
DIOPHANTINE PROBLEMS AND p-ADIC PERIOD MAPPINGS
AFTER B. LAWRENCE AND A. VENKATESH

PROOF OF [LV18, PROP. 10.6]

The aim of this note is to review the proof of [LV18, Prop. 10.6]. The formulation of [LV18, Prop. 10.6]
is derived from the one of [LV18, Thm. 10.1], which is used for the applications to hyper surfaces. But
[LV18, Prop. 10.6] is actually a special case of a more general statement - Theorem 2.2 below, a by-
product of [LV18, Prop. 11.3 and §11.6] - which can be formulated in terms of filtrations on arbitrary
reductive groups. As pointed out in [LV18, §1.5], Theorem 2.2 is probably far from optimal. In Section
1 I introduce the material required to formulate and perform the proof of Theorem 2.2, in particular I
briefly review the combinatorics of parabolic subgroups, the notion of filtrations as equivalence classes of
cocharacters and two related constructions - the weight and induced filtrations. I state Theorem 2.2 in
Section 2 and make a few remarks about it - see in particular 2.4. The proof of Theorem 2.2 is performed
in Section 3. I followed the main guidelines of the proof in [LV18, §11], elaborating on some points which
were not completely clear to me - see e.g. the lemma and remark in Subsection 3.1 and the final remark
in Subsection 3.2.

1. Filtrations in reductive groups

Let k be an algebraically closed field of characteristic 0 and G a connected reductive group over k. A
subgroup of G always means a closed algebraic subgroup of G.

References: [B91], [DM91], [M17].

1.1. Recollection on parabolic subgroups.

1.1.1. Recall that for a connected subgroup P ⊂ G the following are equivalent1

(i) G/P is projective;
(ii) P contains a Borel subgroup of G;
(iii) P = NG(Ru(P )).

and that such a subgroup is called parabolic. Let PG denote the set of parabolic subgroups of G and
for a subgroup H ⊂ G, let PG(H) ⊂ PG denote the subset of parabolic subgroups of G containing
H. The group G acts by conjugacy on PG and for every Borel subgroup B ⊂ G, PG(B) is finite with
PG(B)→̃PG/G (in other words, PG(B) is a system of representatives of PG/G).

1.1.2. One can describe explicitly parabolic subgroups of G in terms of roots as follows. Fix a maximal
torus T ⊂ G and let Φ := Φ(G,T ) the corresponding root system; for α ∈ Φ let Uα ⊂ G denote the
corresponding root group. A subset Ψ ⊂ Φ is called closed if it satisfies the following equivalent properties
- (i) for every α, β ∈ Ψ Zα+ Zβ ∩ Φ ⊂ Ψ.
- (ii) for every α ∈ Φ, Uα ⊂ GΨ := 〈T,Uγ | γ ∈ ψ〉 ⇒ α ∈ Ψ.
The map Ψ → GΨ induces a bijective correspondance between closed subsets Ψ ⊂ Φ and connected
subgroups T ⊂ H ⊂ G. Furthermore, under this correspondance
(1) symmetric closed subsets Ψ = −Ψ ⊂ Φ correspond to connected reductive subgroups T ⊂ H ⊂ G;
(2) closed subsets Ψ ⊂ Φ such that for every α ∈ Φ, α ∈ Ψ or −α ∈ Ψ correspond to parabolic subgroups

P ∈ PG(T ). In particular a parabolic subgroup P = GΨ ∈ PG(T ) contains a unique Levi subgroup
LP := G(Ψ∩−Ψ) containing T .

1Since for an arbitrary subgroup H ⊂ G one always has H ⊂ NG(H) ⊂ NG(Ru(H)), Property (iii) implies in particular
that for P ∈ PG, P = NG(P ) = NG(Ru(P )).
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1.1.3. For a subset Ψ ⊂ Φ the following are equivalent

- Ψ ⊂ Φ is closed and for every α ∈ Φ, α ∈ Ψ or −α ∈ Ψ;
- There exists χ ∈ X∗(T ) such that Ψ = Φχ≥0 := {α ∈ Φ | 〈α, χ〉 ≥ 0}.

In other words, one has a parametrization X∗(T ) � PG(T ). The Levi factor LP of P := GΦχ≥0 contain-
ing T is then the centralizer of χ in G.

The parabolic subgroup P := GΦχ≥0 depends only on the image of χ in X∗(T ) ↪→ X∗(G) and not on T .
More precisely, let T ′ ⊂ be another maximal torus containing the image of χ. Since T, T ′ ⊂ ZG(T ∩T ′) ⊂
ZG(χ) = LP are maximal tori of the connected group ZG(T ∩ T ′) there exists g ∈ ZG(T ∩ T ′) ⊂ ZG(χ)
such that T ′ = gTg−1. Then Φ′ := Φ(G,T ′) = {g · α = α(g−1 − g) | α ∈ Φ}. This shows that
g ·Φχ≥0 = Φ′ χ≥0 hence that GΦ′ χ≥0 = gGΦχ≥0g−1 = GΦχ≥0 since g ∈ LP ⊂ P = GΦχ≥0 . As a result, the
parametrization X∗(T ) � PG(T ) extends as

X∗(T ) // //
_�

��

PG(T )
_�

��
X∗(G)

P−
// // PG.

For every χ, χ′ ∈ X∗(G), one says that χ ∼ χ′ if Pχ = Pχ′ and χ′ ∈ Pχχ ⊂ X∗(G). Note that the resulting
map X∗(G)/ ∼� PG is far from being injective. This is because PG ‘does not see the numbering’ of the
filtration but only the dimension of the graded pieces while elements in X∗(G)/ ∼ ‘see the numbering’.

1.2. Relation with the usual notion of filtration. The set X∗(G)/ ∼ has to be regarded as the
generalization of the classical notion of filtration. More precisely, given a finite dimensional k-vector
space V , a cocharacter χ ∈ X∗(GLV ) defines a filtration F pχ(V ) := ⊕n≥pVχ(n), p ∈ Z. Conversely,
given a filtration F •(V ) = V = F−∞V ⊃ · · ·F pV ⊃ F p+1V ⊃ · · · ⊃ F+∞V = 0, any choice of a
splitting V = ⊕n∈ZVF (n) of F • defines a (necessarily unique) cocharacter χ ∈ X∗(GLV ) such that
Vχ(n) = VF (n), n ∈ Z and two cocharacters χ, χ′ ∈ X∗(GLV ) define the same filtration if and only if
Pχ := StabGLV (F •χ) = StabGLV (F •χ′) =: Pχ′ and χ, χ′ are Pχ-conjugate.

More generally, the Tannakian category Repk(Gm,k) is ⊗-equivalent to the Tannakian category GrZV ectk
of finite-dimensional Z-graded k-vector spaces and one has a natural ⊗-functor GrZV ectk,→ FilZV ectk
to the ⊗-category FilZV ectk of finite-dimensional k-vector spaces endowed with a descending filtration
indexed by Z so that for an arbitrary morphism ϕ : G1 → G2 of algebraic groups over k, one has

X∗(G1)

ϕ◦−
��

'// Hom⊗(Repk(G1), GrZV ectk)

��

// Hom(Repk(G1), F ilZV ectk)

��
X∗(G2)

'// Hom⊗(Repk(G2), GrZV ectk) // Hom(Repk(G2), F ilZV ectk)

Elements in Hom(Repk(G2), F ilZV ectk) are called filtration on V . In more down-to-earth terms, every
cocharacter χ ∈ X∗(G) defines a filtration F pχ(V ) := ⊕n≥pVχ(n), p ∈ Z on each finite-dimensional k-
representation V of G and these filtrations are functorial, compatible with the formation of duals and
tensor products and exact in the sense that the functor V → Gr•F (V ) is exact. Conversely, every fil-
tration F • : Repk(G) → FilZV ectk whose essential image satisfies the above conditions arises from a
(non-unique) cocharacter χ ∈ X∗(G) - sometimes called a splitting of F •.

For instance, if G = Aut(V, 〈−,−〉) for a finite-dimensional k-vector space V equipped with a non-
degenerated k-bilinear form 〈−,−〉 : V ⊗k V → k, the G-equivariant isomorphism V →̃V ∨, v → 〈v,−〉
imposes that the filtrations F •V defined by elements in X∗(G) satisfy

〈FnV,−〉 = Fn(V ∨) = ker(V � (F−nV )∨)
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that is FnV = (F−nV )⊥ and, actually, this is the unique condition those filtrations have to satisfy. If
G = GAut(V, 〈−,−〉) and ν ∈ X∗(G) is the character defined by 〈g−, g−〉 = ν(g)〈−,−〉, g ∈ G, for
χ ∈ X∗(G) let rχ : Gm,k

χ→ G
ν→ Gm,k ∈ Z. Then the G-equivariant isomorphism V →̃V ∨ ⊗ k(ν),

v → 〈v,−〉 imposes that the filtrations F •V defined by elements in X∗(G) satisfy

〈FnV,−〉 = Fn(V ∨ ⊗ k(ν)) =
∑
p∈Z

Fn+p(V ∨)⊗ F−p(k(ν)) = Fn−rV = ker(V � (F r−nV )∨)

that is FnV = (F r−nV )⊥ etc.

Every filtration F • : Repk(G)→ FilZV ectk on G induces a filtration by closed normal subgroups

F pG = ∩V ker(G→ ⊕n∈ZFnV/Fn+pV ), p ∈ Z

so that F−1G = G, F pG ⊂ Ru(G), p ≥ 1 and F 0G = F−1G o ZG(χ) for every χ ∈ X∗(G) splitting
F • : Repk(G)→ FilZV ectk. When G is reductive, one has the following explicit description

Proposition. Assume G is reductive. Consider the filtration

F pG = ker(G→ ⊕n∈ZFng/Fn+pg), p ∈ Z

induced from the filtration F •(g) on the adjoint representation g := Lie(G) of G.
(1) For every representation V of G, F 0G = StabG(F •V ) and F 0G ∈ PG with Lie(F 0G) = F 0g;
(2) For every representation V of G, F 1G = ker(F 0G → GL(gr•F (V ))) and F 1G = Ru(F 0G) with

Lie(F1G) = F 1g;
(3) For every χ ∈ X∗(G) splitting F • : Repk(G) → FilZV ectk, ZG(χ) ⊂ F 0G is a Levi factor of

F 0G; the composite χred : Gm,k
χ→ F 0G→ (F 0G)red is central;

(4) For every χ, χ′ ∈ X∗(G) F •χ = F •χ′ if and only if F 0
χG = F 0

χ′G =: P and χred = χ′ red that is,
χ, χ′ are Ru(P )-conjugate.

1.3. Weight. Since G is reductive, the canonical morphisms Z(G)◦ → G → Gab is an isogeny hence it
induces a commutative diagram

X∗(G)

&&MM
MMM

MMM
MM

ω

wwooo
ooo

ooo
oo

X∗(Z(G)◦)⊗Q ' // X∗(G
ab)⊗Q

The map ωG : X∗(G)→ X∗(G)⊗Q→ X∗(Z(G)◦)⊗Q factors through the weight map ωG : X∗(G)/ ∼→
X∗(Z(G)◦)⊗Q.

Examples. (cont.)
(1) If G = GL(V ), ωG(F •V ) =

∑
p∈Z pdim(F pV )/dim(V );

(2) If G = GAut(V, 〈−,−〉), ωG(F •V )(=
∑

p∈Z pdim(F pV )/dim(V )) = r
2 .

1.4. Intersections of parabolic subgroups and induced filtration.

Proposition 1. Let P,Q ∈ PG. The group P ∩Q is connected and contains a maximal torus T of G. Fix
Levi T ⊂ LP ⊂ P , T ⊂ LQ ⊂ Q. Then P ∩Q = (LP ∩LQ)·(LP ∩Ru(Q))·(LQ∩Ru(P ))·(Ru(P )∩Ru(Q)).

Proposition 2. Let H ⊂ G be a connected subgroup of maximal rank. Then, the parabolic subgroups of
H are the P ∩ H for P a parabolic subgroup of G containing a maximal torus in H and the Levi sub-
groups of such a P ∩H are the LP ∩H for LP ⊂ P a Levi subgroup of P containing a maximal torus of H.

Let Q ∈ PG and χ ∈ X∗(G). Since Q ∩ Pχ contains a maximal torus T of G, up to replacing χ by a
Pχ-conjugate (which does not affect the ∼-class of χ in X∗(G)) one may assume χ ∈ X∗(Q ∩ P ). Let
pQred : Q� Qred := Q/Ru(Q) denote the canonical projection. Then,
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Lemma. The ∼-class [χ]Qred of pQred ◦ χ in X∗(Qred) only depends on the ∼-class of χ in X∗(G).

Proof. We have to show that if χ ∼ χ′ in X∗(G) and χ′ has image in Q ∩ Pχ then [χ]Qred = [χ′]Qred .
We first show that χ, χ′ are conjugate under Q ∩ Pχ. Since χ ∼ χ′ there exists g ∈ Pχ such that χ′ =
gχ(−)g−1 hence the image of χ′ is contained in Q implies that g−1Q ∈ (PχQ/Pχ)χ. But Q ∈ (PχQ/Pχ)χ

and ZG(χ) ⊂ Pχ acts transitively on (PχQ/Q
χ so that there exists p ∈ ZG(χ) ⊂ Pχ, q ∈ Q such

that g−1 = pq hence q ∈ Pχ ∩ Q. To see why ZG(χ) ⊂ Pχ acts transitively on (PχQ/Q)χ, recall that
ZG(χ) ⊂ Pχ is a Levi subgroup so that it is enough to show that the unique χ-fixed point of Ru(Pχ)Q/Q
is Q. But by definition of Pχ, Ru(Pχ) is generated by the root groups Uα, α ∈ Φ = Φ(G,T ) such that
〈α, χ〉 > 0. For every u ∈ Uα, χ(t)uQ = uQ if and only if χ(t)uχ(t)−1 ∈ uQ. But as 〈α, χ〉 > 0, the
morphism φ : Gm,k → Uα, t → χ(t)uχ(t)−1 extends to a morphism φ : A1

m,k → Uα mapping 0 to Id so
that Id ∈ uQ i.e. u ∈ Q.
So, now, we can write χ′ = gχ(−)g−1 for some g ∈ Q ∩ Pχ. Using the decomposition in Proposition 1
and that LP centralizes χ, one may furthermore assume g = rs with r ∈ Ru(Q) and s ∈ Ru(Pχ) ∩ LQ.
Then pQred ◦ χ′ = pQred(s)pQred ◦ χ(−)pQred(s)

−1. But from Proposition 2 (applied with H = LQ) and
the definition of Pχ one easily checks that

Pp
Qred

◦χ = Pχ ∩ LQ ·Ru(Q)/Ru(Q).

As a result pQred ◦ χ′ ∼ pQred ◦ χ in Qred. �

1.5. Balanced filtrations. Let P ∈ PG and LP ⊂ P a Levi subgroup.

1.5.1. Since P hence LP contains a maximal torus of G, LP contains Z(G) whence a canonical commu-
tative diagram

Z(P red)◦ Z(LP )◦ �
� //'oo LP� _

��

// // LabP

��
Z(G)◦
?�

OO

// G // // Gab

which induces
X∗(Z(P red)◦)⊗Q X∗(Z(LP )◦)⊗Q ' //'oo X∗(L

ab
P )⊗Q

��
X∗(Z(G)◦)⊗Q

?�

OO

'
//

cP

iiSSSSSSSSSSSSSSS
X∗(G

ab)⊗Q

The set of filtrations of G balanced with respect to P is the equalizer of

X∗(P
red)/ ∼

ω
Pred

))SSS
SSSS

SSSS
SSS

X∗(G)/ ∼

ωG ((PP
PPP

PPP
PPP

P

(−)
Pred

66nnnnnnnnnnnn
X∗(Z(P red)◦)⊗Q

X∗(Z(G)◦)⊗Q
cP

55kkkkkkkkkkkkkk

that is the subset X∗(G,P ) ⊂ X∗(G)/ ∼ of all [χ] ∈ X∗(G)/ ∼ such that cP (ωG([χ])) = ωP red([χ]P red)
in X∗(Z(P red)◦)⊗Q.

1.5.2. For χ : Gm,k → T ⊂ LP ⊂ P , χ ∈ X∗(G,P ) implies that for every

α ∈ ker(X∗(P ) = X∗(P ab) = X∗(LabP )→ X∗(Z(LP ))→ X∗(Z(G)◦)),

〈α, χ〉 = 0. We will apply this observation with α : P → Gm,k the determinant of the adjoint action of P
on Lie(Ru(P )).
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2. Reformulation of what we want to prove

2.1. Consider the set T of triples Θ := (P0, ϕ0, µ0) where P0 ∈ PG, ϕ0 ∈ P red0 , µ0 ∈ X∗(P red0 )/ ∼; set
R0 := Pµ0 ∈ PP red0

. G acts on T by

g ·Θ = (gP0g
−1, gϕ0g

−1, g[µ0]g−1),

where we write again g − g−1 : P red0 → P red0 for the right vertical arrow in the diagram below.

1 // Ru(P0) //

��

P0
//

g−g−1'
��

P red0
//

g−g−1'
��

1

1 // Ru(gP0g
−1) = gRu(P0)g−1 // gP0g

−1 // (gP0g
−1)red // 1

Let ϕ ∈ G and χ ∈ X∗(G); write Q := Pχ ∈ PG. We want to compute the dimension of the subvariety
X(ϕ,Θ, χ) ⊂ G/Q of all gQg−1 such that there exists P ∈ PG satisfying the following properties:

(1) ϕ ∈ P ;
(2) g[χ]g−1 ∈ X∗(G,P );
(3) (P, pP red(ϕ), (g[χ]g−1)P red) ∈ G ·Θ.

Fix a a maximal torus T ⊂ Q containing the image of χ; set Φ := Φ(G,T ) and define the Hodge numbers
of Q as the multiset H(χ) := {〈α, χ〉 | α ∈ Φ} to which we add 0 with the multiplicity dimT . Order the
elements in H(Q) as

h1
χ ≤ h2

χ ≤ · · · ≤ hmχ
(so that m = |Φ|+ dim(T ) = dim(G)) and define the function ‘sum of topmost − Hodge numbers’:

Tχ : Z ∩ [1,m] → Z
n →

∑
m−n+1≤i≤m

hiχ

2.2.Theorem. Assume ϕ ∈ G is semisimple. Let c ∈ Z≥1 such that

(i) c+ dimZG(ϕ) ≤ dim(G/Q);

(ii) Tχ(c+ dimZG(ϕ)) + Tχ(c+ dimZG(ϕ) +
dimLQ

2 ) < dimG/Q.

Then dimX(χ, ϕ,Θ) < dimG/Q− c.

2.3.Remark. Writing ϕ = ϕuϕss for the Jordan decomposition of ϕ in G and using that the Jordan
decomposition is unique and preserved by morphism of algebraic groups one has: ϕ ∈ P ⇒ ϕss ∈ P , ϕ0 ∈
P0 ⇒ ϕss0 ∈ P0 and pP red0

(gϕg−1) = ϕ0 ⇒ pP red0
(gϕssg−1) = ϕss0 . Hence X(ϕ,Θ) ⊂ X(ϕss, (P0, ϕ

ss
0 , R0))

so that, in particular, if the assumptions of Theorem 2.2 are satisfied for ϕss, one has dimX(χ, ϕ,Θ) ≤
dimX(χ, ϕss,Θ) ≤ dimG/Q− c.

2.4. We check that the Hodge numbers introduced in [LV18, Thm. 10.1, Prop. 10.6] correspond with those
defined in 2.1. This follows from the Proposition in Subsection 1.2. With the notation of [LV18, §10],
write V := V0 ⊗ C and G := GAut(V, 〈−,−〉). Then, as graded vector spaces, g := Lie(G) ' C⊕ S2(V )

if 〈−,−〉 is antisymmetric and ' C ⊕
∧2(V ) if 〈−,−〉 is symmetric (identifying V ⊗ V ∨ with V ⊗2 via

the non-degenerate pairing 〈−,−〉). Write hp for the C-dimension of the (p,−p) component of the Hodge
filtration on g. In [LV18, Thm. 10.1, Prop. 10.6], the set of Hodge numbers for G is defined as the
multiset of all p ∈ Z endowed with the multiplicity hp. Write

V = F−∞V ⊃ F p ⊃ F p+1 ⊃ · · · ⊃ · · ·F+∞V = 0

for the Hodge filtration on V . Recall it induces a filtration by closed normal subgroups on G by

F pG = G, p ≤ −1 F pG := {g ∈ G | gFnV ⊂ Fn+pV, n ∈ Z}, p ≥ 0

and that the filtration on g induced by F •V via the isomorphism g ' C⊕S2(V ) or ' C⊕
∧2(V ) coincides

with the filtration

F pg = g, p ≤ −1 F pg = Lie(F pG) = {g ∈ g | gFnV ⊂ Fn+pV, n ∈ Z}, p ≥ 0.



6 PROOF OF [LV18, PROP. 10.6]

Let χ ∈ X∗(G) be a representative of the Hodge filtration. Fix a Borel subgroup B ⊂ Pχ and a maximal
torus T ⊂ B such that χ ∈ X∗(T ); write Φ := Φ(G,T ). In terms of χ, F pV = ⊕n≥pVχ(n). Let α ∈ Φ,
u ∈ uα := Lie(Uα) and v ∈ Vχ(n). Then χ(t)u(v) = Ad(χ(t))(u)(χ(t)v) = t〈α,χ〉+nu(v). This shows that
uα ⊂ F 〈α,χ〉g\F 〈α,χ〉+1g. In particular, the dimension of grpF (g) (te hp of [LV18, Thm. 10.1, Prop. 10.6])
is

|{α ∈ Φ | 〈α, χ〉 = p}|
(and for p = 0 one has to add the dimension of T , since it is not counted among the roots). So both
definitions of Hodge numbers are consistant.

3. Proof of Theorem 2.2

To prove Theorem 2.2, one consider the following diagram

(P, [µ]) // X(ϕ,Θ)

G/Q×X(ϕ,Θ)
_�

��

OOOO

X(χ, ϕ,Θ)(P,[µ])

OO

�

� � // X(χ, ϕ,Θ) �
� //

����
�

55kkkkkkkkkkkkkkk

;;wwwwwwwwwwwwwwwwwwwwwww
G/Q×G/P0 × P red0 /R0

pr1

��
X(χ, ϕ,Θ) �

� // G/Q,

where X(ϕ,Θ) ⊂ G/P0 × P red0 /R0 classifies all possible pairs (gP0g
−1, g[µ0]g−1) such that ϕ ∈ gP0g

−1

and (gP0g
−1, pP red(ϕ), g[µ0]g−1) ∈ G ·Θ. The proof decomposes in two steps:

- Step 1: Show that dim(X(ϕ,Θ)) ≤ dimZG(ϕ);
- Step 2: For every (P, [µ]) ∈ X(ϕ,Θ), show that dim(X(χ, ϕ,Θ)(P,[µ])) ≤ dim(G/Q)− (c+ dimZG(ϕ)).

3.1. Step 1. Let X(ϕ) ⊂ G/P0 denote the set of all P = gP0g
−1 such that ϕ ∈ P . The group ZG(ϕ)

acts by conjugacy on X(ϕ). Since ϕ is assumed to be semisimple, we have

Lemma. X(ϕ)/ZG(ϕ) is finite.

Proof. Write S := ϕZ zar ⊂ G; it is a multiplicative subgroup. Fix a G-conjugate P of P0 such that
S ⊂ P . Using that NG(P ) = P , for g ∈ G we have S ⊂ gPg−1 if and only if gPg−1 ∈ (G/P )S . So what
we want to prove is that ZG(ϕ) = ZG(S) has only finitely many orbits when acting on (G/P )S . For this,
it is enough to show that the ZG(S)-orbits of (G/P )S are open (then they will be automatically closed
since they form a partition of (G/P )S). By homogeneity, it is enough to show the ZG(S)-orbit of P is
open that is that the map ZG(S) → (G/P )S , z → zPz−1 has open image. To show this, it is enough
to show that ZG(S) → (G/P )S is smooth. Again, by homogeneity, it is enough to show it is smooth at
Id ∈ ZG(S). Since both ZG(S) and (G/P )S are smooth, it is enough to check that the differential map
gAd(ϕ)−1 → (g/p)Ad(ϕ)−1, z → [z, p] is surjective. This follows from the surjectivity of g � g/p and the
fact that Ad(ϕ) is semisimple since ϕ ∈ G is. �

Fix P ∈ X(ϕ). Then P is in the image of X(ϕ,Θ)→ G/P0 forces (*) P = gP0g
−1 for some g ∈ G such

that gpP red(ϕ)g−1 = ϕ0. If this holds for P it holds for every elements in ZG(ϕ) · P ⊂ X(ϕ). Note that

ZG(ϕ) ∩NG(P ) = ZG(ϕ) ∩ P = ZP (ϕ)

so that
dim(ZG(ϕ) · P ) = dim(ZG(ϕ))− dim(ZP (ϕ)).
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So let P1, . . . , Pr ∈ X(ϕ) denote a system of representatives of the ZG(ϕ)-orbits O1, . . . , Or in X(ϕ)
which furthermore satisfy (*). Consider the diagram

G/P0 × P red0 /R0

��

X(ϕ,Θ)? _oo

��
�

X(ϕ,Θ)P? _oo

��
G/P0 X(ϕ)? _oo t1≤i≤rOi? _oo P? _oo

where P = gP0g
−1 for some g ∈ G such that gpP red(ϕ)g−1 = ϕ0. For γ ∈ P , write γred := pP red(γ) ∈

P red. Then, for every γ ∈ G one has γ · (P,ϕred, [µ]) = (P0, ϕ0, [µ0]) = (g−1Pg, g−1ϕredg, [µ0]) if and
only if gγ ∈ NG(P ) = P , (gγ)red ∈ ZP red(ϕred) and [µ] = γ−1[µ0]γ = (gγ)−1g[µ0]g−1gγ so that

X(ϕ,Θ)P ⊂ ZP red(ϕred) · g[µ0]g−1 ⊂ P red/gR0g
−1.

In particular,

dimX(ϕ,Θ)P ≤ dim(ZP red(ϕ
red))− dim(ZgR0g−1(ϕred)) ≤ dim(ZP red(ϕ

red)) ≤ dim(ZP (ϕ)).

(For the last inequality, observe that since ϕ is assumed to be semisimple, it is contained in a Levi factor
LP of P = Ru(P ) o LP so that dim(ZP red(ϕ

red)) = dim(ZLP (ϕ)) ≤ dim(ZP (ϕ))). To conclude,

dim(X(ϕ,Θ)) ≤ max{dimOi + dimX(ϕ,Θ)P | P ∈ Oi, 1 ≤ i ≤ r}.
But for P ∈ Oi,
dimOi+dimX(ϕ,Θ)P = dim(ZG(ϕ)·P )+dimX(ϕ,Θ)P ≤ dim(ZG(ϕ))−dim(ZP (ϕ))+dim(ZP (ϕ)) = dim(ZG(ϕ)).

Remark. Write Pi = giP0g
−1
i ∈ Oi for a representative of an element in Oi and consider the Cartesian

diagram

ZG(ϕ)×G
(z,γ)→γzgi //

�

G

∆i

� ?

OO

// p−1
P red0

(ZP red0
(ϕ0))

� ?

OO

Then X(ϕ,Θ)×X(ϕ) Oi identifies with the image of ∆i → ZG(ϕ) ·Pi×ZP red0
(ϕ0) ·ϕ0 ⊂ G/P ×P red0 /R0,

(z, γ) → (z · Pi, (γzgi) · R0). In particular, it has a structure of algebraic variety and it indeed makes
sense to talk about its dimension.

3.2. Step 2. We now fix (P, [µ]) ∈ X(Θ, ϕ) and consider

X(χ, ϕ,Θ)(P,[µ]) := {gQg−1 ∈ G/Q | g[χ]g−1 ∈ X∗(G,P ) and (g[χ]g−1)P red = [µ]}.
Since one may replace Q by any G-conjugate, one may assume there exists a Borel subgroup B ⊂ P ∩Q.
Fix a maximal torus T ⊂ B. Let Φ := Φ(G,T ) and write Φ+ ⊂ ΦP ,ΦQ ⊂ Φ for the sets of roots
corresponding to B, P and Q respectively. Let also ∆ ⊂ Φ denote the set of simple roots defined by
Φ+ and ∆P , δQ ⊂ ∆ the subset of simple roots α such that −α ∈ ΦP and −α ∈ ΦQ respectively. Since
Q = Pχ one has in particular

ΦQ = {α ∈ Φ | 〈α, χ〉 ≥ 0} and 〈∆Q, χ〉 = 0.

The proof of Step 2 decomposes as follows. Let W := W (G,T ) := NG(T )/T denote the Weyl group of
(G,T ).
- Step 2.1: show that G = PWP,QQ, where

WP,Q := {w ∈W | w−1∆P ⊂ Φ+, w∆Q ⊂ Φ+}.
Indeed, if WP = 〈sα | α ∈ ∆P 〉, WQ = 〈sα | α ∈ ∆Q〉 so that P = BWPB, Q = BWQB, it is enough
to show that W = WPWP,QWQ since, then, G = BWB = BWPWP,QWQB ⊂ PWP,QQ ⊂ G. Recall
that for w ∈ W , its length can be described as `(w) = |{α ∈ Φ+ | wα ∈ Φ−}| and that for α ∈ ∆
`(wsα) = `(w) + 1 if and only if wα ∈ Φ+ and `(wsα) = `(w) − 1 if and only if wα ∈ Φ−. So, if w
is an element of minimal length in WPwWQ for every α ∈ ∆P , `(w−1sα) = `(sαw) = `(w) + 1 hence
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w−1α ∈ Φ+ while for every α ∈ ∆Q, `(sαw) = `(w) + 1 hence wα ∈ Φ+.

- Step 2.2: Write Xw := X(χ, ϕ,Θ)P ∩ (PwQ/Q) ⊂ G/Q and observe that either Xw = ∅ or Xw =
PwQ/Q. Since

X(χ, ϕ,Θ)P =
⊔

w∈WP,Q

Xw,

it is enough to show that for every w ∈ WP,Q such that Xw 6= ∅ and every [µ] ∈ X∗(P
red)/ ∼,

dim((Xw)[µ]) < dim(G/Q)− (c+ dimZG(ϕ)).

- Step 2.3: dim((Xw)[µ]) = dim(Ru(P ))− dim(wQw−1 ∩Ru(P )).

Indeed, let T ⊂ P ∩wQw−1 be a maximal torus such that w ·χ ∈ X∗(T ) and let LP ⊂ P , LwQw−1 ⊂ Q
the Levi subgroups containing T of P and wQw−1 respectively. Then the parabolic subgroup attached
to pP red ◦ w · χ is (LwQw−1 ∩ LP ) · Ru(P )/Ru(P ) (see proof of the lemma in Subsection 1.4). Let
pµ ∈ P such that pµwQ(pµw)−1 ∈ (Xw)[µ]. Then for every p ∈ P , pwQ(pw)−1 ∈ (Xw)[µ] if and only
if [pw · χ]P red = [µ] = [pµw · χ]P red that is if and only if p−1pµ ∈ (LwQw−1 ∩ LP ) · Ru(P ). As a result,
using again that NG(wQw−1) = wQw−1

dim((Xw)[µ]) = dim((LwQw−1 ∩ LP ) ·Ru(P ))− dim(wQw−1 ∩ ((LwQw−1 ∩ LP ) ·Ru(P ))).

But from Proposition 1, wQw−1∩((LwQw−1 ∩LP ) ·Ru(P ))) = (LwQw−1 ∩LP ) ·(wQw−1∩Ru(P )). Note
that, here as in Proposition 1, the ‘·’ really means direct product decomposition as algebraic varieties.

- Step 2.4: for simplicity, write e := c+ dimZG(ϕ). Assume by contradiction that there exists w ∈WP,Q

such that Xw 6= ∅ and [µ] ∈ X∗(P red)/ ∼ such that dim((Xw)[µ]) ≥ dim(G/Q)− e. By Step 2.3,

dim(G/Q)− e ≤ dim((Xw)[µ]) = dim(Ru(P ))− dim(wQw−1 ∩Ru(P ))
= |Φ \ ΦP | − |{β ∈ ΦQ | − wβ ∈ Φ \ ΦP }|
= |Φ \ ΦP | − |{α ∈ Φ \ ΦP | − w−1α ∈ ΦQ}|
= |{α ∈ Φ \ ΦP | − w−1α ∈ Φ \ ΦQ}|.

.

Set

S := {α ∈ Φ \ ΦP | − w−1α ∈ Φ \ ΦQ}, S′ := (Φ \ ΦP ) \ S = {α ∈ Φ \ ΦP | − w−1α ∈ ΦQ}.
Then, we have

dim(G/Q)− e ≤ |S|
and

|S′| = dim(G/P )−|S| ≤ dim(G/P )−dim(G/Q)+e = dimQ−dimP +e ≤ dim(Q/B)+e ≤
dim(LQ)

2
+e

On the other hand, the condition Xw 6= ∅ implies in particular that w ·χ ∈ X∗(G,P ) so that (see 1.5.2),∑
α∈Φ\ΦP

〈α,wχ〉 = 0

or, equivalently ∑
α∈S
〈w−1α, χ〉 = −

∑
α∈S′
〈w−1α, χ〉

By definition of S, S′, the terms 〈w−1α, χ〉, α ∈ S are > 0 while the terms −〈w−1α, χ〉, α ∈ S′ are ≥ 0.
As a result, by the definition of Hodge numbers,

(2.4.1) −
∑
α∈S′
〈w−1α, χ〉 ≤ T (|S′|) ≤ T (

dim(LQ)

2
+ e)

and

(2.4.2)
∑
α∈S
〈w−1α, χ〉 =

∑
−β∈Φ\ΦQ | wβ∈Φ\ΦP

〈β, χ〉 ≥
∑

−β∈Φ\ΦQ

〈β, χ〉 − T (e) ≥ dim(G/Q)− T (e).
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(2.4.1), (2.4.2) contradict the numerical assumption 2.2 (ii).

Remark. (??) While I could see quite easily why X(ϕ,Θ) and the X(χ, ϕ,Θ)(P,[µ]) are algebraic sub-
varieties of G/P0 × P red0 /R0 and G/Q respectively, I could not see why X(χ, ϕ,Θ) is an algebraic
subvariety of G/Q (or2 why ∪(P,[µ])∈X(ϕ,Θ)X(χ, ϕ,Θ)(P,[µ]) = X(χ, ϕ,Θ) is an algebraic subvariety of
G/Q×G/P0 × P red0 /R0). This seems to be implicit in [LV18] and crucial to conclude the proof. So I’d
be happy to have an argument for this fact. Maybe one can say something like this though it looks too
complicated. Up to replacing χ and P0 by G-conjugates one may assume X(χ, ϕ,Θ) contains an element
of the form (Q,P0, ∗) with S := Im(χ) ⊂ Q ∩ P0. Fix as above T ⊂ B ⊂ P0 ∩ Q; write Φ := Φ(G,T ).
Consider the Cartesian diagram

Z //

�

_�

��

(G/P )S
_�

��
G×G

(gQ,gP )→gQg−1
P

// G
g→g·P

// G/P

By construction, for every (gQ, gP ) ∈ Z, the image of gQχ(−)g−1
Q is contained in gPP0g

−1
P so that it

makes sense to consider 〈α, gQχ(−)g−1
Q 〉 for α ∈ X∗(gPP0g

−1
P ). Furthermore, we now that X(χ, ϕ,Θ) is

contained in the image of the first projection pr1 : Z ↪→ G×G→ G→ G/Q. Now, since Z(G)◦ is normal
in G, for every α ∈ ker(X∗(P0)→ X∗(Z(G)◦)) and g ∈ G, α(g−1−g) ∈ ker(X∗(gP0g

−1)→ X∗(Z(G)◦)).
So fix a Z-basis α1, . . . , αr of ker(X∗(P0)→ X∗(Z(G)◦)) and consider the closed subvariety3

Z(χ, ϕ,Θ) := {(gP , gQ, γ) ∈ Z ∩ (pr2 × pr3)−1(X(ϕ,Θ)) | 〈αi(g−1
P − gP ), gQχ(−)g−1

Q 〉 = 0, i = 1, . . . , r}

By definition of being balanced with respect to P , X(χ, ϕ,Θ) is in the image of

Z(χ, ϕ,Θ) ↪→ G×G× P red0 → G/Q×G/P0 × P red0 /R0

...
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