z}[S^{-1}])$ be such that

 $\dim Z_{\mathrm{GAut}}(F_{y_0}^{\mathrm{cris},\ell}) \leq \dim Z_{\mathbf{G}'(\mathbb{C})}(\varphi_0).$

Then the set of $y \in Y(\mathbb{Z}[S^{-1}])$ in the residue disk of y_0 modulo ℓ such that the representations $\rho_{y,\ell}^{ss}$ and $\rho_{y_0,\ell}^{ss}$ are conjugate in **G**' is not Zariski dense in Y.

Proof In the proof we write p instead of ℓ . The proof proceeds by reducing this, via the p-adic version of Bakker–Tsimerman theorem, to essentially a linear algebra computation (Proposition 10.6).

Recall that $\rho_{y_0,p}^{ss}$ is obtained by taking a maximal self-dual flag of $\rho_{y_0,p}$ -stable subspaces of $\mathrm{H}^{d}_{\mathrm{\acute{e}t}}(X_{y_0}, \mathbb{Q}_p)^{\mathrm{prim}}$ such that each quotient is irreducible (and the middle quotient has no isotropic invariant subspace). We refer to this as the "semisimplification flag". Since $\rho_{y,p}^{ss}$ and $\rho_{y_0,p}^{ss}$ are conjugate in \mathbf{G}' , there is a similar filtration for $\rho_{y,p}^{ss}$ with isomorphic respective quotients.

Since the morphism $X_y \to \operatorname{Spec}(\mathbb{Z}[S^{-1}])$ is smooth and proper, our representation is cristalline. The functor $D_{\operatorname{cris}} : ? \mapsto (B_{\operatorname{cris}} \otimes_{\mathbb{Q}_p} ?)^{G_{\mathbb{Q}_p}}$ sends the cristalline $G_{\mathbb{Q}_p}$ representation $\operatorname{H}^d_{\operatorname{\acute{e}t}}((X_y)_{\overline{\mathbb{Q}_p}}, \mathbb{Q}_p)$ to the filtered ϕ -module

$$\mathrm{H}^{d}_{\mathrm{dR}}((X_{y})_{\mathbb{Q}_{p}}) \cong \mathrm{H}^{d}_{\mathrm{cris}}((X_{y})_{\mathbb{F}_{p}}/\mathbb{Q}_{p}),$$

where ϕ is the semilinear Frobenius which in fact is linear here (as we work over $K = \mathbb{Q}$ so that the residue field is a prime field \mathbb{F}_p), and the filtration is the Hodge filtration on de Rham cohomology. Since y is in the residue disk of y_0 , the \mathbb{Q}_p -vector spaces $\mathrm{H}^d_{\mathrm{dR}}((X_y)_{\mathbb{Q}_p})$ are canonically identified with $\mathrm{H}^d_{\mathrm{dR}}((X_{y_0})_{\mathbb{Q}_p})$ since $\mathrm{H}^d_{\mathrm{cris}}((X_y)_{\mathbb{F}_p}/\mathbb{Q}_p)$ depends only on the fibre $(X_y)_{\mathbb{F}_p} = (X_{y_0})_{\mathbb{F}_p}$ over the residue field \mathbb{F}_p . This identification preserves ϕ , the intersection forms, and the primitive subspaces.

Let us denote by F_0 the descreasing Hodge filtration on $V = \mathrm{H}^d_{\mathrm{dR}}((X_{y_0})_{\mathbb{Q}_p})^{\mathrm{prim}}$. Let \mathfrak{H}_p be the set of self-dual flags in V with subspaces of the same dimensions as the subspaces in F_0 .

Fontaine's functor D_{cris} transforms the $G_{\mathbb{Q}_p}$ -invariant semisimplification flags for y_0 and y into corresponding flags in V. Let us denote them by \mathfrak{f}_0 and \mathfrak{f} , respectively. Because of $G_{\mathbb{Q}_p}$ -invariance the graded quotients of \mathfrak{f}_0 and \mathfrak{f} are filtered ϕ -modules; by assumption they are isomorphic in each degree (in the middle quotient the isomorphism preserves the bilinear form).

Sending y to the Hodge filtration on $\mathrm{H}^{d}_{\mathrm{dR}}((X_y)_{\mathbb{Q}_p})^{\mathrm{prim}}$, which is canonically identified with V, we obtain a period map

 Φ_p : the residue disk at $y_0 \mod p \longrightarrow \mathfrak{H}_p$

Let $\mathfrak{S} \subset \mathfrak{H}_p$ be the space of filtrations F on V such that there is another self-dual filtration \mathfrak{f} with the following properties:

(1) \mathfrak{f} is ϕ -stable;

(2) the filtration induced by F on each graded quotient $\operatorname{gr}_{i}^{\mathfrak{f}}$ has weight d/2;

(3) for each j there is an isomorphism of filtered ϕ -modules (i.e. of vector spaces respecting the Hodge filtration and Frobenius)

 $(\operatorname{gr}_{j}^{\mathfrak{f}}, \text{ filtration induced by } F) \simeq (\operatorname{gr}_{j}^{\mathfrak{f}_{0}}, \text{ filtration induced by } F_{0}),$

where the isomorphism of the middle graded quotient preserves the bilinear form. **Remark** Recall that the *weight* of a decreasing filtration F on V is

$$(\dim V)^{-1} \sum_{i \ge 0} i \dim \operatorname{gr}^i(V).$$

That (2) holds for the Hodge filtration of y follows from Lemma 2.9 since $G_{\mathbb{Q}}$ representation $\rho_{y,p}^{ss}$ is cristalline at p and pure of weight d/2. (This is the calculation
that the Hodge–Tate weight of a continuous character of $G_{\mathbb{Q}} \to \mathbb{Q}_p^*$ unramified
outside S, pure of weight d and locally algebraic at p equals d/2. This is applied to
det(V)).

Proposition 10.6 says that if the Hodge numbers of the adjoint filtration of F on the Lie algebra of $\operatorname{GAut}(V)$ satisfy inequalities (10.23) and (10.24) with $e = \dim(Y)$, then $\operatorname{codim}(\mathfrak{S}) \ge \dim(Y)$. Then Lemma 9.3 (*p*-adic transcendence of the period map) implies that $\Phi_p^{-1}(\mathfrak{S})$ is not Zariski dense in Y. This proves Lemma 10.5.

References

- [KM] N.M. Katz and W. Messing. Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math. 23 (1974), 73–77.
- [LV] B. Lawrence and A. Venkatesh. Diophantine problems and p-adic period mappings. arXiv:1807.02721
- [P] R. Pink. l-adic algebraic monodromy groups, cocharacters, and the Mumford– Tate conjecture. J. Reine Angew. Math. 495 (1998), 187–237.
- [W] J.-P. Wintenberger. Un scindage de la filtration de Hodge pour certaines variétés algébriques sur les corps locaux. Ann. of Math. (2) 119 (1984), no. 3, 511–548.