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Sauf mention explicite du contraire, si k est un corps, tous les k-espaces vectoriels considérés sont de dimen-
sion finie.

On appellera corps pré-euclidien un corps k& muni d’un ordre total' < et on dira qu’il est euclidien si le
morphisme de groupes Nig : kX — ksg, A — A? est surjectif et euclidien rééllement clos si, de plus,

10n rappelle que cela signifie que k£ est muni d’un ordre total < telque s <y w2 +2<y+zet0<2,0<y - 0 < zy.
Si k est totalement ordonné, (k,+) est sans torsion donc, en particulier, k est de caractéristique 0.
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k(v—1) = k[T]/T? + 1 est algébriquement clos. En particulier, un polynéme irréductible sur un corps
euclidien rééllement clos est de degré 1 ou 2. Les corps R, QNR par exemple sont euclidiens rééllement clos.
Tout sous-corps d’un corps euclidien est pré-euclidien.

On appellera corps pré-hermitien un corps k muni d’une involution 7 # Idy, tel que le corps des invariants
k™ C k (on rappelle que [k : k] = 2 - ¢f. Lemme 0.1 ci-dessous) est pré-euclidien viz muni d’un ordre
total < et que I'image du morphisme de groupes (appelé norme de k/k™) N, : k™ — k™%, X — A7(A) est
contenue dans k7, C k7*; on dira qu'il est hermitien si N; : k* — kI, est surjectif. Les corps C et Q
munis de la conjugaison complexe 7 par exemple sont hermitiens. Tout sous-corps d’un corps hermitien est
pré-hermitien.

Lemme 0.1. Soit k un corps muni d’une d’une involution T # Idy. Alors [k : k™) = 2 et il existe v € k\ k™
tel que 1> € k7 (donc 7(1) = —1).
Proof. On admettre que [k : k7] = 2 (la preuve utilise un peu de théorie de Galois - ¢f. e.g. [L93, VI, Thm.
1.8]). Si aw € k\ k7 est quelconque, comme [k : k7] = 2, on a k = k7 («); en particulier, le polynéme minimal
P(T) € k7[T] de a sur k7 est de degré exactement 2. En I'écrivant P(T) = T? +aT +b et en notant «, 3 € k
ses racines, on vérifie comme d’habitude que

A=a®—da=(a+p)’—4af = (a— )

est un carré dans k et que

(0,8} = (VB Z0t VA,

donc 1 := VA € k \ k7 convient. O

Rem: Sous les hypotheses et avec les notations du Lemme 0.1, les éléments = € k\ k7 tels que 2 € k7 sont
alors ceux de k7*.

1. DEFINITIONS, PREMIERES PROPRIETES

1.1. Formes k-m-linéaires. Soit k£ un corps et Vq,...,V,,, W des k-espaces vectoriels. On rappelle que
'ensemble WV1*xVmn des applications V; x --- x Vi, — W est naturellement muni d’une structure de
k-espace vectoriel; on note

Lp(Vi X - X Vi, W) € WYXXVim

le sous-ensemble des applications k-multilinéaires viz des ¢ : Vi x --- x V,;, = W telles que pour tout
1 <i<m et pour tout v := (vj)i<jri<m € [[1<j i< Vj» I'application

0y Vi = W, v = @p(vi) = p(v1,.. ., Viy ..., Um)

est k-linéaire. On vérifie immédiatement que Li(Vi X -+ X V,,, W) est un sous-k-espace vectoriel de
WV1><---><Vm.

Exercice 1.1. Calculer la dimension de Lx(Vi X -+ x Vi, W).

Lorsque Vi = Vo = --- = V,, = V et W = k, on parle de formes k-m-linéaires sur V et on notera
Lk (V) = Ly(V x--- x V, k) pour simplifier. Lorsque m = 1, on retrouve les formes k-linéaires usuelles et
on notera en général V" := Lq (V).
Le groupe symétrique S, agit naturellement sur k de deux fagons:
(1) par l’action triviale: o - A = A (ce qui correspond au morphisme de groupes 1 : S,,, — {1} C k*);
(2) par la signature: o - A = €(o)A (ce qui correspond au morphisme de groupes € : S, — {£1} C k*).
Le groupe symétrique S, agit également naturellement sur V'™ par permutation des coordonnées:
0V = (Ua(l)v e ava(m))'
On en déduit une action naturelle de Sy, sur L, ,(V):

o VT =k, v @(U-1(1)s -+ 5 Ug—1(m))-
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On note
Lk (V) C Loni(V)
le sous-k-espace vectoriel des formes k-m-linéaires symétriques viz qui sont Sp,-équivariante lorsque 1’on
munit k& de action (1), et
mik(V) C Ly i(V)
le sous-k-espace vectoriel des formes k-m-linéaires antisymétriques viz qui sont Sp,-équivariante lorsque 1’on
munit k& de l'action (2). Explicitement, pour tout ¢ € L,, x(V),

RS E{,ﬁ{k(V) S P(Vs(1)s -+ Vo(m)) = (), 0 ESm, vEV™
et
¢ € Ly, (V) & 0(Vg1)s - - Vo(m)) = €(0)p(v), o€ Sp, veV™.
Rem.: (HP):
(1) L’importance des formes k-bilinéaires vient de leur lien avec le produit tensoriel, qui est une construction
universelle fondamentale en algebre commutative. En fait,

Lr(Vi X =+ X Vi, W) = Homg (Vi @, -+ - @ Vi, W) = VY @y - @4 V! @1 WL

(2) L’action de Sy, sur L, (V') est par automorphismes k-linéaires i.e. L,, (V) est une représentation k-
linéaire du groupe S,,. Si k est de caractéristique 0, la théorie des représentations linéaires des groupes
finis assure que L, (V') se décompose en la somme directe de ses composantes isotypiques viz on a un
isomorphisme S,,-équivariant

£m,k(v) = @Ielrrk(sm)IEBmI?

ou on a noté Irry(S,,) un systeme de représentants des classes d’isomorphismes de représentations k-

linéaires simples de S,,,. Le sous-k-espace vectoriel L'f?i (V) C Ly, (V) peut aussi s’interpréter comme la

composant isotypique correspondant a la représentation triviale et le sous-k-espace vectoriel £§n7k(V) C

Ly, (V) comme la composant isotypique correspondant & la représentation donnée par la signature (ce

sont les deux seules représentations k-linéaires irréductibles de dimension 1 de S,y,).

1.2. Formes k-bilinéaires. Lorsque m = 2 on dit forme k-bilinéaire plutot que forme k-2-linéaire. Dans
ce cas,

L35(V) i={p € Lo(V) | vz, 01) = p(v1,02)}, L5 4(V) :={p € Lok (V) | @(v2,01) = —p(v1,v2)}

Si k est muni d’une involution Id # 7, on dispose d’un troisieme type d’applications 2-klinéaires distinguées,
les formes T-hermitiennes:

2x(V)i={p € Lopr (V) | p(v1,—) € L11(V), v1 €V, p(v2,v1) = T(p(v1,v2))} C Log(V x "V, k).

Ici, il faut prendre garde au fait que la structure de k-espace vectoriel sur la deuxiéme composante n’est pas

celle de V' (not.: A -v) mais le twist de celle-ci par 7 (not.: A -y v) 2 viz

Arv=7A)-v, N€k,veV.

On note "V le groupe additif (V,+) muni de la loi extérieure - : k x V. — V. Si V' est un autre k-
espace vectoriel, on dit parfois que les morphismes de k-espaces vectoriels f : V! — TV sont les applications
7-semilinéaires f : V' — V. Dans tous les cas, ¢a veut simplement dire que

f-v) =X fv) =7(A) - f(v)...
En pratique, on sera surtout dans la situation ott & C C est un sous-corps de C stable sous la conjugaison
complexe 7 := (—) et la principale raison (dans le cade de I’Agreg) pour laquelle on introduit les formes

T-hermitiennes est que sur C, ce sont les bons objets & considérer si ’on veut définir une notion de produit
scalaire sur les C-espaces vectoriels.

2En effet, pour tout ¢ € L3 (V) et pour tout vy € k

p(v1, Avz) = T(p(Avz, v1)) = T(Ap(v2,01)) = T(A) 7> (p(v1,v2)) = T(N)p(v1,v2), v2 €V, A€ k.
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Rem.: (Formes k-bilinéaires antisymétriques vs formes k-bilinéaires alternées). Notons

v (v,0v)

V 5 AycCcVxV
les sous-k-espace vectoriel diagonal. On peut également considéré le sous-k-espace vectoriel
Aok (V) i=ker(—|ay : Lop(V) = k) ={p € Log(V) | p(v,0) =0, v €V} C Lop(V)
des formes k-bilinéaires alternées. On a toujours Ay (V') C L5 (V) car pour tout ¢ € Ag (V) et v1,v2 €V,
on a
0 = @(v1 +v2,v1 +v2) = @(vi,v1) + @(v1,v2) + @(v2,v1) + p(v2, v2) = p(v1,v2) + p(v2, V1).

Inversement, pour tout ¢ € L, (V) et v € V, on a p(v,v) = —¢(v,v) viz 2¢(v,v) = 0. Donc, si k
est de caractéristique # 2, on a Ay (V) = L5, (V). Par contre, si k est de caractéristique 2, I'inclusion
Az (V) C L5 (V) est stricte en général (cf. Sous-section 1.2.2 (0)).

L’objet de l'algebre bilinéaire est ’étude des formes k-bilinéaires. Le cas ou k est de caractéristique 2
présente des pathologies particuliéres, notamment dans I’étude des formes k-bilinéaires symétriques. Dans
ce cours, on se limitera presque toujours au cas ou k est de caractérique p # 2. On notera E#k(V)
si on ne veut pas distinguer # = Id,e,7. On note également k% = k, # = V si # = Id,e et k¥ = k",
# =TV si # = 7. Le groupe GL;(V) agit naturellement sur £§fk(V) par

u-@:VxV—ok, (v,v2)— @(u_l(vl),u_l(vz)).

La premiere question que ’on peut se poser est celle de la classification des orbites E#k(V) /GLy(V) et, pour

un élément @ € E;%k(V), la détermination du groupe orthogonal de ¢ viz du stabilisateur
Ok(p) == Stabgr, (v)(p) C GLE(V).

Plutét que de se fixer un k-espace vectoriel V' et un objet ¢ € Efk(V) il est parfois plus pratique de considérer

les paires (V, ¢); elles formes les objets d’une catégorie C,fé dont les morphisms f : (V,¢) — (V',¢’) sont les
isométries viz les applications k-linéaires f : V — V' telles que

@' (f(v1), f(v2)) = p(v1,0v2), vi,v2€V.

On dit que C;f est la catégorie des k-espaces symétriques ou quadratiques si # = Id, antisymétriques ou
symplectiques si # = €, T-hermitiens si # = 7. Avec ce point de vue, Ok () est le groupe des automorphismes
de (V,p) dans C,fé.

1.2.1. Interpétation matricielle. Soit € = €1, ..., €, une k-base de V. Pour tout ¢) € L9 ,(V), notons
® = (p)e := (plei; €)))1<ij<r € My (k).

Pour tout v; = Zlgjgr V;, ;€5 € V,avec V; := (Ui)g = (Ui7j)1§j§7~ € Mr,l(k) 1=1,2,0n a
o(v1,v2) = 'Vi®V5 avec 'd = ® ssip € Eg’dk(V);

"o = —®ssipe L5, (V)

t® = —® et les termes diagonaux de ® sont 0 ssi ¢ € E;k(V).
De méme, si ¢ € L] ,-(V), on a

o(v1,v9) = "V1®7V; avec (® = T,

Autrement dit, I'isomorphisme de k-espaces vectoriels (—)e : Lo (V)M (k) identifie Eidk(V) C Lop(V)
au sous-k-espace vectoriel des matrices symétriques (‘@ = @), 5k(V) C L2 1(V) au sous-k-espace vectoriel

des matrices antisymétriques (*® = —®) et L7, (V) C Lo(V) au sous-k"-espace vectoriel des matrices
7-hermitiennes (*® = 7®). Pour tout u € GLi(V), avec U := (u)., on a

(u- ) ='UtoU L
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En particulier, 'isomorphisme de groupes (—), : GLi(V)=>GL, (k) identifie Ok (p) C GLi(V) au sous-groupe
OR(®) :={U € GL, (k) | 'UT'®U ™ = @} = {U € GL.(k) | 'TUDU = &} C GL,(k) si # = Id, e,
et au sous-groupe
OR(®) :={U € GL, (k) |'U'®U ! =@} ={U € GL.(k) | 'UDU = ®} C GL,. (k) si # = 1.
Exercice 1.2. Calculer les k-dimensions de Eéfik(V) et £ .(V), et montrer que Lo (V') = Eéfik(V)EBﬁak(V).
1.2.2. Ezemples.

(0) En utilisant la description matricielle, il est facile de construire des éléments de i
si k est de caractéristique 2, pour tout « € k la forme

b (k™). Par exemple,

Yo i K2 X K2 =k, ((211,721), (T12,222)) = 211212 + @(T11T22 — T21712) + T21722

est antisymétrique (et symétrique si @ = 1) mais elle n’est pas alternée car, dans la base canonique

e = ((1,0),(0,1)),
1 o
we=(1o 7)
(par exemple ¢, ((1,0),(1,0)) =1).
(1) Si V est un k-espace vectoriel de dimension r et € est une k-base de V, le déterminant

det.: V" — k€ L&, (V).

En particulier, pour r = 2, on obtient un élément de L5, (V). Dans k? muni de la base canonique
€= ((1,0),(0,1)), on a explicitement

detg R k, (561,1,172,1), (961,271’2,2)) = 21,1722 — 2127213

et~ (%) y)

(2) (Traces) Pour tout k-espace vectoriel V, on a

Endi(V) x Endp(V) =k, (f,9)— Tr(go f) € E (Endk(V))
En termes matriciels, on a

M, (k) x My(k) = k, (M,N)w— Tr(MN) € L}}.(M,(k)).

la matrice correspondante est

On peut modifier un peu la définition pour construire
M, (k) x My(k) =k, (M,N)w Tr(M™N) € L - (M,(k)).
(3) (Intégrales) Pour tout sous-R-espace vectoriel V' de R-dimension finie des applications continues [0, 1] —
R (e.g. V=R, [T], V =RId & Rsin(—) & Rcos(—) etc), on a
VxV =R, (fig) = F(t)g(t)dt € L3 (V).
[0,1]

De méme, pour tout sous-C-espace vectoriel V' de C-dimension finie des applications continues [0, 1] — C,
on a

VXV =G (fig)= [ f(O)gldt e £5(V).
[0,1]

(4) (Pullbacks) Si (V,¢) € C,fé et f: W — V est une application k-linéaire, on a encore (W, f*p) € C,f, ol
f*(P) WX W =k, (w17w2) = (P(f(wl),f(w2))-

On peut combiner cette observation avec I'exemple (2) pour obtenir des exemples intéressants:
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(i) (HP ?) Si K/k est une extension finie de corps, on a une application k-linéaire naturelle L_ : K —
Endy(K) définie par L,(y) = zy. La forme
Trip,: K x K =k, (21,32) = Tr(Lg, 0 L,) € L3%(K)
joue un role important en théorie algébrique des nombres (c¢f. e.g. [VI, §5, L93]).

(ii) (HP) Si g C Endi(V) est une sous-k-algebre de Lie viz un sous-k-espace vectoriel tel que pour tout
frg€9,f,g] =gof—fog € g, ona une application k-linéaire naturelle ad_ : g — Endg(g)
définie par ads(g) = [f, g]. La forme

KRg:9XxXg— k, (fla f2) = H(adfl © adfz) € Eé,dk(g)

- appelée forme de Killing de g - joue un réle important dans I’étude des k-algebres de Lie.

(5) (HP) (Cohomologie milieu) Si X est une variété algébrique projective lisse géométriquement connexe
de dimension d sur un corps k, on peut, pour I'étudier, lui associer de facon fonctorielle plusieurs
"algebres cohomologiques” qui sont des @-algebres graduées de la forme H®*(X) = @1<ij<oqH"'(X) et
vérifiant certaines symmétries (dualité de Poincaré, formules de Lefschetz etc.); ici @ est un corps de
caractéristique 0 qui, selon le cas, est Q,Q,, k (si k est de caractéristique 0). On dispose notamment
d’une application trace tr : H 2‘7Z(X )(d)=>Q qui permet de définir pour tout ¢, en utilisant le produit de
H*(X), un accouplement

; 2d—i 2d 4
H'(X) x H**Y(X)(i) » H(X)(d) = Q.
En degré milieu ¢ = d, on a en particulier une forme Q-bilinéaire (oublier le ”twist de Tate” ”(d)”
H(X) x HY(X)(d) = Q
qui est symétrique si d est paire et antisymétrique sinon. Cette forme joue un role absolument fonda-

mental en géométrie algébrique.

1.2.3. Noyau, rang, discriminant. Pour tout (V,¢) € CZ{, on a deux applications k-linéaires:
L,:V — VYY), v o(—,v), R,:V — (FV)Y, v o(v,—),
dont les noyaux coincident. On dit que
ker(yp) := ker(L,) = ker(R,,)
est le noyau de ¢ et que
rang(y) := dimy(V') — dimy(ker(y)) = rang(L,) = rang(R,)(> 0)
est le rang de ¢.

Par définition de ker(y), on a les diagrammes commutatifs canoniques de k-espaces vectoriels

/l - A

v/ kef(@)ﬁw—w> #(VV) v/ ker(w)c% (#V)Y
EH@(;;;)* . \JAOPker(w) @_}@(%;E} . jopker(w
#((V/ ker(p))") (#(V/ ker(¢))Y

et la forme k-bilinéaire induite
@ : V/ker(p) x #(V/ker(p)) = k, (01,02) — @(01,02) = @(—, 02)(01) = @(1, —)(02)
est encore un élément de Ljfk(V/ ker(p)).

Si ker(p) = 0 on dit que ¢ € Efk(V) est mon-dégénérée; dans ce cas, L, : V. — #(VV) et Ry, :
V — (#V)Y sont des isomorphismes de k*-espaces vectoriels. Par construction, la forme k-bilinéaire
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@ : V/ker(p) x #(V/ker(¢)) — k est non-dégénérée; on dira que c’est la forme k-bilinéaire non-dégénérée
associée a .

Pour tout u € GLi (V) on a u(ker(y)) = ker(u - ¢) donc rang(u - ¢) = rang(yp); autrement dit, I’application
rang se factorise en

rang

LE.(V) Z>o

|

£5.(V)/GLy(V)
Sie" =¢€,...,€ estlak-base de VV duale de ¢, on peut également interpréter ® = (¢), comme la matrice
de V"2 UV dans les bases €,€”; en particulier,
rang(y) = rang(®).
Enfin, comme det(!U®U) = det(U)?det(®) et det((UDU) = det(U)7(det(U))® = N, (det(U))det(®), pour
toute k-base € de V', les applications discriminants
5 1= 0. LE (V) T ()2, # = Td,e
et
§ = 0.L5 4 (V) F 7L | kN (), =1

sont indépendantes de € et se factorisent respectivement en

LE(V) —2k/(k*)?, #=1Ide et L5 (V) —2 s kN (KY) , #=.
LY (V)/GLK(V) L3, (V)/GLk(V)

1.2.4. @-orthogonalité, isotropie. Pour tout (V, ) € C,f, et sous-k-espace vectoriel W C V', on note
Wte .= ker((—)|lwo Ly : V — #(WY)) = ker((—)|w o R, : V. — (¥W)V

le sous-k-espace vectoriel w-orthogonal a W. Concretement, c’est le sous-k-espace vectoriel des v € V tels
que (W, v) = 0 (ou, de facon équivalente, p(v, W) = 0). Par définition, on a des suites exactes de k-espaces
vectoriels

0 Whe o v PG gy g Lo wte oy TSI Gy

On dit que deux sous-k-espaces vectoriels W, W' C V sont @-orthogonauz s’ils vérifient les conditions
équivalentes suivantes

(i) W' C We;
(i) W C W'te;
(iii) (W, W') =0;
on notera alors W L, W'. Si W L, W' et W & W/, on notera W @&+¢ W’. Plus généralement, on dira

que des sous-k-espaces vectoriels Wy,..., W, C V sont y-orthogonaur si W; L, W;, 1 < i # j < r et
qu’ils sont en somme directe p-orthogonale s’ils sont p-orthogonaux et en somme directe, ce que ’'on notera

@f%’iSTWi C V. On dira qu’une famille de vecteurs wy,...,w, € V est p-orthogonale si les kw;, 1 < i <r

sont p-orthogonaux et que c’est une k-base p-orthogonale si V = @llfiqk:wi. Enfin, on dit qu’un sous-k-
espace vectoriel W C V' est @-isotrope si W L, W et quun vecteur v € V est p-isotrope si kv C V est
p-isotrope. On notera

Iso(p) :={v eV |pv)=0}CV
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le sous-ensemble des vecteurs p-isotropes; c’est un cone (viz est stable par l'action extérieure de k). Si
Iso(yp) =0, on dit que (V, ) est anisotrope.

Remarque 1.3. Tautologiquement ker(y) C Iso(¢) mais I'inclusion est stricte en générale. Par exemple la
forme k-bilinéaire symétrique (resp. antisymétrique) sur k? données par la matrice

(o %) con () g )

est non-dégénérée mais son cone isotrope est I'so(¢) = {(z,£z) | x € k} (resp. Iso(p) = k?).

Pour tout ¢ € E;#k(V) et sous-k-espace vectoriel W C V| la restriction ow = @|lwxw : W x W — k est
encore un élément de ﬁ;k(W) SiV = @1<i<,W; est une décomposition en somme directe de sous-k-espaces
vectoriels et que pour chaque ¢ = 1,...,r on se donne ¢; € E;% (W), Papplication

1= B1<i<rPi : VxV =k
définie par

(v = Dr<i<rwi i, V2 = Pi<i<rWa;) = g wi(w i, w25)
1<i<r

est un élément de E#k(V) tel que @fé’K,,W = V; on notera

(Vip) = @f—gigr(Wh ©i)-

la décomposition en somme directe p-orthogonale correspondante. Pour classifier les espaces (V, ), la
premiere étape est de déterminer des décomposition en somme directe p-orthogonale de V' telles que les
sous-espaces (W, ¢;), i = 1,...,r soient aussi simples que possible - idéalement dimy(W;) =1,i=1,...,r.

Le Lemme 1.4 est I'outil de base; il va permettre de ramener systématiquement la classification des objets
de C;f au cas non-dégénéré et de montrer que tout objet (V,¢) de C,fé se décompose comme somme directe
p-orthogonale de sous-k-espaces non-dégénérés minimaux.

Lemme 1.4. Soit (V,p) € C,fﬁ.

(1) Supposons donnée une décomposition (V,p) = @fgiST(Wi,goi). Alors, ker(yp) = @i<i<r ker(p;); en
particulier, (V,p) est non dégénéré ssi (Wi, ;) est non dégénéréi=1,...,r.

(2) Slogan: Supposons que (V,p) est non dégénéré. Pour tout sous-k-espace vectoriel W C V,
dlmk(V) = dlmk(W) + dimk(WL“’),
et les CSSE:
(i) (W, plwxw) est non dégénéré;
(i1) V=W @ We;
(i1i) W2, 0yt wwie) €st non dégénéré.
(3) Pour toute décomposition V = ker(yp) & W, on a automatiquement ker(yp) L, W, (W, plwxw) est non

dégénéré, et si V. = ker(p) @ W = ker(¢) & W' sont deux telles décomposition, il existe une isométrie
f : (W7 90’W><W>;>(W/7 SD‘W'XW’)'

Proof. (1) Pour tout v; = @1<j<,v;; avec v;; € Wj, j =1,...,7 on a, par définition,
() plvr,v2) = > @i(v1,025).
1<5<r

En particulier, ®1<j<, ker(y;) C ker(¢). L’inclusion inverse s’obtient en appliquant (x) a vy = Vo ; € W;
arbitraire, j =1,...,r.
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(2) Par symétrie, il suffit de montrer (i) < (ii). Le fait que (V,¢) est non dégénéré implique que dans le
diagramme canonique

v

(V)

v=o(—0)|lw #(WV)

la fleche verticale est un isomorphisme de k-espaces vectoriels. Comme la fleche diagonale est surjective,
on en déduit que la fleche horizontale est aussi surjective. En termes de dimension, on a donc

dimi (V) = dimy (W) + dimy(W=#).

Il suffit donc de montrer que (i) & W N Wse = 0. Mais, par définition du noyau, W N We =
ker(o|wxw)-

(3) La premiere partie de 'assertion est tautologique. Pour la deuxiéme partie, soit wg € ker(p|wxw),
on a p(wo, V) C @(wo, ker(¢)) + ¢(wo, W) = 0 donc wg € W Nker(¢) = 0. Pour la derniere partie,
la projection canonique py : V = ker(p) @ W — W sur W parallelement & ker(p) se factorise en
Dw : V/ker(p)=W, dont on vérifie sur les définitions que c’est une isométrie

Pw : (V/ ker(p), @) =W, olwxw)-
(En écrivant v1 = k; + w; avee k; € ker(p), w; € W, i=1,2, on a

— y def def
P(01,02) = p(v1,v2) = p(wr, w2) = lwsxw (pw (v1), pw (v2)))
([
Pour tout k-espace vectoriel V et ¢,¢" € Efk(V), il existe u € GLE(V) tel que ¢ = u- ¢, on a
u(ker(¢’)) = ker(¢) donc si V= ker(¢') @ W' est une décomposition en somme directe (automatique-

ment ¢’-orthogonale), V' = ker(¢) @ u(W’) est une décomposition en somme directe (automatiquement
@-orthogonale) et la restriction u : W' — u(W’) induit tautologiquement une isométrie

w: (W lwrew) = (W), oluwry suw)-

Au lieu de fixer V et de considérer I’action de GLg (V') sur Efk(V) on peut ne fixer que la k-dimension r de

V' et considérer la relation d’équivalence ~ ”étre isométriques” sur I’ensemble CZ/,éE (r) des objets (V, ¢) € C,f
tels que le k-espace vectoriel sous-jacent V' soit de k-dimension r. L’application canonique

LE (V) /GLL(V)SCE(r)] ~, ¢ [(V, )]

donc cela revient au méme de classifier les orbites de E? w (V) sous GL(V) ou les classes déquivalences de

~ sur C,’f (r). Avec le second point de vue, la discussion ci-dessus montre que:

Slogan: (V,¢) ~ (V'¢) ssi rang(p) = rang(¢') et (V/ker(p), ) ~ (V'/ ker(¢'), 7).

Autrement dit, pour le probléme de la classification, on peut se restreindre au cas des formes non-dégénérées.
Une condition nécessaire pour que (V, ) ~ (V'¢') est que rang(p) = rang(y’), §(p) = §(@’). En général,
cette condition n’est pas suffisante.

2. STRUCTURE DES ESPACES SYMETRIQUES ET T-HERMITIENS

2.1. Structure des espaces symétriques.
Dans cette section, on note simplement Cy, := C,gd, N := Npg:= ()2 : kX = kX,
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2.1.1. Ezistence de k-bases p-orthogonales. Pour les espaces symétriques on a toujours I'existence de k-bases
¢-orthogonales. Commengons par observer que pour tout (V,¢) € £14 (V), on a3

Identité de polarisation:
1 1
o(v1,v2) = 5(@(01 +vg,v1 + v2) — p(v1,v1) — p(v2,2)) = Z((p(m + vg,v1 + v2) — p(v1 — v2,v1 — V2)).

En particulier, pour tout k-espace vectoriel V', si on note Ay := {(v,v) | v € V} C V x V la diagonale,
I’application k-linéaire de restriction
(Dlay : £35(V) = £, o= 0la,
est injective. En particulier, puisque par définition (p|a, ) ~1(0) = I'so(p) C V, on a
0 Tsolg) C V.
Proposition 2.1. Pour tout (V,p) € C,gd, il existe une k-base de V' qui est p-orthogonale.

Proof. Si ker(p) =V, toute k-base de V' est yp-orthogonale. Si ker(yp) C V, toute décomposition en somme
directe V' = ker(¢) @& W est automatiquement ¢-orthogonale donc la concaténation v = (vy, w) d’'une k-base
vy de ker(p) et d'une k-base ¢|w xw-orthogonale w de W donne une k-base ¢-orthogonale de V. 1l suffit
donc de montrer ’énoncé pour (V,¢) non-dégénéré. On procede par récurrence sur r := dimg(V). Le cas
r = 1 est vide. Supposons r > 2 et la proposition démontrée pour les k-espaces symétriques non-dégénérés
de dimension < r—1. Comme ¢ # 0, il existe v € V tel que ¢(v,v) # 0. Notons W := kv. Comme (V, ¢) et
(W, @lwxw) sont non dégénérés, V. =W & Wte (Lemme 1.4 (2) (i) = (ii)) avec (W%, 0|y 10 pte) nOD
dégénéré (Lemme 1.4 (2) (i) = (iii)). Par hypothese de récurrence, (WL, ol 1, 1) admet une k-base
Ol Lo Le-orthogonale w; la famille (v, w) fournit une k-base @-orthogonale de V. O

Slogan: Si (V,¢) € Cf;d est non-dégénérée et € = €1,...,¢ est une k-base w-orthogonale de V', on a,
o€, €)#0,i=1,...,r et, pour tout v € V,

v = Z 7(’0(1}’61') €;.
1<i<r plei &)

On va maintenant affiner ce résultat en prenant en compte les propriétés algébriques de k.

2.1.2. Corps quadratiquement clos. Dans ce paragraphe, on suppose que k est quadratiquement clos viz que
le morphisme N : k™ — k* est surjectif.

Ex.: Tout corps algébriquement clos (C, Q, F, etc) est quadratiquement clos (puisque pour tout = € k,
T? — x a une racine dans k) mais étre quadratiquement clos est une propriété nettement plus faible que
d’étre algébriquement clos. Par exemple, la cléture quadratique de Q dans C est le sous-corps Q4 C Q
des nombres algébriques constructibles.

Corollaire 2.2. Pour tout (V,¢) € L1 (V) non-dégénéré, il eviste une k-base € de V tels que (p)e = I,.
Une k-base comme dans le Corollaire 2.2 est dite ¢-orthonormale.

Proof. D’apres la Proposition 2.1, il existe une k-base p-orthogonale € de V. Comme (V, ¢) € C,gd est non-

dégénéré, p(e;,e;) #0,1 < i < r (Lemme 1.4 (1)). Pour i = 1,...,7, et comme k est quadratiquement
clos, il existe z; € k tel que acf = p(€&, €). La k-base :Uflel, ..., m; te.) convient (utiliser go(x;lei,x;lei) =
7206, €), 0= 1,...,7). O

Corollaire 2.3. (Classification) Pour tout k-espace vectoriel V', Uapplication rang(—) induit un isomor-
phisme

rang : Eéfik(V)/GLk(V)%{O, o dimg (V) )

3Ici, en particulier, le fait que k soit de caractéristique # 2 est crucial.



ALGEBRE BILINEAIRE 11

Proof. On a déja vu que l'application rang : £14 (V)/GLy(V) — {0,...,dimy(V)} était bien définie. Elle
est également surjective; en effet si ¢, est une k-base de V, la forme k-bilinéaire symétrique s définie par

(@s)g = diag(or—m Is) = Ir,s

est de rang s. Elle est injective car si ¢ € Egdk,(V) est de rang s, on peut trouver une k-base p-orthogonale

¢ telle que €q,...,€6._s soit une k-base de ker(y), et €,_511,...,€s une k-base |y xw-orthonormale d’un
supplémentaire W de ker(y) dans V' donc (¢). = I s donc en considérant I’automorphisme v € GLg(V)
défini par u(ey) =€, on a u- s = p. O

Interprétation matricielle:
(1) Pour tout ® € M,(k), ‘® = ® et rang(®) = s ssi il existe U € GL,(k) tel que ® ='UI, U.
(2) Pour tout r > 1, on dit que le sous-groupe
O,(k) :={V € GL.(k) | 'VV = I,} ¢ GL,(k)
est le groupe orthogonal de rang r. Le groupe O(I, s) est une extension scindée
0 — M, s(k) = O(I,s) = GL,_s(k) x O,(k) = 1
et, avec les notations de (1),

O(®) = U rO(I,.4)U.

2.1.3. Corps pré-euclidiens. Dans ce paragraphe, on suppose que k = (k, <) est pré-euclidien viz totalement
ordonné. On note x < y pour x <y, & # y.

2.1.3.1. Lemme de Sylvester, classification.

Corollaire 2.4. (Sylvester) Pour tout (V,p) € CL? non-dégénéré, pour toute k-base € = €1,...,6 -
orthogonale de V' [’entier

s+(p) = s(p,6) = [{1 <i <7 | p(e €) > 0}
est indépendant de €.

Proof. Soit €, €5 deux k-base p-orthogonales de V. Quitte a réordonner, on peut supposer que ¢(€;,€j;) >

0,2=1,...,55 := s(go,gj), 7 = 1,2. On veut montrer que s; = so. Par symétrie, il suffit de montrer
que 51 < sp. Pour cela, il suffit de montrer que €1,1,...,€1,6,,€2,5041-..,€2, sont k-libres; en effet, cela
impliquera s; + 7 — s2 < r donc 51 < s9. Soit donc x1,1,..., 21,6, T2,60+1---, %2, € k tels que

v i= E T1,i€145 = — E X2,i€24-

1<i<s; sp+1<i<r
En utilisant 'orthogonalité de €11,...,€15, €t €2.5,41...,€2,, On obtient
2 () 2
pv,0) = > aiplerias) = > a5 p(ea €2:).
1<i<sy so+1<i<r

Comme le terme de gauche de (*) est > 0 et celui de droite est < 0 (on rappelle que dans un corps ordonné,
les carrés sont > 0), on a forcément

> aliplerierd) = D @ p(eaieai) = 0.

1<i<sy sp+1<i<r
Mais comme x%igo(elﬂ-,q’i) > 0,7 =1,...,81, cela impose m%igo(el,i,el,i) = 0 donc x%l = 0 puisque
o(€e1,€14) #0,i=1,...,81. Deméme z3;, =0,i=s2+1,...,r. O

On dit que (V, ) € CI est défini positif (ou que p € Eédk(V)) est définie positive) si p(v,v) >0,0#v eV
et que (V,¢) € Ci? est défini négatif (ou que ¢ € Eé’dk(V)) est définie négative) si p(v,v) < 0,0 # v € V. On
notera C,ﬁd’>0, C,gd’<0 C Cr, Sy 2(V), SQIC,TO(V) C L1 (V) les objets définis positifs et négatifs respectivement.

Pour tout (V,¢) € C{ notons Sub’(V, ) l'ensemble des sous-k-espaces vectoriels W C V tels que
(W, ¢|wxw) est défini positif et Sub<?(V, ) I'ensemble des sous-k-espaces vectoriels W C V tels que
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(W, o|lwxw) est défini négatif.

Slogan: Tout (V,p) € C,ﬁd’>0 (ou (V,p) € C,ﬁd’<0) est non-dégénéré et pour tout 0 # W C V sous-k-espace
vectoriel, (W, plwxw) € C,ﬁd’>0 donc, en particulier, est non-dégénéré, et on a

V=Wae W,
Plus généralement, pour tout W € Sub”%(V, ) (ou W € Sub<"(V,¢)), (W, ¢|wxw) est non-dégénéré, donc
(Lemme 1.4 (2)) V =W @te Whe et (WL, 0|10 pie) est non-dégénéré.
Corollaire 2.5. Pour tout (V,¢) € CLd non-dégénéré,
(1) Pour tout W € Sub”%(V, @) mazimal pour linclusion dans Sub>°(V,p) , Wte € Sub<(V, ¢).
(2) Pour tout W € Sub>*(V, ), W est mazimal pour linclusion dans Sub”®(V, @) ssi sy (p) = dimy(W).
Proof. (1) Soit W € Sub>%(V, ) maximal pour Iinclusion dans Sub>’(V, ). On a V =W @te Wte et

(W, ol tp s qpie) non-dégénéré donc on peut fixer une k-base ¢-orthogonale ey, de W et une k-base

p-orthogonale gJW de Wte. Par construction, la concaténation € := ey, gJW est une k-base p-orthogonale
de V telle que

s+(p) = si(p,€) = dimp(W) + s4(, €377)-
Mais si s4 (¢, €5) # 0, il existe w € We tel que p(w,w) > 0 donc W C W & kw € Sub”(V, p),
contredisant la maximalité de W dans Sub”?(V, ¢).

(2) La partie (1) montre déja que si W € Sub>?(V, ), est maximal pour Iinclusion dans Sub”’(V,¢p) ,
dimp(W) = s4(p). Inversement, si W € Sub>?(V, ) vérifie dimy (W) = s, () alors il est maximal
car pour tout W € Sub”’(V,p), dimi(W) < si(p). En effet, si Wy € Sub>%(V,p) est maximal

pour l'inclusion, par (1) WOL‘” € Sub<’(V, ) donc W N WOL“’ = 0 (pour tout wv € W nN WOL“’ on a
o(w,w) >0 car w € W et p(w,w) <0 car w € WOL“’ donc p(w,w) = 0, ce qui implique w = 0 puisque
W e Sub>%(V, ¢)), et donc dimy, (W) < dimy,(V) — dimk(Wd'“’) = dim(Wo) = s4(p).

O

En général, pour tout (V,p) € C,l;d, pour tout W € Sub>’(V, ¢), les CSSE:

(i) W € Sub>°(V,¢) et W est maximal pour l'inclusion dans Sub”%(V, ¢);
(i) W(— V/ker(p)) € Sub>°(V/ker(p), ) est maximal pour Iinclusion dans Sub>°(V, p);
(iii) dimp(W) = s+ (@).
On note
5+(p) = 54(9), s—(p) = dimy(V/ker(¢)) — s1(¢) = rang(p) — s+(p)

5(p) = (s4+(#); () (= 5(?))

et on dit que

est la signature de (V, p).

En fait, on vérifie immédiatement que le Corollaire 2.4 s’étend au cas ou (V, ) € C,gd n’est pas forcément
non-dégénérée comme suit: pour toute k-base p-orthogonale € de (V, ¢), en notant

g ={ecelplee) =0} Cg

e, :={ece|p(ee) >0} Ce,

e ={ec€e]|plee) <0} Ce,
on a que ¢ est une k-base de ker(y), V(€)+ := Geee, be € Sub”O(V, ) et V(e)— := Deee ke € Sub<(V, ¢),
donc que s(p) = (|, |, [e_|)-

Pour tout entier r > 1, notons

X(r)={s=(s4,5-) €Z|0<sq,5_- <sy+s_<r}.
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Pour tout ¢ € L4 (V) et u € GL(V), s(u- ¢) = s(p) donc I'application signature se factorise en

LE(V) S(dimy(V))
LY (V)/GLi(V)

On suppose maintenant, et jusqu’a la fin de ce paragraphe, que k est euclidien. Pour tout z € k,
x > 0, on note /z > 0 la racine > 0 de T2 — .

Corollaire 2.6. (Classification) Pour tout (V,¢) € Ci¢ de signature s = (s4,s_), il eziste une k-base
p-orthogonale € = (ey,€,.,€_) de V telle que

ple,€) =0, ecey; ple,e) =1, ecey, ple,e)=—1, ece_,
(donc (e, |, |e_|) = s). En particulier, ’application signature induit une bijection
51 LY(V)/GLe(V) =S (dimy,(V)).
On dit encore qu’une k-base € de V' comme dans le Corollaire 2.6 est y-orthonormale.

Proof. Soit € une k-base p-orthogonale de (V,); avec les notations €, €, €_ introduites ci-dessus, la k-

base construite & partir de € en laissant inchangés les éléments de ¢, et en remplagant € par (1/p(e€,€)) " te
si € € e, et par (y/—¢(e,€)) e si € € e convient. Notons r := dimy(V). On a déja vu que l'application
s: L1 (V)/GLp(V)=3(r) était bien définie. Elle est également surjective; en effet si ¢, est une k-base de
v, po’ur tout s = (s4,s_) € X(r) , la forme k-bilinéaire symétrique s définie par

(S%)go = diag(0p—s, —s_, Is,, —Is_) =11
est de signature s. Elle est injective car si ¢ € Eéflk(V) est de signature s = (s4,s_), on vient juste de voir
que I'on peut trouver une k-base g-orthogonale € de V' telle que (¢)e = diag(0p—s, —s_, s, ,—Is—) donc ¢ et
s sont équivalentes. g

Interprétation matricielle:

(1) Pour tout s = (sy,s_) € X(r) et ® € M,.(k), '® = & et s(P) = s ssi il existe U € GL,(k) tel que
o = UL ,U.

(2) Dans le cas ou sy, s_ > 0, la description du groupe orthogonal
Ors(k) :={V € GL,(k) | tVIréV =15} C GL.(k)

devient significativement plus compliqué que dans le cas algébriquement clos... Seul le cas r = s est
au programme.

2.1.3.2. Produits scalaires. Si k est pré-euclidien (resp. euclidien), on appelle k-espaces vectoriels pré-

euclidiens (resp. euclidien) les éléments de C,gd’>0. Si k est euclidien et (V,¢) € C,ﬁd’>0, on dit que ¢

est un produit scalaire euclidien sur V.
Supposons k pré-euclidien et soit (V, ¢) € Céd’>0. On a l'inégalité fondamentale suivante.

Inégalité de Cauchy-Schwartz: pour tout vy,ve € V,
o(v1,v2)* < @(v1,v1)p(v2, v2)
et p(v1,v2)% = @(v1,v1)p(v2,ve) ssi vy et vy sont k-liés.

Proof. La preuve est formellement la méme que sur R. Si v; = 0 ou vy = 0, c’est tautologique. Supposons
donc vy, ve # 0 viz p(v1,v1), p(ve,v2) > 0. On développe 'expression

©(A1v1 + Agva, Ajvr + Agva) > 0
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en utilisant les propriétés de ¢ (k-bilinéarité, symétrie) pour obtenir:
Mo(vr,v1) + 2201 A0 (v1, v2) + Aap(v2, v2) > 0
et on prend A\; = p(ve,v2), Ao = —¢p(v1,v2), ce qui donne:
p(v2,v2)*p(v1,01) = 2(v2, v2) P (01, 02)? + P(v2, v2)p(v1,v2)* > 0,
que l'on réécrit (en utilisant que ¢(va, v2) > 0)
(2, 02)p(v1,01) > p(v1,v2)%.
(I

Supposons maintenant k euclidien; pour tout € k> notons \/z € k la racine > 0 de T? — z € k[T] et
pour tout = € kx| = V22 > 0. Si (V,¢) est un k-espace vectoriel euclidien, la norme associée a ¢ est
I’application
|=lo:V =k, v |y = Ve(v,v)
Par définition, on a |v|, > 0, v € V et |v|, = 0 ssi v = 0. De plus, on retrouve les propriétés usuelles:
- Inégalité de Cauchy-Schwartz: pour tout vy, v € V,
[p(vr, v2)| < [vifplvale

et [p(vi,v2)| = |v1]p|val, ssivi et vo sont k-liés.

- Inégalité triangulaire: pour tout vy,ve € V,
lvr + valp < |uilp + |v2]e,

et v 4+ va|p = |v1]p + V2], ssi v € k>oua.

Proof. On développe

lvp + 'UQ’?O = ’1)1@ + 2p(v1,v2) + ’U2|(,20
< w2 + 2l (1, v2)] + |va2
< |U1|<p + 2[viplvalp + |U2@ = (Jv1p + |v2|¢)2,
ol la deuxieme inégalité est Cauchy-Schwartz. O

- Orthonormalisation de Gram-Schmidt: Pour toute k-base v de V il existe une unique k-base -
orthonormale € de V telle que

(1) Bi<i<sker = Bi<i<shvi, 1 < s < dimy(V);
(ii) QO(Q‘,UZ‘) >0,t=1,... ,dzmk(V)

Proof. Notons r := dimy(V'). On procede par analyse (unicité sous réserve d’existence) - synthese (exis-
tence). Notons Vs 1= @1<i<skv;, 1 < s < dimg(V). Comme ¢ est défini positif, pour tout s > 1, on a la
décomposition en somme directe p-orthogonale

V=Vate Vi,
Pour tout v € V, on note v = v + vg- la décomposition de v selon cette somme directe.

— Analyse: Supposons que e existe. En particulier, pour tout s > 1, Vy = ®1<i<ske;, VSJ'“” = Dst1<i<rke;

et
Vs = Z p(vs, €i)€i = Z p(vs, €)€i,

1<i<r 1<i<s
ol la deuxieme égalité résulte de

1
Vs — Z (P(USaei)ei = Z (P('Us;ez')ei eVsNVy?® =

1<i<s sH1<i<r
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1
s,s—1°

Autrement dit, vs%s_l = @(vg, €5)€s Viz €5 = Mg Les conditions p(es,€5) > 1 et ¢(es,vs) > 0

imposent alors

A= 1/\/@(”#3—1?”&5—1)(> 0).

— Synthese: On vérifie immédiatement par induction sur r que la famille

1
_ Vii—1 .
€ = - = o i=1,...,r
W(Ui,z‘—lv ”m’—l)

déterminée par l'analyse convient.
O

Exercice 2.7. Notons R[T]<2 C R[T] le sous-R-espace vectoriel des polynomes de degré < 2, que l'on
munit de la forme R-bilinéaire symétrique ¢ : R[T]<2 xR[T]<2 = R, (P,Q) — P(—1)Q(—1)+P(0)Q(0)+
P(1)Q(1). Vérifier que ¢ : R[T|<2 xR[T]<2 — R définit un produit scalaire euclidien sur R[T"|<2 et calculer
'orthonormalisé de Gram-Schmidt de 1, X, X2 pour .

Exercice 2.8. (Interprétation matricielle - décomposition QR) Notons 7,.°(k) C G L, (k) le sous-groupe
des matrices triangulaires supérieures dont les coefficients diagonaux sont > 0 et O, (k) C GL,(k) le
sous-groupe orthogonal. Montrer que ’application produit

On(k) x T7%(k) = GL,(k), (Q,R)+— QR
est bijective.

2.1.4. Corps finis. Dans ce paragraphe k est un corps fini de cardinal |k| = p* avec p = car(k) # 2, s > 1.
Commencons par I'observation élémentaire suivante.

Lemme 2.9. Pour tout a,b € kX, ¢ € k, il existe x,y € k tels que ax® + by®> = c.

Proof. Considérons ’application
— bt
Fok—ok te 2
a
et notons Xo(k) := {22 | * € k} = N(k*) U {0} C k Pensemble des carrés. Il suffit de montrer que
f(22(k)) NXa(k) # (0 et, comme f : k — k est bijective, il suffit de montrer que 2|32(k)| > |k|. Or, comme

p # 2, on a la suite exacte de groupes finis
1—{£1} =k~ N = E*/N(kE*) —1
En particulier, [k* : N(k*)] = [{£1}| = 2 donc |X2(k)| = @ +1= WTH O

Soit V' un k-espace vectoriel de dimension r. Notons
Alk,r) =k /()2 x {1,...,7} U {(0,0)} C k/(k*)? x {0,...,r}.

et, pour ¢ € £§flk(V), notons 6(¢) := 6(®) le discriminant de la forme k-bilinéaire symétrique non-dégénérée
associée
@ : V/ker(p) x V/ker(¢) = k

associée a .
Proposition 2.10. L’application § x rang : Eéiik(V) — k/k* x{0,...,r} induit une bijection

& X rang : Eéflk(V)/GLk(V)%A(k,r).
Proof. On a déja vu que 6 x rang : Eé:ik(V)/GLk(V)%A(k:, r) est bien définie et que, si S} (V) C Eé:ik(V) est
le sous-ensemble des ¢ € nglk(V) non-dégénérées, il suffit de montrer que  : S;(V)/GLk(V) = k*/N(k*)
est bijective. Elle est surjective car si ¢, est une de V et si aw € k™ \ N(k*) les éléments ¢, 1, pro € Eidk(V)

définis par
(907"71)% =& =1, (Sor,a)go =&, = diag(1,...,1,a)
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vérifient 0(¢r1) = 1, 6(¢ra) = a. 11 suffit donc de vérifier que pour tout ¢ € L1 (V) non dégénérée, ¢ est
équivalente & ¢, 5, ol () € {1,a} est le représentant de &(p €)k*/N(k*). On procéde par récurrence

sur 7. Si r = 1, pour tout k-base e de V on a 0 # a := (¢). € k avec a = §(p)b? donc quitte & remplacer e
par b~ 'e, on peut supposer (). = o, 5(e) Supposons r > 2 et I’énoncé démontré en dimension < r—1. Soit

€ une k-base p-orthogonale de V' et notons W := ke; @ keg, donc We := ®3<i<rke;. La forme (W, o|lwxw)
est encore non-dégénérée donc (@|wxw)e, e, = diag(a,b) avec a,b € k*. Par le Lemme 2.9, il existe e; € W
tels que ¢(er,e1) = 1. En particulier, en posant H := (ke;)tv, V = ke; @+¢ H, donc (H,@|mgxm) est
encore non-dégénérée avec 0(¢) = d(@|mxm); on conclut donc en appliquant I’hypothese de récurrence a
(H, ¢luxm). O

2.2. Structure des espaces T-hermitiens. La théorie des espaces 7-hermitiens est tres proche de celle
des espaces symétriques. On rappelle (Lemme 0.1) qu’on peut toujours trouver ¢ € k \ k7 tel que (> € k7.
Comme 1, est une k™-base de k, pour tout (V,¢) € CJ, on a une unique décomposition

p(v1,v2) = Rp(v1,v2) + tly(v1,v2)
avec R, € ngik,(V) et I, € L5, (V). On obtient encore une

Identité de polarisation - variante T-hermitienne:

1 1
Ry (vi,v9) = 5(@(?}1 + 2,1 +v2) — @(v1,v1) — p(va,v2)) = Z(@(Ul + v2,v1 + v2) — @(v1 — V2, V1 — v2)),

1
I (vi,v2) = @(w(uq + vg, tv1 + v2) — (L] — Vg, LU — V2))

En particulier, I’application k7-linéaire de restriction
(Dlay Lo (V) = k7, o= ¢la,
est encore injective et, puisque par définition (¢|a, )*(0) = Iso(¢) C V, on a
o #0 & Iso(g) C V.
On obtient donc, avec exactement la méme preuve, la variante 7-hermitienne de la Proposition 2.1.

Proposition 2.11. Pour tout (V,¢) € C[, il existe une k-base de V' qui est p-orthogonale.

avec le

Slogan: Si (V,¢) € C] est non-dégénéré et si € = €1,...,€. est une k-base g-orthogonale de V, on a,
o(€i,€) #0,i=1,...,r et, pour tout v € V,

v = Z 7()0(1}’ Ei) €;.
1<i<r plei€)

Pour obtenir une variante 7-hermitienne du Corollaire 2.2, il ne faut plus supposer que k = k est algébriquement
clos mais que N, : k* — k™™ est surjective; Dans ce cas, on a & nouveau que

Corollaire 2.12. Supposons que Ny : k* — k™% est surjective. Pour tout (V,¢) € C[ non-dégénéré, il
existe une k-base € de V tels que (). = I, et pour tout k-espace vectoriel V, Uapplication rang(—) induit
un isomorphisme

rang : Eéfik(V)/GLk(V)%{O, oo dimg (V) )
Ex.

(1) Si k est un corps fini de cardinal |k| = p® avec p = car(k) # 2, s > 1, notons
F, : k=>k, o 2P
lautomorphisme de Frobenius. On rappelle que le groupe des automorphismes du corps k est Z/s,

engendré par Fj. En particulier, & est muni d’une involution Id # 7 ssi 2|s, auquel cas 7 = F,f/ 2,
On en déduit facilement:
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Lemme 2.13. Le morphisme norme N, : k* — k™% est surjectif.

Proof. Comme 7 est d’ordre 2, [k : k] = 2 donc |k™| = |k|/2 =: q (ici, on peut le vérifier a la main
puique, explicitement, k7 = {x € k | 29 = 2} ~ F,) et il suffit de montrer que [N, (k*)| = ¢ — 1.
Pour cela, on peut utiliser que k* est cyclique; soit @ € k* un générateur, donc d’ordre exactement
> —1. On a N, (a) = a?! d’ordre exactement (¢> —1)/q+1=q — 1. O

(2) (HP) Il existe d’autres corps k que les corps finis pour lesquels la norme N : kX — k7> est surjective.
En fait, cette propriété est lié a la cohomologie galoisienne; en effet, on a toujours une suite exacte
de groupes abéliens

< N2k Br(k™) ™S Br(k),

(ot Br(K) = H2(K,K ") est le groupe de Brauer de K); en particulier, k™% /N, (k*) < Br(k")
donc, si Br(k™) =0, N; : k* — k™ est surjective. C’est le cas par exemple si k7 = Q(t) pour (Q un
corps algébriquement clos ou plus généralement le corps des fonctions d’une courbe algébrique lisse
sur un corps algébriquement clos.

Pour obtenir une variante 7-hermitienne du Lemme de Sylvester (Corollaire 2.4) et de ses corollaires, il
faut supposer - ce que 'on fait jusqu’a la fin de cette section - que k est pré-hermitien. La encore, avec
exactement la méme preuve (en observant que pour tout v € V, ¢(v,v) = 7(¢(v,v)) € k™) que dans le cas
symétrique, on obtient

Corollaire 2.14. (Sylvester - variante 7-hermitienne) Pour tout (V, @) € CJ non-dégénéré, pour toute k-base
€=€1,...,6 w-orthogonale de V' l’entier

si(p) :==s(p,e) = {1 <i <7 | (e, €) > 0}

est indépendant de €.
Pour (V,¢) € C] arbitraire, on pose

s1(p) = 54(®), s-(p) = 5-(P) = rang(p) — s+(¥),

et on dit encore que
s(p)(=5(9)) = (54+(¢), s-(¥))

est la signature de (V. ¢) € C, que (V. ) € C[ est défini positif (ou que ¢ € L7 ;(V)) est définie positive)
si p(v,v) >0,0# v €V et que (V,p) € C est défini négatif (ou que ¢ € L3, (V)) est définie négative) si
o(v,v) <0,0+# v e V. Pour tout (V,p) € Cf notons Sub”°(V, ¢) I'ensemble des sous-k-espaces vectoriels
W C V tels que (W, p|lwxw) est défini positif et Sub<°(V, ) 'ensemble des sous-k-espaces vectoriels W C V
tels que (W, p|wxw) est défini négatif.
(1) s4+(p) (resp. s_(¢)) est la k-dimension des éléments maximaux de Sub>%(V,¢) (resp. Sub<°(V,¢));

(2) Pour toute k-base p-orthogonale € de V', en notant
g ={ecelyplee) =0} Ce
e, ={ece|plee) >0} Ceg,
e ={ecelplee) <0} Ce
on a que ¢ est une k-base de ker(p), V(e)4 = Deec ke € Sub”(V,p) et V(e)- = Decc ke €
Sub=?(V, ), donc que s(p) = (le, |, le_|);

(3) Si on suppose de plus que k est hermitien, il existe une k-base y-orthogonale € = (¢y,€,,6_) de V
telle que |e | =54, €. =s_

- p(e,€) =0, € € €
- QO(E,E) = 17 €€ §+;
- ple,e) =—1,ece_.
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En particulier, 'application signature induit une bijection
5: L5, (V)/GL(V)=X(dimp(V)).

On dit qu’'une telle k-base € de V est p-orthonormale. On a aussi,

Interprétation matricielle:

(i) Pour tout s = (s, s_) € X(r), et pour tout ® € M, (k), ‘® =" et s(P) = s ssiil existe U € GL,(k)
tel que ® ='UI, ,"U.

(ii) Dans le cas ou r = sy, on dit que
Up(k) = Stabey, o (In) = {U € GL(k) | 'UTU = 1.} € GL, (k)
est le groupe unitaire de rang r. (On pourrait bien str définir aussi des groupes unitaires généralisés
Urs(k) := Stabgr, (1) (Irs) = {U € GL.(k) | 'I.s7U = I, 5} C GL,(k)
mais ils ne sont pas au programme).

(4) Enfin, si (V,¢) € C] est défini positif, on dit que (V, ) est un k-espace vectoriel 7-hermitien ou que ¢
est un produit scalaire 7-hermitien sur V. On retrouve (avec exactement la méme preuve que dans le
cas symétrique),

Inégalité de Cauchy-Schwartz: pour tout vi,ve € V,

Nigjier (p(v1,v2)) = @(v1,v2)7(p(v1,v2)) < p(v1,v1)0(v2, v2)

et Nyjpr (0(v1,v2)) = p(v1,v1)p(v2, v2) ssi vy et vg sont k-liés.

Si, de plus, on suppose que tout élément > 0 de k7 est un carré dans k7, on peut munir £ de la norme
| =] :k = kg, x> aT(2),
et V de la norme
[=lo sV > Ko 0 Volw,0),
On a encore
- Inégalité de Cauchy-Schwartz: pour tout vy,ve € V,
lp(v, v2)|r < [uilplvale

et |p(vi,v2)|r = |vi|p|va], ssi v et vy sont k-liés.

- Inégalité triangulaire: pour tout vy, v € V,
lur + valp < fuilp + |v2fe,
et |U1 + 1)2|(p = |U1’¢ + |’L)2|<p ssi v € k?zovg.

- Orthonormalisation de Gram-Schmidt: Pour toute k-base v de V il existe une unique k-base
p-orthonormale € de V' telle que

(i) @i<i<ske; = Pi<i<shvi, 1 < s < dimy(V);
(ii) gD(Ei,’UZ') >0,7=1,... ,dlmk(V)

On a également la méme interprétation matricielle (décomposition QR) que dans le cas symétrique.
Notons T;;7%(k) € GL,(k) le sous-groupe des matrices triangulaires supérieures dont les coefficients
diagonaux sont dans kZ et U, (k) C GL,(k) le sous-groupe 7-unitaire. L’application produit

Un(k) x T7°(k) = GLn(k), (Q,R)— QR

est bijective.
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Exercice 2.15. (Inégalité de Hadamard) On munit C" du produit scalaire (Vi,Va) — ‘V1V5 et on

note V s ||V]| = VIVV la norme associée. Soit M € M,(C) et C1,...,C, ses vecteurs colonnes.
Montrer que |det(M)| < ||C1|| - - ||Cr|| avec égalité ssi C1, ..., C, sont orthogonaux.

2.3. Formes quadratiques et formes 7-hermitiennes. Pour tout k-espace vectoriel V on note
Qu(V) := Im((=)|ay : L35(V) = kY) C kY

le sous-k-espace vectoriel des formes quadratiques sur V. Comme (—)|a, : Eé’dk(V) — kY est injective, on
obtient donc par restriction un isomorphisme de k-espaces vectoriels
g— = ()|a, : LYEV)ZQ(V), ¢ q,:=¢la,
dont l'inverse est donné par l'identité de polarization
ot Qu(V)SLY(V), g ¢4
Vi ) )
©q(v1,v2) = 5 (q(v1 4+ v2) — q(v1) — q(v2)) = £ (q(v1 4 v2) — q(v1 — v2)).

2 4
De méme, si k est muni d’une involution 7, pour tout k-espace vectoriel V' on note

HL(V) = Im((—)ay : L34(V) = &) C kY

le sous-k7-espace vectoriel des formes quadratiques T-hermitiennes sur V. La encore, comme (—)|a, :
7.(V)— kY est injective, on obtient par restriction un isomorphisme de k™-espaces vectoriels

q— = (Dlay : Lox(V)2HEV), ¢ = qp = ¢lay
dont l'inverse est donné par l'identité de polarisation
o HE(V)=Ly,(V), q— ¢q
viZ . )
¢q(v1,v2) = ~(q(v1 + v2) — q(v1 — v2)) + —(q(v1 + v2) — q(ev1 — v2))

4 40
On transporte les terminologies de rang, noyau, non-dégénérée, signature, définie positive ou négative etc

de ¢, & ¢. Par dualité, on peut interpréter 'existence d’une k-base @-orthogonale / orthonormale en termes
de formes k-linéaires. Notons r := dimg (V).

- Pour tout ¢ € Qi (V) il existe r formes k-linéaires f1,..., fr : V. — k k-libres et A\1,..., A\, € k tels que
q= Zlgigr Aif?. De plus, pour toute décomposition de cette forme,

rang(q) = {1 <i <7 | A # 0}
et si k est pré-euclidien,
si(q) =1 <i<r[X>0}

En effet, il suffit de considérer une k-base -orthogonale € de (V, ¢) et de prendre
1
p(ei )’
On dit que ¢ = Zlgigr A ff est une réduction de Gauss de ¢q. Dans le cas ou V = k", on peut construire

algorithmiquement les décompositions de Gauss en utilisant les formules

2 1 2 1
%)2 - %, 2axy + 2zu + 2yv = 2(azx + v)(y + gu) - ow, 2y = 1((30 + )% = (z —y)?).

Algorithme de Gauss: On procede par récurrence sur le nombre de variables. Sin = 1 ou si ¢ = 0,
c’est tautologique. Si on sait construire une réduction de Gauss pour < n variable et qu’on a une forme

quadratique non nulle
2
q(z) = E ajir; + 2 g ;T X5
1<i<n+1 1<i<j<n+1

fiiz(p(—,ei)ZV%k', A = 1=1,...,7

azx® + 2zy = a(z +

sur k"1, on distingue deux cas:
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(1) il existe 1 <7 <n+1 tel que a;; # 0. On peut supposer que a1 7 0. On a donc

q(z) = a112] + 221 f (22, .., Tng1) + ¢ (T2, .-, Tns),
avec f lindaire et ¢’ quadratique. En appliquant la premiere formule, on obtient
Q(I) = al,l(ajl + ?hf(xZa s 7$n+1))2 - tf($27 s )xn+l)2 + q/(x27 s ,CCn+1)
— ara(r g f@ s @0i1)? + @ (@2 T0)

avec ¢’ quadratique. On pose fi(z) = z1 + ?11‘]0(:112, ...,Tpy1) et, en appliquant I'hypothese de
récurrence & ¢”, on construit une famille k-libre fo,..., fr11 de formes k-linéaires en les o, ..., Ty 11
telle que ¢" = > 5 icni Aif?. On vérifie enfin que f1,..., fr+1 est bien k-libre en utilisant que
f2, -+, fnt1 Vest et que z1 n’intervient pas dans I'expression des fo, ..., fnt+1.

(2) pour tout 1 <7 <n+1, a;; =0. Dans ce cas, il existe 1 <i < j <n+1 tel que a;; # 0. On peut
supposer que aj2 7 0. On a donc

q(z) = 2a102% + 22191 (23, . . ., Tnt1) + 22202 (23, . . ., Tpp1) + ¢ (T35 ., Tns1),

avec g1, g2 linéaires et ¢ quadratique. En appliquant la deuxieme formule, on obtient

q(z) =2(a1pz1 + g2(3, ..., 2pt1)) (@2 + == fr(23, ..., Tny1)) — %91(953, oy Tng1)g2(23, - Tpy1) F ¢ (s,

ai 2
= 2((11,23}1 + 92(x37 ceey J}n+1))($2 + égl ($3> s 7xn+1)) + q//($3> s ,$n+1),

avec ¢ quadratique. Enfin, en appliquant la troisieme formule,

1
q(z) = S ((ar271 + 22 + g1 (73, .- s n41))? = (a10m1 — 9 + go(@3, -+, 20g1))? + " (23,0 Tnp1)),
avec f1, f5 linéaires. On pose f1(z) = a1201+22+4 (23, ..., Tny1), f2(2) = a1 221 —22+g5(23, ..., Tpy1),
et on applique I’hypothese de récurrence & ¢’ pour construire une famille k-libre f3,. .., f,+1 de formes
k-lindaires en les x3,...,Tp11 telle que ¢’ = Y 3<i<nl )\Z-fl?. La encore, on vérifie facilement que la
famille fi,..., fnt+1 ainsi obtenue est bien k-libre.

- Pour tout ¢ € H (V) il existe r formes k-linéaires fi,..., fr. : V. — k k-libres et A\1,..., A\, € k7 tels que
q= Zlgigr AifiT fi. De plus, pour toute décomposition de cette forme,

rang(q) = {1 <i <r [\ # 0}
et si k7 est pré-hermitien,
st(q) = {1 <i<r|X>0}
On laisse au lecteur la formulation de I'algorithme de Gauss dans le cas 7-hermitien...

3. ENDOMORPHISMES NORMAUX ET THEOREMES SPECTRAUX

Dans ce qui suit, # = Id,7. On dira que I'hypothese (PS) est vérifiée si k est euclidien ou hermitien et

dans ce cas, si (V,¢p) € C,fé est défini positif, on dira simplement que (V, ) est un produit scalaire. On
rappelle qu’alors, pour tout sous-k-espace vectoriel W C V, la restriction (W, ¢|wxw ) est encore un produit
scalaire et toute k-base € = €1,..., ¢, p-orthogonale de V' peut étre p-orthonormalisée en la remplacant par

al_lel, o oy e, oty € K est tel que Ny (i) = o(e, €).

3.1. Adjoints. Soit (V, ), (V',¢') € C?f non-dégénérés. Pour tout f: V — V' k-linéaire il existe un unique
f*: V' = V k-linéaire tel que
¢ (f(v),v) = p(v, f*(v), veV, v eV’
On dit que f*: W — V est l'adjoint de f : V — W relativement a o, ¢’. L’opérateur d’adjonction
(=)* : Hom(V, V') — Homy (V', V)

vérifie les propriétés suivantes:

(1) (Involutif) (=)* o (—)* = Id : Homg(V, V') — Homy(V, V');
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(2) (Contravariant) Si (V”,¢") € C?f, pour tout f:V = V', f': V' — V" k-linéaires, (f' o f)* = f*o f*;:

(3) (#-semilinéarité)
(f+Ag)" = [+ #(Ng", f,g€Homy(V,V'), A€k
(autrement dit, (—)* : Homg(V, V') — #Homy(V’, V) est k-linéaire);

(4) Si V =V, pour tout f:V — V k-linéaire,

(i) (/") = ()", n € Zxo;

(ii) f € GLE(V) ssi f* € GLL(V), auquel cas (f*)~! = (f~1)*.
(5) Si (V) = (V',¢), pour tout f € GLg(V), (f")* = (f")", n € Z.
Proof. On procéde par analyse-synthdse.

- Analyse (unicité sous réserve d’existence): Supposons que f*: V' — V existe. Alors il doit faire commuter
le diagramme canonique de k-espaces vectoriels

(1) #vy Ly
v/wo(—,v')T Tw(m)
Vi— >V
f

et comme (V) ) est non-dégénéré, la fleche
VAEVY), v e oo, -)
est un isomorphisme, ce qui donne 'unicité de f*

- Synthese (existence): Il suffit de vérifier que la construction de f*: V'’ — V donnée dans (1) convient.

Les propriétés (1) & (5) se démontrent en utilisant I'unicité de f*. Par exemple, pour tout v € V., v’ € V’

e(f* (V') v) = #(p(v, f*(v))) = #((f(v),0) = @(v', f(v))
donc (f*)* = f, ce qui montre (1) etc. O
Interpétation matricielle. Si € est une k-base de V et €' est une k-base de V', et que ’on note
P = (@)é S Mr(k), o = ((p,)gl € MT/J/(]{:), M = (f)é,gl € MT/J(]C)

Ona'!® =#@, '@/ = #@' et € GL,(k). La matrice M* := (f*)o . est I'unique matrice M* € M,/ (k)
telle que ‘M = &# M* viz

M* =#o " FM#S.
En particulier, si (V,p), (V',¢’) sont des produits scalaires, et € est une k-base g-orthonormale de V et ¢
une k-base ¢’-orthonormale de V', on a simplement M* = '# M.

/

Lorsque (V, ) = (V',¢'), on dit que f: V — V est

auto-adjoint si f*=f;

anti auto-adjoint si f* = —f;

normal si ff*=f*f;

unitaire si ff*=f*"f=Idy;

positif si o(f(v),v) € Im(Ny),veV.

Commencgons par lister quelques sorites, qui nous serviront dans la démonstration des théorémes spectraux,
reliant les propriétés de f et f*.

Lemme 3.1. Soit (V,p), (V',¢') € C,fé non-dégénérés, et f:V — V' k-linéaire.
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(1) On a toujours (Im(f ))J‘v’ = ker(f*), ker(f) = (Im(f))*¢. Si, de plus, (V,p),(V',¢') sont anisotrope,
on a aussi ker(f) = ker(f*f),ker(f*) = ker(ff*).

Supposons de plus (V, ) = (V',¢"). On note Vp(f) C k le sous-ensemble des valeurs propres de f.

(2) On a toujours rang(f) = rang(f*) et si (V,¢) est anisotrope, rang(f*f) = rang(f) = rang(f*) =
rang(f f*).

(8) Pour tout sous-k-espace vectoriel W C 'V, f(W) C W = f*(We) c Wte. Si, de plus, (V,p) est un
produit scalaire et f est normal, on a aussi f(WL¢) C Wte donc f*(W) C W et les restrictions f[j1;,
f %iz sont encore normales avec (f|V.)* = f*|IV., (f‘%ii)* = f*!%iz
(4) Vp(f*) = #Vp(f). Si (V,p) est anisotrope, et f est normal, pour tout A € k on a
ker(f — Ald,) = ker(f* — #Xldy).
De plus,
f1Vp(f) C
autoadjoint (f* = f) | k#
antiautoadjoint (f* = —f) | k¥
unitaire (ff* = f*f = Idy) | ker(Ny)
Si (V, ) est anisotrope et positive, on a aussi

f1Vp(f)

positif | Im(Ny)

Proof. (1) Comme (f*)* = f, il suffit de montrer (Im(f))*+" = ker(f*). Or, pour tout v}, € V’,

vh € ker(f*) @ pour tout v; € V', o(vy, f*(v5)) =0
& pour tout v; € V, ¢'(f(v1),v}) =0

9wy e (Im(f))*e,

ou (a) résulte du fait que (V,p) est non-dégénéré, (b) est la définition de f*, et (c) est la définition

de (—)t¥. Si, de plus, (V,¢), (V',¢') sont anisotrope, 1 encore, comme (f*)* = £, il suffit de montrer

ker(f) = ker(f*f). On a toujours ker(f) C ker(f*f). Inversement, pour tout v € ker(f*f), on a
o(f(v), f(v)) = @(v, f*f(v)) = 0 donc, comme (V, ) est anisotrope, f(v) = 0.

(2) La seconde partie de assertion résulte de la deuxiéme partie de (1). Pour la premiere partie, comme
(V, @) est non-dégénéré, pour tout sous-k-espace vectoriel W C V on a

dimi (V) = dimy, (W) + dimy(W=#).

L’assertion résulte alors de la premiere partie de (1):

rang(f) = dim(im ) = dimi(V)—dimy((imf)*e) =2 dimy(V)—dimg(kex(£*)) = dimi(im(f*)) = rang(f").
(3) Pour tout wt € W+, et pour tout w € W on a
p(w, f*(wh)) = (f(w),w") € p(W x Whe) =0

Si on suppose de plus que (V, ¢) est un produit scalaire sur V', on a une décomposition en somme directe
p-orthogonale

V=Wat W
et (W, olwsxw), WL, 0|y 1o rie) sont encore des produits scalaires donc admettent des bases (-
orthonormales ey, €y,1,. La concaténation € de €, €1, est une base @-orthonormale de (V)
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adaptée & la décomposition V =W @t WLe. On a alors

t#
M== (5 &) M ===y e )

et la condition f normal se réécrit M M* = M*M, ce qui équivaut a

(i) **BA = C'* B;
(ii) "*AA = A" A + B B;
(iii) **BB + ' CC = C'#C.

En prenant la trace dans (ii), on obtient tr(B'#B) = 0, et donc, comme (My, Ma) + tr(M;'# Ms)
définit un produit scalaire sur M, (k), on a B = 0. Donc MM* = M*M ssi B = 0, '# AA = A'# A,
t#CC = C*(C ce qui, en revenant a I'interprétation vectorielle, est exactement la conclusion annoncée.

(4) Pour tout A € k,
ANEVp(f) & f—Ady € GLi(V)
< rang(f — Mdy) = dimg(V)

g rang((f — Mdy)*) = dimg(V)

Y rang(f* — #MIdy) = dimy(V)

< #AE V()
ou (a) résulte de (2) et (b) de la #-semilinéarité de (—)*. Si on suppose de plus (V, ¢) anisotrope et f
normal, on a aussi f — Al dy normal puisque (f — A dy)* = f* — #AIdy donc, par (1),

ker(f—Mdy) = ker((f—Mdy )(f—AIdy)*) = ker((f—AIdy)*(f=AIdy)) = ker((f—AIdy)*) = ker(f*—#AIdy)

Soit maintenant A € Vp(f) et 0 # v € ker(f — Aldy). Notons que si f est unitaire, f est inversible
donc, dans ce cas, A # 0. On a

Ap(v,v) = (A, v) = o(f(v),v) = (v, [*(v)) = (v, f(v)) = #Ap(v,0) si f* = f;
= —p(v, f(v)) = = p(v,0) sl f* = —f;
= (v, f71(v)) = #A p(v,0) st f* = f1,
ce qui donne la deuxieme partie de (4). Enfin, si ¢ est positive et f est positive, si A = 0, il n’y a
rien a démontrer, si A # 0, on a p(v,v) € Ng(k*) et Ap(v,v) = p(Av,v) = o(f(v),v) € Nx(k*) donc
A € Ny (k) puisque Ny (k*) C k#> est un sous-groupe.
(I

3.2. Réduction des endormorphismes normaux. Soit (V) € C,f non-dégénéré.

3.2.1. Cas ot k est algébriqguement clos et (V, ) anisotrope. Supposons k = k algébriquement clos et (V, ¢)
anisotrope.

Proposition 3.2. Pour tout f : V — V k-linéaire ff* = f*f ssi f est diagonalisable dans une k-base
p-orthogonale de V.

Proof. Le sens < découle immédiatement de l'interprétation matricielle (et n’utilise pas les hypotheses
k =k et (V, p) anisotrope). En effet, s’il existe une k-base p-orthogonale € de V tel que M := (f). € M, (k)
soit diagonale, comme € est g-orthogonale D := (¢). est diagonale, & coefficients dans k7, donc (f*). =
D U#MD =% M € M,(k) est aussi diagonale donc commute avec M. Prouvons le sens =>. On raisonne
par récurrence sur r = dimg (V). Sir = 1, c’est tautologique. Supposons r > 2 et I’énoncé démontré en
dimension < r—1. Comme k = k, f admet au moins une valeur propre A € k. Fixons 0 # vy € ker(f —\dy)
et notons W := kvy C V. Comme (V,p) est anisotrope, (W, ¢|wxw) est encore non-dégénéré donc,
par le Lemme 1.4 (2), on a une décomposition en somme directe @-orthogonale V- = W @t¢ We avec
(W, 0|yt wprie) non-dégénéré et toujours anisotrope. Par le Lemme 3.1 (4), vy € ker(f* — #AIdy)
donc W est & la fois f- et f*-stable. Par le Lemme 3.1 (3), W'+ est aussi f- et f*-stable. En particulier,

WJ-W)* _ f*’WJ-q:

sur (Wte, Ol Lo wie), ON & (f’Wlw M donc f|%iz est normal et on peut appliquer I’hypotheése
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Wte

de récurrence pour construire une k-base € @[y 1,y L,-0orthogonale de We de diagonalisation de f]W Lo
O

La k-base vy, € convient.

Ex: (Produits scalaires hermitiens) Les hypotheses de la Proposition 3.3 sont vérifiées si (V) est un

produit scalaire 7-hermitien (en particulier, (PS) est vérifiée). Dans ce cas, toute k-base € = €1,...,€6,
p-orthogonale de V' peut étre p-orthonormalisée en la remplacant par aflel, oo ten, ot oy € k est tel
que N:(o;) == ¢(€i,€;), i =1,...,r. On obtient done, plus précisément:

Corollaire 3.3. Supposons de plus que (V,¢) est un produit scalaire T-hermitien. Pour tout f : V — V
k-linéaire ff* = f*f ssi f est diagonalisable dans une k-base p-orthonormale de V.

Interprétation matricielle: Supposons que (PS) est vérifiée. On rappelle que le groupe 7-unitaire de
rang r est le sous-groupe

UT(k):={U € GL,(k) | '""UU = U"U = I,} ¢ GL,(k).
Pour tout M € M, (k) on a
MM = MY M ssi il existe U € U,(k) telle que UMU (= UM'"U) est diagonale.

En utilisant le Lemme 1.4 (4), on peut préciser le résultat ci-dessus comme suit

M vérifie < UMU™! est & coefficients dans

tTM =M kT
UM =—-M Lk
M =M1 ker(N;)
MM = MM et TXITMMX >0, X € M, (k) im(N;)

3.2.2. Cas ou (V, @) est un produit scalaire euclidien. Dans cette section, on suppose que (V,¢) € C,gd est
un produit scalaire (en particulier, (PS) est vérifiée) et k est réellement clos. On rappelle que le groupe
orthogonal de rang r est le sous-groupe

O, (k) :={U € GL,(k) | 'OO = 0'0O = I} € GL.(k).
Dans ce cadre, ’analogue de la Proposition 3.3 est

Proposition 3.4. Pour tout f:V — V k-linéaire ff* = f*f ssi il existe une k-base w-orthonormale € de
V telle que

A1

As s
(f)e = Ry ~: Diag(A uR)

pe Ry
OU AN, .- s As Ek, p1, ..., €EK*, £lo £ Ry,..., R € Og(k‘)
Commengons par traiter un cas particulier qui va nous servir dans la preuve du cas général.

Lemme 3.5. Supposons que r = dimg(V) = 2. Pour tout f :V — V k-linéaire si ff* = f*f et si f n'est
pas diagonalisable, alors, pour toute k-base p-orthonormale € de V, il existe* € k* et £I, # R € Oy(k)
tels que (f)e = pR.

Proof. Fixons une k-base p-orthonormale € de V' et écrivons

Ne=m=(4 1)

4 Autrement dit, tout endormorphisme normal non-diagonalisable d’un plan quadratique euclidien est produit d’une ho-
mothétie non nulle et d’une rotation # +Id.
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La condition ‘MM = M'M se réécrit
b2 =c?, ac+bd=ab+cd
<= b=c¢ecavec € = £1, b(ea + d) = b(a + €d)
< b=ccavece==+1, (e—1)a= (e —1)d,

ou la deuxieme equivalence vient du fait que b # 0 puisque M n’est pas diagonalisable. Le cas ¢ = 1 n’est
pas possible car, sinon, b = ¢ et le polynome caractéristique de M s’écrirait

X(T)= (T —a)(T —d) = b* =T - (a+ d)T + ad — b°
avec
A= (a+d)?—4(ad — b*) = (a — d)? + 46> > 0.
En particulier, x(T') serait simplement scindé sur k (ici, on utilise (—)? : k* — kZ,), contredisant la-encore

le fait que M n’est pas diagonalisable. Donc ¢ = —1, b = —c et a = d. En notant 6 = det(M) = a® +b* > 0,
on peut prendre =9, R=pu~'M. O

Proof. (de la Proposition 3.4) Le sens <= découle 1a encore immédiatement de l'interprétation matricielle.
En effet, s’il existe une k-base g-orthonormale € de V' tel que M := (f). € M, (k) soit comme dans I’énoncé,
comme ¢ est p-orthonormale (). = I, donc (f*). =M € M, (k) et on vérifie immédiatement que M et *M
commutent. Prouvons le sens =. On raisonne a nouveau par récurrence sur r = dimy (V). Sir =1, c’est
tautologique. Supposons r > 2 et ’énoncé démontré en dimension < r — 1. Si f admet une valeur propre
A € k, on raisonne exactement comme dans la preuve de la Proposition 3.3 a ceci-pres qu’on veut une base (-
orthonormale (et pas seulement ¢-orthogonale) mais par hypothese de récurrence, on peut prendre la k-base
e de Wte Ol Lo s Le-orthonormale et considérer la k-base (-orthonormale @(vy,va)"tvy, €. Supposons
donc que f n’a pas de valeur propre dans k; les facteurs irréductible de son polynéme minimal P(T') € k[T
sont donc tous de degré 2. Choisissons-en un Py € k[T (unitaire) et notons P(T') = Py(T)Q(T). La
stratégie est de construire une sous-k-espace vectoriel W C V' f-stable et de k-dimension 2 (sur lequel on
pourra appliquer le Lemme 3.5). Comme Q(f) # 0, il existe v € V tel que w := Q(f)(v) # 0. Par propriété
universelle de k[77, il existe un unique morphisme de k-algebres evy : k[T] = End,(V), T — f. On peut le
composer avec le morphisme de k-espaces vectoriels evy, : Endi(V) — V, g — g(w). On vérifie facilement
que le noyau du morphisme composé evy,, := ev,, o evy : k[T] — V est un idéal non nul (puisque V est de
k-dimension finie) et strict (puisque evs,, : k[T] = V est non nul) de k[T] donc de la forme II(T")k[T] pour
un certain II(7) € k[T] unitaire de degré > 1. On a donc un isomorphisme de k-espaces vectoriels

K[T]/T(T)E[T]=im(eviw) = k[f](w) = W;
en particulier, dimg(W) = deg(II). Par construction W est f-stable. De plus, par construction encore,
Po(T)k[T] C ker(evy,,) = I(T') € k[T viz I1| Py dans k[T]. Comme Py est irréductible et II de degré > 1, on
a Il = Py de degré 2. Par le Lemme 3.1 (3), W est aussi f*-stable. On conclut ensuite exactement comme
ci-dessus en utilisant le Lemme 3.5 sur W (en observant que le polynéme minimal de f |% est Py donc que
f n’est pas diagonalisable sur k) et I’hypothese de récurrence sur We. ([
Interprétation matricielle: Pour tout M € M, (k) on a
EMM = M*'M ssi il existe O € O, (k) telle que M = ODO™!(= OD'O) = Diag(), pR)

avec A\1,..., s €k, pi1, ..., ut € k™, £Iy # Ryq,..., Ry € Oz(k). De plus,

M vérifie < OMO™! = Diag(\, nR) avec

M =M t=20
tM = —M Ni=0,i=1,...,8 uR; = ( 5 _Obi > avec 0 # by,. .., b.
(3
M =M1 Alyeves Agy f1yeeey g = E1

3.3. Deux applications classiques de la réduction des endormorphismes normaux (autoad-
joints).
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3.3.1. Réduction simultanée de deux formes bilinéaires dont l'une est un produit scalaire. Soit (V,p) € C,f

un produit scalaire et ¢ € E#k(V). On note f: V — V l'adjoint de Idy : V — V relativement a ¢, ¢’ i.e.
I'unique morphisme k-linéaire f : V — V tel que le diagramme suivant commute

Idy v #

(*) #VY) —
va’(:v)T qu(— v)
1%

ou encore, tel que
¢ (v,0") = p(v, f(V)), v,0 €V

Lemme 3.6. (1) f € GLi(V) ssi (V,¢') € C,f est non-dégénéré;
(2) f:V =V est autoadjoint dans (V,p) i.e. p(f(v),v") = (v, f(V)), v,0 €V;

(3) Pour toute k-base @-orthogonale € de (V,p), f :V — V est diagonalisable dans € ssi € est aussi ¢ -
orthogonale.

Proof. (1) est une conséquence immédiate de la définition de f : V — V par le diagramme (*). Pour (2), il
suffit d’observer que pour tout v,v" € V,

e(v, f(v') = ¢'(v, ) = #¢' (v, v) = #o(V', f(v)) = #40(f(v), V) = o(f(v),).

Enfin, (3) résulte du fait que si € est une k-base de V, on a

(e = (©)e(f)e

et que, comme (V, ) € C,f& est non-dégénéré, (). € GLL(V) donc, si (¢)e est diagonale, (¢'). est diagonale
ssi (f)e est diagonale. O

Corollaire 3.7. Pour tout (V,¢) € C;f non-dégénéré, (V,p) € Cif produit scalaire ssi pour tout (V, ') € C;f,
il existe une k-base € de V' qui soit a la fois p- et ©’'-orthogonales.

Proof. Le sens = résulte presque immédiatement du Lemme 3.6 et du théoreme spectral. En effet, pour
tout (V,¢') € Cff, et en notant encore f : V — V l'adjoint de Idy : V — V relativement & ¢, ¢, par
le Lemme 3.6 (2), f : V — V est autoadjoint dans (V,¢) donc, par le théoreme spectral (que I'on peut
effectivement invoquer puisque (V, ¢) est un produit scalaire), il existe une k-base ¢-orthonormale € de V' tel
que f: V — V soit diagonalisable dans e. Par le Lemme 3.6 (3), € est alors automatiqement ¢’-orthogonale.

Pour le sens <, raisonnons par la contraposée. Si (V,¢) € CZE n’est pas un produit scalaire, il existe une
k-base € de V telle que ® := () = diag(1,—1,€3,...,€,) avec €3,...,6, = 1. Considérons (V,¢') € C,f
telle que @' := (¢')e = diag(M, e, ..., €), ou

u=(a )

On a alors (f). = ®71®' = diag(N, 1,...,1), ot

* v (1),

Par le Lemme 3.6 (3), il suffit de montrer qu’on ne peut pas trouver de matrice U € GL,(k) telle que
HUU = I, = UU et UNU! soit diagonalisable. Notons II(T) = T2 — 2T + 5 € k[T] le polynéome
minimal de N. Si # = Id, c’est immédiat car le polynéme minimal de N est irréductible dans k[T
(A=-16<0). Si#=1,II(T) = (T —X\)(T —7()\)) avec A # 7(X\) € k. Mais alors

diag(\,7(\)) = UNU ' = "UIN"U =" (UNU 1) = diag(r()\), \),

ce qui contredit A # 7(\). O
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3.3.2. Décomposition polaire. Dans ce paragraphe, on va vraiment utiliser la topologie du corps k et pas
seulement ses propriétés (semi)algébriques. On note SZ°(R) C M, (R) le sous-ensemble des matrices
symétriques définies positives viz des S € M, (R) telles que ‘M = M et 'XMX > 0, X € M,1(R), et
S>OR) = SZO9R) N GL,(R) C SZ°(R) celui des matrices symétriques définies positives. De méme, on
note HZ°(C) C M,(C) le sous-ensemble des matrices hermitiennes positives viz des H € M,.(C) telles que
tM = M et 'XMX >0, X € M,1(C), et H>°(C) = HZ°(C) N GL,(C) C HZ°(C) celui des matrices
hermitiennes définies positives.

Théoréme 3.8. (Décomposition polaire)

(1) (Variante réelle) L’application produit matriciel induit un homéomorphisme
O0,(R) x S7%R)>GL,(R), (O,S) OS.
(2) (Variante complexe) L’application produit matriciel induit un homéomorphisme

U.(R) x H>°(C)>GL,(C), (U H)w— UH.

Proof. On ne traite que (1); la preuve de (2) est similaire et on la laisse en exercice. Montrons d’abord
que O,(R) x S7%R) — GL,(R) est bijective viz que pour tout M € GL,(R) il existe un unique couple
(0,8) € O.(R) x S79R) tel que M = OS. Si un tel couple existe, on aura en particulier ¥ := tMM =
tST00S = S%. Comme ¥ € S7O(R), par le théoréme spectral, il existe @ € O,(R) telle que QXQ ! =
soit diagonale a coefficients dans Rsg. Notons A = diag(\1,..., ), et VA = diag(yv/A1, - . \/T Par
construction S := Q7'WVAQ ='QVAQ € S7O(R) et O := MS~! € O,(R) car

fmMS ™ HYMSs™t =ts MMM ST! = 571825 = 1,

Cela montre I'existence. Pour I'unicité, si M = OS = 0'S’, on doit encore avoir S? = §’2 = 3. En utilisant
les polynomes interpolateurs de Lagrange, on peut trouver P € R[T] (de degré [Vp(Zas)|) tel que P(\) = VA,
pour tout A € Vp(X). En particulier, P(S'?) = P(S?) = Q7'P(A)Q = Q7 'VAQ = S donc " et S =
P(S") commutent donc sont codiagonalisables: il existe A € GL.(R) tels que ASA~™! = diag()\1,...,\)
et AS'A™Y = diag(\;,...,\.) avec A1,..., Ap, Af, .., AL > 0. Comme S? = S2, A2 = X2 donc \; = N,
i=1,...,7et S =9 (donc O = O'). 1l reste & voir que I'application O,(R) x S>%(R) — GL,(R) est un
homéomorphisme. Elle est continue car le produit matricielle I’est. Pour vérifier que son inverse est aussi
continue, on va utiliser le critére séquentiel de continuité viz que si M,, n > 0 est une suite de GL,(R)
et que pour chaque n > 0, M, = 0,5, est la décomposition polaire de M,, alors M,, - M € GL,.(R) de
décomposition polaire M = OS (si et) seulement si O, — O et S, — S. Comme O,(R) est compact (car
fermé borné dans M, (R) - écrire les détails), O,, — O ssi O est 'unique valeur d’adhérence de Oy, n > 0.
Soit donc Oy, 7 > 0 une suite extraite convergent de Oy, n > 0 et Ogg,y — Op € O,(R) sa limite. On
a donc Sy, — So = Oy M. Par construction Sy est & la fois dans GL,(R) et dans I'adhérence SZ°(R)
de S7O(R) dans M, (R), donc dans S;(R). Mais M = OySp est donc la décomposition polaire de M; en
particulier, par unicité de la décomposition polaire, Og = O. On a gagné! O

Corollaire 3.9. (Composantes connexes) Le groupe O,(R) a ezactement deuz composantes connexes, SO, (R) :=
ker(det : Op(R) — {£1}) et O,(R) \ SO,(R). Le groupe GL,(R) a lui-aussi exactement deuz composantes
connezes, GL7O(R) = det '(Rxo) et GL.(R) \ GL°(R). Les groupes U,(C), SU,(C) et GL.(C) sont

CONNeEres.

Proof. Observons d’abord que, comme det(S;°(R)) C R, la décomposition polaire pour GL,.(R) se re-
streint en des homéomorphismes,
SO (R) x S7P(R)SGLO(R), (O:(R)\ SO.(R)) x S7°(R)=G L, (R) \ GL7°(R),
(R

et que, pour tout O_ € O,(R) \ SO,(R), la multiplication par O_ induit un homéomorphisme

(Or(R)\ SO, (R))=SO,(R).

Comme un produit de connexe est connexes et que I'image d’un connexe par une application continue est
connexe, il suffit donc de montrer que SO, (R), S>°(R), U.(C), HZ°(C) et SU,(C) sont connexes. On va

en fait montrer qu’ils sont connexes par arcs en construisant a chaque fois, a 'aide du théoréeme spectral,
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un chemin continu d’un élément quelconque de 'un de ces ensembles vers I,,. Pour M € SO, (R), il existe

O € O,(R) tel que OMO~! =diag(1,...,1,Rp,,..., Ry,) avec
R — cos(0)  sin(0)
=\ —sin(0) cos()
(on autorise # = 7). On peut donc prendre
ey 2 [0,1] = SO (R), t = O~ diag(1,...,1, Rau_y, - -, Ra—s.,)O-
Pour M € S7O(R), il existe O € O,(R) tel que OMO™! = diag(\1,...,\) avec Ay,..., A > 0. On peut

donc prendre
e 0,1] = S7OR), t = tOdiag((1 —t)Ay +t,..., (1 — )\, +1)O.
Pour M € U.(C) (resp. M € SU,(C)), il existe U € U,(C) tel que UMU™! = diag(e’®, ..., e") avec
01,...,0, € R (resp. et 61 +--- ,60, = 0). On peut donc prendre
car : [0,1] = Up(C) resp. SU,(C), t— U diag(e!@=001 . 0-00 1
Enfin, pour M € H;%(C), il existe U € U,(C) tel que UMU~! = diag(\1,...,\r) avec A1,..., A > 0. On

peut donc prendre

ey [0,1] = HZO(C), t i tUdiag((1 — )\ +t,..., (1 — )\ +t)U.

4. STRUCTURE DES ESPACES ANTISYMETRIQUES

La structure des espaces antisymétriques est étonnament simple. On suppose dans cette section que k est
quelconque (de caractéristique # 2). Soit (V,¢) € C;. Par définition, tout sous k-espace vectoriel W C V
de dimension < 1 est p-isotrope.

(1) Supposons d’abord r := dimy (V') = 2 et (V, ¢) non dégénéré viz pour tout 0 # €1 € V il existe €3 € V tels
que @(e1,€2) # 0. En particulier, € = €1, €2 est une k-base de V. Quitte & remplacer €; par ¢(e1, €2) ley,
on peut supposer que (e, €e3) = 1. Donc,

(P)e = J1:= ( _01 (1)>

(2) En général, tout sous-k-espace vectoriel W C V supplémentaire de ker(¢) dans V' se décompose en
somme directe @-orthogonale

1
W= @1£i§sf)i
avec dimy(P;) = 2 et (P, ¢|pxp,) € C}, non-dégénéré, i = 1,...,s, donc il existe une k-base € de V' tel

que
(SO)QZ Diag(07“'707<]17"'7t]1)
ou le nombre de 0 est dimy(ker(y)). En particulier, 2|rang(p) et 'application rang induit une bijection

rang : L5, (V)/GLp(V)S2ZN0A{0, ..., dimg(V)}.

Proof. On raisonne par récurrence sur r = dimy(W). Comme (W, ¢|wxw) € Cj, est non-dégénéré, donc
pour tout 0 # €; € V il existe e € V tels que p(e1,€2) # 0. En particulier, € = €1, €3 est k-libre. Quitte
a remplacer ¢; par (e, €2) Ler, on peut aussi supposer que (er,e2) = 1. Notons P := ke; @ keo.
Comme (W, o|lwxw) et (P1, ¢|p, xp,) sont non dégénérés, par le Lemme 1.4 (2), on a une décomposition
en somme directe p-orthogonale

W =P, ale Pje

1 S, . N ’ N 1
avec (P %, g0|P1L¢ Xple) € C;, non dégénéré, et on applique I’hypothese de récurrence a (P; 7, <p|P1L4, <P ).
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En réordonnant les vecteurs de la k-base € construite en (2), on peut réénoncer (2) en disant qu’il existe une
k-base € de V tel que

0
0 I
(SO)EZJ’/‘,S - O ) ou JS :<_IS 05>
Js
Interprétation matricielle:
(1) Pour tout entier pair 0 < 2s < r et pour tout ® € M,.(k), '® = —® et rang(®) = 2s ssi il existe

U € GL,(k) tel que ® ='UJ, U.
(2) Pour tout entier s > 1, on dit que le sous-groupe
Spas(k) :={V € GLas(k) | WV = Js} C GLas(k)
est le groupe symplectique de rang 2s. Avec les notations de (1), si rang(®) =2s=r, on a

O(®) = U Spas(k)U.

5. GROUPES ORTHOGONAUX (ET UNITAIRES)

5.1. Groupe orthogonal. On suppose ici (V, ) € C,gd non dégénéré. On va s’intéresser a la structure du
groupe orthogonal de (V) viz

O(p) ={u € GLx(V) [u-¢ = ¢} C GLk(V).
On dit que le sous-groupe normal
SO(p) := ker(det : O(p) — k) < O(p)

est le groupe spécial orthogonal (on note aussi parfois OT () := SO(p)). On a vu que tout choix d'une
k-base ¢-orthogonale € de V' induit un isomorphisme de groupes

(=) : O(p)=0(®) = {O € GL.(k) | 'OPO = 09'O = &} C GL,(k),
ou ® = (p)e. via cet isomorphism,
SO() (0T (@) =)SO(®) := ker(det : O(®) — k*) < O(®).

Comme det(0)? = det(O*0), on a que im(det : O(®) — k*) C {£1} et comme la matrice Diag(—1,1,...,1) €
O(®) est de déterminant —1, on a en fait une suite exacte courte scindée de groupes

1= SO(p) = Op) @ {+1} 1

5.1.1. Symétries orthogonales. On appelle symétries de V les éléments d’ordre exactement 2 de GLg(V)
et symétries p-orthogonales ceux de O(p). En particulier, si u € GLi(V) est une symétrie, on a V =
ker(u — Idy) @ ker(u + Idy) et c’est I'unique décomposition en somme directe u-stable V.=V (u) &V~ (u)
telle que uly+(yy = Idy+ (), uly—@) = —Idy—(y)-

Lemme 5.1. Siu € GLi(V) est une symétrie, u € O(p) ssi VI (u) L, V= (u). En particulier, v*(u)te =
V= (w), Vo (u)te = Vi (u), et (VT (w), elv+wxv+)s (V7 (W), @lv-()xv-(u) sont tout deus non-dégénérés.
Inversement, pour tout sous-k-espace vectoriel W C V' tel que (W, olwxw) est non-dégénéré, il eriste une
unique symétrie oy € O(p) telle que W =V (ow).

Proof. <: Si VT (u) L, V™ (u), la décomposition V = V*(u) ® V™~ (u) est p-orthogonale donc si €™ est une
k-base p-orthogonale de (V' (u), @ly+(u)xv+()) et € une k-base g-orthogonale de (V= (u), |y (u)xv-(u))»

la concaténation € = €™, e~ est une k-base g-orthogonale de V. Par construction

U:=(u) =diag(1,...,1,—,...,—1)

et ® := (p) est diagonale inversible donc 'U®U = ®'UU = I,. <: si u € O(p), pour tout vt € VT (u),
v~ €V~ (u), on a
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donc p(vt,v™) = 0. Enfin, si W C V est un sous-k-espace vectoriel tel que (W, ¢|wxw) est non-dégénéré,
on a une décomposition en somme directe p-orthogonale
V=Wat Wt

et on peut prendre ow = Idw @ —Idy,L,. O
Pour tout entier 1 < s < r, notons Q5(0(¢)) C O(p) le sous-ensemble des symétries orthogonales o € O(yp)
telles que dimy (V= (o)) = s, Gr(s,V) I'ensemble des sous-k-espaces vectoriels W C V tels que dimy (W) =
s et Gr?(s,V) C Gr(s,V) le sous-ensemble des W € Gr(s,V) tels que (W, ¢|wxw) est non-dégénéré.
L’application W +— oy induit donc une bijection

o_ : Gre(s,V)>Q5(0(p))
d’inverse I'application V(=) : Q5(0(p))=>Gr#(s,V). Notons de plus que O(yp) agit naturellement sur
Gr¥(s,V) (par u-W = u(W)) et sur Q2(0(p)) (par u-o = uou~1) et que I'application o_ : Gr# (s, V)=>Q5(0(¢))
est O(yp)-équivariante. En effet, pour tout W € Gr#(s,V) et u € O(p), on a encore uoywu~1 € O(p) d’ordre
exactement deux et ker(uowu™! — Id) = u(ker(ow — Id)) = (W), donc uowu™" = o,w).

On appelle parfois aussi reflexions p-orthogonales (resp. renversements p-orthogonaux) les éléments de
Q3(¢p) (resp. Q3(p)). Si W C V est un sous-k-espace vectoriel, on note ry := o1, = —ow. Donc les
reflexions p-orthogonales (resp. renversements ¢-orthogonaux) sont les rp (resp. rp) avec D C V droite
vectoriel (resp. P C V plan vectoriel).

A partir de maintenant, on va supposer k euclidien et que (V,¢) € C,gd est définie positif. On a
alors Gr#(s,V) = Gr(s,V) et action de SO(yp) sur Gr(s, V) est transitive. En effet, si Wi, Wy € Gr(s,V),
on a

V=W ete Wi =W, ele Wy
En particulier, pour 7 = 1, 2, si g; est une k-base p-orthonormale de W; et gl-l est une k-base p-orthonormale

de VVZAL“’, la concaténation e; = ¢;, ;- est une k-base p-orthonormale de V. soit alors u € G L(V') défini par
u(e;) = ey. Par construction u(Wp) = Wa, et comme e;, e, sont des k-bases p-orthonormales, u € O(yp),et
si u & SO(yp), on peut toujours remplacer u par u o O (kwy)Le POUL n’importe quel 0 # v; € W.

5.1.2. Le cas dimy(V) = 2.

5.1.2.1. Groupe des angles. Pour tout a,b € k, notons

a b
Rap) = ( b a )

En reprenant la preuve du Lemme 3.5 en ajoutant la contrainte MM = I, = MM et det(M) = 1, on voit
immédiatement que 'application R_ : k? — My (k) se restreint en un isomorphisme de groupes

R_: S1(k)=S04(k),
ott S1(k) := {(a,b) € k? | a®> + b*> = 1} C k%, muni de la loi de composition
(a1,b1) * (az,b2) = (a1a2 — biba, a1by + asba),

ce qui en fait un groupe abélien d’élément neutre (1,1).

Rem.: Si £ =R, on a un diagramme commutatif canonique de groupes topologiques

t—(cos(t),sin(t))

ot (abar
(R, +) 2 (ker(| — ), o (S

y

(R/27Z,+)

R), ) ——> SO3(R)
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Notons encore R_ : (R/27Z,+)=SO2(R) I'isomorphisme de groupe ainsi obtenu. Pour tout M € SO2(R)
on dit que 'unique § € R/27Z tel que Rz = M est 'angle de M et on dit que (R/27Z, +) est le groupe des
angles. Dans un corps euclidien arbitraire, on dit parfois encore que (Si(k),*) est le groupe des angles.

Si on considere maintenant un plan euclidien (V) € C,gd et que l'on fixe une k-base @p-orthonormale ¢,
de V, comme SOy (k) viz SO(p) est abélien, pour toute k-base p-orthonormale € de V', 'isomorphisme de
groupe
(=)e : SO(p)=50,(k)

ne dépend que de dete (¢) = £1. On dit que le choix de ¢, définit une orientation de (V; ¢) et que les k-bases
p-orthonormales € de V' telles que det (¢) = 1 (resp. det. (¢) = —1) sont directes (resp. indirectes) dans
le k-espace vectoriel euclidien orienté (V, ¢, €5). On définit alors ’angle de d’un élément u € SO(y) comme
I'unique (a, b) € S1(k) tel que (u)e, = Rqp)-

5.1.2.2. Générateurs en dimension 2.

Lemme 5.2. Si dimi(V) = 2, tout Idy # u € O(p), s’écrit comme produit d’au plus 2 reflexions ¢-
orthogonales.

Proof. Comme u # Idy, il existe v € V tel que v/ = u(v) # v. On a alors
o0 =0+ ') = (v, 0) — 9(t',v') = p(0,0) — P(u(v), u(v)) = P(v,v) — P(v,0) = 0.

Notons D; = k(v —v') donc Df'“" = k(v —). Par définition rp, (v+v') = v+, rp, (v —v") =v' — v donc
2rp, (v') = 2v viz rp, ou(v) = v. Donc, comme dimy(V) = 2, en notant Dy := (kv)t¢, ona V = kv®te Dy
avec Dy C V une droite rp, o u-stable. Comme rp, ou € O(¢y), ses seules valeurs propres sont +1 donc soit
Dy C VT (op, ou) et u=rp,, soit Dy C V= (rp, ou) et w=rp, orp,. O

5.1.3. Centre, générateurs, sous-groupe dérivé.
Proposition 5.3. On a Z(O(p)) = {£ldy} et, si dimi(V) >3, Z(SO(v)) = Z(O(p)) N SO(p).

Proof. On remarque que {£Idy} = O(p)Nk*Idy. Les inclusions D étant évidentes, il suffit de montrer que
tout u € Z(O(p)) (resp. u € Z(SO(y))) est une homothétie. Pour cela, on utilise la caractéristion classique:

pour tout u € GLg(V), u € k*Idy ssi pour toute droite vectorielle D C V, u(D) = D. Traitons d’abord le

cas de O(p). Soit donc u € Z(O(y)). Pour toute droite vectorielle D C V, on a op @ uopu~! @ Tu(D)s

ott (1) vient du fait que op € O(y) et u € Z(O(p)) et (2) du fait que uopu=t € O(p) est encore d’ordre
exactement 2 avec V*(uopu™t) = u(V*(op)) = w(D). On a donc bien u(D) = D. Soit maintenant u €
Z(SO(p)). Comme dimy (V) > 3, toute droite vectorielle D C V peut s’écrire comme intersection de deux
plans vectoriels P, P» C V. On applique 'argument précédent aux symétries orthogonales o ple € SO(y),

i = 1,2 pour obtenir u(PZ-L*") = PiL“’ donc u*(P;) = v~ (P;) = P; donc u(P;) = P;, i = 1,2, ce qui implique
u(PlﬂPQ) =P NP. O

Proposition 5.4. Pour tout u € O(p), notons ry(u) := dimg(V*(u)). Alors u s’écrit comme produit d’au
plus r — ri(u) reflexions p-orthogonales. Sir > 3 et u € O(p), u s’écrit aussi comme produit d’au plus
r — ri(u) retournements p-orthogonauz.

Proof. Par le théoreme spectral pour les automorphismes orthogonaux, pour tout u € O(y) il existe une
décomposition en somme directe p-orthogonale u-stable

V= V+(U) @Lkp V- (U) @Lw @fgigtwia

ot dimy(W;) =2,i=1,...,t. D’apres le Lemme 5.2, il existe des droites vectorielles D; 1, D; o C W; telles
que u|w, = 7p,, °rp,, dans O(¢|lw,xw;), i = 1,...,t. Sion note r_ :=r_(u) := dimy(V ~(u)), que I'on fixe
€1,...,€6_ une k-base g-orthogonale de V'~ (u) et que 'on pose D; = ke;, i = 1,...,r_, on obtient:

u = T‘Dl [ JRIIR OTDT_ 'rDl,l O’I"l)172 [O 2N O’T’Dt’1 OTDt’Q.
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Pour la deuxiéme partie de 1’énoncé, comme tout u € SO(y) est produit d’un nombre pair < r_(u) de
réflexions p-orthogonales de la forme rp, o rp, avec Dy # Do, il suffit de montrer que pour toutes droites
vectorielles D1 # Do C V, il existe des plans vectoriels Py, P» C V tels que

T I=TD;OTDy =TpP, OTP,.
Notons H; := D?*"j i =1,2. Comme H; # Hy, dimy(Hy N Hy) = r — 2 donc, comme r > 3, on peut trouver
W C Hy N Hy tel que dimy (W) = r — 3; notons H := W¢ . Par construction, 7|y = Idy ; en particulier,
m(H) = H et on a encore det(m|g) = 1 viz 7|y € SO(p|uxm). Comme dimy(H) = 3, il existe A1, Ay C H
droites vectorielles telles que
Tl =ra 0ra, =0p 0op, = (—0op)o(=op,) =Tp OTP,,
1

Ot on a noté P; := A, e — W, i =1,2. On vérifie sur la construction que cette égalité reste vraie dans
V. O

Corollaire 5.5. Sir > 2 on a D(O(¢)) = SO(p) et sir >3, D(SO(p)) = SO(yp).

Proof. L’inclusion D(O(p)) C SO(y) vient du fait que det([u1,uz]) = 1 et 'inclusion D(SO(y)) C SO(p)
est tautologique. Montrons les inclusions réciproques.

(1) On a vu qu’on avait un isomorphisme canonique O(p)-équivariant o_ : Gr(s,V)=>Q5(¢). Observons
en outre que 'action de SO(yp) sur Gr(s, V) est transitive. En effet, pour tout Wi, Wy € Gr(s,V) en
considérant les décompositions en somme directe p-orthogonale V. = W, @&++ VVlL ¢ =Wy @le VV2L “ et
en choisissant des k-bases @-orthonormales ¢;, € de W; et VV;“”, i = 1,2, tout u € GLi(V) tel que
u(ey) = €9, u(el) = €5 est dans O(yp) et vérifie u(W1) = Wa. Si u & SO(¢), on le remplace par u o rp
pour n’importe quelle droite vectorielle D C W;. On en déduit que les éléments de 25(¢) sont donc
tous conjugués sous SO(p).

(2) On est dans la situation ot on a D(G) C H C G avec H C G normal, et engendré par une famille S € H
d’éléments qui sont tous conjugués sous H. Pour montrer que D(G) = H il suffit donc de montrer que

SN D(G) # 0.

a) Dans le premier cas, montrons que D(O contient un produit de deux reflexions p-orthogonales.
2 12
Pour cela, il suffit d’observer que si 71, ry sont 2 reflexions ¢-orthogonales, pour tout u € SO(yp) tel
que uriu~t =179, on a riry = ruriut = [ry,u] € D(O(p)).

(b) Dans le second cas, montrons que D(SO(p)) contient un retournement @-orthogonal. Pour cela,
fixons W C V tel que dimy (W) = 3 et €1, €2, €3 une k-base p-orthonormale de W. Pour {i, j, k} =

{1, 2,3}, notons P, = ke;®ke; (en particulier rp, (&) = —€;, rp, (€;) = —€;, rp,(v) =v,v € Pkl“’ S €
). Donc rp, o TP =Tp,. Soit maintenant u € SO(y) tel que TP, = urpiu_l; on a

rp, =Tp; © TPj =Trp o urpiuil = [eru] € D(SO((,D))
|

5.1.4. Simplicité de PSO(p) pour r = 3,> 5. L’objectif de ce paragraphe est de montrer 1’énoncé suivant.
Soit (V, ) € CL? un produit scalaire. On note

PSO(p) := 50(9)/Z(50(p)).
(si r:= dimg(V) est impaire, on a donc simplement PSO(p) = SO(p)).
Théoréme 5.6. Sir =3, our > 5, le groupe PSO(yp) est simple.
Rem. On peut montrer que si 7 =4, PSO(¢)=>S03(R) x SO3(R) - cf. e.g. [VIL4, P96]).

Proof. La stratégie générale est la suivante. Soit G un groupe muni d’une classe de conjugaison C' C G qui
engendre (G. Pour montrer que G est simple, il suffit alors de montrer que pour tout sous-groupe normal
1#NCG, NNC # (. En effet, on aura alors automatiquement C' C N puisque N est normal dans G
donc G = (C) C N. Pour construire un élément de C' N N, on part d’un élément 1 # gy € N et on essaye
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de le "transformer” de facon ad-hoc en un élément de C'N N. Une premiere idée - naive - serait simplement
de conjuguer gy par un élément de g € G. On aura bien encore ggopg~' € N puisque N est normal dans G
mais si go ¢ C, il n’y a bien siir aucune chance pour que ggog~' € C! Ce n’est donc pas la bonne idée...
Ce qui s’avere souvent plus fructueux, c’est de considérer les commutateurs [g, go], ¢ € G. La encore, on a
[9,90] = (990971 )gy " € N puisque N est normal mais comme go et [g, go] ne sont a priori pas conjugués,
méme si ggp ¢ C, il y a des chances qu’on trouve des g € G tels que [g, go] € C. Dans notre cas, ce sont les
retournements qui vont jouer le role de C'. On va d’abord traiter le cas r = 3, puis se ramener a ce cas dans
le cas général.

(1) Le cas r = 3. Soit donc 1 # N C SO(y) un sous-groupe normale et 1 # gy € N. Considérons

I’application continue
Qg - SO(@) - R? g t’r([gv.QO])

Comme SO(y) est compact connexe (cf. Corollaire 3.9), I'image de ay, est un compact connexe de R
viz un segment fermé borné [a, b]. De plus, par le théoreme spectral, pour tout u € SO(y) il existe une
R-base p-orthonormale € de V' tel que (u). = diag(1, Rg) donc tr(u) =1+ 2cos(f) < 3 et tr(u) = 3 ssi
cos(8) = 1 viz u = Id (donc, sur SO(p), la trace détecte 'identité). En particulier, b < 3 et comme
ag,(g0) =3, b=3. On a aussi a < 3 sinon, pour tout g € SO(y), [g,90] = Id viz go € Z(SO(p)) = {1}
contradiction. En particulier, 1 + 2cos(mw/n) € [a, 3] pour n > 0 ce qui signifie qu’il existe g, € SO(p)
tel que up := [gn, g0] € N vérifie (u)e = diag(1, Ry/,) (ou = diag(1, R_,,) = diag(1,R_.,,)"") dans
une R-base ¢-orthonormale € de V. En particulier u], € N est un retournement.

(2) Le cas r > 5. Soit 1 # N C PSO(p) un sous-groupe normal et notons Z(SO(p)) € N C SO(y)
son image inverse dans SO(p); c’est encore un sous-groupe normal de SO(y) et on veut montrer que
N = SO(p). Pour tout sous-R-espace vectoriel W C V tel que dimr(W) = 3, on a un plongement
naturel oy : SO(plwxw) — SO(¢), v — u @ Idy, 1, et, par construction, I'image par oy d'un
retournement de (W, ¢ «w) est encore un retournement de (V, ¢). Il suffit donc de construire un tel
W tel que N Nim(aw ) # 1 car, dans ce cas, comme N Nim(aw) C im(aw) est encore un sous-groupe
normal et que im(aw) ~ SO(¢|wxw) est simple par le cas r = 3, on aura N D N Nim(aw) = im(aw);
en particulier N contiendra tous les retournements de SO(p) contenu dans im(ayp) et on aura gagné!
Mais si g € SO(p) vérifie ro(g) = dimr(V*(g)) > r — 3, on peut toujours construire un sous-R-
espace vectoriel W C V tel que dimg(W) = 3 et g € im(aw); en effet, par le théoreme spectral,
ry(g) => r — 3 n’est possible que si ¢ = Id ou r4(g9) = r — 2 et, dans ce cas, on peut prendre
W = V*(g)te @t¢ D o D C V*(g) est une droite vectorielle quelconque. 11 suffit donc de construire
g € N tel que dimg(V*(g)) > r — 3. Pour cela, fixons g9 € N, go € Z(SO(p)) et observons que si
D1, Dy C V sont deux droites vectorielles, on a

[7D17Das 90] = TDyTDyTgo(Ds) g0 (D1)
En particulier, s’il existe une droite vectorielle Dy C V telle que go(D2) = Dy alors, pour n’importe
quelle autre droite vectorielle D1 C V, on aura g := [rp,7p,, go] = 7D, gy(p,) donc V*(g) O D#’ ﬂD;‘“",

qui est de codimension < 1+ 1 = 2 dans V. Il suffit donc en fait de construire g € N, g € Z(SO(yp)) tel
que dimg (V™ (g)) > 1. C’est ici qu’on utilise r > 5. En effet, si P C V plan vectoriel, on a

N 3 gp = [rp, go|l = rpryy(p)

et Vt(gp) D Pt¢ N go(P)*+, qui est de codimension < 242 =4 < 5 < r dans V. 1l suffit donc de
vérifier qu’on peut trouver un plan vectoriel P C V tel que gp & Z(SO(p)); mais c’est en effet le cas
puisque, comme —Idy n’a pas de point fixe, si gp € Z(SO(y)), on a forcément gp = Id. Mais si gp = Id
pour tout plan vectoriel P C V, alors gy € Z(SO(y)) puisque les retournements engendrent SO(y). On
a gagné!

O

5.2. Quelques mots sur le groupe unitaire. Soit (V,y) € C{ un produit scalaire hermitien (ot 7 =
(—) est la conjugaison complexe). Disons quelques mots des groupes unitaire et spécial unitaire. Notons
Ui(C) := ker(| — | : C* = Rsg) C C* le sous-groupe des complexes de module 1 et, pour tout r» > 1,
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pr(C) :=ker((—)" : C* — C*) C Uy(C) le sous-groupe des racines r-iemes de I'unité. On a encore une suite
exacte courte scindée de groupes

1= SU(p) = Ulp) B U, (C) - 1.
Pour chaque droite vectorielle D C V', et ¢ € U1(C), notons r(p ¢y € U(p) défini par
(D) = Cldp & IdDJ_<P;
on dit que c’est la pseudo-refléxion définie par (D, (). Pour tout couple D C P C V d’une droite vectorielle
contenue dans un plan vectoriel de V, et ¢ € U1(C), notons r(p p¢) € SU(yp) défini par
rp,pe) = Cldp ® g—ldeL

on dit que c’est le pseudo-retournement défini par (D, P, (). Il résulte alors du théoréeme spectral que tout
élément u de U(yp) s’écrit comme produit d’au plus r — 7T (u) pseudo-réflexions et que, si r > 2, tout élément
u de SU(y) s’écrit comme produit d’au plus r — r(u) pseudo-retournements. On a encore

Z(U(p)) = {Cldv | € Ur(C)} = U1(C), Z(SU(p)) = Z(U(p)) NSU(p) = {Cldy | ¢ € pur(C)} ~ 1 (C),
et, pour r > 2, D(U(y)) = SU(p) et PSU(p) = SU(p)/Z(SU(y)) simple.

@ Idpry;

elpxp
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