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1. Ramification theory

1.1. p-adic fields.

1.2. Number fields.
Cebotarev density theorem

2. ℓ-adic Representations - basic results and axiomatic

k: field, RepQℓ
(π1(k)) category of finite dimensional continuous Qℓ-representations of π1(k), that is

- Objects: pairs (V, ρ), with V a finite-dimensional Qℓ-vector space and ρ : π1(k)→ GL(V ) a continuous
morphism of topological groups, where GL(V ) ≃ GLr(Qℓ) is endowed with the ℓ-adic topology and
π1(k) with the profinite topology.
When no confusion can arise, we simply write V := (V, ρ) and σ · v := ρ(σ)(v).

- Morphisms (V1, ρ1) f→ (V2, ρ2): Morphisms V1
f→ V2 of Qℓ-vector spaces such that

f ◦ ρ1(σ) = ρ2(σ) ◦ f, σ ∈ π1(k).
It immediately follows from the compactness of π1(k) and the continuity of ρ that for every (V, ρ) ∈
RepQℓ

(π1(k)) the subgroup Π := ρ(π1(k)) ⊂ GL(V ) is a compact subgroup of GL(V ). In particular,
the following lemma applies.

Lem:Image Lemma 2.1. Let V be a finite dimensional Qℓ-vector space. Then, for every compact subgroup Π ⊂
GL(V ) and Zℓ-lattice Λ ⊂ V , there exists g ∈ GL(V ) such that gΠg−1 stabilizes Λ.

Proof. As Λ ⊂ V is open, the subgroup S := StabΠ(Λ) ⊂ Π is an open subgroup of Π (if λ1, . . . , λr

is a Zℓ-basis of Λ, S is the inverse image of the open subset Λ⊕r ⊂ V ⊕r of V ⊕r by the continuous
map Π→ V ⊕r, σ → (σλ1, . . . , σλr)). As Π is compact S ⊂ Π finite index (consider the open covering

Date:
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Π =
⊔

σ∈Π/S

σS). So that one gets a Π-stable Zℓ-lattice Λ̃ :=
∑

π∈Π/S πΛ. But, then, for every g ∈ GL(V )

such that gΛ̃ = Λ, (gΠg−1)Λ = gΠΛ̃ ⊂ gΛ̃ = Λ, as claimed. □

The category RepQℓ
(π1(k)) is very nice. It is a neutral Tannakian category over Qℓ. We are not going

to give now the formal definition of a neutral Tannakian category over a field but let us stress that it
means, in particular, that is it a Qℓ-linear abelian category which is endowed with a natural ⊗-structure:

(V1, ρ1)⊗ (V2, ρ2) = (V1 ⊗Qℓ
V2, ρ1 ⊗Qℓ

ρ2)
and which admits
- a trivial object: I = Qℓ endowed with the trivial action of π1(k);
- duals: (V, ρ)∨ = (V ∨, ρ∨), where ρ∨(σ)(f) = f ◦ ρ(σ)−1;
- inner Hom: Hom((V1, ρ1), (V2, ρ2)) = (V1, ρ1)∨ ⊗ (V2, ρ2).
Furthermore, for every (V, ρ) ∈ RepQℓ

(π1(k)), let ⟨V, ρ⟩⊗ ⊂ RepQℓ
(π1(k)) denote the Tannakian subcat-

egory generated by (V, ρ) that is the smallest full subcategory containing I and stable by subquotients,
⊗, (−)∨, ⊗ and let G ⊂ GLV denote the Zariski-closure of the image Π := ρ(π1(k))) ⊂ GL(V ) in GLV .
Then the canonical forgetful functor

ω : ⟨V, ρ⟩⊗ → Vect/Qℓ
, (W,ρW ) 7→W

factors through an equivalence of ⊗-categories

⟨V, ρ⟩⊗ ω //

≃
��

Vect/Qℓ

RepQℓ
(G),

For

99

where RepQℓ
(G) denotes the category of Qℓ-rational algebraic representations of G.

2.1. Localizations. k/Q: number field, v ∈ Σk, recall that for every v̄ ∈ Σk̄,v one has a canonical
isomorphism of profinite groups

π1(k) ⊃ Dv̄(k|k)
αv̄

→̃ π1(k̂v)
so that to every (V, ρ) ∈ RepQℓ

(π1(k)) one can attach a local representation

ρv̄ := ρ ◦ α−1
v̄ : π1(k̂v)→ GL(V )

From the commutative diagram
Dσv̄(k|k) ≃

ασv̄ //

≃σ−σ−1

��

π1(k̂v)

σDv̄(k|k)σ−1

≃
σαv̄

88

one gets ρσv̄ = ρ(σ)ρv̄(−)ρ(σ)−1 viz. the Π-conjugacy class of ρv̄ depends only on v and not on v̄ ∈ Σk̄,v;
we will usually denote by ρv : π1(k̂v)→ GL(V ) an arbitrary representative ρv̄ in this Π-conjugacy class.

Ramification
2.2. Ramification.
- k/Qp p-adic field. One says that (V, ρ) ∈ RepQℓ

(π1(k)) is unramified (resp. semistable) if Ik ⊂ ker(ρ)
viz ρ(Ik) = 1 (resp. ρ(Ik) ⊂ GL(V ) is unipotent). One says that (V, ρ) ∈ RepQℓ

(π1(k)) is poten-
tially unramified (resp. potentially semistable) if there exists a finite field extension K/k such that
(V, ρ|π1(K)) is unramified (resp. semistable).

If (V, ρ) ∈ RepQℓ
(π1(k)) is unramified, one has a canonical factorization

π1(k) ρ //

����

GL(V )

π1(k)/Ik ≃ Gal(kur|k) ≃ π1(k−)
ρ−

44 ,
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which enables to define the characteristic polynomial of the (geometric) of ρ

χρ(T ) := det(T − ρ(Fk−)Id) ∈ Zℓ[T ],

where Fk− = is the inverse of the arithmetic Frobenius ϕk− : x→ x|k−| pro-generating π1(k−).

- k/Q: number field, v ∈ Σk. One says that (V, ρ) ∈ RepQℓ
(π1(k)) is unramified (resp. semistable,

resp. potentially unramified, resp. potentially semistable) at v if one (equivalently every) localization
ρv : π1(k̂v) → GL(V ) of ρ at v is. If (V, ρ) ∈ RepQℓ

(π1(k)) is unramified at v, the characteristic
polynomial

χρ,v(T ) := χρv ∈ Zℓ[T ]

is independent of the choice of the localization ρv : π1(k̂v) → GL(V ) of ρ at v and is called the the
characteristic polynomial of the (geometric) of ρ at v.

We will write Uρ,∤ℓ ⊂ Σk,∤ℓ for the set of all v ∈ Σk,∤ℓ such that (V, ρ) is unramified at v. Given a
subset U ⊂ Σk,∤ℓ, let RepU,ss

Qℓ
(π1(k)) ⊂ RepQℓ

(π1(k)) denote the full subcategory of all (V, ρ) which are
semisimple with U ⊂ Uρ,∤ℓ. Then, if Σk \ U is finite, we have seen as a consequence of the Cebotarev
density theorem that the canonical map

RepU,ss
Qℓ

(π1(k))/≃ ↪→ Zℓ[T ]U , (V, ρ) 7→ (χρ,v(T ))v∈U

is injective.
The reason why we exclude the places dividing ℓ in defining Uρ is that the ramification behaviour at
places not dividing ℓ and at those dividing ℓ differs drastically; in the latter case, the notion of being
unramified or semistable as defined above are not really pertinent or, rather, have to be significantly
generalized to be pertinent. Let us describe more precisely what happens.

2.2.1. Places not dividing ℓ. k/Qp p-adic field, ℓ ̸= p prime. The following is a consequence of the
structure of π1(k).

Lemma 2.2. (Grothendieck) Every object (V, ρ) ∈ RepQℓ
(π1(k)) is potentially semistable.GrSemistable

Proof. From Lemma 2.1, one may assume there is a Zℓ-lattice Λ ⊂ V such that Π := ρ(π1(k)) ⊂ GL(Λ).
Up to replacing k by the finite field extension K/k such that π1(K) = ker(π1(k) ρ→ GL(Λ) ↠ GL(Λ/ℓ)),
one may assume Π ⊂ 1 + ℓEnd(Λ), which is a pro-ℓ group so that ρ : π1(k) → GL(Λ) factors via the
pro-ℓ completion π1(k) ↠ π1(k)(ℓ) ≃ Zℓ(1) ⋊ Zℓ as ρ : Zℓ(1) ⋊ Zℓ → 1 + ℓEnd(Λ) ⊂ GL(Λ). We
are thus to show that, if t ∈ Zℓ(1) is a pro-ℓ generator, ρ(t) ∈ 1 + ℓEnd(Λ) ⊂ GL(Λ) is unipotent
or, equivalently, that u := log(ρ(t)) (which is well defined as Π ⊂ 1 + ℓEnd(Λ)) is nilpotent viz has
characteristic polynomial χu(T ) = T r. For every σ ∈ π1(k) one has

ρ(σ)ρ(t)ρ(σ)−1) = ρ(σtσ−1) = ρ(tχℓ∞ (σ)) = ρ(t)χℓ∞

so ρ(σ)uρ(σ)−1) = χℓ∞(σ)u, which ensures χu(T ) = χχℓ∞ (σ)(T ) ∈ Zℓ[T ]. Writing χu(T ) = T r +∑
0≤i≤r ai(u)T r−i ∈ Zℓ[t], this is equivalent to ai(χℓ∞(σ)u) = χℓ∞(σ)iai(u). But as k/Qp is a finite

field extension, the image of the ℓ-adic cyclotomic character, χℓ∞ : π1(k) → Z×
ℓ (≃ Zℓ × F×

ℓ ) is infinite
(and even open). In particular, one can always find σ ∈ π1(k) such that χℓ∞(σ) is not torsion hence
χu(T ) = T r. □

2.2.2. Places dividing ℓ. k/Qp p-adic field. When ℓ = p, the proof of Lemma 2.2 completely fails and
the situation is more complicated. This is the realm of p-adic Hodge theory. We give below a brief
overview of it, mostly for cultural purpose as we will only resort to the notion of Hodge-Tate represen-
tation in the following.

2.2.2.1. General formalism of B-admissible representations. We will apply the formalism below with
G = π1(k), F = Qp and B one of Fontaine’s period ring.

B: topological, commutative integral ring endowed with a continuous action of a topological group G,
E := BG, F ⊂ E a closed subfield. Let RepB(G) denote the category of B-representation of G, that is
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- Objects: free B-modules of finite rank M endowed with a continuous semilinear action of G, meaning
that g · (bµ+ µ′) = (g · b)(g · µ) + g · µ′, g ∈ G, b ∈ B, µ, µ′ ∈M .

- Morphisms: Morphisms M1
f→M2 of B-modules such that f(g · −) = g · f(−), g ∈ G.

Consider the functor

DB : RepF (G) B⊗F −→ RepB(G) (−)G

→ Mod/E , V 7→ (B ⊗F V )G

and the morphism of B-modules

αV : B ⊗E DB(V )→ B ⊗F V, b⊗ δ 7→ bδ.

One says that B is (F,G)-regular if (i) (E =)BG = Frac(B)G and (ii) for every 0 ̸= b ∈ B such that
Fb ⊂ B is G-stable, one has b ∈ B×.

pHodgeBasic Lemma 2.3. Assume B is (F,G)-regular. Then,
(1) For every V ∈ RepF (G), αV : B⊗E DB(V ) ↪→ B⊗F V ; in particular, dimE(DB(V )) ≤ dimF (V ) <

+∞. Furthermore, the following properties are equivalent.

(i) dimE(DB(V )) = dimF (V );
(ii) αV : B ⊗E DB(V )→̃B ⊗F V is an isomorphism;
(iii) B ⊗F V ≃ B⊕r in RepB(G),

in which case one says that V is a B-admissible representation.
(2) Let RepB

F (G) ⊂ RepF (G) denote the full subcategory of B-admissible representations. Then,

(a) RepB
F (G) ⊂ RepF (G) is a Tannakian subcategory (viz is an abelian subcategory containing I

and stable by subquotient, ⊕, ⊗, (−)∨).

(b) The restricted functor DB : RepB
F (G)→ Vect/E is an exact, faithfull ⊗-functor.

Proof. We prove (1). For the injectivity of αV : B⊗EDB(V )→ B⊗FV , from the canonical commutative
diagram

B ⊗F V �
� // Frac(B)⊗F V

B ⊗E DB(V )

αV

OO

� � // B ⊗E DF rac(B)(V ) �
� // Frac(B)⊗E DF rac(B)(V ),

OO

and as Frac(B) is again (F,G) regular, one may replace B by Frac(B) hence assume B is a field.
We are to prove that if /delta1, . . . , δr ∈ DB(V ) are E-linearly independent then they are B-linearly
independent. We argue by induction on r. If r = 1, there is nothing to prove. If r ≥ 2, les b1, . . . , br ∈ B
not all zero, such that

∑
1≤i≤r biδi = 0. By induction, bi ̸= 0, i = 1, . . . , r hence, as B is a field, up to

replacing bi with bi/b1, i = 1, . . . , r, oma b1 = 1 and

δ1 = −
∑

2≤i≤r

biδi.

Using that g · δi = δi, i = 1, . . . , r, one thus gets

−
∑

2≤i≤r

biδi = δ1 = g · δ1 = −
∑

2≤i≤r

gbig · δi = −
∑

2≤i≤r

g(bi)δi.

hence ∑
2≤i≤r

(gbi − bi)δi = 0,

which, by induction, forces bi = gbi, i = 1, . . . , r. As this holds for every g ∈ G, we thus get bi ∈
BG = E ⊃ F , 2 = 1, . . . , r: a contradiction. For the second part of (1), we no longer assume B is
a field (in that case, the equivalences are obvious!). the implications (ii) ⇒ (iii) ⇒ (i) are easy. We
prove the implication (i) ⇒ (ii). Let v1, . . . , vr ∈ V a F -basis and δ1, . . . , δr ∈ DB(V ) a E-basis. As
1⊗ v1, . . . , 1⊗ vr is a B-basis of B ⊗F V one can write

δj =
∑

1≤i≤r

bi,j1⊗ vi
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for some r × r-matrix Ω = (bi,j)1≤i,j≤r with coefficients in B. The injectivity of αV is equivalent to
b :=detΩ ̸= 0 and the surjectivity to b ∈ B×. Let ψ : G → F× be the character corresponding to the
G-representation

∧r
F V = Fv1 ∧ · · · ∧ vr. As DB(V ) is a free B-module of the same rank as B ⊗F V ,

one has
r∧
B

αV :
r∧
B

DB(V ) ↪→
r∧
B

(B ⊗F V ) ≃ B ⊗F

r∧
F

V = Bv1 ∧ · · · ∧ vr

and δ1 ∧ · · · ∧ δr = bv1 ∧ · · · ∧ vr. Then, for every g ∈ G,

δ1 ∧ · · · ∧ δr = g · δ1 ∧ · · · ∧ gδr = g(b)g · v1 ∧ · · · ∧ vr = gbψ(g)v1 ∧ · · · ∧ gvr

hence gb = ψ(g)−1b, g ∈ G, which, by the defining condition (ii) of (F,G)-regularity ensures b ∈ B×.

Deducing (2) from (1) is formal. For instance, let 0 → V ′ → V → V ′′ → 0 be a short exact sequence
in RepF (G) with V ∈ RepF (G). As DB : RepF (G)→ Vect/E is left exact, one gets an exact sequence
of E-vector spaces

SES1SES1 (1) 0→ DB(V ′)→ DB(V )→ DB(V ′′)

As

dimE(DB(V ′)) + dimE(DB(V ′′)) ≥ dimE(DB(V ))
= dimF (V )
= dimF (V ′) + dimF (V ′′) ≥ dimE(DB(V ′)) + dimE(DB(V ′′)),

one gets dimE(DB(V )) = dimE(DB(V ′)) + dimE(DB(V ′′)) hence (1) is a short exact sequence and,
the inequalities dimE(DB(V ′)) ≤ dimFV

′, dimE(DB(V ′′)) ≤ dimFV
′′ are necessarily equalities that is

V ′, V ′′ ∈ RepB
F (G). This shows RepB

F (G) ⊂ RepF (G) is stable under subobject and DB : RepB
F (G) →

Vect/E is an exact. For the remaining part of the assertion see e.g.
BrinonConrad
[BrCo09, Thm. 5.2.1]. □

Fontaine
2.2.2.2. Back to p-adic representations. The main output of p-adic Hodge theory in the construction of
various period rings Bτ which captures the significant behaviour of p-adic represenations arising from
geometry. These period rings Bτ are topological, commutative integral rings endowed with a continuous
action of G = π1(k) such that Eτ := BG

τ ⊃ F := Qp; they are (Qp, π1(k))-regular. The following table
summarizes the most important of these period rings and related structures.

Related cohomology τ Eτ Related categorical structure Cτ

theory

Hodge-Tate HT k Grk: Z-graded finite dim. k-vector spaces
V = ⊕n∈ZV

n

de Rham dR k Filk: Z-filtered finite dim. k-vector spaces
V = ∪nF

nV · · · ⊃ Fn+1V ⊃ FnV ⊃ · · · ∩n F
nV = 0

Crystalline cris k0 FilMφ
k : Filtered φ-module over k i.e. (V0, φ, F

•V )
V0: finite dim. k0-vector spaces, φ : V0→̃V0 σ-semilinear automorphism
(V, F •V ) ∈Filk.

Log-crystalline st k0 FilM(φ,N)
k : Filtered φ-module over k i.e. (V0, φ,N, F

•V )
(V0, φ, F

•V ) ∈FilMφ
k

N : V0 → V0 k0-linear nilpotent endomorphism such thta Nφ = pφN .
Here Qp ⊂ k0 := k ∩ Qur

p ⊂ k is the maximal unramified subextension of Qp contained in k and
σ : k0 → k0 its (arithmetic) Frobenius.

For simplicity, write Repτ
Qp

(π1(k)) := RepBτ
Qp

(π1(k)), Dτ := DBτ and call Bτ -admissible objects just τ
object. In each case one has a factorization

RepBτ
Qp

(π1(k)) Dτ //

��

Vect/Eτ

Cτ

For

55
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As already observed, Dτ : RepBτ
Qp

(π1(k)) → Cτ is always exact and faithful. For τ = HT, dR, Dτ :
RepBτ

Qp
(π1(k))→ Cτ is not full but for τ = cris, st, Dτ : RepBτ

Qp
(π1(k))→ Cτ is also full - hence induces

an equivalence of categories onto their essential image. We even have explicit quasi-inverses:

For V ∈ Repcris
Qp

(π1(k)) and D := Dcris(V ),
Vcris(D) = F 0(D ⊗k0 Bcris)φ=Id;

For V ∈ Repst
Qp

(π1(k)) and D := Dst(V ),
Vst(D) = F 0(D ⊗k0 Bst)φ=Id,N=0

Eventually, define the full subcategories Reppcris
Qp

(π1(k)) ⊂ RepQp
(π1(k)) (resp. Reppst

Qp
(π1(k)) ⊂ RepQp

(π1(k)))
of potentially cristalline representations (resp. semistable) as the one of those V ∈ RepQp

(π1(k)) which
become cristalline (resp. semistable) after restricting to π1(K) for a finite field extension K/k. One
has the following inclusions

Reppcris
Qp

(π1(k))
� u

((
Repcris

Qp
(π1(k))
) 	

66

� u

((

Reppst
Qp

(π1(k)) RepdR
Qp

(π1(k)) �
� // RepHT

Qp
(π1(k))

Repst
Qp

(π1(k))
) 	

66

They are not difficult to check once one knows the construction of the rings Bτ , except for the inclusion
RepdR

Qp
(π1(k)) ⊂ Reppst

Qp
(π1(k)), formerly called the p-adic monodromy conjecture and now a (difficult)

theorem [?].

In the remaining part of these lectures, the only notion we will really handle is the one of Hodge-Tate
representations, for which the corresponding period ring is easy to describe, namely:

BHT = ⊕i∈ZCk(i),

where Ck is the completion of k for the unique valuation vk̄ : k̄× → Q extending the valuation
vk : k× → Z. As π1(k) acts continuously on k for the topology defined by v vk̄, its action ex-
tends by continuity on Ck. Note that, as a field Cp := CQp = Ck; here the subscript −k is to
record the action of π1(k) (which is just the restriction of the one of π1(Qp) to π1(k)). If (−)i de-
notes the degree ith component of an element in BHT, multiplicative structure on BHT is given by
(xy)i =

∑
j xjyi−j . By the universal property of Ck[T ], there is a unique morphism of Ck-algebras

Ck[T ] → BHT
, T 7→ t, where ti = δ1,i1, and as t ∈ B×

HT with inverse (t−1)i = δ−1,i, Ck[T ] → BHT

localizes as Ck[T, T−1]→ BHT
, which is clearly an isomorphism of Z-graded Ck-algebras; in particular

C×
k × Z ≃ Ck[T, T−1]×→̃B×

HT
and Ck(T ) = Frac(Ck[T, T−1])→̃Frac(BHT

). Letting π1(k) acts on T

via χℓ : π1(k)→ Z×
ℓ , Ck[T, T−1]→̃BHT

becomes π1(k)-equivariant.

The following summarizes the main properties of Ck.

Theorem 2.4. (Tate
Tate
[Ta67, §3]) On aTate

(1) Ck is an algebraically closed field and for every closed subgroup Π ⊂ π1(k), Ck
Π ⊂ Ck identifies

with the completion of kΠ for vk̄Π = vk̄|k̄Π; in particular, Ck
π1(k) = k ⊂ Ck

(2) Ck(i)π1(k) = 0 if i ̸= 0;

(3) H1(k,Ck) ≃ k[log(χp)] and H1(k,Ck(i)) = 0 if i ̸= 0.

Corollary 2.5. The ring BHT is (Qp, π1(k))-regular.

Proof. Condition (i) immediately follows from Theorem 2.4, considering the embeddings

Ck[T, T−1] ⊂ Frac(Ck[T, T 1]) = Ck(T ) ⊂ Ck((T ))
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and taking π1(k)-invariants. For condition (ii), let x =
∑

i xit
i ∈ BHT such that Qpx ⊂ BHT is π1(k)-

stable that is there exists a continuous character ψ : π1(k)→ Q×
p such that∑

i

χi
ℓ(σ)σ(xi)ti = σx = ψ(σ)x =

∑
i

ψ(σ)xit
i, σ ∈ π1(k).

Assume there exists i ̸= j such that xi, xj ̸= 0 so that

ψ(σ) = χi
ℓ(σ)σ(xi)
xi

= χj
ℓ(σ)σ(xj)
xj

, σ ∈ π1(k)

hence
= χi−j

ℓ (σ)σ(xi

xj
) = xi

xj
, σ ∈ π1(k)

that is 0 ̸= xi
xj
∈ Ck(i− j)π1(k), which contradicts Theorem 2.4 (2). □

Ex. Qp(i) = (Qp, χ
i
p) ∈ RepHT

Qp
(π1(k)), i ∈ Z.

The condition of being crystalline is the good analogue when ℓ = p of the condition of being unramified
when ℓ ̸= p; we will see later why but one reason is that to every (V, ρ) ∈ Repcris

Qp
(π1(k)) one can attach

a characteristic polynomial of crystalline Frobenius as follows namely, writing Dcris(V ) := (D0, φ0, F
•),

the characteristic polynomial χρ(T ) ∈ k0[T ] of the k0-linear automorphism φm : D0→̃D0 (sometimes
called the linearized crystalline Frobenius), where , m := [k0 : Qp].

So, if k/Q is a number field and (V, ρ) ∈ RepQℓ
(π1(k)), write Uρ,ℓ ⊂ Σk,ℓ for the set of all v ∈ Σk,ℓ such

that (V, ρv) is crystalline at v. Write Uρ = Uρ,∤ℓ ⊔ Uρ,ℓ.

2.3. The axiomatic. We now review natural assumptions one usually imposes on ℓ-adic representions
and explain why they are natural.

2.3.1. The axiomatic. Let k/Q a number field.

2.3.1.1. Ramification. Let (V, ρ) ∈ RepQℓ
(π1(k)). For v ∈ Uρ, let χρ,v ∈ Qℓ[T ] denote the corresponding

characteristic polynomial of Frobenius as defined at the beginning of 2.2 if v ∤ ℓ and let χρ,v ∈ (k̂v)0[T ]
the characteristic polynomial of the crystalline Frobenius as defined at the end of 2.2.2.2 if v | ℓ.
Consider the following conditions on (V, ρ).
(AEU) Almost Everywhere Unramified: The subset Uρ ⊂ Σk is cofinite.

Let Q ⊂ Q ⊂ Q be a subextension.
(R/Q) Q-rational: There exists a cofinite (in Σk) subset U ⊂ Uρ ⊂ Σk such that χρ,v ∈ Q[T ], v ∈ U .

Let q > 0, w be real numbers. One says that α ∈ Q is q-pure of weight w if for every embedding
ι : Q ↪→ C, |ι(α)| = q

w
2 . Let W ⊂ R be a subset.

(P/W ) Pure of weights in W : There exists a cofinite (in Σk) subset U ⊂ Uρ ⊂ Σk such that χρ,v ∈ Q[T ]
and its roots are |k−

v |-pure of weight in W , v ∈ U .
When W = {w} is a singleton, we will simply write (P/w):=(P /W ) and will say that (V, ρ) is pure of
weight w. If we do not want to specify the weight w, we will write (P/∗)

If τ = HT, dR, st, cris, pst, pcris.

(τ) τ : (V, ρv) ∈ RepQp
(π1(k̂v)), v ∈ Σk,ℓ.

2.3.1.2. Compatibility. Let Q ⊂ Q ⊂ Q be a subextension.

Let ℓ, ℓ′ be primes. One says that (Vℓ, ρℓ) ∈ RepQℓ
(π1(k) and (Vℓ′ , ρℓ′) ∈ RepQℓ′ (π1(k) are étale Q-

compatible
(Vℓ, ρℓ) ∼Q,et (Vℓ′ , ρℓ′)
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if (Vℓ, ρℓ), (Vℓ′ , ρℓ′) are both Q-rational and there exists a cofinite (in Σk) subset U ⊂ Uρℓ
∩ Uρℓ′ ⊂ Σk

such that, for every v ∈ U [ 1
ℓℓ′ ], χρℓ,v, χρ′

ℓ
,v lie in Q[T ] and χρℓ,v = χρ′

ℓ
,v. One says that (Vℓ, ρℓ), (Vℓ′ , ρℓ′)

are Q-compatible
(Vℓ, ρℓ) ∼Q (Vℓ′ , ρℓ′)

if (Vℓ, ρℓ), (Vℓ′ , ρℓ′) are both Q-rational and there exists a cofinite (in Σk) subset U ⊂ Uρℓ
∩ Uρℓ′ ⊂ Σk

such that, for every v ∈ U , χρℓ,v, χρ′
ℓ
,v lie in Q[T ] and χρℓ,v = χρ′

ℓ
,v. If we want to keep track of the

cofinite subset U , we will write
(Vℓ, ρℓ) ∼Q,et,U (Vℓ′ , ρℓ′), (Vℓ, ρℓ) ∼Q,U (Vℓ′ , ρℓ′).

Note that (Vℓ, ρℓ) ∼Q,et,U (Vℓ′ , ρℓ′) is equivalent to (Vℓ, ρℓ) ∼Q,U [ 1
ℓℓ′ ] (Vℓ′ , ρℓ′).

Variants: One may ask (Vℓ, ρℓ), (Vℓ′ , ρℓ′) to be strictly étale Q-compatible (resp. Q-compatible) by
requiring that U = Uρℓ

∩ Uρℓ′ .

Let L be a set (possibly infinite) of primes. For each ℓ ∈ L, let (Vℓ, ρℓ) ∈ RepQℓ
(π1(k). Consider the

following conditions on the family (V , ρ) = (Vℓ, ρℓ), ℓ ∈ L

(RC/Q,et) Étale Q-compatible: There exists a cofinite (in Σk) subset U ⊂ ∩ℓUρℓ
⊂ Σk such that

(Vℓ, ρℓ) ∼Q,U [ 1
ℓℓ′ ] (Vℓ′ , ρℓ′), ℓ, ℓ′ ∈ L.

(RC/Q) Q-compatible: There exists a cofinite (in Σk) subset U ⊂ ∩ℓUρℓ
⊂ Σk such that

(Vℓ, ρℓ) ∼Q,U (Vℓ′ , ρℓ′), ℓ, ℓ′ ∈ L.
Variants: One may ask (V , ρ) to be strictly étale Q-compatible (resp. Q-compatible) by requiring
that U = ∩ℓUρℓ

and (V , ρ) to be weakly étale Q-compatible (resp. Q-compatible) by requiring that

(Vℓ, ρℓ) ∼Q,et (Vℓ′ , ρℓ′), ℓ, ℓ′ ∈ L (respectively (Vℓ, ρℓ) ∼Q (Vℓ′ , ρℓ′), ℓ, ℓ′ ∈ L).
2.3.1.3. Semisimplicity. Recall that (V, ρ) ∈ RepQℓ

(π1(k)) is said to be simple if it is non-zero and
does not admit any other non-zero subrepresentation than itself, and to be semisimple if it satisfies the
following equivalent conditions:
(SS) (SS-1) Every extension 0→ V ′ → V → V ′′ → 0 in RepQℓ

(π1(k)) splits in RepQℓ
(π1(k));

(SS-2) V =
∑

W ⊂V simple W ;

(SS-3) There exists a (automatically unique up to isomorphism) decomposition

V ≃ ⊕1≤i≤rV
⊕ni

i

in RepQℓ
(π1(k)) with V1, . . . , Vr simple, pairwise non-isomorphic in RepQℓ

(π1(k)).
Consider also the condition:
(FSS) Frobenius-semisimple: There exists a cofinite (in Σk) subset U ⊂ Uρ ⊂ Σk such that ρv(Frk−

v
) ∈

V is semisimple, v ∈ U [1
ℓ ].

2.3.2. Stability. One may ask whether the various axioms we imposed are robust enough that is pre-
served by natural operations. Here is a summary. Les K/k be a finite field extension.

Subquotients Extensions ⊗ and (−)∨ (V, ρ)⇒ (V, ρ|π1(K)) (V, ρ)⇐ (V, ρ|π1(K))

(AEU) yes ? yes yes yes
(HT) yes no yes yes yes
(dR) yes no yes yes yes
(st) yes no yes no no
(crys) yes no yes no no
(R/Q) no yes yes yes no
(P/∗) yes yes yes yes yes
(RC/Q,et) no yes yes yes no
(SS) yes no yes yes yes
(FSS) yes no yes yes yes
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Let us explain the bold assertions.

(1) To show that none of (HT), (dR), (st), (crys) is stable by extension, it is enough to exhibit and
extension of Qp by Qp which is not Hodge-Tate. Consider the 2-dimensional Qℓ-vector space
V ≃ Qℓe1 ⊕ Qℓe2 equipped with σ · e1 = e1, σ · e2 = log(χℓ(σ))e1 + e2, namely the matrix of ρ(σ)
in (e1, e2) is given by (

1 log(χℓ(σ))
0 1

)
, σ ∈ π1(k).

Then V sits into a short exact sequence

0→ Qpe1 → V → Qpē2 → 1.

Fix v ∈ Σk,ℓ so that the above restricts to an extension of π1(k̂v)-representation. Applying DHT(−),
one gets

0→ k̂ve1 → DHT(V |π1(k̂v))→ k̂v ē2,

so that dimk̂v (DHT(V |π1(k̂v))) = 2 if and only if ē2 lifts to b⊗ e1 + 1⊗ e2 ∈ BHT ⊗Qℓ
V with

σ · (b⊗ e1 + 1⊗ e2) = (σ(b) + log(χℓ(σ)))⊗ e1 + 1⊗ e2 = b⊗ e1 + 1⊗ e2, σ ∈ π1(k̂v)).

Namely, log(χℓ(σ)) = σ(b) − b, σ ∈ π1(k̂v)), that is [log(χℓ)] = 0 in H1(k̂v,Ck)(= H1(k̂v, BHT)),
contradicting Theorem 2.4 (3).

(2) The equivalence (V, ρ) satisfies (HT) ⇔ (V, ρ|π1(K)) satisfies (HT) is a consequence of the following

Lemma 2.6. k/Qp p-adic field. Let K/k a finite field extension. For every (V, ρ) ∈ RepQp
(π1(k))

the canonical K-linear morphism

αK/k : DHT(V )⊗k K→̃DHT(V |π1(K))

is an isomorphism.

Proof. For a finite field extension K/k, write DHT,K := DHT(V |π1(K)). If the assertion holds for
finite Galois extensions K/k then it holds for arbitrary finite field extensions K/k. Indeed, if K ′/k
denotes the Galois closure of K/k, this follows from the canonical commutative diagram

(DHT,k ⊗k K)⊗K K ′αK/k⊗Id
//

≃
��

DHT,K ⊗K K ′

αK′/K

��
DHT,k ⊗k K

′
αK′/k // DHT,K′ .

and the fact that αK/k : DHT(V ) ⊗k K → DHT,K is an isomorphism if and only if αK/k ⊗ Id :
(DHT(V ) ⊗k K) ⊗K K ′ → DHT,K ⊗K K ′ is. Assume now K/k is Galois. Then Gal(K|k) acts
semilinearly on DHT,K = (BHT ⊗Qp V )π1(K) with

DHT,K
Gal(K|k) = DHT,k.

This reduces the proof to the following classical claim.

Claim. (Galois descent for vector spaces) Let K/k be a finite field extension and V a finite di-
mensional K-vector space endowed with a semilinear action of G := Gal(K|k). Then the canonical
morphism α : V G ⊗k K→̃V is an isomorphism.

Proof of the claim. For the injectivity, we are to show that if v1, . . . , vr ∈ V G are k-linearly
independent then v1, . . . , vr ∈ V are K-linearly independent. We argue by induction on r. If r = 1,
there is nothing to prove. Assume r ≥ 2 and let v1, . . . , vr ∈ V G k-linearly independent. If there
exists x1, . . . , xr ∈ K not all zero such that

∑
1≤i≤r xivi = 0. By induction, xi ̸= 0, i = 1, . . . , r

and, up to replacing xi with xi/x1, i = 1, . . . , r, oma x1 = 1. Then, for every σ ∈ G,

−
∑

2≤i≤r

xivi = v1 = σ · v1 = −
∑

2≤i≤r

σ(xi)σ · vi = −
∑

2≤i≤r

σ(xi)vi,
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whence ∑
2≤i≤r

(σ(xi)− xi)vi = 0.

By induction, σ(xi) = xi, i = 2, . . . , r. As this holds for every σ ∈ G, xi ∈ KG = k: a contradiction.
For the surjectivity, as the morphism α : V G ⊗k K → V is G-equivariant, im(α) ⊂ V is a G-stable
K-vector subspace so that V/im(α) is also endowed with a G-semilinear action of G such that
the canonical projection pα : V ↠ V/im(α) is G-equivariant. Furthermore, for every v ∈ V ,
TrG(v) :=

∑
σ∈G σv ∈ V G ⊂ im(α) hence TrG(pα(v)) = pα(TrG(v)) = 0. This forces V/im(α) = 0

as, if there exists v ∈ V such that 0 ̸= pα(v) =: v then, there exists x ∈ K such that trG(xv) ̸= 0
as, otherwise, for every x ∈ K, 0 = TrG(xv) =

∑
σ∈G σ(x)σ · v would imply

∑
σ∈G σ(−)σ · v = 0

but then, by Dedekind Lemma1, one would have f(σ · v) = 0, f ∈ (V/im(α))∨ (hence σ · v = 0),
σ ∈ G. □

(3) The fact that a tensor product of semisimple representations is again semisimple is non-trivial and
uses that Qℓ has characteristic 0. The quickest way to see it is by invoking that an algebraic group G
over a field Q of characteristic 0 is reductive (that is has trivial unipotent radical Ru(G) = 1) if and
only if it is linearly reductive (that is all its Q-rational algebraic representations are semisimple).
Indeed, let (Vi, ρi) ∈ RepQℓ

(π1(k)), i = 1, 2 and set (V, ρ) := (V1, ρ1)⊕ (V2, ρ2); let G ⊂ GLV denote
the Zariski-closure of Π := ρ(π1(k)) ⊂ GL(V ). If (Vi, ρi) ∈ Repss

Qℓ
(π1(k)), i = 1, 2 then, clearly,

(V, ρ) ∈ Repss
Qℓ

(π1(k)) hence V is a faithful, semisimple representation of G. This imposes Ru(G) =
1 as, otherwise, Ru(G) ⊂ GLV would be a non-trivial unipotent subgroup hence 0 ⊊ V Ru(G) ⊊ G

while, as Ru(G) is normal in G, V Ru(G) ⊂ V is G-stable. As V is a semisimple G-representation, one
would thus get a G-equivariant decomposition V = V Ru(G)⊕W . But, by construction, WRu(G) = 0,
which contradicts the fact that W is a faithful representation of Ru(G). So G is reductive hence
linearly reductive; in particular V1 ⊗ V2 is a semisimple Qℓ-algebraic representation of G. The
assertion thus follows from the fact that ρ1 ⊗ ρ2 : π1(k)→ GL(V1 ⊗ V2) factors as

π1(k) ρ→ G→ GL(V1 ⊗ V2)

and from the Zariski-density of Π in G.
(4) The equivalence (V, ρ) satisfies (SS) ⇔ (V, ρ|π1(K)) satisfies (SS) is purely group-theoretical. The

implication ⇒ uses that Qℓ has characteristic 0. More precisely, let Q be a field, V a finite-
dimensional Q-vector space endowed with the action of a group G.
(a) Let U ⊂ G be a normal subgroup. If V is semisimple as a G-representation then V is also

semisimple as a U -representation: Decomposing V as a direct sum of simple G-representations,
oma V is a simple G-representation. Let W ⊂ V be a simple U -subrepresentation. Then as V
is a simple G-representation and

∑
g∈G gW ⊂ V is G-stable (and non-zero),

∑
g∈G gW = V .

It remains to observe that gW ⊂ V is again a simple U -subrepresentation: U acts on gW via
u · gw = g(g−1ugw) and g : W→̃gW is a U -equivariant isomorphism.

(b) Let U ⊂ G be a finite index subgroup. Assume Q has characteristic ∤ [G : U ]. If V is semisimple
as a U -representation then V is also semisimple as a G-representation: Let 0 ̸= W ⊂ V be a
G-subrepresentation - hence a U -subrepresentation. Write V = W ⊕W ′ as a U -representation.
Let pW,W ′ : V → W denote the corresponding projection, which, by construction, is a U -
equivariant morphism and observe that the averaged morphism

p : V →W, v 7→ 1
[G : U ]

∑
g∈G/U

gpW,W ′g−1(v)

is G-equivariant with im(p) = W and p2 = p. So that one gets V = W ⊕ ker(p) as G-
representations.

Semisimplification: One has a canonical semisimplification functor

(−)ss : RepQℓ
(π1(k))→ Repss

Qℓ
(π1(k))

1Recall this asserts that if M is a Z-module (or even just a commutative monoid) and K a field then the characters
M → K× are K-linearly independent (regarded as elements of KM ).
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constructed as follows. For V ∈ RepQℓ
(π1(k)), let S0V ⊂ V denote the socle of V i.e. the sum

of all simple subobjects V ′ ⊂ V in RepQℓ
(π1(k)). This is the largest semisimple subobject of V in

RepQℓ
(π1(k)); if V is non-zero, S0V is also non-zero and S0V = V if and only if V is semisimple.

One then defines inductively V ⊃ Si+1V ⊃ SiV as the inverse image of S0(V/SiV ) ⊂ V/SiV by the
canonical projection V ↠ V/SiV . The processus ends and one sets

V ss =
⊕
i≥0

Si+1V/SiV.

By construction V ss ∈ Repss
Qℓ

(π1(k)) and is called the π1(k)-semisimplification of V . The functoriality
immediately follows from the construction since for every morphism f : V1 → V2 in RepQℓ

(π1(k))
one has f(S0(V )) ⊂ S0(V2) hence, by induction f(SiV1) ⊂ SiV2, which, passing to quotients yields
morphisms fi : Si+1V1/SiV1 → Si+1V2/SiV2 such that the square

Si+1V1
f |Si+1V1 //

��

Si+1V2

��
Si+1V1/SiV1

fi

// Si+1V2/SiV2.

One sets f ss := ⊕ifi : V ss
1 → V ss

2 and easily checks that Idss = Id, (gf)ss = gssf ss.

In terms of matrices, semisimplifying amounts to "forgetting" what is above the block diagonal. For
(V, ρ) ∈ Repss

Qℓ
(π1(k)) wiyth π1(k)-semisimplication (V ss, ρss) ∈ Repss

Qℓ
(π1(k)), setting Π := ρ(π1(k)),

Πss := ρss(π1(k))) one has a canonical short exact sequence of ℓ-adic Lie groups

1→ Ru(Π)→ Π→ Πss → 1,

where Ru(Π) ⊂ GL(V ) is a unipotent subgroup.
- If (P) is a property of V ∈ RepQℓ

(π1(k)) which is stable subquotients then (P) for V implies (P) for
V ss.

- Conversely, if (P) is a property of V ∈ RepQℓ
(π1(k)) which is stable extensions then (P) for V ss

implies (P) for V .

2.3.3. Where does the axiomatic come from? k/Q number field. As already mentioned, the most impor-
tant - and basically the only non-trivial - natural examples of ℓ-adic representations of π1(k) arise from
the ℓ-adic cohomology of varieties over k. In the following, we will say that (V, ρ) ∈ RepQℓ

(π1(k)) is
geometric if it appears as a subquotient of a representation of the form Hi(Yk̄,Qℓ(j)) for Y/k a smooth,
proper variety over k. It follows from the general formalism of ℓ-adic cohomology (Weil cohomology)
that the full subcategory Repgeo

Qℓ
(π1(k)) ⊂ RepQℓ

(π1(k)) of geometric representations is a Tannakian
subcategory.

If Y/k is smooth proper variety by spreading out, there exists a non-empty open subscheme U ⊂
spec(Ok) and a smooth proper morphism Y → U such that Y → spec(k) fits into a Cartesian square

Y //

□
��

Y

��
spec(k) η // U

For v ∈ |U |, one gets

BCBC (2) Y //

□
��

Y

��
□

Yv

��
□

oo Y−
v

��

oo

spec(k) η // U spec(Ôv
k)oo spec(k−

v )oo

v

ii
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2.3.3.1. (AEU) and smooth proper base change. The condition (AEU) for geometric representations is
a special case of the following (deep!) theorem.

Theorem 2.3.4. (Smooth proper base change) Let S be an integral scheme and Y → S a smoothSmoothProperBC
proper morphism. Then for every prime ℓ invertible on S and integers n ≥ 1, i ≥ 0, the étale sheaf
Rif∗Z/ℓn is locally constant constructible (viz. representable by an étale cover of S) and, for every
geometric point s̄ on S, one as a canonical isomorphism

(Rif∗Z/ℓn)s̄ ≃ Hi(Ys̄,Z/ℓn).

In terms of representations, Theorem 2.3.4 implies in particular that for every geometric points s̄1,
s̄2 over points s1, s2 ∈ S, one has canonical (after choosing an isomorphism of fiber fuctors s̄1→̃s̄2)
isomorphisms

Hi(Ys̄1 ,Qℓ)→̃Hi(Ys̄2 ,Qℓ),

equivariant with respect to the canonical morphisms of profinite groups

π1(s1, s̄1)→ π1(S, s̄1)→̃π1(S, s̄2)← π1(s2, s̄2)

In our setting, we take S = U , s = η, ηv or v and get:

Hi(Yη̄,Qℓ)
≃ Hi(Yη̄v ,Qℓ)

≃ Hi(Yv̄,Qℓ)

π1(U)

99

π1(Ôv
k)oo

99

π1(v)≃oo

99

π1(η) = π1(k)

OOOO

Gal(k̂ur
v |k̂v)

≃

OO

π1(k−
v )≃oo

≃

OO

Dv̄(k|k)
� ?

OO

π1(ηv) = π1(k̂v)

OOOO

≃oo

Remark (Frobenii) Let κ be a finite field of characteristic p > 0 and Y/κ a variety. The arithmetic
Frobenius φκ : κ̄→̃κ̄, x 7→ x|κ| induces a automorphism of scheme Φκ := φ#

κ : spec(κ)→̃spec(κ). On
Y := Y ×κ κ̄ one has 3 Frobenii endomorphisms:

Name Notation Definition Ex: X = A1
κ = spec(κ[T ])

Arithmetic Frobenius ΦY Id× Φκ

|κ|-Absolute Frobenius FrY
Relative Frobenius FrY |Y FrY × Id

Recall that for a Fp-scheme Y , the q = pr-absolute Frobenius FX : X → X is the identity on Xzar and
a 7→ aq on OX . The various Frobenii at stake fit into the following Cartesian diagram

Y
F rȲ |Y //

F r
Y

((

**

Y
ΦȲ

≃
//

��
□

Y

��
spec(κ̄) ≃

Φκ // spec(κ̄)

One checks that the action Fr∗
Y

: Hi(Yκ̄,Qℓ)→ Hi(Yκ̄,Qℓ) of FrY on Hi(Yκ̄,Qℓ) induced by functorial-
ity is the identity so that FrY |Y acts as Φ−1

Y on Hi(Yκ̄,Qℓ). Due to its geometric nature, the Frobenius
that most naturally appears when studying Hi(Yκ̄,Qℓ) is FrY |Y ; this is why one often use the geometric
Frobenius when the arithmetic one e.g. when defining characteristic polynomials of Frobenii etc.
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Let Σk(Y ) ⊂ Σk denote the set of places of good reduction for Y/k that is the set of all v ∈ Σk such
that Yk̂v/k̂

v fits into a Cartesian square

Y

□
��

Yk̂v

��

//

□

oo Y[v]

��
spec(k) spec(k̂v) //oo spec(Ôv

k),

with Y[v] → spec(Ôv
k) smooth, proper. The output of Theorem 2.3.4 is that for Vℓ = Hi(Yk̄,Qℓ) ∈

RepQℓ
(π1(k)), one has

Uρ,∤ℓ ⊃ Σk(Y )[1
ℓ

] ⊃ U [1
ℓ

].

One may ask whether Uρ,∤ℓ = Σk(Y )[1
ℓ ]. This does not hold in general, even taking into account all

cohomological degrees namely considering V = ⊕0≤i≤2/rm dim(Y )H
i(Yk̄,Qℓ). One heuristic reason is

that in general Y/k does not have a privilegiate model over Spec(Ok). There is one exception however
- the one of abelian varieties, where such a model exists and is called the Néron model.

Reduction of abelian varieties More precisely, let Y/k be a smooth, separated scheme of finite type
over k, a Néron model for for Y over S := spec(Ok) is a smooth, separated scheme Y → S of finite type
with generic fiber Y and which is minimal in the following sense: for every smooth, separated scheme
Y ′ → S of finite type fini with generic fiber Y and for every k-morphism uk : Y → Y , there exists a
unique morphism of S-schemes u : Y ′ → Y inducing uk on the generic fibers. If a Néron model exists, it
is automatically unique and if Y/k is a group scheme, its Néron model is automatically a group scheme
over S.

Theorem 2.7. (
BLR
[BLR90]) Every abelian variety Y/k admits a Néron model Y → spec(Ok).

Furthermore, for every v ∈ Σk, the special fiber (Y◦)v of the neutral component Y◦ of Y at v ∈ Σk fits
into a diagram of extensions

1

��
Uv

��
1 // □v

//

��

(Y◦)v
// Av

// 1

Tv

��
1

,

where Av, Tv, Uv are respectively an abelian variety, a torus and a unipotent group scheme over the
residue field k−

v . One says that Y has good reduction (resp. semistable reduction , bad reduction) at
v ∈ Σk if □v = 1 (resp. Uv = 1, otherwise) and that Y has potentially good reduction (resp. potentially
semistable reduction) at v ∈ Σk if there exists a finite Galois extension K/k such that YK has good
reduction (resp. semistable reduction) at every w ∈ ΣK,v.

With these definitions,

STG Theorem 2.8.
(1) (

SerreTate
[ST68]) For every v ∈ Σk,p, the following condition are equivalent

(i) there exists a prime ℓ ̸= p such that H1(Yk̄,Qℓ) is unramified at v;
(i’) for every prime ℓ ̸= p, H1(Yk̄,Qℓ) is unramified at v;
(ii) Y/k has good reduction at v.
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(2) (
SGA7
[SGA7]) For every v ∈ Σk,p, the following condition are equivalent

(i) there exists a prime ℓ ̸= p such that H1(Yk̄,Qℓ) is semistable at v;
(i’) for every prime ℓ ̸= p, H1(Yk̄,Qℓ) is semistable at v;
(ii) Y/k has semistable reduction at v.

Combining Theorem 2.8 (2) and Lemma 2.2, one obtains the following striking geometric corollary.

Corollary 2.9. An abelian variety over a number field has everywhere good reduction.

2.3.4.1. Admissiblity and p-adic comparison theorems. k/Qp p-adic field. Consider the notation in the
following Cartesian diagram

Y

□
��

// Y

��
□

Yv

��

oo

spec(k) // spec(O) spec(k−)oo

To understand V := Hi(Yk̄,Qp) ∈ RepQp
(π1(k)), the basic strategy is to try and compare p-adic étale

cohomology to one of four other p-adic cohomology theories Hi
τ (Y ), τ = HT, dR, crys , st. More

precisely,
(1) Hodge-Tate cohomology:

Hi
HT(Y ) = ⊕0≤j≤iHi−j(Y,Ωj

Y |k)

with Z-graduation Hi
HT(Y )j = Hi−j(Y,Ωj

Y |k), j ∈ Z.

(2) de Rham cohomology: hypercohomology of the de Rham complex
Hi

dR(Y ) := Hi(Y,Ω•
Y |k)

with Z-filtration F jHi
dR(Y ) = im(Hi(Y,Ω•≥j

Y |k )→ Hi(Y,Ω•
Y |k)), j ∈ Z "Hodge filtration".

(3) if Y/k has good reduction with smooth proper model Y/O, crystalline cohomology: crystalline
cohomology of the special fiber

Hi
cris(Y ) := Hi

cris(Yv/Ok0)⊗Ok0
k0,

where Ok0 = W (k−) denotes the Witt vectors of k− or, equivalently, the ring of integers of the
maximal unramfied extension Qp ⊂ k0 = k∩Qur

p ⊂ k of Qp in k. Hi
cris(Y ) is a finite k0-vector space

equipped with a σ-semilinear crystalline Frobenius arising by functoriality from the Frobenius FrYv .
The fact that Hi

cris(Y )⊗k0k carries a Hodge filtration is a consequence of Berthelot-Ogus comparison
isomorphism with de Rham cohomology of the generic fiber

Hi
cris(Y )⊗k0 k→̃Hi

dR(Y ).
(4) if Y/k has semistable reduction with semistable proper model Y/O, semistable cohomology: log-

crystalline cohomology of the special fiber
Hi

st(Y ) := Hi
logcris(Yv/Ok0)⊗Ok0

k0,

where Ok0 = W (k−) denotes the Witt vectors of k− or, equivalently, the ring of integers of the
maximal unramfied extension Qp ⊂ k0 = k∩Qur

p ⊂ k of Qp in k. Hi
cris(Y ) is a finite k0-vector space

equipped with a σ-semilinear crystalline Frobenius φcris arising by functoriality from the Frobenius
FrYv and a k0-linear nilpotent operator N such that Nφcris = pφcrisN . The fact that Hi

st(Y )⊗k0 k
carries a Hodge filtration is a consequence of Hyodo-Kato comparison isomorphism with de Rham
cohomology of the generic fiber

Hi
st(Y )⊗k0 k→̃Hi

dR(Y ).
Here the condition that Y/k has semistable reduction means that the singularities of the special
fiber are not too bad. More precisely, if I(Yv) denotes the set of irreducible components of Yv and
for I ⊂ I(Yv) one sets YI

v := ∩C∈IC (scheme-theoretic intersection) then one requests that the
elements of I(Yv) be Cartier divisors and that for every I ⊂ I(Yv), YI

v is geometrically reduced and
smooth over k−.
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To proceed, for each of the above four cohomology theories τ , Fontaine has built a suitable period ring
Bτ , which is (Qp, π1(k))-regular and formulated the following unifying conjecture.

Conjecture 2.10. (Fontaine) Under the conditions in the following table

HT dR st crys
Y/k No condition ∨ ∨

Semistable reduction ∨
Good reduction ∨

V ∈ Repτ
Qp

(π1(k)) and there is a functorial isomorphism Dτ (V )→̃Hi(Y )τ ⊗Eτ Bτ .

This conjecture is now a theorem, due to Faltings and Tsuji (and with alternative proofs by Niziol,
Bhatt, Beilinson). Noe that the case of crystalline comparison / good reduction justifies the comment
made earlier that for ℓ = p, the good analogue of being unramified is being crystalline.

2.3.4.2. Purity, Q-compatibility and the Weil conjectures. The Weil conjectures follow from the so-
called standard conjectures of Grothendieck and, actually, it is partly to prove the Weil conjectures
that Grothendieck devlopped the formalism of pure motives and ℓ-adic cohomology. The Weil conjec-
tures were first proved by Weil himself for abelian varieties (

WeilWC
[We49],

MumfordAV
[M70, §21, Application II]) and in

general by Deligne (
DeligneWC1
[D74],

DeligneWC2
[D80]) by geometric arguments going around Grothendieck’s original strat-

egy. Actually, using that ℓ-adic cohomology is a Weil cohomology (in particular satisfies the Lefschetz
trace formula), it is not difficult to reduce the Weil conjectures to its core - the "Riemann hypothesis".

Let κ be a finite field of characterstic p > 0, Y/κ a smooth, proper variety of dimension d and ℓ ̸= p
a prime. Let Frκ ∈ π1(κ) denote the geometric Frobenius; recall that for every integer i ≥ 0, it acts
as Fr∗

Yκ̄|Y on Hi(Yκ̄,Qℓ). Set Pi,ℓ := det(Id − Fr∗
κT |Hi(Yκ̄,Qℓ)) ∈ Qℓ[T ], i = 0, . . . , 2d. One wants to

show that Pi := Pi,ℓ is in Q[T ] and independent of ℓ. This follows from

Deligne Theorem 2.11. (Riemann hypothesis
DeligneWC1
[D74],

DeligneWC2
[D80]) The eigenvalues of Frκ acting on Hi(Yκ̄,Qℓ) areDeligne

|κ|-pure of weight i.

Let us sketch how to deduce the Q-compatibilty from Theorem 2.11. As already mentioned, it follows
from the defining axioms of a Weil cohomology that ℓ-adic cohomology satisfies the Lefschetz trace
formula (e.g.

AndreMotifsIntro
[?, §3.3.3]), which, in the case we are interested in, relate the zeta function of Y that is

the power series ∑
x∈|XY0|,deg(x)|n

deg(x) = |Y0(Fqn)| =
∑

i

(−1)iTr(Fn∗|H i(Y,Qℓ)).

This shows that Z(Y, T ) ∈ Z[[T ]] ∩ Qℓ(T ). It is then a litlle (not that easy) exercise to check that
Q[[T ]] ∩Qℓ(T ) ⊂ Q(T ).
But, now, writing Z(Y, T ) = N(T )

D(T ) with N,D ∈ Q[T ] coprime with positive constant terms, one gets

N(T ) = P1,ℓ(T )P3,ℓ(T ) · · ·P2d−1,ℓ(T ), D(T ) = P1,ℓ(T )P3,ℓ(T ) · · ·P2d−1,ℓ(T ).

From Theorem 2.11, if K ⊂ Qℓ is the decomposition field of N(T )D(T ), the set of roots of Pi,ℓ(T )
is the subset of roots α of N(T )D(T ) with the property that for every complex embedding ι : Q ↪→ C,
|ι(α)| = |κ|−

i
2 . As this set is Gal(K|Q)-invariant and independant de ℓ, one gets Pi,ℓ lies in Q[T ] and

is independent of ℓ.

Using that crystalline cohomology is also a Weil cohomology, Katz and Messing
KatzMessing
[KM74] deduced

from Theorem 2.11 that the characteristic polynomial of the linearized crystalline Frobenius acting on
Hi

cris(Y/W (κ)) also lies in Q[T ] and coincides with one of the geometric Frobenius acting on Hi(Yκ̄,Qℓ),
ℓ ̸= p. As a
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2.3.4.3. Semisimplicity. In general, one does not know that motivic representations are semisimple; it’s
one of the central conjecture - mostly motivated by the standard conjectures - in arithmetic geometry,

TateSS Conjecture 2.12. (Semisimplicity Conjecture) Let k be finitely generated over its prime field. Then
Repgeo

Qℓ
(π1(k)) ⊂ Repss

Qℓ
(π1(k)).

Conjecture 2.12 for k/Q number field implies that objects in Repgeo
Qℓ

(π1(k)) are semisimple and Conjec-
ture 2.12 for k/Fp a finite field, combined with Theorem 2.3.4 implies that objects in Repgeo

Qℓ
(π1(k)) are

Frobenius-semisimple.
Conjecture 2.12 is almost entirely open but one striking result towards it is the following celebrated
theorem.

Theorem 2.13. (
FaltingsRationalPoints
[FW84]) If Y/k is an abelian variety, then H1(Yk̄,Qℓ) ∈ Repss

Qℓ
(π1(k)).FaltingsAV

As Repss
Qℓ

(π1(k)) ⊂ RepQℓ
(π1(k)) is a Tannakian subcategory, this implies ⟨H1(Yk̄,Qℓ)⟩⊗ ⊂ Repss

Qℓ
(π1(k));

in particular, Hi(Yk,Qℓ(j)) = (ΛiH1(Yk̄,Qℓ)(j) ∈ Repss
Qℓ

(π1(k)), i ≥ 0, j ∈ Z.

Independently of Conjecture 2.12, the reason why one has to impose axioms (FSS), (SS) is heuristic
since the Q-rationality, purity and Q-compatibility axioms only capture information on the semisimple
part of ρ(Fk−

v
) through their characteristic polynomials χρ,v, v ∈ Uρ and these data determine the iso-

morphism class of (V, ρ) only if (V, ρ) ∈ Repss
Qℓ

(π1(k)). Also, the group theory required to study ℓ-adic
representations is significantly simpler and better understood in the semisimple case. Actually, condition
(SS) is not so restrictive as one can always attach to an arbitrary representation (V, ρ) ∈ Repss

Qℓ
(π1(k))

its semisimplification.

Summary

(AEU) Smooth proper base-change (Grothendieck)
(τ) comparison theorems between p-adic cohomologies (Faltings, +...)
(RC/Q,et) and (P/∗) Riemann hypothesis (Deligne)
(RC/Q) and (P/∗) Katz-Messing
(SS), (FSS) ??

3. ℓ-independence and the motivic philosophy

3.1. First ℓ-independency results. k/Q number field. Let L be a set of primes and, for each ℓ ∈ L
let (Vℓ, ρℓ) ∈ RepQℓ

(π1(k)); write Πℓ := ρℓ(π1(k)) ⊂ GL(Vℓ) and

Gℓ := Πzar
ℓ ⊂ GLVℓ

for its Zariski-closure in GLVℓ
.

Assume the resulting family (V , ρ) = (Vℓ, ρℓ), ℓ ∈ L satisfies (RC/Q,et). Let r denote the common
Qℓ-dimension of Vℓ. Here is a first basic example of ℓ-independency result.

Prop:CCrank Proposition 3.1. Assume G◦
ℓ is unipotent for one prime ℓ then G◦

ℓ is unipotent for every prime ℓ.
Furthermore, the kernel of ϵℓ : π1(k)→ π0(Gℓ) is independent of ℓ.

Proof. Let Gℓ ↠ Gred
ℓ := Gℓ/Ru(Gℓ) denote the maximal reductive quotient of Gℓ; it identifies with

the Zariski-closure of Πss
ℓ := ρss

ℓ (π1(k)) ⊂ GLV ss
ℓ

. As Ru(Gℓ) ⊂ G◦
ℓ , one has π0(Gℓ) = π0(Gred

ℓ ) and

ker(ϵℓ : π1(k)→ π0(Gℓ)) = ker(ϵss
ℓ : π1(k)→ π0(Gred

ℓ )).

Also G◦
ℓ is unipotent if and only if Ru(Gℓ) = G◦

ℓ if and only if Gred
ℓ = π0(Gred

ℓ ) is finite. As a result,
up to replacing (Vℓ, ρℓ) with its π1(k)-semisimplification (V ss

ℓ , ρ
ss
ℓ ), oma (Vℓ, ρℓ) ∈ Repss

Qℓ
(π1(k)), ℓ ∈ L.

Note that (V ss, ρss) = (V ss
ℓ , ρℓ)ss, ℓ ∈ L still satisfies (RC/Q,et). So, assuming (Vℓ, ρℓ) ∈ Repss

Qℓ
(π1(k)),

ℓ ∈ L, we are to prove that if Gℓ is finite for one prime ℓ then Gℓ is finite for every prime ℓ and
that ker(ρℓ) ⊂ π1(k) is independent of ℓ. Fix ℓ0 ∈ L such that Gℓ0 is finite and let K/k denote the
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finite Galois extension corresponding to ker(ρℓ0) ⊂ π1(k). We are to show that π1(K) ⊂ ker(ρℓ)hat is
(Vℓ, ρℓ)|π1(K) is the trivial representation, ℓ ∈ L. But, this follows from the fact that, one the one hand,

(Vℓ0 , ρℓ0)|π1(K) ∼Q,et (Vℓ, ρℓ)|π1(K)

and, one the other hand
(Vℓ0 , ρℓ0 |π1(K) = Q⊕r

ℓ0
|π1(K) ∼Q,et Q⊕r

ℓ |π1(K),

where Qℓ denote the trivial representation. As a result

(Vℓ, ρℓ)|π1(K) ∼Q,et Q⊕r
ℓ |π1(K), ℓ ∈ L

hence, as both (Vℓ, ρℓ)|π1(K) and Q⊕r
ℓ |π1(K) are semisimple, (Vℓ, ρℓ)|π1(K) ≃ Q⊕r

ℓ |π1(K) by Cebotarev. □

Recall that if Q is a field and G an algebraic group over Q, the reductive rank rdrank(G) of G is the
common dimension of its maximal tori and that G is unipotent if and only if it has rank 0. Proposition
3.1 can be upgraded as follows.

Thm:CCrank Theorem 3.2. The (i) kernel of ϵℓ : π1(k)→ π0(Gℓ);
(ii) reductive rank rdrank(Gℓ),

are independent of ℓ.

The proof of Theorem 3.2 relies on the fact that both ker(ϵℓ) and rdrank(Gℓ) are encoded on the image
of Gℓ ⊂ GLVℓ

via the characteristic polynomial map

χ : GLr,Q → Ar−1
Q ×Gm,Q

g → χ(g) = (a1(g), . . . , ar(g)),
(where det(TIr − g) = T r +

∑
1≤i≤r ai(g)T r−i) and that this image is independent of ℓ.

3.1.1. Preliminaries about characteristic polynomial map. The restriction χ : Gr
m,Q ⊂ GLr,Q → Ar−1

Q ×
Gm,Q identifies Ar−1

Q ×Gm,Q with the quotient

Gr
m,Q

χ //

��

Ar−1
Q ×Gm,Q

Gr
m/Sr,

≃
88

(parametrizing GLr-conjugacy classes of semisimple elements in GLr). In particular, χ : Gr
m,Q ⊂

GLr,Q → Ar−1
Q ×Gm,Q is a finite morphism of degree r!.

Let now Q a field of characteristic 0 and G ⊂ GLr,Q an algebraic subgroup. Then,

Rank Lemma 3.3. χ(G◦) ⊂ Ar−1
Q ×Gm,Q is a closed subvariety, defined over Q and of dimension rdrank(G).

Proof. Let Gss ⊂ G denote the subset of semisimple elements in G. Using that for every g ∈ G,
χ(g) = χ(gss), where g = gssgu = gugss is the multiplicative Jordan decomposition of g in G (equivalently
GLr,Q) and that, given a maximal torus T ⊂ G, every semisimple element in G is G(Q)-conjugate to
an element in T , one has: for every g ∈ G(Q),

χ(G◦) = χ(G◦ss) = χ(gTg−1), γ ∈ GLr(Q)

Furthermore there always exists γ ∈ GLr(Q) such that γTγ−1 ⊂ Gm,Q. So

χ(G◦) = χ|Gr

m,Q
(γTγ−1), .

As χ|Gr

m,Q
: Gr

m,Q
→ Ar−1

Q
×Gm,Q is

- finite, χ(G◦) ⊂ Ar−1
Q
×Gm,Q is a closed subvariety of dimension dim(gTg−1) = rdrank(G);

- defined over Q and that every subtorus of Gr
m,Q

is automatically defined over Q, χ(G◦) ⊂ Ar−1
Q
×Gm,Q

is defined over Q.
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The latter assertion uses the equivalence of categories

M ←→ X∗(MQ) := HomGrAlg/
Q

(MQ,Gm,Q)

between groups of multiplicative types over Q and Z-module of finite types endowed with a continuous
action of π1(Q) plus the fact that, under this equivalence, X∗(Gr

m,Q
) = Z⊕r endowed with the trivial

action of π1(Q). □

CC Lemma 3.4. For every 1 ̸= C ∈ π0(G) there exists fC ∈ Z[a1, . . . , ar] such that fC = 0 on χ(C) and
fC ̸= 0 on χ(G◦); in particular, for every C ∈ π0(G), the Zariski-closure of χ(C) in Ar−1

Q × Gm,Q is
equal to χ(G◦) (if and) only if C = G◦.

Proof. Let g ∈ G(Q) \ G◦(Q). Fix a faithful Q-linear representation ϕ : π0(G) → GL(W ) so that
ϕ(g) ̸= 1. In particular, ϕ(g) has at least one eigenvalue λ ̸= 1, which is automatically a primitive
root of unity of order say n. As the tautological representation V := Q⊕r of G is faithful, the Q-
linear representation G ↠ π0(G) → GL(W ) appears as a subquotient of a representation of the form
⊕1≤i≤sT

mi,ni(V ). Let λ1, . . . , λr the eigenvalues of g acting on V (and counted with multiplicities).
The characteristic polynomial of g acting on Tm,n(V ) can thus be written as∏
1≤i1,...,im≤r
1≤j1,...,jn≤r

(T−λi1 · · ·λim

λj1 · · ·λjn

) =
∏

1≤i1,...,im≤r
1≤j1,...,jrn−n≤r

(T−
λi1 · · ·λimλj1 · · ·λjrn−n

ar(g)Nm,n
) = Pm,n(T, a1(g), . . . , ar(g), ar(g)−1)

avec Pm,n(T, a1, . . . , ar, a
−1
r ) ∈ Z[a1, . . . , ar, a

−1
r ]. Fix an integer N ≫ 0 such that

P̃m,n :=
∏

ζ∈Φn(1)
Pm,n(ζ, a1, . . . , ar, a

−1
r )aN

r ∈ Z[a1, . . . , ar],

where Φn(1) ⊂ Z× denotes the set of primitive nth roots of 1. With these notation, the function
f =

∏
1≤i≤s Pmi,ni ∈ Z[a1, . . . , ar] has the requested properties. □

3.1.2. Proof of Theorem 3.2.

3.1.2.1. Proof of Theorem 3.2 (1). From Proposition 3.1, one may assume Πℓ is infinite for all ℓ ∈ L.

Lem:CCrank Lemma 3.5. Let ℓ ∈ L. The following assertions are equivalent.

(i) G◦
ℓ = Gℓ;

(ii) For every f ∈ Z[a1, . . . , ar], the set Σf
k ⊂ Σk of all v ∈ Uρℓ,∤ℓ such that f ◦ χρv,ℓ

= 0 has density 0 or 1.

Lemma 3.5 ⇒ Theorem 3.2 (1): Fix ℓ0 ∈ L and set K := k
ker(ϵℓ0 ). Up to replacing (V , ρ) with

(V , ρ|π1(K)), oma G◦
ℓ0

= Gℓ0 so that (i) - hence equivalently (ii) - of Lemma 3.5 holds for ℓ = ℓ0.
But as (V , ρ) satisfies (RC/Q,et), if (ii) of Lemma 3.5 holds for ℓ0, (ii) - hence equivalently (i) - of
Lemma 3.5 holds for every ℓ ∈ L; this shows ker(ϵℓ0) ⊂ ker(ϵℓ). By symmetry, ker(ϵℓ0) = ker(ϵℓ)

Proof. of Lemma 3.5.

(i) ⇒ (ii). Wlog oma ρℓ(π1(k)) := Πℓ ⊂ GLr(Zℓ). Assume Gℓ = G◦
ℓ and let f ∈ Z[a1, . . . , ar] such that

f(χ(Gℓ)) ̸= 0. Write Vf ⊂Mr,Z for the reduced closed subscheme defined by f ◦ χ : Mr,Z → A1
Z and

Xf := Vf (Zℓ) ∩Πℓ ⊊ Πℓ.

By construction Xf is stable under Πℓ-conjugacy. One has:

Claim. ∂Xf = Xf and µ(Xf ) = 0, where µ : BΠℓ
→ [0, 1] is the normalized Haar measure on Πℓ.

In particular, by the profinite Cebotarev density theorem, the set Σf
k ⊂ Σk of all v ∈ Σk such that

ρv,ℓ(Frk−
v

) ∈ Xf has density 0.

Proof of the claim. As by construction Xf is closed in Πℓ, ∂Xf = Xf if and only if Xf has empty
interior in Πℓ. We argue by contradiction. Otherwise, Xf would contain an open subset of Πℓ, which
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we may always assume to be of the form gU for some g ∈ Πℓ and normal open subgroup U ⊂ Πℓ. As
Gℓ is connected, one has U zar = Gℓ. Indeed,

Gℓ = Πzar
ℓ =

⊔
γ∈Πℓ/U

γU
zar

=
⋃

γ∈Πℓ/U

γU
zar =

⋃
γ∈Πℓ/U

γU
zar

but as Gℓ is smooth and connected hence irreducible, and Πℓ/U is finite, there exists γ ∈ Gℓ/U such
that Gℓ = γγU

zar = γU
zar i.e. Gℓ = U zar. On the other hand, as Vf ⊂Mr,Qℓ

is Zariski-closed, one gets

Vf ⊃ gU
zar = gU

zar = gGℓ = Gℓ,

which contradicts the definition of f .
It remains to prove that µ(Xf ) = 0. Let V1, . . . , Vs denote the irreducible components of Vf . From
Xf =

⋃
1≤i≤s

Vi(Zℓ) ∩Gℓ, it is enough to prove that µ(Vi(Zℓ) ∩ Πℓ) = 0, i = 1, . . . , s. Hence we may

assume Vf is irreducible. We proceed in two steps.
(1) For every g1, . . . , gs, g

′
1, . . . , g

′
s ∈ Πℓ one has⋃

1≤i≤s

giXfg
′
i ⊊ Πℓ.

We argue by induction on s. If s = 1 there is nothing to say. Assume s ≥ 2. By induction
hypothesis, ⋃

1≤i≤s−1
giXfg

′
i ⊊ Πℓ

so that Xf contains the non-empty open subset g−1
s (Πℓ \

⋃
1≤i≤s−1

giXfg
′
i)g

′−1
s , which contradicts the

fact that Xf has empty interior in Πℓ.
(2) Let V ↪→Mr,Zℓ

be an irreducible closed subscheme. If X := V (Zℓ)∩Πℓ satsifies (*), then µ(X) = 0.

We argue by induction on the dimension d of VQℓ
. If d = 0, there is nothing to say (recall Πℓ is

assumed to be infinite). If d ≥ 1, fix x ∈ X and set γ0 = 1. For every γ1 ∈ Πℓ \ Xx−1 one has
γ1V ̸= V (otherwise there would exist g ∈ X such that γ1x = g, contradicting the choice of γ1).
Choose inductively

γi+1 ∈ Πℓ \
⋃

0≤j≤i

γjXx
−1.

By construction one has γjV ̸= γi+1V , j = 0, . . . , i (otherwise there would exist g ∈ X such that
γi+1x = γjg, contradicting the choice of γi+1). As V is irreducible, γjV ∩ γi+1V has dimension
≤dimV − 1. On the other hand, for every g1, . . . , gs, g

′
1, . . . , g

′
s ∈ Πℓ one has⋃

1≤k≤s

gkγjV ∩ γi+1V ∩Πℓg
′
k ⊂

⋃
1≤k≤s

(gkγj)V ∩Πℓg
′
k ⊊ Πℓ.

Hence, by induction hypothesis, µ(γjV ∩ γi+1V ∩ Πℓ) = 0. Set now Xi := γiV ∩ Πℓ and Yi :=⋃
0≤j≤iXj . From the above µ(Yi ∩Xi+1) = 0 hence, using

Yi+1 = (Y\(Yi ∩Xi+1)) ⊔ (Xi+1 \ (Yi ∩Xi+1)) ⊔ (Yi ∩Xi+1)),
one gets

µ(Yi+1) = µ(Yi) + µ(Xi+1) =
∑

0≤j≤i+1
µ(Xj) = (i+ 1)µ(X),

where the last equality follows from the Πℓ-invariance of Haar measure. Taking i→ +∞, one gets
µ(X) = 0.

(ii) ⇒ (i). We argue by contradiction. Assume G◦
ℓ ⊊ Gℓ and fix 1 ̸= C ∈ π0(Gℓ). From Lemma 3.5

there exists f := fC ∈ Z[a1, . . . , ar] such that f = 0 on χ(C) and f ̸= 0 on χ(G◦
ℓ ). Let π0(Gℓ)f ⊂ π0(Gℓ)

denote the set of all C ∈ π0(Gℓ) such that f = 0 on χ(C) and write a := |π0(Gℓ)f |, b := |π0(Gℓ)| − a.
By assumption 1 < a < |π0(Gℓ)|. As π0(Gℓ) is abelian, it follows from Cebotarev density theorem and
the Claim in the proof of (i) ⇒ (ii) that the subset Σf

k ⊂ Σk of all v ∈ Σk such that

ϵℓ : π1(k) ρℓ→ G(Qℓ) ↠ π0(Gℓ)
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is unramified at v with ϵv,ℓ(ϕk−
v

) ∈ π0(Gℓ)f has density 0 < a
a+b < 1, contradicting (ii).

□

3.1.2.2. Proof of Theorem 3.2 (2). According to Theorem 3.2 (1), after possibly replacing k with a finite
field extension, which does not alter G◦

ℓ , oma G◦
ℓ = Gℓ, ℓ ∈ L so that, from Lemma 3.3, rdrank(Gℓ) =

dim(χ(Gℓ)), ℓ ∈ L. It is thus enough to show that dim(χ(Gℓ)) is independent of ℓ ∈ L. From ??, the
subset

Φℓ :=
⋃

v∈Uρℓ,∤ℓ

⊂ Πℓ

of all Πℓ-conjugacy class of Frobenii ρv,ℓ(ϕk−
v

), v ∈ Uρℓ,∤ℓ is ℓ-adic analytically dense in Gℓ(Qℓ) - hence
a fortiori Zariski-dense in Gℓ; in particular,

χ(Gℓ) = χ(Φzar
ℓ ) ⊂ χ(Φℓ)

zar ⊂ Ar−1
Qℓ
×Gm,Qℓ

.

On the other hand, from Lemma 3.3 we also know that χ(Gℓ) ⊂ Ar−1
Qℓ
×Gm,Qℓ

is Zariski closed, hence
χ(Φℓ)

zar ⊂ χ(Gℓ). This shows that
χ(Φℓ)

zar = χ(Gℓ).
But, by assumption, χ(Φℓ) ⊂ (Ar−1 × Gm)(Q) is indépendant de ℓ; let Ξ ⊂ Ar−1

Q × Gm,Q denotes its
Zariski-closure. Then ΞQℓ

= χ(Φℓ)
zar = χ(Gℓ); in particular, dim(χ(Gℓ)) = dim(Ξ) is independent of ℓ.

3.2. The motivic philosophy. k/Q-number field. ℓ-adic representations of π1(k) are part of a coher-
ent network of conjectures which is very roughly encapsulated in the following picture.

Standard conj.

��
(Pure) Motives nn

Shimura varieties

��

00

ℓ-adic cohomology

��

Tate + semisimplicity conj.

,4

Constructing algebraic cycles

RepQℓ
(π1(k))

ii

L-functions
Langlands Correspondance

55

Fontaine-Mazur

AA

Automorphic representations

[...]

The simplified version of the "horizon conjecture" to keep in mind is the following.

Conj:Horizon Conjecture 3.6. k/Q a number field, X/k smooth, projective variety over k. Let Πℓ ⊂ GL(Vℓ) denote
the image of the π1(k)-representation Vℓ := Hi(Xk̄,Qℓ), and Gℓ := Πzar

ℓ ⊂ GLVℓ
its Zariski-closure.

There exists a reductive group G over Q together with a faithfull Q-rational representation G ↪→ GLV

such that, for every prime ℓ, one has

(G ↪→ GLV )⊗Q Qℓ ≃ Gℓ ↪→ GLVℓ
.

4. The r = 2 case of a theorem of Larsen-Pink and a first glance at Frobenius tori
Sec:LP

k/Q number field, L infinite set of prime numbers. For each ℓ ∈ L, fix (Vℓ, ρℓ) ∈ RepQℓ
(π1(k)). Write

Πℓ := ρℓ(π1(k)) ⊂ GL(Vℓ) and Gℓ := Πzar
ℓ ⊂ GLVℓ

. For v ∈ Uρℓ,∤ℓ, write φv,ℓ = ρv,ℓ(φk−
v

) ∈ Πℓ for a
representative of the Πℓ-conjugacy class Φv,ℓ ⊂ Πℓ of Frobenii at v and χv,ℓ := det(TId− φv,ℓ) ∈ Zℓ[T ]
for its characteristic polynomial (which only depends on Φv,ℓ and not on φv,ℓ).

The aim of this section is to prove the r = 2 case - see Theorem 4.9, of the following theorem.
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Thm:LP Theorem 4.1. (
LP
[LP92, Thm. 9.1, Thm. 9.4])Assume (V , ρ) satisfies (RC/Q,et) and that, for every

ℓ ∈ L, G◦
ℓ = Gℓ is reductive connected. Then,

(1) There exists a finite Galois extension Q/Q and a subset L′ ⊂ L of density 0 (containing all places
that ramify in Q/Q) such that for every ℓ ∈ L \ L′, the Weyl group W (Gℓ) of Gℓ depends only on
the Gal(Q|Q)-conjugacy class Φℓ ⊂ Gal(Q|Q) of the Frobenii at ℓ. In particular, the dimension of
Gℓ and the dimension of Z(Gℓ).

(2) Assume furthermore that, for every ℓ ∈ L, (Vℓ, ρℓ) is absolutely irreducible. Then the same conclu-
sion holds as in (1) for the root datum of Gℓ (viz. the Qℓ-isomorphism class of Gℓ,Qℓ

).

Recall that one can always reduce to the case where G◦
ℓ = Gℓ, ℓ ∈ L is reductive connected, after

replacing k by a finite Galois extension K/k (Theorem 3.2) and semisimplification.

Theorem 4.1 relies on a subtle analysis of the arithmetico-geometric properties of tori in connected
reductive groups. The arguments and techniques involved to treat the general caseof Theorem 4.1 go
beyong the ambitions of these lectures but we can still give a good idea of the heuristic by considering
the r = 2 case. For this, we first review a few results about tori. These play a central part in the
structural analysis of algebraic groups. One way to produce tori in Gℓ is by considering the algebraic
enveloppe of the semisimple part of Frobenii elements.

4.1. Algebraic enveloppe. Let Q be a field, char(Q) = 0 and G/Q an algebraic group over Q.

4.1.1. Definition. For every g ∈ G(Q) define the algebraic enveloppe of g in G is the smallest algebraic
subgroup EG(g) ⊂ G containing g viz the Zariski-closure of the subgroup ⟨g⟩ ⊂ G(Q) generated by g.
We let the following as an exercise.

Lemma 4.2. If g = gssgu = gugss is the multiplicative Jordan decomposition of g ∈ G then

EG(g) ≃ EG(gss)× EG(gu)
with EG(gss) a group of multiplicative type;

EG(gu) ≃ Ga,Q if gu ̸= 1 and EG(gu) ≃ 1 if gu = 1.

Write TG(g) := EG(gss)◦ ⊂ EG(gss), which we call the algebraic torus attached to g. The following result
requires more work.

Theorem 4.3. Assume G◦ = G is connected; let T ⊂ G be a torus. Then,
- (

Borel
[Bor91, 11.12]) The centralizer ZG(T ) of T in G is connected;

- (
Borel
[Bor91, 12.1]) If, furthermore, T ⊂ G is a maximal torus ZG(T ) = T ×Ru(ZG(T )) = NorG(ZG(T ))◦

and, if G is reductive, ZG(T ) = T .

By construction, TG(g) ⊂ EG(g) ⊂ ZG(TG(g)) hence, if g = gss and TG(g) ⊂ G is maximal, one gets
TG(g) = EG(g) (since the projection of g onto Ru(ZG(TG(g))) is trivial).

Example: For v ∈ Uρℓ,∤ℓ, the Gℓ(Qℓ)-conjugacy class of φv,ℓ,v hence of Ev,ℓ := EGℓ
(φss

v,ℓ) and of
Tv,ℓ := TGℓ

(φss
v,ℓ) depend only on v and not on the representative φv,ℓ in Φv,ℓ while the GLr(Qℓ)-

conjugacy class of Ev,ℓ and Tv,ℓ only depend on the characteristic polynomial χv,ℓ ∈ Zℓ[T ] of φv,ℓ. One
says that by a slight abuse of language that Tv,ℓ and Ev,ℓ are "the" Frobenius torus and multiplicative
group attached to (Vℓ, ρℓ) at v respectively. If (V , ρ) satisfies (RC/Q,et), χv := χv,ℓ is in Q[T ] and
independent of ℓ hence Ev,ℓ and Tv,ℓ are defined over Q.

4.1.2. Regular semisimple elements and maximal tori. If G = G◦ is connected reductive, one says that
g ∈ G(Q) regular semisimple if g = gss and TG(g) ⊂ G is a maximal torus. Regular semisimple
elements are abundant, namely:

Thm:SSReg Theorem 4.4. (
Borel
[Bor91, §11-13]) Assume G = G◦ is connected reductive, there there exists a non-

empty (hence Zariski-dense) open subscheme U ⊂ G, stable under G(Q)-conjugacy and such that every
g ∈ U(Q) is regular semisimple.
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Rem. If one no longer assume G is reductive, it is still true that there there exists a non-empty
(hence Zariski-dense) open subscheme U ⊂ G, stable under G(Q)-conjugacy and such that for every
g ∈ U(Q), TG(g) = EG(gss) ⊂ G is a maximal torus. Indeed, just consider the maximal reductive quo-
tient p : G↠ Gred := G/Ru(G) and consider a Zariski-dense open subscheme U ⊂ Gred as in Theorem
4.4. Then p−1(U) ⊂ G as the requested property.

Combined with the Claim in the proof of Lemma 3.5, one gets

Key1 Corollary 4.5. (Frobenius tori versus maximal tori) Assume G◦
ℓ = Gℓ is connected. Then the set of

all v ∈ Uρℓ,∤ℓ such that Tv,ℓ ⊂ Gℓ is a maximal torus has density 1.

This provides an alternative proof of Theorem 3.2.

Rem. If one no longer assume that G◦
ℓ = Gℓ is connected, it is still true that the set of all v ∈ Uρℓ,∤ℓ

such that Tv,ℓ ⊂ Gℓ is a maximal torus has density ≥ 1
|π0(Gℓ)|(> 0).

If (Vℓ, ρℓ) is part of a family (V , ρ)) satisfying (RC/Q,et), one has the following technical refinement of
Corollary 4.5

Key2 Theorem 4.6. (
LP
[LP92, §7]) Assume G◦

ℓ = Gℓ is connected reductive for every ℓ ∈ L. Fix a finite subset
I ⊂ L and for each ℓ ∈ I, a maximal torus Tℓ ⊂ Gℓ. Then there exists (infinitely many) v ∈ ∩ℓ∈IUρℓ,∤ℓ
such that, for every ℓ ∈ I, Ev,ℓ = Tv,ℓ ⊂ Gℓ is Gℓ(Qℓ)-conjugate to the given Tℓ.

We refer to
LP
[LP92, §7] for the proof which, as the one of Corollary 4.5, combines the general theory of

tori in algebraic groups and Cebotarev density theorem but also requires a bit ℓ-adic Lie group theory,
in particular the fact that if Gℓ is a semisimple algebraic group over Qℓ and Πℓ ⊂ Gℓ(Qℓ) is a compact
subgroup which is Zariski-dense in Gℓ then Πℓ is open in Gℓ(Qℓ)).

4.1.3. Description of EG(g) in terms of characters. Assume g = gss and Q = Q. Fix a faithful Q-
linear representation G ↪→ GLV ≃ GLr,Q such that g = (α1, . . . , αr) is contained in the diagonal torus
Dr,Q ≃ Gr

m,Q ⊂ GLr,Q. One can explicitly describe E(g) := EG(g) = EGLr,Q(g) via the equivalence of
categories Θ 7→ X∗(Θ) from multiplicative groups to finitely generated Z-modules. Using the canonical
Z-basis e1, . . . , er (defined by ei(x1, . . . , xr) = xi, i = 1, . . . , r), one gets a canonical identification
c : ⊕1≤i≤r→̃ZeiX

∗(Dr). With these notation, it follows from the definition of E(g) and the short exact
sequence

0→ X∗(Dr/E(g))→ X∗(Dr)→ X∗(E(g))→ 0
that

X∗(Dr/E(g)) =
{
χ = (a1, . . . , ar) ∈ Z⊕r | αa1

1 · · ·α
ar
r = 1

}
⊂ X∗(Dr).

and
E(g) =

⋂
χ∈X∗(Dr/E(g))

ker(χ).

Let ΛV (g) := {α1, . . . , αr} ⊂ Q× the Z-submodule generated by α1, . . . , αr. By the universal property
of Z⊕r, there is a unique (automatically surjective) morphism of Z-modules

evα : Z⊕r → ΛV (g), a 7→ αa1
1 · · ·α

ar
r ,

which fits into the commutative diagram with exact lines

0 // X∗(Dr/E(g)) // X∗(Dr) // X∗(E(g)) // 0

0 // ker(evα) //

≃

OO

Z⊕r
evα //

≃ c

OO

ΛV (g) //

≃

OO

0

In particular, Λ(g) := ΛV (g) depends only on g (and not on the faithful linear representation G ↪→ GLV

and one has
Λ(g)tors ≃ X∗(E(g))tors ≃ π0(E(g)), rank(T (g)) = rank(Λ(g)) etc.

Here are two first applications of these observations to ℓ-adic Galois representations.
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4.1.3.1. Homotheties torus.

Claim: Assume Q ⊂ C and |α1| = · · · = |αr| =: α ̸= 1. Then E(g) contains the homotheties torus
Z(GLr,Q) = Hr,Q ≃ Gm,Q.

This follows from

X∗(Dr/E(g)) c≃ {a ∈ Z⊕r | αa1
1 · · ·αar

r = 1}
⊂ {a ∈ Z⊕r | |α1|a1 · · · |αr|ar = αa1+···+ar = 1}
= {a ∈ Z⊕r | a1 + · · ·+ ar = 0} c≃ ker(X∗(Dr) ↠ X∗(Hr,Q)) =: K,

whence
0 // X∗(Dr/E(g)) //

_�

��

X∗(Dr) // X∗(E(g)) //

����

0

0 // K // X∗(Dr) // X∗(Hr,Q) // 0.

Via the equivalence Θ 7→ X∗(Θ), the right square corresponds to a factorization

E(g) �
� //
� q

""

Dr,Q

Hr,Q

� ?

OO

Cor:Homotheties Corollary 4.7. If (Vℓ, ρℓ) satisfies (P/w) for some weight w ̸= 0 then Z(Gℓ) contains a 1-dimensional
split torus.

Proof. Just apply the claim to g := ϕss
v,ℓ for some v ∈ Uρℓ,∤ℓ. □

Corollary 4.7 applies for instance to Vℓ = Hi(Xk,Qℓ(j)) for X/k a smooth, proper scheme over k and
2i ̸= j.

4.1.3.2. Connexity and neatness. From the identifications

Λ(g)tors ≃ X∗(E(g))tors ≃ π0(E(g))

one sees that π0(E(g)) = 1 if and only if Λ(g)tors = 1, in which case one says that g ∈ G is neat.

Cor:Connected Corollary 4.8. If (Vℓ, ρℓ) satisfies (AEU) and there exists a π1(k)-stable Zℓ-lattice Λℓ ⊂ Vℓ such that
π1(k) acts trivially on Λℓ/l, where l = 4 if ℓ = 2 and l = ℓ otherwise then G◦

ℓ = Gℓ.

Proof. We argue by contradiction. Assume π0(Gℓ) ̸= 1 and let 1 ̸= a ∈ π0(Gℓ). Then from (classical)
Cebotarev applied to ϵℓ : π1(k) ↠ π0(Gℓ), there exists (infinitely many) v ∈ Uρℓ,∤ℓ such that φv,ℓ

(equivalently, φss
v,ℓ) maps to a ∈ π0(Gℓ). From the commutative diagram with exact lines

0 // TGℓ
(φv,ℓ) //
_�

��

EGℓ
(φss

v,ℓ) //
_�

��

π0(EGℓ
(φss

v,ℓ)) //

��

0

0 // G◦
ℓ

// Gℓ
// π0(Gℓ) // 0,

one sees that π0(EGℓ
(φss

ℓ )) ̸= 1 as well. On the other hand, the assumption that Πℓ ⊂ Id+ ℓEndZℓ
(Λℓ)

forces Λ(φss
v,ℓ)tors = 1: a contradiction. □

If (V , ρ) satisfies RC/Q,et, we know that K(V , ρ) := ker(ϵℓ : ϵℓ : π1(k) ↠ π0(Gℓ)) is independent of ℓ.
From Corollary 4.8, for every prime ℓ and π1(k)-stable Zℓ-lattice Λℓ ⊂ Vℓ one has

K(V , ρ) ⊃ ker(π1(k)→ GL(Λℓ/l)).
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4.2. The r = 2 of Theorem 4.1. We retain the notation and assumption of the beginning of Section
4. Assume furthermore that

r := dimQℓ
(Vℓ) = 2.

Let U ⊂ ∩ℓUρℓ
⊂ Σk be the cofinite subset of "good places" attached to (V , ρ) in the definition of

(RC/Q,et) and for every v ∈ U , let χv(= χv,ℓ) = T 2 + avT + bv ∈ Q[T ] the characteristic polynomial of
Frobenii at v. Set dv := a2

v − 4bv and Ev := Q(
√
dv) for the splitting field of χv.

Let Σmax
k ⊂ U denote the set of all v ∈ U such that Ev,ℓ = Tv,ℓ ⊂ Gℓ is a maximal torus (viz

φss
v,ℓ ∈ Gℓ(Qℓ) is regular semisimple). From Corollaire 4.5, Σmax

k ⊂ Σk has density 1. Write Ω ⊂ Q for
the compositum of all Ev, v ∈ Σmax

k (in a given algebraic closure Q of Q) and E for the intersection of
all Ev, v ∈ Σmax

k (in particular, [E : Q] ≤ 2).

Thm:LPr=2 Theorem 4.9. (Larsen-Pink
LP
[LP92, Intro]) One and only one of the following three cases occurs.

(1) [Ω : Q] =∞, E = Q and there exists a subset L′ ⊂ L of density 0 such that Gℓ = GL2,Qℓ
, ℓ ∈ L\L′.

(2) Ω = E = Q and Gℓ = G2
m,Qℓ

, ℓ ∈ L
(3) [Ω : Q] = 2, E = Ω and if ℓ does not ramifies in Ω/Qℓ,

- Gℓ = ResQ[2]
ℓ

|Qℓ
(G

m,Q[2]
ℓ

) if the Frobenii at ℓ in Gal(Ω|Q) = Z/2 maps to 1;
- Gℓ = G2

m,Qℓ
if the Frobenii at ℓ in Gal(Ω|Q) = Z/2 maps to 0.

Here, Q[2]
ℓ /Qℓ is the unique quadratic unramified extension of Qℓ.

4.2.1. Classification of maximal tori in GL2,Q. Let Q be a field of characteristic 0 and let T ⊂ GL2,Q

be a maximal torus. As T is GL2(Q)-conjugate to Dr,Q, T contains the homotheties torus H2,Q =
Z(GL2,Q). From the short exact sequence of tori over Q

1→ H2,Q → T → T/H2,Q → 1

one gets a short exact sequence of discrete π1(Q)-modules

0 // X∗(TQ/H2,Q) // X∗(TQ) // X∗(H2,Q) // 0

0 // Z // X∗(TQ) // Z // 0

The action of π1(Q) on the RHS Z is trivial and the one on the LHS is given by a quadratic character
χT : π1(Q)→ {±1} = Z×. This imposes that

i) χT = 1 and T ≃ G2
m,Q is split;

ii) or χT ̸= 1 and if QT /Q is the quadratic extension corresponding to ker(χT ), TQT
≃ G2

m,QT
is split.

Indeed, ii) follows from i) applied to TQT
. For i), the action of π1(Q) on X∗(TQ) is given by a morphism

of the form
π1(Q)→ GL2(Z), σ 7→

(
1 c(σ)
0 1

)
where c : π1(Q) → (Z,+) is a continuous discrete morphism hence, in particular, as finite image. But
as (Z,+) is torsion-free, this forces c = 0.

This reduces the problem to the following. Given a quadratic extension Q′/Q:
i) Classify all rank-2 torus T over Q such that TQ′ ≃ G2

m,Q′ is split. Via the equivalence of categories
X∗, the tori in i) corresponds to GL2(Z)-conjugacy classes of order ≤ 2 matrices in GL2(Z). Up
to GL2(Q)-conjugacy there are only three possibilities:(

1 0
0 1

)
,

(
-1 0
0 -1

)
,

(
1 0
0 -1

)
corresponding to the invariant factors X − 1|(X − 1)2, X + 1|(X + 1)2 and X2 − 1. In GL2(Z),
the third class splits into two GL2(Z)-conjugacy classes: the one of

U− :=
(

0 1
1 0

)
, and the one of U+ :=

(
1 0
0 -1

)
.
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Indeed, reducing modulo 2 one sees that these two matrices are not GL2(F2)-conjugate hence, a
fortiori not GL2(Z)-conjugate. On the other hand, M ∈ GL2(Z) has invariant factor X2 − 1, one
can find a rank-1 submodule L ⊂ Z⊕2 such that M acts trivially and Z2/L is torsion free i.e. M
is GL2(Z)-conjugate to a matrix of the form(

1 a
0 -1

)
.

One can then check that if 2 ̸ |a, M is GL2(Z)-conjugate to U− and if 2|a, M is GL2(Z)-conjugate
to U+. In fine, One has 4-isomorphisms classes of d rank-2 tori which are split over Q′:

π1(Q)-module structure Geometric description

Id G2
m,Q

−Id AQ′

1 ×A
Q′

1
U− ResQ′|Q(Gm,Q′)
u+ Gm,Q ×AQ′

1 .

Here AQ′

1 denotes the unique anisotropic rank-1 torus over Q which splits over Q′, namely the
torus corresponding to the quadratic character π1(Q) ↠ Gal(Q′|Q) ≃ {±1} = Z×.

ii) Check which of the rank-2 tori in i) can be embedded into GL2,Q. As every rank-2 torus T ⊂ GL2,Q

contains H2,Q, one has Z ≃ X∗(H2,Q) ⊂ X∗(TQ)π1(Q). In particular, AQ′

1 × AQ′

1 cannot be
embedded into GL2,Q. Actually, T ≃ Gm,Q×AQ′

1 cannot either be embedded into GL2,Q. Indeed,
otherwise, H2,Q ≃ Gm,Q ⊂ T while AQ′

1 ⊂ SL2,Q = ker(det : GL2,Q → Gm,Q). But as all maximal
tori of SL2,Q are SL2(Q)-conjugate, they all contain −Id hence one woudl have −Id ∈ AQ′

1 ∩H2,Q,
contradicting the fact that the product T ≃ H2,Q ×AQ′

1 should be direct.
Eventually, the only rank-2 connected reductive subgroups of GL2,Q are GL2,Q and its maximal tori.

4.2.2. Proof of Theorem 4.9.
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