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1. Introduction

For an abelian group A, write Ators ⊂ A for its torsion subgroup and A ↠ Afree := A/Ators for its max-
imal torsion-free quotient. For an algebraic group G, let G◦ ⊂ G denote its neutral component and
G ↠ π0(G) := G/G◦ its group of connected components.

A variety over a field k is a separated scheme of finite type over k.

In this paper k will denote an infinite field of characteristic p ≥ 0, finitely generated over its prime subfield.
We fix a separable closure k ↪→ k̄ and write π1(k) =Gal(k̄|k) for the absolute Galois group.

1.1. Tate conjectures. Let X be a smooth projective variety over k. For every integer i ≥ 0, let CHi(X)
denote the group of algebraic cycles of codimension i on X modulo rational equivalence, and for every ring
R, set CHi(X)R := CHi(X) ⊗Z R. For a prime ℓ ̸= p, set

VZℓ
:= H2i(Xk̄,Zℓ(i)).

Let Gℓ ⊂ GL(VQℓ
) denote the Zariski-closure of the image of π1(k) acting on VQℓ

:= VZℓ
⊗Zℓ

Qℓ and let

ṼQℓ
:= (VQℓ

)G◦
ℓ ⊂ VQℓ

denote the Qℓ-vector space of Tate classes, which can also be described as

ṼQℓ
= colimU (VQℓ

)U ,

where U varies among all open subgroups of π1(k). The cycle class map cℓ : CHi(Xk̄) → VZℓ
for Zℓ-étale

cohomology fits into the following canonical Cartesian diagram

(1) CHi(Xk̄) //

��

cℓ

**CHi(Xk̄)Zℓ
// //

��

V a
Zℓ

� � //

����

ṼZℓ

� � //

����
□

VZℓ

����
V free,a
Zℓ

� � //
� _

��

Ṽ free
Zℓ

� � //
� _

��
□

V free
Zℓ� _

��
CHi(Xk̄)Q // CHi(Xk̄)Qℓ

// // V a
Qℓ

� � // ṼQℓ

� � // VQℓ
,

where V a
Zℓ

(resp. V a
Qℓ

) is the image of the cycle class map cℓ ⊗ Zℓ : CHi(Xk̄)Zℓ
→ VZℓ

(resp. cℓ ⊗ Qℓ) and
where ṼZℓ

and Ṽ free
Zℓ

are defined by the rightmost Cartesian squares of the diagram.
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The (classical) rational Qℓ-Tate conjecture for codimension i cycles on X [Ta65]

TateQℓ
(X, i) V a

Qℓ
= ṼQℓ

asserting that Tate classes are Qℓ-linear combinations of algebraic classes admits the following integral
variants:

Tatefree
Zℓ

(X, i) V free,a
Zℓ

= Ṽ free
Zℓ

(Integral Tate conjecture modulo torsion);
TateZℓ

(X, i) V a
Zℓ

= ṼZℓ
(Integral Tate conjecture).

While, tautologically,

TateZℓ
(X, i) ⇒ Tatefree

Zℓ
(X, i) ⇒ TateQℓ

(X, i),

it is known that, in general, the converse implications fail as soon as i > 1 (see e.g. [CTS10, AtH62] for the
failure of TateZℓ

(X, i) and [CTS10, Ko90, To13, P22] for the failure of Tatefree
Zℓ

(X, i)).

The aim of this note is to analyze the obstructions to TateZℓ
(X, i), Tatefree

Zℓ
(X, i) when X varies in family.

Our arguments provide a new application of the structure theorem of the degeneration locus of ℓ-adic local
systems of [CT13] (see Fact A), in the spirit of [CC20, C23].

Before considering the variational setting, we make some elementary remarks. By definition, the obstructions
to TateQℓ

(X, i), Tatefree
Zℓ

(X, i), TateZℓ
(X, i) are, respectively:

C̃Qℓ
:= ṼQℓ

/V a
Qℓ

, C̃ free
Zℓ

:= Ṽ free
Zℓ

/V free,a
Zℓ

, C̃Zℓ
:= ṼZℓ

/V a
Zℓ

.

1.1.1. C̃ free
Zℓ

versus C̃Zℓ
. The short exact sequence

(2) 0 → (VZℓ
)tors/(V a

Zℓ
)tors → C̃Zℓ

→ C̃ free
Zℓ

→ 0

realizes C̃Zℓ
as an extension of C̃ free

Zℓ
by a finite group which is a quotient of (VZℓ

)tors. As (VZℓ
)tors is constant

in family, the problems of bounding uniformly C̃ free
Zℓ

and C̃Zℓ
are essentially equivalent.

1.1.2. C̃Qℓ
versus C̃ free

Zℓ
. From C̃Qℓ

= C̃ free
Zℓ

⊗Zℓ
Qℓ and the short exact sequence (2), one has the folllowing

equivalences

TateQℓ
(X, i) ⇔ (C̃ free

Zℓ
)tors = C̃ free

Zℓ
⇔ (C̃Zℓ

)tors = C̃Zℓ

and, in case they hold, (2) reads

(3) 0 → (VZℓ
)tors/(V a

Zℓ
)tors → (C̃Zℓ

)tors → (C̃ free
Zℓ

)tors → 0.

So that, assuming TateQℓ
(X, i), the obstructions we are interested in are (C̃Zℓ

)tors, (C̃ free
Zℓ

)tors. The obstruction
(C̃ free

Zℓ
)tors can be described without involving the Zℓ-module Ṽ free

Zℓ
of Tate classes. Indeed, writing

C free
Zℓ

:= V free
Zℓ

/V free,a
Zℓ

,

it follows from the short exact sequence

0 → C free
Zℓ

→ C̃ free
Zℓ

→ V free
Zℓ

/Ṽ free
Zℓ

→ 0

and the fact that V free
Zℓ

/Ṽ free
Zℓ

is torsion-free that

(C free
Zℓ

)tors = (C̃ free
Zℓ

)tors.

1.2. Variational conjectures. Our main results - Theorem A, Theorem B in Subsection 1.3 - involve some
classical variational realization conjectures, which we discuss first.
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1.2.1. Characteristic 0.
- Singular cohomology: Fix an embedding ∞ : k ↪→ C, let (−)∞ denote the base-change functor along

Spec(C) ∞→ Spec(k) and (−)an the analytification functor from varieties over C to complex analytic spaces.
For every s∞ ∈ S∞(C) the cycle class maps for singular cohomology

c : CHi(X∞)Q → H2i(Xan
∞ ,Q(i)), cs∞ : CHi(Xs∞)Q → H2i(Xan

s∞ ,Q(i))
fit into a canonical commutative diagram

CHi(X∞)Q
|X∞,s //

c
��

CHi(Xs∞)Q
cs∞
��

H2i(Xan
∞ ,Q(i)) ϵ // H0(San

∞ , R2ifan
∞∗Q(i)) �

� // H2i(Xan
s∞ ,Q(i)),

where ϵ : H2d(Xan
∞ ,Q(i)) ↠ E0,i

∞ ↪→ E0,i
2 = H0(San

∞ , R2ifan
∞∗Q(i)) is the edge morphism from the Leray

spectral sequence for fan
∞ : Xan

∞ → San
∞ .

VSing0(f∞, i) For every s∞ ∈ S∞(C) and αs∞ ∈ H0(San
∞ , R2ifan

∞∗Q(i)) ⊂ H2i(Xan
s∞ ,Q(i)) the following

properties are equivalent:
1) αs∞ ∈ im[cs,Q : CHi(Xs∞)Q → H2i(Xan

s∞ ,Q(i))];

2) there exists α̃ ∈ CHi(X∞)Q such that cs∞(α̃|Xs∞ ) = αs∞ .

Though it does not involve Hodge classes, the statement VSing0(f∞, i) is often referred to as the variational
Hodge conjecture for codimension i cycles because, by the fixed part theorem, it follows from the Hodge
conjecture for any smooth compactification of X∞ - see e.g. [CS13, §3.1] for details and an equivalent
formulation using de Rham cohomology. A priori the statement VSing0(f∞, i) is not preserved by base-
change along finite covers of smooth varieties while the obstructions ÕbZℓ,s, s ∈ S are. So we will rather
consider the following "stabilized" variant VSing(f∞, i). For finite covers S′′

∞ → S′
∞ → S∞ of smooth

varieties, consider the notation in the base-change diagram:

X ′′
∞ //

f ′′
∞
��

□

X ′
∞ //

f ′
∞
��

□

X∞

f∞
��

S′′
∞ // S′

∞ // S∞.

VSing(f∞, i) There exists a finite cover S′
∞ → S∞ of smooth varieties over C such that for every finite

cover S′′
∞ → S′

∞ of smooth varieties over C, VSing0(f ′′
∞, i) holds.

Let us point out that if the Zariski-closure of the image of π1(San
∞) acting on H2i(Xan

s∞ ,Q(i)) is connected
then VSing(f∞, i) and VSing0(f∞, i) are both equivalent to

For every finite cover S′
∞ → S∞ of smooth varieties over C, VSing0(f ′

∞, i) holds.

In particular, if S′
∞ → S∞ is chosen in such a way that the Zariski-closure of the image of π1(S′an

∞ ) acting
on H2i(Xan

s∞ ,Q(i)) is connected then VSing0(f ′
∞, i) implies VSing(f∞, i).

- Étale Qℓ-cohomology: The following is the Qℓ-étale counterpart of VSing0(f∞, i):

VEt0
Qℓ

(f, i) For every s ∈ |S| and αs ∈ H0(Sk̄, R2if∗Qℓ(i)) ⊂ H2i(Xs̄,Qℓ(i)) the following properties are
equivalent:
1) αs ∈ im[cXs̄,ℓ : CHi(Xs̄)Q → H2i(Xs̄,Qℓ(i))];

2) there exists α̃ ∈ CHi(Xk̄)Q such that cXs̄,ℓ(α̃|Xs̄) = αs.

One could also consider the seemingly weaker variant WVEt0
Qℓ

(f, i) where CHi(Xs̄)Q, CHi(Xk̄)Q are
replaced with CHi(Xs̄)Qℓ

, CHi(Xk̄)Qℓ
, and the stabilized variants WVEtQℓ

(f, i), VEtQℓ
(f, i). Note that

the statements WVEt0
Qℓ

(f, i), VEt0
Qℓ

(f, i) also make sense when p > 0.

Proposition 1. If p = 0, one has
WVEt0

Qℓ
(f, i) ⇔ VEt0

Qℓ
(f, i) ⇔ VSing0(f∞, i).
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In general, one always has VEt0
Qℓ

(f, i) ⇒ WVEt0
Qℓ

(f, i) and TateQℓ
(Xη, i) ⇒ WVEtQℓ

(f, i).

We will give a proof of Proposition 1 in section 3.1.3. In particular, when p = 0, VSing0(f∞, i) is independent
of the embedding ∞ : k ↪→ C and WVEt0

Qℓ
(f, i), VEt0

Qℓ
(f, i) are independent of the prime ℓ.

Let us also point out that if the Zariski-closure of the image of π1(Sk̄) acting on H2i(Xs̄,Qℓ(i)) is connected
then VEtQℓ

(f, i) and VEt0
Qℓ

(f, i) are both equivalent to

For every finite cover S′ → S of smooth varieties, VEt0
Qℓ

(f ′, i) holds.

In particular, if S′ → S is chosen in such a way that the Zariski-closure of the image of π1(S′
k̄
) acting

on H2i(Xs̄,Qℓ(i)) is connected then VEt0
Qℓ

(f ′, i) implies VEtQℓ
(f, i). The same considerations apply to

WVEtQℓ
(f, i) and WVEt0

Qℓ
(f, i).

1.2.2. Characteristic p > 0. According to Proposition 1, a first substitute for VSing(f∞, i) when p > 0 is
WVEtQℓ

(f, i). Another natural substitute is the variational realization conjecture in crystalline cohomology
VCrys(f, i). This is more subtle. Indeed, as crystalline cohomology is only well-behaved over a perfect
residue field, one has first to spread out all the involved data over a finite base field. Another difficulty
is to relate crystalline and étale data; for singular data, this is Artin’s comparison isomorphism bewteen
étale and singular cohomology. But there is no such a direct functorial comparison isomorphism between
crystalline and étale cohomology; to remedy this, one has to invoke a weak form - CrysEtQℓ

(f, i) of the
motivic conjecture predicting that homological and numerical equivalence should coincide (combined with
a theorem of Ambrosi - see Fact 13).

We now state VCrys(f, i) and CrysEtQℓ
(f, i). Let F denote the algebraic closure of Fp in k and let K be

a smooth, separated, geometrically connected scheme over F with generic point ηK : Spec(k) → K , let
S → K be a smooth, separated and geometrically connected morphism and f : X → S a smooth proper
morphism fitting in the following Cartesian diagram

X
f //

□

S //

□

K

X
f
//

OO

S //

OO

k

ηK

OO

Let K denote the fraction field of the ring W of Witt vectors of F . For a F -scheme Z, write Hi
crys(Z) :=

Hi
crys(Z/W )K for the crystalline cohomology with K-coefficients and

ccrys : CHi(Z)Q → H2i
crys(Z)

for the cycle class map. For every t ∈ |S| the cycle class maps

ccrys : CHi(X ) → H2i
crys(X ), ccrys,t : CHi(Xt) → H2i

crys(Xt)

fit into a canonical commutative diagram

CHi(X )Q
|Xt //

ccrys
��

CHi(Xt)Q
ccrys,t

��
H2i

crys(X ) ϵ // H0(S, R2ifcrys,∗OX /W )K
� � // H2i

crys(Xt),

where ϵ : H2i
crys(X ) ↠ E0,i

∞ ↪→ H0(S, R2ifcrys,∗OX /W )K is, again, the edge morphism from the Leray spectral
sequence for f : X → S in crystalline cohomology - see [M23, §1] and the references therein for details. The
following is the crystalline analogue of VSing0(f∞, i), VEt0

Qℓ
(f, i) [M23, Conj. 0.1].

VCrys0(f, i) For every t ∈ |S| and αt ∈ H0(S, R2ifcrys,∗OX /W )Q ⊂ H2i
crys(Xt) the following properties are

equivalent:
1) αt ∈ im[ccrys,t : CHi(Xt)Q → H2i

crys(Xt)];

2) there exists α̃ ∈ CHi(X )Q such that ccrys,t(α̃|Xt) = αt.
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As before, let VCrys(f, i) denote its stabilized variant.

Also, consider the following statement
CrysEtQℓ

(f, i) For every t ∈ |S|, the kernel of the cycle class maps

ccrys,t : CHi(Xt)Q → H2i
crys(Xt), cℓ,t : CHi(Xt)Q → H2i(Xt̄,Qℓ)

coincide,
which follows from the standard conjecture predicting that homological and numerical equivalences should
coincide, which, in turn, is a consequence of the conjecture predicting that the category of effective motives
should be abelian semisimple [J92].

1.3. Statements.

1.3.1. Let now S be a smooth, geometrically connected variety over k, with generic point η, and f : X → S
a smooth projective morphism. For s ∈ S, denote by a subscript (−)s the various modules attached to Xs

introduced above (e.g. VZℓ,s := H2i(Xs̄,Zℓ(i)), V a
Zℓ,s := im[CHi(Xs̄)Zℓ

→ VZℓ,s] etc.). One would like to
investigate how the obstruction

ÕbZℓ,s := |(C̃Zℓ,s)tors|
to the integral Tate conjecture for Xs varies with s ∈ |S|. In particular, the vanishing of the obstruction
group (C̃Zℓ,s)tors reads as ÕbZℓ,s = 1.

Assume first p = 0. The main conjecture of [C23] predicts that the obstruction to the integral Tate
conjecture should be uniformly bounded in fibers over points with residue field of bounded degree. More
precisely, for every integer d ≥ 1, let |S|≤d ⊂ |S| denote the set of all closed points s ∈ |S| with residue
degree [k(s) : k] ≤ d.

Conjecture 2. Assume p = 0. For every integer d ≥ 1, one has

Õb
≤d

Zℓ
:= sup{ÕbZℓ,s | s ∈ |S|≤d} < +∞

and Õb
≤d

Zℓ
= 1 for ℓ ≫ 0.

Our first main result is that Conjecture 2 holds when S is a curve modulo the variational realization
conjectures discussed in Subsection 1.2.1.

Theorem A. Assume S is a curve, p = 0 and VSing(f∞, i) holds for one (equivalently every) embedding
∞ : k ↪→ C. Then, for every integer d ≥ 1, one has Õb

≤d

Zℓ
< +∞ and Õb

≤d

Zℓ
= 1 for ℓ ≫ 0 (depending on d).

Assume now p > 0. One has a variant of Theorem A for d = 1 involving the variational realization
conjectures discussed in Subsection 1.2.2 but it is slightly more technical. To state it, one has to make a
mild assumption on the Qℓ-local system VQℓ

:= R2if∗Qℓ(i), namely that it is GLU - see Subsection 2.2.1.2
for the definition.

Theorem B. Assume S is a curve, p > 0, VQℓ
is GLU and either (i) WVEtQℓ

(f, i) or (ii) VCrys(f, i) +
CrysEtQℓ

(f, i) holds. Then, one has Õb
≤1
Zℓ

< +∞.

Remark 3. We do not know if, under the assumptions of Theorem B, Õb
≤1
Zℓ

= 0 for ℓ ≫ 0.

1.3.2. An unconditional example. From Proposition 1, one has the following special case of Theorem A and
Theorem B.

Corollary 4. Assume S is a curve and TateQℓ
(Xη, i) holds. Then,

1) if p = 0, for every integer d ≥ 1, one has Õb
≤d

Zℓ
< +∞ and Õb

≤d

Zℓ
= 1 for ℓ ≫ 0 (depending on d).

2) if p > 0 and R2if∗Qℓ(i) is GLU, then one has Õb
≤1
Zℓ

< +∞.
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To get unconditional examples, one thus only has to check TateQℓ
(Xη, i) holds. This is for instance the

case if U = U(2n, δ) is the moduli space of degree δ-smooth hypersurfaces in P2n+1, f : X → U is the
universal family and i = n. Indeed, in that case, V a

Qℓ
has dimension ≥ 1 as it contains the class hn, where

h ∈ H2(Xη̄,Qℓ(1)) is the class of a hyperplane section. On the other hand, if Gℓ denotes the Zariski-closure of
the geometric étale fundamental group π1(Sk̄, η̄) acting on VQℓ

, Beauville proves that the Qℓ-vector subspace
(VQℓ

)G
◦
ℓ ⊂ VQℓ

of G
◦
ℓ -invariant vectors is exactly Qℓh

n [B85, Thm. 2]. From the tautological inclusions

ṼQℓ
= (VQℓ

)G◦
ℓ ⊂ (VQℓ

)G
◦
ℓ = Qℓh

n ⊂ V a
Qℓ

⊂ (VQℓ
)G◦

ℓ = ṼQℓ

this ensures TateQℓ
(Xη, n). So, if S → U is a geometrically connected curve such that π1(SQ̄) ↠ π1(UQ̄)

(there exists plenty of such curves by Bertini), the base-changed family fS : XS := X ×U S → S satisfies the
assumptions of Corollary 4 hence, for the hypersurfaces Xs with s ∈ |S|≤d, the obstruction to TateZℓ

(Xs, n)
is uniformly bounded with d, ℓ and trivial for ℓ ≫ 0 (depending on d). The same argument applies with
complete intersections [B85, Thm. 5].

1.3.3. Unramified cohomology. When i = 2, (C̃Zℓ,s)tors can be described in terms of degree 3 unramified
cohomology. More precisely, set CZℓ,s := VZℓ

/V a
Zℓ,s. From the short exact sequence

0 → C̃Zℓ,s → CZℓ,s → VZℓ,s/ṼZℓ,s → 0

and the fact that VZℓ,s/ṼZℓ,s is torsion-free, one has (C̃Zℓ,s)tors = (CZℓ,s)tors. If i = 2, [CTK13, Thm. 2.2]
states that (CZℓ,s)tors is isomorphic to

H3
nr(Xs̄,Qℓ/Zℓ(2))ndiv

def= coker[H3
nr(Xs̄,Qℓ/Zℓ(2))div → H3

nr(Xs̄,Qℓ/Zℓ(2))].

Here for an abelian group A, we let Adiv ⊂ A denote its maximal divisible subgroup.

Hence Theorem A and Theorem B for i = 2 imply:

Corollary 5. Assume S is a curve.
(1) Assume p = 0 and VSing(f∞, i) for some embedding ∞ : k ↪→ C holds. Then, for every integer d ≥ 1,

sup{|H3
nr(Xs̄,Qℓ/Zℓ(2))ndiv| | s ∈ |S|≤d}| < +∞,

and H3
nr(Xs̄,Qℓ/Zℓ(2))ndiv = 0, s ∈ |S|≤d for ℓ ≫ 0 (depending on d).

(2) Assume p > 0, VQℓ
is GLU and either (i) WVEtQℓ

(f, i) or (ii) VCrys(f, i)+CrysEtQℓ
(f, i) holds. Then,

sup{|H3
nr(Xs̄,Qℓ/Zℓ(2))ndiv| | s ∈ S(k)}| < +∞,

and H3
nr(Xs̄,Qℓ/Zℓ(2))ndiv = 0, s ∈ S(k) for ℓ ≫ 0.

For integers a ≥ 0, b, c and Aℓ = Zℓ,Qℓ,Qℓ/Zℓ etc., Schreieder introduces refined unramified cohomology
groups Ha

c,nr(Xs̄, Aℓ(b)) [S23, §1.2] which, when c = 0, coincide with the usual unramified cohomology groups.
By [S23, Thm. 1.8], for every integer i ≥ 0 one has:

(C̃Zℓ,s)tors ≃ H2i−1
i−2,nr(Xs̄,Qℓ/Zℓ(i))ndiv

def= coker[H2i−1
i−2,nr(Xs̄,Qℓ/Zℓ(i))div → H2i−1

i−2,nr(Xs̄,Qℓ/Zℓ(i))].

So, Corollary 5 holds more generally with H3
nr(Xs̄,Qℓ/Zℓ(2))ndiv replaced by H2i−1

i−2,nr(Xs̄,Qℓ/Zℓ(i))ndiv.

1.4. Acknowledgements. The second author is partially supported by the NSF DMS-2201195 grant. We
thank Stefan Schreieder for pointing out the application to refined unramified cohomology groups. We thank
François Charles for his interest and comments on the manuscript.

∗ ∗ ∗
In Section 2.1 we review basic properties of cycle class maps for étale Zℓ-cohomology in families, introduce
the notion of VQℓ

-generic points and describe the general strategy for the proof of Theorem A and Theorem
B. In Section 3, we inject comparison with singular cohomology - Subsection 3.1, to prove Proposition 1 and
conclude the proofs of Theorem A, and with crystalline cohomology - Subsection 3.2, to conclude the proof
of Theorem B. In Subsection 3.1.5, we also explain how to derive from Theorem A its variant in the setting
of the integral Hodge conjecture.
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2. Étale cycle class maps in families and global strategy

2.1. Étale Zℓ-local systems. Let S be a smooth, geometrically connected variety over k. For every s ∈ S,
fix a geometric point s̄ over it and an étale path αs̄ : (−)s̄→̃(−)η̄. In particular, for every Zℓ-local system VZℓ

on S, one identifies VZℓ,s̄→̃VZℓ,η̄ equivariantly with respect to the isomorphism of étale fundamental groups
π1(S, s̄)→̃π1(S, η̄), γ 7→ αs̄γα−1

s̄ . As a result, we will in general omit fiber functors from our notation and
simply write

VZℓ
:= VZℓ,s̄→̃VZℓ,η̄, VQℓ

:= VZℓ
⊗Zℓ

Qℓ.

Let f : X → S be a smooth projective morphism.

2.1.1. Notational conventions. Consider the Zℓ-étale local system VZℓ
:= R2if∗Zℓ(i) on S. Let Gℓ ⊂ GL(VQℓ

)
denote the Zariski-closure of the image of π1(S) acting on VQℓ

; let also Gℓ ⊂ Gℓ and, for every s ∈ S,
Gℓ,s ⊂ Gℓ denote the Zariski closure of the images of π1(Sk̄) and π1(s) acting on VQℓ

by restriction along
the functorial morphisms π1(Sk̄) → π1(S) and π1(s) → π1(S) respectively (in particular Gℓ,η = Gℓ). As S
is geometrically connected over k, the functorial sequence

1 → π1(Sk̄) → π1(S) → π1(k) → 1

is exact, hence Gℓ ⊂ Gℓ is a normal subgroup, and for every closed point s ∈ |S|, one has G◦
ℓ = G

◦
ℓG◦

ℓ,s.

2.1.2. Specialization and extension of algebraically closed fields. We recall the following two properties of
the cycle class map for étale Zℓ-cohomology.

2.1.2.1. Compatibility with specialization of algebraic cycles. For every s ∈ S, one has a commutative diagram

CHi(Xk̄)
|Xη̄ //

|Xs̄
��

CHi(Xη̄)

cℓ,η

��
spη,syy

CHi(Xs̄) cℓ,s

// VZℓ

(see [F98, § 20.3, Ex. 20.3.1 and 20.3.5]).

2.1.2.2. "Invariance" under extension of algebraically closed field. Let Ω ↪→ Ω′ be an extension of alge-
braically closed fields of characteristic ̸= ℓ and let Y be a smooth proper variety over Ω. Consider the
canonical commutative square

CHi(Y )

|YΩ′
��

cℓ // H2i(Y,Zℓ(i))

≃
��

CHi(YΩ′) cℓ // H2i(YΩ′ ,Zℓ(i)).

Then1,
im[cℓ ◦ −|YΩ′ ] : CHi(Y ) → H2i(YΩ′ ,Zℓ(i)) = im[cℓ : CHi(YΩ′) → H2i(YΩ′ ,Zℓ(i))].

In particular, V a
Zℓ,s, V free,a

Zℓ,s etc. are independent of the geometric point s̄ over s.

2.1.3. The lattice ΛZℓ
. For every s ∈ S, define

ΛZℓ,s := im[CHi(Xk̄)Zℓ
→ CHi(Xs̄)Zℓ

cℓ,s→ V free
Zℓ

] ⊂ V free
Zℓ

.

By construction and 2.1.2, one has
ΛZℓ,s ⊂ V free,a

Zℓ,η ⊂ V free,a
Zℓ,s ⊂ V free

Zℓ
.

Lemma 6. The lattice ΛZℓ
:= ΛZℓ,s ⊂ V free

Zℓ
is independent of s (modulo the identifications VZℓ

= VZℓ,s̄ ≃
VZℓ,η̄).

1In fact, a cycle ξ ∈ CHi(YΩ′ ) is defined over a finitely generated algebraically closed field Ω′′ ⊂ Ω′. One could then find
a smooth and proper model of Y over a small affine scheme U over Ω with generic point Ω′′ and use the specialization at a
Ω-point of U , as in 2.1.2.1.
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Proof. This follows from the fact that the restriction morphism H2i(Xk̄,Zℓ(i)) → H2i(Xs̄,Zℓ(i)) = VZℓ

factors through the edge morphism ϵ : H2i(Xk̄,Zℓ(i)) ↠ E0,i
∞ ↪→ E0,i

2 = H0(S∞, R2if∗Zℓ(i)) of the Leray
spectral sequence for f : X → S as

CHi(Xk̄)Zℓ

|Xs̄ //

cℓ

��

CHi(Xs̄)Zℓ

cℓ,s

��
H2i(Xk̄,Zℓ(i))

ϵ // H0(Sk̄, R2if∗Zℓ(i))
(−)s̄ // V free

Zℓ

and the fact the embedding

V free
Zℓ

∩ (VQℓ
)Gℓ = im[H0(Sk̄, R2if∗Zℓ(i))

(−)s̄→ V free
Zℓ

] ⊂ V free
Zℓ

is independent of s (modulo the identifications VZℓ
= VZℓ,s̄ ≃ VZℓ,η̄). □

Remark 7. Assume2 there exists a smooth compactification X ↪→ Xcpt. Then the surjectivity of the
restriction morphism CHi(Xcpt

k̄
) ↠ CHi(Xk̄) and the functoriality of cycle class maps shows that ΛZℓ

can
also be described as

ΛZℓ
= im[CHi(Xcpt

k̄
)Zℓ

cℓ→ H2i(Xcpt
k̄

,Zℓ(i)) → H2i(Xcpt
s̄ ,Zℓ(i)) ↠ V free

Zℓ
].

In particular, if k̄ ↪→ Ω is an extension of algebraically closed fields and sΩ a geometric point on SΩ over s̄,
then 2.1.2.2 shows that

ΛZℓ
= im[CHi(XΩ)Zℓ

→ CHi(XsΩ)Zℓ

cℓ,sΩ→ V free
Zℓ

].

2.2. Strategy for the proof of Theorem A and Theorem B. We retain the notation and conventions
of Subsection 1.3 and Subsection 2.1.1. For every s ∈ S, set

Obfree
Zℓ,s := |(C free

Zℓ,s)tors|.
As

ÕbZℓ,s ≤ |(VZℓ
)tors|Obfree

Zℓ,s

and as (VZℓ
)tors is independent of s ∈ S and, if3 p = 0, (VZℓ

)tors = 0, ℓ ≫ 0 , it is enough to prove Theorem
A, Theorem B for Obfree

Zℓ,s instead of ÕbZℓ,s.

2.2.1. VQℓ
-generic points. The proofs of Theorem A and Theorem B are parallel and follow from the com-

bination of two independent statements involving VQℓ
-generic points. Let VZℓ

be a Zℓ-local system on S.

2.2.1.1. VQℓ
-generic points. Define the sets of closed VQℓ

-generic points to be the subset |S|gen
VQℓ

⊂ |S| of all
s ∈ |S| satisfying the following equivalent conditions

G◦
ℓ,s = G◦

ℓ ⇔ G◦
ℓ,s ⊃ G◦

ℓ ⇔ G◦
ℓ,s ⊃ G

◦
ℓ ,

and let |S|ngen
VQℓ

:= |S| \ |S|gen
VQℓ

⊂ |S| be the subset of closed non-VQℓ
-generic points. Note that |S|gen

VQℓ,
is

contained in the set of all s ∈ |S| such that V a
Qℓ,s ⊂ (VQℓ

)G
◦
ℓ .

2.2.1.2. Sparcity. Under mild assumptions one expects non-VQℓ
-generic points to be sparce - see [C23] for

details. When S is a curve, one has the following unconditional results. Let Πℓ denote the image of π1(Sk̄)
acting on VQℓ

and, if p > 0, let Π+
ℓ (⊃ Πℓ) denote the image of π1(SkF̄p

) acting on VQℓ
; these are ℓ-adic Lie

groups. One says that VQℓ
is:

- GLP (geometrically Lie perfect) if Lie(Πℓ) is a perfect Lie algebra viz one has [Lie(Πℓ), Lie(Πℓ)] = 0;

- and, if p > 0, GLU (geometrically Lie unrelated) if Lie(Πℓ) and Lie(Π+
ℓ ) have no non-trivial common

quotient.

Fact A. ([CT13, Thm. 1]). Assume p = 0, S is a curve and VQℓ
is GLP. Then for every integer d ≥ 1, the

set |S|ngen
VQℓ

∩ |S|≤d is finite.

2If p = 0, this is always the case - see [Na62], [Na63], [Hi64].
3This follows from Artin’s comparison - see Subsection 3.1.2 and the fact that singular cohomology groups are finitely

generated. This is also true if p > 0 [G83] but we will not resort to this fact.
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Fact B. ([T24]; see also the discussion in [A23, 1.7.1]). Assume p > 0, S is a curve and VQℓ
is GLU. Then

the set |S|ngen
VQℓ

∩ S(k) is finite.

The Zℓ-local system Vℓ = R2if∗Qℓ(i) is GLP [D71], [D80]. If p > 0, it is not necessarily GLU but still, it is
e.g. if Πℓ is open in the derived subgroup of the image of π1(Sk̄) acting on VQℓ

- see [A23, Rem. 1.7.1.4] for
details.

2.2.2. The main Lemmas. Fact A immediately reduce the proof of Theorem A to the proof of:

Lemma A. Set VZℓ
:= R2if∗Zℓ(i). Assume p = 0 and VSing(f∞, i) holds for some (equivalently every)

embedding ∞ : k ↪→ C. Then,
Obfree,gen

Zℓ
:= sup{Obfree

Zℓ,s | s ∈ |S|gen
VQℓ

} < +∞,

and Obfree,gen
Zℓ

= 1 for ℓ ≫ 0.

The proof of Lemma A will be carried out in Section 3.1.4.

Similarly, Fact B immediately reduces the proof of Theorem B to the proof of:

Lemma B. Set VZℓ
:= R2if∗Zℓ(i). Assume p > 0 and either (i) WVEtQℓ

(f, i) or (ii) VCrys(f, i) +
CrysEtQℓ

(f, i) holds. Then, Obfree,gen
Zℓ

< +∞.

The proof of Lemma Lemma B will be carried out in Section 3.2.2.

Note that Lemma A and Lemma B do not involve any restriction on the dimension of S nor on the degree
of the residue field k(s) for s ∈ |S|gen

VQℓ
.

Remark 8. A priori, the assumptions in Lemma A, Lemma B do not imply TateQℓ
(Xs, i), s ∈ |S|gen

VQℓ
.

However, if one assumes TateQℓ
(Xs0 , i) holds for some s0 ∈ |S|gen

VQℓ
then these assumptions indeed imply

TateQℓ
(Xs, i), s ∈ |S|gen

VQℓ
. Indeed, the proofs of Lemma A, Lemma B will show these assumptions imply

ΛQℓ
= V a

Qℓ,s, s ∈ |S|gen
VQℓ

, where ΛQℓ
= ΛZℓ

⊗Zℓ
Qℓ. Assume furthermore TateQℓ

(Xs0 , i) holds - that is
V a
Qℓ,s0

= ṼQℓ,s0 , for some s0 ∈ |S|gen
VQℓ

. But then, for every s ∈ |S|gen
VQℓ

, one has

V a
Qℓ,s = ΛQℓ

= V a
Qℓ,s0 = ṼQℓ,s0

(α)= ṼQℓ,s,

where (α) follows from s0 ∈ |S|gen
VQℓ

.

2.2.3. Reduction to connected monodromy groups. To bound Obfree
Zℓ,s uniformly for s ∈ |S|gen

VQℓ
, one can freely

replace f : X → S by a base change along a finite cover π : S′ → S of connected smooth varieties over k.
Indeed, consider the base-change diagram

X ′ //

□f ′

��

X

f
��

S′ // S

and write V ′
Zℓ

:= R2if ′
∗Zℓ(i). For s ∈ |S| and s′ ∈ |S′| over s ∈ |S|, let s̄′ be a geometric point over s′ and

let s̄ = π ◦ s̄′ denote its image on S. Then, X ′
s̄′→̃Xs̄ as k̄-schemes hence, a fortiori, CHi(X ′

s̄′)→̃CHi(Xs̄).
On the other hand, by proper base change, V ′

Zℓ
= π∗VZℓ

hence, one gets a canonical commutative square

CHi(Xs̄)
cℓ,s // H2i(Xs̄,Zℓ(i))

CHi(X ′
s̄′)

cℓ,s′
//

≃

OO

H2i(X ′
s̄′ ,Zℓ(i))

,

where the vertical arrows are isomorphisms and the right vertical one is equivariant with respect to the
functorial morphism π1(S′) ↪→ π1(S). In particular, as π1(S′) ↪→ π1(S) is open, one has s ∈ |S|gen

VQℓ
if and

only if s′ ∈ |S′|gen
V ′
Qℓ

.
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After base change along a finite cover S′ → S of smooth varieties (which, working componentwise, we may
assume to be connected and, replacing k by a finite field extension, geometrically connected over k), one
may assume VSing0(f ′

∞, i) (resp. WVEt0
Qℓ

(f ′, i), resp. VCrys0(f ′, i)) holds for every base change along a
finite cover S′

∞ → S∞ (resp. S′ → S, resp. S ′ → S) of smooth varieties. Then, the assumptions and
conclusions of Theorem A and Theorem B become unchanged by base change along finite covers of smooth
varieties, so that one may assume:
a) the algebraic group Gℓ is connected4;
b) the algebraic groups Gℓ,s, s ∈ S are all connected5.

2.2.4. An elementary lemma. Recall that for every s ∈ S, we identify VZℓ
:= VZℓ,s̄→̃VZℓ,η̄. For a subset

Σ ⊂ S, set
V free,a
Zℓ,Σ :=

⋂
s∈Σ

V free,a
Zℓ,s ⊂ V free,a

Zℓ,s ⊂ V free
Zℓ

.

Lemma 9. For every Zℓ-submodule TZℓ
⊂ V free,a

Zℓ,Σ and for every s ∈ Σ, one has the following implications

TQℓ
= V a

Qℓ,s ⇐⇒ [V free,a
Zℓ,s : TZℓ

] < +∞ =⇒ Obfree
Zℓ,s ≤ c(TZℓ

) := |(V free
Zℓ

/TZℓ
)tors|.

Proof. The first equivalence is straightforward. The second implication follows from the canonical commu-
tative diagram of short exact sequences

(4) 0 // TZℓ
//

_�

��

V free
Zℓ

// V free
Zℓ

/TZℓ
//

����

0

0 // V free,a
Zℓ,s

// V free
Zℓ

// C free
Zℓ,s

// 0

which, by the snake lemma, identifies

QZℓ,s := coker[TZℓ
↪→ V free,a

Zℓ,s ]→̃ ker[V free
Zℓ

/TZℓ
↠ C free

Zℓ,s] =: KZℓ,s.

But if KZℓ,s is finite, one gets a short exact sequence

0 → KZℓ,s → (V free
Zℓ

/TZℓ
)tors → (C free

Zℓ,s)tors → 0,

whence the assertion. □

Lemma 9 reduces the proof of Lemma A and Lemma B to finding a Zℓ-submodule TZℓ
⊂ V free,a

Zℓ,Σ such that
TQℓ

= V a
Qℓ,s, s ∈ Σ = |S|gen

VQℓ
and, in the setting of of Lemma A, such that c(TZℓ

) = 0, ℓ ≫ 0. In all cases,
we will consider the Zℓ-submodule TZℓ

:= ΛZℓ
introduced in Subsection 2.1.3, Lemma 6. As a warm-up, we

end this Section with the proof of Lemma B (i).

2.2.5. Proof of Lemma B (i). Let s ∈ Σ = |S|gen
VQℓ

. Assuming WVEtQℓ
(f, i), we are to prove that the inclusion

ΛQℓ
⊂ V a

Qℓ,s is an equality. This follows from the inclusions

V a
Qℓ,s = V a

Qℓ,s ∩ ṼQℓ,s
(α)= V a

Qℓ,s ∩ ṼQℓ,η

(β)
⊂ V a

Qℓ,s ∩ (VQℓ
)Gℓ

(γ)= ΛQℓ
⊂ VQℓ

,

where (α) follows from s ∈ |S|gen
VQℓ

, (β) from the reduction 2.2.3 a), and (γ) is WVEtQℓ
(f, i).

3. Comparison with singular and crystalline cohomologies

3.1. Singular cohomology.

4 First, after replacing k by a finite field extension, one may assume S(k) ̸= ∅, so that fixing s ∈ S(k) yields a splitting
s : π1(s) = π1(k) ↪→ π1(S) of the canonical short exact sequence

1 → π1(Sk̄) → π1(S) → π1(k) → 1

and a well-defined action by conjugacy of π1(k) on π1(S). Then, let S′
k̄

→ Sk̄ denote the connected étale cover corresponding
to ker(π1(Sk̄) → π0(Gℓ)). As G

◦
ℓ is normal in Gℓ, the π1(k)-action stabilizes π1(S′

k̄
) hence s(π1(k))π1(S′

k̄
) ⊂ π1(S) is an open

subgroup corresponding to a connected étale cover S′ → S which, by construction, has the requested property.
5After base-change along the connected étale cover S′ → S trivializing Vℓ/ℓ̃ (with ℓ̃ = 4 if ℓ = 2 and ℓ̃ = ℓ if ℓ ̸= 2, this

classically follows from the Cebotarev density theorem, using Frobenius tori.
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3.1.1. Singular Z-local systems. Let S∞ be a connected variety smooth over C. For every s0∞, s∞ ∈ S∞(C) =
San

∞ , fix a topological path s∞ → s0∞, inducing an isomorphism of fiber functors αs∞ : (−)s∞→̃(−)s0∞ . In
particular, for every singular Z-local system VZ on San

∞ , one identifies V∞,Z,s∞→̃V∞,Z,s0∞ equivariantly with
respect to the isomorphism of topological fundamental groups πtop

1 (San
∞ , s∞)→̃πtop

1 (San
∞ , s0∞), γ 7→ αs∞γα−1

s∞ .
So that we will in general omit fiber functors from our notation and simply write

VZ := VZ,s∞→̃VZ,s0∞ .

Let f∞ : X∞ → S∞ be a smooth projective morphism. The singular Z-local system VZ := R2ifan
∞Z(i) on San

∞
underlies a polarizable Z-variation of Hodge structure. Let G ⊂ GL(VQ) denote the generic Mumford-Tate
group of VQ := VZ ⊗Z Q, and for every s∞ ∈ S∞(C), let Gs∞ ⊂ G denote the Mumford-Tate group of
the polarizable Q-Hodge structure s∗

∞VQ. Let also G ⊂ GL(VQ) denote the Zariski-closure of the image
of πtop

1 (San
∞) acting on VQ. By the fixed part theorem, G

◦ a normal closed subgroup of G and, for every
s∞ ∈ S∞(C), one has G = G

◦
Gs∞ .

As in Subsection 2.1.3, for every s∞ ∈ S∞(C) set

ΛZ,s∞ := im[CHi(X∞) → CHi(Xs∞) cs∞→ V free
Z ] ⊂ V free

Z .

The same argument as in the proof of Lemma 6 (using Leray spectral sequence for singular cohomology)
shows that ΛZ := ΛZ,s∞ is independent of s∞ ∈ S∞(C).

3.1.2. Artin’s comparison. Assume p = 0 and fix an embedding ∞ : k ↪→ C. Recall that (−)∞ denotes the
base-change functor along Spec(C) ∞→ Spec(k) and (−)an the analytification functor from varieties over C to
complex analytic spaces. Let S be a geometrically connected, smooth variety over k. For every s∞ ∈ S∞(C)
over s ∈ S let k(s̄) ⊂ C denote the algebraic closure of k(s) determined by k(s) ↪→ C and let s̄ denote the
corresponding geometric point over s. Let f : X → S be a smooth projective morphism. The local systems
VZ := R2ifan

∞Z(i) on San
∞ and VZℓ

:= R2ifan
∞Zℓ(i) on S are related by Artin’s comparison isomorphism [SGA4,

XI]
(5) VZ ⊗Z Zℓ→̃Van

Zℓ
,

where we write Van
Zℓ

for the pull-back of VZℓ
along6 the morphisms of sites (Xan

∞)an → X∞,et → Xet. Equiva-
lently, for every s∞ ∈ S∞(C) over s ∈ |S|, one has a canonical isomorphism of Zℓ-modules
(6) VZ ⊗Z Zℓ = VZ,s∞ ⊗Z Zℓ→̃VZℓ,s̄ = VZℓ

, VQ ⊗Q Qℓ→̃VQℓ
,

which is equivariant with respect to the profinite completion morphism composed with the GAGA isomor-
phism and the projection

πtop
1 (San

∞) → πtop
1 (San

∞)∧→̃π1(S∞)→̃π1(Sk̄) ↪→ π1(S).
In particular, G ⊂ GL(VQ) identifies, modulo (6), with the scalar extension GQℓ

⊂ GL(VQ ⊗Q Qℓ) of
G ⊂ GL(VQ).

Artin’s comparison isomorphism is compatible with cycle class maps on both sides. Namely, for every
s∞ ∈ S∞(C) over s ∈ S one has a canonical commutative diagram

CHi(Xk̄)
|Xs̄ //

|X∞
��

CHi(Xs̄)
cℓ,s //

|Xs∞
��

V free
Zℓ

CHi(X∞)
|Xs∞

// CHi(Xs∞)cs∞
// V free

Z
� �

−⊗ZZℓ

//
?�

OO

V free
Z ⊗Z Zℓ.

(6)
≃

ee

As a result, we will identify subgroups of V free
Z (e.g. ΛZ, V free,a

Z,s∞
etc.) with their image in V free

Zℓ
. Set

Λℓ,Z := im[CHi(Xk̄) → CHi(Xs̄)
cℓ,s→ V free

Zℓ
] ⊂ V free,a

ℓ,Z,s := im[CHi(Xs̄)
cℓ,s→ V free

Zℓ
].

Then, from 2.1.2.2 and Remark 7 applied to k̄ ↪→ C, one has
ΛZ = Λℓ,Z, V free,a

Z,s∞
= V free,a

ℓ,Z,s ,

6More precisely, write VZℓ = limn VZ/ℓn as a limit of Z/ℓn-local systems and define the analytification of VZℓ as (VZℓ )an :=
limn VZ/ℓn |(Xan

∞ )an .
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hence

(7) Λℓ,Z ⊗Z Zℓ→̃ΛZℓ
, V free,a

ℓ,Z,s ⊗Z Zℓ→̃V free,a
Zℓ,s .

3.1.3. Proof of Proposition 1. For every s ∈ S, write

Λℓ,Q = im[CHi(Xk̄)Q → CHi(Xs̄)Q
cℓ,s→ VQℓ

] ⊂ V a
ℓ,Q,s := im[CHi(Xs̄)Q

cℓ,s→ VQℓ
] ⊂ V a

Qℓ,s,

ΛQℓ
= im[CHi(Xk̄)Qℓ

→ CHi(Xs̄)Qℓ

cℓ,s→ VQℓ
].

If p = 0, fix an embedding ∞ : k ↪→ C and, for every s∞ ∈ S∞(C), write

ΛQ = im[CHi(X∞)Q → CHi(Xs∞)Q
cs∞→ VQ] ⊂ V a

Q,s∞ .

Recall from Subsection 3.1.1 and Subsection 2.1.3 that ΛQ is independent of s∞ and Λℓ,Q, ΛQℓ
are indepen-

dent of s (as the notation suggests) and, if p = 0, from Subsection 3.1.2, that Λℓ,Q = ΛQ.

With these notation, VSing0(f∞, i), VEt0
Qℓ

(f, i) and WVEt0
Qℓ

(f, i) can be reformulated as

VSing0(f∞, i) V a
Q,s∞

∩ (VQ)G ⊂ ΛQ, s∞ ∈ S∞.
VEt0

Qℓ
(f, i) V a

ℓ,Q,s ∩ (VQℓ
)Gℓ ⊂ Λℓ,Q, s ∈ |S|.

WVEt0
Qℓ

(f, i) V a
Qℓ,s ∩ (VQℓ

)Gℓ ⊂ ΛQℓ
, s ∈ |S|.

The implication VEt0
Qℓ

(f, i) ⇒ WVEt0
Qℓ

(f, i) immediately follows from the fact that, for every s ∈ S, V a
Qℓ,s

is the Qℓ-span of V a
ℓ,Q,s.

As TateQℓ
(Xη, i) is invariant under base-change along finite covers S′ → S of smooth varieties, to prove

TateQℓ
(Xη, i) ⇒ WVEtQℓ

(f, i) one may first perform such a base-change hence assume:

- V a
Qℓ,η = im[CHi(Xη)Qℓ

→ CHi(Xη̄)Qℓ

cℓ,η→ VQℓ
], which, from the surjectivity of the restriction map

CHi(X) ↠ CHi(Xη), implies ΛQℓ
= V a

Qℓ,η;

- Gℓ is connected - see Footnote 4, which ensures V a
Qℓ,s ∩ (VQℓ

)Gℓ ⊂ ṼQℓ,η
(α)= V a

Qℓ,η = ΛQℓ
, where (α) is

TateQℓ
(Xη, i).

If p = 0, for every s∞ ∈ S∞(C) above s ∈ |S|, Artin’s comparison isomorphism yields the following canonical
commutative diagram:

(8) V a
Q,s∞

∩ (VQ)G ≃ //
_�

��

V a
ℓ,Q,s ∩ (VQℓ

)Gℓ

_�

��
ΛQ ≃

// Λℓ,Q,

which shows VSing0(f∞, i) ⇔ VEt0
Qℓ

(f, i), and the isomorphisms

(V a
ℓ,Q,s ∩ (VQℓ

)Gℓ) ⊗Q Qℓ = V a
Qℓ,s ∩ (VQℓ

)Gℓ , Λℓ,Q ⊗Q Qℓ = ΛQℓ
,

(similar to (7)), which, together with (8), show WVEt0
Qℓ

(f, i) ⇒ VEt0
Qℓ

(f, i).

3.1.4. Proof of Lemma A. As we already observed that VSing(f∞, i) ⇔ WVEtQℓ
(f, i) and WVEtQℓ

(f, i) ⇒
ΛQℓ

= V a
Qℓ,s, s ∈ |S|gen

VQℓ
- see Subsection 2.2.5, it only remains to prove that c(ΛZℓ

) = 0 for ℓ ≫ 0. This
follows at once from Artin’s comparison isomorphism, which yields the identifications

(V free
Zℓ

/ΛZℓ
)tors ≃ (V free

Z /ΛZ)tors ⊗Z Zℓ.

and the fact that (V free
Z /ΛZ)tors is a finite group.
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3.1.5. Obstruction to the integral Hodge conjecture. In this subsection, we deduce from Artin’s comparison
and Theorem A uniform bounds for the obstruction to the integral Hodge conjecture.

Let X∞ be a smooth, projective variety over C. The cycle class map
c : CHi(X∞) → VZ := H2i(Xan

∞ ,Z(i))
for Z-singular cohomology fits into a canonical diagram analogue to (1)

CHi(X∞) //

c

''// //

��

V a
Z
� � //

����

ṼZ
� � //

����
□

VZ

����
V free,a
Z

� � //
� _

��

Ṽ free
Z
� � //
� _

��
□

V free
Z � _

��
CHi(X∞)Q // // V a

Q
� � // ṼQ

� � // VQ,

where, writing G ⊂ GL(VQ) for the Mumford-Tate group of the polarizable Q-Hodge structure VQ underlies,

ṼQ := (VQ)G

is the Q-vector space of Hodge classes. The (classical) rational Q-Hodge conjecture in codimension i for X
[H52]

HodgeQ(X∞, i) V a
Q = ṼQ

asserting that Hodge classes are algebraic also admits integral variants:

Hodgefree
Z (X∞, i) V free,a

Zℓ
= Ṽ free

Z (Integral Hodge conjecture modulo torsion);
HodgeZ(X∞, i) V a

Z = ṼZ (Integral Hodge conjecture).
Again, the implications

HodgeZ(X∞, i) ⇒ Hodgefree
Z (X∞, i) ⇒ HodgeQ(X∞, i)

are tautological and, in general, the converse implications are known to fail as soon as i > 1 (see e.g.
[AtH62, Ge19] for examples of the failure of HodgeQ(X∞, i) and [Ko90, K21, P22] for examples of the failure
of Hodgefree

Z (X∞, i)). By definition, the obstructions to HodgeQ(X∞, i), Hodgefree
Z (X∞, i), HodgeZ(X∞, i)

are, respectively:

C̃Q := ṼQ/V a
Q , C̃ free

Z := Ṽ free
Z /V free,a

Z , C̃Z := ṼZ/V a
Z ,

with the properties that one has the short exact sequence

(9) 0 → (VZ)tors/(V a
Z )tors → C̃Z → C̃ free

Z → 0
and that

HodgeQ(X∞, i) ⇔ (C̃ free
Z )tors = C̃ free

Z ⇔ (C̃Z)tors = C̃Z

in which case, (9) reads
0 → (VZ)tors/(V a

Z )tors → (C̃Z)tors → (C̃ free
Z )tors → 0.

Furthermore,
(C̃ free

Z )tors = (C free
Z )tors := V free

Z /V free,a
Z .

Assume p = 0 and fix an embedding ∞ : k ↪→ C. Let X be a smooth projective variety over k. From the
observations in Subsection 3.1.2 and the flatness of Z ↪→ Zℓ, Artin’s comparison isomorphism induces the
following identifications

((VZ)tors/(V a
Z )tors) ⊗Z Zℓ→̃(VZℓ

)tors/(V a
Zℓ

)tors, (C free
Z )tors ⊗Z Zℓ→̃(C free

Zℓ
)tors.

As VZ is a Z-module of finite type, this shows, in particular,

a) (C̃ free
Zℓ

)tors = 0 - hence (C free
Zℓ

)tors = 0, for ℓ ≫ 0.
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b) The obstruction (C free
Z )tors to Hodgefree

Z (X∞, i) can be recovered from the obstructions (C free
Zℓ

)tors to
Tatefree

Zℓ
(X, i), when ℓ varies as

(C free
Z )tors = ⊕ℓ(C free

Zℓ
)tors.

As in Subsection 1.3, let now S be a smooth, geometrically connected variety over k and f : X → S a smooth
projective morphism. For s∞ ∈ S∞(C) above s ∈ S, denote by a subscript (−)s∞ the various modules
attached to Xs∞ = X∞,s∞ introduced above (e.g. VZ,s∞ := H2i(Xan

s∞ ,Z(i)), V a
Z,s∞

:= im[CHi(Xs∞) → VZ]
etc.). Again, one may investigate how

ÕbZ,s := |(C̃Z,s∞)tors|
vary with s ∈ |S|. A direct consequence of Theorem A and the observations a), b) above is the following.

Corollary 10. Assume S is a curve and VSing(f∞, i) holds. Then, for every integer d ≥ 1, one has

Õb
≤d

Z := sup{ÕbZ,s∞ | s ∈ |S|≤d} < +∞.

When i = 2, (C̃Z,s∞)tors can again be described in terms of degree 3 unramified cohomology. More precisely,
set CZ,s∞ := VZℓ

/V a
Z,s∞

. From the short exact sequence

0 → C̃Z,s∞ → CZ,s∞ → VZ,s∞/ṼZ,s∞ → 0

and the fact that VZ,s∞/ṼZ,s∞ is torsion-free, one has (C̃Z,s∞)tors = (CZ,s∞)tors. If i = 2, [CTV12, Thm. 3.7]
establishes that (CZ,s∞)tors is isomorphic to

H3
nr(Xan

∞,s∞ ,Q/Z(2))ndiv
def= coker[H3

nr(Xan
∞,s∞ ,Q/Z(2))div → H3

nr(Xan
∞,s∞ ,Q/Z(2))].

Hence Corollary 10 implies:

Corollary 11. Assume S is a curve and VSing(f∞, i) holds. Then, for every integer d ≥ 1,

sup{|H3
nr(Xan

∞,s∞Q/Z(2))ndiv| | s ∈ |S|≤d}| < +∞.

Remark 12. a) Using [CTV12, Thm. 3.11] and Corollary 10 for cycles of dimension 1, one has an analogue
of Corollary 11 with uniform bounds for the groups Hn−3(Xan

∞,s∞ , Hn
Xan

∞,s∞
(Q/Z(n − 1)))ndiv, where n is

the relative dimension of f : Y → X.
b) More generally, Corollary 11 holds with H3

nr(X∞,s,Q/Z(2))ndiv replaced by Schreieder’s refined unram-
ified cohomology [S23, §1.2, Thm. 1.6]:

H2i−1
i−2,nr(X

an
∞,s∞ ,Q/Z(i))ndiv

def= coker[H2i−1
i−2,nr(X

an
∞,s∞ ,Q/Z(i))div → H2i−1

i−2,nr(X
an
∞,s∞ ,Q/Z(i))].

c) For general properties of deformation and specialization of the obstruction groups to the integral Hodge
conjecture in families of complex algebraic varieties see [CTV12, Sec. 5.1].

3.2. Crystalline cohomology. We now turn to the setting and retain the notation and conventions of
Subsection 1.2.2.

3.2.1. "Comparison" with crystalline cohomology. A delicate issue when p > 0 is to find a suitable analogue
of Artin’s comparison isomorphism. Following the strategy of [A23], this will be achieved by combining Fact
13 below, which relies - via a L-function argument - on the Katz-Messing theorem [KM74] and comparison
of various categories of isocrystals, with7 the conjectural statement CrysEtQℓ

(f, i).

Let S be a smooth, geometrically connected variety over F and consider a Cartesian square

XS

fS

��
□

// X

f
��

S // S.

Fact 13. [A23, Proof of Thm. 1.6.3.1 - esp. (2.1.2.1), Rem. 1.6.3.2] Assume the canonical restriction mor-
phism in étale Qℓ-cohomology

H0(SF̄ , R2if∗Qℓ(i))→̃H0(SF̄ , R2if∗Qℓ(i))

7Note that [A23] was focussed on divisors, for which the fact that homological and numerical equivalence coincide is known.
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is an isomorphism. Then the canonical restriction morphism in crystalline cohomology

H0(S, R2ifcrys,∗OX /K)→̃H0(S , R2ifS ,crys,∗OXS /K)

is an isomorphism.

3.2.2. Proof of Lemma B (ii). Let s ∈ |S|gen
Vℓ,Qℓ

. Recall we are to prove V a
Qℓ,s = ΛQℓ

. Replacing k, F by finite
field extensions, one may assume there exists a smooth, separated and geometrically connected scheme S
over F with generic point ηS : Spec(k(s)) → S and such that S (F ) ̸= ∅, and a Cartesian diagram

(10) Xt

ft

��

//

□

XS

fS

��
□

// X

f

��

Xoo

f

��
□

Xs

fs

��
□

oo
xx

F
t //

!!

S //

�� !!

S

��

Soo

��

k(s)soo

}}

ηS

ee

F Koo k
ηKoo

Replacing further k, F by finite field extensions, one may assume that

(11) V a
Qℓ,s = im[CHi(Xs) → CHi(Xs̄)

cℓ,s→ VQℓ
].

From (11), it is enough to show that for every α̃s ∈ CHi(Xs)Q with image αℓ,s := cℓ,s(α̃s) ∈ VQℓ
, there

exists α̃ ∈ CHi(X)Q such that cℓ,s(α̃|Xs) = αℓ,s. We retain the notation and conventions in Diagram
(10). Up to shrinking S , one may assume there exists α̃S ∈ CHi(XS )Q such that α̃S |Xs = α̃s; write
α̃t := α̃S |Xt ∈ CHi(Xt)Q. Consider now the canonical commutative diagram

CHi(X )Q
ccrys

��

|Xt

((

|XS // CHi(XS )Q
ccrys,S

��

|Xt

uu
H2i

crys(X )

ϵ

��

|Xt

((

CHi(Xt)Q
ccrys,t

��

H2i
crys(XS )

ϵ

��

|Xt

uu
H0(S, R2ifcrys,∗OX /K)

≃
44

// H2i
crys(Xt) H0(S , R2ifS ,crys,∗OXS /K).oo

As s ∈ Sgen
Vℓ,Qℓ

, the canonical restriction morphism

H0(SF̄ , R2if∗Qℓ(i))→̃H0(SF̄ , R2if∗Qℓ(i))

is an isomorphism - see [A23, §2.2.2]. Here, we implicity use the reduction 2.2.3 a), b). Hence, by Fact 13, the
bottom horizontal arrow is an isomorphism. This implies that αt := ccrys,t(α̃t) lies in H0(S, R2ifcrys,∗OX /K).
But then, by implication 2) =⇒ 1) in VCrys(f, i), there exists α̃X ∈ CHi(X )Q such that ccrys,t(α̃X |Xt) =
ccrys(α̃X )|Xt = αt = ccrys,t(α̃t). By CrysEtQℓ

(f, i), this implies cℓ,t(α̃X |Xt) = cℓ,t(α̃t). The assertion thus
follows, with α̃ = α̃X |X , from the canonical commutative specialization diagram of cycle class maps

CHi(X )Q

|Xs
��

|Xt

vv

|X

''
CHi(Xt)Q

cℓ,t

��

CHi(Xs)Q
cℓ,s

��

sps,too CHi(X)Q
|Xsoo

H2i(Xt̄,Qℓ(i)) H2i(Xs̄,Qℓ(i)).
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