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Contents
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3.2. Réduction des endormorphismes normaux 23
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Sauf mention explicite du contraire, si k est un corps, tous les k-espaces vectoriels considérés sont de dimen-
sion finie.

On appellera corps pré-euclidien un corps k muni d’un ordre total1 ≤ et on dira qu’il est euclidien si le
morphisme de groupes NId : k× → k>0, λ 7→ λ2 est surjectif et euclidien rééllement clos si, de plus,

1On rappelle que cela signifie que k est muni d’un ordre total ≤ tel que x ≤ y → x+ z ≤ y + z et 0 ≤ x, 0 ≤ y → 0 < xy.
Si k est totalement ordonné, (k,+) est sans torsion donc, en particulier, k est de caractéristique 0.
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2 ALGÈBRE BILINÉAIRE

k(
√
−1) = k[T ]/T 2 + 1 est algébriquement clos. En particulier, un polynôme irréductible sur un corps

euclidien rééllement clos est de degré 1 ou 2. Les corps R, Q∩R par exemple sont euclidiens rééllement clos.
Tout sous-corps d’un corps euclidien est pré-euclidien.

On appellera corps pré-hermitien un corps k muni d’une involution τ ̸= Idk tel que le corps des invariants
kτ ⊂ k (on rappelle que [k : kτ ] = 2 - cf. Lemme 0.1 ci-dessous) est pré-euclidien viz muni d’un ordre
total ≤ et que l’image du morphisme de groupes (appelé norme de k/kτ ) Nτ : k× → kτ×, λ 7→ λτ(λ) est
contenue dans kτ>0 ⊂ kτ×; on dira qu’il est hermitien si Nτ : k× → kτ>0 est surjectif. Les corps C et Q
munis de la conjugaison complexe τ par exemple sont hermitiens. Tout sous-corps d’un corps hermitien est
pré-hermitien.

Lemme 0.1. Soit k un corps muni d’une d’une involution τ ̸= Idk. Alors [k : kτ ] = 2 et il existe ι ∈ k \ kτ
tel que ι2 ∈ kτ (donc τ(ι) = −ι).

Proof. On admettre que [k : kτ ] = 2 (la preuve utilise un peu de théorie de Galois - cf. e.g. [L93, VI, Thm.
1.8]). Si α ∈ k \ kτ est quelconque, comme [k : kτ ] = 2, on a k = kτ (α); en particulier, le polynôme minimal
P (T ) ∈ kτ [T ] de α sur kτ est de degré exactement 2. En l’écrivant P (T ) = T 2+aT +b et en notant α, β ∈ k
ses racines, on vérifie comme d’habitude que

∆ = a2 − 4a = (α+ β)2 − 4αβ = (α− β)2

est un carré dans k et que

{α, β} = {−a−
√
∆

2
,
−a+

√
∆

2
}

donc ι :=
√
∆ ∈ k \ kτ convient. □

Rem: Sous les hypothèses et avec les notations du Lemme 0.1, les éléments x ∈ k \ kτ tels que x2 ∈ kτ sont
alors ceux de kτ×ι.

1. Définitions, premières propriétés

1.1. Formes k-m-linéaires. Soit k un corps et V1, . . . , Vm,W des k-espaces vectoriels. On rappelle que
l’ensemble W V1×···×Vm des applications V1 × · · · × Vm → W est naturellement muni d’une structure de
k-espace vectoriel; on note

Lk(V1 × · · · × Vm,W ) ⊂ W V1×···×Vm

le sous-ensemble des applications k-multilinéaires viz des φ : V1 × · · · × Vm → W telles que pour tout
1 ≤ i ≤ m et pour tout v := (vj)1≤j ̸=i≤m ∈

∏
1≤j ̸=i≤m Vj , l’application

φv : Vi → W, vi 7→ φv(vi) := φ(v1, . . . , vi, . . . , vm)

est k-linéaire. On vérifie immédiatement que Lk(V1 × · · · × Vm,W ) est un sous-k-espace vectoriel de
W V1×···×Vm .

Exercice 1.1. Calculer la dimension de Lk(V1 × · · · × Vm,W ).

Lorsque V1 = V2 = · · · = Vm = V et W = k, on parle de formes k-m-linéaires sur V et on notera
Lm,k(V ) := Lk(V × · · · × V, k) pour simplifier. Lorsque m = 1, on retrouve les formes k-linéaires usuelles et
on notera en général V ∨ := L1,k(V ).

Le groupe symétrique Sm agit naturellement sur k de deux façons:

(1) par l’action triviale: σ · λ = λ (ce qui correspond au morphisme de groupes 1 : Sm → {1} ⊂ k×);

(2) par la signature: σ · λ = ϵ(σ)λ (ce qui correspond au morphisme de groupes ϵ : Sm → {±1} ⊂ k×).

Le groupe symétrique Sm agit également naturellement sur V m par permutation des coordonnées:

σ · v = (vσ(1), . . . , vσ(m)).

On en déduit une action naturelle de Sm sur Lm,k(V ):

σ · φ : V m → k, v 7→ φ(vσ−1(1), . . . , vσ−1(m)).



ALGÈBRE BILINÉAIRE 3

On note

LId
m,k(V ) ⊂ Lm,k(V )

le sous-k-espace vectoriel des formes k-m-linéaires symétriques viz qui sont Sm-équivariante lorsque l’on
munit k de l’action (1), et

Lϵ
m,k(V ) ⊂ Lm,k(V )

le sous-k-espace vectoriel des formes k-m-linéaires antisymétriques viz qui sont Sm-équivariante lorsque l’on
munit k de l’action (2). Explicitement, pour tout φ ∈ Lm,k(V ),

φ ∈ LId
m,k(V ) ⇔ φ(vσ(1), . . . , vσ(m)) = φ(v), σ ∈ Sm, v ∈ V m

et

φ ∈ Lϵ
m,k(V ) ⇔ φ(vσ(1), . . . , vσ(m)) = ϵ(σ)φ(v), σ ∈ Sm, v ∈ V m.

Rem.: (HP):

(1) L’importance des formes k-bilinéaires vient de leur lien avec le produit tensoriel, qui est une construction
universelle fondamentale en algèbre commutative. En fait,

Lk(V1 × · · · × Vm,W ) = Homk(V1 ⊗k · · · ⊗k Vm,W ) ≃ V ∨
1 ⊗k · · · ⊗k V

∨
m ⊗k W.

(2) L’action de Sm sur Lm,k(V ) est par automorphismes k-linéaires i.e. Lm,k(V ) est une représentation k-
linéaire du groupe Sm. Si k est de caractéristique 0, la théorie des représentations linéaires des groupes
finis assure que Lm,k(V ) se décompose en la somme directe de ses composantes isotypiques viz on a un
isomorphisme Sm-équivariant

Lm,k(V ) ≃ ⊕I∈Irrk(Sm)I
⊕mI ,

où on a noté Irrk(Sm) un système de représentants des classes d’isomorphismes de représentations k-
linéaires simples de Sm. Le sous-k-espace vectoriel LId

m,k(V ) ⊂ Lm,k(V ) peut aussi s’interpréter comme la

composant isotypique correspondant à la représentation triviale et le sous-k-espace vectoriel Lϵ
m,k(V ) ⊂

Lm,k(V ) comme la composant isotypique correspondant à la représentation donnée par la signature (ce
sont les deux seules représentations k-linéaires irréductibles de dimension 1 de Sm).

1.2. Formes k-bilinéaires. Lorsque m = 2 on dit forme k-bilinéaire plutôt que forme k-2-linéaire. Dans
ce cas,

LId
2,k(V ) := {φ ∈ L2,k(V ) | φ(v2, v1) = φ(v1, v2)}, Lϵ

2,k(V ) := {φ ∈ L2,k(V ) | φ(v2, v1) = −φ(v1, v2)}
Si k est muni d’une involution Id ̸= τ , on dispose d’un troisième type d’applications 2-klinéaires distinguées,
les formes τ -hermitiennes:

Lτ
2,k(V ) := {φ ∈ L2,kτ (V ) | φ(v1,−) ∈ L1,k(V ), v1 ∈ V, φ(v2, v1) = τ(φ(v1, v2))} ⊂ L2,k(V × τV, k).

Ici, il faut prendre garde au fait que la structure de k-espace vectoriel sur la deuxième composante n’est pas
celle de V (not.: λ · v) mais le twist de celle-ci par τ (not.: λ ·τ v) 2 viz

λ ·τ v = τ(λ) · v, λ ∈ k, v ∈ V.

On note τV le groupe additif (V,+) muni de la loi extérieure ·τ : k × V → V . Si V ′ est un autre k-
espace vectoriel, on dit parfois que les morphismes de k-espaces vectoriels f : V ′ → τV sont les applications
τ -semilinéaires f : V ′ → V . Dans tous les cas, ça veut simplement dire que

f(λ · v) = λ ·τ f(v) = τ(λ) · f(v)...
En pratique, on sera surtout dans la situation où k ⊂ C est un sous-corps de C stable sous la conjugaison
complexe τ := (−) et la principale raison (dans le cade de l’Agreg) pour laquelle on introduit les formes
τ -hermitiennes est que sur C, ce sont les bons objets à considérer si l’on veut définir une notion de produit
scalaire sur les C-espaces vectoriels.

2En effet, pour tout φ ∈ Lτ
2,k(V ) et pour tout v1 ∈ k

φ(v1, λv2) = τ(φ(λv2, v1)) = τ(λφ(v2, v1)) = τ(λ)τ2(φ(v1, v2)) = τ(λ)φ(v1, v2), v2 ∈ V, λ ∈ k.
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Rem.: (Formes k-bilinéaires antisymétriques vs formes k-bilinéaires alternées). Notons

V
v 7→(v,v)

→̃ ∆V ⊂ V × V

les sous-k-espace vectoriel diagonal. On peut également considéré le sous-k-espace vectoriel

A2,k(V ) := ker(−|∆V
: L2,k(V ) → kV ) = {φ ∈ L2,k(V ) | φ(v, v) = 0, v ∈ V } ⊂ L2,k(V )

des formes k-bilinéaires alternées. On a toujours A2,k(V ) ⊂ Lϵ
2,k(V ) car pour tout φ ∈ A2,k(V ) et v1, v2 ∈ V ,

on a

0 = φ(v1 + v2, v1 + v2) = φ(v1, v1) + φ(v1, v2) + φ(v2, v1) + φ(v2, v2) = φ(v1, v2) + φ(v2, v1).

Inversement, pour tout φ ∈ Lϵ
2,k(V ) et v ∈ V , on a φ(v, v) = −φ(v, v) viz 2φ(v, v) = 0. Donc, si k

est de caractéristique ̸= 2, on a A2,k(V ) = Lϵ
2,k(V ). Par contre, si k est de caractéristique 2, l’inclusion

A2,k(V ) ⊂ Lϵ
2,k(V ) est stricte en général (cf. Sous-section 1.2.2 (0)).

L’objet de l’algèbre bilinéaire est l’étude des formes k-bilinéaires. Le cas où k est de caractéristique 2
présente des pathologies particulières, notamment dans l’étude des formes k-bilinéaires symétriques. Dans

ce cours, on se limitera presque toujours au cas où k est de caractérique p ̸= 2. On notera L#
2,k(V )

si on ne veut pas distinguer # = Id, ϵ, τ . On note également k# = k, # = V si # = Id, ϵ et k# := kτ ,
# = τV si # = τ . Le groupe GLk(V ) agit naturellement sur L#

2,k(V ) par

u · φ : V × V → k, (v1, v2) 7→ φ(u−1(v1), u
−1(v2)).

La première question que l’on peut se poser est celle de la classification des orbites L#
2,k(V )/GLk(V ) et, pour

un élément φ ∈ L#
2,k(V ), la détermination du groupe orthogonal de φ viz du stabilisateur

Ok(φ) := StabGLk(V )(φ) ⊂ GLk(V ).

Plutôt que de se fixer un k-espace vectoriel V et un objet φ ∈ L#
2,k(V ) il est parfois plus pratique de considérer

les paires (V, φ); elles formes les objets d’une catégorie C#
k dont les morphisms f : (V, φ) → (V ′, φ′) sont les

isométries viz les applications k-linéaires f : V → V ′ telles que

φ′(f(v1), f(v2)) = φ(v1, v2), v1, v2 ∈ V.

On dit que C#
k est la catégorie des k-espaces symétriques ou quadratiques si # = Id, antisymétriques ou

symplectiques si # = ϵ, τ -hermitiens si # = τ . Avec ce point de vue, Ok(φ) est le groupe des automorphismes

de (V, φ) dans C#
k .

1.2.1. Interpétation matricielle. Soit ϵ = ϵ1, . . . , ϵr une k-base de V . Pour tout φ) ∈ L2,k(V ), notons

Φ := (φ)ϵ := (φ(ϵi, ϵj))1≤i,j≤r ∈ Mr(k).

Pour tout vi =
∑

1≤j≤r vi,jϵj ∈ V , avec Vi := (vi)ϵ = (vi,j)1≤j≤r ∈ Mr,1(k) i = 1, 2, on a

φ(v1, v2) =
tV1ΦV2 avec

tΦ = Φ ssi φ ∈ LId
2,k(V );

tΦ = −Φ ssi φ ∈ Lϵ
2,k(V );

tΦ = −Φ et les termes diagonaux de Φ sont 0 ssi φ ∈ Lϵ
2,k(V ).

De même, si φ ∈ Lτ
2,kτ (V ), on a

φ(v1, v2) =
tV1Φ

τV2 avec
tΦ = τΦ.

Autrement dit, l’isomorphisme de k-espaces vectoriels (−)ϵ : L2,k(V )→̃Mr(k) identifie LId
2,k(V ) ⊂ L2,k(V )

au sous-k-espace vectoriel des matrices symétriques (tΦ = Φ), Lϵ
2,k(V ) ⊂ L2,k(V ) au sous-k-espace vectoriel

des matrices antisymétriques (tΦ = −Φ) et Lτ
2,kτ (V ) ⊂ L2,k(V ) au sous-kτ -espace vectoriel des matrices

τ -hermitiennes (tΦ = τΦ). Pour tout u ∈ GLk(V ), avec U := (u)ϵ, on a

(u · φ)ϵ = tU−1ΦU−1.
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En particulier, l’isomorphisme de groupes (−)ϵ : GLk(V )→̃GLr(k) identifie Ok(φ) ⊂ GLk(V ) au sous-groupe

Ok(Φ) := {U ∈ GLr(k) | tU−1ΦU−1 = Φ} = {U ∈ GLr(k) | tUΦU = Φ} ⊂ GLr(k) si # = Id, ϵ,

et au sous-groupe

Ok(Φ) := {U ∈ GLr(k) | tU−1ΦτU−1 = Φ} = {U ∈ GLr(k) | tUΦτU = Φ} ⊂ GLr(k) si # = τ .

Exercice 1.2. Calculer les k-dimensions de LId
2,k(V ) et Lϵ

2,k(V ), et montrer que L2,k(V ) = LId
2,k(V )⊕Lϵ

2,k(V ).

1.2.2. Exemples.

(0) En utilisant la description matricielle, il est facile de construire des éléments de L#
2,k#

(kr). Par exemple,

si k est de caractéristique 2, pour tout α ∈ k la forme

φα : k2 × k2 → k, ((x1,1, x2,1), (x1,2, x2,2)) 7→ x1,1x1,2 + α(x1,1x2,2 − x2,1x1,2) + x2,1x2,2

est antisymétrique (et symétrique si α = 1) mais elle n’est pas alternée car, dans la base canonique
ϵ = ((1, 0), (0, 1)),

(φ)ϵ =

(
1 α
−α 1

)
(par exemple φα((1, 0), (1, 0)) = 1).

(1) Si V est un k-espace vectoriel de dimension r et ϵ est une k-base de V , le déterminant

detϵ : V
r → k ∈ Lϵ

r,k(V ).

En particulier, pour r = 2, on obtient un élément de Lϵ
2,k(V ). Dans k2 muni de la base canonique

ϵ = ((1, 0), (0, 1)), on a explicitement

detϵ : k
2 × k2 → k, (x1,1, x2,1), (x1,2, x2,2)) 7→ x1,1x2,2 − x1,2x2,1;

la matrice correspondante est

(detϵ)ϵ =

(
0 1
−1 0

)
(2) (Traces) Pour tout k-espace vectoriel V , on a

Endk(V )× Endk(V ) → k, (f, g) 7→ Tr(g ◦ f) ∈ LId
2,k(Endk(V ))

En termes matriciels, on a

Mr(k)×Mr(k) → k, (M,N) 7→ Tr(MN) ∈ LId
2,k(Mr(k)).

On peut modifier un peu la définition pour construire

Mr(k)×Mr(k) → k, (M,N) 7→ Tr(M τN) ∈ Lτ
2,kτ (Mr(k)).

(3) (Intégrales) Pour tout sous-R-espace vectoriel V de R-dimension finie des applications continues [0, 1] →
R (e.g. V = R≤r[T ], V = RId⊕ Rsin(−)⊕ Rcos(−) etc), on a

V × V → R, (f, g) 7→
∫
[0,1]

f(t)g(t)dt ∈ LId
2,R(V ).

De même, pour tout sous-C-espace vectoriel V de C-dimension finie des applications continues [0, 1] → C,
on a

V × V → C, (f, g) 7→
∫
[0,1]

f(t)g(t)dt ∈ L(−)
2,R (V ).

(4) (Pullbacks) Si (V, φ) ∈ C#
k et f : W → V est une application k-linéaire, on a encore (W, f∗φ) ∈ C#

k , où

f∗φ) : W ×W → k, (w1, w2) 7→ φ(f(w1), f(w2)).

On peut combiner cette observation avec l’exemple (2) pour obtenir des exemples intéressants:
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(i) (HP ?) Si K/k est une extension finie de corps, on a une application k-linéaire naturelle L− : K →
Endk(K) définie par Lx(y) = xy. La forme

TrK/k : K ×K → k, (x1, x2) 7→ Tr(Lx1 ◦ Lx2) ∈ LId
2,k(K)

joue un rôle important en théorie algébrique des nombres (cf. e.g. [VI, §5, L93]).
(ii) (HP) Si g ⊂ Endk(V ) est une sous-k-algèbre de Lie viz un sous-k-espace vectoriel tel que pour tout

f, g ∈ g, [f, g] := g ◦ f − f ◦ g ∈ g, on a une application k-linéaire naturelle ad− : g → Endk(g)
définie par adf (g) = [f, g]. La forme

κg : g× g → k, (f1, f2) 7→ κ(adf1 ◦ adf2) ∈ LId
2,k(g)

- appelée forme de Killing de g - joue un rôle important dans l’étude des k-algèbres de Lie.

(5) (HP) (Cohomologie milieu) Si X est une variété algébrique projective lisse géométriquement connexe
de dimension d sur un corps k, on peut, pour l’étudier, lui associer de façon fonctorielle plusieurs
”algèbres cohomologiques” qui sont des Q-algèbres graduées de la forme H•(X) = ⊕1≤i≤2dH

i(X) et
vérifiant certaines symmétries (dualité de Poincaré, formules de Lefschetz etc.); ici Q est un corps de
caractéristique 0 qui, selon le cas, est Q,Qp, k (si k est de caractéristique 0). On dispose notamment

d’une application trace tr : H2d(X)(d)→̃Q qui permet de définir pour tout i, en utilisant le produit de
H•(X), un accouplement

H i(X)×H2d−i(X)(i) → H2d(X)(d)
tr
→̃ Q.

En degré milieu i = d, on a en particulier une forme Q-bilinéaire (oublier le ”twist de Tate” ”(d)”

Hd(X)×Hd(X)(d) → Q

qui est symétrique si d est paire et antisymétrique sinon. Cette forme joue un rôle absolument fonda-
mental en géométrie algébrique.

1.2.3. Noyau, rang, discriminant. Pour tout (V, φ) ∈ C#
k , on a deux applications k-linéaires:

Lφ : V → #(V ∨), v 7→ φ(−, v), Rφ : V → (#V )∨, v 7→ φ(v,−),

dont les noyaux coincident. On dit que

ker(φ) := ker(Lφ) = ker(Rφ)

est le noyau de φ et que

rang(φ) := dimk(V )− dimk(ker(φ)) = rang(Lφ) = rang(Rφ)(≥ 0)

est le rang de φ.

Par définition de ker(φ), on a les diagrammes commutatifs canoniques de k-espaces vectoriels

V

vvvvmmm
mmm

mmm
mmm

mm

Lφ
��

V/ ker(φ) �
�v̄ 7→φ(−,v) //

≃
v̄ 7→φ̄(−,v̄) ''

#(V ∨)

#((V/ ker(φ))∨)
?�

−◦pker(φ)

OO

, V

vvvvnnn
nnn

nnn
nnn

nn

Rφ
��

V/ ker(φ) �
�̄v 7→φ(v,−) //

≃
v̄ 7→φ̄(v̄,−) ''

(#V )∨

(#(V/ ker(φ))∨
?�

−◦pker(φ)

OO

et la forme k-bilinéaire induite

φ̄ : V/ ker(φ)× #(V/ ker(φ)) → k, (v̄1, v̄2) 7→ φ̄(v̄1, v̄2) = φ̄(−, v̄2)(v̄1) = φ̄(v̄1,−)(v̄2)

est encore un élément de L#
2,k(V/ ker(φ)).

Si ker(φ) = 0 on dit que φ ∈ L#
2,k(V ) est non-dégénérée; dans ce cas, Lφ : V → #(V ∨) et Rφ :

V → (#V )∨ sont des isomorphismes de k#-espaces vectoriels. Par construction, la forme k-bilinéaire
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φ̄ : V/ ker(φ) × #(V/ ker(φ)) → k est non-dégénérée; on dira que c’est la forme k-bilinéaire non-dégénérée
associée à φ.

Pour tout u ∈ GLk(V ) on a u(ker(φ)) = ker(u ·φ) donc rang(u ·φ) = rang(φ); autrement dit, l’application
rang se factorise en

L#
2,k(V )

rang //

��

Z≥0

L#
2,k(V )/GLk(V )

88rrrrrrrrrrrr

Si ϵ∨ = ϵ∨1 , . . . , ϵ
∨
r est la k-base de V ∨ duale de ϵ, on peut également interpréter Φ = (φ)ϵ comme la matrice

de V
v 7→φ(−,v)→ V ∨ dans les bases ϵ, ϵ∨; en particulier,

rang(φ) = rang(Φ).

Enfin, comme det(tUΦU) = det(U)2det(Φ) et det(tUΦτU) = det(U)τ(det(U))Φ = Nτ (det(U))det(Φ), pour
toute k-base ϵ de V , les applications discriminants

δ := δϵL#
2,k(V )

φ 7→det((φ)ϵ)→ k ↠ k/(k×)2, # = Id, ϵ

et

δ := δϵLτ
2,k(V )

φ7→det((φ)ϵ)→ k ↠ k/Nτ (k
×), # = τ

sont indépendantes de ϵ et se factorisent respectivement en

L#
2,k(V )

δ //

��

k/(k×)2

L#
2,k(V )/GLk(V )

77pppppppppppp

, # = Id, ϵ et Lτ
2,k(V )

δ //

��

k/Nτ (k
×)

Lτ
2,k(V )/GLk(V )

66nnnnnnnnnnnnn

, # = τ.

1.2.4. φ-orthogonalité, isotropie. Pour tout (V, φ) ∈ C#
k , et sous-k-espace vectoriel W ⊂ V , on note

W⊥φ := ker((−)|W ◦ Lφ : V → #(W∨)) = ker((−)|W ◦Rφ : V → (#W )∨

le sous-k-espace vectoriel φ-orthogonal à W . Concrètement, c’est le sous-k-espace vectoriel des v ∈ V tels
que φ(W, v) = 0 (ou, de façon équivalente, φ(v,W ) = 0). Par définition, on a des suites exactes de k-espaces
vectoriels

0 → W⊥φ → V
v 7→φ(−,v)|W→ #(W∨), 0 → W⊥φ → V

v 7→φ(v,−)|W→ (#W )∨.

On dit que deux sous-k-espaces vectoriels W,W ′ ⊂ V sont φ-orthogonaux s’ils vérifient les conditions
équivalentes suivantes

(i) W ′ ⊂ W⊥φ ;

(ii) W ⊂ W ′⊥φ ;

(iii) φ(W,W ′) = 0;

on notera alors W ⊥φ W ′. Si W ⊥φ W ′ et W ⊕ W ′, on notera W ⊕⊥φ W ′. Plus généralement, on dira
que des sous-k-espaces vectoriels W1, . . . ,Wr ⊂ V sont φ-orthogonaux si Wi ⊥φ Wj , 1 ≤ i ̸= j ≤ r et
qu’ils sont en somme directe φ-orthogonale s’ils sont φ-orthogonaux et en somme directe, ce que l’on notera

⊕⊥φ

1≤i≤rWi ⊂ V . On dira qu’une famille de vecteurs w1, . . . , wr ∈ V est φ-orthogonale si les kwi, 1 ≤ i ≤ r

sont φ-orthogonaux et que c’est une k-base φ-orthogonale si V = ⊕⊥φ

1≤i≤rkwi. Enfin, on dit qu’un sous-k-
espace vectoriel W ⊂ V est φ-isotrope si W ⊥φ W et qu’un vecteur v ∈ V est φ-isotrope si kv ⊂ V est
φ-isotrope. On notera

Iso(φ) := {v ∈ V | φ(v, v) = 0} ⊂ V
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le sous-ensemble des vecteurs φ-isotropes; c’est un cône (viz est stable par l’action extérieure de k). Si
Iso(φ) = 0, on dit que (V, φ) est anisotrope.

Remarque 1.3. Tautologiquement ker(φ) ⊂ Iso(φ) mais l’inclusion est stricte en générale. Par exemple la
forme k-bilinéaire symétrique (resp. antisymétrique) sur k2 données par la matrice(

1 0
0 −1

)
(resp.

(
0 1
−1 0

)
)

est non-dégénérée mais son cône isotrope est Iso(φ) = {(x,±x) | x ∈ k} (resp. Iso(φ) = k2).

Pour tout φ ∈ L#
2,k(V ) et sous-k-espace vectoriel W ⊂ V , la restriction φW := φ|W×W : W × W → k est

encore un élément de L#
2,k(W ). Si V = ⊕1≤i≤rWi est une décomposition en somme directe de sous-k-espaces

vectoriels et que pour chaque i = 1, . . . , r on se donne φi ∈ L#
2,k(Wi), l’application

φ := ⊕1≤i≤rφi : V × V → k

définie par

φ(v1 = ⊕1≤i≤rw1,i, v2 = ⊕1≤i≤rw2,i) =
∑

1≤i≤r

φi(w1,i, w2,i)

est un élément de L#
2,k(V ) tel que ⊕⊥φ

1≤i≤rW = V ; on notera

(V, φ) = ⊕⊥
1≤i≤r(Wi, φi).

la décomposition en somme directe φ-orthogonale correspondante. Pour classifier les espaces (V, φ), la
première étape est de déterminer des décomposition en somme directe φ-orthogonale de V telles que les
sous-espaces (Wi, φi), i = 1, . . . , r soient aussi simples que possible - idéalement dimk(Wi) = 1, i = 1, . . . , r.

Le Lemme 1.4 est l’outil de base; il va permettre de ramener systématiquement la classification des objets

de C#
k au cas non-dégénéré et de montrer que tout objet (V, φ) de C#

k se décompose comme somme directe
φ-orthogonale de sous-k-espaces non-dégénérés minimaux.

Lemme 1.4. Soit (V, φ) ∈ C#
k .

(1) Supposons donnée une décomposition (V, φ) = ⊕⊥
1≤i≤r(Wi, φi). Alors, ker(φ) = ⊕1≤i≤r ker(φi); en

particulier, (V, φ) est non dégénéré ssi (Wi, φi) est non dégénéré i = 1, . . . , r.

(2) Slogan: Supposons que (V, φ) est non dégénéré. Pour tout sous-k-espace vectoriel W ⊂ V ,

dimk(V ) = dimk(W ) + dimk(W
⊥φ),

et les CSSE:

(i) (W,φ|W×W ) est non dégénéré;

(ii) V = W ⊕W⊥φ;

(iii) (W⊥φ , φ|W⊥φ×W⊥φ ) est non dégénéré.

(3) Pour toute décomposition V = ker(φ)⊕W , on a automatiquement ker(φ) ⊥φ W , (W,φ|W×W ) est non
dégénéré, et si V = ker(φ) ⊕W = ker(φ) ⊕W ′ sont deux telles décomposition, il existe une isométrie
f : (W,φ|W×W )→̃(W ′, φ|W ′×W ′).

Proof. (1) Pour tout vi = ⊕1≤j≤rvi,j avec vi,j ∈ Wj , j = 1, . . . , r on a, par définition,

(∗) φ(v1, v2) =
∑

1≤j≤r

φj(v1,j , v2,j).

En particulier, ⊕1≤j≤r ker(φj) ⊂ ker(φ). L’inclusion inverse s’obtient en appliquant (∗) à v2 = V2,j ∈ Wj

arbitraire, j = 1, . . . , r.
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(2) Par symétrie, il suffit de montrer (i) ⇔ (ii). Le fait que (V, φ) est non dégénéré implique que dans le
diagramme canonique

V
v 7→φ(−,v)|W //

v 7→φ(−,v) ≃
��

#(W∨)

#(V ∨)

f 7→f |W ,

66 66nnnnnnnnnnnnn

la flèche verticale est un isomorphisme de k-espaces vectoriels. Comme la flèche diagonale est surjective,
on en déduit que la flèche horizontale est aussi surjective. En termes de dimension, on a donc

dimk(V ) = dimk(W ) + dimk(W
⊥φ).

Il suffit donc de montrer que (i) ⇔ W ∩ W⊥φ = 0. Mais, par définition du noyau, W ∩ W⊥φ =
ker(φ|W×W ).

(3) La première partie de l’assertion est tautologique. Pour la deuxième partie, soit w0 ∈ ker(φ|W×W ),
on a φ(w0, V ) ⊂ φ(w0, ker(φ)) + φ(w0,W ) = 0 donc w0 ∈ W ∩ ker(φ) = 0. Pour la dernière partie,
la projection canonique pW : V = ker(φ) ⊕ W ↠ W sur W parallèlement à ker(φ) se factorise en
pW : V/ ker(φ)→̃W , dont on vérifie sur les définitions que c’est une isométrie

pW : (V/ ker(φ), φ)→̃(W,φ|W×W ).

(En écrivant v1 = ki + wi avce ki ∈ ker(φ), wi ∈ W , i = 1, 2, on a

φ(v1, v2)
def
= φ(v1, v2) = φ(w1, w2)

def
= φ|W×W (pW (v1), pW (v2)))

□

Pour tout k-espace vectoriel V et φ,φ′ ∈ L#
2,k(V ), s’il existe u ∈ GLk(V ) tel que φ′ = u · φ, on a

u(ker(φ′)) = ker(φ) donc si V = ker(φ′) ⊕ W ′ est une décomposition en somme directe (automatique-
ment φ′-orthogonale), V = ker(φ) ⊕ u(W ′) est une décomposition en somme directe (automatiquement
φ-orthogonale) et la restriction u : W ′ → u(W ′) induit tautologiquement une isométrie

u : (W ′, φ′|W ′×W ′)→̃(u(W ′), φ|u(W ′)×u(W ′)).

Au lieu de fixer V et de considérer l’action de GLk(V ) sur L#
2,k(V ) on peut ne fixer que la k-dimension r de

V et considérer la relation d’équivalence ∼ ”être isométriques” sur l’ensemble C#
k (r) des objets (V, φ) ∈ C#

k
tels que le k-espace vectoriel sous-jacent V soit de k-dimension r. L’application canonique

L#
2,k(V )/GLk(V )→̃C#

k (r)/ ∼, φ 7→ [(V, φ)]

donc cela revient au même de classifier les orbites de L#
2,k(V ) sous GLk(V ) ou les classes déquivalences de

∼ sur C#
k (r). Avec le second point de vue, la discussion ci-dessus montre que:

Slogan: (V, φ) ∼ (V ′φ′) ssi rang(φ) = rang(φ′) et (V/ ker(φ), φ) ∼ (V ′/ ker(φ′), φ′).

Autrement dit, pour le problème de la classification, on peut se restreindre au cas des formes non-dégénérées.
Une condition nécessaire pour que (V, φ) ∼ (V ′φ′) est que rang(φ) = rang(φ′), δ(φ) = δ(φ′). En général,
cette condition n’est pas suffisante.

2. Structure des espaces symétriques et τ-hermitiens

2.1. Structure des espaces symétriques.
Dans cette section, on note simplement Ck := CId

k , N := NId := (−)2 : k× → k×.



10 ALGÈBRE BILINÉAIRE

2.1.1. Existence de k-bases φ-orthogonales. Pour les espaces symétriques on a toujours l’existence de k-bases
φ-orthogonales. Commençons par observer que pour tout (V, φ) ∈ LId

2,k(V ), on a3

Identité de polarisation:

φ(v1, v2) =
1

2
(φ(v1 + v2, v1 + v2)− φ(v1, v1)− φ(v2, v2)) =

1

4
(φ(v1 + v2, v1 + v2)− φ(v1 − v2, v1 − v2)).

En particulier, pour tout k-espace vectoriel V , si on note ∆V := {(v, v) | v ∈ V } ⊂ V × V la diagonale,
l’application k-linéaire de restriction

(−)|∆V
: LId

2,k(V ) → kV , φ 7→ φ|∆V

est injective. En particulier, puisque par définition (φ|∆V
)−1(0) = Iso(φ) ⊂ V , on a

φ ̸= 0 ⇔ Iso(φ) ⊊ V.

Proposition 2.1. Pour tout (V, φ) ∈ CId
k , il existe une k-base de V qui est φ-orthogonale.

Proof. Si ker(φ) = V , toute k-base de V est φ-orthogonale. Si ker(φ) ⊊ V , toute décomposition en somme
directe V = ker(φ)⊕W est automatiquement φ-orthogonale donc la concaténation v = (v0, w) d’une k-base
v0 de ker(φ) et d’une k-base φ|W×W -orthogonale w de W donne une k-base φ-orthogonale de V . Il suffit
donc de montrer l’énoncé pour (V, φ) non-dégénéré. On procède par récurrence sur r := dimk(V ). Le cas
r = 1 est vide. Supposons r ≥ 2 et la proposition démontrée pour les k-espaces symétriques non-dégénérés
de dimension ≤ r−1. Comme φ ̸= 0, il existe v ∈ V tel que φ(v, v) ̸= 0. Notons W := kv. Comme (V, φ) et
(W,φ|W×W ) sont non dégénérés, V = W ⊕W⊥φ (Lemme 1.4 (2) (i) ⇒ (ii)) avec (W⊥φ , φ|W⊥φ×W⊥φ ) non

dégénéré (Lemme 1.4 (2) (i) ⇒ (iii)). Par hypothèse de récurrence, (W⊥φ , φ|W⊥φ×W⊥φ ) admet une k-base
φ|W⊥φ×W⊥φ -orthogonale w; la famille (v, w) fournit une k-base φ-orthogonale de V . □

Slogan: Si (V, φ) ∈ CId
k est non-dégénérée et ϵ = ϵ1, . . . , ϵr est une k-base φ-orthogonale de V , on a,

φ(ϵi, ϵi) ̸= 0, i = 1, . . . , r et, pour tout v ∈ V ,

v =
∑

1≤i≤r

φ(v, ϵi)

φ(ϵi, ϵi)
ϵi.

On va maintenant affiner ce résultat en prenant en compte les propriétés algébriques de k.

2.1.2. Corps quadratiquement clos. Dans ce paragraphe, on suppose que k est quadratiquement clos viz que
le morphisme N : k× → k× est surjectif.

Ex.: Tout corps algébriquement clos (C, Q, Fp etc) est quadratiquement clos (puisque pour tout x ∈ k,
T 2 − x a une racine dans k) mais être quadratiquement clos est une propriété nettement plus faible que
d’être algébriquement clos. Par exemple, la clôture quadratique de Q dans C est le sous-corps Qquad ⊂ Q
des nombres algébriques constructibles.

Corollaire 2.2. Pour tout (V, φ) ∈ LId
2,k(V ) non-dégénéré, il existe une k-base ϵ de V tels que (φ)ϵ = Ir.

Une k-base comme dans le Corollaire 2.2 est dite φ-orthonormale.

Proof. D’après la Proposition 2.1, il existe une k-base φ-orthogonale ϵ de V . Comme (V, φ) ∈ CId
k est non-

dégénéré, φ(ϵi, ϵi) ̸= 0, 1 ≤ i ≤ r (Lemme 1.4 (1)). Pour i = 1, . . . , r, et comme k est quadratiquement
clos, il existe xi ∈ k tel que x2i = φ(ϵi, ϵi). La k-base x−1

1 ϵ1, . . . , x
−1
r ϵr) convient (utiliser φ(x

−1
i ϵi, x

−1
i ϵi) =

x−2
i φ(ϵi, ϵi), i = 1, . . . , r). □

Corollaire 2.3. (Classification) Pour tout k-espace vectoriel V , l’application rang(−) induit un isomor-
phisme

rang : LId
2,k(V )/GLk(V )→̃{0, . . . , dimk(V )}.

3Ici, en particulier, le fait que k soit de caractéristique ̸= 2 est crucial.
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Proof. On a déjà vu que l’application rang : LId
2,k(V )/GLk(V ) → {0, . . . , dimk(V )} était bien définie. Elle

est également surjective; en effet si ϵ0 est une k-base de V , la forme k-bilinéaire symétrique φs définie par

(φs)ϵ = diag(0r−s, Is) =: Ir,s

est de rang s. Elle est injective car si φ ∈ LId
2,k(V ) est de rang s, on peut trouver une k-base φ-orthogonale

ϵ telle que ϵ1, . . . , ϵr−s soit une k-base de ker(φ), et ϵr−s+1, . . . , ϵs une k-base φ|W×W -orthonormale d’un
supplémentaire W de ker(φ) dans V donc (φ)ϵ = Ir,s donc en considérant l’automorphisme u ∈ GLk(V )
défini par u(ϵ0) = ϵ, on a u · φs = φ. □

Interprétation matricielle:

(1) Pour tout Φ ∈ Mr(k),
tΦ = Φ et rang(Φ) = s ssi il existe U ∈ GLr(k) tel que Φ = tUIr,sU .

(2) Pour tout r ≥ 1, on dit que le sous-groupe

Or(k) := {V ∈ GLr(k) | tV V = Ir} ⊂ GLr(k)

est le groupe orthogonal de rang r. Le groupe O(Ir,s) est une extension scindée

0 → Mr,s(k) → O(Ir,s) → GLr−s(k)×Or(k) → 1

et, avec les notations de (1),
O(Φ) = U−1O(Ir,s)U.

2.1.3. Corps pré-euclidiens. Dans ce paragraphe, on suppose que k = (k,≤) est pré-euclidien viz totalement
ordonné. On note x < y pour x ≤ y, x ̸= y.

2.1.3.1. Lemme de Sylvester, classification.

Corollaire 2.4. (Sylvester) Pour tout (V, φ) ∈ CId
k non-dégénéré, pour toute k-base ϵ = ϵ1, . . . , ϵr φ-

orthogonale de V l’entier
s+(φ) := s(φ, ϵ) = |{1 ≤ i ≤ r | φ(ϵi, ϵi) > 0}|

est indépendant de ϵ.

Proof. Soit ϵ1, ϵ2 deux k-base φ-orthogonales de V . Quitte à réordonner, on peut supposer que φ(ϵj,i, ϵj,i) >
0, i = 1, . . . , sj := s(φ, ϵj), j = 1, 2. On veut montrer que s1 = s2. Par symétrie, il suffit de montrer
que s1 ≤ s2. Pour cela, il suffit de montrer que ϵ1,1, . . . , ϵ1,s1 , ϵ2,s2+1 . . . , ϵ2,r sont k-libres; en effet, cela
impliquera s1 + r − s2 ≤ r donc s1 ≤ s2. Soit donc x1,1, . . . , x1,s1 , x2,s2+1 . . . , x2,r ∈ k tels que

v :=
∑

1≤i≤s1

x1,iϵ1,i = −
∑

s2+1≤i≤r

x2,iϵ2,i.

En utilisant l’orthogonalité de ϵ1,1, . . . , ϵ1,s1 et ϵ2,s2+1 . . . , ϵ2,r, on obtient

φ(v, v) =
∑

1≤i≤s1

x21,iφ(ϵ1,i, ϵ1,i)
(∗)
=

∑
s2+1≤i≤r

x22,iφ(ϵ2,i, ϵ2,i).

Comme le terme de gauche de (*) est ≥ 0 et celui de droite est ≤ 0 (on rappelle que dans un corps ordonné,
les carrés sont ≥ 0), on a forcément∑

1≤i≤s1

x21,iφ(ϵ1,i, ϵ1,i) =
∑

s2+1≤i≤r

x22,iφ(ϵ2,i, ϵ2,i) = 0.

Mais comme x21,iφ(ϵ1,i, ϵ1,i) ≥ 0, i = 1, . . . , s1, cela impose x21,iφ(ϵ1,i, ϵ1,i) = 0 donc x21,i = 0 puisque

φ(ϵ1,i, ϵ1,i) ̸= 0, i = 1, . . . , s1. De même x2,i = 0, i = s2 + 1, . . . , r. □

On dit que (V, φ) ∈ CId
k est défini positif (ou que φ ∈ LId

2,k(V )) est définie positive) si φ(v, v) > 0, 0 ̸= v ∈ V

et que (V, φ) ∈ CId
k est défini négatif (ou que φ ∈ LId

2,k(V )) est définie négative) si φ(v, v) < 0, 0 ̸= v ∈ V . On

notera CId,>0
k , CId,<0

k ⊂ Ck, S>0
2,k(V ),SId,<0

2,k (V ) ⊂ LId
2,k(V ) les objets définis positifs et négatifs respectivement.

Pour tout (V, φ) ∈ CId
k notons Sub>0(V, φ) l’ensemble des sous-k-espaces vectoriels W ⊂ V tels que

(W,φ|W×W ) est défini positif et Sub<0(V, φ) l’ensemble des sous-k-espaces vectoriels W ⊂ V tels que
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(W,φ|W×W ) est défini négatif.

Slogan: Tout (V, φ) ∈ CId,>0
k (ou (V, φ) ∈ CId,<0

k ) est non-dégénéré et pour tout 0 ̸= W ⊂ V sous-k-espace

vectoriel, (W,φ|W×W ) ∈ CId,>0
k donc, en particulier, est non-dégénéré, et on a

V = W ⊕⊥φ W⊥φ .

Plus généralement, pour tout W ∈ Sub>0(V, φ) (ou W ∈ Sub<0(V, φ)), (W,φ|W×W ) est non-dégénéré, donc
(Lemme 1.4 (2)) V = W ⊕⊥φ W⊥φ et (W⊥φ , φ|W⊥φ×W⊥φ ) est non-dégénéré.

Corollaire 2.5. Pour tout (V, φ) ∈ CId
k non-dégénéré,

(1) Pour tout W ∈ Sub>0(V, φ) maximal pour l’inclusion dans Sub>0(V, φ) , W⊥φ ∈ Sub<0(V, φ).

(2) Pour tout W ∈ Sub>0(V, φ), W est maximal pour l’inclusion dans Sub>0(V, φ) ssi s+(φ) = dimk(W ).

Proof. (1) Soit W ∈ Sub>0(V, φ) maximal pour l’inclusion dans Sub>0(V, φ). On a V = W ⊕⊥φ W⊥φ et
(W⊥φ , φ|W⊥φ×W⊥φ ) non-dégénéré donc on peut fixer une k-base φ-orthogonale ϵW de W et une k-base

φ-orthogonale ϵ⊥W de W⊥φ . Par construction, la concaténation ϵ := ϵW , ϵ⊥W est une k-base φ-orthogonale
de V telle que

s+(φ) = s+(φ, ϵ) = dimk(W ) + s+(φ, ϵ
⊥
W ).

Mais si s+(φ, ϵ
⊥
W ) ̸= 0, il existe w ∈ W⊥φ tel que φ(w,w) > 0 donc W ⊊ W ⊕ kw ∈ Sub>0(V, φ),

contredisant la maximalité de W dans Sub>0(V, φ).

(2) La partie (1) montre déja que si W ∈ Sub>0(V, φ), est maximal pour l’inclusion dans Sub>0(V, φ) ,
dimk(W ) = s+(φ). Inversement, si W ∈ Sub>0(V, φ) vérifie dimk(W ) = s+(φ) alors il est maximal
car pour tout W ∈ Sub>0(V, φ), dimk(W ) ≤ s+(φ). En effet, si W0 ∈ Sub>0(V, φ) est maximal

pour l’inclusion, par (1) W
⊥φ

0 ∈ Sub<0(V, φ) donc W ∩ W
⊥φ

0 = 0 (pour tout wv ∈ W ∩ W
⊥φ

0 on a

φ(w,w) ≥ 0 car w ∈ W et φ(w,w) ≤ 0 car w ∈ W
⊥φ

0 donc φ(w,w) = 0, ce qui implique w = 0 puisque

W ∈ Sub>0(V, φ)), et donc dimk(W ) ≤ dimk(V )− dimk(W
⊥φ

0 ) = dimk(W0) = s+(φ).
□

En général, pour tout (V, φ) ∈ CId
k , pour tout W ∈ Sub>0(V, φ), les CSSE:

(i) W ∈ Sub>0(V, φ) et W est maximal pour l’inclusion dans Sub>0(V, φ);

(ii) W (↪→ V/ ker(φ)) ∈ Sub>0(V/ ker(φ), φ) est maximal pour l’inclusion dans Sub>0(V, φ);

(iii) dimk(W ) = s+(φ).

On note
s+(φ) := s+(φ), s−(φ) := dimk(V/ ker(φ))− s+(φ) = rang(φ)− s+(φ)

et on dit que
s(φ) = (s+(φ), s−(φ))(= s(φ))

est la signature de (V, φ).

En fait, on vérifie immédiatement que le Corollaire 2.4 s’étend au cas où (V, φ) ∈ CId
k n’est pas forcément

non-dégénérée comme suit: pour toute k-base φ-orthogonale ϵ de (V, φ), en notant

ϵ0 := {ϵ ∈ ϵ | φ(ϵ, ϵ) = 0} ⊂ ϵ,

ϵ+ := {ϵ ∈ ϵ | φ(ϵ, ϵ) > 0} ⊂ ϵ,

ϵ− := {ϵ ∈ ϵ | φ(ϵ, ϵ) < 0} ⊂ ϵ,

on a que ϵ0 est une k-base de ker(φ), V (ϵ)+ := ⊕ϵ∈ϵ+kϵ ∈ Sub>0(V, φ) et V (ϵ)− := ⊕ϵ∈ϵ−kϵ ∈ Sub<0(V, φ),

donc que s(φ) = (|ϵ+|, |ϵ−|).

Pour tout entier r ≥ 1, notons

Σ(r) := {s = (s+, s−) ∈ Z | 0 ≤ s+, s− ≤ s+ + s− ≤ r}.
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Pour tout φ ∈ LId
2,k(V ) et u ∈ GLk(V ), s(u · φ) = s(φ) donc l’application signature se factorise en

LId
2,k(V )

s //

��

Σ(dimk(V ))

LId
2,k(V )/GLk(V )

66mmmmmmmmmmmmm

On suppose maintenant, et jusqu’à la fin de ce paragraphe, que k est euclidien. Pour tout x ∈ k,
x > 0, on note

√
x > 0 la racine ≥ 0 de T 2 − x.

Corollaire 2.6. (Classification) Pour tout (V, φ) ∈ CId
k de signature s = (s+, s−), il existe une k-base

φ-orthogonale ϵ = (ϵ0, ϵ+, ϵ−) de V telle que

φ(ϵ, ϵ) = 0, ϵ ∈ ϵ0; φ(ϵ, ϵ) = 1, ϵ ∈ ϵ+, φ(ϵ, ϵ) = −1, ϵ ∈ ϵ−,

(donc (|ϵ+|, |ϵ−|) = s). En particulier, l’application signature induit une bijection

s : LId
2,k(V )/GLk(V )→̃Σ(dimk(V )).

On dit encore qu’une k-base ϵ de V comme dans le Corollaire 2.6 est φ-orthonormale.

Proof. Soit ϵ une k-base φ-orthogonale de (V, φ); avec les notations ϵ0, ϵ+, ϵ− introduites ci-dessus, la k-

base construite à partir de ϵ en laissant inchangés les éléments de ϵ0 et en remplaçant ϵ par (
√

φ(ϵ, ϵ))−1ϵ

si ϵ ∈ ϵ+ et par (
√
−φ(ϵ, ϵ))−1ϵ si ϵ ∈ ϵ− convient. Notons r := dimk(V ). On a déjà vu que l’application

s : LId
2,k(V )/GLk(V )→̃Σ(r) était bien définie. Elle est également surjective; en effet si ϵ0 est une k-base de

V , pour tout s = (s+, s−) ∈ Σ(r) , la forme k-bilinéaire symétrique φs définie par

(φs)ϵ0 = diag(0r−s+−s− , Is+ ,−Is−) =: Ir,s

est de signature s. Elle est injective car si φ ∈ LId
2,k(V ) est de signature s = (s+, s−), on vient juste de voir

que l’on peut trouver une k-base φ-orthogonale ϵ de V telle que (φ)ϵ = diag(0r−s+−s− , Is+ ,−Is−) donc φ et
φs sont équivalentes. □

Interprétation matricielle:

(1) Pour tout s = (s+, s−) ∈ Σ(r) et Φ ∈ Mr(k),
tΦ = Φ et s(Φ) = s ssi il existe U ∈ GLr(k) tel que

Φ = tUIr,sU .

(2) Dans le cas où s+, s− > 0, la description du groupe orthogonal

Or,s(k) := {V ∈ GLr(k) | tV Ir,sV = Ir,s} ⊂ GLr(k)

devient significativement plus compliqué que dans le cas algébriquement clos... Seul le cas r = s+ est
au programme.

2.1.3.2. Produits scalaires. Si k est pré-euclidien (resp. euclidien), on appelle k-espaces vectoriels pré-

euclidiens (resp. euclidien) les éléments de CId,>0
k . Si k est euclidien et (V, φ) ∈ CId,>0

k , on dit que φ
est un produit scalaire euclidien sur V .

Supposons k pré-euclidien et soit (V, φ) ∈ CId,>0
k . On a l’inégalité fondamentale suivante.

Inégalité de Cauchy-Schwartz: pour tout v1, v2 ∈ V ,

φ(v1, v2)
2 ≤ φ(v1, v1)φ(v2, v2)

et φ(v1, v2)
2 = φ(v1, v1)φ(v2, v2) ssi v1 et v2 sont k-liés.

Proof. La preuve est formellement la même que sur R. Si v1 = 0 ou v2 = 0, c’est tautologique. Supposons
donc v1, v2 ̸= 0 viz φ(v1, v1), φ(v2, v2) > 0. On développe l’expression

φ(λ1v1 + λ2v2, λ1v1 + λ2v2) ≥ 0



14 ALGÈBRE BILINÉAIRE

en utilisant les propriétés de φ (k-bilinéarité, symétrie) pour obtenir:

λ2
1φ(v1, v1) + 2λ1λ2φ(v1, v2) + λ2

2φ(v2, v2) ≥ 0

et on prend λ1 = φ(v2, v2), λ2 = −φ(v1, v2), ce qui donne:

φ(v2, v2)
2φ(v1, v1)− 2φ(v2, v2)φ(v1, v2)

2 + φ(v2, v2)φ(v1, v2)
2 ≥ 0,

que l’on réécrit (en utilisant que φ(v2, v2) > 0)

φ(v2, v2)φ(v1, v1) ≥ φ(v1, v2)
2.

□

Supposons maintenant k euclidien; pour tout x ∈ k≥0 notons
√
x ∈ k la racine ≥ 0 de T 2 − x ∈ k[T ] et

pour tout x ∈ k,|x| =
√
x2 ≥ 0. Si (V, φ) est un k-espace vectoriel euclidien, la norme associée à φ est

l’application

| − |φ : V → k, v 7→ |v|φ :=
√

φ(v, v)

Par définition, on a |v|φ ≥ 0, v ∈ V et |v|φ = 0 ssi v = 0. De plus, on retrouve les propriétés usuelles:

- Inégalité de Cauchy-Schwartz: pour tout v1, v2 ∈ V ,

|φ(v1, v2)| ≤ |v1|φ|v2|φ
et |φ(v1, v2)| = |v1|φ|v2|φ ssi v1 et v2 sont k-liés.

- Inégalité triangulaire: pour tout v1, v2 ∈ V ,

|v1 + v2|φ ≤ |v1|φ + |v2|φ,

et |v1 + v2|φ = |v1|φ + |v2|φ ssi v1 ∈ k≥0v2.

Proof. On développe

|v1 + v2|2φ = |v1|2φ + 2φ(v1, v2) + |v2|2φ
≤ |v1|2φ + 2|φ(v1, v2)|+ |v2|2φ
≤ |v1|2φ + 2|v1|φ|v2|φ + |v2|2φ = (|v1|φ + |v2|φ)2,

où la deuxième inégalité est Cauchy-Schwartz. □

- Orthonormalisation de Gram-Schmidt: Pour toute k-base v de V il existe une unique k-base φ-
orthonormale ϵ de V telle que

(i) ⊕1≤i≤skϵi = ⊕1≤i≤skvi, 1 ≤ s ≤ dimk(V );

(ii) φ(ϵi, vi) > 0, i = 1, . . . , dimk(V ).

Proof. Notons r := dimk(V ). On procède par analyse (unicité sous réserve d’existence) - synthèse (exis-
tence). Notons Vs := ⊕1≤i≤skvi, 1 ≤ s ≤ dimk(V ). Comme φ est défini positif, pour tout s ≥ 1, on a la
décomposition en somme directe φ-orthogonale

V = Vs ⊕⊥φ V
⊥φ
s .

Pour tout v ∈ V , on note v = vs + v⊥s la décomposition de v selon cette somme directe.

– Analyse: Supposons que ϵ existe. En particulier, pour tout s ≥ 1, Vs = ⊕1≤i≤skϵi, V
⊥φ
s = ⊕s+1≤i≤rkϵi

et

vs =
∑

1≤i≤r

φ(vs, ϵi)ϵi =
∑

1≤i≤s

φ(vs, ϵi)ϵi,

où la deuxième égalité résulte de

vs −
∑

1≤i≤s

φ(vs, ϵi)ϵi =
∑

s+1≤i≤r

φ(vs, ϵi)ϵi ∈ Vs ∩ V
⊥φ
s = 0.
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Autrement dit, v⊥s,s−1 = φ(vs, ϵs)ϵs viz ϵs = λsv
⊥
s,s−1. Les conditions φ(ϵs, ϵs) > 1 et φ(ϵs, vs) > 0

imposent alors

λ = 1/
√
φ(v⊥s,s−1, v

⊥
s,s−1)(> 0).

– Synthèse: On vérifie immédiatement par induction sur r que la famille

ϵi =
v⊥i,i−1√

φ(v⊥i,i−1, v
⊥
i,i−1)

, i = 1, . . . , r

déterminée par l’analyse convient.

□

Exercice 2.7. Notons R[T ]≤2 ⊂ R[T ] le sous-R-espace vectoriel des polynômes de degré ≤ 2, que l’on
munit de la forme R-bilinéaire symétrique φ : R[T ]≤2×R[T ]≤2 → R, (P,Q) 7→ P (−1)Q(−1)+P (0)Q(0)+
P (1)Q(1). Vérifier que φ : R[T ]≤2×R[T ]≤2 → R définit un produit scalaire euclidien sur R[T ]≤2 et calculer
l’orthonormalisé de Gram-Schmidt de 1, X,X2 pour φ.

Exercice 2.8. (Interprétation matricielle - décomposition QR) Notons T>0
n (k) ⊂ GLn(k) le sous-groupe

des matrices triangulaires supérieures dont les coefficients diagonaux sont > 0 et On(k) ⊂ GLn(k) le
sous-groupe orthogonal. Montrer que l’application produit

On(k)× T>0
n (k) → GLn(k), (Q,R) 7→ QR

est bijective.

2.1.4. Corps finis. Dans ce paragraphe k est un corps fini de cardinal |k| = ps avec p = car(k) ̸= 2, s ≥ 1.
Commençons par l’observation élémentaire suivante.

Lemme 2.9. Pour tout a, b ∈ k×, c ∈ k, il existe x, y ∈ k tels que ax2 + by2 = c.

Proof. Considérons l’application

f : k → k, t 7→ c− bt

a
,

et notons Σ2(k) := {x2 | x ∈ k} = N(k×) ∪ {0} ⊂ k l’ensemble des carrés. Il suffit de montrer que
f(Σ2(k)) ∩ Σ2(k) ̸= ∅ et, comme f : k → k est bijective, il suffit de montrer que 2|Σ2(k)| > |k|. Or, comme
p ̸= 2, on a la suite exacte de groupes finis

1 → {±1} → k×
N→ k× → k×/N(k×) → 1

En particulier, [k× : N(k×)] = |{±1}| = 2 donc |Σ2(k)| = |k×|
2 + 1 = |k|+1

2 . □

Soit V un k-espace vectoriel de dimension r. Notons

∆(k, r) := k×/(k×)2 × {1, . . . , r} ⊔ {(0, 0)} ⊂ k/(k×)2 × {0, . . . , r}.

et, pour φ ∈ LId
2,k(V ), notons δ(φ) := δ(φ) le discriminant de la forme k-bilinéaire symétrique non-dégénérée

associée
φ : V/ ker(φ)× V/ ker(φ) → k

associée à φ.

Proposition 2.10. L’application δ × rang : LId
2,k(V ) → k/k× × {0, . . . , r} induit une bijection

δ × rang : LId
2,k(V )/GLk(V )→̃∆(k, r).

Proof. On a déjà vu que δ×rang : LId
2,k(V )/GLk(V )→̃∆(k, r) est bien définie et que, si S∗

k(V ) ⊂ LId
2,k(V ) est

le sous-ensemble des φ ∈ LId
2,k(V ) non-dégénérées, il suffit de montrer que δ : S∗

k(V )/GLk(V ) → k×/N(k×)

est bijective. Elle est surjective car si ϵ0 est une de V et si α ∈ k× \N(k×) les éléments φr,1, φr,α ∈ LId
2,k(V )

définis par
(φr,1)ϵ0 = Φr,1 := Ir, (φr,α)ϵ0 = Φr,α := diag(1, . . . , 1, α)
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vérifient δ(φr,1) = 1, δ(φr,α) = α. Il suffit donc de vérifier que pour tout φ ∈ LId
2,k(V ) non dégénérée, φ est

équivalente à φr,δ̃(φ), où δ̃(φ) ∈ {1, α} est le représentant de δ(φ ∈)k×/N(k×). On procède par récurrence

sur r. Si r = 1, pour tout k-base ϵ de V on a 0 ̸= a := (φ)ϵ ∈ k avec a = δ̃(φ)b2 donc quitte à remplacer ϵ
par b−1ϵ, on peut supposer (φ)ϵ = Φ1,δ̃(φ). Supposons r ≥ 2 et l’énoncé démontré en dimension ≤ r−1. Soit

ϵ une k-base φ-orthogonale de V et notons W := kϵ1⊕ kϵ2, donc W
⊥φ := ⊕3≤i≤rkϵi. La forme (W,φ|W×W )

est encore non-dégénérée donc (φ|W×W )ϵ1,ϵ2 = diag(a, b) avec a, b ∈ k×. Par le Lemme 2.9, il existe e1 ∈ W

tels que φ(e1, e1) = 1. En particulier, en posant H := (ke1)
⊥φ , V = ke1 ⊕⊥φ H, donc (H,φ|H×H) est

encore non-dégénérée avec δ(φ) = δ(φ|H×H); on conclut donc en appliquant l’hypothèse de récurrence à
(H,φ|H×H). □

2.2. Structure des espaces τ-hermitiens. La théorie des espaces τ -hermitiens est très proche de celle
des espaces symétriques. On rappelle (Lemme 0.1) qu’on peut toujours trouver ι ∈ k \ kτ tel que ι2 ∈ kτ .
Comme 1, ι est une kτ -base de k, pour tout (V, φ) ∈ Cτ

k , on a une unique décomposition

φ(v1, v2) = Rφ(v1, v2) + ιIφ(v1, v2)

avec Rφ ∈ LId
2,k(V ) et Iφ ∈ Lϵ

2,k(V ). On obtient encore une

Identité de polarisation - variante τ-hermitienne:

Rφ(v1, v2) =
1

2
(φ(v1 + v2, v1 + v2)− φ(v1, v1)− φ(v2, v2)) =

1

4
(φ(v1 + v2, v1 + v2)− φ(v1 − v2, v1 − v2)),

Iφ(v1, v2) =
1

4ι2
(φ(ιv1 + v2, ιv1 + v2)− φ(ιv1 − v2, ιv1 − v2))

En particulier, l’application kτ -linéaire de restriction

(−)|∆V
: Lτ

2,kτ (V ) → kV , φ 7→ φ|∆V

est encore injective et, puisque par définition (φ|∆V
)−1(0) = Iso(φ) ⊂ V , on a

φ ̸= 0 ⇔ Iso(φ) ⊊ V.

On obtient donc, avec exactement la même preuve, la variante τ -hermitienne de la Proposition 2.1.

Proposition 2.11. Pour tout (V, φ) ∈ Cτ
k , il existe une k-base de V qui est φ-orthogonale.

avec le

Slogan: Si (V, φ) ∈ Cτ
k est non-dégénéré et si ϵ = ϵ1, . . . , ϵr est une k-base φ-orthogonale de V , on a,

φ(ϵi, ϵi) ̸= 0, i = 1, . . . , r et, pour tout v ∈ V ,

v =
∑

1≤i≤r

φ(v, ϵi)

φ(ϵi, ϵi)
ϵi.

Pour obtenir une variante τ -hermitienne du Corollaire 2.2, il ne faut plus supposer que k = k est algébriquement
clos mais que Nτ : k× → kτ× est surjective; Dans ce cas, on a à nouveau que

Corollaire 2.12. Supposons que Nτ : k× → kτ× est surjective. Pour tout (V, φ) ∈ Cτ
k non-dégénéré, il

existe une k-base ϵ de V tels que (φ)ϵ = Ir et pour tout k-espace vectoriel V , l’application rang(−) induit
un isomorphisme

rang : LId
2,k(V )/GLk(V )→̃{0, . . . , dimk(V )}.

Ex.

(1) Si k est un corps fini de cardinal |k| = ps avec p = car(k) ̸= 2, s ≥ 1, notons

Fk : k→̃k, x 7→ xp

l’automorphisme de Frobenius. On rappelle que le groupe des automorphismes du corps k est Z/s,
engendré par Fk. En particulier, k est muni d’une involution Id ̸= τ ssi 2|s, auquel cas τ = F

s/2
k .

On en déduit facilement:
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Lemme 2.13. Le morphisme norme Nτ : k× → kτ× est surjectif.

Proof. Comme τ est d’ordre 2, [k : kτ ] = 2 donc |kτ | = |k|/2 =: q (ici, on peut le vérifier à la main
puique, explicitement, kτ = {x ∈ k | xq = x} ≃ Fq) et il suffit de montrer que |Nτ (k

×)| = q − 1.
Pour cela, on peut utiliser que k× est cyclique; soit α ∈ k× un générateur, donc d’ordre exactement
q2 − 1. On a Nτ (α) = αq+1 d’ordre exactement (q2 − 1)/q + 1 = q − 1. □

(2) (HP) Il existe d’autres corps k que les corps finis pour lesquels la norme Nτ : k× → kτ× est surjective.
En fait, cette propriété est lié à la cohomologie galoisienne; en effet, on a toujours une suite exacte
de groupes abéliens

k×
Nτ→ kτ× → Br(kτ )

res→ Br(k),

(où Br(K) = H2(K,K
×
) est le groupe de Brauer de K); en particulier, kτ×/Nτ (k

×) ↪→ Br(kτ )
donc, si Br(kτ ) = 0, Nτ : k× → kτ× est surjective. C’est le cas par exemple si kτ = Q(t) pour Q un
corps algébriquement clos ou plus généralement le corps des fonctions d’une courbe algébrique lisse
sur un corps algébriquement clos.

Pour obtenir une variante τ -hermitienne du Lemme de Sylvester (Corollaire 2.4) et de ses corollaires, il
faut supposer - ce que l’on fait jusqu’à la fin de cette section - que k est pré-hermitien. Là encore, avec
exactement la même preuve (en observant que pour tout v ∈ V , φ(v, v) = τ(φ(v, v)) ∈ kτ ) que dans le cas
symétrique, on obtient

Corollaire 2.14. (Sylvester - variante τ -hermitienne) Pour tout (V, φ) ∈ Cτ
k non-dégénéré, pour toute k-base

ϵ = ϵ1, . . . , ϵr φ-orthogonale de V l’entier

s+(φ) := s(φ, ϵ) = |{1 ≤ i ≤ r | φ(ϵi, ϵi) > 0}|

est indépendant de ϵ.

Pour (V, φ) ∈ Cτ
k arbitraire, on pose

s+(φ) = s+(φ), s−(φ) = s−(φ) = rang(φ)− s+(φ),

et on dit encore que

s(φ)(= s(φ)) = (s+(φ), s−(φ))

est la signature de (V, φ) ∈ Cτ
k , que (V, φ) ∈ Cτ

k est défini positif (ou que φ ∈ Lτ
2,k(V )) est définie positive)

si φ(v, v) > 0, 0 ̸= v ∈ V et que (V, φ) ∈ Cτ
k est défini négatif (ou que φ ∈ Lτ

2,k(V )) est définie négative) si

φ(v, v) < 0, 0 ̸= v ∈ V . Pour tout (V, φ) ∈ Cτ
k notons Sub>0(V, φ) l’ensemble des sous-k-espaces vectoriels

W ⊂ V tels que (W,φ|W×W ) est défini positif et Sub<0(V, φ) l’ensemble des sous-k-espaces vectoriels W ⊂ V
tels que (W,φ|W×W ) est défini négatif.

(1) s+(φ) (resp. s−(φ)) est la k-dimension des éléments maximaux de Sub>0(V, φ) (resp. Sub<0(V, φ));

(2) Pour toute k-base φ-orthogonale ϵ de V , en notant

ϵ0 := {ϵ ∈ ϵ | φ(ϵ, ϵ) = 0} ⊂ ϵ,

ϵ+ := {ϵ ∈ ϵ | φ(ϵ, ϵ) > 0} ⊂ ϵ,

ϵ− := {ϵ ∈ ϵ | φ(ϵ, ϵ) < 0} ⊂ ϵ,

on a que ϵ0 est une k-base de ker(φ), V (ϵ)+ := ⊕ϵ∈ϵ+kϵ ∈ Sub>0(V, φ) et V (ϵ)− := ⊕ϵ∈ϵ−kϵ ∈
Sub<0(V, φ), donc que s(φ) = (|ϵ+|, |ϵ−|);

(3) Si on suppose de plus que k est hermitien, il existe une k-base φ-orthogonale ϵ = (ϵ0, ϵ+, ϵ−) de V
telle que |ϵ+| = s+, ϵ− = s−

- φ(ϵ, ϵ) = 0, ϵ ∈ ϵ0;

- φ(ϵ, ϵ) = 1, ϵ ∈ ϵ+;

- φ(ϵ, ϵ) = −1, ϵ ∈ ϵ−.
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En particulier, l’application signature induit une bijection

s : Lτ
2,k(V )/GLk(V )→̃Σ(dimk(V )).

On dit qu’une telle k-base ϵ de V est φ-orthonormale. On a aussi,

Interprétation matricielle:

(i) Pour tout s = (s+, s−) ∈ Σ(r), et pour tout Φ ∈ Mr(k),
tΦ = τΦ et s(Φ) = s ssi il existe U ∈ GLr(k)

tel que Φ = tUIr,s
τU .

(ii) Dans le cas où r = s+, on dit que

Ur(k) := StabGLr(k)(Ir) = {U ∈ GLr(k) | tU τU = Ir} ⊂ GLr(k)

est le groupe unitaire de rang r. (On pourrait bien sûr définir aussi des groupes unitaires généralisés

Ur,s(k) := StabGLr(k)(Ir,s) = {U ∈ GLr(k) | tIr,sτU = Ir,s} ⊂ GLr(k)

mais ils ne sont pas au programme).

(4) Enfin, si (V, φ) ∈ Cτ
k est défini positif, on dit que (V, φ) est un k-espace vectoriel τ -hermitien ou que φ

est un produit scalaire τ -hermitien sur V . On retrouve (avec exactement la même preuve que dans le
cas symétrique),

Inégalité de Cauchy-Schwartz: pour tout v1, v2 ∈ V ,

Nk|kτ (φ(v1, v2)) = φ(v1, v2)τ(φ(v1, v2)) ≤ φ(v1, v1)φ(v2, v2)

et Nk|kτ (φ(v1, v2)) = φ(v1, v1)φ(v2, v2) ssi v1 et v2 sont k-liés.

Si, de plus, on suppose que tout élément ≥ 0 de kτ est un carré dans kτ , on peut munir k de la norme

| − | : k → kτ≥0, x 7→
√

xτ(x),

et V de la norme

| − |φ : V → kτ≥0, v 7→
√
φ(v, v).

On a encore

- Inégalité de Cauchy-Schwartz: pour tout v1, v2 ∈ V ,

|φ(v1, v2)|τ ≤ |v1|φ|v2|φ
et |φ(v1, v2)|τ = |v1|φ|v2|φ ssi v1 et v2 sont k-liés.

- Inégalité triangulaire: pour tout v1, v2 ∈ V ,

|v1 + v2|φ ≤ |v1|φ + |v2|φ,

et |v1 + v2|φ = |v1|φ + |v2|φ ssi v1 ∈ k≥0v2.

- Orthonormalisation de Gram-Schmidt: Pour toute k-base v de V il existe une unique k-base
φ-orthonormale ϵ de V telle que

(i) ⊕1≤i≤skϵi = ⊕1≤i≤skvi, 1 ≤ s ≤ dimk(V );

(ii) φ(ϵi, vi) > 0, i = 1, . . . , dimk(V ).

On a également la même interprétation matricielle (décomposition QR) que dans le cas symétrique.
Notons T>0

n (k) ⊂ GLn(k) le sous-groupe des matrices triangulaires supérieures dont les coefficients
diagonaux sont dans kτ>0 et Un(k) ⊂ GLn(k) le sous-groupe τ -unitaire. L’application produit

Un(k)× T>0
n (k) → GLn(k), (Q,R) 7→ QR

est bijective.
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Exercice 2.15. (Inégalité de Hadamard) On munit Cr du produit scalaire (V1, V2) 7→ tV 1V2 et on

note V 7→ ||V || =
√

tV V la norme associée. Soit M ∈ Mr(C) et C1, . . . , Cr ses vecteurs colonnes.
Montrer que |det(M)| ≤ ||C1|| · · · ||Cr|| avec égalité ssi C1, . . . , Cr sont orthogonaux.

2.3. Formes quadratiques et formes τ-hermitiennes. Pour tout k-espace vectoriel V on note

Qk(V ) := Im((−)|∆V
: LId

2,k(V ) → kV ) ⊂ kV

le sous-k-espace vectoriel des formes quadratiques sur V . Comme (−)|∆V
: LId

2,k(V ) → kV est injective, on
obtient donc par restriction un isomorphisme de k-espaces vectoriels

q− := (−)|∆V
: LId

2,k(V )→̃Qk(V ), φ 7→ qφ := φ|∆V

dont l’inverse est donné par l’identité de polarization

φ− : Qk(V )→̃LId
2,k(V ), q 7→ φq

viz

φq(v1, v2) =
1

2
(q(v1 + v2)− q(v1)− q(v2)) =

1

4
(q(v1 + v2)− q(v1 − v2)).

De même, si k est muni d’une involution τ , pour tout k-espace vectoriel V on note

Hτ
k(V ) := Im((−)|∆V

: Lτ
2,k(V ) → kV ) ⊂ kV

le sous-kτ -espace vectoriel des formes quadratiques τ -hermitiennes sur V . Là encore, comme (−)|∆V
:

Lτ
2,k(V ) → kV est injective, on obtient par restriction un isomorphisme de kτ -espaces vectoriels

q− := (−)|∆V
: Lτ

2,k(V )→̃Hτ
k(V ), φ 7→ qφ := φ|∆V

dont l’inverse est donné par l’identité de polarisation

φ− : Hτ
k(V )→̃Lτ

2,k(V ), q 7→ φq

viz

φq(v1, v2) =
1

4
(q(v1 + v2)− q(v1 − v2)) +

1

4ι
(q(ιv1 + v2)− q(ιv1 − v2))

On transporte les terminologies de rang, noyau, non-dégénérée, signature, définie positive ou négative etc
de φq à q. Par dualité, on peut interpréter l’existence d’une k-base φ-orthogonale / orthonormale en termes
de formes k-linéaires. Notons r := dimk(V ).

- Pour tout q ∈ Qk(V ) il existe r formes k-linéaires f1, . . . , fr : V → k k-libres et λ1, . . . , λr ∈ k tels que
q =

∑
1≤i≤r λif

2
i . De plus, pour toute décomposition de cette forme,

rang(q) = |{1 ≤ i ≤ r | λi ̸= 0}|
et si k est pré-euclidien,

s+(q) = |{1 ≤ i ≤ r | λi > 0}|
En effet, il suffit de considérer une k-base φ-orthogonale ϵ de (V, φ) et de prendre

fi := φ(−, ϵi) : V → k, λi =
1

φ(ϵi, ϵi)
, i = 1, . . . , r.

On dit que q =
∑

1≤i≤r λif
2
i est une réduction de Gauss de q. Dans le cas où V = kr, on peut construire

algorithmiquement les décompositions de Gauss en utilisant les formules

ax2 + 2xy = a(x+
y

a
)2 − y2

a
, 2axy + 2xu+ 2yv = 2(ax+ v)(y +

1

a
u)− 2

a
uv, xy =

1

4
((x+ y)2 − (x− y)2).

Algorithme de Gauss: On procède par récurrence sur le nombre de variables. Si n = 1 ou si q = 0,
c’est tautologique. Si on sait construire une réduction de Gauss pour ≤ n variable et qu’on a une forme
quadratique non nulle

q(x) =
∑

1≤i≤n+1

ai,ix
2
i + 2

∑
1≤i<j≤n+1

ai,jxixj

sur kn+1, on distingue deux cas:
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(1) il existe 1 ≤ i ≤ n+ 1 tel que ai,i ̸= 0. On peut supposer que a1,1 ̸= 0. On a donc

q(x) = a1,1x
2
1 + 2x1f(x2, . . . , xn+1) + q′(x2, . . . , xn+1),

avec f linéaire et q′ quadratique. En appliquant la première formule, on obtient

q(x) = a1,1(x1 +
1

a1,1
f(x2, . . . , xn+1))

2 − 1
a1,1

f(x2, . . . , xn+1)
2 + q′(x2, . . . , xn+1)

= a1,1(x1 +
1

a1,1
f(x2, . . . , xn+1))

2 + q′′(x2, . . . , xn+1)

avec q′′ quadratique. On pose f1(x) = x1 + 1
a1,1

f(x2, . . . , xn+1) et, en appliquant l’hypothèse de

récurrence à q′′, on construit une famille k-libre f2, . . . , fn+1 de formes k-linéaires en les x2, . . . , xn+1

telle que q′′ =
∑

2≤i≤n+1 λif
2
i . On vérifie enfin que f1, . . . , fn+1 est bien k-libre en utilisant que

f2, . . . , fn+1 l’est et que x1 n’intervient pas dans l’expression des f2, . . . , fn+1.

(2) pour tout 1 ≤ i ≤ n + 1, ai,i = 0. Dans ce cas, il existe 1 ≤ i < j ≤ n + 1 tel que ai,j ̸= 0. On peut
supposer que a1,2 ̸= 0. On a donc

q(x) = 2a1,2x
2
1 + 2x1g1(x3, . . . , xn+1) + 2x2g2(x3, . . . , xn+1) + q′(x3, . . . , xn+1),

avec g1, g2 linéaires et q′ quadratique. En appliquant la deuxième formule, on obtient

q(x) = 2(a1,2x1 + g2(x3, . . . , xn+1))(x2 +
1

a1,2
f1(x3, . . . , xn+1))− 2

a1,2
g1(x3, . . . , xn+1)g2(x3, . . . , xn+1) + q′(x3, . . . , xn+1)

= 2(a1,2x1 + g2(x3, . . . , xn+1))(x2 +
1

a1,2
g1(x3, . . . , xn+1)) + q′′(x3, . . . , xn+1),

avec q′′ quadratique. Enfin, en appliquant la troisième formule,

q(x) =
1

2
((a1,2x1 + x2 + g′1(x3, . . . , xn+1))

2 − (a1,2x1 − x2 + g′2(x3, . . . , xn+1))
2 + q′′(x3, . . . , xn+1)),

avec f ′
1, f

′
2 linéaires. On pose f1(x) = a1,2x1+x2+g′1(x3, . . . , xn+1), f2(x) = a1,2x1−x2+g′2(x3, . . . , xn+1),

et on applique l’hypothèse de récurrence à q′′ pour construire une famille k-libre f3, . . . , fn+1 de formes
k-linéaires en les x3, . . . , xn+1 telle que q′′ =

∑
3≤i≤n+1 λif

2
i . Là encore, on vérifie facilement que la

famille f1, . . . , fn+1 ainsi obtenue est bien k-libre.

- Pour tout q ∈ Hτ
k(V ) il existe r formes k-linéaires f1, . . . , fr : V → k k-libres et λ1, . . . , λr ∈ kτ tels que

q =
∑

1≤i≤r λifi
τfi. De plus, pour toute décomposition de cette forme,

rang(q) = |{1 ≤ i ≤ r | λi ̸= 0}|
et si kτ est pré-hermitien,

s+(q) = |{1 ≤ i ≤ r | λi > 0}|
On laisse au lecteur la formulation de l’algorithme de Gauss dans le cas τ -hermitien...

3. Endomorphismes normaux et théorèmes spectraux

Dans ce qui suit, # = Id, τ . On dira que l’hypothèse (PS) est vérifiée si k est euclidien ou hermitien et

dans ce cas, si (V, φ) ∈ C#
k est défini positif, on dira simplement que (V, φ) est un produit scalaire. On

rappelle qu’alors, pour tout sous-k-espace vectoriel W ⊂ V , la restriction (W,φ|W×W ) est encore un produit
scalaire et toute k-base ϵ = ϵ1, . . . , ϵr φ-orthogonale de V peut être φ-orthonormalisée en la remplaçant par

α−1
1 ϵ1, . . . , α

−1
r ϵr, où αi ∈ k est tel que N#(αi) = φ(ϵi, ϵi).

3.1. Adjoints. Soit (V, φ), (V ′, φ′) ∈ C#
k non-dégénérés. Pour tout f : V → V ′ k-linéaire il existe un unique

f∗ : V ′ → V k-linéaire tel que

φ′(f(v), v′) = φ(v, f∗(v′)), v ∈ V, v′ ∈ V ′.

On dit que f∗ : W → V est l’adjoint de f : V → W relativement à φ,φ′. L’opérateur d’adjonction

(−)∗ : Homk(V, V
′) → Homk(V

′, V )

vérifie les propriétés suivantes:

(1) (Involutif) (−)∗ ◦ (−)∗ = Id : Homk(V, V
′) → Homk(V, V

′);
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(2) (Contravariant) Si (V ′′, φ′′) ∈ C#
k , pour tout f : V → V ′, f ′ : V ′ → V ′′ k-linéaires, (f ′ ◦ f)∗ = f∗ ◦ f ′∗; :

(3) (#-semilinéarité)

(f + λg)∗ = f∗ +#(λ)g∗, f, g ∈ Homk(V, V
′), λ ∈ k

(autrement dit, (−)∗ : Homk(V, V
′) → #Homk(V

′, V ) est k-linéaire);

(4) Si V = V ′, pour tout f : V → V k-linéaire,

(i) (fn)∗ = (f∗)n, n ∈ Z≥0;

(ii) f ∈ GLk(V ) ssi f∗ ∈ GLk(V ), auquel cas (f∗)−1 = (f−1)∗.

(5) Si (V, φ) = (V ′, φ′), pour tout f ∈ GLk(V ), (fn)∗ = (f∗)n, n ∈ Z.

Proof. On procède par analyse-synthèse.

- Analyse (unicité sous réserve d’existence): Supposons que f∗ : V ′ → V existe. Alors il doit faire commuter
le diagramme canonique de k-espaces vectoriels

(1) #(V ′∨)
f∨
// #(V ∨)

V ′
f∗

//

v′ 7→φ(−,v′)

OO

V

v 7→φ(−,v)

OO
,

et comme (V, φ) est non-dégénéré, la flèche

V →̃#(V ∨), v 7→ φ(v,−)

est un isomorphisme, ce qui donne l’unicité de f∗

- Synthèse (existence): Il suffit de vérifier que la construction de f∗ : V ′ → V donnée dans (1) convient.

Les propriétés (1) à (5) se démontrent en utilisant l’unicité de f∗. Par exemple, pour tout v ∈ V , v′ ∈ V ′

φ(f∗(v′), v) = #(φ(v, f∗(v′))) = #(φ(f(v), v′)) = φ(v′, f(v))

donc (f∗)∗ = f , ce qui montre (1) etc. □

Interpétation matricielle. Si ϵ est une k-base de V et ϵ′ est une k-base de V ′, et que l’on note

Φ := (φ)ϵ ∈ Mr(k), Φ′ := (φ′)ϵ′ ∈ Mr′,r′(k), M := (f)ϵ,ϵ′ ∈ Mr′,r(k)

On a tΦ = #Φ, tΦ′ = #Φ′ et Φ ∈ GLr(k). La matrice M∗ := (f∗)ϵ′,ϵ est l’unique matrice M∗ ∈ Mr,r′(k)

telle que tMΦ′ = Φ#M∗ viz

M∗ = #Φ−1t#M#Φ′.

En particulier, si (V, φ), (V ′, φ′) sont des produits scalaires, et ϵ est une k-base φ-orthonormale de V et ϵ′

une k-base φ′-orthonormale de V ′, on a simplement M∗ = t#M .

Lorsque (V, φ) = (V ′, φ′), on dit que f : V → V est

auto-adjoint si f∗ = f ;
anti auto-adjoint si f∗ = −f ;
normal si ff∗ = f∗f ;
unitaire si ff∗ = f∗f = IdV ;
positif si φ(f(v), v) ∈ Im(N#), v ∈ V .

Commençons par lister quelques sorites, qui nous serviront dans la démonstration des théorèmes spectraux,
reliant les propriétés de f et f∗.

Lemme 3.1. Soit (V, φ), (V ′, φ′) ∈ C#
k non-dégénérés, et f : V → V ′ k-linéaire.
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(1) On a toujours (Im(f))⊥φ′ = ker(f∗), ker(f) = (Im(f))⊥φ′ . Si, de plus, (V, φ), (V ′, φ′) sont anisotrope,
on a aussi ker(f) = ker(f∗f), ker(f∗) = ker(ff∗).

Supposons de plus (V, φ) = (V ′, φ′). On note V p(f) ⊂ k le sous-ensemble des valeurs propres de f .

(2) On a toujours rang(f) = rang(f∗) et si (V, φ) est anisotrope, rang(f∗f) = rang(f) = rang(f∗) =
rang(ff∗).

(3) Pour tout sous-k-espace vectoriel W ⊂ V , f(W ) ⊂ W ⇒ f∗(W⊥φ) ⊂ W⊥φ. Si, de plus, (V, φ) est un
produit scalaire et f est normal, on a aussi f(W⊥φ) ⊂ W⊥φ donc f∗(W ) ⊂ W et les restrictions f |WW ,

f |W⊥φ

W⊥φ sont encore normales avec (f |WW )∗ = f∗|WW , (f |W⊥φ

W⊥φ )
∗ = f∗|W⊥φ

W⊥φ .

(4) V p(f∗) = #V p(f). Si (V, φ) est anisotrope, et f est normal, pour tout λ ∈ k on a

ker(f − λIdv) = ker(f∗ −#λIdV ).

De plus,

f V p(f) ⊂

autoadjoint (f∗ = f) k#

antiautoadjoint (f∗ = −f) ιk#

unitaire (ff∗ = f∗f = IdV ) ker(N#)

Si (V, φ) est anisotrope et positive, on a aussi

f V p(f) ⊂

positif Im(N#)

Proof. (1) Comme (f∗)∗ = f , il suffit de montrer (Im(f))⊥φ′ = ker(f∗). Or, pour tout v′2 ∈ V ′,

v′2 ∈ ker(f∗)
(a)⇔ pour tout v1 ∈ V , φ(v1, f

∗(v′2)) = 0
(b)⇔ pour tout v1 ∈ V , φ′(f(v1), v

′
2) = 0

(c)⇔ v′2 ∈ (Im(f))⊥φ′ ,

où (a) résulte du fait que (V, φ) est non-dégénéré, (b) est la définition de f∗, et (c) est la définition
de (−)⊥φ . Si, de plus, (V, φ), (V ′, φ′) sont anisotrope, là encore, comme (f∗)∗ = f , il suffit de montrer
ker(f) = ker(f∗f). On a toujours ker(f) ⊂ ker(f∗f). Inversement, pour tout v ∈ ker(f∗f), on a
φ(f(v), f(v)) = φ(v, f∗f(v)) = 0 donc, comme (V, φ) est anisotrope, f(v) = 0.

(2) La seconde partie de l’assertion résulte de la deuxième partie de (1). Pour la première partie, comme
(V, φ) est non-dégénéré, pour tout sous-k-espace vectoriel W ⊂ V on a

dimk(V ) = dimk(W ) + dimk(W
⊥φ).

L’assertion résulte alors de la première partie de (1):

rang(f) = dimk(imf) = dimk(V )−dimk((imf)⊥φ) =
(1)
= dimk(V )−dimk(ker(f

∗)) = dimk(im(f∗)) = rang(f∗).

(3) Pour tout w⊥ ∈ W⊥φ , et pour tout w ∈ W on a

φ(w, f∗(w⊥)) = φ(f(w), w⊥) ∈ φ(W ×W⊥φ) = 0.

Si on suppose de plus que (V, φ) est un produit scalaire sur V , on a une décomposition en somme directe
φ-orthogonale

V = W ⊕⊥φ W⊥φ

et (W,φ|W×W ), (W⊥φ , φ|W⊥φ×W⊥φ ) sont encore des produits scalaires donc admettent des bases φ-
orthonormales ϵW , ϵW⊥φ . La concaténation ϵ de ϵW , ϵW⊥φ est une base φ-orthonormale de (V, φ)
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adaptée à la décomposition V = W ⊕⊥φ W⊥φ . On a alors

M := (f)ϵ =

(
A B
0 C

)
, M∗ := (f∗)ϵ =

t#M =

(
t#A 0
t#B t#C

)
et la condition f normal se réécrit MM∗ = M∗M , ce qui équivaut à

(i) t#BA = Ct#B;

(ii) t#AA = At#A+Bt#B;

(iii) t#BB + t#CC = Ct#C.

En prenant la trace dans (ii), on obtient tr(Bt#B) = 0, et donc, comme (M1,M2) 7→ tr(M1
t#M2)

définit un produit scalaire sur Mr(k), on a B = 0. Donc MM∗ = M∗M ssi B = 0, t#AA = At#A,
t#CC = Ct#C ce qui, en revenant à l’interprétation vectorielle, est exactement la conclusion annoncée.

(4) Pour tout λ ∈ k,

λ /∈ V p(f) ⇔ f − λIdV ∈ GLk(V )
⇔ rang(f − λIdV ) = dimk(V )
(a)⇔ rang((f − λIdV )

∗) = dimk(V )
(b)⇔ rang(f∗ −#λIdV ) = dimk(V )
⇔ #λ ∈ V p(f∗),

où (a) résulte de (2) et (b) de la #-semilinéarité de (−)∗. Si on suppose de plus (V, φ) anisotrope et f
normal, on a aussi f − λIdV normal puisque (f − λIdV )

∗ = f∗ −#λIdV donc, par (1),

ker(f−λIdV ) = ker((f−λIdV )(f−λIdV )
∗) = ker((f−λIdV )

∗(f−λIdV )) = ker((f−λIdV )
∗) = ker(f∗−#λIdV )

Soit maintenant λ ∈ V p(f) et 0 ̸= v ∈ ker(f − λIdV ). Notons que si f est unitaire, f est inversible
donc, dans ce cas, λ ̸= 0. On a

λφ(v, v) = φ(λv, v) = φ(f(v), v) = φ(v, f∗(v)) = φ(v, f(v)) = #λφ(v, v) si f∗ = f ;
= −φ(v, f(v)) = −#λφ(v, v) si f∗ = −f ;
= φ(v, f−1(v)) = #λ−1φ(v, v) si f∗ = f−1,

ce qui donne la deuxième partie de (4). Enfin, si φ est positive et f est positive, si λ = 0, il n’y a
rien à démontrer, si λ ̸= 0, on a φ(v, v) ∈ N#(k

×) et λφ(v, v) = φ(λv, v) = φ(f(v), v) ∈ N#(k
×) donc

λ ∈ N#(k
×) puisque N#(k

×) ⊂ k#× est un sous-groupe.
□

3.2. Réduction des endormorphismes normaux. Soit (V, φ) ∈ C#
k non-dégénéré.

3.2.1. Cas où k est algébriquement clos et (V, φ) anisotrope. Supposons k = k algébriquement clos et (V, φ)
anisotrope.

Proposition 3.2. Pour tout f : V → V k-linéaire ff∗ = f∗f ssi f est diagonalisable dans une k-base
φ-orthogonale de V .

Proof. Le sens ⇐ découle immédiatement de l’interprétation matricielle (et n’utilise pas les hypothèses
k = k et (V, φ) anisotrope). En effet, s’il existe une k-base φ-orthogonale ϵ de V tel que M := (f)ϵ ∈ Mr(k)
soit diagonale, comme ϵ est φ-orthogonale D := (φ)ϵ est diagonale, á coefficients dans kτ×, donc (f∗)ϵ =

D−1t#MD = t#M ∈ Mr(k) est aussi diagonale donc commute avec M . Prouvons le sens ⇒. On raisonne
par récurrence sur r = dimk(V ). Si r = 1, c’est tautologique. Supposons r ≥ 2 et l’énoncé démontré en
dimension ≤ r−1. Comme k = k, f admet au moins une valeur propre λ ∈ k. Fixons 0 ̸= vλ ∈ ker(f−λIdV )
et notons W := kvλ ⊂ V . Comme (V, φ) est anisotrope, (W,φ|W×W ) est encore non-dégénéré donc,
par le Lemme 1.4 (2), on a une décomposition en somme directe φ-orthogonale V = W ⊕⊥φ W⊥φ avec
(W⊥φ , φ|W⊥φ×W⊥φ ) non-dégénéré et toujours anisotrope. Par le Lemme 3.1 (4), vλ ∈ ker(f∗ − #λIdV )

donc W est à la fois f - et f∗-stable. Par le Lemme 3.1 (3), W⊥φ est aussi f - et f∗-stable. En particulier,

sur (W⊥φ , φ|W⊥φ×W⊥φ ), on a (f |W⊥φ

W⊥φ )
∗ = f∗|W⊥φ

W⊥φ donc f |W⊥φ

W⊥φ est normal et on peut appliquer l’hypothèse



24 ALGÈBRE BILINÉAIRE

de récurrence pour construire une k-base ϵ φ|W⊥φ×W⊥φ -orthogonale de W⊥φ de diagonalisation de f |W⊥φ

W⊥φ .
La k-base vλ, ϵ convient. □

Ex: (Produits scalaires hermitiens) Les hypothèses de la Proposition 3.3 sont vérifiées si (V, φ) est un
produit scalaire τ -hermitien (en particulier, (PS) est vérifiée). Dans ce cas, toute k-base ϵ = ϵ1, . . . , ϵr
φ-orthogonale de V peut être φ-orthonormalisée en la remplaçant par α−1

1 ϵ1, . . . , α
−1
r ϵr, où αi ∈ k est tel

que Nτ (αi) == φ(ϵi, ϵi), i = 1, . . . , r. On obtient donc, plus précisément:

Corollaire 3.3. Supposons de plus que (V, φ) est un produit scalaire τ -hermitien. Pour tout f : V → V
k-linéaire ff∗ = f∗f ssi f est diagonalisable dans une k-base φ-orthonormale de V .

Interprétation matricielle: Supposons que (PS) est vérifiée. On rappelle que le groupe τ -unitaire de
rang r est le sous-groupe

U τ
r (k) := {U ∈ GLr(k) | tτUU = U tτU = Ir} ⊂ GLr(k).

Pour tout M ∈ Mr(k) on a

tτMM = M tτM ssi il existe U ∈ Ur(k) telle que UMU−1(= UM tτU) est diagonale.

En utilisant le Lemme 1.4 (4), on peut préciser le résultat ci-dessus comme suit

M vérifie ⇐⇒ UMU−1 est à coefficients dans
tτM = M kτ

tτM = −M ιkτ
tτM = M−1 ker(Nτ )

tτMM = M tτM et tτXtτMMX ≥ 0, X ∈ Mr,1(k) im(Nτ )

3.2.2. Cas où (V, φ) est un produit scalaire euclidien. Dans cette section, on suppose que (V, φ) ∈ CId
k est

un produit scalaire (en particulier, (PS) est vérifiée) et k est réellement clos. On rappelle que le groupe
orthogonal de rang r est le sous-groupe

Or(k) := {U ∈ GLr(k) | tOO = OtO = Ir} ⊂ GLr(k).

Dans ce cadre, l’analogue de la Proposition 3.3 est

Proposition 3.4. Pour tout f : V → V k-linéaire ff∗ = f∗f ssi il existe une k-base φ-orthonormale ϵ de
V telle que

(f)ϵ =


λ1

. . .
λs

µ1R1

. . .
µtRt

 =: Diag(λ, µR),

où λ1, . . . , λs ∈ k, µ1, . . . , µt ∈ k×, ±I2 ̸= R1, . . . , Rt ∈ O2(k).

Commençons par traiter un cas particulier qui va nous servir dans la preuve du cas général.

Lemme 3.5. Supposons que r = dimk(V ) = 2. Pour tout f : V → V k-linéaire si ff∗ = f∗f et si f n’est
pas diagonalisable, alors, pour toute k-base φ-orthonormale ϵ de V , il existe4 µ ∈ k× et ±I2 ̸= R ∈ O2(k)
tels que (f)ϵ = µR.

Proof. Fixons une k-base φ-orthonormale ϵ de V et écrivons

(f)ϵ = M =

(
a b
c d

)
4Autrement dit, tout endormorphisme normal non-diagonalisable d’un plan quadratique euclidien est produit d’une ho-

mothétie non nulle et d’une rotation ̸= ±Id.
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La condition tMM = M tM se réécrit

b2 = c2, ac+ bd = ab+ cd
⇐⇒ b = ϵc avec ϵ = ±1, b(ϵa+ d) = b(a+ ϵd)
⇐⇒ b = ϵc avec ϵ = ±1, (ϵ− 1)a = (ϵ− 1)d,

où la deuxième equivalence vient du fait que b ̸= 0 puisque M n’est pas diagonalisable. Le cas ϵ = 1 n’est
pas possible car, sinon, b = c et le polynôme caractéristique de M s’écrirait

χ(T ) = (T − a)(T − d)− b2 = T 2 − (a+ d)T + ad− b2

avec

∆ = (a+ d)2 − 4(ad− b2) = (a− d)2 + 4b2 > 0.

En particulier, χ(T ) serait simplement scindé sur k (ici, on utilise (−)2 : k× ↠ k×>0), contredisant là-encore

le fait que M n’est pas diagonalisable. Donc ϵ = −1, b = −c et a = d. En notant δ = det(M) = a2+ b2 > 0,

on peut prendre µ =
√
δ, R = µ−1M . □

Proof. (de la Proposition 3.4) Le sens ⇐ découle là encore immédiatement de l’interprétation matricielle.
En effet, s’il existe une k-base φ-orthonormale ϵ de V tel que M := (f)ϵ ∈ Mr(k) soit comme dans l’énoncé,
comme ϵ est φ-orthonormale (φ)ϵ = Ir donc (f∗)ϵ =

tM ∈ Mr(k) et on vérifie immédiatement que M et tM
commutent. Prouvons le sens ⇒. On raisonne à nouveau par récurrence sur r = dimk(V ). Si r = 1, c’est
tautologique. Supposons r ≥ 2 et l’énoncé démontré en dimension ≤ r − 1. Si f admet une valeur propre
λ ∈ k, on raisonne exactement comme dans la preuve de la Proposition 3.3 à ceci-près qu’on veut une base φ-
orthonormale (et pas seulement φ-orthogonale) mais par hypothèse de récurrence, on peut prendre la k-base
ϵ de W⊥φ φ|W⊥φ×W⊥φ -orthonormale et considérer la k-base φ-orthonormale φ(vλ, vλ)

−1vλ, ϵ. Supposons
donc que f n’a pas de valeur propre dans k; les facteurs irréductible de son polynôme minimal P (T ) ∈ k[T ]
sont donc tous de degré 2. Choisissons-en un P0 ∈ k[T ] (unitaire) et notons P (T ) = P0(T )Q(T ). La
stratégie est de construire une sous-k-espace vectoriel W ⊂ V f -stable et de k-dimension 2 (sur lequel on
pourra appliquer le Lemme 3.5). Comme Q(f) ̸= 0, il existe v ∈ V tel que w := Q(f)(v) ̸= 0. Par propriété
universelle de k[T ], il existe un unique morphisme de k-algèbres evf : k[T ] → Endk(V ), T 7→ f . On peut le
composer avec le morphisme de k-espaces vectoriels evw : Endk(V ) → V , g 7→ g(w). On vérifie facilement
que le noyau du morphisme composé evf,w := evw ◦ evf : k[T ] → V est un idéal non nul (puisque V est de
k-dimension finie) et strict (puisque evf,w : k[T ] → V est non nul) de k[T ] donc de la forme Π(T )k[T ] pour
un certain Π(T ) ∈ k[T ] unitaire de degré ≥ 1. On a donc un isomorphisme de k-espaces vectoriels

k[T ]/Π(T )k[T ]→̃im(evf,w) = k[f ](w) =: W ;

en particulier, dimk(W ) = deg(Π). Par construction W est f -stable. De plus, par construction encore,
P0(T )k[T ] ⊂ ker(evf,w) = Π(T ) ∈ k[T ] viz Π|P0 dans k[T ]. Comme P0 est irréductible et Π de degré ≥ 1, on
a Π = P0 de degré 2. Par le Lemme 3.1 (3), W est aussi f∗-stable. On conclut ensuite exactement comme
ci-dessus en utilisant le Lemme 3.5 sur W (en observant que le polynôme minimal de f |WW est P0 donc que

f n’est pas diagonalisable sur k) et l’hypothèse de récurrence sur W⊥φ . □

Interprétation matricielle: Pour tout M ∈ Mr(k) on a

tMM = M tM ssi il existe O ∈ Or(k) telle que M = ODO−1(= ODtO) = Diag(λ, µR)

avec λ1, . . . , λs ∈ k, µ1, . . . , µt ∈ k×, ±I2 ̸= R1, . . . , Rt ∈ O2(k). De plus,

M vérifie ⇐⇒ OMO−1 = Diag(λ, µR) avec

tM = M t = 0

tM = −M λi = 0, i = 1, . . . , s, µiRi =

(
0 −bi
bi 0

)
avec 0 ̸= b1, . . . , bt.

tM = M−1 λ1, . . . , λs, µ1, . . . , µt = ±1

3.3. Deux applications classiques de la réduction des endormorphismes normaux (autoad-
joints).
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3.3.1. Réduction simultanée de deux formes bilinéaires dont l’une est un produit scalaire. Soit (V, φ) ∈ C#
k

un produit scalaire et φ′ ∈ L#
2,k(V ). On note f : V → V l’adjoint de IdV : V → V relativement à φ, φ′ i.e.

l’unique morphisme k-linéaire f : V → V tel que le diagramme suivant commute

(∗) #(V ∨)
IdV ∨ #(V ∨)

V
f

//

v 7→φ′(−,v)

OO

V

≃ v 7→φ(−,v)

OO
,

ou encore, tel que

φ′(v, v′) = φ(v, f(v′)), v, v′ ∈ V.

Lemme 3.6. (1) f ∈ GLk(V ) ssi (V, φ′) ∈ C#
k est non-dégénéré;

(2) f : V → V est autoadjoint dans (V, φ) i.e. φ(f(v), v′) = φ(v, f(v′)), v, v′ ∈ V ;

(3) Pour toute k-base φ-orthogonale ϵ de (V, φ), f : V → V est diagonalisable dans ϵ ssi ϵ est aussi φ′-
orthogonale.

Proof. (1) est une conséquence immédiate de la définition de f : V → V par le diagramme (*). Pour (2), il
suffit d’observer que pour tout v, v′ ∈ V ,

φ(v, f(v′)) = φ′(v, v′) = #φ′(v′, v) = #φ(v′, f(v)) = ##φ(f(v), v′) = φ(f(v), v′).

Enfin, (3) résulte du fait que si ϵ est une k-base de V , on a

(φ′)ϵ = (φ)ϵ(f)ϵ

et que, comme (V, φ) ∈ C#
k est non-dégénéré, (φ)ϵ ∈ GLk(V ) donc, si (φ)ϵ est diagonale, (φ

′)ϵ est diagonale
ssi (f)ϵ est diagonale. □

Corollaire 3.7. Pour tout (V, φ) ∈ C#
k non-dégénéré, (V, φ) ∈ C#

k produit scalaire ssi pour tout (V, φ′) ∈ C#
k ,

il existe une k-base ϵ de V qui soit à la fois φ- et φ′-orthogonales.

Proof. Le sens ⇒ résulte presque immédiatement du Lemme 3.6 et du théorème spectral. En effet, pour

tout (V, φ′) ∈ C#
k , et en notant encore f : V → V l’adjoint de IdV : V → V relativement à φ, φ′, par

le Lemme 3.6 (2), f : V → V est autoadjoint dans (V, φ) donc, par le théorème spectral (que l’on peut
effectivement invoquer puisque (V, φ) est un produit scalaire), il existe une k-base φ-orthonormale ϵ de V tel
que f : V → V soit diagonalisable dans ϵ. Par le Lemme 3.6 (3), ϵ est alors automatiqement φ′-orthogonale.

Pour le sens ⇐, raisonnons par la contraposée. Si (V, φ) ∈ C#
k n’est pas un produit scalaire, il existe une

k-base ϵ de V telle que Φ := (φ)ϵ = diag(1,−1, ϵ3, . . . , ϵr) avec ϵ3, . . . , ϵr = ±1. Considérons (V, φ′) ∈ C#
k

telle que Φ′ := (φ′)ϵ = diag(M, ϵ3, . . . , ϵr), où

M =

(
1 2
2 −1

)
.

On a alors (f)ϵ = Φ−1Φ′ = diag(N, 1, . . . , 1), où

N =

(
1 2
−2 1

)
.

Par le Lemme 3.6 (3), il suffit de montrer qu’on ne peut pas trouver de matrice U ∈ GLr(k) telle que
t#UU = Ir = U t#U et UNU−1 soit diagonalisable. Notons Π(T ) = T 2 − 2T + 5 ∈ k[T ] le polynôme
minimal de N . Si # = Id, c’est immédiat car le polynôme minimal de N est irréductible dans k[T ]
(∆ = −16 < 0). Si # = τ , Π(T ) = (T − λ)(T − τ(λ)) avec λ ̸= τ(λ) ∈ k. Mais alors

diag(λ, τ(λ)) = UNU−1 = tτU−1N tτU = tτ (UNU−1) = diag(τ(λ), λ),

ce qui contredit λ ̸= τ(λ). □
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3.3.2. Décomposition polaire. Dans ce paragraphe, on va vraiment utiliser la topologie du corps k et pas
seulement ses propriétés (semi)algébriques. On note S≥0

r (R) ⊂ Mr(R) le sous-ensemble des matrices
symétriques définies positives viz des S ∈ Mr(R) telles que tM = M et tXMX ≥ 0, X ∈ Mr,1(R), et
S>0
r (R) = S≥0

r (R) ∩ GLr(R) ⊂ S≥0
r (R) celui des matrices symétriques définies positives. De même, on

note H≥0
r (C) ⊂ Mr(C) le sous-ensemble des matrices hermitiennes positives viz des H ∈ Mr(C) telles que

tM = M et tXMX ≥ 0, X ∈ Mr,1(C), et H>0
r (C) = H≥0

r (C) ∩ GLr(C) ⊂ H≥0
r (C) celui des matrices

hermitiennes définies positives.

Théorème 3.8. (Décomposition polaire)

(1) (Variante réelle) L’application produit matriciel induit un homéomorphisme

Or(R)× S>0
r (R)→̃GLr(R), (O,S) 7→ OS.

(2) (Variante complexe) L’application produit matriciel induit un homéomorphisme

Ur(R)×H>0
r (C)→̃GLr(C), (U,H) 7→ UH.

Proof. On ne traite que (1); la preuve de (2) est similaire et on la laisse en exercice. Montrons d’abord
que Or(R) × S>0

r (R) → GLr(R) est bijective viz que pour tout M ∈ GLr(R) il existe un unique couple
(O,S) ∈ Or(R) × S>0

r (R) tel que M = OS. Si un tel couple existe, on aura en particulier Σ := tMM =
tStOOS = S2. Comme Σ ∈ S>0

r (R), par le théorème spectral, il existe Q ∈ On(R) telle que QΣQ−1 = ∆

soit diagonale a coefficients dans R>0. Notons ∆ = diag(λ1, . . . , λr), et
√
∆ := diag(

√
λ1, . . . ,

√
λr). Par

construction S := Q−1
√
∆Q = tQ

√
∆Q ∈ S>0

r (R) et O := MS−1 ∈ Or(R) car
t(MS−1)MS−1 = tS−1tMMS−1 = S−1S2S−1 = Ir.

Cela montre l’existence. Pour l’unicité, si M = OS = O′S′, on doit encore avoir S2 = S′2 = Σ. En utilisant
les polynômes interpolateurs de Lagrange, on peut trouver P ∈ R[T ] (de degré |V p(ΣM )|) tel que P (λ) =

√
λ,

pour tout λ ∈ V p(Σ). En particulier, P (S′2) = P (S2) = Q−1P (∆)Q = Q−1
√
∆Q = S donc S′ et S =

P (S′) commutent donc sont codiagonalisables: il existe A ∈ GLr(R) tels que ASA−1 = diag(λ1, . . . , λr)
et AS′A−1 = diag(λ′

1, . . . , λ
′
r) avec λ1, . . . , λr, λ

′
1, . . . , λ

′
r > 0. Comme S2 = S′2, λ2

i = λ′
i
2 donc λi = λ′

i,
i = 1, . . . , r et S = S′ (donc O = O′). Il reste à voir que l’application Or(R) × S>0

r (R) → GLr(R) est un
homéomorphisme. Elle est continue car le produit matricielle l’est. Pour vérifier que son inverse est aussi
continue, on va utiliser le critère séquentiel de continuité viz que si Mn, n ≥ 0 est une suite de GLr(R)
et que pour chaque n ≥ 0, Mn = OnSn est la décomposition polaire de Mn alors Mn → M ∈ GLr(R) de
décomposition polaire M = OS (si et) seulement si On → O et Sn → S. Comme Or(R) est compact (car
fermé borné dans Mr(R) - écrire les détails), On → O ssi O est l’unique valeur d’adhérence de On, n ≥ 0.
Soit donc Oϕ(n), n ≥ 0 une suite extraite convergent de On, n ≥ 0 et Oϕ(n) → O0 ∈ Or(R) sa limite. On

a donc Sϕ(n) → S0 := O−1
0 M . Par construction S0 est à la fois dans GLr(R) et dans l’adhérence S≥0

r (R)
de S>0

r (R) dans Mr(R), donc dans S>0
r (R). Mais M = O0S0 est donc la décomposition polaire de M ; en

particulier, par unicité de la décomposition polaire, O0 = O. On a gagné! □

Corollaire 3.9. (Composantes connexes) Le groupe Or(R) a exactement deux composantes connexes, SOr(R) :=
ker(det : Or(R) → {±1}) et Or(R) \ SOr(R). Le groupe GLr(R) a lui-aussi exactement deux composantes
connexes, GL>0

r (R) := det−1(R>0) et GLr(R) \ GL>0
r (R). Les groupes Ur(C), SUr(C) et GLr(C) sont

connexes.

Proof. Observons d’abord que, comme det(S>0
r (R)) ⊂ R>0, la décomposition polaire pour GLr(R) se re-

streint en des homéomorphismes,

SOr(R)× S>0
r (R)→̃GL>0

r (R), (Or(R) \ SOr(R))× S>0
r (R)→̃GLr(R) \GL>0

r (R),
et que, pour tout O− ∈ Or(R) \ SOr(R), la multiplication par O− induit un homéomorphisme

(Or(R) \ SOr(R))→̃SOr(R).
Comme un produit de connexe est connexes et que l’image d’un connexe par une application continue est
connexe, il suffit donc de montrer que SOr(R), S>0

r (R), Ur(C), H≥0
r (C) et SUr(C) sont connexes. On va

en fait montrer qu’ils sont connexes par arcs en construisant à chaque fois, à l’aide du théorème spectral,



28 ALGÈBRE BILINÉAIRE

un chemin continu d’un élément quelconque de l’un de ces ensembles vers Ir. Pour M ∈ SOr(R), il existe
O ∈ Or(R) tel que OMO−1 = diag(1, . . . , 1, Rθ1 , . . . , Rθs) avec

Rθ =

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
(on autorise θ = π). On peut donc prendre

cM : [0, 1] → SOr(R), t 7→ O−1diag(1, . . . , 1, R(1−t)θ1 , . . . , R(1−t)θs)O.

Pour M ∈ S>0
r (R), il existe O ∈ Or(R) tel que OMO−1 = diag(λ1, . . . , λr) avec λ1, . . . , λr > 0. On peut

donc prendre

cM : [0, 1] → S>0
r (R), t 7→ tOdiag((1− t)λ1 + t, . . . , (1− t)λr + t)O.

Pour M ∈ Ur(C) (resp. M ∈ SUr(C)), il existe U ∈ Ur(C) tel que UMU−1 = diag(eiθ1 , . . . , eiθr) avec
θ1, . . . , θr ∈ R (resp. et θ1 + · · · , θr = 0). On peut donc prendre

cM : [0, 1] → Ur(C) resp. SUr(C), t 7→ U−1diag(ei(1−t)θ1 , . . . , ei(1−t)θr)U.

Enfin, pour M ∈ H>0
r (C), il existe U ∈ Ur(C) tel que UMU−1 = diag(λ1, . . . , λr) avec λ1, . . . , λr > 0. On

peut donc prendre

cM : [0, 1] → H>0
r (C), t 7→ tUdiag((1− t)λ1 + t, . . . , (1− t)λr + t)U.

□

4. Structure des espaces antisymétriques

La structure des espaces antisymétriques est étonnament simple. On suppose dans cette section que k est
quelconque (de caractéristique ̸= 2). Soit (V, φ) ∈ Cϵ

k. Par définition, tout sous k-espace vectoriel W ⊂ V
de dimension ≤ 1 est φ-isotrope.

(1) Supposons d’abord r := dimk(V ) = 2 et (V, φ) non dégénéré viz pour tout 0 ̸= ϵ1 ∈ V il existe ϵ2 ∈ V tels
que φ(ϵ1, ϵ2) ̸= 0. En particulier, ϵ = ϵ1, ϵ2 est une k-base de V . Quitte à remplacer ϵ1 par φ(ϵ1, ϵ2)

−1ϵ1,
on peut supposer que φ(ϵ1, ϵ2) = 1. Donc,

(φ)ϵ = J1 :=

(
0 1
−1 0

)
(2) En général, tout sous-k-espace vectoriel W ⊂ V supplémentaire de ker(φ) dans V se décompose en

somme directe φ-orthogonale

W = ⊕⊥φ

1≤i≤sPi

avec dimk(Pi) = 2 et (Pi, φ|Pi×Pi) ∈ Cϵ
k non-dégénéré, i = 1, . . . , s, donc il existe une k-base ϵ de V tel

que

(φ)ϵ = Diag(0, . . . , 0, J1, . . . , J1)

où le nombre de 0 est dimk(ker(φ)). En particulier, 2|rang(φ) et l’application rang induit une bijection

rang : Lϵ
2,k(V )/GLk(V )→̃2Z ∩ {0, . . . , dimk(V )}.

Proof. On raisonne par récurrence sur r = dimk(W ). Comme (W,φ|W×W ) ∈ Cϵ
k est non-dégénéré, donc

pour tout 0 ̸= ϵ1 ∈ V il existe ϵ2 ∈ V tels que φ(ϵ1, ϵ2) ̸= 0. En particulier, ϵ = ϵ1, ϵ2 est k-libre. Quitte
à remplacer ϵ1 par φ(ϵ1, ϵ2)

−1ϵ1, on peut aussi supposer que φ(ϵ1, ϵ2) = 1. Notons P1 := kϵ1 ⊕ kϵ2.
Comme (W,φ|W×W ) et (P1, φ|P1×P1) sont non dégénérés, par le Lemme 1.4 (2), on a une décomposition
en somme directe φ-orthogonale

W = P1 ⊕⊥φ P
⊥φ

1

avec (P
⊥φ

1 , φ|
P

⊥φ
1 ×P

⊥φ
1

) ∈ Cϵ
k non dégénéré, et on applique l’hypothèse de récurrence à (P

⊥φ

1 , φ|
P

⊥φ
1 ×P

⊥φ
1

).

□
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En réordonnant les vecteurs de la k-base ϵ construite en (2), on peut réénoncer (2) en disant qu’il existe une
k-base ϵ de V tel que

(φ)ϵ = Jr,s :=


0

. . .
0

Js

 , où Js :=

(
0 Is

−Is 0

)

Interprétation matricielle:

(1) Pour tout entier pair 0 ≤ 2s ≤ r et pour tout Φ ∈ Mr(k),
tΦ = −Φ et rang(Φ) = 2s ssi il existe

U ∈ GLr(k) tel que Φ = tUJr,sU .

(2) Pour tout entier s ≥ 1, on dit que le sous-groupe

Sp2s(k) := {V ∈ GL2s(k) | tV JsV = Js} ⊂ GL2s(k)

est le groupe symplectique de rang 2s. Avec les notations de (1), si rang(Φ) = 2s = r, on a

O(Φ) = U−1Sp2s(k)U.

5. Groupes orthogonaux (et unitaires)

5.1. Groupe orthogonal. On suppose ici (V, φ) ∈ CId
k non dégénéré. On va s’intéresser à la structure du

groupe orthogonal de (V, φ) viz

O(φ) = {u ∈ GLk(V ) | u · φ = φ} ⊂ GLk(V ).

On dit que le sous-groupe normal

SO(φ) := ker(det : O(φ) → k×) ◁ O(φ)

est le groupe spécial orthogonal (on note aussi parfois O+(φ) := SO(φ)). On a vu que tout choix d’une
k-base ϕ-orthogonale ϵ de V induit un isomorphisme de groupes

(−)ϵ : O(φ)→̃O(Φ) = {O ∈ GLr(k) | tOΦO = OΦtO = Φ} ⊂ GLr(k),

où Φ = (φ)ϵ. via cet isomorphism,

SO(φ)→̃(O+(Φ) =)SO(Φ) := ker(det : O(Φ) → k×) ◁ O(Φ).

Comme det(O)2 = det(OtO), on a que im(det : O(Φ) → k×) ⊂ {±1} et comme la matriceDiag(−1, 1, . . . , 1) ∈
O(Φ) est de déterminant −1, on a en fait une suite exacte courte scindée de groupes

1 → SO(φ) → O(φ)
det→ {±1} → 1

5.1.1. Symétries orthogonales. On appelle symétries de V les éléments d’ordre exactement 2 de GLk(V )
et symétries φ-orthogonales ceux de O(φ). En particulier, si u ∈ GLk(V ) est une symétrie, on a V =
ker(u− IdV )⊕ ker(u+ IdV ) et c’est l’unique décomposition en somme directe u-stable V = V +(u)⊕ V −(u)
telle que u|V +(u) = IdV +(u), u|V −(u) = −IdV −(u).

Lemme 5.1. Si u ∈ GLk(V ) est une symétrie, u ∈ O(φ) ssi V +(u) ⊥φ V −(u). En particulier, v+(u)⊥φ =

V −(u), V −(u)⊥φ = V +(u), et (V +(u), φ|V +(u)×V +(u)), (V
−(u), φ|V −(u)×V −(u)) sont tout deux non-dégénérés.

Inversement, pour tout sous-k-espace vectoriel W ⊂ V tel que (W,φ|W×W ) est non-dégénéré, il existe une
unique symétrie σW ∈ O(φ) telle que W = V +(σW ).

Proof. ⇐: Si V +(u) ⊥φ V −(u), la décomposition V = V +(u)⊕ V −(u) est φ-orthogonale donc si ϵ+ est une
k-base φ-orthogonale de (V +(u), φ|V +(u)×V +(u)) et ϵ

− une k-base φ-orthogonale de (V −(u), φ|V −(u)×V −(u)),

la concaténation ϵ = ϵ+, ϵ− est une k-base φ-orthogonale de V . Par construction

U := (u)ϵ = diag(1, . . . , 1,−, . . . ,−1)

et Φ := (φ)ϵ est diagonale inversible donc tUΦU = ΦtUU = Ir. ⇐: si u ∈ O(φ), pour tout v+ ∈ V +(u),
v− ∈ V −(u), on a

φ(v+, v−) = −φ(u(v+), u(v−)) = −φ(v+, v−),
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donc φ(v+, v−) = 0. Enfin, si W ⊂ V est un sous-k-espace vectoriel tel que (W,φ|W×W ) est non-dégénéré,
on a une décomposition en somme directe φ-orthogonale

V = W ⊕⊥φ W⊥φ

et on peut prendre σW = IdW ⊕−IdW⊥φ . □

Pour tout entier 1 ≤ s ≤ r, notons Ωs
2(O(φ)) ⊂ O(φ) le sous-ensemble des symétries orthogonales σ ∈ O(φ)

telles que dimk(V
−(σ)) = s, Gr(s, V ) l’ensemble des sous-k-espaces vectoriels W ⊂ V tels que dimk(W ) =

s et Grφ(s, V ) ⊂ Gr(s, V ) le sous-ensemble des W ∈ Gr(s, V ) tels que (W,φ|W×W ) est non-dégénéré.
L’application W 7→ σW induit donc une bijection

σ− : Grφ(s, V )→̃Ωs
2(O(φ))

d’inverse l’application V +(−) : Ωs
2(O(φ))→̃Grφ(s, V ). Notons de plus que O(φ) agit naturellement sur

Grφ(s, V ) (par u·W = u(W )) et sur Ω2(O(φ)) (par u·σ = uσu−1) et que l’application σ− : Grφ(s, V )→̃Ωs
2(O(φ))

est O(φ)-équivariante. En effet, pour tout W ∈ Grφ(s, V ) et u ∈ O(φ), on a encore uσWu−1 ∈ O(φ) d’ordre
exactement deux et ker(uσWu−1 − Id) = u(ker(σW − Id)) = u(W ), donc uσWu−1 = σu(W ).

On appelle parfois aussi reflexions φ-orthogonales (resp. renversements φ-orthogonaux ) les éléments de
Ω1
2(φ) (resp. Ω2

2(φ)). Si W ⊂ V est un sous-k-espace vectoriel, on note rW := σW⊥φ = −σW . Donc les
reflexions φ-orthogonales (resp. renversements φ-orthogonaux) sont les rD (resp. rP ) avec D ⊂ V droite
vectoriel (resp. P ⊂ V plan vectoriel).

A partir de maintenant, on va supposer k euclidien et que (V, φ) ∈ CId
k est définie positif. On a

alors Grφ(s, V ) = Gr(s, V ) et l’action de SO(φ) sur Gr(s, V ) est transitive. En effet, si W1,W2 ∈ Gr(s, V ),
on a

V = W1 ⊕⊥φ W
⊥φ

1 = W2 ⊕⊥φ W
⊥φ

2 .

En particulier, pour i = 1, 2, si ϵi est une k-base φ-orthonormale de Wi et ϵ
⊥
i est une k-base φ-orthonormale

de W
⊥φ

i , la concaténation ei = ϵi, ϵ
⊥
i est une k-base φ-orthonormale de V . soit alors u ∈ GLk(V ) défini par

u(e1) = e2. Par construction u(W1) = W2, et comme e1, e2 sont des k-bases φ-orthonormales, u ∈ O(φ),et
si u ̸∈ SO(φ), on peut toujours remplacer u par u ◦ σ(kw1)

⊥φ pour n’importe quel 0 ̸= v1 ∈ W1.

5.1.2. Le cas dimk(V ) = 2.

5.1.2.1. Groupe des angles. Pour tout a, b ∈ k, notons

R(a,b) =

(
a b
−b a

)
En reprenant la preuve du Lemme 3.5 en ajoutant la contrainte M tM = I2 =

tMM et det(M) = 1, on voit
immédiatement que l’application R− : k2 → M2(k) se restreint en un isomorphisme de groupes

R− : S1(k)→̃SO2(k),

où S1(k) := {(a, b) ∈ k2 | a2 + b2 = 1} ⊂ k2, muni de la loi de composition

(a1, b1) ∗ (a2, b2) = (a1a2 − b1b2, a1b1 + a2b2),

ce qui en fait un groupe abélien d’élément neutre (1, 1).

Rem.: Si k = R, on a un diagramme commutatif canonique de groupes topologiques

(R,+)
t7→eit //

����

t7→(cos(t),sin(t))

++
(ker(| − |), ·) (S1(R), ∗)

(a,b)7→a+ib

≃
oo R−

≃
// SO2(R)

(R/2πZ,+)

≃

77nnnnnnnnnnnn
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Notons encore R− : (R/2πZ,+)→̃SO2(R) l’isomorphisme de groupe ainsi obtenu. Pour tout M ∈ SO2(R)
on dit que l’unique θ̄ ∈ R/2πZ tel que Rθ̄ = M est l’angle de M et on dit que (R/2πZ,+) est le groupe des
angles. Dans un corps euclidien arbitraire, on dit parfois encore que (S1(k), ∗) est le groupe des angles.

Si on considère maintenant un plan euclidien (V, φ) ∈ CId
k et que l’on fixe une k-base φ-orthonormale ϵ0

de V , comme SO2(k) viz SO(φ) est abélien, pour toute k-base φ-orthonormale ϵ de V , l’isomorphisme de
groupe

(−)ϵ : SO(φ)→̃SO2(k)

ne dépend que de detϵ0(ϵ) = ±1. On dit que le choix de ϵ0 définit une orientation de (V, φ) et que les k-bases
φ-orthonormales ϵ de V telles que detϵ0(ϵ) = 1 (resp. detϵ0(ϵ) = −1) sont directes (resp. indirectes) dans
le k-espace vectoriel euclidien orienté (V, φ, ϵ0). On définit alors l’angle de d’un élément u ∈ SO(φ) comme
l’unique (a, b) ∈ S1(k) tel que (u)ϵ0 = R(a,b).

5.1.2.2. Générateurs en dimension 2.

Lemme 5.2. Si dimk(V ) = 2, tout IdV ̸= u ∈ O(φ), s’écrit comme produit d’au plus 2 reflexions φ-
orthogonales.

Proof. Comme u ̸= IdV , il existe v ∈ V tel que v′ = u(v) ̸= v. On a alors

φ(v − v′, v + v′) = φ(v, v)− φ(v′, v′) = φ(v, v)− φ(u(v), u(v)) = φ(v, v)− φ(v, v) = 0.

Notons D1 = k(v − v′) donc D
⊥φ

1 = k(v − v′). Par définition rD1(v + v′) = v + v′, rD1(v − v′) = v′ − v donc
2rD1(v

′) = 2v viz rD1 ◦u(v) = v. Donc, comme dimk(V ) = 2, en notant D2 := (kv)⊥φ , on a V = kv⊕⊥φ D2

avec D2 ⊂ V une droite rD1 ◦ u-stable. Comme rD1 ◦ u ∈ O(φ), ses seules valeurs propres sont ±1 donc soit
D2 ⊂ V +(σD1 ◦ u) et u = rD1 , soit D2 ⊂ V −(rD1 ◦ u) et u = rD1 ◦ rD2 . □

5.1.3. Centre, générateurs, sous-groupe dérivé.

Proposition 5.3. On a Z(O(φ)) = {±IdV } et, si dimk(V ) ≥ 3, Z(SO(φ)) = Z(O(φ)) ∩ SO(φ).

Proof. On remarque que {±IdV } = O(φ)∩k×IdV . Les inclusions ⊃ étant évidentes, il suffit de montrer que
tout u ∈ Z(O(φ)) (resp. u ∈ Z(SO(φ))) est une homothétie. Pour cela, on utilise la caractéristion classique:
pour tout u ∈ GLk(V ), u ∈ k×IdV ssi pour toute droite vectorielle D ⊂ V , u(D) = D. Traitons d’abord le

cas de O(φ). Soit donc u ∈ Z(O(φ)). Pour toute droite vectorielle D ⊂ V , on a σD
(1)
= uσDu

−1 (2)
= σu(D),

où (1) vient du fait que σD ∈ O(φ) et u ∈ Z(O(φ)) et (2) du fait que uσDu
−1 ∈ O(φ) est encore d’ordre

exactement 2 avec V +(uσDu
−1) = u(V +(σD)) = u(D). On a donc bien u(D) = D. Soit maintenant u ∈

Z(SO(φ)). Comme dimk(V ) ≥ 3, toute droite vectorielle D ⊂ V peut s’écrire comme intersection de deux
plans vectoriels P1, P2 ⊂ V . On applique l’argument précédent aux symétries orthogonales σ

P
⊥φ
i

∈ SO(φ),

i = 1, 2 pour obtenir u(P
⊥φ

i ) = P
⊥φ

i donc u∗(Pi) = u−1(Pi) = Pi donc u(Pi) = Pi, i = 1, 2, ce qui implique
u(P1 ∩ P2) = P1 ∩ P2. □

Proposition 5.4. Pour tout u ∈ O(φ), notons r+(u) := dimk(V
+(u)). Alors u s’écrit comme produit d’au

plus r − r+(u) reflexions φ-orthogonales. Si r ≥ 3 et u ∈ O(φ), u s’écrit aussi comme produit d’au plus
r − r+(u) retournements φ-orthogonaux.

Proof. Par le théorème spectral pour les automorphismes orthogonaux, pour tout u ∈ O(φ) il existe une
décomposition en somme directe φ-orthogonale u-stable

V = V +(u)⊕⊥φ V −(u)⊕⊥φ ⊕⊥φ

1≤i≤tWi,

oú dimk(Wi) = 2, i = 1, . . . , t. D’après le Lemme 5.2, il existe des droites vectorielles Di,1, Di,2 ⊂ Wi telles
que u|Wi = rDi,1 ◦ rDi,2 dans O(φ|Wi×Wi), i = 1, . . . , t. Si on note r− := r−(u) := dimk(V

−(u)), que l’on fixe

ϵ1, . . . , ϵr− une k-base φ-orthogonale de V −(u) et que l’on pose Di = kϵi, i = 1, . . . , r−, on obtient:

u = rD1 ◦ · · · ◦ rDr− · rD1,1 ◦ rD1,2 ◦ · · · ◦ rDt,1 ◦ rDt,2 .
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Pour la deuxième partie de l’énoncé, comme tout u ∈ SO(φ) est produit d’un nombre pair ≤ r−(u) de
réflexions φ-orthogonales de la forme rD1 ◦ rD2 avec D1 ̸= D2, il suffit de montrer que pour toutes droites
vectorielles D1 ̸= D2 ⊂ V , il existe des plans vectoriels P1, P2 ⊂ V tels que

π := rD1 ◦ rD2 = rP1 ◦ rP2 .

Notons Hi := D
⊥φ

i , i = 1, 2. Comme H1 ̸= H2, dimk(H1 ∩H2) = r− 2 donc, comme r ≥ 3, on peut trouver

W ⊂ H1 ∩H2 tel que dimk(W ) = r − 3; notons H := W⊥φ . Par construction, π|W = IdW ; en particulier,
π(H) = H et on a encore det(π|H) = 1 viz π|H ∈ SO(φ|H×H). Comme dimk(H) = 3, il existe ∆1,∆2 ⊂ H
droites vectorielles telles que

π|H = r∆1 ◦ r∆2 = σP1 ◦ σP2 = (−σP1) ◦ (−σP2) = rP1 ◦ rP2 .

Où on a noté Pi := ∆
⊥φ|H×H

i ⊂ W , i = 1, 2. On vérifie sur la construction que cette égalité reste vraie dans
V . □

Corollaire 5.5. Si r ≥ 2 on a D(O(φ)) = SO(φ) et si r ≥ 3, D(SO(φ)) = SO(φ).

Proof. L’inclusion D(O(φ)) ⊂ SO(φ) vient du fait que det([u1, u2]) = 1 et l’inclusion D(SO(φ)) ⊂ SO(φ)
est tautologique. Montrons les inclusions réciproques.

(1) On a vu qu’on avait un isomorphisme canonique O(φ)-équivariant σ− : Gr(s, V )→̃Ωs
2(φ). Observons

en outre que l’action de SO(φ) sur Gr(s, V ) est transitive. En effet, pour tout W1,W2 ∈ Gr(s, V ) en

considérant les décompositions en somme directe φ-orthogonale V = W1 ⊕⊥φ W
⊥φ

1 = W2 ⊕⊥φ W
⊥φ

2 et

en choisissant des k-bases φ-orthonormales ϵi, ϵ
⊥
i de Wi et W

⊥φ

i , i = 1, 2, tout u ∈ GLk(V ) tel que

u(ϵ1) = ϵ2, u(ϵ
⊥
1 ) = ϵ⊥2 est dans O(φ) et vérifie u(W1) = W2. Si u ̸∈ SO(φ), on le remplace par u ◦ rD

pour n’importe quelle droite vectorielle D ⊂ W1. On en déduit que les éléments de Ωs
2(φ) sont donc

tous conjugués sous SO(φ).

(2) On est dans la situation où on a D(G) ⊂ H ⊂ G avec H ⊂ G normal, et engendré par une famille S ⊂ H
d’éléments qui sont tous conjugués sous H. Pour montrer que D(G) = H il suffit donc de montrer que
S ∩D(G) ̸= ∅.

(a) Dans le premier cas, montrons que D(O(φ)) contient un produit de deux reflexions φ-orthogonales.
Pour cela, il suffit d’observer que si r1, r2 sont 2 reflexions φ-orthogonales, pour tout u ∈ SO(φ) tel
que ur1u

−1 = r2, on a r1r2 = r1ur1u
−1 = [r1, u] ∈ D(O(φ)).

(b) Dans le second cas, montrons que D(SO(φ)) contient un retournement φ-orthogonal. Pour cela,
fixons W ⊂ V tel que dimk(W ) = 3 et ϵ1, ϵ2, ϵ3 une k-base φ-orthonormale de W . Pour {i, j, k} =

{1, 2, 3}, notons Pk = kϵi⊕kϵj (en particulier rPk
(ϵi) = −ϵi, rPk

(ϵj) = −ϵj , rPk
(v) = v, v ∈ P

⊥φ

k ∋ ϵk
). Donc rPi ◦ rPj = rPk

. Soit maintenant u ∈ SO(φ) tel que rPj = urPiu
−1; on a

rPk
= rPi ◦ rPj = rPi ◦ urPiu

−1 = [rPi , u] ∈ D(SO(φ)).

□

5.1.4. Simplicité de PSO(φ) pour r = 3,≥ 5. L’objectif de ce paragraphe est de montrer l’énoncé suivant.
Soit (V, φ) ∈ CId

R un produit scalaire. On note

PSO(φ) := SO(φ)/Z(SO(φ)).

(si r := dimR(V ) est impaire, on a donc simplement PSO(φ) = SO(φ)).

Théorème 5.6. Si r = 3, ou r ≥ 5, le groupe PSO(φ) est simple.

Rem. On peut montrer que si r = 4, PSO(φ)→̃SO3(R)× SO3(R) - cf. e.g. [VII.4, P96]).

Proof. La stratégie générale est la suivante. Soit G un groupe muni d’une classe de conjugaison C ⊂ G qui
engendre G. Pour montrer que G est simple, il suffit alors de montrer que pour tout sous-groupe normal
1 ̸= N ⊂ G, N ∩ C ̸= ∅. En effet, on aura alors automatiquement C ⊂ N puisque N est normal dans G
donc G = ⟨C⟩ ⊂ N . Pour construire un élément de C ∩N , on part d’un élément 1 ̸= g0 ∈ N et on essaye
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de le ”transformer” de façon ad-hoc en un élément de C ∩N . Une première idée - näıve - serait simplement
de conjuguer g0 par un élément de g ∈ G. On aura bien encore gg0g

−1 ∈ N puisque N est normal dans G
mais si g0 /∈ C, il n’y a bien sûr aucune chance pour que gg0g

−1 ∈ C! Ce n’est donc pas la bonne idée...
Ce qui s’avère souvent plus fructueux, c’est de considérer les commutateurs [g, g0], g ∈ G. Là encore, on a
[g, g0] = (gg0g

−1)g−1
0 ∈ N puisque N est normal mais comme g0 et [g, g0] ne sont a priori pas conjugués,

même si g0 /∈ C, il y a des chances qu’on trouve des g ∈ G tels que [g, g0] ∈ C. Dans notre cas, ce sont les
retournements qui vont jouer le rôle de C. On va d’abord traiter le cas r = 3, puis se ramener à ce cas dans
le cas général.

(1) Le cas r = 3. Soit donc 1 ̸= N ⊂ SO(φ) un sous-groupe normale et 1 ̸= g0 ∈ N . Considérons
l’application continue

αg0 : SO(φ) → R, g 7→ tr([g, g0]).

Comme SO(φ) est compact connexe (cf. Corollaire 3.9), l’image de αg0 est un compact connexe de R
viz un segment fermé borné [a, b]. De plus, par le théorème spectral, pour tout u ∈ SO(φ) il existe une
R-base φ-orthonormale ϵ de V tel que (u)ϵ = diag(1, Rθ) donc tr(u) = 1 + 2cos(θ) ≤ 3 et tr(u) = 3 ssi
cos(θ) = 1 viz u = Id (donc, sur SO(φ), la trace détecte l’identité). En particulier, b ≤ 3 et comme
αg0(g0) = 3, b = 3. On a aussi a < 3 sinon, pour tout g ∈ SO(φ), [g, g0] = Id viz g0 ∈ Z(SO(φ)) = {1}:
contradiction. En particulier, 1 + 2cos(π/n) ∈ [a, 3] pour n ≫ 0 ce qui signifie qu’il existe gn ∈ SO(φ)
tel que un := [gn, g0] ∈ N vérifie (u)ϵ = diag(1, Rπ/n) (ou = diag(1, R−π/n) = diag(1, R−π/n)

−1) dans
une R-base φ-orthonormale ϵ de V . En particulier unn ∈ N est un retournement.

(2) Le cas r ≥ 5. Soit 1 ̸= N ⊂ PSO(φ) un sous-groupe normal et notons Z(SO(φ)) ⊊ N ⊂ SO(φ)
son image inverse dans SO(φ); c’est encore un sous-groupe normal de SO(φ) et on veut montrer que
N = SO(φ). Pour tout sous-R-espace vectoriel W ⊂ V tel que dimR(W ) = 3, on a un plongement
naturel αW : SO(φ|W×W ) ↪→ SO(φ), u 7→ u ⊕ IdW⊥φ et, par construction, l’image par αW d’un
retournement de (W,φW×W ) est encore un retournement de (V, φ). Il suffit donc de construire un tel
W tel que N ∩ im(αW ) ̸= 1 car, dans ce cas, comme N ∩ im(αW ) ⊂ im(αW ) est encore un sous-groupe
normal et que im(αW ) ≃ SO(φ|W×W ) est simple par le cas r = 3, on aura N ⊃ N ∩ im(αW ) = im(αW );
en particulier N contiendra tous les retournements de SO(φ) contenu dans im(αW ) et on aura gagné!
Mais si g ∈ SO(φ) vérifie r+(g) = dimR(V

+(g)) ≥ r − 3, on peut toujours construire un sous-R-
espace vectoriel W ⊂ V tel que dimR(W ) = 3 et g ∈ im(αW ); en effet, par le théorème spectral,
r+(g) =≥ r − 3 n’est possible que si g = Id ou r+(g) = r − 2 et, dans ce cas, on peut prendre
W = V +(g)⊥φ ⊕⊥φ D où D ⊂ V +(g) est une droite vectorielle quelconque. Il suffit donc de construire
g ∈ N tel que dimR(V

+(g)) ≥ r − 3. Pour cela, fixons g0 ∈ N , g0 ̸∈ Z(SO(φ)) et observons que si
D1, D2 ⊂ V sont deux droites vectorielles, on a

[rD1rD2 , g0] = rD1rD2rg0(D2)rg0(D1)

En particulier, s’il existe une droite vectorielle D2 ⊂ V telle que g0(D2) = D2 alors, pour n’importe

quelle autre droite vectorielle D1 ⊂ V , on aura g := [rD1rD2 , g0] = rD1rg0(D1) donc V
+(g) ⊃ D

⊥φ

1 ∩D
⊥φ

2 ,
qui est de codimension ≤ 1+ 1 = 2 dans V . Il suffit donc en fait de construire g ∈ N , g ̸∈ Z(SO(φ)) tel
que dimR(V

+(g)) ≥ 1. C’est ici qu’on utilise r ≥ 5. En effet, si P ⊂ V plan vectoriel, on a

N ∋ gP = [rP , g0] = rP rg0(P )

et V +(gP ) ⊃ P⊥φ ∩ g0(P )⊥φ , qui est de codimension ≤ 2 + 2 = 4 < 5 ≤ r dans V . Il suffit donc de
vérifier qu’on peut trouver un plan vectoriel P ⊂ V tel que gP ̸∈ Z(SO(φ)); mais c’est en effet le cas
puisque, comme −IdV n’a pas de point fixe, si gP ∈ Z(SO(φ)), on a forcément gP = Id. Mais si gP = Id
pour tout plan vectoriel P ⊂ V , alors g0 ∈ Z(SO(φ)) puisque les retournements engendrent SO(φ). On
a gagné!

□

5.2. Quelques mots sur le groupe unitaire. Soit (V, φ) ∈ Cτ
C un produit scalaire hermitien (où τ =

(−) est la conjugaison complexe). Disons quelques mots des groupes unitaire et spécial unitaire. Notons
U1(C) := ker(| − | : C× → R>0) ⊂ C× le sous-groupe des complexes de module 1 et, pour tout r ≥ 1,
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µr(C) := ker((−)r : C× → C×) ⊂ U1(C) le sous-groupe des racines r-ièmes de l’unité. On a encore une suite
exacte courte scindée de groupes

1 → SU(φ) → U(φ)
det→ U1(C) → 1.

Pour chaque droite vectorielle D ⊂ V , et ζ ∈ U1(C), notons r(D,ζ) ∈ U(φ) défini par

r(D,ζ) = ζIdD ⊕ IdD⊥φ ;

on dit que c’est la pseudo-refléxion définie par (D, ζ). Pour tout couple D ⊂ P ⊂ V d’une droite vectorielle
contenue dans un plan vectoriel de V , et ζ ∈ U1(C), notons r(D,P,ζ) ∈ SU(φ) défini par

r(D,P,ζ) = ζIdD ⊕ ζ−1Id
D

⊥φ|P×P
⊕ IdP⊥φ ;

on dit que c’est le pseudo-retournement défini par (D,P, ζ). Il résulte alors du théorème spectral que tout
élément u de U(φ) s’écrit comme produit d’au plus r−r+(u) pseudo-réflexions et que, si r ≥ 2, tout élément
u de SU(φ) s’écrit comme produit d’au plus r − r+(u) pseudo-retournements. On a encore

Z(U(φ)) = {ζIdV | ζ ∈ U1(C)} ≃ U1(C), Z(SU(φ)) = Z(U(φ)) ∩ SU(φ) = {ζIdV | ζ ∈ µr(C)} ≃ µr(C),
et, pour r ≥ 2, D(U(φ)) = SU(φ) et PSU(φ) = SU(φ)/Z(SU(φ)) simple.
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