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ABSTRACT. Assuming natural variational realization conjectures, we give uniform bounds for the obstruction
to the integral Tate conjecture in 1-dimensional families of algebraic varieties over an infinite finitely generated
field.
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1. INTRODUCTION

For an abelian group A, write A;,s C A for its torsion subgroup and A — A := A/A,, for its max-
imal torsion-free quotient. For an algebraic group G, let G° C G denote its neutral component and
G — mp(G) := G/G" its group of connected components.

A variety over a field k is a separated scheme of finite type over k.

In this paper k will denote an infinite field of characteristic p > 0, finitely generated over its prime subfield.
We fix a separable closure k < k and write m1 (k) =Gal(k|k) for the absolute Galois group.

1.1. Tate conjectures. Let X be a smooth projective variety over k. For every integer i > 0, let CH*(X)
denote the group of algebraic cycles of codimension ¢ on X modulo rational equivalence, and for every ring
R, set CH'(X)g := CH'(X) ®z R. For a prime ¢ # p, set

Vz, = H2i(Xl§;aZ£(i))'

Let Gy C GL(Vg,) denote the Zariski-closure of the image of 7 (k) acting on Vg, := V7, ®z, Q; and let
Vo, = (V)% C Vg,

denote the Qy-vector space of Tate classes, which can also be described as
‘7@( = colimU(VQl)U,

where U varies among all open subgroups of 71 (k). The cycle class map ¢y : CHi(X,;) — Vz, for Z,-étale
cohomology fits into the following canonical Cartesian diagram

Ce

/\

(1) CH(X;) — CH!(X3)z, Vi« Vz,C Vz,
i .
free,a 1/ free Tee
VZ% C Vgieec VZfA
{ -
CH'(X;)q — CH'(X})q, 125 V. Va,

where V7, (resp. V(j,) is the image of the cycle class map ¢, ® Zj : CHY(X3)z, — Vz, (vesp. ¢, ® Q) and
where ‘N/Zé and Vzﬁfe are defined by the rightmost Cartesian squares of the diagram.
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The (classical) rational Q-Tate conjecture for codimension 4 cycles on X [Ta65]
Tateq, (X,1) Vg, = Vo,

asserting that Tate classes are Qg-linear combinations of algebraic classes admits the following integral
variants:

Tatef* (X, i) Vzﬁfe o« Vf’ree (Integral Tate conjecture modulo torsion);

Tatez, (X,i) Vi, = Va, (Integral Tate conjecture).

While, tautologically,
Tatez, (X, 1) = Tatefree(X,i) = Tateq, (X, 1),

it is known that, in general, the converse implications fail as soon as i > 1 (see e.g. [CTS10, AtH62] for the
failure of Tateyz, (X i) and [CTS10, K090, Tol3, P22] for the failure of Tatef**(X,)).

The aim of this note is to analyze the obstructions to Tatez, (X, i), Tatef**(X,i) when X varies in family.
Our arguments provide a new application of the structure theorem of the degeneration locus of ¢-adic local
systems of [CT13] (see Fact A), in the spirit of [CC20, C23].

Before considering the variational setting, we make some elementary remarks. By definition, the obstructions
to Tateq, (X, i), Tate;**(X, i), Tatez, (X, i) are, respectively:

Cq, =V, /V§,, O = ffee/Vfoeea, Cr, =V, /VE..

1.1.1. 6’%;6 Versus CN‘ZZ. The short exact sequence
(2) 0— (VZZ)tors/(VZal)tOrs — 5’22 — Cfree

realizes C~'Z£ as an extension of ég;e by a finite group which is a quotient of (V7,)tors- As (VZ, )tors IS constant

in family, the problems of bounding uniformly é%;e and C, , are essentially equivalent.

1.1.2. CN'QZ versus 6‘%2’0. From é@l = f“’c ®z, Q¢ and the short exact sequence (2), one has the folllowing
equivalences

Tate@e (X7 Z) (Cfree)tors = ~g;e - (éZg)tors = éZg

and, in case they hold, (2) reads
(3) 0 — (VZg)tors/(VZaz)tors — (6Z[)t0rs (Cfree)tors — O

So that, assuming Tateg, (X, ), the obstructions we are interested in are (C~'Zg)tors, (C’free)tors. The obstruction

(C’f“"e)tOrs can be described without involving the Z,-module Vfree of Tate classes. Indeed, writing

frcc . frcc free a
Cy [V,

it follows from the short exact sequence

0— Ofree — Cfree free/Vfree =0
and the fact that Vfree / VZf;ee is torsion-free that

(Cfree)tors — (Cfree)tors-

1.2. Variational conjectures. Our main results - Theorem A, Theorem B in Subsection 1.3 - involve some
classical variational realization conjectures, which we discuss first.
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1.2.1. Characteristic 0.

- Singular cohomology: Fix an embedding co : k < C, let (—)s denote the base-change functor along
Spec(C) =3 Spec(k) and (—)*" the analytification functor from varieties over C to complex analytic spaces.
For every so, € Soo(C) the cycle class maps for singular cohomology

¢ CH(Xa)g — HA(X2,Q00), .. : CH(X,)g — HA (X2, Q())
fit into a canonical commutative diagram

Xoo,s

CH(Xx0)0

H% (X2, Q(i)) = HO(S22, R% f22, Q(i)) = H¥ (X2, Q(i)),

where € : H2(X2 Q(i)) - EY — Eg’i = HO(S22, R% fa» Q(i)) is the edge morphism from the Leray
spectral sequence for f3 : X350 — S35,

VSing®(fao, i) For every se € Sso(C) and ay € HO(S2, R f22 Q(i)) € H*(X,Q(i)) the following
properties are equivalent:

1) as, € im[esq : CH (X, )o — H* (X2, Q(i)));
2) there exists @ € CH'(X)g such that ¢, (a]x,_) = as

Though it does not involve Hodge classes, the statement VSing®(foo, ) is often referred to as the variational
Hodge conjecture for codimension ¢ cycles because, by the fixed part theorem, it follows from the Hodge
conjecture for any smooth compactification of X, - see e.g. [CS13, §3.1] for details and an equivalent
formulation using de Rham cohomology. A priori the statement VSingO(f ~0, 1) is not preserved by base-
change along finite covers of smooth varieties while the obstructions 6132@, s, § € S are. So we will rather
consider the following "stabilized" variant VSing(feo,). For finite covers S’ — S, — Ss of smooth
varieties, consider the notation in the base-change diagram:

X" X' Xoo
el on| o |
S/ Sl Seo.

VSing(feo,?) There exists a finite cover S, — S of smooth varieties over C such that for every finite
cover S — S’ of smooth varieties over C, VSing®(f/,4) holds.

Let us point out that if the Zariski-closure of the image of m(S2) acting on H?(X & ,Q(4)) is connected
then VSing(fs,?) and VSing?(fs,4) are both equivalent to

For every finite cover S’ — Ss of smooth varieties over C, VSing®(f7_,) holds.

In particular, if S/ — Sxo is chosen in such a way that the Zariski-closure of the image of 771(5;2“) acting
on HQZ(ngO,Q(i)) is connected then VSing®(f’_,4) implies VSing(fso,1).

- Etale Q/-cohomology: The following is the Qg-étale counterpart of VSing®(fuo,):

VEt?Qe(f,i) For every s € |S| and as € HY(Sg, R? f£.Qu(i)) € H*(X5,Qu(i)) the following properties are
equivalent:

1) as € imey, ¢ : CHY(X5)g — H? (X5, Qu(4))];
2) there exists @ € CH(X})g such that cx. o(a]x,) = as.

One could also consider the seemingly weaker variant WVEt%&( f,i) where CH'(X35)g, CH'(X})q are
replaced with CH'(X5)g,, CH'(X})q,, and the stabilized variants WVEtg,(f, 1), VEtg,(f,i). Note that
the statements WVEt?QZ(f, i), VEt?Qe(f, i) also make sense when p > 0.

Proposition 1. If p =0, one has

WVEL, (f,1) < VEtQ,(f, i) < VSing”(fw, ).
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In general, one always has VEt%Z(f, i) = WVEt%e(f,i) and Tateg,(X,,1) = WVEtq,(f,1).

We will give a proof of Proposition 1 in section 3.1.3. In particular, when p = 0, VSing?(fs, i) is independent
of the embedding co : k — C and WVEt?QZ(f, i), VEt?Qé(f, i) are independent of the prime /.

Let us also point out that if the Zariski-closure of the image of m; (S;) acting on H* (X3, Q(4)) is connected
then VEtq,(f,i) and VEt& ,(f,i) are both equivalent to

For every finite cover S’ — S of smooth varieties, VEt?Q ,(f';4) holds.

In particular, if S — S is chosen in such a way that the Zariski-closure of the image of 71(S}) acting
on H? (X3, Q(i)) is connected then VEt?Qé(f’,i) implies VEtg,(f,7). The same considerations apply to
WVEtg, (f,i) and WVEL, (f, ).

1.2.2. Characteristic p > 0. According to Proposition 1, a first substitute for VSing(fs,?) when p > 0 is
WVEtq, (f,7). Another natural substitute is the variational realization conjecture in crystalline cohomology
VCrys(f,i). This is more subtle. Indeed, as crystalline cohomology is only well-behaved over a perfect
residue field, one has first to spread out all the involved data over a finite base field. Another difficulty
is to relate crystalline and étale data; for singular data, this is Artin’s comparison isomorphism bewteen
étale and singular cohomology. But there is no such a direct functorial comparison isomorphism between
crystalline and étale cohomology; to remedy this, one has to invoke a weak form - CrysEtq,(f,%) of the
motivic conjecture predicting that homological and numerical equivalence should coincide (combined with
a theorem of Ambrosi - see Fact 13).

We now state VCrys(f,i) and CrysEtg,(f,4). Let F' denote the algebraic closure of F), in k and let 2" be
a smooth, separated, geometrically connected scheme over F' with generic point 7 : Spec(k) — £, let
S — & be a smooth, separated and geometrically connected morphism and f : X — S a smooth proper
morphism fitting in the following Cartesian diagram

X*f>5*><%/

ot o e

X—S——k

Let K denote the fraction field of the ring W of Witt vectors of F'. For a F-scheme Z, write Hirys(Z) =
H: (Z/W)k for the crystalline cohomology with K-coefficients and

crys
Cerys : CHY(Z)g — HZ (Z)

crys

for the cycle class map. For every t € |S| the cycle class maps
Carys : CHY(X) = HZL (X)), Corysye 1 CH(X)) — HZL (X))

fit into a canonical commutative diagram

X

CH'(X)q CH (X))

Ccrys \L lccrys,t

H2i (X) 6*> HO (87 RZifcrysv*OX/W)KC—> ngiys(Xt)7

crys

where € : Hijs(x ) = E% s HY(S, R¥ furys x Oy yw)K is, again, the edge morphism from the Leray spectral

sequence for f: X — S in crystalline cohomology - see [M23, §1] and the references therein for details. The
following is the crystalline analogue of VSing®(fs, i), VEt&Z(f, i) [M23, Conj. 0.1].

VCrys?(f,4) For every t € |S| and oy € H(S, R ferys xOx wg C Hffys(é’(t) the following properties are
equivalent:

1) ap € im[Cerys s : CHY (X))o — HZ (X))

crys

2) there exists @ € CH'(X)g such that ceyet(aly,) = .
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As before, let VCrys(f,i) denote its stabilized variant.

Also, consider the following statement

CrysEtq,(f,i) For every t € |S|, the kernel of the cycle class maps

Cerys,t - CH’ (Xt)(@ —H Xt), Cy, CHZ(Xt)Q — H (Xt,(@g)

cryi(
coincide,

which follows from the standard conjecture predicting that homological and numerical equivalences should
coincide, which, in turn, is a consequence of the conjecture predicting that the category of effective motives
should be abelian semisimple [J92].

1.3. Statements.

1.3.1. Let now S be a smooth, geometrically connected variety over k, with generic point 1, and f: X — S
a smooth projective morphism. For s € S, denote by a subscript (—)s the various modules attached to X,
introduced above (e.g. Vz, s := H% (X5, Z(7)), Vi ¢ = im[CHi(Xg)Z[ — Vz,.] etc.). One would like to
investigate how the obstruction

/O\BZZ s = |(C~’ZZ s tors‘

to the mtegral Tate conjecture for X varies with s € |S|. In particular, the vanishing of the obstruction
group (C’Z/Z s)tors reads as ObZZ s = 1.

Assume first p = 0. The main conjecture of [C23] predicts that the obstruction to the integral Tate
conjecture should be uniformly bounded in fibers over points with residue field of bounded degree. More
precisely, for every integer d > 1, let |S|=? C |S| denote the set of all closed points s € |S| with residue
degree [k(s) : k] < d.

Conjecture 2. Assume p = 0. For every integer d > 1, one has
Oby, :=sup{Obgz, s | s € IS5} < 400

and 61;;; =1 for {>0.

Our first main result is that Conjecture 2 holds when S is a curve modulo the variational realization
conjectures discussed in Subsection 1.2.1.

Theorem A. Assume S is a curve, p = 0 and VSing(f,i) holds for one (equivalently every) embedding
oo : k< C. Then, for every integer d > 1, one has 65;; < 400 and 662? =1 for £ >0 (depending on d).

Assume now p > 0. One has a variant of Theorem A for d = 1 involving the variational realization
conjectures discussed in Subsection 1.2.2 but it is slightly more technical. To state it, one has to make a
mild assumption on the Qy-local system Vg, := R? £,Qy(7), namely that it is GLU - see Subsection 2.2.1.2
for the definition.

Theorem B. Assume S is a curve, p > 0 Vo, is GLU and either (i) WVEtq,(f,i) or (i) VCrys(f,i) +
CrysEtq, (f,4) holds. Then, one has Obze < +o00.
Remark 3. We do not know if, under the assumptions of Theorem B, 66; el =0 for £> 0.

1.3.2. An unconditional example. From Proposition 1, one has the following special case of Theorem A and
Theorem B.

Corollary 4. Assume S is a curve and Tateg,(X,,4) holds. Then,
1) if p=0, for every integer d > 1, one has ObiZ < 400 and 66;; =1 for £ >0 (depending on d).

2) if p> 0 and R* f,Q(i) is GLU, then one has E)Vb;el < 4o00.
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To get unconditional examples, one thus only has to check Tateg,(X,,7) holds. This is for instance the
case if U = U(2n,§) is the moduli space of degree §-smooth hypersurfaces in P2"+1, f : X — U is the
universal family and ¢ = n. Indeed, in that case, V{j, has dimension > 1 as it contains the class h", where

h € H? (X7, Q¢(1)) is the class of a hyperplane section. On the other hand, if G denotes the Zariski-closure of
the geometric étale fundamental group 71 (S, 77) acting on Vy,, Beauville proves that the Q-vector subspace

(V@e)é; C Vg, of é;—invariant vectors is exactly Qyh™ [B85, Thm. 2]. From the tautological inclusions
Va, = (V)% € (Vg,)% = Q" € Vg, C (V)% = Vg,

this ensures Tateg,(Xy,n). So, if S — U is a geometrically connected curve such that m1(Sg) — m1(Ug)
(there exists plenty of such curves by Bertini), the base-changed family fg: Xg:= X Xy S — S satisfies the
assumptions of Corollary 4 hence, for the hypersurfaces X with s € |S|=%, the obstruction to Tatez, (X, n)
is uniformly bounded with d, ¢ and trivial for £ > 0 (depending on d). The same argument applies with
complete intersections [B85, Thm. 5].

1.3.3. Unramified cohomology. When i = 2, (5’Zz7s)t0rs can be described in terms of degree 3 unramified
cohomology. More precisely, set Cz, s == Vz,/ Vj, s~ From the short exact sequence

0— 62275 — CZZ,S — VZ@,S/VZZ,S —0

and the fact that VZM/VZM is torsion-free, one has (ézg,s)tors = (Cz,.)tors- If i =2, [CTK13, Thm. 2.2]
states that (Cz,s)tors is isomorphic to

H3, (X5, Qo/Z4(2))naie < coker[H3, (X, Qu/Z4(2)) s — H3, (X5, Qu/Zy(2))].

Here for an abelian group A, we let Ag;, C A denote its maximal divisible subgroup.

Hence Theorem A and Theorem B for ¢ = 2 imply:

Corollary 5. Assume S is a curve.
(1) Assume p =0 and VSing(feo,1) for some embedding oo : k — C holds. Then, for every integer d > 1,
sup{ [F3, (X5, Q¢/Ze(2)uaie| | 5 € |SIS4}] < 400,
and T3 (X5, Q0/Z¢(2))naiv = 0, s € |S|=% for £>> 0 (depending on d).
(2) Assumep >0, Vo, is GLU and either (i) WVEtq,(f,7) or (i) VCrys(f, i)+ CrysEtq,(f,4) holds. Then,

sup{|H2, (X5, Q¢/Z¢(2))naiv| | s € S(k)}| < +00,
and T2, (X5, Q¢/Z¢(2))naiy = 0, 5 € S(k) for £ > 0.

For integers a > 0, b,c and Ay = Z¢,Qq,Q/7Zy etc., Schreieder introduces refined unramified cohomology
groups H? (X35, Ag(D)) [S23, §1.2] which, when ¢ = 0, coincide with the usual unramified cohomology groups.

c,nr

By [S23, Thm. 1.8], for every integer ¢ > 0 one has:

~ i— . de i— 3 i .
(Cst)torS = H?—Q,lnr(X§7 QE/ZE(Z))HCHV :f COker[H?—Q,lllr(X§7 Q@/Z[(Z))div — H?—Q,lnr(XLE? QZ/ZK(Z))]
So, Corollary 5 holds more generally with H2, (X5, Q¢/Z¢(2))naiv replaced by H2 5! (Xs, Q¢/Z0 () ) naiv-

i—2,nr

1.4. Acknowledgements. The second author is partially supported by the NSF DMS-2201195 grant. We
thank Stefan Schreieder for pointing out the application to refined unramified cohomology groups. We thank
Frangois Charles for his interest and comments on the manuscript.
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In Section 2.1 we review basic properties of cycle class maps for étale Zy-cohomology in families, introduce
the notion of Vg,-generic points and describe the general strategy for the proof of Theorem A and Theorem
B. In Section 3, we inject comparison with singular cohomology - Subsection 3.1, to prove Proposition 1 and
conclude the proofs of Theorem A, and with crystalline cohomology - Subsection 3.2, to conclude the proof
of Theorem B. In Subsection 3.1.5, we also explain how to derive from Theorem A its variant in the setting
of the integral Hodge conjecture.
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2. ETALE CYCLE CLASS MAPS IN FAMILIES AND GLOBAL STRATEGY

2.1. Etale Zs-local systems. Let S be a smooth, geometrically connected variety over k. For every s € S,
fix a geometric point 5 over it and an étale path as : (—)s=(—)5. In particular, for every Zs-local system Vz,
on S, one identifies Vz, V7, 5 equivariantly with respect to the isomorphism of étale fundamental groups
m1(S,3)=m1(S,7), v — agyaz . As a result, we will in general omit fiber functors from our notation and
simply write

Vi, =V, 57Vz,5, Vo, = Vz, ®z, Qe.
Let f: X — S be a smooth projective morphism.

2.1.1. Notational conventions. Consider the Z-étale local system Vz, := R* £,7Z,(i) on S. Let G, C GL(Vg,)
denote the Zariski-closure of the image of m(S) acting on Vp,; let also Gy C Gy and, for every s € 9,
Gys C Gy denote the Zariski closure of the images of m1(S;) and m(s) acting on Vg, by restriction along
the functorial morphisms 7 (S;) — m1(S) and 7 (s) = m1(S) respectively (in particular G, = G¢). As S
is geometrically connected over k, the functorial sequence

1 = m(S;) = m(S) = mi(k) = 1
is exact, hence Gy C Gy is a normal subgroup, and for every closed point s € |S|, one has G = @;GZ o

2.1.2. Specialization and extension of algebraically closed fields. We recall the following two properties of
the cycle class map for étale Zy-cohomology.

2.1.2.1. Compatibility with specialization of algebraic cycles. For every s € S, one has a commutative diagram

) |x5 )
CHI(Xp) - CHI(X,)

. Ce,
|X5\L % l n

CH!(X5) Vz,

Ce,s

(see [F98, § 20.3, Ex. 20.3.1 and 20.3.5)).

2.1.2.2. "Invariance" under extension of algebraically closed field. Let < Q' be an extension of alge-
braically closed fields of characteristic # ¢ and let Y be a smooth proper variety over ). Consider the
canonical commutative square

CH(Y) — 2 H2(Y, Z4(4))

- |~

CH(Yoy) —= H2 (Yey, Zy(i)).

Then',
im[cg o —|y,,, ] : CHY(Y) = H*(Yqy, Zy(i)) = im[ce : CH' (Yor) — H* (Yo, Zo (i)

In particular, V7 VZf:z’a etc. are independent of the geometric point s over s.

2.1.3. The lattice Az,. For every s € S, define
AZ[,S = im[CHi(XE)ZZ — CHi(Xg)Z

By construction and 2.1.2, one has

Cl,s free free
. = Vgl Vg

free,a free,a free
Azys C Vg, C Vg, " C Vg™

Lemma 6. The lattice Az, == Az, s C szfe is independent of s (modulo the identifications Vz, = Vz, 5 ~
VZ[J?)'

1n fact, a cycle ¢ € CH(Yqy) is defined over a finitely generated algebraically closed field 2 C €'. One could then find
a smooth and proper model of Y over a small affine scheme U over  with generic point 2" and use the specialization at a
Q-point of U, as in 2.1.2.1.
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Proof. This follows from the fact that the restriction morphism H*(Xj,Z(i)) — H* (X5, Ze(i)) = Vg,
factors through the edge morphism e : H* (X}, Zy(i)) - E% — Eg’Z = H(So, R% f.7,(i)) of the Leray
spectral sequence for f: X — S as

|X§

CHi(X];)Zl CHi(Xg)Ze

Cﬁl iczys

i . € i . (_)5 Tee
H” (X3, Zo(i)) <— HO(Sg, R £.24(i)) Vi,

and the fact the embedding

VA 01 (V)™ = im[HO(Sp, R¥ £.2(0)) ' Vi) < Vi
is independent of s (modulo the identifications Vz, = Vz, s ~ Vz, ). O
Remark 7. Assume? there exists a smooth compactification X < X, Then the surjectivity of the

restriction morphism CHi(Xlgpt) — CH'(X}) and the functoriality of cycle class maps shows that Az, can
also be described as

Az, = im[CH'(X*)z, < H¥ (X, Z,(i)) — H* (X, Zy(i)) — VL],
In particular, if & < Q is an extension of algebraically closed fields and sq a geometric point on Sq over 3,

then 2.1.2.2 shows that

Az, = im[CH(Xq)z, — CH(X,y)z, - V).

l

2.2. Strategy for the proof of Theorem A and Theorem B. We retain the notation and conventions
of Subsection 1.3 and Subsection 2.1.1. For every s € S, set

OB, = [(CH rons -
As -
ObZZ:S S |(VZg)tors|Ob%;?S

and as (Vz, )iors is independent of s € S and, if? p =0, (Vz,)tors = 0, £> 0 , it is enough to prove Theorem
A, Theorem B for Obj*, instead of Obz, .

2.2.1. Vg,-generic points. The proofs of Theorem A and Theorem B are parallel and follow from the com-
bination of two independent statements involving Vg,-generic points. Let Vz, be a Z-local system on S.

2.2.1.1. Vg,-generic points. Define the sets of closed Vg,-generic points to be the subset |S\§f£ C |S| of all
£
s € | S| satisfying the following equivalent conditions
Gi,=G] & G, DG} G}, DG,
and let |S‘§‘%in = |S]'\ |S|%; C | S| be the subset of clgsoed non-Vg,-generic points. Note that |S|§EQI;’ is
contained in the set of all s € [S| such that Vi§ C (V,)%e.

2.2.1.2. Sparcity. Under mild assumptions one expects non-Vgp,-generic points to be sparce - see [C23] for
details. When S is a curve, one has the following unconditional results. Let II, denote the image of 7 (S)
acting on Vp, and, if p > 0, let ﬁZ(D II;) denote the image of T1(Syx,) acting on Vg,; these are f-adic Lie
groups. One says that Vg, is:

- GLP (geometrically Lie perfect) if Lie(TI;) is a perfect Lie algebra viz one has [Lie(Il,), Lie(II,)] = 0;

- and, if p > 0, GLU (geometrically Lie unrelated) if Lie(Il;) and Lie(ﬁ?) have no non-trivial common
quotient.

Fact A. ([CT13, Thm. 1]). Assume p =0, S is a curve and Vg, is GLP. Then for every integer d > 1, the
set \S\%en N|S|=¢ is finite.
7

2If p = 0, this is always the case - see [Na62], [Na63], [Hi64].
3This follows from Artin’s comparison - see Subsection 3.1.2 and the fact that singular cohomology groups are finitely
generated. This is also true if p > 0 [G83] but we will not resort to this fact.
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Fact B. ([T24]; see also the discussion in [A23, 1.7.1]). Assume p >0, S is a curve and Vg, is GLU. Then
the set |S|§>gzn NS(k) is finite.

The Z¢-local system V, = R? f,Qy(i) is GLP [D71], [D80]. If p > 0, it is not necessarily GLU but still, it is
e.g. if IIy is open in the derived subgroup of the image of 71 (S;) acting on Vg, - see [A23, Rem. 1.7.1.4] for
details.

2.2.2. The main Lemmas. Fact A immediately reduce the proof of Theorem A to the proof of:

Lemma A. Set Vy, := R*f,7,(i). Assume p = 0 and VSing(foo,i) holds for some (equivalently every)
embedding oo : k < C. Then,

Obyz;**™ := sup{ObZ}%, | s € |SI } < +oo,
and Ober;e’gen =1 for £>0.

The proof of Lemma A will be carried out in Section 3.1.4.

Similarly, Fact B immediately reduces the proof of Theorem B to the proof of:

Lemma B. Set Vz, := R?f.Z,(i). Assume p > 0 and either (i) WVEtq,(f,i) or (ii) VCrys(f,i) +
CrysEtq, (f,i) holds. Then, Obfzrje’gen < +00.

The proof of Lemma Lemma B will be carried out in Section 3.2.2.

Note that Lemma A and Lemma B do not involve any restriction on the dimension of S nor on the degree
of the residue field k(s) for s € |S|ge]ﬂ

Remark 8. A priori, the assumptions in Lemma A, Lemma B do not imply Tateg,(X,, i), s € |S|} ge“

|gen

However, if one assumes Tateg,(X,,?) holds for some sy € |S then these assumptions indeed 1mply

Tateqg,(Xs, 1), s € |S \gen. Indeed, the proofs of Lemma A, Lemma B will show these assumptions imply

Ag, = V§,s s € |S|ge“, where Ag, = Az, ®z, Q;. Assume furthermore Tateg,(Xs,,?) holds - that is
VQz,So V@g 50, for some so € !S|gen But then, for every s € |5’\gen one has

VE o = Agy = V&, 50 = Vouso = Vi

Qs — Q¢ = VQg,s0 = Q50 = YQu,so

where («) follows from sy € |S |gen

2.2.3. Reduction to connected monodromy groups. To bound Obfree uniformly for s € |S ]gcn

one can freely

replace f : X — S by a base change along a finite cover 7 : S’ — S of connected smooth varieties over k.
Indeed, consider the base-change diagram

X —= X
e
S —— 8
and write Vi = R? f!7,(i). For s € |S| and s’ € || over s € |5, let & be a geometric point over s’ and

let 5 = 7o & denote its image on S. Then, X, -X; as k-schemes hence, a fortiori, CH'(X%)=CH'(X5).
On the other hand, by proper base change, VZZ = 7*Vz, hence, one gets a canonical commutative square

CH'(X5) — = H2 (X5, Z(i))

|

. Cp ol .
CHY(X,) —= H(XL, Z(i))

where the vertical arrows are isomorphisms and the right vertical one is equivariant with respect to the
functorial morphism m(S") < m1(S). In particular, as m1(S’) < m1(S) is open, one has s € ]S]%l if and
7

gen

only if s’ € \S’ )
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After base change along a finite cover S’ — S of smooth varieties (which, working componentwise, we may
assume to be connected and, replacing k by a finite field extension, geometrically connected over k), one
may assume VSing®(f. ,i) (resp. WVEt%Z( f,1), resp. VCrys®(f’,)) holds for every base change along a
finite cover S, — Soo (resp. S" — S, resp. &’ — S) of smooth varieties. Then, the assumptions and
conclusions of Theorem A and Theorem B become unchanged by base change along finite covers of smooth
varieties, so that one may assume:

a) the algebraic group Gy is connected?;

b) the algebraic groups G s, s € S are all connected®.

2.2.4. An elementary lemma. Recall that for every s € S, we identify Vz, := Vz,5Vz, 5. For a subset
> C S, set

free a free a free,a free
Zé s C Vg, ©.
SEX

free,a

Lemma 9. For every Zy-submodule Tz, C Vi, and for every s € X2, one has the following implications
free,a Tee L Tee
Tg, = V(Sz,s — [Vze,sa : TZ@] < +00 = ObfZe,S < C(TZe) = KVZfz /TZZ)“’“"

Proof. The first equivalence is straightforward. The second implication follows from the canonical commu-
tative diagram of short exact sequences

(4) 0 TZZ VZf;ee free/TZZ — =0
free Tee ree
00—V, vz, C3es, 0

which, by the snake lemma, identifies
Qz,.s = coker[Ty, < Vo] S ker [V /Ty, — C5) =: Ky, .
But if Kz, , is finite, one gets a short exact sequence
0= Kz,.s = (V2 /T2, )tors — (CFS)tors — 0,
whence the assertion. O

Lemma 9 reduces the proof of Lemma A and Lemma B to finding a Z,-submodule Tz, C VZﬁ;ega such that
=Vg,s SEX = ]S]gcn and, in the setting of of Lemma A, such that ¢(7%,) = 0, £ > 0. In all cases,

we Wlll consider the Z,- submodule 17, = Az, introduced in Subsection 2.1.3, Lemma 6. As a warm-up, we
end this Section with the proof of Lemma B (i).

2.2.5. Proof of Lemma B (i). Let s € ¥ = \S\gcn Assuming WVEtq, (f, ), we are to prove that the inclusion
Q
Aq, C Vg, s 1s an equality. This follows from the inclusions

a a 7 (@) 1 a 7 (8) a G
VQ[ s — V@g s N V@Z»S - VQ@,S N VQZW - V@g,s N <VQ£) ¢

where («) follows from s € \S\gcn (B) from the reduction 2.2.3 a), and (vy) is WVEtq,(f, 7).

()
= AQe - V@ev

3. COMPARISON WITH SINGULAR AND CRYSTALLINE COHOMOLOGIES

3.1. Singular cohomology.

4 First, after replacing k by a finite field extension, one may assume S(k) # 0, so that fixing s € S(k) yields a splitting
s:mi(s) =mi(k) < m1(S) of the canonical short exact sequence

1 — m(S;) = m(S) » m(k) > 1

and a well-defined action by conjugacy of m1(k) on m1(S). Then, let S; — S denote the connected étale cover corresponding
to ker(m1(Sz) = m0(Gr)). As Gy is normal in Gy, the 7 (k)-action stabilizes m1(S%) hence s(m1(k))m1(S) C m1(S) is an open
subgroup corresponding to a connected étale cover S’ — S which, by construction, has the requested property.

SAfter base-change along the connected étale cover S’ — S trivializing VZ/Z (with f=4if¢=2and ¢ =/if ¢ # 2, this
classically follows from the Cebotarev density theorem, using Frobenius tori.



UNIFORM BOUNDS FOR OBSTRUCTIONS TO THE INTEGRAL TATE CONJECTURE 11

3.1.1. Singular Z-local systems. Let S be a connected variety smooth over C. For every spso, Soo € Soo(C) =
San fix a topological path Soq — Spoo, inducing an isomorphism of fiber functors as_ @ (—)so. = (—)spe- In
particular, for every singular Z-local system Vz on S5, one identifies Voo 7 5.~ Voo, 7,50, €quivariantly with
respect to the isomorphism of topological fundamental groups 7, (S22, 500 )71 (S22, S000 ), Y asoo’yas_;.
So that we will in general omit fiber functors from our notation and simply write

Vi = V260 V7 500 -

Let foo : Xoo — Soo be a smooth projective morphism. The singular Z-local system V7, := R% f27,(i) on Sa°
underlies a polarizable Z-variation of Hodge structure. Let G C GL(Vy) denote the generic Mumford-Tate
group of Vg = Vz ®z Q, and for every soo € Sx(C), let G5, C G denote the Mumford-Tate group of
the polarizable Q-Hodge structure s Vg. Let also G C GL(Vy) denote the Zariski-closure of the image

top

of m°P(S%2) acting on V. By the fixed part theorem, G° a normal closed subgroup of G and, for every

S0 € Soo(C), one has G =G G

Soco *

As in Subsection 2.1.3, for every s € Soo(C) set
A5, = 1m[CH (Xo0) = CH' (X)) “F V] C VE.

The same argument as in the proof of Lemma 6 (using Leray spectral sequence for singular cohomology)
shows that Az := Az s is independent of s, € Soo(C).

3.1.2. Artin’s comparison. Assume p = 0 and fix an embedding oo : k < C. Recall that (—)~ denotes the
base-change functor along Spec(C) 3 Spec(k) and (—)*" the analytification functor from varieties over C to
complex analytic spaces. Let S be a geometrically connected, smooth variety over k. For every so, € Soo(C)
over s € S let k(s) C C denote the algebraic closure of k(s) determined by k(s) < C and let s denote the
corresponding geometric point over s. Let f : X — S be a smooth projective morphism. The local systems
Vz = RE f207,(i) on S22 and Vg, := R* f227,(i) on S are related by Artin’s comparison isomorphism [SGA4,
XI]

(5) Vz, @z Le=>V,,

where we write V7 for the pull-back of 1, along® the morphisms of sites (X22),, — Xooet = Xet- Equiva-
lently, for every so € Sso(C) over s € |S|, one has a canonical isomorphism of Z,-modules

(6) V2 ®z Ly = V5., Q7 Le—Vz,5 = Vz,, Vo ®g Qe=Va,,

which is equivariant with respect to the profinite completion morphism composed with the GAGA isomor-
phism and the projection

m P (S58) = M (S%) S (Se0) Hmi(SE) < m(S).
)

In particular, G C GL(Vp) identifies, modulo (6
GC GL(VQ).

with the scalar extension Gg, C GL(Vg ®g Q¢) of

Artin’s comparison isomorphism is compatible with cycle class maps on both sides. Namely, for every
S0 € Soo(C) over s € S one has a canonical commutative diagram

Ce,s

CHY(X7) — % CHY(X5) 2 Ve

CH'(Xo0) — CH' (X, ) — VjroeC Ve @z Zy.

[ X500 sco —®zZy

As a result, we will identify subgroups of V¢ (e.g. Az, VZZZ’I etc.) with their image in V. Set
Az = im[CH'(Xp) — CH'(X5) ™5 V] € V55" := im[CH'(X5) =5 V™).
Then, from 2.1.2.2 and Remark 7 applied to k < C, one has
Az =Mz, Vool = Ve,

6More precisely, write Vz, = lim, Vz/,m as a limit of Z/¢"-local systems and define the analytification of Vz, as (Vz,)*" :=
llmn VZ/@n |(ngl)all .
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hence

~ free,a ~ free,a
(7) Aoz @7 Ze—Agz,, Vz,z,s ®z Z£_>VZ£75 :

3.1.3. Proof of Proposition 1. For every s € S, write

Agg = im[CH (Xp)g — CHY(X5)g =% Va,] € Vig., = im[CH!(X5)g = Vi,] C VE, .

Ag, = im[CH(X7)q, — CH(X5)g, — Va,-
If p =0, fix an embedding oo : k — C and, for every s € Soo(C), write

Ag = im[CH' (Xu)g — CH' (X, )g ™% Vol € V...

Recall from Subsection 3.1.1 and Subsection 2.1.3 that Ag is independent of s, and A/ g, Ag, are indepen-
dent of s (as the notation suggests) and, if p = 0, from Subsection 3.1.2, that Ao = Ag.

With these notation, VSing?(fso, ), VEt%Z(f, i) and WVEt?QZ(f, i) can be reformulated as

VSing®(foor i) Ve  N(Vo)® C Ay,  Soo € Sec:
VE, (f,1) Vi, N (V) C Mg, s€S].
WVEt), (f,i) VG, N (Vo) CAg,, selS].

The implication VEt& L(f1) = WVEt% ,(f,1) immediately follows from the fact that, for every s € S, Vg, .
is the Qg-span of VZLQ,S'

As Tateg,(X,,) is invariant under base-change along finite covers S’ — S of smooth varieties, to prove
Tateq, (X, 1) = WVEtq,(f,i) one may first perform such a base-change hence assume:

Coon

- V@m = im[CHi(Xn)Qz — CH'(X;)q, — Vg,), which, from the surjectivity of the restriction map
CH'(X) — CH'(X,), implies Ag, = Vg, ,;

- Gy is connected - see Footnote 4, which ensures VG,.s N (VQZ)@ - V@zm @ V@, = Aqg,, where () is
Tateq, (X, ).

If p =0, for every s € Soo(C) above s € |S|, Artin’s comparison isomorphism yields the following canonical
commutative diagram:

(8) V&,sw N (VQ)G = VZ(,IQS N (VQZ)G[

Aq ~ Aeqs

which shows VSing?(f.,4) < VEt% ,(f,1), and the isomorphisms

(VZL}Q:S n (VQIZ)@Z) ®q Qe = V(Se,s N (VQe)éea Apg ®q Qe = Ag,,

(similar to (7)), which, together with (8), show WVEt?QZ(f, i) = VEt?Qe(f, i).

3.1.4. Proof of Lemma A. As we already observed that VSing(f,) & WVEtq,(f,?) and WVEtg,(f,) =
Ag, =V§,s s € |S\%f@fl - see Subsection 2.2.5, it only remains to prove that ¢(Az,) = 0 for £ > 0. This
’ £

follows at once from Artin’s comparison isomorphism, which yields the identifications
(VZﬁ;ee/AZE)tOYS = (VZfree/AZ)tors ®Z ZZ

and the fact that (V°/Az)iors is a finite group.
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3.1.5. Obstruction to the integral Hodge conjecture. In this subsection, we deduce from Artin’s comparison
and Theorem A uniform bounds for the obstruction to the integral Hodge conjecture.

Let X+ be a smooth, projective variety over C. The cycle class map
c: CHY (Xo) — Vg := HZ(X22, Z(i))
for Z-singular cohomology fits into a canonical diagram analogue to (1)

C

/x

CH (X o) Vic Vi€ Vz
e

VZfrie,aC VZfreeC VZf:ee
| o

CH'(Xw)g Vg° 155 Vo,

where, writing G C GL(Vp) for the Mumford-Tate group of the polarizable Q-Hodge structure Vg underlies,
Vo = (V)¢

is the Q-vector space of Hodge classes. The (classical) rational Q-Hodge conjecture in codimension ¢ for X
[H52]

Hodgeg(Xoo,i) VG = Vo

asserting that Hodge classes are algebraic also admits integral variants:

free

Hodge;** (X0, ) VZfzee’a — Vfree  (Integral Hodge conjecture modulo torsion);

Hodgey(Xoo,i) Vg =Vg (Integral Hodge conjecture).
Again, the implications
Hodgey(Xoo, i) = Hodges* (X oo, i) = Hodgeg(Xoo, 1)
are tautological and, in general, the converse implications are known to fail as soon as ¢ > 1 (see e.g.
[AtH62, Gel9] for examples of the failure of Hodgeg(Xwo,) and [Ko90, K21, P22] for examples of the failure
of Hodge}*(Xoo,1)). By definition, the obstructions to Hodgeg(Xoo, ), Hodge** (X, ), Hodges(Xoo, 1)
are, respectively:

Cq = Vo/V§, CF= = Vgee/Vy*o, Cp = V)V,
with the properties that one has the short exact sequence
(9) 0= (V2)tors/ (Vi tors — Cz — CF — 0
and that

Hodgeg(Xoo, 1) < (Ngee)tors = ~§ee & (C~'Z)tors =Cy
in which case, (9) reads

0— (VZ)tors/(VZa)tors — (6Z)tors — (Ngee)tors — 0.
Furthermore,
(G5 Yo = (Yoo 1= VA V=2

Assume p = 0 and fix an embedding oo : k — C. Let X be a smooth projective variety over k. From the

observations in Subsection 3.1.2 and the flatness of Z — Z,, Artin’s comparison isomorphism induces the
following identifications

((VZ)tors/(VZa)tors) ®Z ZKQ(VZ[)‘ZOI‘S/(VZC?@)tOI‘S? (Cgee)tors ®Z ng(c%je)tors-

As V7 is a Z-module of finite type, this shows, in particular,

a) ((72?6%0“ =0 - hence (C%‘e)tors =0, for £ > 0.
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b) The obstruction (C7*)irs to Hodge**(Xw,4) can be recovered from the obstructions (C7)iors to
Tatef**(X, 1), when £ varies as

(Cgee)tors = EBE (Cg;e)tors .

As in Subsection 1.3, let now S be a smooth, geometrically connected variety over k and f : X — S a smooth
projective morphism. For soo € Soo(C) above s € S, denote by a subscript (—)s,, the various modules
attached to X, = Xoos.. introduced above (e.g. Vg, := H*(X Z(i)), Vi = 1im[CH (X)) — Vz
etc.). Again, one may investigate how

ObZ,S = |(CZ,soo)tors|

vary with s € |S|. A direct consequence of Theorem A and the observations a), b) above is the following.

Corollary 10. Assume S is a curve and VSing(fso, ) holds. Then, for every integer d > 1, one has
—<d —
Ob; " :=sup{Obz_ | s €|S|5¢} < +o0.

When i = 2, (C~’Z7soo)tors can again be described in terms of degree 3 unramified cohomology. More precisely,
set Cz.5. = Vz,/ VZ@, s, - From the short exact sequence
0— 627500 — CZ,Soo — VZ,SOO/VZ,SOO —0

and the fact that VZ,soo/‘N/Z,soo is torsion-free, one has (CN’ZSOO)WS = (C7,52 )tors- If @ =2, [CTV12, Thm. 3.7]
establishes that (C'z s )tors i isomorphic to

an d f an an
) (X8 00 s Q/Z(2))nan = coker[H, (X2, Q/Z(2))ar — Hy (X3, Q/Z(2))]-
Hence Corollary 10 implies:

Corollary 11. Assume S is a curve and VSing(fs,?) holds. Then, for every integer d > 1,
sup{[H3, (X3 ., Q/Z(2))nan| | s € |54} < +oo.

00,800

Remark 12. a) Using [CTV12, Thm. 3.11] and Corollary 10 for cycles of dimension 1, one has an analogue
of Corollary 11 with uniform bounds for the groups H"3(X2" Xan_ (Q/Z(n — 1)))naiv, where n is

00,8007
the relative dimension of f: Y — X.
b) More generally, Corollary 11 holds with H2, (Xw s, Q/Z(2))naiv replaced by Schreieder’s refined unram-
ified cohomology [S23, §1.2, Thm. 1.6]:
L— an . def ) — an . ) — an .
H?izlnr(Xoo,soyQ/Z(z))ndiv ; COker[Hgl—Q,lnr(Xoo,soov Q/Z(l))di" — H?Z—Q,lnr(Xoo,soo ) Q/Z(l))}
c¢) For general properties of deformation and specialization of the obstruction groups to the integral Hodge
conjecture in families of complex algebraic varieties see [CTV12, Sec. 5.1].

3.2. Crystalline cohomology. We now turn to the setting and retain the notation and conventions of
Subsection 1.2.2.

3.2.1. "Comparison” with crystalline cohomology. A delicate issue when p > 0 is to find a suitable analogue
of Artin’s comparison isomorphism. Following the strategy of [A23], this will be achieved by combining Fact
13 below, which relies - via a L-function argument - on the Katz-Messing theorem [KM74] and comparison
of various categories of isocrystals, with” the conjectural statement CrysEtg,(f, 7).
Let . be a smooth, geometrically connected variety over F' and consider a Cartesian square

Xy —=X

f i O lf
S —S.

Fact 13. [A23, Proof of Thm. 1.6.3.1 - esp. (2.1.2.1), Rem. 1.6.3.2] Assume the canonical restriction mor-
phism in étale Qp-cohomology

HY(Sp, B Q1)) HH (S5, R* £.Qu(1))

"Note that [A23] was focussed on divisors, for which the fact that homological and numerical equivalence coincide is known.
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is an tsomorphism. Then the canonical restriction morphism in crystalline cohomology
HO(Sa Rzifcrys,*OX/K);HO(yv RQif:V,crys,*OXy/K)
is an tsomorphism.

3.2.2. Proof of Lemma B (ii). Let s € |S |gen Recall we are to prove Vg, . = Ag,. Replacing k, I by finite

field extensions, one may assume there ex1sts a smooth, separated and geometrically connected scheme .¥
over F' with generic point 1y : Spec(k(s)) — . and such that . (F) # (), and a Cartesian diagram

(10) X X,
ti o fyl if a if a lfe
s S < k(s)
\ l W
F H k

Replacing further k, I’ by finite field extensions, one may assume that

(11) V8, o = m[CH'(X,) — CH'(Xs) = V).

From (11), it is enough to show that for every &s € CH'(X,)g with image ays := cp4(@s) € Vg, there
exists @ € CH'(X)g such that c;4(@|x,) = aus. We retain the notation and conventions in Diagram
(10). Up to shrinking .7, one may assume there exists @y € CH'(Xy)q such that ao|x, = as; write
Q; = a.y|x, € CH'(X;)g. Consider now the canonical commutative diagram

CH(X X))o

Ccrys \L \ / iCCYyS S
21 21

H2 CH'(X,)q HZ (Xy)

crys

l L] l
€ Ccrys,t €

H0(87 Rgifcrys,*OX/K) - ngzys(Xt) -~ Ho(yv RQifY,crys,*OXy/K)'

As s € S{gjf:@ , the canonical restriction morphism
el

HO(Sp, R* £.Qu(i)) >H (S5, R* £.Qu(i))

is an isomorphism - see [A23, §2.2.2]. Here, we implicity use the reduction 2.2.3 a), b). Hence, by Fact 13, the
bottom horizontal arrow is an isomorphism. This implies that oy := cerys(G) lies in HO(S , R Jerys s Ox k)
But then, by implication 2) == 1) in VCrys(f,i), there exists ax € CH(X)g such that ceye(ax|y,) =
Cays(Qx)|x, = ¢ = Cayst(@y). By CrysEtg,(f,4), this implies cq¢(ax|x,) = co¢(qz). The assertion thus
follows, with & = ax|x, from the canonical commutative specialization diagram of cycle class maps

CH'(X)q

CHI(A)g ~—2— CHI(X,)g ~“— CHI(X)q

CZ,tl icl,s

H2 (X, Qu(i)) =—— H* (X5, Qe(i)).
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