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1. RAMIFICATION THEORY

1.1. p-adic fields.

1.2. Number fields.
Cebotarev density theorem

2. {-ADIC REPRESENTATIONS - BASIC RESULTS AND AXIOMATIC

k: field, Repq, (m1(k)) category of finite dimensional continuous Q-representations of 71 (k), that is

- Objects: pairs (V, p), with V' a finite-dimensional Q-vector space and p : w1 (k) — GL(V') a continuous
morphism of topological groups, where GL(V) ~ GL,(Qy) is endowed with the ¢-adic topology and
71 (k) with the profinite topology.

When no confusion can arise, we simply write V := (V| p) and o - v := p(0)(v).

- Morphisms (V1, p1) 4, (Va, p2): Morphisms V; EN V5 of Qg-vector spaces such that

fop(o) = palo)o f, o €mk).
It immediately follows from the compactness of (k) and the continuity of p that for every (V,p) €
Repg, (m1(k)) the subgroup II := p(71(k)) C GL(V) is a compact subgroup of GL(V). In particular,
the following lemma applies.

m: Image| Lemma 2.1. Let V' be a finite dimensional Qg-vector space. Then, for every compact subgroup 11 C
GL(V) and Z¢-lattice A C V, there exists g € GL(V') such that gIllg—! stabilizes A.

Proof. As A C V is open, the subgroup S := Stabry(A) C II is an open subgroup of II (if Aj,..., A,
is a Zy-basis of A, S is the inverse image of the open subset A®" C V& of V" by the continuous
map II — V" o — (0A1,...,0)\.)). As II is compact S C II finite index (consider the open covering

Date:
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Im= |_| 0S). So that one gets a II-stable Z;-lattice A= Yrer/s TA. But, then, for every g € GL(V)
o€ll/S
such that gA = A, (gllg~!1)A = gIIA C gA = A, as claimed. O

The category Repg,(m1(k)) is very nice. It is a neutral Tannakian category over Q,. We are not going
to give now the formal definition of a neutral Tannakian category over a field but let us stress that it
means, in particular, that is it a Q-linear abelian category which is endowed with a natural ®-structure:

(V1. p1) @ (Va, p2) = (Vi ®q, V2, p1 ®q, p2)
and which admits
- a trivial object: I = Q; endowed with the trivial action of m(k);
- duals: (V, p)¥ = (VV, p¥), where p*(0)(f) = f o plo) ™
- inner Hom: Hom((V1, p1), (Va, p2)) = (Vi,p1)" @ (Va, p2).

Furthermore, for every (V, p) € Repg, (m1(k)), let (V, p)® C Repg, (71(k)) denote the Tannakian subcat-
egory generated by (V, p) that is the smallest full subcategory containing I and stable by subquotients,
®, (—)V, ® and let G C GLy denote the Zariski-closure of the image IT := p(71(k))) C GL(V) in GLy.
Then the canonical forgetful functor

w: (Vip)® = Vectyy,, (W, pw) = W
factors through an equivalence of ®-categories

(V,p)® —~ Vect/Qé

l For

R‘ep(@e (G) ’

where Repg, (G) denotes the category of Q-rational algebraic representations of G.

2.1. Localizations. k/Q: number field, v € X, recall that for every v € 2, one has a canonical
isomorphism of profinite groups
m1(k) O Da(klk) 3 m (k)
so that to every (V, p) € Repg,(71(k)) one can attach a local representation
ppi=poay’:m(k’) — GL(V)
From the commutative diagram

QAo

D, (EV@) = Wl(l%v)

~
o—o 1|~
oag

oDy (k|k)o~1

]

one gets po5 = p(0)ps(—)p(o) ™t viz. the Il-conjugacy class of p; depends only on v and not on v € X ;
we will usually denote by p,, : Wl(l%”) — GL(V) an arbitrary representative pp in this II-conjugacy class.
2.2. Ramification.

- k/Q, p-adic field. One says that (V, p) € Repg,(m1(k)) is unramified (resp. semistable) if Iy, C ker(p)
viz p(Ix) = 1 (resp. p(Ix) C GL(V) is unipotent). One says that (V,p) € Repg,(m1(k)) is poten-
tially unramified (resp. potentially semistable) if there exists a finite field extension K /k such that
(V, plry (i) 18 unramified (vesp. semistable).

If (V,p) € Repg, (71(k)) is unramified, one has a canonical factorization

p

=

m1(k)/Ix ~ Gal(k™|k) ~ 7 (k™)

7T1(k)

GL(V) ,
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which enables to define the characteristic polynomial of the (geometric) of p
XolT) = det(T — p(Fy-)1d) € Z,[T),

where Fj— = is the inverse of the arithmetic Frobenius ¢y : 2 — z/*"| pro-generating m (k).

- k/Q: number field, v € Xj. One says that (V,p) € Repg,(71(k)) is unramified (resp. semistable,
resp. potentially unramified, resp. potentially semistable) at v if one (equivalently every) localization
po : m(k?) = GL(V) of p at v is. If (V,p) € Repg,(m1(k)) is unramified at v, the characteristic
polynomial

Xpow(T) = Xp, € Z[T]

is independent of the choice of the localization p, : 7 (k?) — GL(V) of p at v and is called the the
characteristic polynomial of the (geometric) of p at v.

We will write U,y C ¥y for the set of all v € Xy 4, such that (V,p) is unramified at v. Given a
subset U C Xy, y, let Repg’;s (m1(k)) C Repg, (m1(k)) denote the full subcategory of all (V, p) which are
semisimple with U C U, j. Then, if X3 \ U is finite, we have seen as a consequence of the Cebotarev

density theorem that the canonical map

U7
Rep (1 (k) /= = Zo[T1V, (Vp) = (xpu(D))oers
is injective.
The reason why we exclude the places dividing ¢ in defining U, is that the ramification behaviour at
places not dividing ¢ and at those dividing ¢ differs drastically; in the latter case, the notion of being

unramified or semistable as defined above are not really pertinent or, rather, have to be significantly
generalized to be pertinent. Let us describe more precisely what happens.

2.2.1. Places not diwiding ¢. k/Q, p-adic field, ¢ # p prime. The following is a consequence of the
structure of m (k).

Lemma 2.2. (Grothendieck) Every object (V, p) € Repg,(m1(k)) is potentially semistable.

Proof. From Lemma 2.1, one may assume there is a Zg-lattice A C V such that IT := p(m1(k)) C GL(A).
Up to replacing k by the finite field extension K /k such that 71 (K) = ker(m (k) 2 GL(A) - GL(A/¢)),
one may assume II C 1+ ¢End(A), which is a pro-¢ group so that p : m1 (k) — GL(A) factors via the
pro-f completion (k) — (k) ~ Zy(1) x Zy as p : Ze(1) x Zy — 1+ ¢End(A) € GL(A). We
are thus to show that, if t € Z,(1) is a pro-¢ generator, p(t) € 1+ ¢End(A) C GL(A) is unipotent
or, equivalently, that u := log(p(¢)) (which is well defined as II C 1 4 ¢End(A)) is nilpotent viz has
characteristic polynomial x,(7) = T". For every o € (k) one has

p(0)p(t)p(0) ) = plarto™1) = p(txe=()) — p(pyu
so p(o)up(o)™t) = xee(0)u, which ensures xu(T) = Xygoo(o)(T) € Z¢[T]. Writing xu(T) = T" +
Y o<icr ai(w) T € Zg[t], this is equivalent to a;(xe=(0)u) = xe(0)'a;(u). But as k/Q, is a finite
field extension, the image of the f-adic cyclotomic character, xgeo : m1(k) = Z, (~ Zy x F}) is infinite

(and even open). In particular, one can always find o € 71(k) such that xy~ (o) is not torsion hence
xu(T)="T". O

2.2.2. Places dividing £. k/Q, p-adic field. When ¢ = p, the proof of Lemma 2.2 completely fails and
the situation is more complicated. This is the realm of p-adic Hodge theory. We give below a brief
overview of it, mostly for cultural purpose as we will only resort to the notion of Hodge-Tate represen-
tation in the following.

2.2.2.1. General formalism of B-admissible representations. We will apply the formalism below with
G =m(k), F = Qp, and B one of Fontaine’s period ring.

B: topological, commutative integral ring endowed with a continuous action of a topological group G,
E:= B% F C E a closed subfield. Let Repg(G) denote the category of B-representation of G, that is
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- Objects: free B-modules of finite rank M endowed with a continuous semilinear action of GG, meaning
that g - (bp+ ') = (g-0)(g- 1) +g-1,9€G,be B, u, i’ € M.

- Morphisms: Morphisms M EA M of B-modules such that f(g-—)=g¢- f(—), g € G.
Consider the functor

Dp : Repp(G) P25 Repp(@) X Mod/, Vs (B@p V)C
and the morphism of B-modules

ay : B Dp(V) - BRprV, b®J— bd.

One says that B is (F,G)-regular if (i) (F =)BY = Frac(B)® and (ii) for every 0 # b € B such that
Fb C B is G-stable, one has b € B*.
Lemma 2.3. Assume B is (F,G)-reqular. Then,

(1) For everyV € Repp(G), ay : Bg Dp(V) — B®pV; in particular, dimg(Dp(V)) < dimp(V) <
+o00. Furthermore, the following properties are equivalent.

(Z) dlmE(DB<V)) = dimF(V);
(ii) ay:B®gDp(V)>B®pV is an isomorphism;
(iii) B ®pV ~ B®" in Repp(Q),

in which case one says that V is a B-admissible representation.
(2) Let Rep2(G) C Repp(G) denote the full subcategory of B-admissible representations. Then,

(a) Rep2(G) C Repp(Q) is a Tannakian subcategory (viz is an abelian subcategory containing I
and stable by subquotient, ®, ®, (=) ).

(b) The restricted functor Dy : Rep2(G) — Vect/g is an exact, faithfull @-functor.

Proof. We prove (1). For the injectivity of ay : BRpDp(V) — B®pV, from the canonical commutative
diagram

BxrVC Frac(B)®@pV

B ®Ep DB(V)C—> B®g DFrac(B) (V)(—) FTQC(B) ®F DFrac(B)(v)7

and as Frac(B) is again (F,G) regular, one may replace B by Frac(B) hence assume B is a field.
We are to prove that if /deltai,...,é, € Dp(V) are E-linearly independent then they are B-linearly
independent. We argue by induction on r. If r = 1, there is nothing to prove. If r > 2, les by,...,b, € B
not all zero, such that »,.,<, b;0; = 0. By induction, b; # 0, ¢ = 1,...,r hence, as B is a field, up to
replacing b; with b;/by, i =1,...,r, oma b; = 1 and

0 = — Z b;0;.
2<i<r
Using that g - 9; = d;, i = 1,...,r, one thus gets
= D> bidi=8i=g-01=— > gbg-6=— Y g(bi)d.
2<i<r 2<i<r 2<i<r

hence

> (gbi — bi)di =0,

2<i<r
which, by induction, forces b; = gb;, ¢ = 1,...,r. As this holds for every ¢ € GG, we thus get b; €
BY =E D F,2=1,...,r: a contradiction. For the second part of (1), we no longer assume B is
a field (in that case, the equivalences are obvious!). the implications (ii) = (iii) = (i) are easy. We
prove the implication (i) = (ii). Let vi,...,v, € V a F-basis and 61,...,d, € Dp(V) a E-basis. As
1®wv1,...,1®v, is a B-basis of B ®p V one can write

(5]‘: Z bi7j1®’l)i

1<i<r
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for some r x r-matrix Q = (b; j)1<i j<r with coefficients in B. The injectivity of ay is equivalent to
b :=det2 # 0 and the surjectivity to b € B*. Let ¢ : G — F* be the character corresponding to the
G-representation AV = Fu; A--- Avp. As Dp(V) is a free B-module of the same rank as B ®@p V,
one has

s T T T
Nav: ADs(V) = N(B@rV)~Bp \V=BuoiA- A,
B F
and 01 A--- Ad. =bvy A--- Av,.. Then, for every g € G,

AN Np=g-01N---Ngo =g(b)g-v1 A= ANv, = gbp(g)vr A -+ A gy
hence gb = 1(g)~'b, g € G, which, by the defining condition (ii) of (F, G)-regularity ensures b € B*.

Deducing (2) from (1) is formal. For instance, let 0 — V' — V — V" — 0 be a short exact sequence
in Repp(G) with V € Repp(G). As Dp : Repp(G) — Vect/g is left exact, one gets an exact sequence
of E-vector spaces

(1) 0 — Dg(V') = Dg(V) = Dg(V")
As

dimE(DB(V/)) + dimE(DB(V”)) > dlmEEDf(v))
= dimg(V
= dim?(V’) + dimF(V”) > dimE(DB(V,)) + dimE(DB(V”)),

one gets dimg(Dg(V)) = dimg(Dp(V')) + dimg(Dg(V")) hence (1) is a short exact sequence and,
the inequalities dimg(Dp(V")) < dimpV’, dimg(Dp(V")) < dimpV" are necessarily equalities that is

V', V" € Rep?2(G). This shows Rep?(G) C Repy(G) is stable unde subobject and Dp : Rep?(G) —
Vect/E is an exact. For the remaining part of the assertion see e.g. [BrCo09, Thm. 5.2.1]. 0

‘ontaine

2.2.2.2. Back to p-adic representations. The main output of p-adic Hodge theory in the construction of
various period rings B, which captures the significant behaviour of p-adic represenations arising from
geometry. These period rings B, are topological, commutative integral rings endowed with a continuous
action of G' = m (k) such that E, := B¢ O F := Q,; they are (Q, m1(k))-regular. The following table
summarizes the most important of these period rings and related structures.

Related cohomology T FE: Related categorical structure C;

theory
Hodge-Tate HT k  Grg: Z-graded finite dim. k-vector spaces
V = @pezV"
de Rham dR k  Filg: Z-filtered finite dim. k-vector spaces
V=U,F'V.-.. D F"" V> "V >...N, F*'V =0
Crystalline cris ko FilM7: Filtered p-module over k i.e. (Vo,p, F*V)

Vo: finite dim. ko-vector spaces, ¢ : Vo=V o-semilinear automorphism
(V, F*V) eFil.
Log-crystalline st ko FilM,(f’N): Filtered ¢-module over k i.e. (Vp,p, N, F*V)
(Vo, p, F*V) €FilM},
N : Vi — Vg ko-linear nilpotent endomorphism such thta Ny = ppN.

Here Q, C ko := kN Q)" C k is the maximal unramified subextension of Q, contained in k and
o : ko — ko its (arithmetic) Frobenius.

For simplicity, write Repg, (m1(k)) := Repg; (m1(k)), D; := Dp_ and call Br-admissible objects just 7
object. In each case one has a factorization

Vect /5.
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As already observed, D; : Repg; (m1(k)) — C; is always exact and faithful. For = = HT, dR, D,

Repgg (m1(k)) — C; is not full but for 7 = cris, st, D; : Rep(g; (m1(k)) — C; is also full - hence induces
an equivalence of categories onto their essential image. We even have explicit quasi-inverses:

For V ¢ Repcm( 1(k)) and D := D;(V),

‘/CriS(D) = FO(D ®ko Bcris)cp:Id;
For V € Repgy, (m1(k)) and D := Dy (V),

V(D) = FO(D Oko Bst)gozld’NZO

Eventually, define the full subcategories Reppc“b(m(k‘)) C Repg, (m1(k)) (resp. Reppﬁt( 1(k)) C Repg, (m1(k)))
of potentially cristalline representations (resp semistable) as the one of those V' € Repr (m1(k)) which

become cristalline (resp. semistable) after restricting to m1(K) for a finite field extension K/k. One
has the following inclusions

Reppcrls ]C))

T~

Repgy, (m1(k)) == Rep; (m1(k)) = Repg, (m1(k))

wl/
\ /

RepQ m1(k

RepCrlb

They are not difficult to check once one knows the construction of the rings B, except for the inclusion
Rep{éﬁ(m(k)) C Repp%( 1(k)), formerly called the p-adic monodromy conjecture and now a (difficult)

theorem [[?].

In the remaining part of these lectures, the only notion we will really handle is the one of Hodge-Tate
representations, for which the corresponding period ring is easy to describe, namely:

Bur = ®iezCi (1),

where Cj, is the completion of k for the unique valuation vy : kX — Q extending the valuation
vk © k* — Z. As m(k) acts continuously on k for the topology defined by v vy, its action ex-
tends by continuity on Cj. Note that, as a field C, := Cg, = Cy; here the subscript — is to
record the action of m;(k) (which is just the restriction of the one of m1(Qp) to mi(k)). If (—); de-
notes the degree ith component of an element in Byr, multiplicative structure on Byt is given by
(zy)i = >°;7;yi—j. By the universal property of C[T7], there is a unique morphism of Cy-algebras
Ci[T) = Bpy, T +— t, where t; = 01,1, and as t € B} with inverse (t71); = §_14, Cx[T] — Bupy
localizes as C¢[T, T~1] — Bp,, which is clearly an isomorphism of Z-graded Cj-algebras; in particular
Cp X Z ~ C[T, T'1*5 By and C(T) = Frac(Cy[T, T~ ') Frac(Bp,). Letting mi (k) acts on T
via x¢ : m(k) = Z), Cy[T, T~'|= By, becomes 71 (k)-equivariant.

The following summarizes the main properties of C.

Theorem 2.4. (Tate al;eﬁﬁ §3]) On a
(1) Cy, is an algebraically closed field and for every closed subgroup I1 C w1(k), Ci'' C Cy identifies
with the completion of B for vin = vg|zn; in particular, Ci*) =k c Cy,

(2) Ce(@)™® =0 if i £ 0;

(3) H'(k, Cr) = kllog(x,)] and H'(k, Cy(i)) = 0 if i # 0.

Corollary 2.5. The ring Bur is (Qp, m1(k))-regular.

Proof. Condition (i) immediately follows from Theorem 2.4, considering the embeddings

CrT,T7] € Frac(C[T, T') = Ci(T) € Cx((T))
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and taking 7 (k)-invariants. For condition (ii), let * = 3, #;#* € Byr such that Qpx C Byr is m1(k)-
stable that is there exists a continuous character 1 : m1(k) — Q' such that

Zxé(a)a(:ci)ti =ox=vY(0)r = Zw(a)xiti, o€ m (k).

Assume there exists ¢ # j such that x;,z; # 0 so that

b(o) = X(@(@) _ xi(o)oly)

= k
. 7 , oem(k)
hence
i—j Ty Z;
= X¢ J(U)G(;j) =2 ° € m1 (k)
that is 0 # % € Ci(i — j)™®) which contradicts Theorem 2.4 (2). O

Ex. Qy(i) = (Qp, x}) € Repg, (m1(k)), i € Z.

The condition of being crystalline is the good analogue when ¢ = p of the condition of being unramified

cris

when ¢ # p; we will see later why but one reason is that to every (V, p) € Repg, (1 (k)) one can attach
a characteristic polynomial of crystalline Frobenius as follows namely, writing D.,s(V') := (Do, ¢o, F'*®),
the characteristic polynomial x,(T") € ko[T] of the kq-linear automorphism ¢™ : Dy~ Dy (sometimes
called the linearized crystalline Frobenius), where , m := [ko : Qp].

So, if k/Q is a number field and (V, p) € Repg, (m1(k)), write U, ; C Xy ¢ for the set of all v € Xy, such
that (V, py) is crystalline at v. Write U, = U,y U U, .

2.3. The axiomatic. We now review natural assumptions one usually imposes on ¢-adic representions
and explain why they are natural.

2.3.1. The aziomatic. Let k/Q a number field.

2.3.1.1. Ramification. Let (V, p) € Repg, (m1(k)). For v € Uy, let x,» € Q[T denote the corresponding

characteristic polynomial of Frobenius as defined at the beginning of 2.2 if v { £ and let x,. € (k*)ol[T]
the characteristic polynomial of the crystalline Frobenius as defined at the end of 2.2.2.2 if v | /.
Consider the following conditions on (V/ p).

(AEU) Almost Everywhere Unramified: The subset U, C 3, is cofinite.

Let Q C Q C Q be a subextension.

R Q-rational: There exists a cofinite (in ) subset U C U, C X such that x,, € Q|T], v € U.
Q p P

Let ¢ > 0,w be real numbers. One says that o € Q is g-pure of weight w if for every embedding
1: Q= C, |(a)] = ¢Z. Let W C R be a subset.

P/w) Pure of weights in W: There exists a cofinite (in X ) subset U C U, C ¥ such that x,., € Q[T
14 P
and its roots are |k, |-pure of weight in W, v € U.

When W = {w} is a singleton, we will simply write (P/,,):=(P /w) and will say that (V, p) is pure of

weight w. If we do not want to specify the weight w, we will write (P/,)

If 7 = HT, dR, st, cris, pst, pcris.

(1) 7 (V. pv) € Repg, (m1 (")), v € Ty p.

2.3.1.2. Compatibility. Let Q C @ C Q be a subextension.

Let £,¢ be primes. One says that (Vi,ps) € Repg,(mi(k) and (Vir, pr) € Repg,, (m1(k) are étale Q-
compatible

(w; PZ) ~Q,et (W’7 pﬁ’)
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if (Vi, pe), (Vir, per) are both Q-rational and there exists a cofinite (in Xy) subset U C U,, NU,, C ¥y
such that, for every v € U[TH? Xpews Xp)w lie in Q[T and xp, v = Xl - One says that (Vg, pe), (Vir, per)
are Q-compatible

(Wﬂ Pf) ~Q (W’v PZ/)
if (Vi, pe), (Vir, per) are both Q-rational and there exists a cofinite (in Xy) subset U C U,, NU,, C ¥y
such that, for every v € U, Xp, v, P lie in Q[T] and xp,0 = Xplv- If we want to keep track of the
cofinite subset U, we will write

(Ves pe) ~Qet, v Versper)y (Vs pe) ~qu Ve, per)-
Note that (Vi, pr) ~Q.et,u (Vir, per) is equivalent to (Vg, pe) ~QULL] (Vi per).

Variants: One may ask (Vy, pg), (Vir, per) to be strictly étale Q-compatible (resp. @Q-compatible) by
requiring that U = U,, N U,,, .

Let £ be a set (possibly infinite) of primes. For each ¢ € L, let (V4, pe) € Repg,(m1(k). Consider the
following conditions on the family (V,p) = (Vz, p¢), £ € £

(RC/q.et) Etale Q-compatible: There exists a cofinite (in Xj) subset U C N,U,, C S such that
!
(vaf) Q,U[ﬁ] (‘/f’apﬁ’)a f,f €L.
(RC/q) Q-compatible: There exists a cofinite (in Xj) subset U C NyU,, C i, such that

(Vas pe) ~ou (Vir,per), £,0 € L.

Variants: One may ask (V,p) to be strictly étale Q-compatible (resp. Q-compatible) by requiring
that U = N,U),, and (V, p) to be weakly étale @Q-compatible (resp. (Q-compatible) by requiring that

(Wapé) ~Q,et (W’vpﬂ/)v 67 gl el (respectively (Wap@) ~Q (w/7p€’)7 E,gl € ‘C)

2.3.1.3. Semisimplicity. Recall that (V,p) € Repg,(m1(k)) is said to be simple if it is non-zero and
does not admit any other non-zero subrepresentation than itself, and to be semisimple if it satisfies the
following equivalent conditions:

(SS) (SS-1) Every extension 0 — V' — V — V" — 0 in Repg, (71(k)) splits in Repg, (71 (k));

(SS_Q) V= ZWCV simple W’

(SS-3) There exists a (automatically unique up to isomorphism) decomposition

V> @rcic, Vi
in Repg, (m1(k)) with V1,...,V, simple, pairwise non-isomorphic in Repg, (71 (k)).
Consider also the condition:
(FSS) Frobenius-semisimple: There exists a cofinite (in X;) subset U C U, C X, such that p,(Fr,-) €
V is semisimple, v € U[$].

2.3.2. Stability. One may ask whether the various axioms we imposed are robust enough that is pre-
served by natural operations. Here is a summary. Les K/k be a finite field extension.

Subquotients | Extensions | ® and (=) | (V,p) = (V, plx, ) | (V,p) < (V. plry ()

(AEU) yes ? yes yes yes
(HT) yes no yes yes yes
(dR) yes no yes yes yes
(st) yes no yes no no
(crys) yes no yes no no
(R/q) no yes yes yes no
(P/s) yes yes yes yes yes
(RC/@Q,et) | DO yes yes yes no
(SS) yes no yes yes yes
(FSS) yes no yes yes yes
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Let us explain the bold assertions.

(1)

To show that none of (HT), (dR), (st), (crys) is stable by extension, it is enough to exhibit and
extension of Q, by @Q, which is not Hodge-Tate. Consider the 2-dimensional Q-vector space
V ~ Qe @ Qpea equipped with o - e; = e1, 0 - ea = log(xe(o))e1 + ez, namely the matrix of p(o)

in (e, eq) is given by
1 lo o
( 0 1 g(xe(2)) ) , oem(k).

Then V sits into a short exact sequence

0—Qper =V = Qpea — 1.

Fix v € X ¢ so that the above restricts to an extension of mq (E“)—representation. Applying Dyr(—),
one gets

0— l%“el — DHT(V‘ﬂ_l(I;.'u)) — ]%vé%

so that dimkU(DHT(V\m(m))) = 2 if and only if ey lifts to b® e1 +1 ® ex € Bur ®g, V with

c-(bRel+1®ey) = (o(b) +log(xe(0))) ®e1+1® ey =bRe; +1® ey, 0 € m(kY)
kv)), that is [log(xe)] = 0 in H'(k?, Cp)(= H'(

).
Namely, log(xe(o)) = o(b) — b, 0 € 71 ( k¥, Bur)),

contradicting Theorem 2.4 (3).
The equivalence (V, p) satisfies (HT) < (V, pl, (k)) satisfies (HT) is a consequence of the following

Lemma 2.6. k/Q, p-adic field. Let K/k a finite field extension. For every (V,p) € Repg, (m1(k))
the canonical K-linear morphism

ag/r : Dur(V) @, K= Dyt (Vx (k)
is an tsomorphism.

Proof. For a finite field extension K/k, write Dur k := Dur(V|x (k). If the assertion holds for
finite Galois extensions K /k then it holds for arbitrary finite field extensions K/k. Indeed, if K'/k
denotes the Galois closure of K/k, this follows from the canonical commutative diagram

a ®Id
(Dyr @k K) @k K Dyt x @ K’

iw C“K’/Kl

AR’ [k
Dyt @ K’ Dyr k.

and the fact that ag/, : Dur(V) ®x K — Dyrk is an isomorphism if and only if ag/, @ Id :
(Dur(V) @ K) @k K' — Dyt g ®x K' is. Assume now K/k is Galois. Then Gal(K|k) acts
semilinearly on Dyt i = (Bur ®q, V)”l(K) with

DHT,KGal(K|k) = Dyr k.

This reduces the proof to the following classical claim.
Claim. (Galois descent for vector spaces) Let K/k be a finite field extension and V a finite di-

mensional K-vector space endowed with a semilinear action of G := Gal(K|k). Then the canonical
morphism o : VC @ K5V is an isomorphism.

Proof of the claim. For the injectivity, we are to show that if vi,...,v, € V& are k-linearly
independent then vy, ...,v, € V are K-linearly independent. We argue by induction on r. If r = 1,
there is nothing to prove. Assume r > 2 and let vy,...,v, € VC k-linearly independent. If there
exists x1,...,z, € K not all zero such that ) ,.;«, z;v; = 0. By induction, z; # 0, 7 = 1,...,7
and, up to replacing z; with x;/z1,i=1,...,r, oma 21 = 1. Then, for every o € G,

— Z TiVi =0V =0 V1 = — Z O'(SCZ')O'-UZ':— Z O'(:L’Z')Ui,

2<i<r 2<i<r 2<i<r



10 M2 - SORBONNE UNIVERSITE, 2024-25

whence
Z (o(x;) — zi)v; = 0.
2<i<r
By induction, o(x;) = x;, i = 2,...,r. As this holds for every o € G, z; € K¢ = k: a contradiction.

For the surjectivity, as the morphism a : V¢ ®;, K — V is G-equivariant, im(o)) C V is a G-stable
K-vector subspace so that V/im(«) is also endowed with a G-semilinear action of G such that
the canonical projection p, : V. — V/im(«) is G-equivariant. Furthermore, for every v € V,
Trg(v) ==Y eqov € VY Cim(a) hence Trg(pa(v)) = pa(Tra(v)) = 0. This forces V/im(a) = 0
as, if there exists v € V such that 0 # p,(v) =: U then, there exists € K such that trg(zv) # 0
as, otherwise, for every x € K, 0 = Trg(20) = > ,eqo(x)o - T would imply > cqo(— ) 7 =0
but then, by Dedekind Lemma', one would have f(o-7) =0, f € (V/im(«))" (hence o -7 = 0),
occG. O

(3) The fact that a tensor product of semisimple representations is again semisimple is non-trivial and
uses that @y has characteristic 0. The quickest way to see it is by invoking that an algebraic group G
over a field @) of characteristic 0 is reductive (that is has trivial unipotent radical R, (G) = 1) if and
only if it is linearly reductive (that is all its @Q-rational algebraic representations are semisimple).
Indeed, let (V;, pi) € Repg,(m1(k)), i = 1,2 and set (V, p) := (V1,p1) © (V2, p2); let G C GLy denote
the Zariski-closure of II := p(m1(k)) C GL(V). If (Vi,p;) € Repy,(m1(k)), i = 1,2 then, clearly,
(Vi p) € Repg, (m1(k)) hence V' is a faithful, semisimple representation of G. This imposes R, (G) =
1 as, otherwise, R,(G) C GLy would be a non-trivial unipotent subgroup hence 0 C V(&) C @
while, as R, (G) is normal in G, V(@) © V is G-stable. AsVisa semisimple G-representation, one
would thus get a G-equivariant decomposition V = VE(G) W, But, by construction, Wh(G) = q,
which contradicts the fact that W is a faithful representation of R, (G). So G is reductive hence
linearly reductive; in particular Vi ® V5 is a semisimple Q-algebraic representation of G. The
assertion thus follows from the fact that p; ® p2 : m1(k) — GL(V; ® V3) factors as

mi(k) B G — GL(V; @ V3)
and from the Zariski-density of IT in G.

(4) The equivalence (V,p) satisfies (SS) < (V, plr, (k)) satisfies (SS) is purely group-theoretical. The
implication = uses that Q, has characteristic 0. More precisely, let @ be a field, V a finite-
dimensional Q-vector space endowed with the action of a group G.

(a) Let U C G be a normal subgroup. If V' is semisimple as a G-representation then V' is also
semisimple as a U-representation: Decomposing V' as a direct sum of simple G-representations,
oma V is a simple G-representation. Let W C V be a simple U-subrepresentation. Then as V'
is a simple G-representation and - co gW C V is G-stable (and non-zero), YgecgW =V.
It remains to observe that gW C V is again a simple U-subrepresentation: U acts on gW wvia
u-gw = g(g 'ugw) and g : W-=3gW is a U-equivariant isomorphism.

(b) Let U C G be a finite index subgroup. Assume @ has characteristic { [G : U]. If V is semisimple
as a U-representation then V is also semisimple as a G-representation: Let 0 2 W C V be a
G-subrepresentation - hence a U-subrepresentation. Write V = W @ W' as a U-representation.
Let pww: : V. — W denote the corresponding projection, which, by construction, is a U-
equivariant morphism and observe that the averaged morphism

Z gpw,w' g l(v)

geG/U

1
p: V=W, UH[G 0l

is G-equivariant with im(p) = W and p?> = p. So that one gets V = W @ ker(p) as G-
representations.

Semisimplification: One has a canonical semisimplification functor

(=)™ : Repg, (m1(K)) — Repg, (m1(k))

1Recall this asserts that if M is a Z-module (or even just a commutative monoid) and K a field then the characters
M — K* are K-linearly independent (regarded as elements of KM).
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constructed as follows. For V' € Repg,(m1(k)), let SoV C V denote the socle of V' i.e. the sum
of all simple subobjects V/ C V' in Repg,(m1(k)). This is the largest semisimple subobject of V' in
Repg, (m1(k)); if V' is non-zero, SpV is also non-zero and SoV = V if and only if V' is semisimple.
One then defines inductively V' O S;11V D S;V as the inverse image of So(V/S;V) C V/S;V by the
canonical projection V' — V/S;V. The processus ends and one sets

Ve = SiaV/SiV.
i>0

By construction V** € Repg, (71(k)) and is called the 71 (k)-semisimplification of V. The functoriality
immediately follows from the construction since for every morphism f : V4 — V2 in Repg,(m1(k))
one has f(Sy(V)) C So(V2) hence, by induction f(S;V1) C S;Va, which, passing to quotients yields
morphisms f; : S;+1V1/SiVi — Si+1V2/S;V; such that the square

flsipan

SiyaV1 Siv1Ve

| |

SitiVi/SiVi 7 Si+1Va/S;iVa.

One sets f% := @, f; : V** — V5’® and easily checks that Id*® = Id, (gf)* = ¢ f*.

In terms of matrices, semisimplifying amounts to "forgetting" what is above the block diagonal. For
(V,p) € Repy,(m1(k)) wiyth m(k)-semisimplication (V*°,p*) € Repg, (m1(k)), setting II := p(m1(k)),
IT* := p*5(m1(k))) one has a canonical short exact sequence of ¢-adic Lie groups

1— R,(II) - II — IT* — 1,

where R, (IT) C GL(V) is a unipotent subgroup.

- If (P) is a property of V' € Repg,(m1(k)) which is stable subquotients then (P) for V' implies (P) for
Vs,

- Conversely, if (P) is a property of V' € Repg,(m1(k)) which is stable extensions then (P) for V*
implies (P) for V.

2.3.3. Where does the axiomatic come from? k/Q number field. As already mentioned, the most impor-

tant - and basically the only non-trivial - natural examples of ¢-adic representations of 7 (k) arise from

the (-adic cohomology of varieties over k. In the following, we will say that (V,p) € Repg,(m1(k)) is

geometric if it appears as a subquotient of a representation of the form H*(Y;, Q,(4)) for Y/k a smooth,

proper variety over k. It follows from the general formalism of ¢-adic cohomology (Weil cohomology)
geo

that the full subcategory Repf), (m1(k)) C Repg,(m1(k)) of geometric representations is a Tannakian
subcategory.

If Y/k is smooth proper variety by spreading out, there exists a non-empty open subscheme U C
spec(Oy) and a smooth proper morphism Y — U such that Y — spec(k) fits into a Cartesian square

y

|

Y

|

m
spec(k) 2,

For v € |U|, one gets

(2) Y y Vo N

| o] o] o |

spec(k) SUEEN § S spec(@z) ~——spec(k;)
\—/

v
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2.3.3.1. (AEU) and smooth proper base change. The condition (AEU) for geometric representations is
a special case of the following (deep!) theorem.

roperBC| Theorem 2.3.4. (Smooth proper base change) Let S be an integral scheme and )Y — S a smooth
proper morphism. Then for every prime { invertible on S and integers n > 1, i > 0, the étale sheaf
R f.Z)0" is locally constant constructible (viz. representable by an étale cover of S) and, for every
geometric point s on S, one as a canonical isomorphism

(R 20 ~ H (Vs, Z) ).

In terms of representations, Theorem 2.3.4 implies in particular that for every geometric points 51,
S9 over points s1,s2 € S, one has canonical (after choosing an isomorphism of fiber fuctors s1-35)
isomorphisms

Hi (y§1 ) QZ)%HZ (y§27 Q@)a
equivariant with respect to the canonical morphisms of profinite groups
7['1(81, §1) — 7T1(S, §1)L>7T1(S, §2) — 71'1(82, 52)

In our setting, we take S =U, s =n,n, or v and get:

~

Hi(yﬁv(@f) 7Hi(~yﬁwa) Hi(yﬁﬂ(@f)

C ( C

7T1(U)

~

> —_—
12
> LS
)
12
—_—

Dy (k|k) <—=—m1(ny) = m1 (k)

Remark (Frobenii) Let x be a finite field of characteristic p > 0 and Y/ a variety. The arithmetic
Frobenius ¢y : K>k, T 21l induces a automorphism of scheme @, := p# : spec(r)>spec(k). On
Y :=Y X, Kk one has 3 Frobenii endomorphisms:

Name | Notation | Definition | Ex: X = A} = spec(s[T])
Arithmetic Frobenius | ®3 Id x @,

|k|-Absolute Frobenius | Fry

Relative Frobenius F Yy Fry x Id

Recall that for a IFp-scheme Y, the ¢ = p"-absolute Frobenius F'x : X — X is the identity on X,,, and
a +— a? on Ox. The various Frobenii at stake fit into the following Cartesian diagram

F’f‘?

b7
=

— Y|y

Y Y Y

| = |

spec(k) — = spec(k)

R

One checks that the action Fr*? cHY Yz, Qp) — HY(Yz, Q) of Fry on H(Yz, Q) induced by functorial-
ity is the identity so that Fr?‘y acts as CI>;,1 on H'(Yz,Qy). Due to its geometric nature, the Frobenius

that most naturally appears when studying Hi(YR, Qp) is Fr7|y; this is why one often use the geometric
Frobenius when the arithmetic one e.g. when defining characteristic polynomials of Frobenii etc.
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Let X, (Y) C X denote the set of places of good reduction for Y/k that is the set of all v € ¥ such
that Y;, /k" fits into a Cartesian square

Y Vi Vo]

IR I

spec(k) <— spec(l%”) — spec(@z),

with Y, — spec(@};) smooth, proper. The output of Theorem 2.3.4 is that for V; = H'(Y;, Q) €
Repg, (m1(k)), one has
1 1
Uppe D Ek(Y)[Z] ) U[z]-
One may ask whether U, = 2,(Y)[4]. This does not hold in general, even taking into account all
cohomological degrees namely considering V = &, <i<2/rm dim(y)Hi(Y,;,Qg). One heuristic reason is

that in general Y/k does not have a privilegiate model over Spec(Oy). There is one exception however
- the one of abelian varieties, where such a model exists and is called the Néron model.

Reduction of abelian varieties More precisely, let Y/k be a smooth, separated scheme of finite type
over k, a Néron model for for Y over S := spec(Oy) is a smooth, separated scheme ) — S of finite type
with generic fiber Y and which is minimal in the following sense: for every smooth, separated scheme
Y’ — S of finite type fini with generic fiber Y and for every k-morphism wuy : Y — Y, there exists a
unique morphism of S-schemes v : Y’ — ) inducing u; on the generic fibers. If a Néron model exists, it
is automatically unique and if Y/k is a group scheme, its Néron model is automatically a group scheme
over S.

LR
Theorem 2.7. (%B‘LR%]) FEvery abelian variety Y/k admits a Néron model Y — spec(Oy).

Furthermore, for every v € ¥, the special fiber ()°), of the neutral component )° of Y at v € X, fits
into a diagram of extensions

14>Dvﬂ(yo)04>14v4>1

1

where A,, T, U, are respectively an abelian variety, a torus and a unipotent group scheme over the
residue field k. One says that Y has good reduction (resp. semistable reduction , bad reduction) at
v e X if O, =1 (resp. U, = 1, otherwise) and that Y has potentially good reduction (resp. potentially
semistable reduction) at v € ¥y if there exists a finite Galois extension K/k such that Y has good
reduction (resp. semistable reduction) at every w € X ,.

With these definitions,

The em 2.8.
errelate
(1) ( é ['68]) For every v € Xy, the following condition are equivalent

i) there exists a prime { # p such that H (Yz, Q) is unramified at v;
k
') for every prime £ # p, HY(Yz, Qp) is unramified at v;
k
(i) Y/k has good reduction at v.



14 M2 - SORBONNE UNIVERSITE, 2024-25

GA7
(2) ( ;SGA7]) For every v € Xy, the following condition are equivalent
(i) there exists a prime £ # p such that HI(Y,;, Qq) is semistable at v;
(i’) for every prime £ # p, Hl(Y,;, Qp) is semistable at v;
(ii) Y/k has semistable reduction at v.

Combining Theorem 2.8 (2) and Lemma 2.2, one obtains the following striking geometric corollary.
Corollary 2.9. An abelian variety over a number field has everywhere good reduction.

2.3.4.1. Admissiblity and p-adic comparison theorems. k/Q, p-adic field. Consider the notation in the
following Cartesian diagram

Y Yy Vv

| e ] o]

spec(k) — spec(O) <—— spec(k™)

To understand V := H'(Y},Q,) € Repg, (m1(k)), the basic strategy is to try and compare p-adic étale

cohomology to one of four other p-adic cohomology theories H.(Y), 7 = HT, dR, crys , st. More
precisely,

(1) Hodge-Tate cohomology:
Hyp (Y) = @o<j<cH ™/ (Y, 05,

Yk
with Z-graduation H%T(Y)j =H"(Y, Q{/“g): JEL.

(2) de Rham cohomology: hypercohomology of the de Rham complex
Hip (Y) = H'(Y, Q)

with Z-filtration F/H} (V) = im(H' (Y, Q§5]) — HI(Y,93,)), j € Z "Hodge filtration".

(3) if Y/k has good reduction with smooth proper model )/O, crystalline cohomology: crystalline
cohomology of the special fiber
Hi

cris

(Y) = Hiris(yv/oko) ®Ok0 k07

where Oy, = W (k™) denotes the Witt vectors of k™ or, equivalently, the ring of integers of the
maximal unramfied extension Q, C ko = kNQy" C k of Q; in k. Hi . (Y) is a finite ko-vector space
equipped with a o-semilinear crystalline Frobenius arising by functoriality from the Frobenius F'ry, .
The fact that H , (V) @k, k carries a Hodge filtration is a consequence of Berthelot-Ogus comparison

cris

isomorphism with de Rham cohomology of the generic fiber

HL,, (V) @k k=Hig (V).

cris

(4) if Y/k has semistable reduction with semistable proper model )/O, semistable cohomology: log-
crystalline cohomology of the special fiber

Hzt(Y) = Hfogcris<yv/0k0) ®Ok0 ]{?0,

where Oy, = W (k™) denotes the Witt vectors of k= or, equivalently, the ring of integers of the
maximal unramfied extension Q, C ko = kN Q" C k of Q in k. H,; (V) is a finite ko-vector space
equipped with a o-semilinear crystalline Frobenius ¢

cris

arising by functoriality from the Frobenius
Fry, and a ko-linear nilpotent operator N such that N = po™N. The fact that H’ (Y) @y, k
carries a Hodge filtration is a consequence of Hyodo-Kato comparison isomorphism with de Rham
cohomology of the generic fiber

H (Y) @y k= Hp ().

Here the condition that Y/k has semistable reduction means that the singularities of the special
fiber are not too bad. More precisely, if I(}),) denotes the set of irreducible components of ), and
for I C I()),) one sets V! := NcerC (scheme-theoretic intersection) then one requests that the
elements of 1()),) be Cartier divisors and that for every I C I(),), VI is geometrically reduced and
smooth over k™.
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To proceed, for each of the above four cohomology theories 7, Fontaine has built a suitable period ring
B, which is (Qp, 71 (k))-regular and formulated the following unifying conjecture.

Conjecture 2.10. (Fontaine) Under the conditions in the following table

HT | dR | st| crys
Y/k | No condition V|V
Semistable reduction V
Good reduction Vv

V € Repg, (m1(k)) and there is a functorial isomorphism D (V)>HY(Y), ®g, B;.

This conjecture is now a theorem, due to Faltings and Tsuji (and with alternative proofs by Niziol,
Bhatt, Beilinson). Noe that the case of crystalline comparison / good reduction justifies the comment
made earlier that for £ = p, the good analogue of being unramified is being crystalline.

2.3.4.2. Purity, Q-compatibility and the Weil conjectures. The Weil conjectures follow from the so-
called standard conjectures of Grothendieck and, actually, it is partly to prove the Weil conjectures

that Grothendieck devlopped the formalism of pure motives erllgwg—a ic f%(%}&g\plology. The Weil conjec-
tures were first prov%cgll%n%gill himself for abelian varieties (R%Ve?[g], , §21, Application II]) and in

general by Deligne ( y geometric arguments going around Grothendieck’s original strat-
egy. Actually, using that f-adic cohomology is a Weil cohomology (in particular satisfies the Lefschetz
trace formula), it is not difficult to reduce the Weil conjectures to its core - the "Riemann hypothesis".

Let k be a finite field of characterstic p > 0, Y/k a smooth, proper variety of dimension d and ¢ # p
a prime. Let F'r, € (k) denote the geometric Frobenius; recall that for every integer i > 0, it acts
as FT;%IY on H(Yz, Q). Set P, o := det(Id — FriT|H Yz, Q) € Q[T], i =0,...,2d. One wants to
show that P; := P; ¢ is in Q[T] and independent of £. This follows from

eli €1ligneWC2
Theorem 2.11. (Riemann hypothesis ) e eigenvalues of Fry acting on H'(Yz, Q) are

|k|-pure of weight i.

Let us sketch how to deduce the Q-compatibilty from Theorem 2.11. As already mentioned, it follows
from the deﬁlﬁgﬁlﬁe%jﬁ%s%n%@ a Weil cohomology that f-adic cohomology satisfies the Lefschetz trace

formula (e.g. [7, §3.3.3]), which, in the case we are interested in, relate the zeta function of Y that is
the power series

> deg(x) = [Yo(Fgn)| = Y _(=1)'Tr(F"™[H'(Y, Q).

2€| XY |,deg(z)|n i

This shows that Z(Y,T) € Z[[T]] N Qu(T). It is then a litlle (not that easy) exercise to check that
Q[T]] N Qe(T) C Q(T).
But, now, writing Z(Y,T) = % with N, D € Q[T] coprime with positive constant terms, one gets

N(T) = P1y(T)P3o(T) - Pog—1,4(T), D(T) = P1y(T)P3(T) - - - Pog—1,4(T).

From Theorem 2.11, if K C Q; is the decomposition field of N(T")D(T), the set of roots of P; (T
is the subset of roots o of N(T)D(T) with the property that for every complex embedding ¢ : Q — C,
()| = |k|7Z. As this set is Gal(K|Q)-invariant and independant de ¢, one gets P, o lies in Q[T] and
is independent of £.

atzMessin,
Using that crystalline cohomology is also a Weil cohomology, Katz and Messing [KM74] deduced
from Theorem 2.11 that the characteristic polynomial of the linearized crystalline Frobenius acting on
H! .. (Y/W(k)) also lies in Q[T"] and coincides with one of the geometric Frobenius acting on H*(Yz, Qy),
{L#p. Asa
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2.3.4.3. Semisimplicity. In general, one does not know that motivic representations are semisimple; it’s
one of the central conjecture - mostly motivated by the standard conjectures - in arithmetic geometry,

Conjecture 2.12. (Semisimplicity Conjecture) Let k be finitely generated over its prime field. Then
Repgeo( 1(k)) C RepEl(m(lﬂ)).

Conjecture 2.12 for £/Q number field implies that objects in Repg 1(k)) are semisimple and Conjec-
ture 2.12 for k/F), a finite field, combined with Theorem 2.3.4 1mphes that objects in Repg), (m1(k)) are
Frobenius—semisimple.

Conjecture 2.12 is almost entirely open but one striking result towards it is the following celebrated
theorem.

altingsRationalPoints
Theorem 2.13. ( WS ) IfY 7% 15 an abelian variety, then H' (Y, Q) € Repg, (m1(k)).

As Rep, (m1(k)) C Repg, (m1(k)) is a Tannakian subcategory, this implies (H' (Y}, Q¢))® C Rep, (m1(k));
in particular, H' (Y, Qe(j)) = (AH' (Y, Qo) (j) € Repg, (mi1(k)), i >0, j € Z.

geo (

Independently of Conjecture 2.12, the reason why one has to impose axioms (F'SS), (S95) is heuristic
since the @Q-rationality, purity and Q-compatibility axioms only capture information on the semisimple
part of p(F), ) through their characteristic polynomials x,., v € U, and these data determine the iso-
morphism class of (V, p) only if (V,p) € Repy,(m1(k)). Also, the group theory required to study f-adic
representations is significantly simpler and better understood in the semisimple case. Actually, condition
(SS) is not so restrictive as one can always attach to an arbitrary representation (V, p) € Repg, (m1(k))
its semisimplification.

Summary
AEU) Smooth proper base-change (Grothendieck)
T) comparison theorems between p-adic cohomologies (Faltings, +...)

(
(
(RC/qg,et) and (P/4) | Riemann hypothesis (Deligne)
(RC/g) and (P/,) | Katz-Messing

(SS), (FSS) 77

3. (-INDEPENDENCE AND THE MOTIVIC PHILOSOPHY

3.1. First /-independency results. k£/Q number field. Let £ be a set of primes and, for each ¢ € £
let (Vg, pe) € Repg, (m1(k)); write Il := py(m1(k)) C GL(Vz) and

Gy = ﬁzar C GLy,
for its Zariski-closure in GLy,.
Assume the resulting family (V,p) = (Vi,pr), £ € L satisfies (RC/ge). Let r denote the common
Qg-dimension of V. Here is a first basic example of /-independency result.

Proposition 3.1. Assume G} is unipotent for one prime £ then Gy is unipotent for every prime (.
Furthermore, the kernel of €y : w1 (k) — mo(Gy) is independent of £.

Proof. Let Gy — G := Gy/Ry(Gy) denote the maximal reductive quotient of Gy; it identifies with
the Zariski-closure of IIj := pj*(m1(k)) C GLyzss. As Ry(Gy) C G, one has mo(Gy) = mo(G*) and

ker(ep : (k) — m0(Gy)) = ker(e : w1 (k) — 7o (G5Y)).
Also G¢ is unipotent if and only if R,(Gy) = G if and only if Gj*? = my(G*?) is finite. As a result,
up to replacing (Vz, pg) with its m1 (k)-semisimplification (V;*, p7°), oma (Vz, p¢) € Repg, (m1(k)), £ € L.
Note that (V*°, p*) = (V;*, pe)*, £ € L still satisfies (RC/q,et). So, assuming (Vy, pg) € Repg, (m1(k)),

¢ € L, we are to prove that if Gy is finite for one prime ¢ then Gy is finite for every prime ¢ and
that ker(py) C mi(k) is independent of ¢. Fix ¢y € L such that Gy, is finite and let K/k denote the
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finite Galois extension corresponding to ker(ps,) C m1(k). We are to show that m (K) C ker(pe)hat is
(Ves pe)|7 (k) 1s the trivial representation, £ € L. But, this follows from the fact that, one the one hand,
(Vfo’ pf0)|7r1(K) ~Qet (VZ, p€)|7r1(K)
and, one the other hand
(WO7p€0|7r1(K) = Q;BOTLU(K) ~Q,et @?r|7r1(K)’
where QQ; denote the trivial representation. As a result
(Vs 0y (1) ~Quet Q7 ey (i), L E L

hence, as both (Vy, p¢)|r, (k) and Q?r|m(K) are semisimple, (Vg, p¢)|r, (k) = Q?THI(K) by Cebotarev. [J
Recall that if @ is a field and G an algebraic group over @, the reductive rank rdrank(G) of G is the

common dimension of its maximal tori and that G is unipotent if and only if it has rank 0. Proposition
3.1 can be upgraded as follows.

Theorem 3.2. The (i) kernel of ey : wi(k) — mo(Ge);
(ii) reductive rank rdrank(Gy),
are independent of L.

The proof of Theorem 3.2 relies on the fact that both ker(ey) and rdrank(G/) are encoded on the image
of Gy C GLy, via the characteristic polynomial map

X: Gl — AL ' xGpg
g = x(9) = (a1(9), .- -, ax(9)),
(where det(T1, — g) = T" + 3" <j<, ai(g)T""") and that this image is independent, of /.

3.1.1. Preliminaries about characteristic polynomial map. The restriction x : G}, o C GL; g — A@_l X
G, identifies ATQ_l X G, @ with the quotient

7

G/ S,

(parametrizing GL,-conjugacy classes of semisimple elements in GL,). In particular, y : GhLo C
GL, g — ATQ_l X G, @ is a finite morphism of degree 7!.

Let now @ a field of characteristic 0 and G C GL, g an algebraic subgroup. Then,
Lemma 3.3. x(G°) C ATQ_l X Gm,q is a closed subvariety, defined over Q and of dimension rdrank(G).

Proof. Let G* C G denote the subset of semisimple elements in G. Using that for every g € G,
x(9) = x(g%), where g = g**g" = g"g* is the multiplicative Jordan decomposition of g in G (equivalently

GL, ) and that, given a maximal torus 7" C G, every semisimple element in G is G(Q)-conjugate to

an element in T, one has: for every g € G(Q),

X(G°) = x(G™) = x(¢Tg™"), 7€ GL(Q)
Furthermore there always exists v € GL,(Q) such that yTv~ ' C G, 5 So

X(G°) = XIG;na(vTv’l%

m,Q
- finite, x(G°) C A%_ T x G,, 5 is a closed subvariety of dimension dim(gTg~!) = rdrank(G);

-1 .
As X‘G:n,a G~ — A% xG,, 5 is

- defined over Q and that every subtorus of G7 ) is automatically defined over Q, x(G°) C Ag L G,, o}
is defined over Q. ’
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The latter assertion uses the equivalence of categories
M +—— X*(Ma) = HomGrAlg/a(M§7 Gm,é)

between groups of multiplicative types over () and Z-module of finite types endowed with a continuous
action of m1(Q) plus the fact that, under this equivalence, X*(G Q) = Z%" endowed with the trivial

action of m (Q). O

Lemma 3.4. For every 1 # C € mo(G) there exists fo € Z[ai, ..., a,] such that fc =0 on x(C) and
fo # 0 on x(G°); in particular, for every C' € my(G), the Zariski-closure of x(C) in A’é_l X G, 18
equal to x(G°) (if and) only if C = G°.

Proof. Let g € G(Q) \ G°(Q). Fix a faithful @Q-linear representation ¢ : mo(G) — GL(W) so that
#(g) # 1. In particular, ¢(g) has at least one eigenvalue A # 1, which is automatically a primitive
root of unity of order say n. As the tautological representation V := Q%" of G is faithful, the Q-
linear representation G — my(G) — GL(W) appears as a subquotient of a representation of the form
Br<i<sT™M (V). Let Aq,..., A, the eigenvalues of g acting on V' (and counted with multiplicities).
The characteristic polynomial of g acting on 77" (V') can thus be written as

Ai )\Zm )\z )\Zm>\ "'A.rn—n -
Il =350 = I 0= w7 = PraTalg), s arl9),ar(9)™)
1<i]eesim <1 J1 In 1< eensim <7 r

1<j1,e0dn<r 1<515drn—n <7

avec Pmn(T,ay,...,ar,a; 1) € Zlay, ..., ar,a;1]. Fix an integer N > 0 such that

H Pun(Can, ... ama ) € Zlay, ..., a],
CeDn(1)

where ®,(1) C Z” denotes the set of primitive nth roots of 1. With these notation, the function
f =T1li<i<s Pmin; € Z[a1, ..., a;] has the requested properties. O
3.1.2. Proof of Theorem 3.2.

3.1.2.1. Proof of Theorem 3.2 (1). From Proposition 3.1, one may assume Il is infinite for all £ € L.
:CCrank | Lemma 3.5. Let £ € L. The following assertions are equivalent.

(i) Gy =G;
(ii) For every f € Zlax,...,ay], the set E£ C Xy of allv € Uy, 4 such that fox,,, =0 has density 0 or 1.

Lemma 3.5 = Theorem 3.2 (1): Fix ¢y € L and set K := Frrlen), Up to replacing (V,p) with
(V, plri(x)), oma G = Gy, so that (i) - hence equivalently (ii) - of Lemma 3.5 holds for £ = {o.
But as (V, p) satisfies (RC/qg.t), if (ii) of Lemma 3.5 holds for £y, (ii) - hence equivalently (i) - of
Lemma 3.5 holds for every ¢ € £; this shows ker(eg,) C ker(e;). By symmetry, ker(e,) = ker(e)

Proof. of Lemma 3.5.

(i) = (ii). Wlog oma py(m(k)) := II; C GL(Zy). Assume Gy = G} and let f € Z[ay,. .., a,] such that
f(x(G¢)) # 0. Write Vy C M,z for the reduced closed subscheme defined by fox : M,z — Al and

Xf = Vf(Zg) N1l C II,.

By construction X is stable under II,-conjugacy. One has:
Claim. 0Xy = Xy and u(Xy) =0, where pi : By, — [0,1] is the normalized Haar measure on II,.

In particular, by the profinite Cebotarev density theorem, the set Zf; C X of all v € ¥y such that
pue(Fr,-) € Xy has density 0.

Proof of the claim. As by construction Xy is closed in Iy, 90Xy = X if and only if X; has empty
interior in II,. We argue by contradiction. Otherwise, X; would contain an open subset of II,, which
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we may always assume to be of the form gU for some g € II; and normal open subgroup U C II,. As
Gy is connected, one has U™ = Gy. Indeed,

Ge — ﬁ;ar — |—| ’YU — U Wzar — U ’)/Uzar

€Il /U €Il /U €l /U
but as Gy is smooth and connected hence irreducible, and IIy /Uis finite, there exists v € Gy/U such
that Gy = yWU™ = ~U™ i4.e. Gy = U#*. On the other hand, as Vi C M, g, is Zariski-closed, one gets

Vf D) wzar = gUZ“ = gGy = Gy,
which contradicts the definition of f.
It remains to prove that pu(Xy) = 0. Let Vi,..., Vs denote the irreducible components of V;. From
Xy = U Vi(Zg) N Gy, it is enough to prove that u(V;(Zy) N1l;) =0, i = 1,...,s. Hence we may

1<i<s

assume V7 is irreducible. We proceed in two steps.

(1) For every g1,...,9s,91,---,9, € Iy one has
U 6iXyg; ST
1<i<s

We argue by induction on s. If s = 1 there is nothing to say. Assume s > 2. By induction
hypothesis,

U 9:Xpg c T
1<i<s—1

so that Xy contains the non-empty open subset g5 L(TT, \ U 9iXr9;) g;_l, which contradicts the
1<i<s—1
fact that X; has empty interior in II,.

(2) Let V < M, 7, be an irreducible closed subscheme. If X := V(Z,) N1, satsifies (*), then u(X) = 0.

We argue by induction on the dimension d of Vg,. If d = 0, there is nothing to say (recall II; is
assumed to be infinite). If d > 1, fix € X and set 9 = 1. For every 1 € II; \ X2~ ! one has
71V # V (otherwise there would exist ¢ € X such that y12 = g, contradicting the choice of 77).
Choose inductively
Vi1 €\ | X2
0<;j<i

By construction one has v;V' # v;11V, j = 0,...,% (otherwise there would exist g € X such that
Yig1Z = g, contradicting the choice of v;41). As V is irreducible, v;V N 7,41V has dimension
<dimV — 1. On the other hand, for every ¢1,...,9s,91,--.,9, € II; one has

U oV nrinVnlkg, © | (ge)V NIg; S I1.
1<k<s 1<k<s
Hence, by induction hypothesis, u(v;V N vV N1ly) = 0. Set now X; := vV NIl and Y; =
Uo<j<i Xj- From the above p(Y; N X;41) = 0 hence, using

Yigr = N (YN X)) U (X \ (Vi N X)) U (Y N Xij1)),
one gets
p(Yipr) = (V) + p(Xiv) = Y p(X;) = (i + 1)u(X),
0<j<i+1
where the last equality follows from the Ils-invariance of Haar measure. Taking i — 400, one gets
u(X) =0.
(ii) = (i). We argue by contradiction. Assume Gj C Gy and fix 1 # C' € my(G¢). From Lemma 3.5

there exists f := fo € Z[a1, . . .,a,] such that f = 0 on x(C) and f # 0 on x(G). Let mo(G¢)! C mo(Gy)
denote the set of all C' € my(Gy) such that f = 0 on x(C) and write a := |7o(G¢)|, b := |m0(Gy)| — a.
By assumption 1 < a < |mo(Gy)|. As mo(Gy) is abelian, it follows from Cebotarev density theorem and

the Claim in the proof of (i) = (ii) that the subset Zi C X of all v € ¥, such that
er - m (k) 25 G(Qy) — mo(Gy)
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is unramified at v with €, o(¢,-) € mo(G,)’ has density 0 < o1p < 1, contradicting (ii).
O

3.1.2.2. Proof of Theorem 3.2 (2). According to Theorem 3.2 (1), after possibly replacing k with a finite
field extension, which does not alter Gj, oma Gy = Gy, £ € L so that, from Lemma 3.3, rdrank(G/) =
dim(x(Gy)), ¢ € L. It is thus enough to show that dim(x(Gy)) is independent of ¢ € L. From ??, the
subset

P, = U c II,

UGUP@V
of all II;-conjugacy class of Frobenii pvyg(qbk;), v € Uy, 4 is f-adic analytically dense in G¢(Qy) - hence

a fortiori Zariski-dense in Gy; in particular,

I ——oh

X(Go) = x(®,") C x(®0)™ C A" X Gg,-

On the other hand, from Lemma 3.3 we also know that x(Gy) C A@;l X Gy, is Zariski closed, hence

5 N zar

x(®,) C x(Gy). This shows that

X(®)" = x(Gy).
But, by assumption, x(®,;) C (A™"! x G,,,)(Q) is indépendant de ¢; let = C A?Qfl X Gy, denotes its

Ty NzZar

Zariski-closure. Then Zg, = x(®,) = x(G¢); in particular, dim(x(G¢)) = dim(Z) is independent of .

3.2. The motivic philosophy. k/Q-number field. ¢-adic representations of (k) are part of a coher-
ent network of conjectures which is very roughly encapsulated in the following picture.

Standard conj.

ﬂ

(Pure) Motives

ura varieties

Tate + semisimplicity conj. Constructing algebraic cycles

/yne— Nazur
Repg, (71 (k)) Automorphic representations

Langlands Correspondance

L-functions
The simplified version of the "horizon conjecture" to keep in mind is the following.

Horizon| Conjecture 3.6. k/Q a number field, X/k smooth, projective variety over k. Let II, C GL(V;) denote
the image of the mi(k)-representation Vy := Hi(X,;,Qg), and Gy =TI, C GLy, its Zariski-closure.
There exists a reductive group G over Q together with o faithfull Q-rational representation G — GLy
such that, for every prime £, one has

(G — GLy) ®q Q¢ ~ Gy — GLy,.

4. THE r = 2 CASE OF A THEOREM OF LARSEN-PINK AND A FIRST GLANCE AT FROBENIUS TORI

k/Q number field, £ infinite set of prime numbers. For each ¢ € L, fix (V;, pr) € Repg, (m1(k)). Write
Iy := pe(mi(k)) € GL(V;) and Gy :=II;" C GLy,. For v € U, 4, write ¢ = pue(py-) € Il for a
representative of the IIy-conjugacy class @, C IIy of Frobenii at v and x, ¢ := det(T1d — py ) € Z[T)
for its characteristic polynomial (which only depends on @, , and not on ¢, ¢).

The aim of this section is to prove the r = 2 case - see Theorem 4.9, of the following theorem.
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P
Theorem 4.1. dh:P92, Thm. 9.1, Thm. 9.4])Assume (V,p) satisfies (RC/q.t) and that, for every
te L, Gy = Gy is reductive connected. Then,

(1) There exists a finite Galois extension Q/Q and a subset L C L of density 0 (containing all places
that ramify in Q/Q) such that for every £ € L\ L', the Weyl group W (Gy) of Gy depends only on
the Gal(Q|Q)-conjugacy class Py C Gal(Q|Q) of the Frobenii at £. In particular, the dimension of
Gy and the dimension of Z(Gy).

(2) Assume furthermore that, for every £ € L, (Vy, pg) is absolutely irreducible. Then the same conclu-
sion holds as in (1) for the root datum of Gy (viz. the Qp-isomorphism class of G, @4).

Recall that one can always reduce to the case where G = Gy, £ € L is reductive connected, after
replacing k by a finite Galois extension K /k (Theorem 3.2) and semisimplification.

Theorem 4.1 relies on a subtle analysis of the arithmetico-geometric properties of tori in connected
reductive groups. The arguments and techniques involved to treat the general caseof Theorem 4.1 go
beyong the ambitions of these lectures but we can still give a good idea of the heuristic by considering
the r = 2 case. For this, we first review a few results about tori. These play a central part in the
structural analysis of algebraic groups. One way to produce tori in Gy is by considering the algebraic
enveloppe of the semisimple part of Frobenii elements.

4.1. Algebraic enveloppe. Let @ be a field, char(Q) = 0 and G/Q an algebraic group over Q.

4.1.1. Definition. For every g € G(Q) define the algebraic enveloppe of ¢ in G is the smallest algebraic
subgroup &z (g) C G containing g viz the Zariski-closure of the subgroup (g) C G(Q) generated by g.
We let the following as an exercise.

Lemma 4.2. If g = ¢%g" = g"¢* is the multiplicative Jordan decomposition of g € G then

Ealg) = Ea(g™) x Ea(g")
with Eg(g**) a group of multiplicative type;
Ea(9") = Ga if g" # 1 and Ea(g") ~ 1 if g" = 1.

Write T¢(g) = Eq(9%)° C Eq(¢™), which we call the algebraic torus attached to g. The following result
requires more work.

Tf&%’fm 4.3. Assume G° = G is connected; let T C G be a torus. Then,

- (B3orpl, 11.12]) The centralizer Za(T) of T in G is connected;

- ([Bor91, 12.1]) If, furthermore, T C G is a mazimal torus Zg(T) =T x Ry(Za(T')) = Norg(Za(T))°
and, if G is reductive, Zg(T) =T.

By construction, T (g9) C £q(9) C Za(Ta(g)) hence, if g = ¢ and Ti(g) C G is maximal, one gets
Tc(g9) = Ea(g) (since the projection of g onto Ry (Za(Ti(g))) is trivial).

Example: For v € U, 4, the G(Qy)-conjugacy class of ¢, ¢, hence of &, := EGe(goff;Z) and of
Ty = TGZ(gosz) depend only on v and not on the representative ¢, in ®,, while the GL,(Qy)-
conjugacy class of &, ¢ and T, ¢ only depend on the characteristic polynomial x, ¢ € Z¢[T'] of ¢, ¢. One
says that by a slight abuse of language that T}, , and &, ¢ are "the" Frobenius torus and multiplicative
group attached to (Vp, ps) at v respectively. If (V,p) satisfies (RC/qget), Xv = Xve is in Q[T] and
independent of ¢ hence &, ¢ and T, ¢ are defined over Q.

4.1.2. Regular semisimple elements and mazximal tori. If G = G° is connected reductive, one says that
g € G(Q) regular semisimple if g = ¢ and Tg(g) C G is a maximal torus. Regular semisimple
elements are abundant, namely:

orel
Theorem 4.4. ([Bor91, §11-13]) Assume G = G° is connected reductive, there there exists a non-

empty (hence Zariski-dense) open subscheme U C G, stable under G(Q)-conjugacy and such that every

g € U(Q) is regular semisimple.
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Rem. If one no longer assume G is reductive, it is still true that there there exists a non-empty

(hence Zariski-dense) open subscheme U C G, stable under G(Q)-conjugacy and such that for every
g€ U(Q), Ta(g) = Ea(¢9®) C G is a maximal torus. Indeed, just consider the maximal reductive quo-
tient p : G — G™* := G/R,(G) and consider a Zariski-dense open subscheme U C G™¢ as in Theorem

4.4. Then p~}(U) C G as the requested property.

Combined with the Claim in the proof of Lemma 3.5, one gets

Corollary 4.5. (Frobenius tori versus maximal tori) Assume Gy = Gy is connected. Then the set of
allv € Ung such that T, y C Gy is a mazximal torus has density 1.

This provides an alternative proof of Theorem 3.2.

Rem. If one no longer assume that Gy = Gy is connected, it is still true that the set of all v € U,, 4
such that T}, , C Gy is a maximal torus has density > m(> 0).
If (Vi, pe) is part of a family (V, p)) satisfying (RC/q.e), one has the following technical refinement of

Corollary 4.5

p
Theorem 4.6. (HTP92, §7]) Assume Gy = Gy is connected reductive for every ¢ € L. Fix a finite subset
I C L and for each £ € I, a mazximal torus Ty C Gy. Then there exists (infinitely many) v € NeerU,, 10
such that, for every £ € I, &, 0 =T,y C Gy is Go(Qg)-conjugate to the given Ty.

We refer to EPQQ, §7] for the proof which, as the one of Corollary 4.5, combines the general theory of
tori in algebraic groups and Cebotarev density theorem but also requires a bit f-adic Lie group theory,
in particular the fact that if Gy is a semisimple algebraic group over Q, and II; C G¢(Qy) is a compact
subgroup which is Zariski-dense in G, then IIy is open in G¢(Qy)).

4.1.3. Description of Eg(g) in terms of characters. Assume g = ¢* and Q = Q. Fix a faithful Q-
linear representation G < GLy ~ GL, g such that g = (aq,..., ;) is contained in the diagonal torus
Dy ~ Gy, g C GL;q. One can explicitly describe £(g) := €c(9) = Ea1, o(9) via the equivalence of
categories © — X*(0) from multiplicative groups to finitely generated Z-modules. Using the canonical
Z-basis e1,...,e, (defined by e;(z1,...,2,) = x;, © = 1,...,7), one gets a canonical identification
¢: ®r<i<r—Ze; X*(D,). With these notation, it follows from the definition of £(g) and the short exact
sequence

0 — X*(D,/E(g)) = X*(Dr) = X"(E(g)) = 0
that
X*(D,/E(9)) = {x = (ar,...,a;) €ZF | af* - - -l =1} C X* (D).
and
@)= (1  ker(x)
X€X*(Dr/E(9))

Let Ay(g) :={a1,...,a,} C Q* the Z-submodule generated by a1, ..., .. By the universal property
of Z%", there is a unique (automatically surjective) morphism of Z-modules

Qr
ro

evy : 2" — Av(g), a— af' - a
which fits into the commutative diagram with exact lines
0 — X*(Dr/E(g)) — X*(Dy) —= X*(E(g)) —=0
:T :TC :T
eV
0 — ker(evy) AL — Ay (g)

In particular, A(g) := Ay (g) depends only on g (and not on the faithful linear representation G — GLy
and one has

0

A(9)tors = Xu(E(9))tors = m0(E(g)), rank(T'(g)) = rank(A(g)) ete.
Here are two first applications of these observations to f-adic Galois representations.
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4.1.3.1. Homotheties torus.

Claim: Assume Q@ C C and |o| = -+ = |oy| =t a« # 1. Then E(g) contains the homotheties torus
Z(GLrq) = Hr@ = G-

This follows from

X*(D,/E(g)) ={a€Z® |af - alr =
C {Q c 7%r | |a1‘al - ‘ar|ar = qttar — 1}
={a€Z |a1+ - +a, =0} ker(X*(D,) » X*(H,q)) =: K,
whence

0 —— X*(D,/E(g)) — X*(Dr) — X*(E(9)) —0

| |

0 K X*(D,) — X*(H,q) —> 0.

Via the equivalence © — X*(0©), the right square corresponds to a factorization

E(9)— Drg
N

H,q

Corollary 4.7. If (Vy, pe) satisfies (P /) for some weight w # 0 then Z(Gy) contains a 1-dimensional
split torus.

Proof. Just apply the claim to g := ¢, for some v € U, . O

Corollary 4.7 applies for instance to V, = Hi(XE, Q¢(j)) for X/k a smooth, proper scheme over k and
% # j.

4.1.3.2. Connexity and neatness. From the identifications
A(9)tors = Xi(E(9) )tors = m0(E(9))
one sees that my(£(g)) = 1 if and only if A(g)ios = 1, in which case one says that g € G is neat.

Corollary 4.8. If (Vy, pe) satisfies (AEU) and there exists a m1(k)-stable Z¢-lattice Ay C Vy such that
m1(k) acts trivially on Ag/l, where | =4 if £ =2 and [ = { otherwise then G} = Gy.

Proof. We argue by contradiction. Assume mo(Gy) # 1 and let 1 # a € mo(Gy). Then from (classical)
Cebotarev applied to e : m1(k) — mo(Gy), there exists (infinitely many) v € U,, 4 such that ¢,
(equivalently, ¢3’,) maps to a € mo(Ge). From the commutative diagram with exact lines

0 ——=T¢,(pue) — Ea,(vyy) —= m0(Ea, (¢yy)) — 0

| |

0 Gy Gy 70(GY)

0,

one sees that mo(Eq, (¢7°)) # 1 as well. On the other hand, the assumption that II, C Id + ¢Endg, (Ay)
forces A(gpfig)tors = 1: a contradiction. O

If (V, p) satisfies RC/q,et, we know that K(V,p) := ker(e; : € : m1(k) — mo(Gy)) is independent of /.
From Corollary 4.8, for every prime ¢ and 1 (k)-stable Zs-lattice Ay C V4 one has

K(V, p) O ker(m (k) — GL(A,/1)).
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4.2. The r = 2 of Theorem 4.1. We retain the notation and assumption of the beginning of Section
4. Assume furthermore that

r = dimg, (V) = 2.
Let U C NeU,, C X be the cofinite subset of "good places" attached to (V,p) in the definition of

(RC/q,et) and for every v € U, let xu(= Xvr) = T% + a,T + by € Q[T the characteristic polynomial of
Frobenii at v. Set d, := a? — 4b, and E, := Q(v/d,,) for the splitting field of .

Let 37'* C U denote the set of all v € U such that &, = T,, C G, is a maximal torus (viz
Pt € G(Qy) is regular semisimple). From Corollaire 4.5, X% C %) has density 1. Write Q C Q for

the compositum of all E,, v € ¥ (in a given algebraic closure Q of Q) and F for the intersection of
all E,, v € ¥ (in particular, [E : Q] < 2).

p

Theorem 4.9. (Larsen-Pink hPQZ, Intro]) One and only one of the following three cases occurs.
(1) [: Q] = oo, E = Q and there exists a subset L' C L of density 0 such that Gy = GLag,, £ € L\ L .
(2) Q=FE=Q anng:Gmee,fEE
(3) [©2:Q] =2, E=Q and if { does not ramifies in 2/Qy,

-Gy = ReSQp]‘QZ(Gm @[2]) if the Frobenii at ¢ in Gal(Q|Q) = Z/2 maps to 1;

4 (a4
-Gy = an@z if the Frobenii at ¢ in Gal(Q|Q) = Z/2 maps to 0.
Here, Q?]/Qg s the unique quadratic unramified extension of Q.

4.2.1. Classification of mazimal tori in GLa g. Let @ be a field of characteristic 0 and let T C GLg g

be a maximal torus. As T'is GLg(Q)-conjugate to D 7, T contains the homotheties torus Hy g =
Z(GLg g). From the short exact sequence of tori over Q)

1= Hyg—=T—T/Hyg—1

one gets a short exact sequence of discrete 1 (Q)-modules

0 Z X*(Tg) Z 0

The action of m1(Q) on the RHS Z is trivial and the one on the LHS is given by a quadratic character
x1 : m(Q) — {£1} = Z*. This imposes that

i) xp=1and T ~ Gme is split;

ii) or x7 # 1 and if Q7/Q is the quadratic extension corresponding to ker(xr), Tg, =~ G%’MQT is split.
Indeed, ii) follows from i) applied to Tgy,.. For i), the action of m1(Q) on X*(T5) is given by a morphism
of the form

n(Q) = Gla@). o (o V)

where ¢ : m1(Q) — (Z,+) is a continuous discrete morphism hence, in particular, as finite image. But
as (Z,+) is torsion-free, this forces ¢ = 0.

This reduces the problem to the following. Given a quadratic extension @Q'/Q:

i) Classify all rank-2 torus T" over @ such that Tiy ~ G%%Q, is split. Via the equivalence of categories
X*, the tori in i) corresponds to GLa(Z)-conjugacy classes of order < 2 matrices in GLy(Z). Up
to GL2(Q)-conjugacy there are only three possibilities:

b9 (o) (oY)

corresponding to the invariant factors X — 1|/(X — 1)2, X + 1|(X + 1)? and X? — 1. In GLy(Z),
the third class splits into two GLo(Z)-conjugacy classes: the one of

- (01 + (10
U .-(1 O),andtheoneofU .-(0 _1>.
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Indeed, reducing modulo 2 one sees that these two matrices are not GLg(FF2)-conjugate hence, a
fortiori not GLa(Z)-conjugate. On the other hand, M € GLy(Z) has invariant factor X2 — 1, one
can find a rank-1 submodule L C Z%? such that M acts trivially and Z?/L is torsion free i.e. M
is GL2(Z)-conjugate to a matrix of the form

1 a

0 -1 )"
One can then check that if 2 fa, M is GLa(Z)-conjugate to U~ and if 2|a, M is GLy(Z)-conjugate
to UT. In fine, One has 4-isomorphisms classes of d rank-2 tori which are split over Q'

71(Q)-module structure | Geometric description
Id G2 o
~Id AY x AY
U~ ResQ/|Q(Gm7C}2/)
ut G x AY.

Here A?/ denotes the unique anisotropic rank-1 torus over () which splits over @’, namely the
torus corresponding to the quadratic character m1(Q) - Gal(Q'|Q) ~ {1} = Z*.

ii) Check which of the rank-2 tori in i) can be embedded into GLg . As every rank-2 torus T' C GLg g
contains Hpq, one has Z ~ X*(H,5) C X*(Ta)m(Q). In particular, A?/ X A?/ cannot be
embedded into GLj . Actually, T~ G,, g X A?, cannot either be embedded into GL3 g. Indeed,
otherwise, Hy g ~ Gy, g C T while A?, C SLg g = ker(det : GLy g — G, ). But as all maximal
tori of SLg ¢ are SLa(Q)-conjugate, they all contain —Id hence one woudl have —Id € A? NHy g,
contradicting the fact that the product T' ~ Hj ¢ x A?/ should be direct.

Eventually, the only rank-2 connected reductive subgroups of GLy ¢ are GL2 g and its maximal tori.

4.2.2. Proof of Theorem /.9.
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