
ULTRAPRODUCT COEFFICIENTS IN ÉTALE COHOMOLOGY - A SURVEY

ANNA CADORET

In this paper k always denotes a finite field of characteristic p > 0. A variety over k means a reduced
scheme separated and of finite type over k.

1. Introduction

Etale cohomology and its by-product `-adic cohomology is the solution provided by Grothendieck and
his school to the problem of the existence of a Weil cohomology for smooth projective varieties over
fields of positive characteristic. The existence of such a cohomology is a central part in Grothendieck’s
motivic approach to the Weil conjectures; it already gives, via the Grothendieck-Lefschetz trace formula,
the rationality and functional equation for the zeta function. Modulo some of the standard conjectures,
it should also formally imply the Riemann Hypothesis [Kl]. While the standard conjectures are still
widely open, the Riemann hypothesis was proved by Deligne in Weil I [D74], using geometric methods
relying on the deepest properties of `-adic cohomology. Deligne later refined these methods in Weil
II [D80] to develop a systematic theory of Frobenius weights for constructible `-adic sheaves.

However, another a priori natural way to build a Weil cohomology from étale cohomology is to consider
ultraproduct of finite fields. Surprisingly, this approach seems to have been almost unexplored till now.
Cohomology groups with constant ultraproduct coefficients appear briefly and seemingly for the first
time on p. 389 of [S04]. In [T04], Tomasic checked that étale cohomology with constant ultraproduct
coefficients indeed gives rise to a Weil cohomology. Actually, the only axioms which do not follow di-
rectly from the classical properties of étale cohomology with torsion coefficients are the finiteness of the
cohomology groups with constant ultraproduct coefficients and hard Lefschetz. In [T04], this is derived
from the similar statements for `-adic cohomology and Gabber’s torsion freeness theorem for cohomol-
ogy groups with Z`-coefficients [G83] - a tricky consequence of the gcd theorem of Weil II [D80, Thm.
(4.5.1)]. By devissage using nodal curves in the spirit of [dJ16], Orgogozo gave more recently a direct
proof (in the sense that it does use the theory of Frobenius weights for `-adic cohomology) of the finite-
ness of the cohomology groups with constant ultraproduct coefficients [O19, Thm. 3.1.1, Rem. 3.1.4,
§6.2]. Actually Orgogozo’s finiteness results are more general and made me realize that one could give
a simple definition of étale Qu-local systems with a reasonably well-behaved cohomology theory - in
particular finite-dimensional cohomology groups - satisfying a theory of Frobenius weights paralleling
the one for Q`-local systems as developed in Weil II. More precisely, let L be an infinite set of primes
not containing p, u a non-principal ultrafilter on L and Qu the quotient of F :=

∏
`∈L F` by the maximal

ideal defined by u; recall Qu is a field isomorphic to C (which will allow to define weights just as in
the Q` setting). One can then define the category of Qu-étale sheaves as the quotient category of the
product of the categories of F`-étale sheaves by the full subcategory of those objects M =M`, ` ∈ L
for which the set of primes ` ∈ L with M` = 0 is in u. The category of Qu-local systems is the full-
subcategory of this quotient category whose objects arise from those M = M`, ` ∈ L with uniformly
bounded F`-rank and for which there exists an étale cover X ′ → X such that the set of primes ` ∈ L
with M`|X′ tame is in u (See Subsection 2.4 for the definition of tameness for higher-dimensional X).
Already when X is a curve and as can be seen from the Grothendieck-Ogg-Shafarevich formula, the
almost uniform tameness condition is necessary to ensure the cohomology groups with compact support
(
∏
`∈LHc(Xk,M`))⊗Qu be finite-dimensional.

The search for a well-behaved category of Qu-local systems was originally motivated by extending to
F`-local systems properties of Q`-local systems. For instance, it is an amazingly simple consequence of
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the theory of Frobenius weights that, if f : Y → X is a smooth proper morphism, the Q`-local system
R•f∗Q`|Xk is semisimple [D80, (3.4)]. One may thus ask if the F`-local system R•f∗F`|Xk is semisimple1

as well for `� 0. Actually, this specific result is proved in [CHT17a]. But the arguments there are rather
involved; they rely on a combination of geometric trick, the theory of Frobenius weights for Rif∗Q` and
quite a heavy group-theoretical machinery, including the results of [CT17], a bit of Bruhat-Tits theory,
Lie theory etc. The rough idea is to compare the π1(Xk)-action R•f∗Q` x and R•f∗F` x by Tannakian
methods, using the fact that, by Gabber’s theorem mentioned above, R•f∗F` = (R•f∗Z`) ⊗ F` for
`� 0. At the time we were writing [CHT17a], I realized things would become almost straightforward
if we would have at disposal a flexible enough theory of Frobenius weights for F`-coefficients provided
` � 0. Formalizing this using ultraproducts of the F` was, I guess, reminiscent from my reading of
Serre’s article [S04] and some informal discussions I had with Arno Kret during my stay at the I.A.S.
in 2013-14.

The aim of this note is to give an overview of the main results of [C20b] and [CT20]. In the first
part of [C20b] we settle the notion of Qu-local system, prove the analogue of the ‘fundamental theorem
of Weil II for curves’ [D80, (3.2.1)] and derive from it some of the classical properties of the theory
of Frobenius weights for pure local systems (purity, geometric semisimplicity etc.). The second part
of [C20b] is devoted to applications to the torsion, unicity and residual semisimplicity / irreducibility
properties for integral models in compatible families of Q`-local systems. Typical examples of compat-
ible families are the R•f∗Q`|Xk , ` 6= p for f : Y → X a smooth proper morphism but, more generally,

every irreducible Q`-local system with finite determinant is part of such a compatible family - this is
an output of the Langlands correspondance and Deligne’s companion conjecture [D80, Conj. (1.2.10)].
In the third part of [C20b], which builds on the results in the second part, we ’complete’ the Langlands
correspondance and companion conjecture to include Qu-local systems and deduce from this finiteness
and lifting results for F`-local systems as well as independence results for algebraic monodromy. The
paper [CT20] builds further on the companion conjecture for Q`/Qu-local systems to show the Tan-
nakian form of the Cebotarev density theorem ’transfers’ from Q`- to Qu-local systems. We follow these
general guidelines in our exposition. We omitted most of the proofs but, still, kept sketches of some of
them in order to give the reader an idea of their flavor and simplicity, especially in the applications.

Conceptually, the fact that Qu-local systems as defined in [C20b] fit in the global picture of the Lang-
lands correspondance and companion conjecture suggests that the definition of [C20b] is the ’right one’.
On the other hand, for possible further applications, it would be desirable to embed the category of
Qu-local systems into a well-behaved (derived) category of constructible Qu-sheaves stable under the
six-operations and satisfying a relative theory of Frobenius weights for arbitrary separated morphisms
f : Y → X paralleling the one developed by Deligne from [D80, (3.3)]. Possibly the most natural
attempt would be to enlarge the étale topos and adjust the notion of good stratification introduced by
Orgogozo [O19]2. The first basic statement such a theory of constructible sheaves should imply and
that I currently do not know how to prove is the following:

Question. Let X be a (smooth) variety over k and let C be ι-pure Qu-local system of weight w. Is
H i
c(Xk, C) ι-mixed of weights ≤ w + i?

Fix an algebraic closure k of k; let ϕ ∈ π1(k) := Gal(k|k) denote the geometric Frobenius of k (that is
the inverse of the |k|th power map). Given a variety X over k and a point x ∈ X we always denote by
x a geometric point over x. Let |X| ⊂ X denote the set of closed points. For x ∈ |X|, write ϕx ∈ π1(x)
for the geometric Frobenius at x.

In the following, a sheaf always means a sheaf for the étale topology.

Fix an infinite set of primes L not containing p and set F :=
∏
`∈L F`.

1Such properties are required, for instance, to show the growth of the genus and gonality of abstract modular curves
attached to such families of F`-local systems - See [CT19], [CT16], [C20c].

2One technical issue in the notion of good stratification as defined in [O19] stems from the condition that j!F be
constructible and tame for the topology of alteration in [O19, Thm. 5.1]; this condition is not preserved by Rif∗, which
makes delicate, for instance, devissages using Leray spectral sequences as in the proof of [D80, Thm. (3.3.1)].
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2. The category of Qu-local systems

2.1. Let T be a scheme. For ` ∈ L, let S(T,F`) denote the category of F`-sheaves and S(T,F) the ‘prod-
uct category’ of the categories S(T,F`), ` ∈ L that is the category whose objects are familiesM =M`,
` ∈ L with M` ∈ S(T,F`), ` ∈ L and whose morphisms M → N are families φ = φ` : M` → N`,
` ∈ L of morphism φ` :M` → N` in S(T,F`). Objects (resp. morphisms) in S(T,F) are denoted byM
(resp. φ :M→ N ) and we write M` (resp. φ` :M` → N`) for the `th component of M (resp. of φ).

The category S(T,F) inherits from the S(T,F`), ` ∈ L a structure of rigid abelian monoidal category,
namely M⊕N =M` ⊕N`, ` ∈ L, M⊗N =M` ⊗N`, ` ∈ L etc.

2.1.1. The cohomology theory we consider on S(T,F) is the product3 of the étale cohomology theo-
ries on each of the S(T,F`), ` ∈ L, namely stalks at geometric points, cohomology groups, cohomology
groups with compact support, inverse images, higher direct images etc. are defined componentwise. For
instance, if F : S(T,F`)→Mod/F` denotes any of the functors H•(T,−) (étale cohomology), H•c (T,−)

(étale cohomology with compact support), (−)t (stalk at the geometric point t) on S(T,F`) then, on
S(T,F), one sets F : S(T,F) → Mod/F, M 7→

∏
`∈L F (M`). Similarly, for a morphism of schemes

f : T ′ → T , one defines the inverse image functor f∗ : S(T,F)→ S(T ′,F), M→ f∗M = f∗M`, ` ∈ L,
the higher direct images functor R•f∗ : S(T ′,F)→ S(T,F), M′ → R•f∗M′ = R•f∗M′`, ` ∈ L etc.

One says that M ∈ S(T,F) is constructible (resp. locally constant constructible - lcc for short) if M`

is, ` ∈ L.

2.1.2. Let Π be a topological group. For ` ∈ L, let Rep(Π,F`) denote the category of finitely generated
F`-modules M` equipped with a continuous F`-linear action of Π that is such that the image Π` of Π
acting onM` is finite and the induced morphism Π � Π` is continuous. When Π is profinite topologically
finitely generated ( [NS07a], [NS07b]) and, more generally, when every finite index subgroup of Π is
open, this latter continuity condition is automatic. Let Rep(Π,F) denote the ‘product category’ of the
Rep(Π,F`), ` ∈ L that is the category whose objects are families M = M`, ` ∈ L with M` ∈ Rep(Π,F`),
` ∈ L and whose morphisms M → N are families φ = φ` : M` → N`, ` ∈ L of morphisms in Rep(Π,F`).
Again, objects (resp. morphisms) in Rep(Π,F) are denoted by M (resp. φ : M → N) and we write M`

(resp. φ` : M` → N`) for the `th component of M (resp. φ : M → N) etc.

2.1.3. If T is connected and t is a geometric point on T , the fiber functor (−)t : S(T,F)→Mod/F induces

an equivalence of categories from lcc sheaves in S(T,F) to Rep(π1(T ; t),F). If X is a geometrically
connected variety over k and x is a geometric point on X, let W (X,x) := π1(Xk, x) ×π1(k) ϕ

Z denote
the Weil group; it is equipped with the product of the profinite topology on π1(Xk, x) and the discrete

topology on ϕZ. Since π1(X,x) is the profinite completion of W (X,x), the functor ‘restriction to
W (X,x)’ induces an equivalence of categories Rep(π1(X,x),F)→ Rep(W (X,x),F); in particular, there
is no difference between ‘lcc Weil sheaves’ and lcc sheaves in our setting.

2.2. A filter on L is a family of subsets of L which is stable under finite intersections, supsets and does
not contains the empty set. An ultrafilter on L is a filter which is maximal for ⊂ among all filters or,
equivalently, a filter u such that for every S ⊂ L either S ∈ u or L \ S ∈ u. For every n : L → Z≥1, the

set of ultrafilters on L is in bijection with the spectrum of (the 0-dimensional) ring F:

Ultrafilters on L ←→ Spec(F)
u −→ mu := 〈eS | S ∈ u〉

um := {S ⊂ L | eS ∈ m} ←− m,

where eS : L → {0, 1} denotes the characteristic function of L \ S. For an ultrafilter u on L, write
F → Qu := F/mu for the corresponding ultraproduct. In the above bijection, maximal principal ideals
are in bijection with L and correspond to the so-called principal ultrafilters: u` := {S ⊂ L | ` ∈ S}.

3Not to be confused with the étale cohomological formalism induced by the one on the topos of F-modules; recall that
in general stalks at geometric points, cohomology groups etc. do not commute with infinite direct products.
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Non principal ultrafilters give rise to characteristic 0 ultraproducts and their intersection is the set of all
S ⊂ L such that L \ S is finite. In terms of ideals, this means that the intersection of all non-principal
maximal ideals of F is ⊕`∈LF`.

Let U denote the set of all non principal ultrafilters on L. For u ∈ U the following holds.
- (2.2.1) F � Qu is a flat morphism;
- (2.2.2) Qu is algebraically closed and isomorphic to C.

2.3. Fix u ∈ U and let (−)u : S(T,F)→ S(T,Qu), M→Mu denote the quotient of S(T,F) by the full
subcategory of all M such that {` ∈ L | M` = 0} ∈ u. The category S(T,Qu) of Qu-sheaves inherits
from S(T,F) a structure of rigid abelian monoidal category such that S(T,F)→ S(T,Qu) becomes an
additive tensor functor.

2.3.1. Let F : S(T,F) → Mod/F denotes any of the functors H•(T,−), H•c (T,−), (−)t on S(T,F).

Then F : S(T,F) → Mod/Qu
, M 7→ F (M) ⊗ Qu factors through (−)u : S(T,F) → S(T,Qu) as

Fu : S(T,Qu) → Mod/Qu
. We simply write F (Mu) := Fu(Mu) so that F (Mu) = F (M) ⊗ Qu.

Similarly, for a morphism of schemes f : T ′ → T , the functors f∗ : S(T,F) → S(T ′,F) → S(T ′,Qu),
R•f∗ : S(T ′,F) → S(T,F) → S(T,Qu) factor through (−)u : S(T,F) → S(T,Qu) as f∗u : S(T,Qu) →
S(T ′,Qu), R

•f∗,u : S(T ′,Qu)→ S(T,Qu). We simply write f∗Mu := f∗uMu, R
•f∗M′u = R•f∗,uM′u.

2.3.2. Remark. Since S(T,F`) = colimS(T,F`n), one could have alternatively constructed S(T,F) as
follows. For a map n : L → Z≥1, write Fn :=

∏
`∈L F`n` and for u ∈ U , let Fn → Qn,u := Fn/mu

denote the corresponding ultraproduct. Then Qu = colimQn,u. Define as before S(T,Fn) as the ‘prod-

uct category’ of the categories S(T,F`n` ), ` ∈ L. Then considering the natural componentwise scalar
extension functors S(T,Fm) → S(T,Fn), m|n, S(T,F) = colimS(T,Fn). This emphasizes further the

parallelism between the construction from torsion coefficients of the cohomology groups with Q`- and
Qu-coefficients as summarized in the table below. Given a prime `( 6= p), we always denote by Q` a
finite extension of Q` and by Z`, λ` and F` the corresponding ring of integers, uniformizer and residue
field.

Q` FU
torsion coefficients Z`/λ

n
` , n ≥ 1 F`n` , n : L → Z≥1

lim
←−

(to char 0 ring) Z` Fn
localization (exact) (to char 0 field) Z` ↪→ Q` Fn � Qn,U
lim
−→

(to alg. closed char 0 field ' C) Q` ↪→ Q` Qn,U ↪→ QU

In both cases, to check cohomology groups with Q`- and Qu-coefficients behave well, the delicate part
of the construction is the projective limit step. In the `-adic setting, difficulties arise from torsion
phenomena. In the ultraproduct setting, they arise from wild ramification phenomena. This will lead
us to impose a uniform almost tameness assumption in our definition of ultraproduct local systems.

2.3.3. Given M ∈Mod/F, the u-rank of M is the Qu-dimension of Mu := M ⊗Qu. Given M ∈ S(T,F)

and a geometric point t on T , the u-rank ofM at t is the u-rank ofMt (equivalently, the Qu-dimension
of Mu,t). One says that M has finite u-rank if there exists an integer d ≥ 1 such that the set of all

` ∈ L with dim(M`,t) ≤ d for every geometric point t on T is in u.

IfM∈ S(T,F) is lcc, for every ` ∈ L, the F`-rank ofM`,t is independent of t. In particular the u-rank

of M at t is independent of t; call it the u-rank of M.

If M,N ∈Mod/F have finite u-rank, (M ⊗N)⊗Qu = Mu ⊗Nu. In particular, if M,N ∈ S(T,F) have

finite u-rank at t, (Mu ⊗Nu)t =Mu,t ⊗Nu,t.

2.4. Let X be a variety over k, normal and connected (hence integral) and let X ↪→ X be a normal
compactification. One says that a connected étale cover X ′ → X is tamely ramified along X \ X
if every codimension-1 point ζ ∈ X \ X is tamely ramified in the resulting extension k(X ′)/k(X)
of function fields and that a (not necessarily connected) étale cover X ′ → X is tamely ramified
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along X \ X if each of its connected components is. Fix a geometric point x on X. Etale cov-
ers which are tamely ramified along X \ X are classified by a quotient π1(X,x) � πt1(X,X \ X,x)
(whose kernel is generated by the wild inertia groups at all codimension 1 points ζ ∈ X \ X); write
K(X,X \X,x) := ker(π1(X,x) � πt1(X,X \X,x)).

Let X ′ → X be an étale cover. Following Kersz-Schmidt [KS10], consider the conditions below.
- (2.4.1) (curve-tameness): For every smooth curve C over k and morphism C → X, X ′ ×X C → C is

tame;
- (2.4.2) (divisor-tameness): For every normal compactification X ↪→ X, X ′ → X is tamely ramified

along X \X.
Divisor-tame covers are classified by a quotient π1(X,x) � πt1(X,x) with kernelK(X,x) := ker(π1(X,x) �
πt1(X,x)) the (normal) subgroup of π1(X,x) generated by the K(X,X \X,x) for X ↪→ X describing all
normal compactifications. Since π1(X,x), πt1(X,x), πt1(X,X \X,x) are independent of x up to inner
automorphisms and base points will play no part in the following, we omit them from the notation. If
X is smooth over k, [KS10, Thm. 1.1] asserts that (2.4.1), (2.4.2) are equivalent and that, if X admits
a smooth compactification X ↪→ X such that X \ X is a normal crossing divisor, (2.4.1), (2.4.2) are
also equivalent to the notion of tameness of [SGA1, XIII]. When X is smooth over k, we will say that
an étale cover satisfying the equivalent conditions (2.4.1), (2.4.2) is tamely ramified. By (2.4.1), the
notion of tameness is stable under arbitrary base-changes.

When X is smooth over k, πt1(X) is topologically finitely generated; this finiteness property will play a
crucial part in the following. When X is a curve, this is a consequence of the theory of specialization
of the tame étale fundamental group [SGA1, XIII]. In general, it is a consequence of the following
Bertini theorem, which is a key technical tool to handle Qu-local systems on higher-dimensional smooth
varieties.

2.5. Theorem. ( [C20b, App., Thm. 1.2.1]; Drinfeld, Poonen, Tamagawa ...) Let X be a normal, geo-
metrically connected variety over k and X ′ → X a Galois étale cover; the group K(X ′) := ker(π1(X ′) �
πt1(X ′)) is normal in π1(X). There exists a smooth, geometrically connected curve C over k and a mor-
phism f : C → X of varieties over k such that the induced morphism π1(C)→ π1(X) � π1(X)/K(X ′)
is surjective and factors through π1(C) � πt1(C). Furthermore, given a finite set S of closed points
contained in a quasi-projective4 open subscheme U ⊂ Xsm, one can choose f : C → X in such a way
that it admits a section g : S → C.

2.6. Let X be a smooth and geometrically connected variety over k. Fix u ∈ U .

2.6.1. For ` ∈ L, and a lcc M` in S(X,F`), one says that M` is tame if the étale cover X ′ → X
trivializing M` is tame. For a lcc M in S(X,F), one says that M is u-tame if the set of primes ` ∈ L
such that M` is tame is in u and that M is almost u-tame if there exists an étale cover X ′ → X such
that M|X′ is u-tame.

2.6.2. Let Stu(X,F) ⊂ S(X,F) denote the full subcategory of almost u-tame lcc sheaves with finite
u-rank. It is abelian and, as a subcategory of the category of lcc sheaves in S(X,F), stable under
extensions (recall p 6= `), internal Hom, duals, tensor products, pullback by arbitrary morphisms and
push forward by finite étale morphisms. Let C(X,Qu) ⊂ S(X,Qu) denote the essential image of

Stu(X,F) ⊂ S(X,F)→ S(X,Qu).

2.6.3. Given a (topological) group Π, let Rep(Π,Qu) denote the category of finite-dimensional Qu-linear
representations of Π. Let Rept(π1(X),Qu) ⊂ Rep(π1(X),Qu) denote the essential image of the canonical
functor

Stu(X,F)→ Rep(π1(X),F)→ Rep(π1(X),Qu).

The following (elementary) lemma, which relies on the (non elementary) fact that πt1(X) is topologically
finitely generated provides a useful group-theoretical description of C(X,Qu).

4Under some mild global assumptions on Xsm - see [Stacks, Part 2, 27.9] - every finite set S ⊂ Xsm of closed points is
contained in an affine open subscheme U ⊂ Xsm.
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Lemma. ( [C20b, Lem. 3.6.2.3]) Assume X is smooth over k. Then Rept(π1(X),Qu) is a Tannakian
subcategory of Rep(π1(X),Qu), stable under subobjects. Furthermore the canonical additive tensor func-
tor Stu(X,F)→ Rept(π1(X),Qu) factors through an equivalence of categories C(X,Qu)→̃Rept(π1(X),Qu).

We call C(X,Qu) the category of Qu-local systems on X. This terminology is motivated by the above
Lemma and, as we will see later, by the fact that it corresponds to the category of Q`-local system in
the sense of the Langlands correspondance.

From now on and unless some confusion may arise, we simply writeM→M :=Mu for the localization
functor Stu(X,F)→ C(X,Qu).

2.6.4. Since the map F× � Q×u is surjective, every α ∈ Qu lifts to some α ∈ F× hence defines a character

π1(X) � π1(k)
ϕ7→α→ F× � Q×u ∈ Reptu(π1(X),Qu),

which corresponds to a rank-1 object in C(X,Qu), which we denote by Q(α)
u,X . For an arbitrary M ∈

C(X,Qu) we write M(α) :=M⊗Q(α)
u,X and call it the twist of M by α. For α = |k|−1, we rather write

M(n) :=M(|k|−n) and call it the nth Tate twist of M.

Another fundamental consequence of the almost-u tameness assumption is the finiteness of the coho-
mology groups with compact support5.

2.6.5. Theorem. ( [C20b, Thm. 3.6.3]) If M ∈ C(X,Qu), the Qu-vector space H•c (Xk,M) (hence, by
Poincaré duality - recall X is assumed to be smooth over k - H•(Xk,M)), has finite dimension.

When X is a curve the finiteness of H•c (Xk,M) directly follows from the Grothendieck-Ogg-Shafarevich
formula but when X is higher-dimensional, it requires more elaborated results from ramification theory.
The idea is to reduce, by standard arguments using de Jong’s alterations [dJ16] and the comparison
theorem for curve-tameness and divisor-tameness of Kerz-Schmidt [KS10, Thm. 1.1], to the case where
X is the complement of a strict normal crossing divisor in a smooth projective variety, which follows
from the uniformity theorem of Orgogozo [O19, Thm. 3.1.1] (plus the already mentioned fact that, in
that case, our notion of tameness coincide with the one of [SGA1, XIII]).

3. Weight theory

Let X be a smooth, geometrically connected variety over k. Fix u ∈ U .

3.1. Let M∈ C(X,Qu).

3.1.1. The finite u-rank condition allows to define Frobenius weights. For a closed point x ∈ |X| and
a geometric point x over x, the geometric Frobenius ϕx ∈ π1(x) at x acts on the finite-dimensional

Qu-vector space Mx. Given an isomorphism ι : Qu→̃C, the ι-weights of M at x are the 2 log(|ια|)
log(|k(x)|) for α

describing the set of eigenvalues of ϕx acting on Mx. If there exists w ∈ R such that for every x ∈ |X|
the ι-weights of M at x are all equal to w, one says that M is ι-pure of weight w.

For α ∈ Qu, Q
(α)
u is ι-pure of weight 2 log(|ια|)

log(|k|) ; in particular Qu(1) is ι-pure of weight −2.

3.1.2. The finiteness Theorem 5.5.1 is enough to derive the cohomological interpretation of L-function
from the trace formula for the M`, ` ∈ u, namely ( [C20b, Thm. 3.5.1]):∏

x∈|X|

Lx(M, T ) =
∏
i≥0

det(1− Tϕ|Hi
c(Xk,M))(−1)i+1

in Qu[[T ]], where Lx(M, T ) := det(1− Tdeg(x)ϕx| Mx)−1 denotes the local L-factor at x ∈ |X|.

3.1.3. The almost tameness condition also implies the following:

5Actually, the assumption that X is smooth is not required for the finiteness of cohomology with compact support
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3.1.3.1.( [C20b, Thm. 6.1.3]) The radical of the Zariski closure of the image of π1(Xk) acting onMx is
unipotent.

This follows by group-theoretic arguments involving Lemma 2.6.3 from the rank-1 case, which is itself
a consequence of geometric class field theory:

Fact. (e.g. [D80, Thm. (1.3.1)]) The image of π1(Xk)→ π1(Xk)
ab is the direct product of a pro-p group

by a finite group of prime-to-p order.

The rank-1 case of the above statement can be reformulated by saying that every rank-1M∈ C(X,Qu)

can be written as M = E(α) for some α ∈ Qu and with E⊗n ' Qu,X for some integer n ≥ 1. In

particular, M is ι-pure of weight 2 log(|ια|)
log(|k|) .

3.1.3.2.( [C20b, Lem. 5.3.1]) If X is a curve with smooth compactification j : X ↪→ X the image of
π1(Xk,(x)) acting on Mηx is quasi-unipotent. Here ηx denotes a geometric generic point on the strict

henselization Xk,(x) := Xk ×Xk
spec(OXk,x

).

3.1.4. With these observations in hands, one can adjust Deligne’s proof of the fundamental theorem of
Weil II for curves [D80, Thm. (3.2.1)] to Qu-local systems.

Theorem (Weil II ultraproduct for curves - [C20b, Thm. 1.2.4]). Assume X is a curve. If M
is ι-pure of weight w then, for every i ≥ 0, H i

c(Xk,M) has ι-weights ≤ w+ i. Equivalently, H i(Xk,M)
has ι-weights ≥ w + i.

Corollary Assume X is a curve with smooth compactification j : X ↪→ X. If M is ι-pure of weight w
then, for every i ≥ 0, H i(Xk, j∗M) has ι-weights w + i.

We refer the to [C20b, Sections 5-8] for the proof.

3.2. In Weil II, Deligne uses an elegant devissage to deduce from [D80, Thm. (3.2.1)] what is usually
referred to as ”the main theorem of Weil II”, namely [D80, Thm. (3.3.1)] if f : X → Y is a morphism of
varieties over k and F a constructible Q`-sheaf on X, ι-mixed of weight ≤ w then Rif!F is ι-mixed of
weights ≤ w+ i, i ≥ 0. With this general statement in hand, the development of a the ”yoga of weights”
for Q`-cohomology [D80, (3.3), (3.4)] is rather straightforward. For Qu-cohomology however, we do not
have yet a good notion of constructible sheaf. However, at the cost of resorting to additional geomet-
ric arguments - Lefschetz pencils, elementary fibrations or Bertini like arguments such as theorem 2.5
above, one can go around this issue and establish most of the weight theory for Qu-local systems. We
summarize below the main results.

Fix an isomorphism ι : Qu→̃C.

3.2.1. (Purity) Let M ∈ C(X,Qu) be ι-pure of weight w. Assume X is proper over k. Then for every
i ≥ 0, H i(X,F) is ι-pure of weights w + i.

3.2.2. (Geometric semisimplicity) LetM∈ C(X,Qu) be ι-pure of weight w. The following equivalent
conditions hold:
(1) M|Xk is semisimple in C(Xk,Qu);

(2) For every geometric point x on X, π1(Xk) acts semisimply on Mx;
(3) The set of primes ` ∈ L such that M`|Xk is semisimple is in u.

3.2.3. (Weight decomposition and filtration for ι-mixed Qu-local systems) One says that
M ∈ C(X,Qu) is ι-mixed if it admits an increasing filtration F•M in C(X,Qu) such that GrFi (M)
is ι-pure, i ∈ Z.

Assume M∈ C(X,Qu) is ι-mixed. Then,
(1) M admits a decomposition M = ⊕a∈R/ZM(a) in C(X,Qu) with M(a) ∈ C(X,Qu) of ι-weights in

a+ Z.



8 ANNA CADORET

(2) If the ι-weights of the GrFi (M), i ∈ Z are all in Z then M admits an increasing filtration W•M in

C(X,Qu) with GrWi M ι-pure of weight i, i ∈ Z.

3.2.4. (Weak Cebotarev) One pathological feature of ultraproducts of finite fields is that their natural
topology (the quotient topology of the product of the discrete topologies) is not separated. So it is
unclear whether the näıve analogue of the Cebotarev theorem holds. However, the following weak form,
which will be enough for our applications, still holds.

Let M,M′ ∈ C(X,Qu) be ι-mixed and semisimple. Assume that Lx(M, T ) = Lx(M′, T ), x ∈ |X|.
Then M'M′.

We will see later, as a by-product of the Langlands correspondance, that everyM∈ C(X,Qu) is ι-mixed
(Corollary 5.3.3). We will also deduce from the Langlands correspondance a Tannakian enhancement
of the above Weak Cebotarev theorem (Corollary 5.6.1.3).

4. Integral models in compatible families of `-adic local systems

We now come to the applications that were our first motivation to introduce Qu-local systems and their
theory of Frobenius weights. Let again X be a smooth, geometrically connected variety over k.

For ` ∈ L, let C(X,Q`) denote the category of Q`-local systems (that is lcc Weil Q`-sheaves) on X. For
F` ∈ C(X,Q`) an integral model of F` is a torsion-free Z`-local system H` such that H` ⊗ Q` = F`,
where Z` denotes the ring of integers of a finite field extension Q` of Q` in Q`. Let λ` ∈ Z` be a
uniformizer and F` := Z`/λ` the residue field.

4.1. Let † ∈ L ∪ U . One says that a Q†-local system C on X is algebraic (resp. finite algebraic) if the

Q-subextension QC ⊂ Q† generated by the coefficients of the χx(C, T ) := det(1 − Tϕx|Cx), x ∈ |X| is

algebraic (resp. a number field). Let S ⊂ L ∪ U . A compatible family of Q†-local systems on X with

index set S is a family C = C†, † ∈ S of finite algebraic Q†-local systems such that for every x ∈ |X|,
χx(C, T ) := χx(C†, T ) ∈ Q[T ] is independent of S. Write QC := QC† , L ∪ U and call it the field of

coefficients of C. Write also Lx(C, T ) := χx(C, T deg(x))−1 for the local L-factor of C at x. For i ≥ 0 and
? = ∅, c, set

P i?(C†, T ) := det(1− Tϕ|H i
?(X, C†)), † ∈ L ∪ U .

By the trace formula [D80, (1.4.5.1)],

L(C, T ) := L(C†, T ) =
∏
x∈|X|

Lx(C†, T ) =
∏
i≥0

P ic(C†, T )(−1)i+1
=: χc(C†, T ) =: χc(C, T )

is then in QC(T ) and independent of † ∈ S as well. One says that C is ι-pure of weight w ∈ R if C† is
ι†-pure of weight w, † ∈ S and that C is semisimple if C† is, † ∈ S.

The common rank of the C†, † ∈ S is called the rank of C.

4.2. Let F := F`, ` ∈ L be a compatible family of Q`-local systems. For every ` ∈ L and Z`-model H`
of F`, write M` := H` ⊗Z` F` and set C` := F` for ` ∈ L, Cu :=Mu for u ∈ U . Then,

Lemma / example. For every u ∈ U , M∈ Stu(X,F) and C = C†, † ∈ L ∪ U is a compatible family of

Q†-local systems on X.

The non-trivial part of the assertion is that M ∈ Stu(X,F), u ∈ U . Fix ` ∈ L. Up to replacing X
by a connected étale cover, one may assume M`|X is constant. Let C be a smooth, geometrically
connected curve over k and C → Xk a non-constant morphism. Since M`|Xk is constant, F`|C is

tamely ramified. One has to show that for every `′ ∈ L, F`′ |C is tamely ramified as well. By the
Grothendieck-Ogg-Shafarevich formula, it is enough to show that the Euler-Poincarré characteristics
for compact support cohomology of F`|C and F`′ |C coincide. But these are the orders of the pole at
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∞ of χ(F`|C , T ), χ(F`′ |C , T ) respectively. So the conclusion follows from the compatibility assumption
and the trace formula.

4.3. From now on and till the end of Section 5 fix a rank-r compatible family F := F`, ` ∈ L of Q`-local
systems on X, ι-pure of weight w ∈ R.

4.3.1. Uniformity principle. One nice feature of the formalism of ultraproduct coefficients is its flexibil-
ity with respect to the index set L and the choice of the integral models H`, ` ∈ L; this automatically
implies that the results obtained are uniform in the choice of the integral models. More precisely, let
PQ (resp. PZ) be a property of Q`-local systems (resp. of Z`-local systems) on X. Consider

(1) For every infinite set6 L of primes 6= p and compatible family F = F`, ` ∈ L of Q`-local systems
such that F` has PQ, ` ∈ L, every family H = H`, ` ∈ L of integral models, H` has PZ for `� 0
(depending a priori on H).

Then, (1) formally implies the following uniform version.

(2) For every infinite set L of primes 6= p and compatible family F = F`, ` ∈ L of Q`-local systems
such that F` has PQ, ` ∈ L, for `� 0 (depending only on F) every integral model H` of F` has
PZ .

Indeed, otherwise, there would exists an infinite subset L′ ⊂ L and for every ` ∈ L′ an integral model
H` of F` such that PZ fails for H`, contradicting (4.3.1.1) for the compatible family F`, ` ∈ L′.

4.3.2. Integral Models. The following statement summarizes the torsion, unicity and residual semisim-
plicity / irreducibility properties for integral models.

4.3.2.1.Corollary. For `� 0 and every choice of Z`-model H` of F` the following holds.
(1) Assume there exists7 a smooth, proper morphism X → S with S a smooth curve over k. Then,

for ? = ∅, c, i ≥ 0 the cohomology groups H i
?(Xk,F`), H

i
?(Xk,M`) have the same dimension; in

particular H i
?(Xk,H`) is torsion-free and H i

?(Xk,H`)⊗ F` = H i
?(Xk,M`).

(2) (a) H`,x π1(Xk) ⊗ F`→̃M`,x
π1(Xk);

(b) if F is semisimple, H`,x π1(X) ⊗ F`→̃M`,x
π1(X).

(3) (a) M`|Xk is semisimple;
(b) if F` is semisimple, M` is semisimple.

(4) (a) if F`|Xk is irreducible, M`|Xk is irreducible;
(b) if F` is irreducible, M` is irreducible.

(5) If H′` is another Z`-model of F` then
(a) H`|Xk ' H

′
`|Xk ;

(b) if F` is semisimple, then H` ' H′`.
(6) (Resp. if F is semisimple) the connected component of the Zariski-closure of the image of the geo-

metric étale fundamental group (resp. of the étale fundamental group) of X acting on the stalks of
H` is a semisimple (resp. a reductive) group scheme over Z`.

We refer to [C20b, §1.3.2] for the comparison with existing results and approaches. We sketch some of
the arguments of the proof of Corollary 4.3.2.1 to emphasize how elementary they are. From 4.3.1, it
is enough to prove (1)-(6) for `� 0 depending possibly on H. So for every ` ∈ L fix a Z`-model H` of
H` and write M` := H`/λ`; set C` := F` for ` ∈ L, Cu :=Mu for u ∈ U .

Proof. (sketch of) (6) essentially follows from (3) but the argument is rather subtle. The key ingredient
is the theory of Frobenius tori of Serre and Larsen-Pink (e.g. [LarP92]); we refer to [C20b, Proof of
16.2.2] for details. In contrast, (1)-(5) are formal consequences of the theory of Frobenius weights for
Q`- and Qu-local systems and elementary properties of ultraproduct (using the non-elementary fact
πt1(X) is topologically finitely generated!). Let us prove (1) when X is proper over k or a curve (for
the general case, see [C20b, Cor. 12.1.5]). The second part of (1) follows from the first part and
Lemma 4.3.2.3 below. By Poincaré duality the assertion for ? = ∅ follows from the one for ? = c
so that one may assume ? = c. From Lemma 4.3.2.2 below, the Q†-dimension bic of H i

c(Xk, C†) is

6Actually, we may allow finitely many repetitions of each primes in L.
7In particular, this includes the case where X is proper over k (we do note impose X → S to be non-constant) and

where X = S is a curve.
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independent of † ∈ L ∪ U . As bic := dimH i
c(Xk, Cu) for every u ∈ U , one also has bic = H i

c(X,M`) for
` � 0. When X is a curve, (2)(a) is the ? = ∅, i = 0 case of (1); the general case of (2)(a) reduces
to the case where X is a curve by Theorem 2.5. (3)(a) follows from 3.2.2. (5)(a) follows from (2)(a)
and from (3)(a) applied to the compatible family F` ⊗ F∨` , ` ∈ L and its family of integral models
H` ⊗ H′`, ` ∈ L. More precisely, by Cebotarev density theorem, M′` ss ' M`

ss hence, from (2)(a),

M′`|Xk ' M`|Xk . Fix an isomorphism φ : M′`|Xk→̃M`|Xk . From (3)(a), the reduction-modulo-λ`
map Hom(H′`|Xk ,H`|Xk)→ Hom(M′`|Xk ,M`|Xk) is surjective so that φ :M′`|Xk→̃M`|Xk lifts to some

φ : H′`|Xk → H`|Xk which, by Nakayama’s lemma, is automatically an isomorphism. (5)(b) follows
similarly from (2)(b), (3)(b). The proofs of (2)(b), (3)(b), (4) are slightly more involved and we refer
to [C20b, Cor. 12.2] for details. �

4.3.2.2.Lemma. Assume X is proper over k or X is a curve. Then for every i ≥ 0 and ? = ∅, c,
P i?(C†, T ) is in Q[T ] and independent of † ∈ L ∪ U .

Proof. By Poincaré duality, the assertion for ? = ∅; follows from the one for ? = c. The assertion for
P ic(C†, T ) follows from the facts that χ(C;T ) := χ(C†;T ) is independent of † ∈ L∪ U (Lemma 4.2), and
that

- if X is proper over k, H i
c(Xk, C†) is ι†-pure of weight w + i ( [D80, Cor. (3.3.6)], 3.2.1)

- if X is an affine curve, H0
c (Xk, C†) = 0, H1

c (Xk, C†) is of ι†-weights < w+2 ( [D80, Cor. (2.2.10)],

3.1.4) and H1
c (Xk, C†) = C†,xπ1(Xk)(−1) is of ι†-weights w + 2.

�

4.3.2.3.Lemma. For ? = ∅, c and every i ≥ 0, H i
?(X,H`)⊗ F` = H i

?(X,M`)⇔ H i
?(X,H`)[λ`] = 0 and

Hj
?(X,H`)[λ`] = 0, j = i, i+ 1⇔ dimH i

?(X,F`) = dimH i
?(X,M`).

Proof. Combine the short exact sequences 0→ H i
?(X,H`)⊗ F` → H i

?(X,M`)→ H i+1
? (X,H`)[λ`]→ 0

and the equalities dim(H i
?(X,H`)⊗ F`) = dim(H i

?(X,F`)) + dimH i
?(X,H`)[λ`], i ≥ 0. �

5. Langlands correspondance with ultraproduct coefficients and applications

Let X be a smooth, projective, geometrically connected curve over k with generic point η. Let L denote
the set of all primes 6= p. For every † ∈ L ∪ U weft once for all an isomorphism ι† : Q†→̃C.

5.1. For † ∈ L ∪ U and every integer r ≥ 1, let Ir(X,Q†) ⊂ C(X,Q†) denote the subset of rank-r

irreducible Q†-local systems with finite determinant on X. Write

Ir(η,Q†) := colimIr(U,Q†) ⊂ C(η,Q†) := colimC(U,Q†),
where the colimit is over all non-empty open subscheme U ⊂ X.

For [C] ∈ C(η,Q†), there is a largest non-empty open subscheme j : UC ↪→ X over which [C] is unramified

that is arises from a (necessarily unique) C ∈ C(UC ,Q†). For x ∈ |UC |, one thus has the local L-factor
Lx([C], T ) := Lx(C, T ) (Subsection 4.1). We simply write C := [C] in the following.

5.2. Let K := k(η) denote the function field of X and for x ∈ |X|, let Kx denote the completion of K

at x, ÔX,x its ring of integers and A := colimS
∏
x∈SKx

∏
x∈|X|\S ÔX,x the ring of adèles of K (where

the colimit is over all finite subsets S ⊂ |X|).

Fix a finite character π1(K)ab → C× and let δ : K× \ A× → C× denote its composition with the
reciprocity morphism rec : K× \ A× ↪→ π1(K)ab of global class field theory. For every integer r ≥ 1,
GLr(A) acts by right translation on the C-vector space of locally constant maps GLr(K)\GLr(A)→ C
and this action stabilizes the C-vector space Cuspr,δ(A) of cuspidal automorphic forms with central
character δ that is those locally constant maps f : GLr(K) \GLr(A)→ C satisfying:
- The GLr(O)-orbit of f generates a finite-dimensional C-vector space ;
- For every z ∈ Z(GLr(A)) = A×, f · z = δ(z)f ;
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- (Cuspidality) For every partition r = r1 + · · ·+ rs with ri > 0 defining a standard parabolic subgroup
Pr ⊂ GLr with unipotent radical Ur,∫

Ur(K)\Ur(A)
f(ug)du = 0, g ∈ GLr(A).

As a representation of GLr(A), Cuspr,δ(A) decomposes as a direct sum of irreducible representations -
called automorphic cuspidal, each of them appearing with multiplicity one. These are those which do not
arise, by parabolic induction, from lower rank linear groups. Let Ar(η) denote the set of isomorphism
classes of complex irreducible cuspidal automorphic representations of GLr(A) whose central character
is of finite order. To every π ∈ Ar(η) is attached a non-empty open subset jπ : Uπ ↪→ X and for every
x ∈ |X| an irreducible C-representation πx of GLr(Kx) such that

- πx is unramified (that is dim(πx
GLr(ÔX,x)) = 1) if and only if x ∈ Uπ;

- π = ⊗′x∈|X|πx is the restricted tensor product with respect to |X| \ Uπ and the lines πx
GLr(ÔX,x),

x ∈ |Uπ| (meaning that π is generated by vectors of the form ⊗x∈|X|fx, where for all but finitely many

x ∈ |Uπ|, fx ∈ πx GLr(ÔX,x)).

Every r-tuple λ = (λ1, . . . , λr) ∈ C× r defines a character χλ : Br(Kx)→ C×, χλ(b) = λ
vx(b1,1)
1 · · ·λvx(br,r)

n ,
b = (bi,j) ∈ Br(Kx) of the Borel subgroup of upper triangular matrixes in GLr(Kx). The induced rep-
resentation from Br(Kx) to GLr(Kx) has a unique unramified irreducible subrepresentation πx(λ) and
πx(λ) ' πx(µ) if and only if the underlying multisets of λ and µ coincide. For x ∈ |Uπ|, one can

show πx ' πx(λx(π)) for some λx = (λ1,x(π), . . . , λr,x(π)) ∈ C× r - the Hecke eigenvalues of π at x. In
particular, πx is uniquely by its local L-factor

Lx(π, T ) := L(πx, T ) =
∏

1≤i≤r

1

1− λi,x(π)T
.

The strong multiplicity one theorem of Piatetski-Shapiro [P79] ensures the local L-factors Lx(π, T ),
x ∈ |Uπ| détermines π uniquely; this is the automorphic counterpart of (weak) Cebotarev 3.2.4.

5.3. For † ∈ L ∪ U , one says that π ∈ Ar(η) and C ∈ C(η,Q†) correspond to each other in the sense of
Langlands, and writes π ∼ C, if Lx(π, T ) = Lx(C, T ), x ∈ Uπ ∩ UC .

5.3.1. Theorem. (Langlands correspondance (L,r,†)) There exists maps

Ar(η)
I†,− // Ir(η,Q†)
π†,−
oo

such that π†,− ◦ I†,− = Id, I†,− ◦ π†,− = Id and for every π ∈ Ar(η), Uπ = UI†,π and π ∼ I†,π;

for every I ∈ Ir(η,Q†), UI = Uπ†,I and π†,I ∼ I.

The compatibility conditions on local L-factors in (L,r,†) impose that if π ∼ I the central character of
π coincides with the determinant of I via rec : K× \ A× ↪→ π1(K)ab.

The proof of (L,r,†) for † ∈ L was completed by L. Lafforgue [L02, VI.9] building on previous works
of Drinfeld, Deligne, Laumon etc. As an output of the proof, one obtains that if π ∼ C then the local
L-factors and ε-factors of π and C coincide at every x ∈ |X| (see e.g. [C20b, 13.1] for the definitions of
local L-factors and ε-factors at ramified points; we will not use their explicit definitions in the following).
L. Lafforgue also proved the Ramanujan-Peterson Conjecture [L02, VI.10 (i)], which implies that the
poles of Lx(π, T ), x ∈ |Uπ| are of absolute value 1.

Theorem 5.3.1 and the Ramanujan-Peterson Conjecture immediately imply the curve case of the Com-
panion conjecture of Deligne [D80, Conj. (1.2.10)].

Endow C(X,Q†) with the equivalence relation defined by C ≡ C′ if there exists Ij ∈ Irj (X,Q†) and

αj , α
′
j ∈ Q×† , j = 1, . . . , s such that

Css = ⊕1≤j≤sI
(αj)
j , C′ ss = ⊕1≤j≤sI

(α′j)

j ,
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where (−)ss denotes semisimplification. (It follows from 3.1.3.1 that any semisimple C ∈ C(X,Q†) can
be written in the above form).

5.3.2. Corollary. (Companion conjecture) Let † ∈ L ∪ U and I† ∈ Ir(X,Q†). Then,

- (5.3.2.1) I† is pure of weight 0: for every x ∈ |X| and isomorphism ι : Q†→̃C the poles of ιLx(I†, T )
all have absolute value 1 (in particular they are algebraic over Q);

- (5.3.2.2) QI† is a finite extension of Q;

- (5.3.2.3) For every ‡ ∈ L ∪ U there exists I‡ ∈ Ir(X,Q†) such that Lx(I†, T ) = Lx(I‡, T ), x ∈ |X|.

For an arbitrary † ∈ L ∪ U , (5.3.2.1) directly reduces to the curve case by Theorem 2.5. †, ‡ ∈ L,
(5.3.2.2) , (5.3.2.3) were established in [D12], [Dr12], using geometric arguments to reduce to the curve
case.

From (5.3.2.1) applied to the composition factor of a Jordan-Holder filtration and 3.1.3.1 and from
3.2.3, one gets the following fundamental structural result (which shows a posteriori that the mixedness
condition in 3.2.4 is redundant).

5.3.3. Corollary. (ι†-weight filtration) For † ∈ L ∪ U , every C ∈ C(X,Q†) is ι†-mixed. More precisely,
there exists a filtration - automatically unique and functorial

C := W1C )W2C ) · · · )WrC )Wr+1C = 0

such that GrWi (C) = WiC/Wi+1C is ι-pure of weight wi, i = 1, . . . , r with w1 > w2 > · · · > wr.

5.3.4. Corollary (5.3.2.3) easily extends to arbitrary semisimple Q†-local systems as follows. From 3.1.3.1

every semisimple C ∈ C(X,Q†) can be written as C ' ⊕1≤j≤sI
(αj)
j with Ij ∈ Irj (X,Q†) and αj ∈ Q†,

j = 1, . . . , s. From (5.3.2.3), for j = 1, . . . , s and every ‡ ∈ L ∪ U there exists Ij,‡ ∈ Irj (X,Q†) such

that Lx(Ij , T ) = Lx(Ij,‡, T ), x ∈ |X|. Set also αj,‡ := ι−1
‡ ◦ ι†(αj). Then C‡ := ⊕1≤j≤sI

(αj,‡)
j,‡ satisfied

the requested property.

5.4. About the proofs. As already mentioned, Theorem 5.3.1 for † ∈ L and Corollary 5.3.2 for
†, ‡ ∈ L) are already settled. In particular, every I` ∈ Ir(X,Q`) gives rise to a compatible family
I = Il, l ∈ L of irreducible Ql-local systems which are ι-pure of weight 0. Take any family H of integral
models and write Ml := Hl ⊗ Fl, l ∈ L. Fix u ∈ U . From 4.3.2.1 (4)(b), (5)(b) the map

Ir(X,Q`)→ Ir(X,Qu), I` ←→ I →Mu

is well-defined. From 4.2, it preserves the local L-factors at x ∈ X and from 3.2.4 it is injective. It
remains to prove it is surjective; this will both complete the proof of Theorem 5.3.1 (when X is a curve)
and Corollary 5.3.2 (when X is of arbitrary dimension).
- Assume X is a curve. The construction of I† : Ar(η)→ Ir(η,Q†) is actually the ”difficult”part of The-

orem 5.3.1. Once I† : Ar(η) → Ir(η,Q†) is constructed, the construction of π† : Ir(η,Q†) → Ar(η)
is by induction on r, through Deligne’s ”principe de réccurrence”. The r = 1 case is a reformula-
tion of global class field theory. The induction step combines the reciprocity theorem of Piateskii-
Shapiro [L02, Thm. B.13] (A purely automorphic result), the product formula for ε-factors and weak
Cebotarev 3.2.4. For † ∈ L, the product formula is due to Laumon [Lau87, §3]. For † ∈ U it can
be derived from the product formula for F`-local systems, already established by Deligne [D73, Thm.
7.11]. We refer to [C20b, 14.3] for details.

- Assume now X is of dimension ≥ 2. To prove (5.3.2.2), (5.3.2.3), one can assume ‡ = ` ∈ L. The
proof for † ∈ U is similar to the one of [D12], [Dr12] for † ∈ L. Let Cu(X) denote the set of all
non-constant morphisms φ : C → X from a smooth curve C over k to X. The basic idea is to attach
to I† a Q`-skeleton S on X that is a collection S = I`,C , C ∈ Cu(X) of semisimple Q`-local systems
I`,C on C such that I`,C and I`,C′ coincide on C ×X C ′ and then shows that S actually arises from

a true Q`-local system on X. Namely, one takes for I`,C the (necessarily unique and irreducible)

Q`-local system compatible with I†|C . Since I† is a Qu-local system on the whole X, the I`,C ,
C ∈ Cu(X) satisfy the glueing condition on C×XC ′. Also, from (5.3.2.1), the field of definition QI`,C
is algebraic over Q and, by definition of almost tameness and the compatibility of I`,C , I†|C , there
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exists a common connected étale cover X ′ → X such that I`,C |C×XX′ is tame for every C ∈ Cu(X).

These conditions ensures that the subfield QS of Q generated by the QI`,C , C ∈ Cu(X) is a finite
extension of Q [D12, Thm. 3.1, Rem. 3.10] and that the I`,C , C ∈ Cu(X) all arise as I`,C = I`|C
from a (necessarily unique and irreducible) Q`-local system I on X [Dr12, Thm. 2.5].

5.5. First Applications.

5.5.1. Finiteness. Let X ↪→ X be a normal compactification, D an effective Cartier divisor on X

with support in X \ X and α : X ′ → X a Galois cover, α : X
′ → X the normalization of X in

α. For † ∈ L ∪ U , write I≤Dr (X,Q†) ⊂ Ir(X,Q†) (resp. I≤αr (X,Q†) ⊂ Ir(X,Q†) for the subset of

all I ∈ Ir(X,Q†) such that for every smooth, separated, connected curve C over k and morphism

φ : C → Xk, Sw(I|C) ≤ φ
∗
D, where φ : C → Xk denotes the extension of φ : C → Xk to the

smooth compactification C ↪→ C of C (resp. I|X′ is tame). Here, Sw(I|C) denotes the (global) Swan
conductor It is an effective divisor on C, supported on C \C, whose local degree at x ∈ C \C measures
the wild ramification of I|C at x (e.g. Sw(I|C) = 0 if and only if I|C is tame); it can be recovered
from the local ε-factors of I|C . In particular, it follows from the fact that for a smooth curve C on
k and ` ∈ L ∪ U the bijection Ir(C,Q`) ←→ Ir(C,Q†) from 5.3.2 preserves local ε-factors so that the

bijection Ir(X,Q`)←→ Ir(X,Q†) restricts to bijections

I≤Dr (X,Q`)←→ I≤Dr (X,Q†), I≤αr (X,Q`)←→ I≤αr (X,Q†).

IfDα ↪→ X denotes the discriminant divisor of α : X
′ → X, one always has I≤αr (X,Q†) ⊂ I≤rDαr (X,Q†).

Hence, it follows from Deligne’s finiteness theorem [EKer12, Thm. 2.1], which asserts that I≤Dr (X,Q`)/ ≡
is finite, that I≤αr (X,Q†)/ ≡ and I≤Dr (X,Q†)/ ≡ are finite, of cardinality independent of † ∈ L ∪ U .

5.5.2. Lifting. For ` ∈ L, write Ir(X,F`) for the set of rank-r irreducible F`-local systems on X and,
with the notation of 5.5.1, I≤Dr (X,F`) ⊂ Ir(X,F`) (resp. I≤αr (X,F`) ⊂ Ir(X,F`)) for the subset of
all I ∈ Ir(X,F`) such that for every smooth, separated, connected curve C over k and morphism

φ : C → Xk, Sw(I|C) ≤ φ∗D (resp. I|X′ is tame).

Fix a finite character χ : π1(X) → Q×. For Q = Q† for † ∈ L ∪ U or F`, ` ∈ L, write I≤α,χr (X,Q) ⊂
I≤α,χr (X,Q) to be the subset of objects with determinant χ⊗Q : π1(X)→ Q×. Since for every ` ∈ L
|I≤α,χr (X,Q`)| < +∞ (fixing the determinant imposes that irreducible objects in the same ≡-class
only differ by a twist by a root of unity of order dividing the order of the determinant), there exists

`0 := `0(X,α, χ, r) ∈ L such that for ` ≥ `0, every I` ∈ I≤α,χr (X,Q`) has a unique Z`-model H`
(Corollary 4.3.2.1 (5)(b)) and M` := H` ⊗ F` ∈ I≤α,χr (X,F`) (Corollary 4.3.2.1 (4)(b)). So that, for
` ≥ `0, one has a well-defined ’reduction modulo-`’ map

I≤α,χr (X,Q`)→ I≤α,χr (X,F`), I` →M`

Corollary. For ` � 0, the reduction modulo-` map I≤α,χr (X,Q`) → I
≤α,χ
r (X,F`) is bijective. In

particular, I≤α,χr (X,F`) is finite and every M` ∈ I≤α,χr (X,F`) lifts uniquely to a Z`-model H` of some

I≤α,χr (X,Q`).

The injectivity follows from Corollary 4.3.2.1 (2)(b), (4)(b) as in the proof of Corollary 4.3.2.1 (5)(b).

If the reduction modulo-` map I≤α,χr (X,Q`)→ I
≤α,χ
r (X,F`) were not surjective, there would exist an

infinite subset L′ ⊂ L such that for every ` ∈ L′ there exists a M` ∈ I≤α,χr (X,F`) which does not lift

to a Z`-model H` of some I` ∈ I≤α,χr (X,Q`). Since M`|X′ is tame ` ∈ L′, for every ultrafilter u on

L′, M = M`, ` ∈ L′ is in Stu(X,F) with Mu ∈ I≤α,χr (X,Qu). For every ` ∈ L′ let I` ∈ I≤α,χr (X,Q`)

corresponding to Mu ∈ I≤α,χr (X,Qu) under the bijection I≤α,χr (X,Q`) ←→ I
≤α,χ
r (X,Q†) of 5.5.1.

Write N` := I` ⊗ F`, ` ∈ L′. By construction, Mu ' Nu and as this holds for every ultrafilter u on L′,
M` ' N` for ` ∈ L′ large enough. This contradicts the definition of L′.

5.6. Algebraic monodromy.
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5.6.1. Let V(k) denote the category of normal varieties over k, P(−)→→ V(k) the fibered (into monoidal
categories) category of smooth projective schemes and, for † ∈ L ∪ U , C(−, Q†) →→ V(k) the fibered

(into neutral Tannakian categories over Q†) category of Q†-local systems. The higher direct image
functor give rise to a morphism

R•(−)∗Q† : P(−)→ C(−,Q†)

of categories fibered into monoidal categories over V(k).

The (conjectural!) output of the philosophy of pure isomotives is the existence of a categoryMot(−)→
P(k) fibered into semisimple neutral Tannakian categories over Q together with a morphism R•(−)∗Q :
P(−) → Mot(−) of categories fibered into monoidal categories over P(k) such that the morphisms
R•(−)∗Q† : P(−)→ C(−, Q†) factor through a commutative diagram

P(−)

R•(−)∗Q†
��

R•(−)∗Q //Mot(−)

−⊗Q†
��

C(−,Q†) Mot(−)⊗Q†RQ†

oo

with RQ†
: Mot(−) ⊗ Q† → C(−,Q†) a fully faithful ⊗-functor. (Strictly speaking the construction

of the category of pure isomotives is unconditional but its properties are). With this picture in mind,
Corollary 5.3.2 reflects the expectation that, for (a smooth) X ∈ V(k), objects in Ir(X,Q†) are in the

essential image of RQ†
:Mot(X)⊗Q† → C(X,Q†). More precisely for every I† ∈ Ir(X,Q†) and isomo-

tive I ∈ Mot(X) with I† := RQ†
(I ⊗Q†), the field QI† of (5.3.2.1) should be contained in any number

field QI over which I is defined and for every ‡ ∈ L∪U , the Q‡-companion of I† is I‡ := RQ‡
(I ⊗Q‡).

In particular, if G(I) denotes the Tannakian group of the full ⊗-subcategory 〈I〉⊗ ⊂Mot(X) generated
by I and G(I†) the one of 〈I〉⊗ ⊂ C(X,Q†) (that is, the Zariski closure of the image of π1(X) acting on

I†,x), the equivalence of Tannakian categories RQ†
: 〈I〉⊗ ⊗Q†→̃〈I†〉⊗ corresponds to an isomorphism

(G(I†), I†,x)→̃(G(I), I) ⊗ Q† (well-defined up to conjugation due to the indeterminancy in the choice
of the fiber functors). As a consequence of this, one should have:

5.6.1.1.Conjecture. Let C = C†, † ∈ L∪U be a compatible family of semisimple Q†-local systems. Then

there exist a reductive algebraic group G(C) over Q together with a faithful linear finite-dimensional Q-
representation V such that

(G(C†), C†,x)→̃(G(C), V )⊗Q†, † ∈ L ∪ U .

By Tannakian arguments one can deduce from Corollary 4.3.2.1 and Corollary 5.3.2 the following weak
unconditional form of Conjecture 5.6.1.1.

5.6.1.2.Corollary. Let C = C†, † ∈ L∪U be a compatible family of semisimple Q†-local systems. Write

G† := G(C†) and G† := G(C†|(Xk).

- (Connected components) The morphisms π1(Xk) � π0(G†) (resp. π1(X) � π0(G†)), † ∈ L ∪ U are

continuous and all have the same kernel. In particular, the groups π0(G†) (resp. π0(G†)), † ∈ L ∪ U
are all canonically isomorphic.

- (Neutral component) There exists a connected reductive algebraic group G over Q together with an
irreducible faithful representation V such that

(G◦† , C†,x) ' (G,V )⊗Q Q† (and (G
◦
† , I†,x) ' (Gder, V )⊗Q Q†), † ∈ L ∪ U .

For ` ∈ L, the continuity of π1(X) � π0(G`) follows from the continuity of the action of π1(X) on I`,x
but for u ∈ U , this requires the fact that πt1(X) is topologically finitely generated which ensures that
every finite index subgroup of πt1(X) is open [NS07a], [NS07b].
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5.6.1.3.Actually, for † ∈ L ∪ U , the category 〈I†〉⊗ comes with the collection of the G(I†)-conjugacy
classes Φx

I† of the image φx ∈ G(C†) of the Frobenius ϕx at x, x ∈ |X| and, similarly, the conjectural

category 〈C〉⊗ comes with the collection of G(C)-conjugacy classes Φx
I of the image φx ∈ G(I) of the

Frobenius ϕx at x, x ∈ |X|. Under the isomorphism (G(I†), I†,x)→̃(G(I), I)⊗Q† of Conjecture 5.6.1.1,

Φx
I† and Φx

I ⊗ Q† should coincide, x ∈ |X|. In particular, since for ` ∈ L the classical Cebotarev

density theorem ensures that the union of the Φx
I` , x ∈ |X| is Zariski-dense in G(I`), the union of the

Φx
I , x ∈ |X| should also be Zariski-dense in G(I) hence for every † ∈ L ∪ U , the union of the Φx

I† ,

x ∈ |X| should Zariski-dense in G(I†). Again, using purely tannakian arguments, one can deduce from
Corollary 4.3.2.1 and Corollary 5.3.3 the following unconditional statement, which enhances Corollary
3.2.4.

Corollary. (Tannakian Cebotarev - [CT20, Thm. 1.4.1]) Let C be an arbitrary Q†-coefficient on X
and let S ⊂ |X| be a subset of closed points. Assume S has upper Dirichlet density δu(S) > 0 (resp.
δu(S) = 1). Then the Zariski-closure of the union of the Φx

C, x ∈ S contains at least one connected
component of G(C) (resp. is Zariski-dense in G(C)).

5.6.2. About the proofs.

5.6.2.1.For every finite subset I ⊂ Z≥0 × Z≥0 and finite-dimensional vector space V over a field Q
of characteristic 0, write TI(V ) := ⊕(m,n)∈IV

⊗m ⊗ V ∨ ⊗n. Let G be a reductive over Q and V a
finite-dimensional faithful representation of G over Q. Recall (e.g. [D82, Prop. 3.1]) that every finite-
dimensional representation of G over Q appears as a sub representation of TI(V ) for some finite subset
I ⊂ Z≥0 × Z≥0 and that every (resp. reductive) algebraic subgroup H ⊂ G is the stabilizer of a line
(resp. of a non-zero vector) in some finite-dimensional representation of G over Q.

From these basic observations, one can already deduce from Theorem 3.1.4 the †-independency of
π0(G†), π0(G†). Let us explain what happens for π0(G†) (the proof for π0(G†) is similar). Fix † ∈ L∪U
and replace X with the connected étale cover corresponding to the kernel of π1(X) → π0(G†). By
symmetry, it is enough to prove that for every other ‡ ∈ L ∪ U , G‡ is connected that is, for every

finite index subgroup U ⊂ π1(X) and finite subset I ⊂ Z≥0 × Z≥0, TI(C‡,x)U and TI(C‡,x)π1(X) have
the same dimension. From the continuity of π1(X) → π0(G†), one may restrict to open subgroups
U ⊂ π1(X). But open subgroups of π1(X) correspond to connected étale covers of X so it is enough

to prove that for every connected étale cover X ′ → X, and finite subset I ⊂ Z≥0 × Z≥0, TI(C‡,x)π1(X′)

and TI(C‡,x)π1(X) have the same dimension. Since we already know TI(C†,x)π1(X′) and TI(C†,x)π1(X)

have the same dimension, it is enough to show that for every connected étale cover X ′ → X the di-
mension of TI(C†,x)π1(X′) is independent of † ∈ L ∪ U . Without loss of generality, we may assume

X ′ = X. From Theorem 2.5, one may assume X is a curve. Decomposing TI(C†) ' ⊕1≤i≤rI(αi)
†,i with

I†,i ∈ Iri(X,Q†) and αi ∈ Q×, i = 1, . . . , r (recall that, by definition of compatibility, the Frobe-

nius eigenvalues of C† are in Q) one has TI(C‡) ' ⊕1≤i≤rI(αi)
‡,i with I†,i ∼ I‡,i, i = 1, . . . , r. Since

invariants commute with direct sums, it is enough to show that for each i = 1, . . . , r the dimension of

I(αi)
i,†,x

π1(X′) is independent of † ∈ L ∪ U . From the semisimplicity of geometric monodromy, we have

H2
c (Xk, I

(αi)
i,† ) ' I(αi)

i,†,x π1(Xk)(−1) ' I(αi)
i,†,x

π1(Xk)(−1). From Lemma 4.3.2.2, P 2
c (I(αi)
†,i , T ) = P 2

c (I(αi)
‡,i , T )

and the conclusion follows from the fact that the dimension of I(αi)
i,†,x

π1(Xk) is the order of |k| as a root

of P 2
c (I(αi)
†,i , T ) .

5.6.2.2.The proofs of the †-independency of G◦† and of Corollary 5.6.1.3 require a significantly heavier
Tannakian machinery and the full strength of Corollary 5.3.2 through the following claim.

Claim. (e.g. [C20a, Cor. 8.1]) For †, ‡ ∈ L ∪ U and semisimple C† ∈ C(X,Q†), C‡ ∈ C(X,Q‡) with

C† ∼ C‡, the companion correspondence (Ob(〈C†〉⊗)/ ')→̃(Ob(〈C‡〉⊗)/ ') of 5.3.4 induces a canonical
semiring isomorphism C+[ι†G]→̃C+[ι‡G`], characterized by the fact that it preserves local L-functions
and maps irreducible representations to irreducible representations.
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Recall that given an algebraic group G over a field Q of characteristic 0 the semiring Q+[G] of G
is the set of isomorphism classes of finite-dimensional Q-representations of G endowed with the laws
[V1] + [V2] := [V1⊕ V2] with neutral element [0] and [V1] · [V2] := [V1⊗ V2] with neutral element [Q]. An
element [V ] ∈ Q+[G] is said to be irreducible if the corresponding representation V is.

With the above claim in hands, the †-independency of G◦† directly follow from the reconstruction theo-

rem [KaLV14, Thm. 1.2].

The proof of Corollary 5.6.1.3 is more subtle. The starting point is that for every semisimple C ∈
C(X,Q†) there exists ` � 0 and an isomorphism ι` : Q`→̃C such that the Q`-compagnon C` of C (see

5.3.4) is a Q`-local system (not only a lcc Weil Q`-sheaf). It then follows from the classical Cebotarev
density theorem that Corollary 5.6.1.3 holds for C`. Assume G := G(C) is connected. Then from the †-
independency of π0(G†), G` := G(C`) is connected as well. In particular, ΦS

C := ∪x∈SΦx
C is Zariski-dense

in G if and only if ΦS
C† ∩ T is Zariski-dense in T for T ⊂ G a maximal torus. Since the characteristic

polynomial map χ : G ⊂ GL(C) → Gm,Q†
× Ar−1

Q†
restricts to a finite morphism χ : T → χ(G),

ΦS
C ∩ T is Zariski-dense in T if and only if χ(ΦS

C ) is Zariski-dense in χ(T ). But by the definition of C`,
ιχ(ΦS

C ) = ι`(Φ
S
C`). And from the above and the classical Cebotarev density theorem, ι`(Φ

S
C`) is Zariski-

dense in ι`(G`). On the other hand, by the †-independency of G◦† = G†, ι`(G`) and ι(G) have the

same dimension. This forces ιχ(ΦS
C ) to be Zariski-dense in ι(G) and concludes the argument when C is

semisimple and G is connected. When C is semisimple but G is non-connected, the idea is basically the
same but one has to resort to the rather technical formalism of quasi-Cartan developed in [CT20, §3].
Using the weight filtration, one can reduce Corollary 5.6.1.3 for arbitrary C to Corollary 5.6.1.3 for
Q†-local systems C which are direct sums of pure Q†-local systems. Such a C is not semisimple in
general but C|Xk is, which forces G = Gε

a,Q†
×G(Css) with ε = 0, 1 and Css the semisimplification of C.

Corollary 5.6.1.3 for such a C then easily follows from Corollary 5.6.1.3 for the semisimplification of C.
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